UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA HIDRÁULICA

"DISPONIBILIDAD DE AGUA DE LA MICROCUENCA CHIRIMAYO, UTILIZANDO EL MODELO DETERMINÍSTICO ESTOCÁSTICO LUTZ SCHOLZ Y EL VOLUMEN TRANSPUESTO DE LA CUENCA TRES RÍOS"

TESIS

Para optar el título profesional de:

INGENIERO HIDRÁULICO

Presentado por el Bachiller:

WILMER ALAYA ZABALETA

Asesorado por:

Dr. Ing. JOSÉ FRANCISCO HUAMÁN VIDAURRE

CAJAMARCA-PERÚ 2018

AGRADECIMIENTO

A Francisco Huamán Vidaurre Dr. Ing; asesor de esta investigación, por sus consejos y apoyo incondicional en el desarrollo del presente trabajo.

A Oswaldo Ortiz Vera Ph.D. Ing; jurado de tesis, por su disposición y apoyo al desarrollo del presente trabajo.

A Gaspar Méndez Cruz Dr. Ing; jurado de tesis, por sus valiosos comentarios al presente documento.

A Luis León Chávez Dr. Ing, jurado de tesis, por su apoyo y comentarios al presente trabajo.

A Nilton Deza Arroyo Dr. Por confiar en este proyecto y tener buena disposición durante el desarrollo del trabajo.

Al proyecto de investigación TEAM VLIR-UOS.

DEDICATORIA

La presente tesis está dedicada a Dios; ya que gracias a él eh logrado concluir mi carrera.

A mis Padres, Almanzor Alaya Zelada y Claudina Zabaleta Yzquierdo, porque ellos siempre estuvieron a mi lado brindándome su apoyo y consejos para hacer de mí una mejor persona.

A mi hermano Segundo Francisco Alaya Zabaleta, por estar siempre a mi lado y apoyarme como amigo, quien con sus palabras de aliento no me dejo decaer para que siguiera adelante y siempre sea perseverante y cumpla con mis ideales.

A mi sobrina por traer la alegría a nuestra familia y ser la motivación para seguir luchando en la vida.

A mis compañeros y amigos presentes y pasados, quienes sin esperar nada cambio compartieron su conocimiento, alegrías y tristezas y a todas aquellas personas que durante estos años estuvieron a mi lado apoyándome y lograron que este sueño se haga realidad.

ÍNDICE

I. IN	TRODUCCIÓN	1
1.1	PLANTEAMIENTO DEL PROBLEMA	2
1.2	DEFINICIÓN DEL PROBLEMA	2
1.3	JUSTIFICACIÓN	2
1.4	OBJETIVOS	3
A)	OBJETIVO GENERAL	3
B)	OBJETIVOS ESPECÍFICOS	3
II. M	ARCO TEÓRICO	4
2.1	Antecedentes teóricos de la investigación	4
2.2	Bases teóricas	5
Hidr	ología	5
Pará	metros Geomorfológicos	6
Trata	amiento de información climatológica	11
Mod	elo determinístico estocástico de Lutz Scholz	35
Anál	isis estadísticos y probabilísticos	47
Simi	litud Hidrológica	50
	litud hidráulica de sistemas hidrológicos altoandinos y transferencia de	
	mación hidrometeorológica.	
2.3	Definición de términos básicos	
	ATERIALES Y MÉTODOS	
3.1	Ubicación del área de estudio	
3.2	Equipos y materiales utilizados durante la investigación	
3.3	Procedimiento de recolección de datos en campo	
3.4	Tratamiento Cartográfico	
3.5	Análisis estadístico de la información meteorológica	
3.6	Generación de Caudales	
	ESULTADOS Y DISCUSION	
4.1	Análisis Cartográfico de la zona de estudio	
4.2	Tratamiento estadístico de la información.	
4.3	Modelos determinísticos parciales	
4.4	Generación de caudales	
4.5	Ofertas hídricas en la microcuenca Chirimayo	
V. Co	ONCLUSIONES Y RECOMENDACIONES	
5.1	Conclusiones	
5.2	Recomendaciones	
VI. RI	EFERENCIAS BIBLIOGRÁFICAS	90

ANEXOS

A.1 Periodo de registro de las estaciones pluviométricas	(92)
A.2 Consistencia de la información pluviométrica	(98)
A.3 Completación y extensión de la información	(102)
A.4 Precipitación media mensual en la microcuenca Chirimayo	(108)
A.5 Generación de descargas con modelo estocástico	(111)
A.6 Generación de descargas con modelo de transposición de caudales	(114)
A.7 Registro de descargas de los aforos realizados	(115)
A.8 Pruebas de bondad de ajuste	(118)
A.9 Lagunas en el área de influencia de la microcuenca Chirimayo	(125)
A.10 Panel fotográfico	(126)

ÍNDICE DE FIGURAS

Figura 1 Cuenca hidrográfica	5
Figura 2 Isoyetas de una cuenca	12
Figura 3 Serie con componente transitoria en forma de salto	14
Figura 4 Serie con componente transitoria en forma de tendencia	14
Figura 5 Serie histórica de caudales promedios anuales.	15
Figura 6 Análisis doble masa para determinar la estación base	16
Figura 7 Análisis doble masa para obtener los periodos de estudio (en este caso n	ı, n ₂ ,
n ₃)	17
Figura 8 Grados de libertad	19
Figura 9 Serie histórica de caudales de las cuencas A y B	28
Figura 10 Series de tamaños N1 y N=N1+N2	29
Figura 11 Ubicación política de la microcuenca Chirimayo	64
Figura 12 Ubicación referencial de la microcuenca Chirimayo	65
Figura 13 Y y Figura 14 Estación hidrométrica y Correntómetro digital para afora	ır en
canales y ríos	66
Figura 15 y Figura 16 Cámara fotográfica para capturar las actividades de la	
investigación y GPS	66
Figura 17 y Figura 18 Computadora CORE i5 y Impresora multifuncional canon .	67
Figura 19. Distribución espacial de las estaciones meteorológicas	70
Figura 20Curva Hipsométrica	78
Figura 21 Frecuencia de altitudes	78
Figura 22 Precipitación media mensual (PMTM) y precipitación efectiva (PME) o	de la
microcuenca Chirimayo	82
Figura 23 Distribución de coeficientes de agotamiento en la microcuenca Chirima	ayo
	83
Figura 24 Caudales generados para el año promedio en la microcuenca Chirimayo	85
Figura 25 Comparación de Caudales Generados, Transpuestos y Observados de la	ì
microcuenca Chirimayo	87
Figura 26 Pluviogramas anuales de la estación A. Weberbauer	97
Figura 27 Pluviogramas anuales de la estación Hacienda Negritos	97
Figura 28 Pluviogramas anuales de la estación La Encañada	98
Figura 29 Pluviogramas anuales de la estación Quebrada Shugar	98

Figura 30 Pluviogramas anuales de la estación Celendín
Figura 31 Análisis de doble masa estación Hacienda Negritos
Figura 32 Análisis de doble masa estación La Encañada
Figura 33 Análisis de doble masa estación Quebrada Shugar100
Figura 34 Análisis de doble masa estación Celendín
Figura 35 Sección máxima aguas abajo del río Chirimayo a la altura de 2393 msnm
115
Figura 36 y Figura 37 Visita al lugar donde se recopilo la información, y selección de
la ubicación de la sección de aforo
Figura 38 y Figura 39 Nivelación y medición de alturas en la sección de aforo del río
Chirimayo a la altura de 2393 msnm
Figura 40 y Figura 41 Midiendo tirantes de agua y velocidades en la sección del río
Chirimayo a la altitud de 2393 msnm
Figura 42 Hidrograma de medición de Caudales medios mensuales del Río Chirimayo
117
Figura 43 Ganadería en el llano de La Chorrera
Figura 44 Vegetación cerca al cauce
Figura 45 Vista panorámico de la Falla la Chorrera
Figura 46 Falla normal Lípiac
Figura 47 Falla Regional El Tingo
Figura 48 Anticlinal Alforjacocha

ÍNDICE DE TABLAS

Tabla 1Tamaño relativo de los sistemas hidrologicos
Tabla 2 Formas de la Cuenca de acuerdo al Índice de Compacidad8
Tabla 3 Clasificación de las Cuencas de acuerdo a la pendiente promedio de laderas9
Tabla 4 Almacenamiento hídrico durante la época de lluvias (%)44
Tabla 5 Valores críticos de "Δo"
Tabla 6 Variables y dimensiones del fenómeno precipitación-escorrentía56
Tabla 7 Formas estándar de cuencas con base en el índice de Gravelius58
Tabla 8 Accesibilidad a la zona de estudio
Tabla 9 Coordenadas de las estaciones pluviométricas a utilizar para la microcuenca
Chirimayo69
Tabla 10 Principales parámetros de la microcuenca Chirimayo77
Tabla 11 Resumen de la completación y extensión de información meteorológica80
Tabla 12 Precipitación media mensual sobre la microcuenca Chirimayo81
Tabla 13 Coeficiente de escorrentía
Tabla 14 Precipitación efectiva de la microcuenca Chirimayo82
Tabla 15 Periodo del ciclo hidrológico en la microcuenca Chirimayo83
Tabla 16 Retención en la microcuenca Chirimayo
Tabla 17 Coeficiente de agotamiento
Tabla 18 Valores de la relación de caudales de flujo base "b ₀ "
Tabla 19 Valores del gasto de retención (Gi) de la microcuenca Chirimayo84
Tabla 20 Coeficientes de abastecimiento para la región Cajamarca84
Tabla 21 Valores del abastecimiento de retención "Ai" de la microcuenca Chirimayo
84
Tabla 22 Caudales generados para el año promedio en la microcuenca Chirimayo 85
Tabla 23 Series y coeficientes estadísticos para regresión múltiple86
Tabla 24 Caudales medios mensuales mediante modelo Lutz Scholz86
Tabla 25 Caudales medios mensuales para el año promedio de la microcuenca
Chirimayo87
Tabla 26 Resumen de Caudales medios mensuales de la microcuenca Chirimayo87
Tabla 27 Precipitación mensual de la estación pluviométrica Augusto Weberbauer91
Tabla 28 Precipitación mensual de la estación pluviométrica Hacienda Negritos92
Tabla 29 Precipitación mensual de la estación pluviométrica La Encañada93

Tabla 30 Precipitación mensual de la estación pluviométrica Quebrada Shugar	94
Tabla 31 Precipitación mensual de la estación pluviométrica Celendín	95
Tabla 32 Precipitación total mensual mm –Hacienda Negritos	.101
Tabla 33 Precipitación total mensual mm- La Encañada	103
Tabla 34 Precipitación total mensual mm- Quebrada Shugar	.104
Tabla 35 Precipitación total mensual mm -Celendín	106
Tabla 36 Precipitación media mensual de la microcuenca Chirimayo en mm	.107
Tabla 37 Precipitación efectiva generadas para la microcuenca Chirimayo (mm/me	es)
	108
Tabla 38 Números aleatorios normalmente distribuidos	110
Tabla 39 Generación de descargas por el modelo estocástico (mm/mes)	111
Tabla 40 Generación de descargas por el modelo estocástico (m³/s)	112
Tabla 41 Caudales medios mensuales de la cuenca Tres Ríos (m³/s)	113
Tabla 42 Precipitación media en la cuenca Tres Ríos (mm/mes)	113
Tabla 43 Descargas medias mensuales de la microcuenca Chirimayo (m³/s)	114
Tabla 44 Control de caudales medios mensuales en el río Chirimayo	114
Tabla 45 Distribución normal – prueba de Smirnov Kolmogorov	117
Tabla 46 - Caracterización de lagunas	124

RESUMEN

La presente investigación tiene como objetivo estimar los caudales medios mensuales y la disponibilidad de agua para diferentes actividades; tal es el caso, uso agrícola, consumo humano, industrial y energético generado para la microcuenca Chirimayo, Sorocucho - Celendín - Cajamarca, aplicando el modelo determinístico estocástico Lutz Scholz y el modelo determinístico transposición de caudales. El siguiente tema es ubicar el punto emisor en la confluencia del río Chirimayo con el río Sendamal, luego realizamos la delimitación de la microcuenca Chirimayo y calculamos sus parámetros geomorfológicos, igualmente se recopiló, completó y trató estadísticamente la información pluviométrica de cinco estaciones meteorológicas, después se calculó la precipitación media mensual de la microcuenca mediante el método de Isoyetas, se determinó la precipitación efectiva, retención de cuenca y abastecimiento de retención; submodelos que se utilizan para procesar el modelo determinístico estocástico Lutz Scholz. Además, se realizó ciertos aforos como alcance para proceder con la metodología de transposición de caudales. Los caudales obtenidos con el modelo determinístico estocástico Lutz Scholz en los meses de estiaje Mayo, Junio, Julio, Agosto y Setiembre son 1.46 m 3 /s, 0.66 m 3 /s, 0.35 m 3 /s, 0.32 m 3 /s y 0.70 m 3 /s respectivamente, por otra parte los caudales obtenidos por transposición de caudales es los meses de estiaje Mayo, Junio, Julio, Agosto y Setiembre son 1.84 m³/s, 2.29 m³/s, 1.37 m³/s, 1.99 m³/s y 2.93 m³/s respectivamente. Finalmente el modelo que más se ajusta a los caudales medidos en la microcuenca Chirimayo durante el año 2017 a 100 m aguas arriba del punto emisor es el modelo determinístico estocástico Lutz Scholz.

Palabras Clave: Microcuenca Chirimayo, disponibilidad de agua, modelo Lutz Scholz, Transposición de Caudales, caudales medios mensuales.

ABSTRACT

The objective of this research is to estimate the average monthly flows and the availability of water for different activities; Such is the case, agricultural use, human, industrial and energy consumption generated for the Chirimayo micro-basin, Sorocucho - Celendín – Cajamarca, applying the Lutz Scholz stochastic deterministic model and the deterministic model transposition of flows. The next topic is to locate the emitting point at the confluence of the Chirimayo River with the Sendamal River, then we made the delimitation of the Chirimayo micro-basin and we calculated its geomorphological parameters, and we collected, completed and statistically treated the rainfall information of five meteorological stations, after the average monthly precipitation of the microbasin was calculated by the Isoyetas method, effective precipitation, basin retention and retention supply were determined; Submodels that are used to process the stochastic deterministic model Lutz Scholz. In addition, certain gaugings were made as scope to proceed with the methodology of transposition of flows. The flows obtained with the stochastic deterministic model Lutz Scholz in the months of low water in May, June, July, August and September are $1.46 \text{ m}^3/\text{s}$, $0.66 \text{ m}^3/\text{s}$, $0.35 \text{ m}^3/\text{s}$, $0.32 \text{ m}^3/\text{s}$ y $0.70 \text{ m}^3/\text{s}$ respectively, On the other hand, the flows obtained by transposition of flows are the months of low water. May, June, July, August and September are 1.84 m³/s, 2.29 m³/s, 1.37 m³/s, 1.99 m³/s y 2.93 m³/s respectively. Finally, the model that most closely matches the flows measured in the Chirimayo micro-basin during 2017 at 100 m upstream from the emitter point is the stochastic deterministic model Lutz Scholz.

Keywords: Chirimayo micro-basin, water availability, Lutz Scholz model, Transposition of flows, monthly average flows.

I. INTRODUCCIÓN

En el Perú el régimen de los caudales de los ríos depende principalmente de la precipitación pluvial y de la capacidad de almacenamiento y retención de las cuencas colectoras, observándose en cuencas de alta montaña una reducción del caudal de los ríos en los meses de escaza precipitación pluvial.

Ante la problemática de escasez de agua y la falta de información hidrológica, han surgido algunos métodos y modelos hidrológicos que generan caudales medios mensuales; dentro de estos está el modelo determinístico estocástico de Lutz Scholz, que según Terán, (2014). Manifiesta un ajuste aceptable entre volumen generado por el modelo determinístico estocástico Lutz Scholz para el año promedio y el volumen calculado de caudales observados se ajusta en un 99.6 %; por otro lado el volumen para el periodo extendido el ajuste llega a 89.6 % respecto al observado, y el modelo determinístico de parámetros adimensionales, mediante similitud hidráulica de sistemas hidrológicos altoandinos y transferencia de información hidrometeorológica, de Ortiz (2014). Quien manifiesta que las leyes físicas que gobiernan los sistemas hidrológicos altoandinos con base en el fenómeno precipitación-escorrentía se rigen por la morfometría adimensional.

Entendiendo que el río Chirimayo abastece de agua a la zona rural y urbana del distrito de Sorochuco; es por ello que se realizará la tesis "Disponibilidad de agua de la microcuenca Chirimayo, utilizando el modelo determinístico estocástico Lutz Scholz y el volumen transpuesto de la cuenca Tres Ríos", dicho estudio servirá como línea de base para futuros proyectos respecto a hidrología, ya que no se cuenta con proyectos de gran envergadura en la parte alta de la microcuenca Chirimayo o dentro de ella.

1.1 PLANTEAMIENTO DEL PROBLEMA

En la microcuenca Chirimayo la escasa o falta de información hidrológica, dificulta el planeamiento, administración y gestión de los recursos hídricos, afectando en gran medida el diseño, operación y mantenimiento de los proyectos hidráulicos (abastecimiento de agua potable, canales de riego, embalses de agua, entre otros). Este problema atraviesa la microcuenca Chirimayo, y es común en distintas regiones de nuestro país.

1.2 DEFINICIÓN DEL PROBLEMA

Sabiendo que la zona de estudio y en forma específica su parte baja, existe mucha demanda de agua, generando con ello la necesidad de compensar con la oferta hídrica se tiene la siguiente pregunta:

¿Cuál es la disponibilidad de agua de la microcuenca Chirimayo?

1.3 JUSTIFICACIÓN

La metodología del modelo determinístico estocástico Lutz Scholz resuelve, en cierta medida, el problema de escasez o falta de información hidrometereológica local, puesto de manifiesto al momento de desarrollar proyectos hidráulicos de carácter social en localidades rurales, como son: canales de regadío, pequeñas presas de regulación, entre otros. Igualmente la metodología de transferencia de información hidrometeorológica entre sistemas hidrológicos hidráulicamente similares, no solo resuelve problemas relacionados con proyectos hidráulicos, sino también pueden emplearse en proyectos de desarrollo integral. Esta metodología permite la transferencia de información de manera muy simple, comparada con cualquier otra, que a menudo requiere de abundantes registros estratégicamente bien distribuidos en espacio y tiempo, que permitan un análisis regional con resultados aceptables, lo cual muchas veces se toma imposible, repercutiendo además en la economía de proyecto.

1.4 OBJETIVOS

A) OBJETIVO GENERAL

✓ Estimar la disponibilidad de agua de la microcuenca Chirimayo, utilizando el modelo determinístico estocástico Lutz Scholz y el volumen transpuesto de la cuenca Tres Ríos.

B) OBJETIVOS ESPECÍFICOS

- ✓ Recopilar y procesar la información cartográfica.
- ✓ Recopilar y procesar la información hidrológica.
- ✓ Estimar los caudales medios mensuales del río Chirimayo utilizando el modelo determinístico estocástico Lutz Scholz, tomando como punto de descarga la altitud de 2393 msnm, para el período 1968-2017.
- ✓ Estimar los caudales medios mensuales del río Chirimayo utilizando el modelo determinístico de transposición de caudales desde la cuenca Tres Ríos, para el período 2008-2017.
- ✓ Determinar el modelo hidrológico que más se ajusta a los caudales medios mensuales medidos durante el año 2017 en la sección del río Chirimayo a la altitud de 2393 msnm.

II. MARCO TEÓRICO

2.1 Antecedentes teóricos de la investigación

En la microcuenca Chirimayo no se ha encontrado estudios similares, sin embargo se han encontrado documentos que pueden aportar al desarrollo de esta investigación, a continuación se presenta algunos estudios relacionados al tema a desarrollar.

En el 2014, se ha desarrollado la tesis de grado "Evaluación geoestructural e hidrogeológica del centro poblado la Chorrera-Sorochuco-Celendín-Cajamarca" a cargo del Bach. en Ingeniería Geológica Segundo Francisco Alaya Zabaleta, quien concluyó que las estructuras del C.P. La Chorrera está relacionada directamente a la hidrogeología, mostrando la existencia de zonas importantes de manantiales y acuíferos; esta información es muy importante para la investigación a realizar.

En el 2014, se ha desarrollado la tesis de grado "Volumen de agua aprovechable en la microcuenca del río Tres Ríos, usando el modelo determinístico estocástico Lutz Scholz validado, para los años hidrológicos 2008-2012" a cargo del Bach. en Ingeniería Hidráulica Cesar Nixon Terán Guevara, quien valida el modelo Lutz Scholz para la microcuenca Ronquillo.

En el 2015, se ha desarrollado la tesis de Doctorado "Similitud hidráulica de sistemas hidrológicos altoandinos y transferencia de información hidrometeorológica" a cargo del Ph.D. Ing. Oswaldo Ortiz Vera, quien manifiesta que las leyes físicas que gobiernan los sistemas hidrológicos altoandinos con base en el fenómeno precipitación-escorrentía se rigen por la morfometría adimensional, lo cual permite solucionar problemas de escasez de información hidrometeorológica con fines de manejo integral de cuencas hidrográficas piloto, que sean motivos de réplica en cuencas similares.

2.2 Bases teóricas

Hidrología

Cuenca Hidrográfica

Área territorial de drenaje natural donde todas las aguas pluviales confluyen hacia un colector

común de descarga. Los límites de una cuenca están determinados por la línea de «divortio

aquarum» o divisoria de aguas. Debemos hacer hincapié que no siempre los límites

geográficos suelen coincidir con los límites del acuífero, pudiendo existir transferencias de

masas líquidas entre una cuenca y otra. (ORTIZ, O. 2004)

precipitación, I(t)

superficie

Figura 1.- Cuenca hidrográfica

divisoria de aguas

Fuente: (VILLON, M. 2002)

Delimitación de la Cuenca

Consiste en definir la línea de divortio aquarum, que es una línea curva cerrada que parte y

llega al punto de captación mediante la unión de todos los puntos altos e interceptando en

forma perpendicular a todas las curvas de altitudes del plano. (ORTIZ, O. 2004)

5

Parámetros Geomorfológicos

Las características fisiográficas de la cuenca pueden ser explicadas a partir de ciertos parámetros o constantes que se obtienen del procesamiento de la información cartográfica y conocimiento de la topografía de la zona de estudio. (ORTIZ, O. 2004)

La cuenca como unidad dinámica natural es un sistema hidrológico en el que se reflejan acciones recíprocas entre parámetros y variables. Las variables pueden clasificarse en variables o acciones externas, conocidas como entradas y salidas al sistema, tales como: precipitación, escorrentía directa, evaporación, infiltración, transpiración; y variables de estado, tales como: contenido de humedad del suelo, salinidad, cobertura vegetal, entre otros. En hidrología superficial existe una relación muy estrecha entre parámetros y variables, relaciones que son muy bien aprovechadas por el ingeniero para solucionar problemas cuando se carece de información hidrológica en la zona de estudio.

Área (A)

Es la superficie de la cuenca comprendida dentro de la curva cerrada de divortio aquarum; dependiendo de la ubicación de la cuenca, su tamaño influye en mayor o menor grado en el aporte de escorrentía, tanto directa como de flujo de base o flujo sostenido. (ORTIZ, O. 2004) El tamaño relativo de estos espacios hidrológicos definen o determinan, aunque no de manera rígida, los nombres de micro cuenca, sub cuenca o cuenca, según explica la Tabla 1.

Tabla 1.-Tamaño relativo de los sistemas hidrologicos

Unid. Hidrológica	Área (Km²)	N° de Orden
Micro cuenca	10-100	1, 2, 3
Sub cuenca	101-700	4, 5
Cuenca	más de 700	6 a más

Fuente: (ORTIZ, O. 2004)

Perímetro (P)

Es la longitud de la línea de divortio aquarum o divisoria de aguas. Se mide mediante el curvímetro o directamente se obtiene del Software en sistemas digitalizados. (ORTIZ, O. 2004)

Factor de Forma (F)

Es la relación entre el área A de la cuenca y el cuadrado del máximo recorrido (L).

Este parámetro mide la tendencia de la cuenca hacia las crecidas, rápidas y muy intensas a lentas y sostenidas, según que su factor de forma tienda hacia valores extremos grandes o pequeños, respectivamente. Es un parámetro adimensional que denota la forma redondeada o alargada de la cuenca. (ORTIZ, O. 2004)

$$F = \frac{A}{L^2} \tag{1}$$

A: Área de la cuenca

L: Longitud de máximo recorrido

Coeficiente de Gravelius o Índice de Compacidad (Kc)

Parámetro adimensional que relaciona el perímetro de la cuenca y el perímetro de un círculo de igual área que el de la cuenca. Este parámetro, describe la geometría de la cuenca y está estrechamente relacionado con el tiempo de concentración del sistema hidrológico.

Las cuencas redondeadas tienen tiempos de concentración cortos con gastos pico muy fuertes y recesiones rápidas, mientras que las alargadas tienen gastos pico más atenuados y recesiones más prolongadas. (ORTIZ, O. 2004)

$$K = 0.28 P A^{-1/2}$$
 (2)

P: Perímetro de la cuenca

A: Área de la cuenca

Las formas de la cuenca, en concordancia con los valores que adopte los índices de compacidad, se muestran en la Tabla 2.

Tabla 2.- Formas de la Cuenca de acuerdo al Índice de Compacidad

Clase de Forma	Índice de Compacidad (Kc)	Forma de la Cuenca
Clase I	1.0 a 1.25	Casi redonda a
		oval - redonda
Clase II	1.26 a 1.50	Oval - redonda a
		oval - oblonda
Clase III	1.51 a 1.75	Oval - oblonda a rectangular - oblonda

Fuente:(ORTIZ, O. 2004)

Altitud Media (H)

Es el parámetro ponderado de las altitudes de la cuenca obtenidas en la carta o mapa topográfico. En cuencas andinas este parámetro está relacionado con la magnitud de la lámina de precipitación, variación lineal muy importante en estudios regionales donde la información local es escasa. (ORTIZ, O. 2004)

$$H = \frac{1}{A} \sum_{i=1}^{n} H_i A_i \tag{3}$$

H: Altitud media (m.s.n.m.)

Hi: Altura correspondiente al área acumulada Ai encima de la curva Hi.

A: Área de la Cuenca

n: Número de áreas parciales

También se define como la ordenada media de curva hipsométrica.

Pendiente de la Cuenca

Es el promedio de las pendientes de la cuenca, es un parámetro muy importante que determina el tiempo de concentración y su influencia en las máximas crecidas y en el

potencial de degradación de la cuenca, sobre todo en terrenos desprotegidos de cobertura vegetal. Existen variadas metodologías, tanto gráficas como analíticas, que permiten estimar la pendiente de la cuenca. Dentro de las metodologías gráficas, la más recomendada por su grado de aproximación es el Método de HORTON y dentro de las analíticas la que se expresa mediante la siguiente ecuación:

$$S_c = \frac{C}{A} \sum_{i=1}^n l_i \tag{4}$$

S_c: Pendiente de la cuenca

C: Equidistancia entre curvas de nivel

A: Área de la cuenca

l_i: Longitud de cada curva de nivel

La clasificación de las cuencas de acuerdo a la pendiente de laderas, se aprecia en la Tabla 3.

Tabla 3.- Clasificación de las Cuencas de acuerdo a la pendiente promedio de laderas

Pend. Media (%)	Tipo de Relieve	Símbolo
0-3	Plano	P1
3-7	Suave	P2
7-12	Mediano	P3
20-35	Accidentado	P4
35-50	Fuerte	P5
50-75	Muy Fuerte	P6
50-75	Escarpado	P7
>75	Muy Escarpado	P8

Fuente:(ORTIZ, O. 2004)

Pendiente del Cauce Principal o del Máximo Recorrido

Es el promedio de las pendientes del cauce principal. La metodología más recomendada para determinar la pendiente promedio del cauce principal está basada en el uso del perfil longitudinal y mediante la expresión siguiente:

$$S_0 = \left[\frac{\sum_{i=1}^n l_i}{\sum_{i=1}^n \left(\frac{l_i}{s_i} \right)^{1/2}} \right]^2 \tag{5}$$

So: Pendiente del cauce principal

l_i: Longitud de cada tramo de pendiente S_i

n: Número de tramos de similar pendiente

En general, la pendiente del cauce principal es mucho menor que la pendiente de la cuenca.

Longitud de Máximo Recorrido (Lp)

Es la medida de la mayor trayectoria de las partículas del flujo comprendida entre el punto más bajo del colector común, conocido como punto emisor, y el punto más alto o inicio del recorrido sobre la línea de divortio aquarum. (ORTIZ, O. 2004)

Tiempo de Concentración (Tc)

Este parámetro, llamado también tiempo de equilibrio, es el tiempo que toma la partícula, hidráulicamente más lejana, en viajar hasta en punto emisor. Para ello se supone que el tiempo de duración de la lluvia es de por lo menos igual al tiempo de concentración y que se distribuye uniformemente en toda la cuenca. Este parámetro tiene estrecha relación con el gasto pico y con el tiempo de recesión de la cuenca, tiempos de concentración muy cortos tienen gastos pico intensos y recesiones muy rápidas, en cambio los tiempos de concentración más largos determinan gastos pico más atenuados y recesiones mucho más sostenidas.

Existen muchas fórmulas empíricas para estimar el tiempo de concentración de la cuenca; a continuación se muestra la formula empírica a utilizar en esta investigación:

Kiprich. Indica que:

$$Tc = 0.06626 \left(\frac{L_p^2}{S}\right)^{0.385} \tag{6}$$

Dónde:

Tc: Tiempo de concentración (hr)

L_p: Longitud del curso principal (Km)

S_p: Pendiente del curso principal

H: Diferencia de cotas entre el punto más alto y el de estudio (m)

A: Área de drenaje (área de la cuenca) (Km²)

Tratamiento de información climatológica

Precipitación

Es el parámetro más importante de los modelos hidrológicos, constituye la masa de agua

inicial de entrada al sistema hidrológico; existen varios métodos para calcular o estimar este

dato, a continuación presentamos algunos alcances para calcular la precipitación media de un

espacio geográfico o cuenca. (VILLON, M. 2002)

Isovetas

Para este método, se necesita un plano de Isoyetas de la precipitación registrada, en las

diversas estaciones de la zona en estudio. Las Isoyetas son curvas que unen puntos de igual

precipitación. Este método es el más exacto, pero requiere de un cierto criterio para trazar el

plano de Isoyetas. Se puede decir que si la precipitación es de tipo orográfico, las Isoyetas

tenderán a seguir una configuración parecida a las curvas de nivel. (VILLON, M. 2002)

11

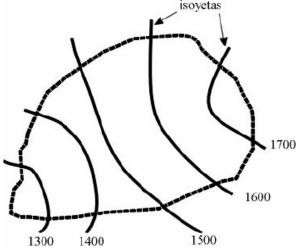


Figura 2.- Isoyetas de una cuenca

Fuente: (VILLON, M. 2002)

El método consiste en:

- ✓ Ubicar las estaciones dentro y fuera de la cuenca.
- ✓ Trazar las Isoyetas, interpolando las alturas de precipitación entre las diversas estaciones, de modo similar a cómo se trazan las curvas de nivel.
- ✓ Hallar las áreas A1, A2,, An entre cada 2 Isoyetas seguidas.
- ✓ Si P0, P1, . . . , Pn son las precipitaciones representadas por las Isoyetas respectivas, calcular la precipitación media utilizando:

$$P_{med} = \frac{\frac{P_0 + P_1}{2} A_1 + \dots + \frac{P_{n-1} + P_n}{2} A_n}{A_1 + \dots + A_n} \tag{7}$$

$$P_{med} = \frac{1}{A_T} \sum_{i=1}^n \frac{P_{i-1} + P_i}{2} \tag{8}$$

Dónde:

P_{med}: precipitación media

A_T: área total de la cuenca

P_i: altura de precipitación de las Isoyetas i

 $A_{i}\!\!:$ área parcial comprendida entre las Isoyetas $P_{i\text{--}1}\,y\;P_{i}$

n: número de áreas parciales

Análisis de consistencia

El hidrólogo o especialista que desea desarrollar un estudio hidrológico, debe buscar la información de la cuenca en estudio, en las instituciones encargadas de su recopilación, pero una vez obtenido ésta, una de las interrogantes que se debe hacer es: ¿Es confiable la información disponible?

La respuesta a esta pregunta, se obtiene realizando un análisis de consistencia de la información disponible, mediante criterios físicos y métodos estadísticos que permitan identificar, evaluar y eliminar los posibles errores sistemáticos que han podido ocurrir, sea por causas naturales u ocasionados por la intervención de la mano del hombre.

La no homogeneidad e inconsistencia, son los causales del cambio a que están expuestas las informaciones hidrológicas, por lo cual su estudio, es de mucha importancia para determinar los errores sistemáticos que puedan afectarlas.

Inconsistencia es sinónimo de error sistemático y se presenta como saltos y tendencias, y no homogeneidad es definido como los cambios de datos vírgenes con el tiempo.

La inconsistencia de una serie de tiempo, está dada por la producción de errores sistemáticos (déficit en la toma de datos, cambio de estación de registro, etc.).

Esta consistencia y no homogeneidad se pone de manifiesto con la presencia de saltos y/o tendencias en las series hidrológicas (las cuales se muestran en las figuras 3 y 4), afectado las características estadísticas de dichas series, tales como la media, desviación estándar y correlación serial.

El análisis de consistencia de la información, es el proceso que consiste en la identificación o detección, descripción y remoción de la no homogeneidad e inconsistencia de una serie de tiempo hidrológica. (VILLON, M. 2002)

Antes de utilizar la serie histórica para el modelamiento, es necesario efectuar el análisis de consistencia respectivo, a fin de obtener una serie confiable, es decir, homogénea y consistente.

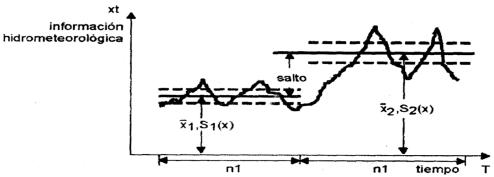


Figura 3.- Serie con componente transitoria en forma de salto

Fuente: (VILLON, M. 2002)

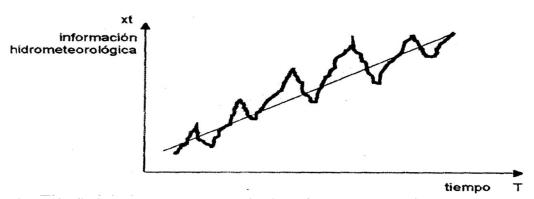


Figura 4.- Serie con componente transitoria en forma de tendencia

Fuente: (VILLON, M. 2002)

El análisis de consistencia de la información hidrológica, se realiza mediante los siguientes procesos:

- ✓ Análisis visual gráfico
- ✓ Análisis doble masa
- ✓ Análisis estadístico

Análisis visual grafico

En coordenadas cartesianas se plotea la información hidrológica histórica, ubicándose en las ordenadas, los valores de la serie y en las abscisas del tiempo (años, meses, días, etc).

Un ejemplo de una serie de caudales promedio anuales se muestra en la figura 5. Este grafico sirve para analizar la consistencia de la información hidrológica en forma visual, e indicar el periodo o periodos en los cuales la información es dudosa, lo cual se puede reflejar como "picos" muy altos o valores muy bajos, saltos y/o tendencias, los mismos que deberán comprobarse, si son fenómenos naturales que efectivamente han ocurrido, o si son producto de errores sistemáticos. (VILLON, M. 2002)

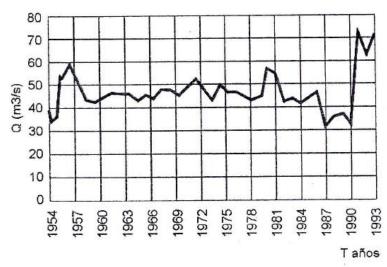


Figura 5.- Serie histórica de caudales promedios anuales.

Fuente: (VILLON, M. 2002)

Para conocer la causa del fenómeno detectado, se puede analizar de diversas formas:

- ✓ Cuando se tienen estaciones vecinas, se comparan los gráficos de las series históricas, y se observa cual periodo varía notoriamente uno con respecto al otro.
- ✓ Cuando se tiene una sola estación, esta se divide en varios periodos y se compara con la información de campo obtenida.

Cuando se tienen datos de precipitación y escorrentía, se comparan los diagramas, los

cuales deben ser similares en su comportamiento.

La interpretación de estas comparaciones, se efectúa conjuntamente con el análisis doble

masa.

Análisis doble masa

Este análisis se utiliza para tener una cierta confiabilidad en la información, así como

también, para analizar la consistencia en lo relacionado a errores, que pueden producirse

durante la obtención de los mismos, y no para una corrección a partir de la recta doble masa.

El diagrama doble masa se obtiene ploteando en el eje de las abscisas los acumulados, por

ejemplo, de los promedios de los volúmenes anuales en millones de m³ (MM), de todas las

estaciones de la cuenca y, en el eje de las ordenadas los acumulados de los volúmenes

anuales, en millones de m³, de cada una de las estaciones en estudio, como se muestra en la

figura 5.

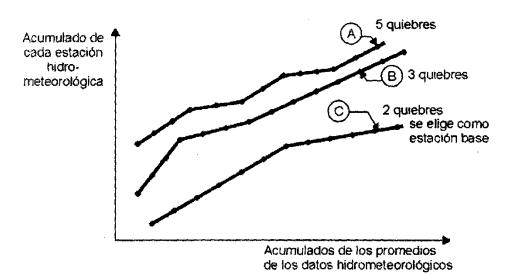


Figura 6.- Análisis doble masa para determinar la estación base

Fuente: (VILLON, M. 2002)

16

De estos doble masas se selecciona como la estación más confiable, la que presenta el menor número de quiebres, en el ejemplo de la figura 6, corresponde a la estación C, la cual se usa como estación base para el nuevo diagrama doble masa colocando en el eje de las abscisas la estación base y en el de las ordenadas la estación en estudio, como se muestra en la figura 7.

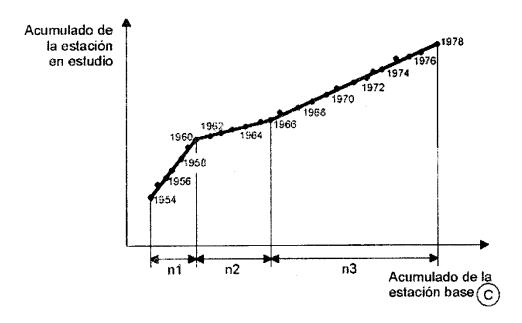


Figura 7.- Análisis doble masa para obtener los periodos de estudio (en este caso n₁, n₂, n₃)

Fuente: (VILLON, M. 2002)

El análisis doble masa propiamente dicho, consiste en conocer mediante los "quiebres" que se presentan en los diagramas, las causas de los fenómenos naturales, o si estos han sido ocasionados por errores sistemáticos. En este último caso, permite determinar el rango de los periodos dudosos y confiables para cada estación en estudio, la cual se deberá corregir utilizando ciertos criterios estadísticos. Para el caso de la figura 7, el análisis de doble masa, permite obtener los periodos, n₁, n₂, n₃, que deben estudiarse, con el análisis estadístico.

Análisis estadístico

Después de obtener de los gráficos construidos para el análisis visual y de los de doble masa, los periodos de posible corrección, y los periodos de datos que se mantendrán con sus valores

originales, se procede al análisis estadístico de saltos, tanto en la media como en la desviación estándar. (VILLON, M. 2002)

Análisis de saltos

Consistencia de la media

El análisis estadístico consiste en probar, mediante la prueba t (prueba de hipótesis), si los valores medios $(\overline{x_1}, \overline{x_2})$ de las submuestras, son estadísticamente iguales o diferentes con una probabilidad del 95 % o con 5% de nivel de significación, de la siguiente manera:

a) Calculo de la media y de la desviación estándar para un periodo, según:

$$\overline{x_{1}} = \frac{1}{n_{1}} \sum_{i=1}^{n_{1}} x_{i}; \quad S_{1(x)} = \left[\frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}} (x_{i} - \overline{x_{1}})^{2}\right]^{\frac{1}{2}}$$

$$\overline{x_{2}} = \frac{1}{n_{1}} \sum_{j=1}^{n_{1}} x_{j}; \quad S_{2(x)} = \left[\frac{1}{n_{2}-1} \sum_{j=1}^{n_{1}} (x_{j} - \overline{x_{1}})^{2}\right]^{\frac{1}{2}}$$
(9)

Dónde:

X_i: valores de la serie del periodo 1

X_j: valores de la serie del periodo 2

 \bar{x}_1, \bar{x}_2 : media de los periodos 1 y 2 respectivamente

 $S_{1(x)}, S_{2(x)}$: Desviación estándar de los periodos 1 y 2 respectivamente

n: tamaño de la muestra

 n_1, n_2 = tamaño de las submuestras

 $n=n_1+n_2$

b) Cálculo del t calculado (tc) según:

$$t_{c} = \frac{(\overline{x_{1}} - \overline{x_{2}}) - (\mu_{1} - \mu_{2})}{S_{\overline{d}}}$$

$$\tag{10}$$

Dónde: μ_1 - μ_2 =0 (por hipótesis, la hipótesis es que las medias son iguales)

Quedando:

$$t_{c} = \frac{\overline{x_{1}} - \overline{x_{2}}}{S_{\overline{d}}} \tag{11}$$

Además:

$$S_{\bar{d}} = S_p \left[\frac{1}{n_1} + \frac{1}{n_2} \right]^{1/2}$$

$$S_p = \left[\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}\right]^{1/2} \tag{12}$$

Siendo:

 $S_{\bar{d}}$: Desviación de las diferencias de los promedios

 S_p : Desviación estándar ponderada

c) Cálculo del t tabular tt:

El valor crítico de ${\bf t}$ se obtiene de la tabla ${\bf t}$ de Student, con una probabilidad al 95%, ó con un nivel de significación del 5%, es decir con $\alpha/2=0.025$ y con grados de libertad $y=n_1+n_2-2$.

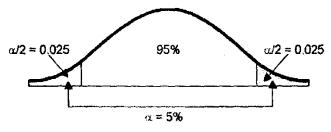


Figura 8.- Grados de libertad

Fuente: (VILLON, M. 2002)

d) Comparación del tc con el tt:

✓ Si $|t_c| \le t_t (95\%) \rightarrow \overline{x_1} = \overline{x_2}$ (estadísticamente)

En este caso, siendo las medias $\overline{x_1} = \overline{x_2}$ estadísticamente, no se debe realizar proceso de corrección.

✓ Si
$$|t_c|$$
 >tt (95%) $\rightarrow \overline{x_1} \neq \overline{x_2}$ (estadísticamente)

En este caso, siendo las medias $\overline{x_1} \neq \overline{x_2}$ estadísticamente, se debe corregir la información.

Consistencia de la Desviación Estándar

El análisis estadístico consiste en probar, mediante la prueba F, si los valores de las desviaciones estándar de las submuestras son estadísticamente iguales o diferentes, con un 95% de probabilidad o con un 5% de nivel de significación, de la siguiente forma:

a) Cálculo de las varianzas de ambos períodos:

$$S_{1(x)}^{2} = \left(\frac{1}{n_{1} - 1}\right) \sum_{i=1}^{n_{1}} (x_{i} - \overline{x_{1}})^{2}$$

$$S_{2(x)}^{2} = \left(\frac{1}{n_{2} - 1}\right) \sum_{j=1}^{n_{1}} (x_{j} - \overline{x_{2}})^{2}$$
(13)

b) Cálculo del F calculado (F_c), según:

$$F_c = \frac{S_1^2(x)}{S_2^2(x)}$$
, si $S_1^2(x) > S_2^2(x)$

$$F_c = \frac{S_2^2(x)}{S_1^2(x)}$$
, si $S_2^2(x) > S_1^2(x)$ (14)

c) Cálculo del F tabular (valor crítico de F ó Ft), se obtiene de las tablas F para una probabilidad del 95%, es decir, con un nivel de significación α = 0.05 y grados de libertad:

$$G.L.N = n_1 - 1$$

$$G.L.D = n_2 - 1$$

Si
$$S^{2}_{1}(x) > S^{2}_{2}(x)$$

$$G.L.N = n_2 - 1$$

G.L.D =
$$n_1 - 1$$

Si $S^2_2(x) > S^2_1(x)$

Dónde:

G.L.N: granos de libertad del numerador

G.L.D: grados de libertad del denominador

d) Comparación del Fc con el Ft:

✓ Si Fc≤Ft (95%) $\rightarrow S_1(x) = S_2(x)$ (estadísticamente)

✓ Si Fc>Ft (95%) $\rightarrow S_1(x) \neq S_2(x)$ (estadísticamente), por lo que se debe corregir

Corrección de los datos

En los casos en que los parámetros media y desviación estándar de las submuestras de las series de tiempo, resultan estadísticamente iguales, la información original no se corrige, por ser consistente con 95% de probabilidad, aun cuando en el doble masa se observe pequeños quiebres. En caso contrario, se corrigen los valores de las submuestras mediante las siguientes ecuaciones:

$$X'_{(t)} = \frac{x_t - \overline{x_1}}{S_1(x)} \cdot S_2(x) + \overline{x_2}$$
 (15)

$$X'_{(t)} = \frac{x_t - \overline{x_2}}{S_2(x)} \cdot S_1(x) + \overline{x_1}$$
 (16)

Dónde:

 $X'_{(t)}$: Valor corregido de saltos

x_t: Valor a ser corregido

La ecuación (15), se utiliza cuando se deben corregir los valores de la submuestra de tamaño n_1 , y la ecuación (16), si se deben corregir la submuestra de tamaño n_2 .

Análisis de Tendencias

Antes de realizar el análisis de tendencias, se realiza el análisis de saltos y con la serie libre de saltos, se procede a analizar las tendencias en la media y en la desviación estándar.

Tendencia en la Media

La tendencia en la media **Tm**, puede ser expresada en forma general por la ecuación polinomial:

$$Tm = A_m + B_m t + C_m t^2 + D_m t^3 + \dots$$
 (17)

Y en forma particular por la ecuación de regresión lineal simple:

$$T_{m} = A_{m} + B_{m}t \tag{18}$$

Dónde:

t: tiempo en años, tomando como la variable independiente de la tendencia

Tm: tendencia en la media, para este caso:

 $Tm=X'_{(t)}$ valor corregido de saltos, es decir, datos a usarse para el cálculo de los parámetros A_m , B_m , C_m , D_m , ...: coeficientes de los polinomios de regresion, que deben ser estimados con los datos

Los parámetros de regresión de estas ecuaciones, pueden ser estimados por el método de mínimos cuadrados, o por el método de regresión lineal múltiple.

El cálculo de la tendencia en la media, haciendo uso de la ecuación (18), se realiza mediante el siguiente proceso:

a) Cálculo de los parámetros de la ecuación de regresión lineal simple

$$A_{\rm m} = \overline{T_m} - \bar{t} \cdot B_{\rm m} \tag{19}$$

$$B_{\rm m} = R \cdot \frac{s_{Tm}}{s_t} \tag{20}$$

$$R = \frac{\overline{t.T_m} - \overline{t.T_m}}{S_t.S_{Tm}}$$
 (21)

Dónde:

$$\overline{T_m} = \frac{1}{n} \sum_{i=1}^n T_{m_i} = \frac{1}{n} \sum_{i=1}^n X'_{(t)_i}$$
 (22)

$$\bar{t} = \frac{1}{n} \sum_{i=1}^{n} t_i \tag{23}$$

$$\overline{t.T_m} = \frac{1}{n} \sum_{i=1}^{n} t_i.T_{m_i}$$
 (24)

$$S_{T_m} = \left[\frac{\sum_{i=1}^n (T_{m_i} - \overline{T_m})^2}{n-1}\right]^{\frac{1}{2}}$$
 (25)

$$S_t = \left[\frac{\sum_{i=1}^n (t_i - \bar{t})^2}{n-1}\right]^{\frac{1}{2}} \tag{26}$$

Además:

 $\overline{T_m}$: Promedio de las tendencias Tm, o promedio de los datos corregidos de saltos X' (t)

 \bar{t} : Promedio del tiempo t

S_{Tm}: desviación estándar de la tendencia de la media Tm

S_t: desviación estándar del tiempo t

b) Evaluación de la tendencia Tm

Para averiguar si la tendencia es significativa, se analiza el coeficiente de regresión Bm o también el coeficiente de correlación R.

El análisis de **R** según el estadístico **t**, es como sigue:

Cálculo del estadístico tc según:

$$t_{\rm c} = \frac{R\sqrt{n-2}}{\sqrt{1-R^2}} \tag{27}$$

Dónde:

t_c: valor del estadístico t calculado.

n: número total de datos

R: coeficiente de correlación

Cálculo de t

El valor crítico de t, se obtiene de la tabla de t de Student, con 95% de probabilidad o con un nivel de significación del 5 %, es decir:

$$\frac{\alpha}{2} = 0.025$$

G.L. = n-2

Comparación del tc con el tt

✓ Si $|t_c| \le t_t (95\%) \rightarrow R$ no es significativo

En este caso, la tendencia no es significativa y no hay que corregir.

✓ Si $|t_c|$ > tt (95%) → R si es significativo

En este caso, la tendencia es significativa y hay necesidad de corregir la información de tendencia en la media.

c) Corrección de la información:

La tendencia en la media se elimina haciendo uso de la ecuación:

$$Y_t = X'_{(t)} - T_m$$
 (28)

Ó

$$Y_t = X'_{(t)} - (A_m + B_m t)$$
 (29)

Dónde:

X'(t): serie corregida de saltos

T_m: tendencias en la media, obtenida de la ecuación (18)

Yt: serie sin tendencia en la media

Para que el proceso Xt preserve la media constante, se devuelve el promedio de las X't ó $\overline{T_m}$, luego las ecuaciones (28) y (29), toman la forma:

$$Y_t = X'_{(t)} - T_m + \overline{T_m}$$

$$\tag{30}$$

$$Y_t = X'_{(t)} - (A_m + B_m \cdot t) + \overline{T_m}$$
 (31)

Donde, Tm es el promedio de la tendencia en la media o promedio de los valores corregidos de saltos.

Tendencia en la desviación estándar

"La tendencia en la desviación estándar, generalmente se presenta en los datos semanales o mensuales, no así en datos anuales". Por lo que, cuando se trabajan con datos anuales, no hay necesidad de realizar el análisis de la tendencia en la desviación estándar. (SALAS, J. 2000)

La tendencia en la desviación estándar T_s, se expresa en forma general por la ecuación polinomial:

$$T_s = A_s + B_s t + C_s t^2 + D_s t^3 +$$
(32)

Y en forma particular, por la ecuación de regresión lineal simple:

$$T_s = A_s + B_s t \tag{33}$$

Dónde:

T_s: tendencia en la desviación estándar

 T_s : Y_t valor corregido de tendencia en la media, es decir, datos a usarse para el cálculo de los parámetros

t: tiempo en años

t: 1, 2, 3,...., n

A_s, B_s, C_s, D_s, ..: coeficientes de los polinomios de regresión que deben ser estimados con los datos.

Para calcular y probar si la tendencia en la desviación estándar es significativa, se sigue el siguiente proceso:

- a) La información ya sin tendencia en la media Yt, se divide en períodos de datos anuales.
- b) Se calcula las desviaciones estándar para cada periodo de toda la información:

$$S_{p} = \left[\frac{1}{11} \sum_{p=1}^{12} (Y_{p} - \overline{Y}_{p})^{2}\right]^{\frac{1}{2}}$$
(34)

Donde:

S_p: desviación estándar del año p, es decir de los datos mensuales del año p

Y_p: serie sin tendencia en la media

 $\overline{y_p}$: Promedio de datos mensuales del año p

- c) Se calculan los parámetros de la ecuación (33), a partir de las desviaciones estándar anuales y el tiempo t (en años), utilizando las ecuaciones de la (19) a la (24), dadas para la tendencia en la media.
- d) Se realiza la evaluación de T_s siguiendo el mismo proceso descrito para T_m.

Si en la prueba R resulta significativo, la tendencia en la desviación estándar es significativa, por lo que se debe eliminar de la serie, aplicando la siguiente ecuación:

$$Z_{t} = \frac{X'(t) - T_{m}}{T_{S}} \tag{35}$$

Dónde: Z_t = serie sin tendencia en la media ni en la desviación estándar. Las demás variables han sido definidas en párrafos anteriores.

Para que el proceso preserve la media y la desviación estándar constante la ecuación toma la forma:

$$Z_{t} = \frac{X'(t)^{-T_{m}}}{T_{S}}.\overline{T}_{S} + \overline{T_{m}}$$
(36)

Donde $\overline{T}_S, \overline{T}_m$ son los promedios de la tendencia en la desviación estándar y media respectivamente.

La serie Z_t es una serie homogénea y consistente al 95% de probabilidad.

Completación y extensión

La extensión de información, es el proceso de transferencia de información desde una estación con "largo" registro histórico a otra con "corto" registro. (VILLON, M. 2002)

La completación de datos, es el proceso por el cual se llenan "huecos" que existen en un registro de datos. La completación es un caso particular de la extensión.

La extensión de datos, es más importante que la completación, por cuanto modifican sustancialmente a los estimadores de los parámetros poblacionales, por ejemplo, la media de una muestra corta, será diferente a la media de una muestra extendida.

La completación y extensión de la información hidrometereológica faltante, se efectúa para tener en lo posible series completas, más confiable y de un periodo uniforme.

Técnicas

Las técnicas que se utilizan para la completación, en orden de prioridad son:

Regresión lineal simple, entre estas:

- ✓ Correlación cruzada entre dos o más estaciones, situación (1) sin defasaje de la figura 9
- ✓ Autocorrelación, situación (2) de la figura 9.
- ✓ Relleno con criterios prácticos.

Para la extensión se usan modelos de:

- ✓ Regresión lineal simple
- ✓ Regresión lineal múltiple

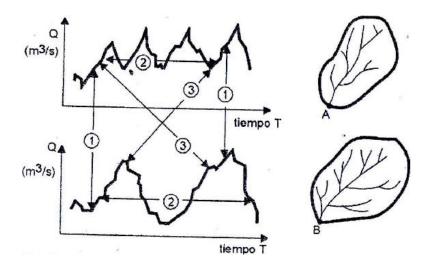


Figura 9.- Serie histórica de caudales de las cuencas A y B

Fuente: (VILLON, M. 2002)

- (1) Correlación cruzada sin desfase (correlación espacial)
- (2) Correlación serial con desfase (correlación temporal o autocorrelación)
- (3) Correlación cruzada con desfase (correlación espacial y temporal)

En forma general, el modelo matemático más usado para transferir información hidrológica, entre estaciones medidas, es el modelo de regresión lineal simple.

Proceso

El proceso a seguir para la completación o extensión, es como se indica:

✓ Obtener la serie de tamaño N₁, a completar o extender (figura 10)

$$y_1, y_2, y_3, ..., y_N$$

✓ Seleccionar la estación, que guarde una buena relación con la estación con la que se está trabajando, y cuya longitud de la serie sea mayor, como por ejemplo. N=N1+N2.

$$X_1, X_2, X_3, \ldots, X_{N1}, X_{N1+1}, \ldots, X_{N1+N2}$$

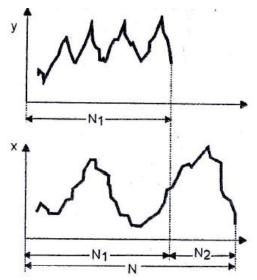


Figura 10.- Series de tamaños N1 y N=N1+N2

Fuente: (VILLON, M. 2002)

Dónde:

yt: serie de registro "corto"

X_t: serie de registro "largo"

N_{1:} tamaño del registro común a ambas series o tamaños del registro corto

N2: tamaño del registro no común

N=N1+N2: tamaño del registro largo

✓ Seleccionar el modelo de correlación, en este caso, la ecuación de regresión lineal:

$$y_t = a + b x_t \tag{37}$$

Dónde:

y_{t:} variable hidrológica dependiente

X_t: variable hidrológica independiente

a y b: parámetros de la ecuación de regresión lineal simple

✓ Estimar los parámetros:

Los estimadores de a, b y r se calculan con las siguientes ecuaciones:

$$b = r \frac{S_{1(y)}}{S_{1(x)}}$$

ó

$$b = \frac{N_1 \sum x_i y_i - \sum x_i \sum y_i}{N_1 \sum x_i^2 - (\sum x_i)^2}$$
(38)

$$a = \overline{y_1} - b \overline{x_1} \tag{39}$$

$$\overline{y_1} = \frac{\Sigma y_1}{N_1} \tag{40}$$

$$\overline{x_1} = \frac{\sum x_1}{N_1} \tag{41}$$

$$r = \frac{N_1 \sum x_i y_i - \sum x_i \sum y_i}{\sqrt{(N_1 \sum x_i^2 - (\sum x_i)^2)(N_1 \sum y_i^2 - (\sum y_i)^2)}}$$
(42)

$$S_{1(y)} = \sqrt{\frac{1}{N_1 - 1} (\sum_{i=1}^{N_1} (y_i - \overline{y_1})^2}$$
 (43)

$$S_{1(x)} = \sqrt{\frac{1}{N_1 - 1} (\sum_{i=1}^{N_1} (x_i - \overline{x_1})^2}$$
 (44)

Dónde:

 $\overline{y_1}$ y $\overline{x_1}$: son los estimados de las medias, de los periodos comunes, de tamaño N_1 de las variables y_t é x_t

 $S_{1(y)}, S_{1(x)}$: Son los estimados no sesgados de las desviaciones estándar, de y_t y x_t de los períodos comunes de tamaño N_1

r: coeficiente de correlación

✓ Ecuación de completación o extensión:

Sustituyendo valores en la ecuación (37) resulta:

$$y_t = \overline{y_1} + r \frac{S_{1(y)}}{S_{1(x)}} (x_t - \overline{x_t})$$

$$\tag{45}$$

Para mejorar la información, a la ecuación (45) se le agrega otra componente, que es una variable aleatoria, que tiene por objeto dar una mejor representatividad de la serie hidrológica, especialmente cuando se quiere extender la información a un periodo largo (por ejemplo incrementar el registro en 20 ó 30 años), por lo cual, la ecuación (45) se puede expresar de la siguiente forma:

$$y_t = \overline{y_1} + r \frac{S_{1(y)}}{S_{1(x)}} (x_t - \overline{x_t}) + \alpha \Theta \sqrt{1 - r^2}. S_{1(y)} \varepsilon_t$$

$$(46)$$

Dónde:

 $\overline{y_1}$ y $\overline{x_1}$: son los estimados de las medias, de los periodos comunes, de tamaño N_1 de las variables y_t é x_t

 $S_{1(y)}$, $S_{1(x)}$: Son los estimados no sesgados de las desviaciones estándar, de y_t y x_t de los períodos comunes de tamaño N_1

r: coeficiente de correlación

 ε_t : Variable aleatoria normal e independiente, con media cero y varianza unitaria ε_t ~ NI (0,1)

 Θ =0 se usa en completación, en este caso el ruido aleatorio no es considerado

Θ=1 se usa en extensión, en este caso el ruido o factor aleatorio si es considerado

 $\alpha = f(N_1, N_2)$ corrige el sesgo en la variancia del proceso

$$\alpha = \frac{N_2(N_1 - 4)(N_1 - 1)}{(N_2 - 1)(N_1 - 3)(N_1 - 2)} \tag{47}$$

✓ Criterios de confiabilidad.

La ecuación (45) ó (46), solo se podrá usar si hay una correlación significativa entre las variables y_t y x_t , es decir, si el coeficiente de correlación r de la ecuación (42), es estadísticamente significativo con un cierto nivel de confiabilidad, utilizando el estadístico t, para esto se procede de la siguiente forma:

a) Cálculo del estadístico t_c, según:

$$t_c = \frac{r\sqrt{N_1 - 2}}{\sqrt{1 - r^2}} \tag{48}$$

Dónde:

t_c: valor del estadístico **t** calculado

N₁: tamaño del registro común de las series

r : coeficiente de correlación

b) Cálculo de t_t

El valor critico de t, se obtiene de las tablas t de Student (t_t), con 95% de probabilidad, o con un nivel de significación del 5 %, es decir:

 $\alpha/2 = 0.025$

 $G.L.=N_1-2$

- c) Comparación del tc con el tt
- \checkmark Si $|t_c| \le t_t \to r$ no es significativo, por lo tanto no hay correlación significativa
- \checkmark Si $|t_c| > t_t \rightarrow r$ es significativo, por lo que sí existe correlación significativa entre las variables y_t y x_t , y se puede hacer uso de la ecuación (45) ó (46), para la completación y extensión.

Si **r** resulta no significativo se puede aplicar el proceso de autocorrelación o probar con otra serie.

Criterios para mejorar los estimados de los parámetros

Usando el análisis de correlación, para extender el registro corto de la serie y, de una estación con tamaño N_1 , utilizando otro registro largo de la serie x, de otra estación con tamaño

N=N₁+N₂, surge la pregunta, ¿si la extensión de N₂ valores mejora o no, los parámetros requeridos de la serie?

Es muy posible, que la adición de N_2 valores, puede dar un estimado peor (más malo), de los parámetros de la serie y, por lo cual, es necesario conocer algunas medidas de confiabilidad de los parámetros estimados, antes y después de la extensión.

Se puede utilizar la varianza, para medir la precisión de los estimados, así se tiene:

- ✓ Si la VAR (serie y reconstituida) > VAR (serie y histórica), entonces el estimado es menos preciso, por lo cual no se recomienda la extensión de datos.
- ✓ Si la VAR (serie y reconstituida) < VAR (serie y histórica), entonces el estimado es más preciso, por lo cual se puede usar la extensión de los datos.

Modelo Marcoviano de 1er orden

Algunas de las propiedades de las series de tiempo hidrológicas pueden ser investigadas en el dominio del tiempo mediante el análisis de correlogramas.

Básicamente una serie de tiempo puede ser modelada matemáticamente como la combinación de una parte determinística y una componente residual aleatoria. (LINSLEY, J. et al, 1977)

En la mayoría de los esquemas de generación de los volúmenes de agua parece suficiente

suponer una estructura markoviana de primer orden, o sea, que cualquier evento depende solamente del evento que le precede. Una función sencilla de generación markoviana para volúmenes de flujo anual Q está dada por:

$$Q_{i} = \bar{Q} + \rho(Q_{i-1} - \bar{Q}) + t_{i} \sigma \sqrt{1 - \rho^{2}}$$
(49)

Donde t es una variable aleatoria tomada de una distribución apropiada con una media igual a cero y una varianza unitaria, σ es la desviación estándar de Q, ρ el coeficiente de correlación serial con rezago unitario y \bar{Q} es la media de Q. El subíndice i sirve para identificar la serie de caudales desde el año 1 hasta el año n. Si los parámetros \bar{Q} , σ y ρ pueden determinarse a

partir de las series históricas y si suponemos un valor inicial de Q_{i-1} , se puede construir un algoritmo muy simple y generar una serie de valores de Q usando valores de la variable aleatoria t.

Si se busca generar valores de Q por estaciones o a nivel mensual, el procedimiento debe incluir las características de las variaciones estacionales como sigue:

$$Q_{i,j} = \bar{Q}_j + \rho_j \frac{\sigma_j}{\sigma_{j-1}} (Q_{i-1,j-1} - \bar{Q}_{j-1}) + t_i \sigma_j \sqrt{1 - \rho_j^2}$$
(50)

Donde el subíndice j se usa para definir las estaciones o los meses. Para una síntesis mensual j varía entre 1 y 12 a lo largo del año. El subíndice i es una designación serial desde el mes 1 hasta el mes n, como en la ec. (49). ρ_j es el coeficiente de correlación serial entre Q_j y Q_{j-1} . Los demás símbolos son iguales a los usados en la ec. (49). La ec. (50) se usa determinando los valores de Q, σ , y ρ para cada mes o estación. Luego se toma un valor inicial $Q_{i-1,j-1}$; es aconsejable comenzar al principio de un año hidrológico, cuando los caudales son bajos, aunque no es estrictamente necesario.

La varianza debe corregirse si se presenta correlación serial de la siguiente manera

$$\sigma^2 = \varphi \frac{\sum_{i=1}^n X_i^2 - n \, \bar{X}^2}{n-1} \tag{51}$$

Donde ϕ es una función de la correlación serial ρ y de la longitud del registro.

$$\varphi = \frac{\frac{n-1}{n}}{1 - \frac{(1-\rho^2)}{n(1-\rho)} + \frac{2\rho(1-\rho^n)}{n^2(1-\rho)^2}}$$
(52)

Si las secuencias $\{Y_i\} = \{X_i\}$, i=1,2,3,...,n-1, y $\{Z_{i-1}\} = \{X_i\}$, i=1,2,3,...n, tienen medias aritméticas de Y y Z y varianzas σ_y^2 y σ_z^2 , respectivamente, el coeficiente de correlación serial de la serie está dado por:

$$\rho = \frac{1}{n-2} \frac{\sum_{j=1}^{n-1} (Y_j Z_j) - (n-1)\bar{Y}\bar{Z}}{\sigma_y \sigma_z}$$
 (53)

Modelo determinístico estocástico de Lutz Scholz

Este modelo hidrológico, es combinado por que cuenta con una estructura determinística para el cálculo de los caudales mensuales para el año promedio (Balance Hídrico - Modelo determinístico); y una estructura estocástica para la generación de series extendidas de caudal (Proceso markoviano - Modelo Estocástico). Fue desarrollado por el experto Lutz Scholz para cuencas de la sierra peruana, entre los años 1979-1980, en el marco de Cooperación Técnica de la República de Alemania a través del Plan Meris II. (SCHOLZ, L. 1980)

Determinado el hecho de la ausencia de registros de caudal en la sierra peruana, el modelo se desarrolló tomando en consideración parámetros físicos y meteorológicos de las cuencas, que puedan ser obtenidos a través de mediciones cartográficas y de campo. Los parámetros más importantes del modelo son los coeficientes para la determinación de la Precipitación Efectiva, déficit de escurrimiento, retención y agotamiento de las cuencas. Los procedimientos que se han seguido en la implementación del modelo son:

- ✓ Cálculo de los parámetros necesarios para la descripción de los fenómenos de escorrentía promedio.
- ✓ Establecimiento de un conjunto de modelos parciales de los parámetros para el cálculo de caudales en cuencas sin información hidrométrica. En base a lo anterior se realiza el cálculo de los caudales necesarios.
- ✓ Calibración del modelo y generación de caudales extendidos por un proceso Markoviano combinado de precipitación efectiva del mes con el caudal del mes anterior.

Este modelo fue implementado con fines de pronosticar caudales a escala mensual, teniendo una utilización inicial en estudios de proyectos de riego y posteriormente extendiéndose el uso del mismo a estudios hidrológicos con prácticamente cualquier finalidad (abastecimiento de agua, hidroelectricidad etc). Los resultados de la aplicación del modelo a las cuencas de la

sierra peruana, han producido una correspondencia satisfactoria respecto a los valores medidos.

Ecuación del balance hídrico

La ecuación fundamental que describe el balance hídrico mensual en mm/mes es la siguiente:

$$CM_i = P_i - D_i + G_i - A_i \tag{54}$$

Dónde:

CM_i: Caudal mensual (mm/mes)

P_i: Precipitación mensual sobre la cuenca (mm/mes)

D_i: Déficit de escurrimiento (mm/mes)

G_i: Gasto de la retención de la cuenca (mm/mes)

Ai: Abastecimiento de la retención (mm/mes)

Asumiendo:

 \checkmark Que para períodos largos (en este caso 1 año) el Gasto y Abastecimiento de la retención tienen el mismo valor es decir $G_i = A_i$, y

✓ Que para el año promedio una parte de la precipitación retorna a la atmósfera por evaporación.

Reemplazando (P-D) por (CP), y tomando en cuenta la transformación de unidades (mm/mes a m³/seg) la ecuación (33) se convierte en:

$$Q = c'CP(AR) (55)$$

Que es la expresión básica del método racional.

Dónde:

Q: Caudal (m³/s)

c' : coeficiente de conversión del tiempo (mes/seg)

C: coeficiente de escurrimiento

P: Precipitación total mensual (mm/mes)

AR: Área de la cuenca (m²)

Coeficientes para la generación de registros de precipitación

El registro de la precipitación mensual conocido, es afectado por cada coeficiente en el mes respectivo, obteniéndose de esta forma el registro generado para la cuenca en estudio con el mismo periodo de información. Del registro generado se determina la precipitación media (de enero a diciembre) de todos los años (periodo igual al de la información).

$$CPi = \frac{PMP_i}{PMPC_i}$$
 (56)

Dónde:

CPi: Coeficiente para la generación de registros de precipitación del mes "i".

PMPi: Precipitación del mes "i" para el año promedio (mm/año).

PMPCi: Precipitación del mes "i" de las estaciones correlacionadas (mm/año).

Coeficiente de escurrimiento

Se ha considerado el uso de la fórmula propuesta por L. Turc:

$$C = \frac{P - D}{P} \tag{57}$$

C: Coeficiente de escurrimiento

P: Precipitación Total anual (mm/año)

D: Déficit de escurrimiento (mm/año)

Para la determinación de D se utiliza la expresión:

 $D = P \frac{1}{\left(0.9 + \frac{P^2}{L^2}\right)^{\frac{1}{2}}}$ (58)

 $L = 300 + 25(T) + 0.05(T)^{3}$ (59)

T = 197 - 23.1 * Ln(H) (60)

Siendo:

L: Coeficiente de Temperatura

T: Temperatura media anual (°C)

H: Altitud media de la cuenca

Precipitación efectiva

Lluvia que se infiltra en el suelo, sin llegar a perderse por escorrentía o por filtración

profunda. En la práctica del riego, la porción de la precipitación total que retiene el suelo y

que está disponible para la producción de cultivos.

Para el cálculo de la Precipitación Efectiva (PE), se supone que los caudales promedio

observados en la cuenca pertenecen a un estado de equilibrio entre gasto y abastecimiento de

la retención. La precipitación efectiva se calcula para el coeficiente de escurrimiento

promedio, de tal forma que la relación entre precipitación efectiva y precipitación total resulta

igual al coeficiente de escorrentía. (SCHOLZ, L. 1980)

 $PEi = C * PTc \tag{61}$

Dónde:

PEi: Precipitación efectiva del mes "i" (mm/año)

PTc: Precipitación total generada (mm/año)

C: Coeficiente de escorrentía.

38

Retención de la cuenca

Bajo la suposición de que exista un equilibrio entre el gasto y el abastecimiento de la reserva de la cuenca y además que el caudal total sea igual a la precipitación efectiva anual, la contribución de la reserva hídrica al caudal se puede calcular según las fórmulas:

$$R_i = CM_i - P_i \tag{62}$$

$$CM_i = PE_i + G_i - A_i \tag{63}$$

Dónde:

CM_i: Caudal mensual (mm/mes)

PE_i: Precipitación Efectiva Mensual (mm/mes)

R_i: Retención de la cuenca (mm/mes)

G_i: Gasto de la retención (mm/mes)

A_i: Abastecimiento de la retención (mm/mes)

R_i: Gi para valores mayores que cero (mm/mes)

R_i: Ai para valores menores que cero (mm/mes)

Sumando los valores de "G" o "A" respectivamente, se halla la retención total de la cuenca para el año promedio en dimensión de (mm/año).

Esta ecuación se realiza básicamente para la calibración de la retención de la cuenca. En cuencas de la sierra la retención varía de 43 a 188 (mm/año), resultados que se indican en el volumen del modelo, asimismo muestra una uniformidad de cambio de los valores de G y A durante el año para las cuencas pertenecientes a la misma región.

$$R = \frac{(C_a * AR * LA + AL * LL + AN * LN)}{AR} \tag{64}$$

Dónde:

R: Retención de la cuenca (mm/año)

Ca: Coeficiente (15% -30%)

AR: Área de la cuenca (Km²)

LA: Almacenamiento de acuíferos (mm/año)

AL: Área de las lagunas

LL: Almacenamiento de lagunas y pantanos

AN: Área de los nevados (Km²)

LN: Almacenamiento de nevados (mm/año)

Relación entre descargas y retención

Durante la estación seca, el gasto de la retención alimenta los ríos, constituyendo el caudal o descarga básica. La reserva o retención de la cuenca se agota al final de la estación seca; durante esta estación la descarga se puede calcular en base a la ecuación:

$$Q_t = Q_0 e^{-a(t)} \tag{65}$$

Dónde:

Qt: Descarga en el tiempo t

Qo: Descarga inicial

a: Coeficiente de agotamiento

t: Tiempo

Al principio de la estación lluviosa, el proceso de agotamiento de la reserva termina, comenzando a su vez el abastecimiento de los almacenes hídricos. Este proceso está descrito por un déficit entre la precipitación efectiva y el caudal real. En base a los hidrogramas se ha

determinado que el abastecimiento es más fuerte al principio de la estación lluviosa continuando de forma progresiva pero menos pronunciada, hasta el final de dicha estación.

Coeficiente de agotamiento

Mediante la ecuación (66) se puede calcular el coeficiente de agotamiento "a", en base a datos hidrométricos. Este coeficiente no es constante durante toda la estación seca, ya que va disminuyendo gradualmente.

Con fines prácticos se puede despreciar la variación del coeficiente " a " durante la estación seca empleando un valor promedio.

El coeficiente de agotamiento de la cuenca tiene una dependencia logarítmica del área de la cuenca.

$$a = f(LnAR) \tag{66}$$

$$a = 3.1249E67(AR)^{-0.1144}(EP)^{-19.336}(T)^{-3.369}(R)^{-1.429}$$
(67)

r = 0.86

El análisis de las observaciones disponibles muestra, además cierta influencia del clima, la geología y la cobertura vegetal. Se ha desarrollado una ecuación empírica para la sierra peruana:

En principio, es posible determinar el coeficiente de agotamiento real mediante aforos sucesivos en el río durante la estación seca; sin embargo cuando no sea posible ello, se puede recurrir a las ecuaciones desarrolladas para la determinación del coeficiente " a " para cuatro clases de cuencas:

✓ Cuencas con agotamiento muy rápido. Debido a temperaturas elevadas (>10°C) y retención que va de reducida (50 mm/año) a mediana (80 mm/año):

$$a = -0.00252(LnAR) + 0.034 \tag{68}$$

✓ Cuencas con agotamiento rápido. Retención entre 50 y 80 mm/año y vegetación poco desarrollada (puna):

$$a = -0.00252(LnAR) + 0.030 (69)$$

✓ Cuencas con agotamiento mediano. Retención mediana (80 mm/año) y vegetación mezclada (pastos, bosques y terrenos cultivados):

$$a = -0.00252(LnAR) + 0.026 \tag{70}$$

✓ Cuencas con agotamiento reducido. Debido a la alta retención (> 100 mm/año) y vegetación mezclada:

$$a = -0.00252(LnAR) + 0.023 \tag{71}$$

Dónde:

a: Coeficiente de agotamiento por día

AR: área de la cuenca (km²)

EP: evapotranspiración potencial anual (mm/año)

T: duración de la temporada seca (días)

R: retención total de la cuenca (mm/año)

Almacenamiento hídrico

Tres tipos de almacenes hídricos naturales que inciden en la retención de la cuenca son considerados:

- ✓ Acuíferos
- ✓ Lagunas y pantanos
- ✓ Nevados

La determinación de la lámina "L" que almacena cada tipo de estos almacenes está dado por:

✓ Acuíferos:

$$L_A = -750(I) + 315 (mm/a\tilde{n}o) \tag{72}$$

Siendo:

LA: lámina específica de acuíferos

I: pendiente de desagüe: I <= 15 %

 $L_L = 500 \ (mm/a\tilde{n}o)$

✓ Lagunas y Pantanos

Siendo:

LL = Lámina específica de lagunas y pantanos

✓ Nevados

 $L_N = 500 (mm/a \tilde{\mathrm{n}} o)$

Siendo:

L_N: lámina específica de nevados

Las respectivas extensiones o áreas son determinadas de los mapas o aerofotografías. Los almacenamientos de corto plazo no son considerados para este caso, estando los mismos incluidos en las ecuaciones de la precipitación efectiva.

Abastecimiento de la retención

El abastecimiento durante la estación lluviosa es uniforme para cuencas ubicadas en la misma región climática. En la región del Cusco el abastecimiento comienza en el mes de noviembre con 5%, alcanzando hasta enero el valor del 80 % del volumen final. Las precipitaciones altas del mes de febrero completan el 20 % restante, y las precipitaciones efectivas del mes de

marzo escurren directamente sin contribuir a la retención. Los coeficientes mensuales expresados en porcentaje del almacenamiento total anual se muestran en la tabla 4.

Tabla 4.- Almacenamiento hídrico durante la época de lluvias (%)

Región	Oct	Nov	Dic	Ene	Feb	Mar	Total
Cusco	0	5	35	40	20	0	100
Huancavelica	10	0	35	30	20	5	100
Junín	10	0	25	30	30	5	100
Cajamarca	25	-5	0	20	25	35	100

Fuente: (SCHOLZ, L. 1980)

La lámina de agua A_i que entra en la reserva de la cuenca se muestra en forma de déficit mensual de la Precipitación Efectiva PE_i . Se calcula mediante la ecuación:

$$A_i = a_i(\frac{R}{100}) \tag{73}$$

Siendo:

A_i: abastecimiento mensual déficit de la precipitación efectiva (mm/mes)

 a_i : Coeficiente de abastecimiento (%)

R: retención de la cuenca (mm/año)

Determinación del caudal medio mensual para el año promedio

Está basado en la ecuación fundamental que describe el balance hídrico mensual a partir de los componentes descritos anteriormente:

$$CM_i = PE_i + G_i - A_i (74)$$

Dónde:

CM_i: Caudal del mes i (mm/mes)

PE_i: Precipitación efectiva del mes i (mm/mes)

G_i: Gasto de la retención del mes i (mm/mes)

A_i: abastecimiento del mes i (mm/mes)

Generación de caudales para periodos extendidos

A fin de generar una serie sintética de caudales para períodos extendidos, se ha implementado un modelo estocástico que consiste en una combinación de un Proceso Markoviano de primer orden, según la ecuación (75) con una variable de impulso, que en este caso es la precipitación efectiva en la ecuación (76):

$$Q_t = f(Q_{t=1}) \tag{75}$$

$$Q = g(PE_t) (76)$$

Con la finalidad de aumentar el rango de valores generados y obtener una óptima aproximación a la realidad, se utiliza además una variable aleatoria.

$$Z = z(S)\sqrt{(1-r^2)} \tag{77}$$

Finalmente la ecuación integral para la generación de caudales mensuales combinando los componentes citados, se escribe a continuación:

$$Q_t = B_1 + B_2(Q_{t-1}) + B_3(PE_t) + z(S)\sqrt{1 - r^2}$$
(78)

La ecuación integral para la generación de caudales mensuales es:

Dónde:

Qt: Caudal del mes "t".

Q_{t-1}: Caudal del mes anterior

PE_t: Precipitación efectiva del mes "t".

B₁: Factor constante o caudal básico.

B2,3: Parámetros del modelo para el año promedio.

S: Desviación estándar de los residuos.

r: Coeficiente de correlación múltiple.

z: Numero aleatorio normalmente distribuido (0,1) del año "t".

El proceso de generación requiere de un valor inicial (Qt-1), el cual puede ser obtenido en una de las siguientes formas:

- ✓ Empezar el cálculo en el mes para el cual se dispone de un aforo.
- ✓ Tomar como valor inicial el caudal promedio de cualquier mes.
- ✓ Empezar con el caudal cero, calcular un año y tomar el último valor como valor
 (Q₀), sin considerar estos valores en el cálculo de los parámetros estadísticos del periodo generado.

La precipitación efectiva de cada mes se ha calculado con ecu. (78), los valores de los coeficientes $B_{1,2,3}$, S, r se calcular al desarrollar la regresión múltiple con los datos de los caudales para el año promedio.

Regresión múltiple

Las ecuaciones normales para estimar el cálculo de las variables B_{1,2,3} son:

$$\sum Q_t = 12B_1 + B_2 \sum Q_{t-1} + B_3 \sum PE_t \tag{79}$$

$$\sum (Q_t * Q_{t-1}) = B_1 \sum Q_{t-1} + B_2 \sum (Q_{t-1})^2 + B^3 \sum (Q_{t-1} * PE_t)$$
(80)

$$\sum (Q_t * PE_t) = B_1 \sum PE_t + B_2 \sum (Q_{t-1} * PE_t) + B^3 \sum (PE_t)^2$$
(81)

Luego, el caudal estimado se define como: " $\overline{Q_t}$ " y obtenidos los parámetros $B_{1,2,3}$ se obtiene:

$$\overline{Q_t} = B_1 + B_2 * Q_{t-1} + B_3 * PE_t$$
 (82)

$$e = Qt - \overline{Q_t}$$
 (83)

Dónde:

Qt: Caudales muéstrales (experimentales) del mes "t".

Qt-1: Caudales muéstrales (experimentales) del mes anterior.

 $\overline{Q_t}$: Caudales estimados del mes "t".

e: Error entre los valores muéstrales y estimados.

Calculo de la desviación estándar de los residuos:

$$S = \sqrt{\frac{\sum (e^2)}{n-p}} \tag{84}$$

Luego el coeficiente de regresión múltiple "r" se calcula:

$$r = \left(1 - \frac{S^2}{S^2 O_t}\right)^{0.5} \tag{85}$$

$$S_{Qt}^{2} = \frac{1}{n-1} \left[\sum (Q_{t}^{2} - n * (\overline{Q_{t}})^{2}) \right]$$
 (86)

Dónde:

n: Numero de grupos de la muestra

p: Numero de parámetros a estimar

Análisis estadísticos y probabilísticos

El análisis estadístico permite representar mediante números y gráficos el comportamiento en el tiempo de una serie o conjunto de datos que resultan de un determinado evento aleatorio. En nuestro caso, el evento aleatorio son los caudales o descargas que lleva un determinado curso de agua y que han sido registrados en un período de tiempo. (VILLON, M. 2002)

Este análisis estadístico consiste en hallar la función que mejor represente el comportamiento de la variable aleatoria "x", para luego asignar a cada valor "X" una probabilidad o periodo de ocurrencia.

Prueba de bondad de ajuste

Esta prueba consiste en comparar gráfica y estadísticamente, si la frecuencia empírica de la serie analizada, se ajusta a una determinada función de probabilidades teórica seleccionada a priori, con los parámetros estimados con base en los valores muestrales. Las pruebas estadísticas, tienen por objeto, medir la certidumbre que se obtiene al hacer una hipótesis estadística sobre una población, es decir, calificar el hecho de suponer que una variable

aleatoria, se distribuya según una cierta función de probabilidades. Fuente: (VILLON, M. 2002)

b. Prueba Smironov - Kolmogorov

La prueba de Smirnov Kolmogorov, consiste en comparar las diferencias existentes, entre la probabilidad teórica, tomando el valor máximo del valor absoluto, de la diferencia entre el valor observado y el valor de la recta del modelo, es decir:

$$\Delta = \max |F(x) - P(x)| \tag{87}$$

Dónde:

Δ: Estadístico de Smirnov – Kolmogorov.

F(x): Probabilidad de la distribución teórica.

P(x): Probabilidad experimental o empírica de los datos, denominada también frecuencia acumulada.

Esta prueba se utiliza para contrastar la hipótesis acerca de la distribución de la población, de la cual se extrae una variable aleatoria. Las hipótesis a contrastar son:

H₀: Los datos analizados siguen una distribución Normal.

H₁: Los datos analizados no siguen una distribución Normal.

Por tanto, el criterio para la toma de la decisión entre las dos hipótesis será de la forma:

$$P(\Delta \geq \Delta_0) = \alpha \leftrightarrow Aceptar H_1$$

$$P(\Delta < \Delta_0) = \alpha \leftrightarrow Aceptar H_0$$

El estadístico " Δ " tiene su función de distribución de probabilidades y " Δ_0 " es un valor crítico para un nivel de significación α . A su vez, el valor de " Δ_0 " depende del tipo de distribución a probar y se encuentra tabulado.

Tabla 5.- Valores críticos de "Δo"

Tamaño	Nivel de Significación "α"				
Muestral "N"	0.2	0.15	0.1	0.05	0.01
N > 35	$\frac{1.07}{\sqrt{(N)}}$	$\frac{1.14}{\sqrt{(N)}}$	$\frac{1.22}{\sqrt{(N)}}$	$\frac{1.36}{\sqrt{(N)}}$	$\frac{1.63}{\sqrt{(N)}}$

Fuente: (M. Villon, 2002)

La tabla 5 muestra los valores críticos de " Δ_0 " del estadístico del Smirnov -Kolmogorov " Δ ", para valores de (N > 35) y diferentes niveles de significación. El procedimiento para efectuar el ajuste, mediante el estadístico del Smirnov -Kolmogorov, es el siguiente:

Calcular la probabilidad empírica o experimental P(x) de los datos cuyos valores han sido ordenados en forma creciente, para esto se usa la fórmula de Weibull:

$$P(x) = \frac{M}{N+1} \tag{88}$$

Dónde:

P(x): Probabilidad experimental de los datos (frecuencia acumulada)

N: Número de datos.

M: Número de orden.

Calcular la probabilidad teórica F(x): usar la ecuación de la función acumulada F(x), o tablas elaboradas para tal fin.

Calcular la diferencia: P(x)-F(x), para todos los valores "x".

Seleccionar la máxima diferencia: " $\Delta_{máx}$."

$$\Delta_{\text{máx}} = \max |F(x) - P(x)| \tag{89}$$

Calcular el valor crítico del estadístico " Δ ", es decir " Δ_0 " para un α =5% y N=número de datos. Los valores de " Δ_0 ", se muestran en la tabla 5.

Comparar el valor estadístico " $\Delta_{\text{máx}}$.", con el valor crítico " Δ_0 ", con los siguientes criterios de decisión, deducidos de la ecuación (89)

 $\Delta < \Delta_0 \rightarrow \text{el ajuste es bueno}$

 $\Delta \geq \Delta_0 \rightarrow \text{el ajuste no es bueno}$

Restricciones del modelo

El modelo presenta ciertas restricciones de uso o aplicación tales como:

- ✓ El uso de los modelos parciales, únicamente dentro del rango de calibración establecido.
- ✓ Su uso es únicamente para el cálculo de caudales mensuales promedio.
- ✓ Los registros generados en el período de secas presentan una mayor confiabilidad que los valores generados para la época lluviosa.
- ✓ La aplicación del modelo se restringe a las cuencas en las que se ha calibrado sus parámetros (sierra peruana: Cusco, Huancavelica, Junín, Cajamarca)

Es importante tener en cuenta las mencionadas restricciones a fin de garantizar una buena performance del modelo.

Similitud Hidrológica

Indica que, para transferir información hacia una cuenca que no dispone desde otra vecina similar que sí la tiene, hay la necesidad que ambos sistemas hidrológicos cumplan condiciones de similitud. Dos sistemas hidrológicos son similares si cumplen las condiciones de similitud geométrica, cinemática y dinámica. Los parámetros adimensionales juegan aquí un papel de primerísima importancia. (ORTIZ, O. 2004)

Similitud Geométrica

Dos sistemas hidrológicos son similares geométricamente si el Índice de Compacidad tiene un valor equivalente o idéntico en ambos sistemas. (ORTIZ, O. 2004)

Similitud Cinemática

Dos sistemas hidrológicos guardan similitud cinemática si la red de drenaje natural tiene la misma conformación geométrica, esto es, cuando la Relación de Confluencia adopta un valor equivalente o idéntico en ambos sistemas. (ORTIZ, O. 2004)

Similitud Dinámica

Dos sistemas hidrológicos son similares dinámicamente si el Coeficiente Orográfico tiene igual o idéntico valor en ambos sistemas.

El cumplimiento de las tres condiciones anteriores garantiza la similitud total de los sistemas hidrológicos, que encierran implícitamente similares condiciones de clima, geológicas y hasta de cobertura vegetal. (ORTIZ, O. 2004)

Transferencia de Información Hidrometeorológica

La técnica de transferencia de información se realiza empleando parámetros adimensionales que contengan las variables a transferir. Los parámetros de transferencia más conocidos en hidrología son:

Número de Oswald (Os)

Parámetro adimensional que relaciona gastos de escorrentía, altitudes medias, lámina de precipitación y área de la cuenca. Este parámetro es utilizado en cuencas andinas donde la precipitación es función de la altura.

 $O_s = \frac{Q * Z}{A^{3/2} P} \tag{90}$

Os: Número adimensional de OSWALD

Z: Altitud media de la cuenca

P: Lámina de precipitación

Descripción Hidrológica de la Cuenca

Los parámetros geomorfológicos correspondientes al área, relieve y a la red hidrográfica, nos

permiten realizar una descripción del comportamiento hidrológico del sistema con bastante

aproximación. La ubicación de la cuenca y su altitud, nos permite hacer una inferencia acerca

de su pluviosidad; su geometría, relieve y red hidrográfica nos facilita explicar su

comportamiento frente a las escorrentías y a la degradación hídrica a que está expuesta.

Una investigación de campo y la realización de algunos aforos nos ayudarán a verificar y a

completar el estudio. (ORTIZ, O. 2004)

Recopilación de información

Información Cartográfica

Esta información está constituida por mapas topográficos o cartas nacionales a diferentes

escalas, dependiendo del detalle de los estudios. Mientras mayor sea el detalle topográfico

que se desea conocer, se requiere escalas mayores, cuyo costo de la información también se

incrementa.

El estudio hidrológico de cuencas, dependiendo de su tamaño, no es muy exigente en este

sentido, pudiendo trabajarse con escalas estándares de 1: 100 000. Debe tenerse presente que

ciertos parámetros, son muy sensibles a los efectos de escala, tales como el Número de Orden

52

de la cuenca, Relación de Confluencias, Relación de Longitudes y hasta el Área; pues existe un mayor error mientras más pequeña sea la escala.

A partir de la información cartográfica se delimita el área de estudio y se determinan todos parámetros geomorfológicos, los mismos que explican los efectos dinámicos de su comportamiento. (ORTIZ, O. 2004)

Información Hidrometeorológica

Se suele presentar cualquiera de los siguientes casos:

- ✓ Cuencas con suficiente información, referente a precipitación, descargas y climatología general.
- ✓ Cuencas con escasa información, escasa información de descargas y suficiente información de precipitación y viceversa.
- ✓ Cuencas sin información, ni de descargas ni de precipitación.

Este último es el caso más crítico, pero a la vez el más frecuente en casi todos los países subdesarrollados. En este caso, se recomienda como alternativa transferir información desde otra cuenca vecina empleando criterios de similitud.

Se requiere además conocer los caudales promedio mensuales, los que se pueden transferir desde sistemas hidrológicos similares mediante el Número de Oswald de la ecuación (90). Los aforos realizados permitirán verificar y realizar un mejor ajuste de dicha ecuación.

Recopilación de Información Hidrometeorológica

Generalmente, no se dispone en la zona del proyecto de registros de descargas medias mensuales, ni descargas máximas mensuales, información que requiere este tipo de proyectos. En este sentido, lo más probable es que siempre se tenga que trasmitir información

desde cuencas vecinas, especialmente en lo referente a escurrimientos sostenidos e intensidades máximas de precipitación.

La información necesaria para realizar transferencia de información consiste casi siempre de registros de precipitaciones mensuales de las cuencas con información y sin información. Con esta información, previamente tratada estadísticamente, se realiza la transferencia de intensidades máximas y descargas medias mensuales. Para el caso de micro cuencas, la descarga máxima se obtiene a partir de las máximas intensidades de precipitación transferidas desde la cuenca con información. (ORTIZ, O. 2004)

Tratamiento de Información Pluviométrica

Los registros históricos de precipitaciones mensuales de ambas cuencas, se someten a un proceso estadístico de análisis de consistencia. Luego se completan y se extienden las series, por métodos de regresión lineal simple, de ser el caso. Para cuyo efecto, debe realizarse siempre la prueba estadística de «T» del coeficiente de regresión lineal.

Con la información ya tratada se obtiene el coeficiente de transferencia o factor de escala correspondiente utilizando las ecuaciones de transferencia ya citadas. (ORTIZ, O. 2004)

Similitud hidráulica de sistemas hidrológicos altoandinos y transferencia de información hidrometeorológica.

Análisis dimensional de sistemas hidrológicos

El fenómeno físico más importante en microcuencas altoandinas es el de precipitaciónescorrentía, variables causa y efecto, respectivamente. (ORTIZ, O. 2015)

La primera, dependiente de las características climáticas, y la segunda de la naturaleza de cada microcuenca (CHOW, V. 1993). Sencillamente, si se desprecia la evapotranspiración real, el fenómeno simplificado queda representado por las variables mostradas en la tabla 7.

Las variables se agruparon en parámetros adimensionales, mediante la aplicación del teorema PI de Vaschy-Buckingham (SOTELO, G. et al., 1977). El producto de este análisis condujo a la obtención de las leyes físicas que rigen los sistemas hidrológicos altoandinos, representadas por los parámetros adimensionales de las ecuaciones (91), (92), (93), (94) y (95):

$$\pi_1 = \frac{Q}{AP} \tag{91}$$

$$\pi_2 = \frac{H}{\sqrt{A}} \tag{92}$$

$$\pi_3 = \frac{I * t}{H} \tag{93}$$

$$\pi_4 = \frac{Q}{I*A} \tag{94}$$

$$\pi_5 = \frac{p}{\sqrt{A}} \tag{95}$$

Dónde:

 π : Parámetro adimensional.

Q: caudal de escurrimiento.

A: proyección del área receptora-colectora sobre un plano horizontal.

P: precipitación pluviométrica.

H: altitud media sobre el nivel del mar.

I: intensidad de precipitación.

t: periodo de duración de intensidad de precipitación.

p: perímetro de la cuenca.

El hecho de haber despreciado la evapotranspiración real en este análisis se justifica porque los tiempos de duración de las tormentas son relativamente cortos; para periodos de tiempo más largos, los balances hidrológicos deben tomar en cuenta esta componente o bien incluirla como pérdida en los coeficientes de escorrentía.(CHOW, V. et al., 1993)

Tabla 6.- Variables y dimensiones del fenómeno precipitación-escorrentía

Variable	Dimensión
1.Precipitación pluvial: P	LT ⁻¹
2.Intensidad de precipitación pluvial: I	LT ⁻¹
3.Periodo de duración de la lluvia: t	T
4. Proyección del área receptora colectora: A	L^2
5.Desnivel sobre el nivel del mar: H	L
6.Caudal de escurrimento: Q	L^3T^{-1}
7.Perímetro de la cuenca: p	L

Fuente: (ORTIZ, O. 2015)

Parámetro adimensional de semejanza geométrica

Está dado por el parámetro adimensional de la ecuación (95), donde multiplicando ambos miembros por 0.28 resulta el índice de Gravelius ($Kc = 0.28* \pi_5$) dado por la ecuación (96); parámetro adimensional que se obtiene relacionando el perímetro de una cuenca y el perímetro que tendría un círculo imaginario de la misma área que la cuenca (IBIZATE, A. et al., 2004)

$$K_c = 0.28 \frac{p}{\sqrt{A}} \tag{96}$$

El índice de Gravelius tiene influencia en la configuración de la red de drenaje superficial y en la geometría del hidrograma de escorrentía directa y, por tanto, en la magnitud del caudal pico de avenidas (IBIZATE, A. et al., 2004). Además, los rangos de este parámetro han sido de mucha utilidad en la clasificación de cuencas por su geometría, tal como el que se plasma en la tabla 8 (HENAOS, R. 1988). Este parámetro, por ser descriptor más eficaz de la forma de la cuenca, es un buen referente de similitud geométrica entre sistemas hidrológicos.

Por analogía, con la hidráulica de modelos físicos se puede inferir entonces que: "dos o más

sistemas hidrológicos son geométricamente semejantes si tienen igual índice de Gravelius".

Conviene resaltar que el término "igual" no tiene connotación matemática, sino simplemente

el de una "igualdad hidrológica", que al igual que en estadística, se acepta con cierto nivel de

aproximación válida para fines prácticos.

Las microcuencas de forma oval concentran más rápidamente los flujos superficiales,

generando picos súbitos violentos y recesiones rápidas ante tormentas extraordinarias,

características que favorecen la escorrentía directa y la erosión hídrica, en detrimento de la

recarga de acuíferos, contrariamente al comportamiento de las cuencas alargadas. (ORTIZ, O.

2015)

Parámetro adimensional de escurrimiento sostenido

Está dado por la ecuación (91), donde sustituyendo el primer miembro por un coeficiente

promedio (K = π_1) se transforma en la ecuación (97), expresión que puede usarse para la

determinación de caudales promedio multianuales de escorrentía, que involucra a las

componentes de escorrentía directa y subterránea (CHOW, V. et al., 1993)

$$Q = K A P \tag{97}$$

Dónde:

Q: caudal promedio en el periodo considerado.

A: área de la cuenca receptora-colectora de precipitaciones.

P: "Precipitación efectiva" en el periodo considerado.

K: coeficiente de escorrentía.

57

Tabla 7.- Formas estándar de cuencas con base en el índice de Gravelius

Formas de sistemas hidrológicos con base en el coeficiente de Gravelius					
Clase de geometría	Rango de clase	Forma de cuenca			
Kc1	$1 < Kc \le 1.25$	Oval redonda			
Kc2	$1.25 < \text{Kc} \le 1.5$	Oval oblonda			
Kc3	$1.5 < \text{Kc} \le 1.75$	Oblonda alargada			

Fuente: (HENAOS, R. 1988)

El término "precipitación efectiva", por tratarse de periodos más largos, obviamente, incluye pérdidas por evapotranspiración real y almacenamiento en el suelo.

Parámetro adimensional orográfico y semejanza dinámica

Está representado por la ecuación (92), donde elevando al cuadrado ambos miembros resulta el parámetro adimensional de la ecuación (98), conocido como coeficiente orográfico, C_O ($\pi^2_2 = C_O$), parámetro asociado con las fuerzas gravitaciones de los flujos superficiales y, por ende, con los potenciales de erosión hídrica y de generación de energía hidráulica. (HENAOS, R. 1988)

$$C_0 = \frac{H^2}{A} \tag{98}$$

Los sistemas altoandinos de relieve escarpado, ubicados a gran altitud, tienen coeficientes orográficos muy altos, siendo indicativos de una gran capacidad erosiva y de transporte de sedimentos (HENAOS, R. 1988). Por todo ello, se considera que este parámetro constituye un buen referente de similitud dinámica.

Por analogía, con la hidráulica de modelos físicos se puede inferir que: "dos o más sistemas hidrológicos altoandinos son semejantes, dinámicamente, si tienen igual coeficiente

orográfico", con similar consideración del término "igual" que para el caso de semejanza

geométrica.

Parámetro de relación de confluencias promedio y semejanza cinemática

Este parámetro adimensional, influenciado también por el índice de Gravelius, describe la

configuración espacial o geometría de la red de drenaje y expresa el grado de ramificaciones

de la red (IBIZATE, A. et al., 2004). Se cuantifica mediante la aplicación de las ecuaciones

(99) y (101), para lo cual es necesaria la categorización previa de la red de drenaje

superficial, prefiriéndose la metodología de Horton (GASPARI, F. et al., 2012)

Por la influencia que ejerce en la configuración espacial de la red de drenaje, se considera que

la relación de confluencias promedio es un buen referente de la similitud cinemática de los

sistemas hidrológicos.

$$r_{c} = \frac{n_i}{n_{i+1}} \tag{99}$$

$$R_{c} = \frac{1}{n} \sum_{1}^{n} r_{d} \tag{100}$$

Dónde:

r_c: relación de confluencias parcial.

n_i: número de cursos naturales de orden i.

 n_{i+1} : número de cauces de orden inmediatamente superior a i (i = 1, 2, 3,...., N-1).

N: número de orden de la cuenca.

r_{ci}: cada uno de los "n" valores parciales.

R_C: relación de confluencias promedio.

59

Por analogía, entre modelo y prototipo, se infiere que: "dos sistemas hidrológicos son semejantes, cinemáticamente, si tienen igual relación de confluencias promedio", con la misma indicación del término "igual" que para los dos casos de semejanza anteriores.

Parámetro adimensional de lluvia

Este parámetro, dado por la ecuación (93), describe las características de la precipitación pluviométrica sobre la cuenca como una variable con distribución espacial y temporal. Se observa que las mayores intensidades ocurren en periodos cortos de tiempo y a mayor altitud sobre el nivel del mar y viceversa (CHOW, V. et al., 1993). Es muy importante en la generación de escorrentías máximas (caudales pico) a partir de datos de precipitación; pero, además, explica que en cuencas altoandinas la precipitación es dependiente de la altitud sobre el nivel del mar.

Condición de semejanza hidráulica de sistemas hidrológicos

Por analogía, con la hidráulica de modelos físicos a escala, "dos o más sistemas hidrológicos altoandinos son semejantes si cumplen simultáneamente las condiciones de semejanza geométrica, cinemática y dinámica", con cierto nivel de aproximación previamente adoptado.

Parámetros adimensionales de transferencia

Establecida la similitud hidráulica entre sistemas, todos los parámetros adimensionales que controlan las leyes del fenómeno estudiado (ecuaciones (91), (92), (93), (94) y (95)) se convierten en funciones de transferencia, dependiendo en qué parámetro se ubique la variable de interés (SOTELO, G. et al., 1977).

En ocasiones, con el propósito de mejorar la calidad de transferencia, se pueden realizar combinaciones entre parámetros para obtener otro(s) parámetro adimensional(es) con mayor cantidad de variables, tal como el parámetro adimensional de la ecuación (101), resultado de

combinar las ecuaciones (91) y (92), muy importante para transferir escorrentías (SOTELO, G. et al., 1977):

$$\pi_{12} = \frac{QH}{A^{3/2}P} \tag{101}$$

Aplicando el principio de similitud para una dupla de cuencas origen y destino, el parámetro adimensional de la ecuación (101) queda conforme lo establece la ecuación (102), o su equivalente (104), en función de escalas (SOTELO, G. et al., 1977):

$$\frac{Q_0 H_0}{A_0^{3/2} P_0} = \frac{Q_d H_d}{A_d^{3/2} P_d} \tag{102}$$

Los subíndices de las variables del primer y segundo miembro de esta ecuación corresponden a los sistemas hidrológicos de origen y destino, respectivamente:

$$Q_{d} = \left(\frac{H_{0}}{H_{d}}\right) \left(\frac{P_{d}}{P_{0}}\right) \left(\frac{A_{d}}{A_{0}}\right)^{3/2} Q_{0}$$
(103)

$$Q_d = H_e^{-1} P_e A_e^{3/2} Q_0 (104)$$

Dónde:

He: escala de altitudes.

Pe: escala de precipitaciones.

Ae: escala de áreas.

Qo: caudal total en la cuenca de origen.

Qd: caudal total transferido a la cuenca destino.

Disponibilidades promedio de agua

Las disponibilidades promedio mensuales de agua o de escurrimiento sostenido, se determinan multiplicando el factor de transferencia, obtenido de la similitud hidrológica, por los datos de la serie de descargas medias mensuales corregida y completada por procedimientos estadísticos. El factor de transferencia más completo es el obtenido mediante

el Número de OSWALD, y la bondad de transferencia se verifica con aforos realizados en la fuente en diferentes épocas del periodo de estiaje. (ORTIZ, O. 2015)

2.3 Definición de términos básicos

Microcuenca Chirimayo. Es la unidad hidrográfica más pequeña de los sectores altos de las cuencas compuestas por quebradas, pequeños riachuelos o nacimientos de aguas.

Disponibilidad de agua.- La disponibilidad de agua de la cuenca hidrográfica es el volumen total de agua ya precipitada sobre esta.

Modelo Lutz Scholz.- El modelo se basa fundamentalmente en el balance hídrico y los parámetros parciales de tipo determinístico. El método permite combinar los factores que producen e influyen en los caudales como es la precipitación, evaporación, el almacenamiento y la función de agotamiento natural de la cuenca, para el cálculo de las descargas en forma de modelo matemático.

Modelo hidrológico determinístico. Un modelo matemático del tipo determinístico es aquel que tiende a establecer relaciones cuantitativas de causa-efecto, utilizando una relación directa para obtener una respuesta debida a un requerimiento, sea por medio de una ecuación empírica o por medio de un operador desarrollado a partir de criterios e hipótesis experimentales.

Modelo hidrológico estocástico. Se caracteriza porque, por un lado tienen un patrón medio de comportamiento a largo plazo, y por el otro al pronóstico de sus magnitudes en un momento dado tiene un mayor o menor grado de incertidumbre. El patrón medio corresponde a lo que se denomina la tendencia general o componente determinística y la incertidumbre constituya la componente aleatoria de evento.

Coeficiente de agotamiento. Constante propia de un acuífero. Su valor caracteriza la ley de decrecimiento exponencial, en régimen no influenciado, del caudal del manantial que representa la descarga del sistema, como consecuencia de la disminución de reservas que sigue a la interrupción de la alimentación.

Precipitación efectiva. Lluvia que se infiltra en el suelo, sin llegar a perderse por escorrentía o por filtración profunda. En la práctica del riego, la porción de la precipitación total que retiene el suelo y que está disponible para la producción de cultivos.

Retención de la Cuenca. Es el proceso de la reserva de agua, comenzando a su vez el abastecimiento de los almacenes hídricos. Este proceso está descrito por un déficit entre la precipitación efectiva y el caudal real.

Transposición de Caudales. Es transferir datos mensuales de caudal de un sitio aforado a uno sin aforar, lo cual permite generar un modelo de equilibrio hidrológico sin la necesidad de implementar nuevas estaciones en los puntos sin aforo, con base en las áreas de drenaje.

Caudales medios mensuales. Valor promedio de los caudales medios diarios del mes, que pasa a través de una sección transversal del río.

Aforo. Medida del Caudal (de un rio, manantial, etc.)

Caudal de escorrentía superficial. La escorrentía superficial es el fenómeno más importante desde el punto de vista de la ingeniería, y consiste en la ocurrencia y transporte de agua en la superficie terrestre; se denomina así también a todo aquella precipitación no infiltrada y que escurre sobre la superficie del suelo.

Caudal base. Caudal correspondiente a las aportaciones (de un manantial o río) en periodo de agotamiento, es decir, cuando la descarga de los acuíferos se realiza en régimen no influenciado (por haber cesado la recarga del sistema).

III. MATERIALES Y MÉTODOS

3.1 Ubicación del área de estudio

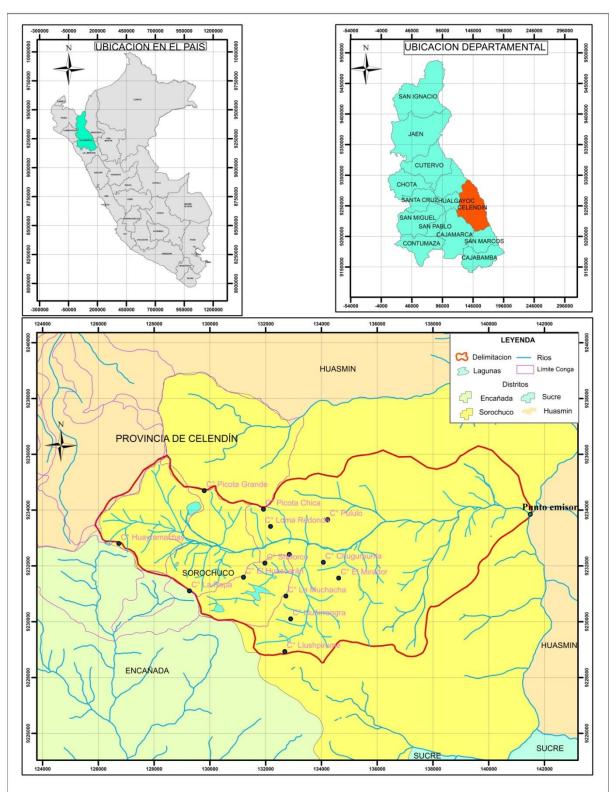


Figura 11.- Ubicación política de la microcuenca Chirimayo

REFERENCIAL

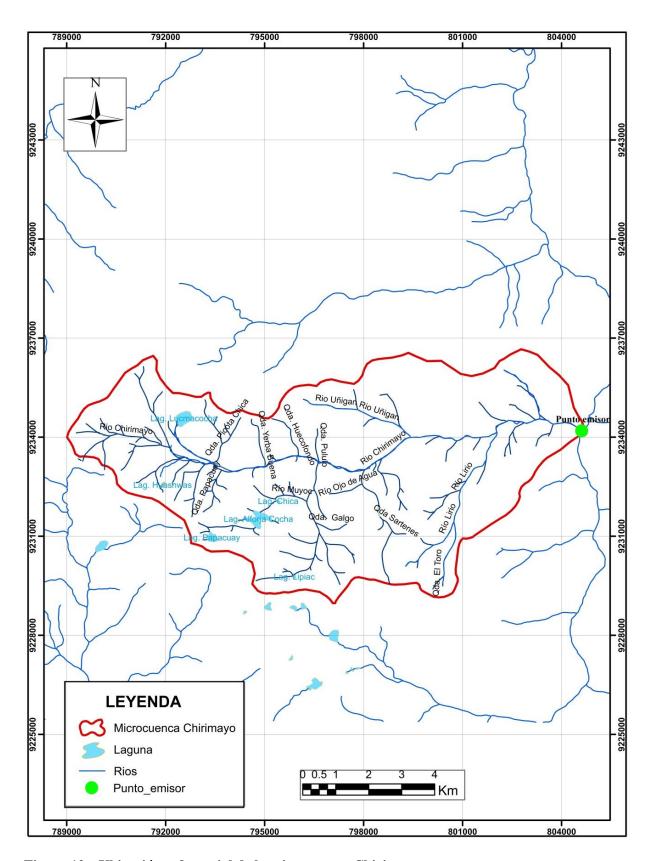


Figura 12.- Ubicación referencial de la microcuenca Chirimayo

Accesibilidad

Tabla 8.- Accesibilidad a la zona de estudio

Tramo	Tipo de vía	Longitud (Km)	Tiempo Minutos	Observaciones
Cajamarca-Agua Colorada	Asfaltada	81.9	120	Vía de alto trafico
Agua Colorada- Sorochuco	Trocha Carrosable	21.2	50	Vía de mediano trafico

3.2 Equipos y materiales utilizados durante la investigación.

Equipos de campo

Figura 13 Y y Figura 14.- Estación hidrométrica y Correntómetro digital para aforar en canales y ríos

Figura 15 y Figura 16.- Cámara fotográfica para capturar las actividades de la investigación y GPS

Equipo de gabinete

Figura 17 y Figura 18.- Computadora CORE i5 y Impresora multifuncional canon Materiales

Materiales de escritorio (Papel bond, folder manila, lapicero, marcador), libros, fotografías satelitales, cartas geográficas, memoria USB, libreta de Campo, wincha y GPS, vestuario de protección (poncho impermeable, botas de jebe, guantes, casco).

Software

Programas computacionales:(Microsoft Word, Excel, Autocad civil 3D, ArcGis, Power Point)

3.3 Procedimiento de recolección de datos en campo

Visita de campo, y ubicación de la sección del río donde se aforó durante los meses del año 2017.

✓ El tramo del río que se escogió para medir el agua es recto, en una distancia de 100 a 150 metros, aguas arriba del punto emisor, dicho de otra manera aguas arriba del punto de confluencias del río Chirimayo con el río Sendamal.

- ✓ La sección de control está ubicado en un tramo en el cual el flujo es calmado y, por lo tanto, libre de turbulencias, y donde la velocidad misma de la corriente esta, dentro de un rango que puede ser registrado por un correntómetro.
- ✓ El cauce del tramo recto fue limpiado de malezas, de piedras grandes, etc. para evitar imprecisiones en las mediciones de agua, ya que, estos obstáculos hacen más imprecisas las mediciones en épocas de estiaje.
- ✓ Tanto aguas abajo como aguas arriba, la estación de aforo está libre de la influencia de puentes, presas o cualquier otras construcciones que puedan afectar las mediciones.
- ✓ El lugar es de fácil acceso para realizar las mediciones.

Aforo del río Chirimayo en la sección a 100 metros agua arriba del punto emisor o de confluencias.

Métodos de aforo.

Son varios los métodos que se pueden emplear para aforar el agua, la mayoría basados en la determinación del área de la sección y la velocidad.

Este es el método que se va emplear en la investigación:

✓ Aforo con correntómetro

3.4 Tratamiento Cartográfico

El protocolo establecido para el tratamiento de la información cartográfica es la siguiente:

✓ Se utilizó el mapa cartográfico 14G-Celendín, a escala 1:100 000 proporcionados por la misma institución, (IGN_Perú), las cuales fueron digitalizadas con curvas cada 50 m. los mapas de redes hidrográficas y meteorológicas fueron elaborados en función de cartas digitalizadas y presentadas a escala 1:50 000.

- ✓ Se delimitó la microcuenca basada en el principio de la red de flujo, considerando que la línea divisoria de aguas es teóricamente una línea neutral de flujo.
- ✓ Se procesó la información cartográfica, un ejemplo de esto son los parámetros geomorfológicos empleando las mismas metodologías, para cada caso (área, perímetro, altitud media, etc.).
- ✓ Se utilizó como herramienta para todo este proceso el Software ArcGIS 10.3

3.5 Análisis estadístico de la información meteorológica

Recopilación de la información meteorológica

Para el estudio de la microcuenca Chirimayo se utilizó cinco (5) estaciones meteorológicas, las mismas que son administradas por senamhi (Ver tablas del anexo A.1)

El registro con el que se cuenta es las precipitaciones mensuales, los periodos de registros de dichas estaciones se presentan en las tablas del anexo A.1

La distribución espacial de las cinco estaciones utilizadas en la presente investigación se muestra en la tabla 10 y figura 25.

Tabla 9.- Coordenadas de las estaciones pluviométricas a utilizar para la microcuenca Chirimayo

CO	COORDENADAS UTM -WGS84-17S									
N°	ESTACION	ESTE	NORTE	COTA						
01	A. Weberbauer	776880.86	9206978.38	2536						
02	Hacienda Negritos	772521.83	9230203.50	3550						
03	La Encañada	795823.80	9212281.83	2862						
04	Quebrada Shugar	781090.64	9259270.89	3293						
05	Celendín	818505.54	9240309.12	2470						

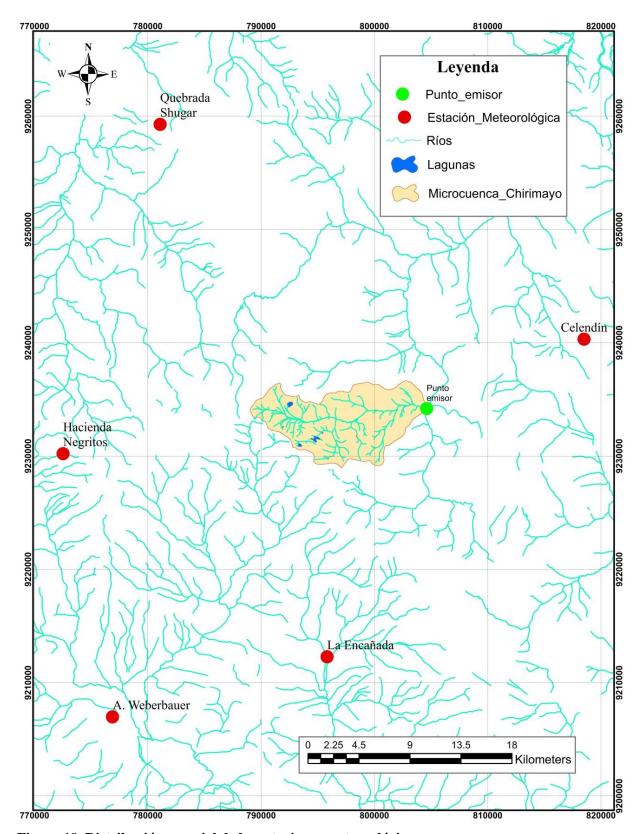


Figura 19. Distribución espacial de las estaciones meteorológicas

Procesamiento de información meteorológica

El tratamiento de datos meteorológicos se realizó de forma clásica, es decir de forma secuencial, para lo cual en el capítulo II se ha realizado una amplia revisión bibliográfica de las metodologías existentes, planteando una secuencia de cálculos; los mismos que consideramos parte del trabajo de investigación literaria.

La parte esencial de este análisis estadístico se detalla a continuación:

- ✓ La información recopilada fue analizada, procesada y sintetizada mediante sus parámetros estadísticos (media, desviación estándar) convirtiéndolo en un producto elaborado apto para el diseño.
- ✓ Se ha escogido como estación base a la estación A. Weberbauer, con la que se ha completado algunos datos faltantes y se ha extendido los valores de precipitación, alcanzando una data de 50 años; esta extensión se ha realizado para las estaciones de Hacienda Negritos, La Encañada, Quebrada Shugar y Celendín.
- ✓ El análisis de consistencia, completación y extensión de la información pluviométrica se muestran en los anexos A.2 y A.3, respectivamente.

Precipitación media mensual de la microcuenca Chirimayo

El registro de la precipitación sobre la microcuenca Chirimayo fue obtenida mediante el método de Isoyetas, significa entonces que se ha usado datos de las estaciones: A. Weberbauer, Hacienda Negritos, La Encañada, Quebrada Shugar y Celendín, como consecuencia de esto se tiene la precipitación media mensual. (Ver tabla 37).

La precipitación mensual para el año promedio (PMP) fue obtenida mediante el cálculo de la media de la precipitación sobre la microcuenca generada por el método de Isoyetas ecuaciones (7) y (8). (Ver tabla 13).

Coeficiente de escorrentía

El coeficiente de escorrentía se estimó únicamente con el método de L-Turc discutido en el capítulo anterior, mediante la ecuación (56).

Precipitación Efectiva

El término *precipitación efectiva* implica sólo la fracción de la precipitación total que retiene el suelo y está disponible para la producción de cultivos, para lo cual el registro de precipitación mensual total es afectado por el coeficiente de escorrentía, según la ecuación (60); obteniéndose de esta forma, el registro de precipitación efectiva para la microcuenca Chirimayo. (Ver tabla 38 del anexo A.4)

Del registro generado se determina la precipitación media (de enero a diciembre) de todos los años (período igual al de información), siendo ésta la precipitación efectiva promedio en la microcuenca del río Chirimayo.

Retención en la cuenca

La retención de la cuenca (R) se produce en los almacenes naturales: acuíferos, nevados, lagunas y pantanos, se calculó mediante la ecuación (63) utilizando los parámetros geomorfológicos de la microcuenca. (Ver tabla 17).

La retención en la microcuenca se asemeja a una cuenca con agotamiento rápido, la ecuación utilizada para el cálculo del coeficiente de agotamiento es la (68). (Ver tabla 18).

Con el coeficiente de agotamiento hallado, se utilizó la ecuación (64) para obtener la relación de caudales del flujo base en los meses de estiaje. (Ver tabla 20).

El gasto de la retención de la cuenca, es el aporte a la escorrentía, de las aguas subterráneas en los meses de estiaje. Su cálculo fue mediante la ecuación (72). (Ver tabla 22).

El abastecimiento de la retención durante la estación lluviosa es uniforme para cuencas ubicadas en la misma región climática. De la tabla 4, descrita en el capítulo anterior, obtenemos los coeficientes de abastecimiento que le corresponden a la región de Cajamarca (Ver tabla 21).

La lámina de agua que entra en la reserva de la cuenca se muestra en forma de déficit mensual de la precipitación efectiva. Se calcula mediante la ecuación (73). (Ver tabla 23).

3.6 Generación de Caudales

Caudales mensuales para el año promedio

La generación de caudales medios mensuales para el año promedio, se estimó mediante el balance hídrico, según la ecuación (73) discutido en el capítulo anterior.

Para convertir los caudales a (m³/s) se multiplica los caudales medios mensuales en (mm/mes) por el área de la cuenca, dividido entre el número de días del mes, 24 h, 60 min y 60 seg.

Caudales mensuales para un periodo extendido

El modelo hidrológico de Lutz Scholz permite *estimar* los caudales del año promedio de la microcuenca del río Chirimayo. Como se indica en el capítulo anterior el periodo extendido es generado por un Proceso Markoviano de primer orden tomando como variable de impulso a la precipitación efectiva.

El protocolo establecido para la generación de caudales para un periodo extendido, se resume en las siguientes actividades:

✓ Con los caudales generados para el año promedio se calcula los parámetros de regresión lineal múltiple mediante un cálculo de regresión con "Qt" como valor

- dependiente y "Qt-1 y PEt", como valores independientes. Asimismo, se estimó los caudales y los coeficientes estadísticos de la correlación múltiple. (Ver tabla 24)
- ✓ Se calculó la precipitación efectiva a partir de la precipitación media para un periodo de 50 años a partir de 1968 hasta el año 2017. (Ver tabla 38 del anexo A.4)
- ✓ Se generó números aleatorios normalmente distribuidos para un mismo periodo que la precipitación efectiva, con distribución normal de media igual a "0" y desviación estándar igual a "1". (Ver tabla 39 del anexo A.5)
- ✓ Se calculó los caudales generados para el periodo extendido según la ecuación (77) (Ver las tablas 40 y 41, del anexo A.5)

Caudales mensuales transpuestos de una cuenca a otra

La transposición de caudales se da mediante similitud hidráulica de sistemas hidrológicos altoandinos y transferencia de información hidrometereológica; de manera que se busca hallar la semejanza geométrica, cinemática y dinámica entre una cuenca y otra.

Para hacer la transposición de caudales se utilizó las ecuaciones (89), (103) y los resultados se presentas en la tabla 42.

Caudales aforados por el método del correntómetro

Método que el investigador utilizó para aforar el río Chirimayo

- ✓ Para realizar la medición de velocidad se utilizó un correntómetro digital Global Water modelo FP11.
- ✓ Se apuntó la hélice del correntómetro directamente en el curso de agua que se desea medir. Con la flecha en el interior de la carcasa del propulsor aguas abajo.
- ✓ Cuando la pantalla está en blanco, se presionó cualquier tecla para reiniciar el equipo.

✓ Luego se colocó la hélice en el punto de medición deseado y se pulsó el botón RESET para comenzar a tomar las velocidades nuevas medio, mínimo y máximo de las lecturas.

Ofertas hídricas generadas con el modelo

Los caudales mensuales generados por el modelo estocástico se ajustaron a una distribución Normal, utilizando la prueba estadística de Smirnov-Kolmogorov, ésta prueba ha permitido disponer de elementos de juicio para aceptar o rechazar la función previamente seleccionada. El ajuste estadístico de Smirnov-Kolmogorov se ha realizado siguiendo el protocolo descrito en el marco teórico (Ver tabla 46 del anexo A.8).

IV. RESULTADOS Y DISCUSION

4.1 Análisis Cartográfico de la zona de estudio

El conocimiento previo de la geomorfología es un requisito importante para poder caracterizar la microcuenca en estudio, esta caracterización se realizó en base a elaboración de las curvas principales: hipsométrica, frecuencia de altitudes, perfil longitudinal del cauce principal.

El análisis de los parámetros geomorfológicos ayudó a comparar el comportamiento de la precipitación y del escurrimiento, así mismo al realizar el análisis estadístico con el apoyo de la cartografía permitió inferir la importancia que tienen los lagos y lagunas para mantener el régimen de los caudales de la microcuenca Chirimayo.

Del análisis geomorfológico se puede notar las siguientes tendencias fisiográficas:

- ✓ El área de la microcuenca Chirimayo es 72.98 km², y el perímetro es 44.69 km.
- ✓ El Coeficiente de Gravelius resultó 1.47, clasificando a la microcuenca en Oval-redonda a oval- oblonda, este valor indica que hay menores riesgos de inundaciones frente a tormentas extremas. Asimismo el factor es 0.217 indicando que la microcuenca tiene mayor desarrollo en su "largo" que, en su "ancho", es decir la precipitación no se produce en forma simultánea en toda la microcuenca ni tampoco con la misma intensidad, debido a lo cual las concentraciones de las intensidades de la precipitación no son constantes. Además su ancho promedio es 3.97 km.
- ✓ La altitud media se ubica a una altura de 3569.00 msnm siendo un parámetro clave en el cálculo de las precipitaciones y en la degradación del suelo. Por otro lado la pendiente de la microcuenca es 32.2% mostrando que la microcuenca Chirimayo es accidentada.
- ✓ La pendiente del cauce principal resultó 7.39 %, siendo clave para determinar el almacenamiento hídrico. Igualmente la longitud del cauce principal es 18.24 Km.

✓ El tiempo de concentración es 0.502 horas, el coeficiente orográfico es 0.176, la relación de longitudes es 0.89 y la densidad de drenaje es 1.98 km/ km², estos indicadores categorizan a la microcuenca con capacidad de drenaje regular, lo cual está relacionado con el tipo de suelo y la cobertura vegetal.

Tabla 10.- Principales parámetros de la microcuenca Chirimayo

Parámet	ros	Geométricos	
Área de la microcuenca		Km ²	72.98
Perímetro de la microcuenca		Km	44.69
Parámet	ros	Morfológicos	
Coeficiente o índice de compacidad	Adimensional	1.471	
Factor de forma		Adimensional	0.217
Ancho promedio		Km	3.967
Parám	etro	os de relieve	
Altitud media		m	3569
Altitud más frecuente		msnm	3801 – 3850
Pendiente de la microcuenca	%	32.2	
Parámetro	s d	e la red hídrica	
Longitud del cauce principal		Km	18.24
Pendiente del cauce principal		%	7.387
Paráme	etro	os generados	
Relación de longitudes		Adimensional	0.892
Densidad de drenaje		Adimensional	1.978
Frecuencia de ríos		Adimensional	5.68
Tiempo de concentración		Horas	0.501
Coeficiente orográfico		Adimensional	0.176
Pactángulo aquivalente	a a		3.929
Nectangulo equivalente	Rectángulo equivalente b		
Relación de confluencias		Adimensional	2.022
Coeficiente de masividad		Adimensional	0.049

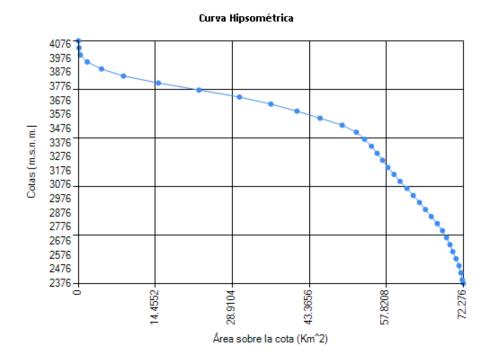


Figura 20.-Curva Hipsométrica

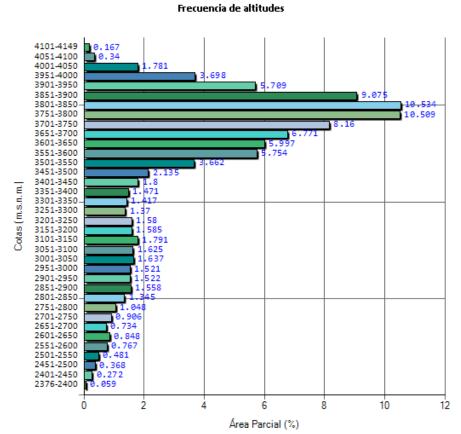


Figura 21.- Frecuencia de altitudes

4.2 Tratamiento estadístico de la información.

Consistencia de la información meteorológica

El análisis visual gráfico del registro de las precipitaciones anuales de todas las estaciones, según su periodo de registro de cada una de ellas, se muestra en el anexo A.2.

El análisis de doble masa de los datos originales de estaciones en estudio se presenta en el anexo A.2.

Las informaciones originales de las estaciones seleccionadas se presentan en el anexo A.1.

De las figuras y tablas presentadas se puede notar las siguientes tendencias:

- ✓ Los grupos de análisis se formaron en función a la información completa con la que cuenta la Estación Base, se formaron dos grupos para el análisis estadístico de la información. (Ver tabla 12)
- ✓ Todas las Estaciones no presentaron saltos ya sea en la media y en la desviación estándar, también es importante resaltar que ninguna de las estaciones presentó tendencias. (Ver anexo A.2)

Completación y extensión de la información meteorológica

En toda serie hidrológica existen datos faltantes y por este motivo la serie no deja de ser confiable; los resultados del método utilizado para la completación y extensión de la información se resumen en el anexo A.3.

La información pluviométrica disponible, consistente, completa y extendida de las estaciones se presenta en el anexo A.3.

De las figuras y tablas presentadas se puede notar las siguientes tendencias:

✓ Las extensiones de los datos se realizaron en las Estaciones: Hacienda Negritos, Quebrada Shugar, y La Encañada. Estas extensiones son largas como se puede apreciar en las series presentadas del anexo A.3 y se realizaron mes a mes correlacionando con la Estación Base (A. Weberbauer).

✓ En términos generales, para la presente tesis, los datos pluviométricos recopilados con las correcciones realizadas (completación y extensión), es un material que puede ser empleado para otros trabajos.

Tabla 11.- Resumen de la completación y extensión de información meteorológica

	Completación	Extensión		
Nombre de la Estación	Correlación Lineal			
Estacion	mes a mes	mes a mes		
Hacienda Negritos	-	A. Weberbauer		
La Encañada	-	A. Weberbauer		
Quebrada Shugar	-	A. Weberbauer		
Celendín	A. Weberbauer	-		

4.3 Modelos determinísticos parciales

Precipitación media mensual de la microcuenca Chirimayo

Altitudinalmente la zona de estudio se encuentra sobre los 2,500 msnm, por este motivo se estudió la relación existente entre la precipitación mensual para el año promedio con la altitud media de la cuenca, mediante un análisis de ecuaciones lineales.

La distribución de la precipitación media mensual de la microcuenca Chirimayo se visualiza en la figura 2.

La serie de precipitaciones mensuales obtenidas mediante el método de Isoyetas en la microcuenca Chirimayo se presenta en la tabla 37, del anexo A.4.

De las tablas y figuras presentadas se puede notar las siguientes tendencias:

- ✓ La precipitación media anual generada en la microcuenca Chirimayo está alrededor de 937.59 mm/año siendo los meses de marzo con precipitación de 161.27 mm/mes y abril con precipitación de 111.70 mm/mes los más lluviosos.
- ✓ La distribución de la precipitación en la microcuenca Chirimayo es como sigue: mayo, junio, julio, agosto y septiembre serán considerados como meses secos, en este periodo la precipitación disminuye paulatinamente a partir de mayo (57.93mm), alcanzando el punto más bajo en el mes de julio (9.91 mm)
- ✓ Los meses lluviosos son: octubre, noviembre, diciembre, enero, febrero, marzo y abril.

 Estos meses serán considerados como meses húmedos, siendo el mes de marzo el más lluvioso con una precipitación de (161.27 mm).

Tabla 12.- Precipitación media mensual sobre la microcuenca Chirimayo

MES	ENE.	FEB.	MAR.	ABR	MAY	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.	TOTAL
PMTM	104.5	104.5	161.3	111.7	57.6	18.5	9.9	15.0	46.3	110.1	101.6	96.6	937.6

Precipitación efectiva

El término precipitación efectiva implica sólo la fracción de la precipitación total que se infiltra en el suelo, sin llegar a perderse por escorrentía o por filtración profunda. Esto resultó anualmente 452.98 mm/año. Además, la temperatura media anual está por debajo de los 10 °C, con un déficit de escurrimiento de 484.61 mm/año.

La distribución de la precipitación efectiva en la microcuenca Chirimayo se presenta en la tabla 15 y figura 28.

Tabla 13.- Coeficiente de escorrentía

Temperatura Media Anual (°C)	Τ°	8.85
Coeficiente de Temperatura	L	556.05
Déficit de escurrimiento (mm/año)	D	484.61
COEFICIENTE DE ESCORRENTÍA	C	0.48

Tabla 14.- Precipitación efectiva de la microcuenca Chirimayo

MES	ENE.	FEB.	MAR.	ABR	MAY	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.	TOTAL
PME	50.47	50.50	77.92	53.97	27.84	8.94	4.79	7.24	22.35	53.22	49.09	46.65	452.98

Figura 22.- Precipitación media mensual (PMTM) y precipitación efectiva (PME) de la microcuenca Chirimayo

Gasto de la retención

El cálculo de la Retención "R" arrojó un valor de 55.25 mm/año, este valor indica que la microcuenca Chirimayo tiene un agotamiento rápido, característicos de una vegetación y cobertura poco desarrollada.

Analizando los coeficientes de agotamiento "b₀", del gasto de la retención, se ha podido determinar que al iniciar el periodo seco la contribución de la reserva, para el primer mes (mayo), es la más alta y luego para los siguientes meses, el aporte disminuye en casi el 50% del mes anterior hasta el último mes del periodo seco (septiembre). Este comportamiento del coeficiente de aporte tiene una función exponencial a diferencia de la función logarítmica que es el comportamiento típico de este coeficiente. (Ver figura 29)

Tabla 15.- Periodo del ciclo hidrológico en la microcuenca Chirimayo

Periodo						Meses	del Año)				
Hidrológico	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC
Avenidas	50.47	50.5	77.92	53.97						53.22	49.09	46.65
Estiaje					27.84	8.939	4.786	7.241	22.35			

Tabla 16.- Retención en la microcuenca Chirimayo

Coeficiente	Ca =	0.20	(%)
Área de la cuenca	AR =	72.98	(Km2)
Almacenamiento de acuíferos	LA =	259.60	(mm/año)
Pendiente del cauce principal	I =	0.07	m/m
Área de la lagunas	AL =	0.49	(Km2)
Almacenamiento de lagunas y pantanos	LL =	500.00	(mm/año)
Área de los nevados	AN =	0.00	(Km2)
Almacenamiento de nevados	LN =	0.00	(mm/año)
Retención de la cuenca	R =	55.25	(mm/año)

Tabla 17.- Coeficiente de agotamiento

$$(\alpha) = 0.02$$
 dias^-1

Tabla 18.- Valores de la relación de caudales de flujo base "b₀".

Mes	n° días	bo
Mayo	31	0.552
Junio	30	0.310
Julio	31	0.171
Agosto	31	0.094
Septiembre	30	0.053
suma	bm =	1.180

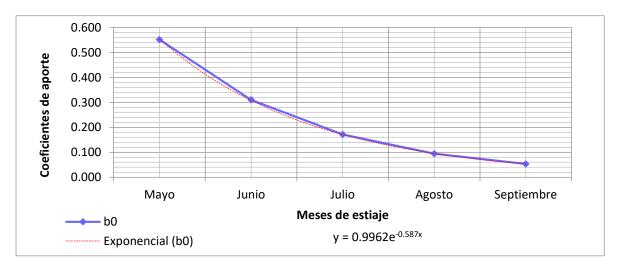


Figura 23.- Distribución de coeficientes de agotamiento en la microcuenca Chirimayo

Tabla 19.- Valores del gasto de retención (Gi) de la microcuenca Chirimayo

Mes	n° dias	bo	G i(mm/mes)
Mayo	31	0.552	25.82
Junio	30	0.310	14.52
Julio	31	0.171	8.01
Agosto	31	0.094	4.42
Septiembre	30	0.053	2.48

Tabla 20.- Coeficientes de abastecimiento para la región Cajamarca

Región		Meses del año (ai)%							
	Oct	Nov	Dic	Ene	Feb	Mar	Total		
Cajamarca	25	-5	0	20	25	35	100		

Fuente:(SCHOLZ, L. 1980)

Tabla 21.- Valores del abastecimiento de retención "Ai" de la microcuenca Chirimayo

Mes	Días (t)	ai	Ai (mm/mes)
Octubre	31	0.25	13.81
Noviembre	30	-0.05	-2.76
Diciembre	31	0	0.00
Enero	31	0.2	11.05
Febrero	28	0.25	13.81
Marzo	31	0.35	19.34
Abril	30	0	0.00

4.4 Generación de caudales

Caudales mensuales para el año promedio

En la tabla 23 se muestran los parámetros más importantes que han intervenido en el cálculo de caudales para el año promedio, asimismo, muestra la transformación de la precipitación media mensual en precipitación efectiva de escurrimiento, igualmente el gasto y el abastecimiento de la retención considerado para la microcuenca Chirimayo.

Tabla 22.- Caudales generados para el año promedio en la microcuenca Chirimayo

Mes	N° dias del mes	PP (mm)	PE (mm)	G (mm)	A (mm)	Qm (mm/mes)	Qm (m ³ /s)
Enero	31	104.47	50.47		11.05	39.42	1.07
Febrero	28	104.53	50.50		13.81	36.69	1.11
Marzo	31	161.27	77.92		19.34	58.58	1.60
Abril	30	111.70	53.97		0.00	53.97	1.52
Mayo	31	57.63	27.84	25.82		53.66	1.46
Junio	30	18.50	8.94	14.52		23.46	0.66
Julio	31	9.91	4.79	8.01		12.79	0.35
Agosto	31	14.99	7.24	4.42		11.66	0.32
Septiembre	30	46.26	22.35	2.48		24.84	0.70
Octubre	31	110.15	53.22		13.81	39.40	1.07
Noviembre	30	101.62	49.09		-2.76	51.86	1.46
Diciembre	31	96.56	46.65		0.00	46.65	1.27

Los caudales generados muestran una relación directa con la precipitación, siendo mayores en los meses lluviosos: marzo con 1.60 m³/s y abril con 1.52 m³/s, y menores en los meses de estiaje: julio con 0.35 m³/s y agosto con 0.32 m³/s. La distribución de dichos caudales se presenta a continuación, en la figura 24.

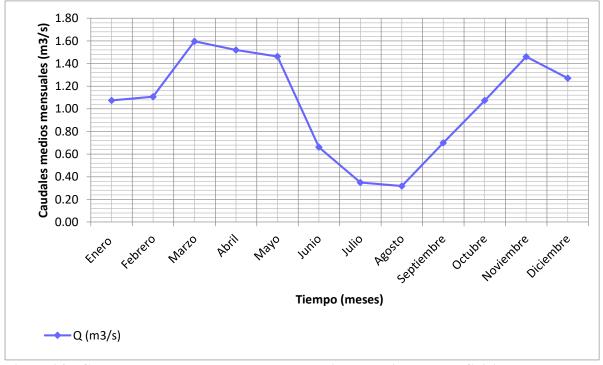


Figura 24.- Caudales generados para el año promedio en la microcuenca Chirimayo

Caudales mensuales para un período extendido

Los coeficientes estadísticos que se mencionan en la tabla 24, es el resultado de la regresión múltiple de los caudales promedios mensuales generados (Q y Q t-1) y la precipitación efectiva promedio mensual (PE) generadas en la aplicación del modelo.

Tabla 23.- Series y coeficientes estadísticos para regresión múltiple

Mes	Qt	Qt-1	P Et \hat{Q}	
Enero	39.42	46.65	50.47	47.57
Febrero	36.69	39.42	50.50	44.75
Marzo	58.58	36.69	77.92	57.31
Abril	53.97	58.58	53.97	53.98
Mayo	53.66	53.97	27.84	39.18
Junio	23.46	53.66	8.94	29.66
Julio	12.79	23.46	4.79	15.76
Agosto	11.66	12.79	7.24	12.80
Setiembre	24.84	11.66	22.35	19.86
Octubre	39.40	24.84	53.22	40.38
Noviembre	51.86	39.40	49.09	44.04
Diciembre	46.65	51.86	46.65	47.71

Coeficientes Es (Regresión m	
B1	4.18
B2	0.39
B3	0.50
S^2_{Qt}	264.50
S	7.29
r	0.89
$(S)^*\sqrt{1-r^2}$	3.27
n	12.00
p	3.00

De la tabla se deduce que las series entre los caudales del mes anterior, los caudales actuales y la precipitación efectiva actual utilizando la regresión múltiple, alcanzan una buena correlación (r = 0.89).

4.5 Ofertas hídricas en la microcuenca Chirimayo

Tabla 24.- Caudales medios mensuales mediante modelo Lutz Scholz

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
2017	1.93	1.65	2.65	2.15	1.59	1.07	0.5	0.46	0.59	1.07	1.03	1.43

Analizando las descargas medias mensuales generadas se ha determinado que la masa anual media en la microcuenca Chirimayo es de 16.10 m³/s, estando concentrado en la época de lluvias (octubre-abril) el 74 % de la misma y el 26 % restante, en la época de estiaje.

Transposición de caudales

Se realizó la transposición de caudales desde la cuenca Tres Ríos, que cuenta con un área de 41.47 Km², una altura media de 3479.72 msnm y precipitación media de 293.65 mm. Hacia la microcuenca Chirimayo, que tiene un área de 72.98 Km², una altura media de 3569.80 msnm y precipitación media de 937.59 mm.

Los resultados se muestran en la tabla 26.

Tabla 25.- Caudales medios mensuales para el año promedio de la microcuenca Chirimayo

AÑC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
201	3.63	3.85	3.94	2.00	1.84	2.29	1.37	1.99	2.93	4.23	3.46	4.28

Medición de caudales durante el año 2017 en la microcuenca Chirimayo

Tabla 26.- Resumen de Caudales medios mensuales de la microcuenca Chirimayo

AÑO	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	DIC
2017	1.66	2.59	2.13	1.46	1.01	0.5	0.43	0.49	1.56

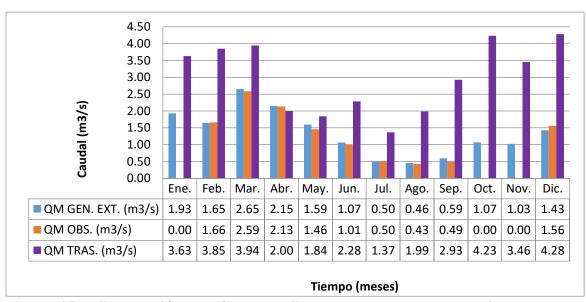


Figura 25.- Comparación de Caudales Generados, Transpuestos y Observados de la microcuenca Chirimayo

V. CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

- ✓ La microcuenca Chirimayo presenta los siguientes parámetros geomorfológicos; primero el área de la microcuenca es 72.98 Km², su altitud media es 3569.00 msnm, asimismo la pendiente media es 32.20 %, su coeficiente de Gravelius es 1.47 y su factor de forma es 0.217 clasificándolo a la microcuenca Chirimayo como accidentada, de forma ovalredonda a oval-oblonda; esto significa que hay menores riesgos frente a tormentas extremas.
- ✓ La precipitación media de la microcuenca Chirimayo calculado por el método de Isoyetas es 937.59 mm/año, la temperatura media anual es 8.85 °C, de manera semejante el déficit de escurrimiento es 484.61 mm/año, y la retención de la de la microcuenca Chirimayo es 55.25 mm/año.
- ✓ Los resultados de caudales medios mensuales del río Chirimayo utilizando el modelo determinístico estocástico Lutz Scholz, pensamos que constituyen un aporte significativo, puesto que muestra una relación directa con la precipitación siendo mayores en los meses lluviosos Marzo con 1.60 m³/s y Abril con 1.52 m³/s, y menores en los meses de estiaje Mayo, Junio, Julio, Agosto y Setiembre con 1.46 m³/s, 0.66 m³/s, 0.35 m³/s, 0.32 m³/s y 0.70 m³/s respectivamente.
- En los caudales medios mensuales del río Chirimayo utilizando el modelo determinístico de transposición de caudales, la corta información de datos históricos dificulta la interpretación de datos; los mayores caudales para los meses lluviosos es Febrero con 3.85 m³/s y Marzo con 3.94 m³/s. De la misma manera que los caudales en los meses de estiaje Mayo, Junio, Julio, Agosto y Setiembre son 1.84 m³/s, 2.29 m³/s, 1.37 m³/s, 1.99 m³/s y 2.93 m³/s respectivamente.

✓ El modelo determinístico estocástico Lutz Scholz tiene un grado de ajuste; mayor que, el modelo determinístico de transposición de caudales para la microcuenca Chirimayo, comparativamente con los caudales medidos durante el año 2017 en la sección del río Chirimayo a 100 m aguas arriba de punto emisor o de confluencias del río Chirimayo con el río Sendamal; puesto que los mayores caudales en los meses lluviosos es Marzo con 2.59 m³/s y Abril con 2.13 m³/s. Asimismo los caudales en los meses de estiaje Mayo, Junio, Julio, Agosto y Setiembre son 1.46 m³/s, 1.01 m³/s, 0.50 m³/s, 0.43 m³/s y 0.49 m³/s respectivamente.

5.2 Recomendaciones

- ✓ Se recomienda la instalación de una estación hidrométrica, realizando campañas de aforos trimestrales como mínimo para poder evaluar la variabilidad hídrica del río Chirimayo. De ser posible se podría instalar una regla limnimétrica en el lugar denominado puente Huanrucaga donde se realizarían observaciones diarias.
- ✓ Debido a que la red hidrológica y meteorológica en la microcuenca Chirimayo es básica, es necesario la instalación de pequeñas estaciones meteorológicas, en tal sentido se recomienda al municipio de Sorochuco, evalué la instalación de pluviómetros dentro la microcuenca, siempre y cuando se cuente con personal técnico y profesional.
- Este trabajo logró estimar la disponibilidad de agua en la microcuenca Chirimayo, sin embargo, a este nivel de estudio no se puede entrar en mayores detalles, por lo cual se recomienda que tomando como base la presente investigación, se elaboren estudios complementarios más detallados (validación y calibración del modelo, tipo de suelo, infiltración, evaporación, etc.), las cuales deben ser las más representativas de la zona de estudio para luego poder realizar una extrapolación de estos resultados a otras microcuencas con similares características.

VI. REFERENCIAS BIBLIOGRÁFICAS

BIBLIOGRAFÍA

Aparicio Mijares Francisco J., (1992). Fundamentos De Hidrología de Superficie, Editorial Limusa, México, D.F.

Campos A., D.F. (1998). Procesos del ciclo hidrológico. México: Universitaria Potosina.

Scholz Lutz, (1980). Generación de caudales mensuales en la sierra peruana, Meriss II, Perú.

Ven Te Chow, David R. Maidment, Larry W. Mays. Hidrología aplicada.

Villón Béjar Máximo, (2002). Hidrología Estadística, segunda edición, editorial Villón, Lima-Perú.

LINKOGRAFÍA

http://books.google.com.pe/books?id=tkUYqd0Aac8C &printsec

https://revistas.udistrital.edu.co/ojs/index.php/tekhne/article/view/10440

OTROS

Alaya Z. Segundo, (2014). Evaluación Geoestructural e Hidrogeológica del Centro Poblado La Chorrera- Sorochuco- Celendín- Cajamarca. Universidad Nacional de Cajamarca, Perú.

Huamán Vidaurre José F, (2013). Hidrología avanzada, Universidad Nacional de Cajamarca, Perú.

Terán Guevara Nixon, (2014). Volumen de Agua Aprovechable en la Microcuenca del Rio Tres Ríos, Usando el Modelo Determinístico Estocástico Lutz Scholz Validado para los años Hidrológicos 2008-2012. Universidad Nacional de Cajamarca, Perú.

Ortiz Vera Oswaldo, (2014). Similitud hidráulica de sistemas hidrológicos altoandinos y transferencia de información hidrometeorológica. Universidad Nacional Agraria la Molina, Perú.

ANEXOS

A.1 Periodo de registro de las estaciones pluviométricas

Tabla 27.- Precipitación mensual de la estación pluviométrica Augusto Weberbauer

ESTACION	:					A. WE	BERBA	AUER				
NORTE	:		920	5978.38	DEPAR	TAME	NTO		:	CAJAN	IARCA	
ESTE	:		770	5880.86	PROVI	NCIA			:	CAJAN	IARCA	
COTA	:	2536	m.s.n.m	-	DISTRI	ТО			:	CAJAN	IARCA	
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC
1968	58	81	67.7	26.6	14.9	1.6	1.6	16.2	50	66.4	54.6	70.8
1969	42	73.7	83.5	85.7	1.5	19.6	0.3	13.2	18.4	55.4	106.4	162
1970	71	41.8	79.9	54.5	33.8	19.9	3.2	2.5	18.2	103	51.4	54.1
1971	58.4	97.8	275.7	54.7	8	12.2	17.6	17.2	28.1	89.8	45.8	66.5
1972	55.5	67.6	113.8	76.2	18.1	4.4	3.4	20.6	29	31.4	66.5	50.2
1973	95.3	70.7	91.6	98.4	27.4	29.3	8.4	18.3	87.2	65.5	68.2	72.3
1974	64.1	128.2	95.2	58.5	4.6	17.3	6.5	23.6	38.7	70.5	53.9	76.4
1975	91.6	158.1	199.4	70.7	66.8	10	7.2	19.3	45.1	80.2	65.1	0.9
1976	130.4	62.9	81.3	55.2	43	23	0.1	4.4	12.3	32.2	71.6	44.4
1977	129.9	146.4	141.9	42.6	25.5	8	7.5	0.1	16.1	53.4	54.8	68.2
1978	12.7	34.4	48.5	37	65.6	3.9	4.4	3.8	23.8	24.4	54	44.8
1979	84.1	81.6	159.7	37.1	16.3	1.8	7.5	15.7	33.6	24.4	26.3	46.6
1980	34.9	42.4	65	29.3	6.9	15.1	3.2	5.6	2.3	130.4	111	106.7
1981	78.2	186.5	105.7	33.7	14.7	6.6	7.2	12.7	22	111.9	45.6	111.3
1982	71.7	102.9	75.7	88.7	38.2	7.8	2.1	6.6	43.9	124.8	67.3	87.4
1983	116.6	75.4	151.6	105.7	31.1	10.1	9.6	2.7	19.2	86.9	28.1	118.4
1984	24.7	233.6	123.8	80	69.5	25.1	23.4	18.7	36.7	68.6	97.6	104.1
1985	24.6	42.4	37.2	41.9	53	0.4	4.8	18.3	37.3	50	23.9	40.3
1986	84.4	47.7	96.8	120.2	16.2	0.6	1.2	14.6	1.2	43.6	66.2	51.8
1987	98.2	95.2	39.2	52.2	11.1	4	10.8	12.3	39.5	37.2	74.3	60.5
1988	109.7	105.5	44.8	95.6	10.6	5.4	0	32.9	69.4	65.2	63.4	73.6
1989	87	158.8	113.5	85.4	18.8	16.7	3.2	5.9	53.5	106.6	47.1	2.7
1990	101.8	68.5	58.3	27.4	39.5	24.6	0.8	7.1	20.1	87.6	99.1	72.3
1991	43.8	90	133.7	55.2	17.9	0.7	0.4	0.3	10.2	28.2	55.1	71.9
1992	52.6	31.8	66.6	46.5	18.9	21.2	4.6	10	40.8	64	32	34.1
1993	61	112.2	245	102.9	30.2	1.9	3.3	2.9	51.4	106.3	71.4	84.1
1994	116.9	103.1	170.2	144.9	35.3	3.3	0	0.2	11.9	27.2	89.8	122.6
1995	44.7	108.3	75.7	49.7	20.6	1.7	13.2	10.8	11.5	51.8	50.5	76.4
1996	65.2	124	120.1	50.4	13.7	0.8	0.5	15.8	13.9	76.2	68.8	34.1
1997	63.8	152.9	26.5	40.4	17	15.4	0.2	0	27.4	50.8	119.9	129.4

Continuación de tabla

1998	103	116.5	257	83.9	19.6	4.8	1.3	4.7	17.8	79.6	29.1	47.9
1999	94.8	242.7	69.5	65	53.7	22.8	22.1	1.2	81.4	21.7	77	68.8
2000	46	162.3	126.3	77.3	40.5	15.6	2.1	13.4	56.6	9.9	44.5	122.3
2001	191.2	100.8	230.2	57.2	48.1	2.3	13.9	0	34.4	46.2	93.4	90.9
2002	27	60	133.1	77.2	23	8.8	10.7	3.4	14.6	90.3	99.9	86.1
2003	51.1	61.4	103.6	42.1	30.7	22.3	1.8	10.6	14.8	46	63.8	80.7
2004	36.1	102	56.9	44.5	42.4	2.1	13.8	29.4	19	63.4	92.6	123.7
2005	84.9	53.7	136.6	54	7.2	4.5	0.6	3.5	31.2	92.3	30	87.8
2006	83.2	101.6	199.3	77.6	7.7	23.9	1.8	6.1	33.6	12.7	60.4	81.7
2007	95.4	17.5	182.4	111.5	29	1.4	10.7	6.4	11.6	117.2	97.6	68.8
2008	80.2	133.3	118.4	99.1	22.7	15.4	2.3	11.7	34.7	96.5	72.2	S/D
2009	180.7	74.6	110.5	78.8	42.2	17.9	12.3	3.9	11.8	78.5	109.4	74.2
2010	49.5	112.9	154	88.4	31.6	8.6	2.6	1.3	28.9	43.4	52.5	70.8
2011	76.6	73.3	125.2	102	16.7	0.4	8.3	0	47.1	31.5	24.4	109.7
2012	154.2	134.7	126.4	72.8	51.5	0.2	0	2.5	19.1	83.2	120.3	58.3
2013	61.5	98	213.3	73.8	85.6	7.5	5.7	21.5	3.7	S/D	S/D	S/D
2014	75.7	68	134.2	78.8	26.9	5	2	3.9	27.7	26.5	45.7	114.9
2015	184.7	55.4	202.2	63	75.8	3	4.4	0.1	27.8	16.8	99.6	39.5
2016	81	85.3	119	56.2	7	1.6	2.1	1.1	23.4	61.7	13.5	63.8
2017	79.4	71.9	139.1	78.8	47.2	12	2.3	20.9	21.2			

Tabla 28.- Precipitación mensual de la estación pluviométrica Hacienda Negritos

ESTACION	:				HA	ACIEN	DA NE	GRITO	S					
NORTE	:		92302	203.5		DEPA	RTAM	IENTO	:	CA	JAMAR	CA		
ESTE	:		77252	21.83		PR	OVINO	CIA	:	: CAJAMARCA				
COTA	:	3550	m.s.n.m				DIST	RITO	:	ENCAÑADA				
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC		
1968	90.7	80.1	142.6	90.8	77.3	13.6	3.2	52.4	51.6	97.3	126.3	175.8		
1969	67.8	105.5	158.6	111.6	63.1	30.2	1.6	39.9	36.2	92.9	135.3	232.7		
1970	117.1	83.8	148	134.7	78.3	16.5	3.3	9.8	51.7	168.5	128.4	99.7		
1971	104	137.4	292.9	107	59.9	16.5	35.6	32.1	58.2	121.6	106.8	118		
1972	98.7	108.9	151.7	119.3	59.2	12.5	7.8	46	92.8	111.8	118.5	78.4		
1973	155.7	97.2	178.8	133.5	67.1	13.9	18.6	40.2	99.6	99.3	117.3	149.3		
1974	100.7	167.3	143.6	112.5	55.5	13.5	23.5	50	34.1	122.3	62.6	105.8		
1975	106.4	163.6	181.5	128.8	89.5	18.2	21.4	36	24.4	105.5	121.2	26		
1976	190.3	99.2	136.5	81.1	90.6	20.5	2.8	8.5	26	97.9	74.2	91		
1977	224.3	187.3	186.2	70.7	107.6	31.8	31.2	23	40.9	82.8	84.4	99.4		
1978	37.1	61.5	77.6	64.4	96.5	27.2	27.8	27.1	49.6	50.2	83.5	73.2		
1979	91.6	43.1	148.4	90.7	77.9	4.4	24.3	95.5	148.3	38.1	46.7	45.6		
1980	108.2	76.5	125.6	111.7	56.1	15.8	0.8	16.9	54.7	189.7	150.9	76.2		

Continuación de tabla

1981	32.6	156.6	113	115.3	60.1	22.8	10	14.1	7.9	180.5	106.1	201.8
1982	68.4	109.4	105.3	117.5	95.4	5.8	6.7	0.1	64.1	127.7	127.6	165.2
1983	123.1	27.4	260.4	165.4	91.1	4.5	12.3	14.5	25.3	131.3	57.4	242.2
1984	132.6	306.7	171.8	162.1	84.2	25.6	53.7	69.8	25.9	170.1	60	175.5
1985	84.5	79.3	157.8	80	72.6	14.5	0	23.2	43.6	38.4	106.3	118.8
1986	37.9	45.1	82.6	175.6	43.8	25.6	2.3	62.8	9.8	149.7	141.4	141.1
1987	158.8	118.6	123.2	143.6	72.7	19.8	26.8	57.3	30.7	133.7	126.7	83.3
1988	118.5	110.4	112	154.4	69.9	12.7	2	17.6	27.6	110.9	96.4	115.9
1989	105.8	159.7	144.2	144.9	65.6	9.7	3	24.9	48.1	92.6	117.7	51.6
1990	114.2	82.4	126	78.7	69.5	13.2	1.5	16.5	98.7	158	113.6	121.6
1991	74.4	77.7	129	99.6	60.8	10.6	1.8	2.1	51.9	89.4	125.4	155
1992	73.9	40.5	136.4	74.6	64.3	22.4	10.2	25.7	93.7	126.1	87	69.1
1993	90.1	111	216.1	125.7	74.2	23.5	5.6	9	54.6	118.5	130.3	180.9
1994	166	117.9	162.7	177.8	76.6	14.6	2.5	16.4	64	59.4	120.7	227
1995	74.5	105.9	157.8	106.2	72	8.7	30.7	7.5	42.1	92	98.5	120
1996	112.3	107	162.2	122.9	67.3	26.3	2.1	38.7	39.2	117	119.2	64.4
1997	107.1	176.6	91.9	86.8	62.8	12.9	1	7.8	50	121.2	164.2	250.3
1998	148.7	135.3	226.2	136.2	57.2	16.5	1.8	10.8	47.9	145.4	115.4	114.7
1999	135.9	236.4	126.7	106.7	84.3	25.3	45	26.1	116.7	87.7	133.8	132.8
2000	89.7	165.7	133.6	115.9	80.9	24.5	2.5	75.9	73.2	71.3	91.6	235.7
2001	243	110.6	230	99.9	77.8	15.2	32.4	8	79.9	116.1	135.1	135.9
2002	46.8	68.9	146.5	121.7	63.7	14.5	23.7	2.8	41	103.6	137.9	119.9
2003	67.2	100.1	106.2	70.5	70.1	9.7	3.8	3.2	64.4	79.9	108.4	148.2
2004	93.8	104.4	128.4	92.6	74.8	9.7	19.1	18.2	52	117.6	92.5	121.3
2005	129.2	102.4	149.9	110.5	72.4	16.4	13.8	12.3	41.6	156.4	76.4	200.1
2006	102.8	91.4	155	120.8	64.4	13.5	5.4	3.7	82.6	112.2	121.3	109.1
2007	139.8	69	145.2	155.2	64.2	10.6	20.6	63.5	49.1	156.8	160.6	103.2
Fuente: SENA	MIII			<u></u>	·			· ·	· ·		<u></u>	

Tabla 29.- Precipitación mensual de la estación pluviométrica La Encañada

ESTACION	:					LA E	CNCAÑ	ADA				
NORTE	:	921228	1.83		DEPAR	ТАМЕ	NTO		:	CAJAN	//ARCA	
ESTE	:	795823	.80		PROVI	NCIA			:	CAJAN	//ARCA	
COTA	:	2862	862 m.s.n.m. DISTRITO						:	LA EN	CAÑAD	PΑ
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC
1996	8.1	15	17.8	10.1	20	21.8	18.7	7.2	0.6	0.1	0.8	3.6
1997	13.3	4	5.8	11.2	32.6	10.7	10.2	10.3	6.3	1.1	0.9	13.1
1998	102.1	196	223.3	181.7	71.5	6.2	0.5	8.4	36.3	132.7	40.4	86.6
1999	115.3	294.8	108.7	99.7	102.8	62.9	11	9.3	132.8	30.3	125.3	143.4
2000	46.9	155.9	184.7	106.7	89.7	18.2	0.9	20	88.1	4.7	50.4	117.4
2001	238	72.4	203.8	105.1	60.7	0.5	2.7	0.8	30.9	129.3	101.8	86.4

Continuación de tabla

2002	42.9	89.4	241.1	117. 7	12.6	14.1	4.4	1.1	28.8	159.2		
2003	33.1	80.6	145.5	93	37.8	38.3	0	9.9	41.9	93.8	124.4	85
2004	95.4	72.5	54.6	91.1	39.8	5.8	21.7	0.5	44.2	173.2	108.5	171.2
2005	119.6	107.1	260.8	51.2	42	12.4	1.2	7	13.4	205.5	38.2	145.4
2006	74.6	134.7	292.1	124.5	14.8	41.8	11.4	4.9	65.4	61.2	106.9	91.7
2007	93.1	44.8	259.4	140.5	70.9	0	9.4	5.3	26.4	133.1	127.5	92.9
2008	104.1	149	175.9	151.5	44	15.2	9.2	22.6	53.7	140.9	119.7	37.7
2009	222.7	70.9	215.2	122.8	75.2	9.3	12.5	10.5	6.8	90	115.3	66.6
2010	70	94.8	184.3	123	39.8	11.8	7.7	0	35.7	100	98.9	94
2011	66.4	96.8	153.6	139.6	32.9	0.4	13.1	0	51.2	52.1	93.8	149.5
2012	166.1	101.5	108	108.3	59.7	10.6	0	7.7	1.5	169.6	152.8	56
2013	72.7	96.9	181.5	39.4	115.4	11.2	3.6	19.1	0	157	39.5	106.9
2014	90.3	138.9	175.4	95.3	79.8	0	0.3	0.6	44.1	91.9	100.1	135.9
2015	188.3	71.4	260.7	70.4	104.1	3.3	5.3	0	3	27.8	170.5	23.2
2016	138.7	95.2	123.7	72.3	3.2	23.1	0.8	0.6	61.7	85.1	8.2	201.9
2017	109.1	109.9	275.8	116.1	69.6	18.4	3.2	27.7	13.8			·

Tabla 30.- Precipitación mensual de la estación pluviométrica Quebrada Shugar

ESTACION	:		QUEBRADA SHUGAR											
NORTE	:	9259270.89			DI	EPARTA	MENT	О	:	CA	JAMAR	CA		
ESTE	:	781090.64				PROVINCIA				HUALGAYOC				
COTA	:	3293	m.s.i	n.m.	DISTRITO				:	BAMBAMARCA				
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC		
1978	74.7	85.9	55.9	88.3	61.5	5.8	56.7	1.2	56.5	54.4	105.8	125.3		
1979	76.8	99.4	268.5	98.7	44.6	2.6	34.4	48.9	78.1	20.3	58.7	54.8		
1980	87.9	82.2	137.5	40	31.3	17.6	21	11.2	9.5	204.5	214.6	72.3		
1981	80.7	195	162.6	106.5	77.7	51.8	21.4	96.9	44.5	164.7	85.9	102		
1982	85.1	95.8	93.3	105.2	129	106.2	32.4	0	123.7	186.4	119.9	171.5		
1983	214.5	37.8	207	125.7	49.9	29.2	23.1	26.2	62.7	82.8	100.7	161.9		
1984	50.7	249.9	152.6	87	95.6	26.9	41.8	33.7	68.8	154.6	72.1	59.2		
1985	43.6	64.6	76.8	47	32.7	10.7	20.7	18.7	66.1	15.5	47.2	95.9		
1986	115	99.9	115.6	84.9	46.7	0	3.5	40.7	60.1	31.1	69.9	94.3		
1987	123.1	115.7	90	66.4	26.9	14.4	82.4	0.9	50.4	16.8	126.2			
1988	108.8	172.3	77.2	69.7	30	0	0	0	47.9	62.1	118.9	66.1		
1989	126.9	98.5	131.1	82.5	7.9	16	8.7	0	59.5	99.6	56.5	30.8		
1990	33.9	24	9.3	70.9	49.1	34.6	4.9	6.4	26.6	94.6	98.4	61.3		
1991	76.4	67.3	54.1	109.3	17.6	7.4	21.6	0	36.4	31.5	55	120.2		
1992	57	61.3	108.1	81.1	22.6	62.2	15.3	33.2	91.8	88.5	53.7	70.6		
1993	92.3	55.7	97.5	102	76.4	6.5	0	22.6	27.2	75.8	81.6	85.1		
1994	76.7	88.9	78.2	71.2	27.2	21.9	1.2	2.9	46.7	48.1	63.9	104.4		

Continuación de tabla

1995	60.5	43.2	77.6	25.8	61.7	28.1	26.7	0	22.8	93.1	88.3	150.9
1996	92.4	135.9	115.6	66.3	28.3	10.3	3	17.9	23.5	87.9	26.2	14.9
1997	59.5	44.8	67.7	134.9	24	24.6	0	14.9	35.2	48.5	96.8	114.5
1998	69	100.9	146	98.7	48.7	2.6	0	4.3	56.8	209.1	73.4	73.4
1999	136.7	284	60.5	40.2	82.6	104.5	8.2	5.5	90.9	27.9	145.7	124
2000	56.7	181.6	196.3	86.3	94.4	75.9	27.8	6.7	66.3	24.7	122.9	141.5
2001	196	65.3	260.5	43	52.9	4.5	4.6	0.3	51.2	100.1	150.8	126.7
2002	61.5	136.7	197.6	165	68.1	2.8	36.6	0.3	39.3	133.5	154.1	174.6
2003	136.8	152.7	107.7	125.1	49.4	41.6	1.3	41.3	79.1	94.3	115.9	106.8
2004	65.9	80.1	103.5	74.6	67.1	34.8	45.7	20.3	21.2	148.3	148.9	129
2005	63.5	144.9	174.5	141.2	11	2.9	6.1	3.5	37.1	161.6	56.8	138.9
2006	156	130.5	289.2	56.1	10.4	33.7	28.9	3.1	46.4	116.8	112.7	165.4
2007	189.1	55.1	187.8	149.3	29	2.3	23.1	38.2	37	121.4	151	71.9
2008	185.1	249.8	182.7	105.5	69.7	17	3.2	27	87.5	151.1	98.6	40.4
2009	290.6	141.7	144.1	131.7	91.1	35.1	18.7	6	52.2	134.4	156.2	152.6
2010	98.2	116.4	134.5	68.8	71.1	41	28.1	3.4	41.5	50	104.2	83.6
2011		63.2	225.2	137.9	51.9	17.9	19.7	8	80.1	70.2	91.7	187.5
2012	202.7	208.9	127.6	113	38.9	11.1	0.5	8.7	18.2	95.5	145.6	139.1
2013	133	108.4	303.5	109.7	102	6.8	17	67.3	7.6	135	20.3	168.6
2014	159.8	114.6	268.9	71.1	98.8	3.4	13.1	10.1	48.8	43.2	77.7	117.3
2015	163.8	95.9					10.6	29.4	8.9	49.8	88.4	135.9
2016	93.2		86.6	35.6	18.5	19.8	6.9					
2017	192.8	94.3	240.1	113.5	81.7	35.5	3.2	48.5	50.1	111.2		

Tabla 31.- Precipitación mensual de la estación pluviométrica Celendín

ESTACION	:		CELENDIN										
NORTE	:		9240	0309.12	DEPARTAMENTO				:	CAJAMARCA			
ESTE	:		818	3505.54	PROVI	NCIA			:	CELENDIN			
COTA	:	2470	m.s.n.m		DISTRI	ТО			:	CELENDIN			
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	ОСТ	NOV	DIC	
1968	98.3	144	135.4	38.5	17.6	6.5	4.2	3.3	158.6	76.4	78.4	84	
1969	15.3	126.3	134.9	185.3	4.7	85.8	1.6	7.5	56.6	213.3	308.6	197.9	
1970	147.6	51.1	113.6	96.7	42.4	20.4	11	2.8	18.3	93.1	99.3	126	
1971	125.1	120.2	144.1	116.6	44.3	16.4	5.1	18.8	17.9	131.3	17.1	131.5	
1972	41.8	63.7	196.3	184.1	58.4	0	0	21.4	66.2	31.8	181.4	89.3	
1973	75.5	49.1	104.7	163.1	28.5	8.7	29	64	47	45	73	93.7	
1974	37	210.2	185.1	61.3	0.2	42.8	0	42.2	28.5	162	109.1	77.3	
1975	56.4	209.8	176.2	131.6	104.3	25.6	42.9	48.7	11.7	110.8	52.1	33.8	
1976	111.8	87.2	212.7	82.4	46.8	21	0	19.2	13.9	55	43.6	52.1	
1977	144.1	123.5	161	78	8.2	0	1.7	0.8	44.6	111.1	136.3	56.7	

Continuación de tabla

ı	I	l I	i i	i i	acion de	1	1	1		1		l
1978	54	50.9	88.4	119.9	93.9	2.5	49.6	2.4	17.8	98.5	72.1	112.5
1979	53	98.2	266.1	197.8	2.8	0.5	8.1	37.6	107.3	18.6	27	37.2
1980	27.6	50.1	158.8	53.2	164	18.4	0	22.4	16.9	147	390.6	118.1
1981	61.5	154.5	107.1	59.4	59.2	22.6	0	13.6	10.1	99.5	140.2	198.7
1982	81.7	60	124.9	68.4	34.3	0	8.2	0	69.6	139.4	153.2	144.8
1983	124.3	74.6	157.5	148.3	39.4	17.4	6.2	8	28.5	73.4	32.1	69.6
1984	47.6	219.8	157.3	114.2	61.2	4.2	16.9	15.3	4.1	104.8	128.5	41.8
1985	37	36.6	109.6	100.2	32.6	10	19.2	16.4	11.6	39.9	34.2	95.8
1986	110.8	67.2	102.7	116.2	34.6	3.1	6.7	23.5	0	35.9	73	82.1
1987	124.4	72	147.8	108.2	9.9	0	24.5	6	52.8	69	163.6	99.3
1988	117.1	84.1	79.6	143.2	21.2	4.9	0.2	0	19.5	66.9	82.5	100.7
1989	74.5	86.6	111.7	137.7	15.7	14.1	8.7	3	39.8	105.3	24.6	15
1990	84.4	98.5	83	86.6	19.9	28.3	0	27	20.5	169	227.2	48
1991	42.6	88.3	336.3	109.1	14.4	9.2	0	11.8	17.5	71.1	81.2	85.9
1992	55	14.7	70.8	77.6	16.3	30.3	0.6	12.7	32.7	101.5	17.2	72.9
1993	98.4	102.7	211.5	120.6	17.3	11.6	4.1	6.4	30.3	114.7	92.7	144
1994	122	139.8	203.3	158.2	37.8	0	10.3	0.3	21	82.2	81.3	115.3
1995	13.5	100.7	124.8	105.8	65.5	3.4	12.8	0	11	57.4	17.2	132.6
1996	69.5	104.5	136.1	74.5	28	0	0.5	0	24.4	176.3	62.6	17.2
1997	51.9	109.2	74.2	168.1	15.9	11.2	0	0	33.5	89.2	119.4	154.1
1998	74.4	156.1	242.4	169.5	49.3	0	0.7	0	18.3	174.3	91.8	44.8
1999	177.5	319.1	100.4	13	54.1	49.2	5.8	6.6	107.8	53.6	130.2	241.9
2000	107.7	224	220.6	112.4	45	54.8	1.9	9.8	60.7	5.7	53.4	160.4
2001	249.5	134.9	445	50.6	39.6	1.3	5.4	0	32.2	104.3	162.2	97
2002	57.9	90.5	289.1	172.6	27.9	1.9	29.3	0	2	208.6	122	151.8
2003	48.7	71.1	158.6	92.7	27.3	21.2	1.7	0.9	39.5	80.9	95.8	116.4
2004	51.3	63.5	101.7	106.6	32.9	0	20.5	2.5	50.3	94.4	225.4	143.2
2005	79.3	103.4	236.5	69.3	16.5	0	0	0	39	250.3	26.6	166.7
2006	98.5	136.1	349.8	62.4	3.4	11.8	9.1	3.9	66.3	118.3	123.1	144.6
2007	91.6	17.6	275.8	122.2	27.6	3	6	9.9	20	215.3	152.9	123.2
2008	98.5	180.2	98.8	98.7	48.5	28	11	21	21	132	142.5	38.8
2009	212.1	75.9	223.5	150.9	71.4	5.8	6.1	0	38.2	98.7	139.5	116
2010	84.7	200.4	176.3	61.8	69.9	2.8	18.7	3.9	39	60.4	123	135.1
2011						1.3	17.7	4.8	40.5	95.3	113.5	173.6
2012	217.7	115.6	127.2	100	42.7	3.4		1.7	0.3	142	208.1	79.7
2013	76.6	58.9	167.1	66.7	63	21.1	16.5	33.2	4.7	162.9	24.3	129.4
2014	78.1	136.7	166.6	84	126.8	1.3	0.3	4.4	33.2	70	62.2	79.2
2015	179.2	25.2	235.6	114.8	77.3	5.5	3.1	0	0.6	35.7	96.9	44.3
2016	100.3	169.8	130.8	42.9	6.7	2.1	1.8	2	30.6	134	19.4	213.6
2017	241.5	92.9	300.2	170.7	81.1	16.1	1.2	16.9	20.7			
Fuente: SENA	MHI					-			-	-		

A.2 Consistencia de la información pluviométrica

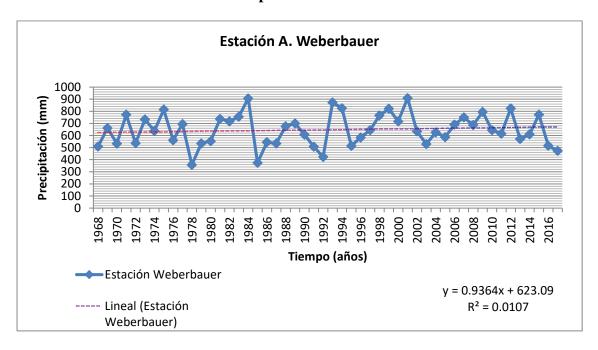


Figura 26.- Pluviogramas anuales de la estación A. Weberbauer

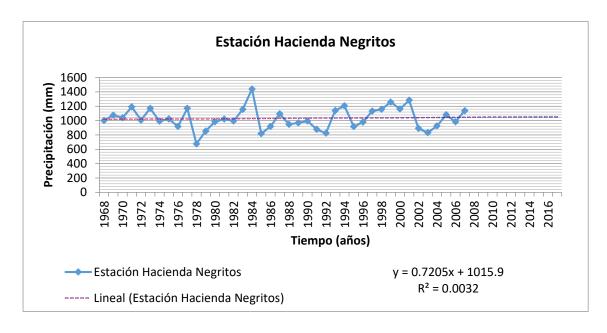


Figura 27.- Pluviogramas anuales de la estación Hacienda Negritos

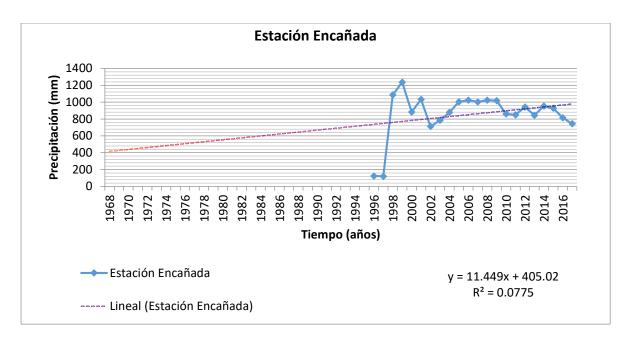


Figura 28.- Pluviogramas anuales de la estación La Encañada

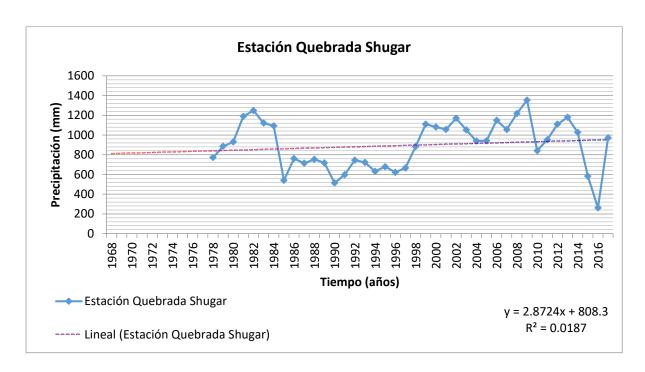


Figura 29.- Pluviogramas anuales de la estación Quebrada Shugar

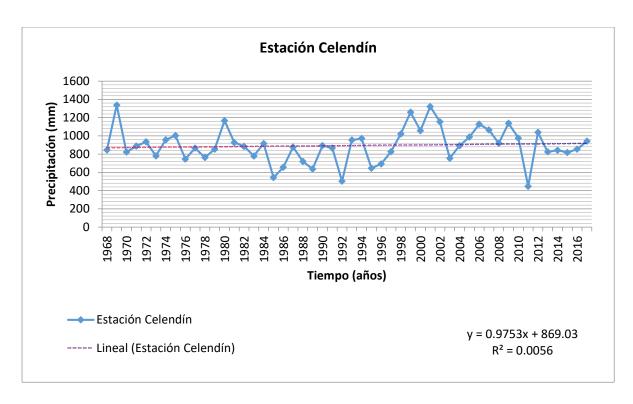


Figura 30.- Pluviogramas anuales de la estación Celendín

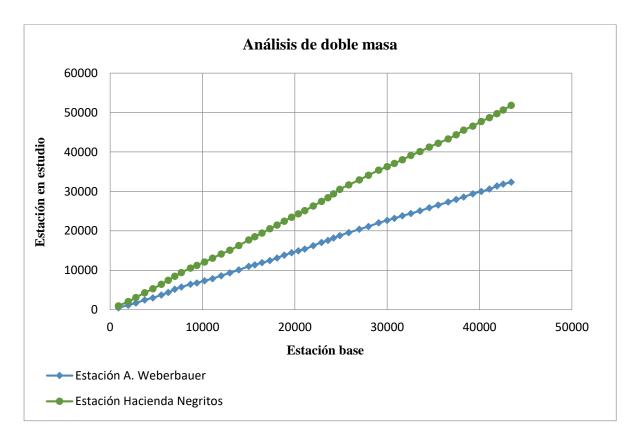


Figura 31.- Análisis de doble masa estación Hacienda Negritos

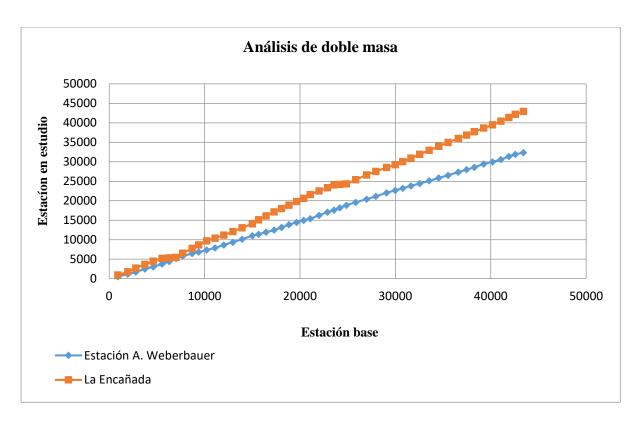


Figura 32.- Análisis de doble masa estación La Encañada

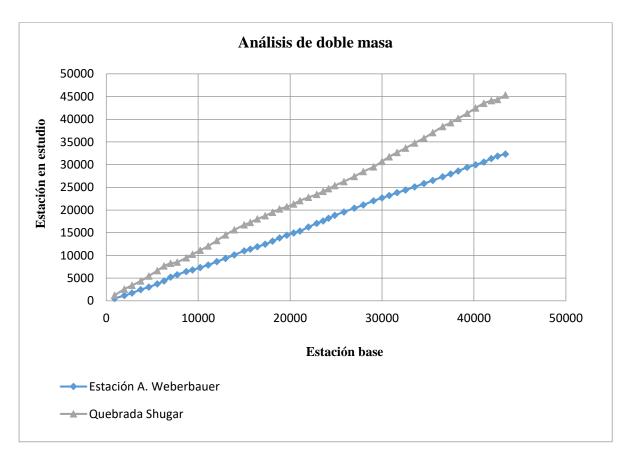


Figura 33.- Análisis de doble masa estación Quebrada Shugar

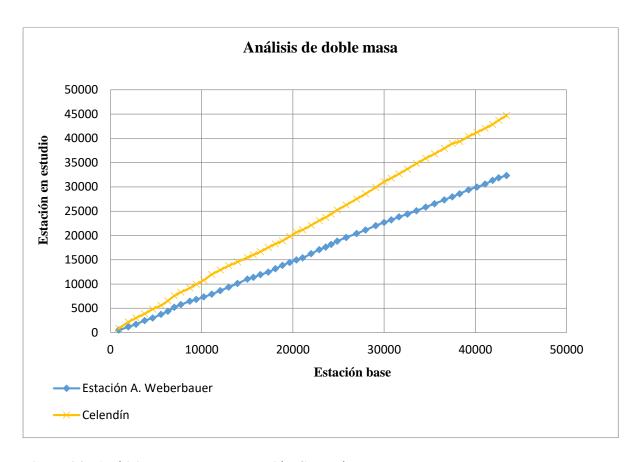


Figura 34.- Análisis de doble masa estación Celendín

A.3 Completación y extensión de la información

Tabla 32.- Precipitación total mensual mm – Hacienda Negritos

ESTACION	:					HACIE	NDA NE	GRITO	S			
NORTE	:		9230	203.5		DEPA	RTAMI	ENTO	:	CAJAN	IARCA	
ESTE	:		7725	21.83		PR	OVINC	IA	:	CAJAN	IARCA	
COTA	:	3550	m.s.n.n	1.		D	ISTRIT	O	:	ENCAÑ	ŇADA	
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC
1968	90.7	80.1	142.6	90.8	77.3	13.6	3.2	52.4	51.6	97.3	126.3	175.8
1969	67.8	105.5	158.6	111.6	63.1	30.2	1.6	39.9	36.2	92.9	135.3	232.7
1970	117.1	83.8	148	134.7	78.3	16.5	3.3	9.8	51.7	168.5	128.4	99.7
1971	104	137.4	292.9	107	59.9	16.5	35.6	32.1	58.2	121.6	106.8	118
1972	98.7	108.9	151.7	119.3	59.2	12.5	7.8	46	92.8	111.8	118.5	78.4
1973	155.7	97.2	178.8	133.5	67.1	13.9	18.6	40.2	99.6	99.3	117.3	149.3
1974	100.7	167.3	143.6	112.5	55.5	13.5	23.5	50	34.1	122.3	62.6	105.8
1975	106.4	163.6	181.5	128.8	89.5	18.2	21.4	36	24.4	105.5	121.2	26

1976	190.3	99.2	136.5	81.1	90.6	20.5	2.8	8.5	26	97.9	74.2	91
1977	224.3	187.3	186.2	70.7	107.6	31.8	31.2	23	40.9	82.8	84.4	99.4
1978	37.1	61.5	77.6	64.4	96.5	27.2	27.8	27.1	49.6	50.2	83.5	73.2
1979	91.6	43.1	148.4	90.7	77.9	4.4	24.3	95.5	148.3	38.1	46.7	45.6
1980	108.2	76.5	125.6	111.7	56.1	15.8	0.8	16.9	54.7	189.7	150.9	76.2
1981	32.6	156.6	113	115.3	60.1	22.8	10	14.1	7.9	180.5	106.1	201.8
1982	68.4	109.4	105.3	117.5	95.4	5.8	6.7	0.1	64.1	127.7	127.6	165.2
1983	123.1	27.4	260.4	165.4	91.1	4.5	12.3	14.5	25.3	131.3	57.4	242.2
1984	132.6	306.7	171.8	162.1	84.2	25.6	53.7	69.8	25.9	170.1	60	175.5
1985	84.5	79.3	157.8	80	72.6	14.5	0	23.2	43.6	38.4	106.3	118.8
1986	37.9	45.1	82.6	175.6	43.8	25.6	2.3	62.8	9.8	149.7	141.4	141.1
1987	158.8	118.6	123.2	143.6	72.7	19.8	26.8	57.3	30.7	133.7	126.7	83.3
1988	118.5	110.4	112	154.4	69.9	12.7	2	17.6	27.6	110.9	96.4	115.9
1989	105.8	159.7	144.2	144.9	65.6	9.7	3	24.9	48.1	92.6	117.7	51.6
1990	114.2	82.4	126	78.7	69.5	13.2	1.5	16.5	98.7	158	113.6	121.6
1991	74.4	77.7	129	99.6	60.8	10.6	1.8	2.1	51.9	89.4	125.4	155
1992	73.9	40.5	136.4	74.6	64.3	22.4	10.2	25.7	93.7	126.1	87	69.1
1993	90.1	111	216.1	125.7	74.2	23.5	5.6	9	54.6	118.5	130.3	180.9
1994	166	117.9	162.7	177.8	76.6	14.6	2.5	16.4	64	59.4	120.7	227
1995	74.5	105.9	157.8	106.2	72	8.7	30.7	7.5	42.1	92	98.5	120
1996	112.3	107	162.2	122.9	67.3	26.3	2.1	38.7	39.2	117	119.2	64.4
1997	107.1	176.6	91.9	86.8	62.8	12.9	1	7.8	50	121.2	164.2	250.3
1998	148.7	135.3	226.2	136.2	57.2	16.5	1.8	10.8	47.9	145.4	115.4	114.7
1999	135.9	236.4	126.7	106.7	84.3	25.3	45	26.1	116.7	87.7	133.8	132.8
2000	89.7	165.7	133.6	115.9	80.9	24.5	2.5	75.9	73.2	71.3	91.6	235.7
2001	243	110.6	230	99.9	77.8	15.2	32.4	8	79.9	116.1	135.1	135.9
2002	46.8	68.9	146.5	121.7	63.7	14.5	23.7	2.8	41	103.6	137.9	119.9
2003	67.2	100.1	106.2	70.5	70.1	9.7	3.8	3.2	64.4	79.9	108.4	148.2
2004	93.8	104.4	128.4	92.6	74.8	9.7	19.1	18.2	52	117.6	92.5	121.3
2005	129.2	102.4	149.9	110.5	72.4	16.4	13.8	12.3	41.6	156.4	76.4	200.1
2006	102.8	91.4	155	120.8	64.4	13.5	5.4	3.7	82.6	112.2	121.3	109.1
2007	139.8	69	145.2	155.2	64.2	10.6	20.6	63.5	49.1	156.8	160.6	103.2
2008	118	145.2	152.5	143.9	70.2	17.1	6.2	29.5	56.9	136.9	114.9	31.7
2009	227.3	91.1	148.3	126.5	79.2	17.3	26.8	19.8	45	123.6	138.1	130.9
2010	84.6	126.4	171.4	134.7	74.3	16.4	6.8	16.5	53.9	97.7	102.6	126.2
2011	114.1	89.9	156.1	146.4	67.4	15.6	18.5	14.9	63.4	88.9	85.1	179.8
2012	198.5	146.5	156.8	121.3	83.5	15.5	1.5	18	48.8	127.1	144.9	109
2013	97.6	112.6	202.8	122.2	99.3	16.3	13.2	41.8	40.8	147.4	80.4	98.8
2014	113.1	85	160.9	126.5	72.1	16	5.6	19.8	53.3	85.2	98.4	186.9
2015	231.6	73.4	196.9	112.9	94.7	15.8	10.5	15	53.3	78.1	132	83.1
2016	118.8	100.9	152.8	107.1	62.9	15.7	5.8	16.3	51.1	111.2	78.2	116.5

2017	117.1	88.6	163.5	126.5	81.5	16.7	6.2	41.1	49.9	113.9	109.3	42.4
Prom	115.7	111.7	154.7	117.7	73.5	16.5	12.9	26.8	54.2	113	110.2	127.6
D.Est	48.92	49.25	40.94	27.23	12.89	6.182	12.77	21.25	25.95	33.91	26.85	55.98
Mín	32.6	27.4	77.6	64.4	43.8	4.4	0	0.1	7.9	38.1	46.7	26
Máx	243	306.7	292.9	177.8	107.6	31.8	53.7	95.5	148.3	189.7	164.2	250.3

Tabla 33.- Precipitación total mensual mm- La Encañada

ESTACION	:					LA	ENCAÑA	DA				
NORTE	:	92	212281.8	33		DEPA	RTAMI	ENTO	:	CA	JAMAR	.CA
ESTE	:	,	795823.8	3		PR	OVINC	IA	:	CA	JAMAR	.CA
COTA	:	2862	m.s.n.n	1.		D	ISTRIT	O	:	LA	ENCAÑA	ADA
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC
1968	64.7	75.4	87.3	33.9	26.2	3.8	3.1	10.2	73.2	95.2	68.3	50.7
1969	29.6	70.3	102.4	128.7	10.1	28.8	2.6	8.8	24.8	81.5	122.9	94.1
1970	93.2	48	99	78.6	48.8	29.3	3.8	3.6	24.5	140.9	65	42.8
1971	65.6	87.2	287	79	17.9	18.5	9.7	10.7	39.7	124.4	59.1	48.7
1972	59.2	66.1	131.5	113.5	30	7.7	3.8	12.3	41	51.5	80.9	40.9
1973	146.5	68.2	110.2	149.1	41.2	42.3	5.9	11.2	130.1	94.1	82.7	51.4
1974	78.1	108.4	113.7	85.1	13.8	25.6	5.1	13.8	55.9	100.3	67.6	53.4
1975	138.4	129.3	213.7	104.6	88.4	15.5	5.4	11.7	65.7	112.5	79.4	17.5
1976	109.5	62.8	100.3	79.8	59.9	33.6	2.5	4.5	15.5	52.5	86.3	38.1
1977	109.2	121.1	158.5	59.5	38.9	12.7	5.5	2.4	21.3	79	68.6	49.5
1978	38.9	42.9	68.8	50.6	87	7	4.3	4.2	33.1	42.8	67.7	38.3
1979	81.7	75.8	175.6	50.7	27.8	4.1	5.5	10	48.1	42.8	38.5	39.2
1980	52.2	48.5	84.7	38.2	16.6	22.6	3.8	5.1	0.2	175.1	127.8	67.8
1981	78.2	149.1	123.8	45.3	25.9	10.8	5.4	8.5	30.3	152	58.9	69.9
1982	74.3	90.7	95	133.5	54.1	12.4	3.3	5.6	63.8	168.1	81.7	58.6
1983	101.2	71.5	167.8	160.8	45.6	15.6	6.4	3.7	26	120.8	40.4	73.3
1984	46.1	182	141.1	119.6	91.6	36.5	12	11.4	52.8	98	113.7	66.5
1985	46	48.5	58	58.4	71.8	2.1	4.4	11.2	53.7	74.8	36	36.2
1986	81.9	52.2	115.2	184.1	27.7	2.4	2.9	9.4	-1.5	66.8	80.6	41.7
1987	90.2	85.3	59.9	74.9	21.6	7.1	6.9	8.3	57.1	58.8	89.1	45.8
1988	97.1	92.5	65.3	144.6	21	9.1	2.4	18.3	102.9	93.7	77.6	52
1989	83.5	129.8	131.3	128.2	30.8	24.8	3.8	5.2	78.5	145.4	60.4	18.3
1990	92.3	66.7	78.2	35.2	55.7	35.8	2.8	5.8	27.4	121.7	115.3	51.4
1991	57.6	81.7	150.7	79.8	29.8	2.5	2.6	2.5	12.3	47.5	68.9	51.2
1992	62.8	41.1	86.2	65.8	31	31.1	4.3	7.2	59.1	92.2	44.5	33.2
1993	67.9	97.2	257.5	156.3	44.5	4.2	3.8	3.8	75.3	145	86.1	57
1994	101.4	90.9	185.7	223.7	50.6	6.2	2.4	2.5	14.9	46.3	105.4	75.3
1995	58.1	94.5	95	70.9	33	3.9	7.9	7.6	14.2	77	64	53.4
1996	8.1	15	17.8	10.1	20	21.8	18.7	7.2	0.6	0.1	0.8	3.6

1997	13.3	4	5.8	11.2	32.6	10.7	10.2	10.3	6.3	1.1	0.9	13.1
1998	102.1	196	223.3	181.7	71.5	6.2	0.5	8.4	36.3	132.7	40.4	86.6
1999	115.3	294.8	108.7	99.7	102.8	62.9	11	9.3	132.8	30.3	125.3	143.4
2000	46.9	155.9	184.7	106.7	89.7	18.2	0.9	20	88.1	4.7	50.4	117.4
2001	238	72.4	203.8	105.1	60.7	0.5	2.7	0.8	30.9	129.3	101.8	86.4
2002	42.9	89.4	241.1	117.7	12.6	14.1	4.4	1.1	28.8	159.2	116.1	57.97
2003	33.1	80.6	145.5	93	37.8	38.3	0	9.9	41.9	93.8	124.4	85
2004	95.4	72.5	54.6	91.1	39.8	5.8	21.7	0.5	44.2	173.2	108.5	171.2
2005	119.6	107.1	260.8	51.2	42	12.4	1.2	7	13.4	205.5	38.2	145.4
2006	74.6	134.7	292.1	124.5	14.8	41.8	11.4	4.9	65.4	61.2	106.9	91.7
2007	93.1	44.8	259.4	140.5	70.9	0	9.4	5.3	26.4	133.1	127.5	92.9
2008	104.1	149	175.9	151.5	44	15.2	9.2	22.6	53.7	140.9	119.7	37.7
2009	222.7	70.9	215.2	122.8	75.2	9.3	12.5	10.5	6.8	90	115.3	66.6
2010	70	94.8	184.3	123	39.8	11.8	7.7	0	35.7	100	98.9	94
2011	66.4	96.8	153.6	139.6	32.9	0.4	13.1	0	51.2	52.1	93.8	149.5
2012	166.1	101.5	108	108.3	59.7	10.6	0	7.7	1.5	169.6	152.8	56
2013	72.7	96.9	181.5	39.4	115.4	11.2	3.6	19.1	0	157	39.5	106.9
2014	90.3	138.9	175.4	95.3	79.8	0	0.3	0.6	44.1	91.9	100.1	135.9
2015	188.3	71.4	260.7	70.4	104.1	3.3	5.3	0	3	27.8	170.5	23.2
2016	138.7	95.2	123.7	72.3	3.2	23.1	0.8	0.6	61.7	85.1	8.2	201.9
2017	109.1	109.9	275.8	116.1	69.6	18.4	3.2	27.7	13.8	103.3	41.6	129
Prom	88.3	93.4	147.9	98.1	47.2	15.8	5.6	7.9	40.5	96.9	80.4	70.2
D.Est	46.34	48.14	71.83	46.01	27.51	13.65	4.547	6.037	31.37	48.98	37.28	42.38
Mín	8.1	4	5.8	10.1	3.2	0	0	0	-1.5	0.1	0.8	3.6
Máx	238	294.8	292.1	223.7	115.4	62.9	21.7	27.7	132.8	205.5	170.5	201.9

Tabla 34.- Precipitación total mensual mm- Quebrada Shugar

ESTACION	:					QUEBR	ADA SI	HUGAR				
NORTE	:	92	259270.8	39		DEPA	RTAMI	ENTO	:	CA	JAMAR	.CA
ESTE	:	7	81090.6	4		PR	ROVINC	IA	:	HU	ALGAY	OC
COTA	:	3293	m.s.n.m	1.		D	ISTRIT	0	:	BAN	IBAMA	RCA
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC
1968	82.6	97.8	105.7	74.1	37.9	11.8	12.9	25.5	63.9	94.6	86.6	91
1969	46.6	92	115.8	93.3	26.2	41.6	11.1	22.4	41.5	82	131.2	156.8
1970	111.9	66.8	113.5	83.2	54.4	42.1	15	11.5	41.4	136.6	83.9	78.9
1971	83.5	111	238.2	83.2	31.8	29.4	34	26.5	48.4	121.5	79.1	87.9
1972	77	87.2	135.1	90.2	40.7	16.5	15.2	30	49	54.4	96.9	76.1
1973	166.6	89.6	120.9	97.5	48.8	57.7	21.8	27.6	90.4	93.6	98.3	92.1
1974	96.4	135	123.2	84.5	28.9	37.8	19.3	33	55.9	99.3	86	95
1975	158.3	158.7	189.6	88.5	83.3	25.7	20.3	28.7	60.5	110.4	95.7	40.5
1976	128.6	83.4	114.4	83.4	62.5	47.3	10.9	13.5	37.2	55.3	101.3	71.9

1978	1 1055	1 400 0	ايميا	i		acion c		i	0.4				
1979	1977	128.3	149.4	153	79.3	47.2	22.4	20.7	9.1	39.9	79.7	86.8	89.1
1980													
1981 80.7 195 162.6 106.5 77.7 51.8 21.4 96.9 44.5 164.7 85.9 10. 1982 85.1 95.8 93.3 105.2 129 106.2 32.4 0 123.7 186.4 119.9 171.1 1983 214.5 37.8 207 125.7 49.9 29.2 23.1 26.2 62.7 82.8 100.7 161.9 1984 50.7 249.9 152.6 87 95.6 26.9 41.8 33.7 68.8 154.6 72.1 59.1 1985 43.6 64.6 76.8 47 32.7 10.7 20.7 18.7 66.1 15.5 47.2 95.1 1986 115 99.9 115.6 84.9 46.7 0 3.5 40.7 60.1 31.1 69.9 94.1 1987 123.1 115.7 90 66.4 26.9 14.4 82.4 0.9 50.4 16.8 126.2 83.5 1988 108.8 172.3 77.2 69.7 30 0 0 0 47.9 62.1 118.9 66. 1989 126.9 98.5 131.1 82.5 7.9 16 8.7 0 59.5 99.6 56.5 30.1 1990 33.9 24 9.3 70.9 49.1 34.6 4.9 64. 26.6 94.6 98.4 61.1 1991 76.4 67.3 54.1 109.3 17.6 7.4 21.6 0 36.4 31.5 55 120.1 1992 57 61.3 108.1 81.1 22.6 62.2 15.3 33.2 91.8 88.5 53.7 70.4 1993 92.3 55.7 97.5 102 76.4 6.5 0 22.6 27.2 75.8 81.6 85. 1994 76.7 88.9 78.2 71.2 27.2 21.9 1.2 2.9 46.7 48.1 63.9 104.4 1995 60.5 43.2 77.6 25.8 61.7 28.1 26.7 0 22.8 93.1 88.3 150.3 1996 92.4 135.9 115.6 66.3 28.3 10.3 3 17.9 23.5 87.9 26.2 14.4 1997 59.5 44.8 67.7 134.9 24 24.6 0 14.9 35.2 48.5 96.8 114.1 1998 69 100.9 146 98.7 48.7 2.6 0 4.3 56.8 20.1 73.4 73.4 1999 136.7 284 60.5 40.2 82.6 104.5 82.5 5.5 90.9 27.9 145.7 12. 2000 56.7 181.6 196.3 86.3 94.4 75.9 27.8 6.7 66.3 24.7 122.9 141.1 2001 196 65.3 260.5 43 52.9 4.5 4.6 0.3 51.2 100.1 150.8 126.1 2002 61.5 136.7 197.6 165 68.1 2.8 36.6 0.3 39.3 133.5 154.1 174.9 2004 65.9 80.1 103.5 74.6 67							2.6						54.8
1982 85.1 95.8 93.3 105.2 129 106.2 32.4 0 123.7 186.4 119.9 171.1	1980	87.9		137.5						9.5	204.5	214.6	72.3
1983	1981					77.7	51.8		96.9	44.5	164.7	85.9	102
1984 50.7 249.9 152.6 87 95.6 26.9 41.8 33.7 68.8 154.6 72.1 59.5 1985 43.6 64.6 76.8 47 32.7 10.7 20.7 18.7 66.1 15.5 47.2 95.5 1986 115 99.9 115.6 84.9 46.7 0 3.5 40.7 60.1 31.1 69.9 94.1 1987 123.1 115.7 90 66.4 26.9 14.4 82.4 0.9 50.4 16.8 126.2 83.5 1988 108.8 172.3 77.2 69.7 30 0 0 0 0 47.9 62.1 118.9 66.1 1989 126.9 98.5 131.1 82.5 7.9 16 8.7 0 59.5 99.6 56.5 30.1 1990 33.9 24 9.3 70.9 49.1 34.6 4.9 6.4 26.6 94.6 98.4 61.2 1991 76.4 67.3 54.1 109.3 17.6 7.4 21.6 0 36.4 31.5 55 120.2 1992 57 61.3 108.1 81.1 22.6 62.2 15.3 33.2 91.8 88.5 53.7 70.4 1993 92.3 55.7 97.5 102 76.4 6.5 0 22.6 27.2 75.8 81.6 85.1 1994 76.7 88.9 78.2 71.2 27.2 21.9 1.2 2.9 46.7 48.1 63.9 104.2 1995 60.5 43.2 77.6 25.8 61.7 28.1 26.7 0 22.8 93.1 88.3 150.3 1996 92.4 135.9 115.6 66.3 28.3 10.3 3 17.9 23.5 87.9 26.2 14.3 1997 59.5 44.8 67.7 134.9 24 24.6 0 14.9 35.2 48.5 96.8 114.3 1998 69 100.9 146 98.7 48.7 2.6 0 4.3 56.8 209.1 73.4 73.4 1999 136.7 284 60.5 40.2 82.6 104.5 8.2 5.5 90.9 27.9 145.7 12.2 2000 56.7 181.6 196.3 86.3 94.4 75.9 27.8 6.7 66.3 24.7 122.9 141.3 2001 196 65.3 260.5 43 52.9 4.5 4.6 0.3 39.3 133.5 154.1 174.2 2002 61.5 136.7 197.6 165 68.1 2.8 36.6 0.3 39.3 133.5 154.1 174.2 2003 136.8 152.7 107.7 125.1 49.4 41.6 1.3 41.3 79.1 94.3 115.9 106.3 2004 65.9 80.1 103.5 74.6 67.1 34.8 45.7 20.3 21.2 148.3 148.9 12.0 2005 63.5 144.9 174.5 141.2 11 2.9 6.1 3.5 37.1 161.6 56.8 138.3 2006 156 130.5 289.2	1982	85.1	95.8	93.3	105.2	129	106.2	32.4	0	123.7	186.4	119.9	171.5
1985	1983	214.5	37.8	207	125.7	49.9	29.2	23.1	26.2	62.7	82.8	100.7	161.9
1986 115 99.9 115.6 84.9 46.7 0 3.5 40.7 60.1 31.1 69.9 94.1 1987 123.1 115.7 90 66.4 26.9 14.4 82.4 0.9 50.4 16.8 126.2 83.5 1988 108.8 172.3 77.2 69.7 30 0 0 0 47.9 62.1 118.9 66. 1989 126.9 98.5 131.1 82.5 7.9 16 8.7 0 59.5 99.6 56.5 30.3 1990 33.9 24 9.3 70.9 49.1 34.6 4.9 6.4 26.6 94.6 98.4 61.5 1991 76.4 67.3 54.1 109.3 17.6 7.4 21.6 0 36.4 31.5 55 120. 1992 57 61.3 108.1 81.1 22.6 62.2 15.3 33.2 91.8 88	1984	50.7	249.9	152.6	87	95.6	26.9	41.8	33.7	68.8	154.6	72.1	59.2
1987 123.1 115.7 90 66.4 26.9 14.4 82.4 0.9 50.4 16.8 126.2 83.5 1988 108.8 172.3 77.2 69.7 30 0 0 0 47.9 62.1 118.9 66. 1989 126.9 98.5 131.1 82.5 7.9 16 8.7 0 59.5 99.6 56.5 30.3 1990 33.9 24 9.3 70.9 49.1 34.6 4.9 6.4 26.6 94.6 98.4 61.2 1991 76.4 67.3 54.1 109.3 17.6 7.4 21.6 0 36.4 31.5 55 120.2 1992 57 61.3 108.1 81.1 22.6 62.2 15.3 33.2 91.8 88.5 53.7 70.0 1993 92.3 55.7 97.5 102 76.4 6.5 0 22.6 27.2 75	1985	43.6	64.6	76.8	47	32.7	10.7	20.7	18.7	66.1	15.5	47.2	95.9
1988 108.8 172.3 77.2 69.7 30 0 0 0 47.9 62.1 118.9 66. 1989 126.9 98.5 131.1 82.5 7.9 16 8.7 0 59.5 99.6 56.5 30.3 1990 33.9 24 9.3 70.9 49.1 34.6 4.9 6.4 26.6 94.6 98.4 61.3 1991 76.4 67.3 54.1 109.3 17.6 7.4 21.6 0 36.4 31.5 55.7 102.1 1992 57 61.3 108.1 81.1 22.6 62.2 15.3 33.2 91.8 88.5 53.7 70.0 1993 92.3 55.7 97.5 102 76.4 6.5 0 22.6 27.2 75.8 81.6 85. 1994 76.7 88.9 78.2 71.2 27.2 21.9 1.2 2.9 46.7 48.	1986	115	99.9	115.6	84.9	46.7	0	3.5	40.7	60.1	31.1	69.9	94.3
1989 126.9 98.5 131.1 82.5 7.9 16 8.7 0 59.5 99.6 56.5 30.3 1990 33.9 24 9.3 70.9 49.1 34.6 4.9 6.4 26.6 94.6 98.4 61.3 1991 76.4 67.3 54.1 109.3 17.6 7.4 21.6 0 36.4 31.5 55 120.3 1992 57 61.3 108.1 81.1 22.6 62.2 15.3 33.2 91.8 88.5 53.7 70.0 1993 92.3 55.7 97.5 102 76.4 6.5 0 22.6 27.2 75.8 81.6 85. 1994 76.7 88.9 78.2 71.2 27.2 21.9 1.2 2.9 46.7 48.1 63.9 104.4 1995 60.5 43.2 77.6 25.8 61.7 28.1 26.7 0 22.8 <t< td=""><td>1987</td><td>123.1</td><td>115.7</td><td>90</td><td>66.4</td><td>26.9</td><td>14.4</td><td>82.4</td><td>0.9</td><td>50.4</td><td>16.8</td><td>126.2</td><td>83.53</td></t<>	1987	123.1	115.7	90	66.4	26.9	14.4	82.4	0.9	50.4	16.8	126.2	83.53
1990 33.9 24 9.3 70.9 49.1 34.6 4.9 6.4 26.6 94.6 98.4 61.2 1991 76.4 67.3 54.1 109.3 17.6 7.4 21.6 0 36.4 31.5 55 120.2 1992 57 61.3 108.1 81.1 22.6 62.2 15.3 33.2 91.8 88.5 53.7 70.0 1993 92.3 55.7 97.5 102 76.4 6.5 0 22.6 27.2 75.8 81.6 85. 1994 76.7 88.9 78.2 71.2 27.2 21.9 1.2 2.9 46.7 48.1 63.9 104.4 1995 60.5 43.2 77.6 25.8 61.7 28.1 26.7 0 22.8 93.1 88.3 150.5 1996 92.4 135.9 115.6 66.3 28.3 10.3 3 17.9 23.5	1988	108.8	172.3	77.2	69.7	30	0	0	0	47.9	62.1	118.9	66.1
1991 76.4 67.3 54.1 109.3 17.6 7.4 21.6 0 36.4 31.5 55 120.0 1992 57 61.3 108.1 81.1 22.6 62.2 15.3 33.2 91.8 88.5 53.7 70.0 1993 92.3 55.7 97.5 102 76.4 6.5 0 22.6 27.2 75.8 81.6 85. 1994 76.7 88.9 78.2 71.2 27.2 21.9 1.2 2.9 46.7 48.1 63.9 104.4 1995 60.5 43.2 77.6 25.8 61.7 28.1 26.7 0 22.8 93.1 88.3 150.9 1996 92.4 135.9 115.6 66.3 28.3 10.3 3 17.9 23.5 87.9 26.2 14.9 1997 59.5 44.8 67.7 134.9 24 24.6 0 14.9 35.2	1989	126.9	98.5	131.1	82.5	7.9	16	8.7	0	59.5	99.6	56.5	30.8
1992 57 61.3 108.1 81.1 22.6 62.2 15.3 33.2 91.8 88.5 53.7 70.0 1993 92.3 55.7 97.5 102 76.4 6.5 0 22.6 27.2 75.8 81.6 85. 1994 76.7 88.9 78.2 71.2 27.2 21.9 1.2 2.9 46.7 48.1 63.9 104.4 1995 60.5 43.2 77.6 25.8 61.7 28.1 26.7 0 22.8 93.1 88.3 150.9 1996 92.4 135.9 115.6 66.3 28.3 10.3 3 17.9 23.5 87.9 26.2 14.9 1997 59.5 44.8 67.7 134.9 24 24.6 0 14.9 35.2 48.5 96.8 114.3 1998 69 100.9 146 98.7 48.7 2.6 0 4.3 56.8	1990	33.9	24	9.3	70.9	49.1	34.6	4.9	6.4	26.6	94.6	98.4	61.3
1993 92.3 55.7 97.5 102 76.4 6.5 0 22.6 27.2 75.8 81.6 85. 1994 76.7 88.9 78.2 71.2 27.2 21.9 1.2 2.9 46.7 48.1 63.9 104.4 1995 60.5 43.2 77.6 25.8 61.7 28.1 26.7 0 22.8 93.1 88.3 150.9 1996 92.4 135.9 115.6 66.3 28.3 10.3 3 17.9 23.5 87.9 26.2 14.9 1997 59.5 44.8 67.7 134.9 24 24.6 0 14.9 35.2 48.5 96.8 114. 1998 69 100.9 146 98.7 48.7 2.6 0 4.3 56.8 209.1 73.4 73.8 1999 136.7 284 60.5 40.2 82.6 104.5 8.2 5.5 90.9	1991	76.4	67.3	54.1	109.3	17.6	7.4	21.6	0	36.4	31.5	55	120.2
1994 76.7 88.9 78.2 71.2 27.2 21.9 1.2 2.9 46.7 48.1 63.9 104.4 1995 60.5 43.2 77.6 25.8 61.7 28.1 26.7 0 22.8 93.1 88.3 150.9 1996 92.4 135.9 115.6 66.3 28.3 10.3 3 17.9 23.5 87.9 26.2 14.9 1997 59.5 44.8 67.7 134.9 24 24.6 0 14.9 35.2 48.5 96.8 114.3 1998 69 100.9 146 98.7 48.7 2.6 0 4.3 56.8 209.1 73.4 73.4 1999 136.7 284 60.5 40.2 82.6 104.5 8.2 5.5 90.9 27.9 145.7 12.2 2000 56.7 181.6 196.3 86.3 94.4 75.9 27.8 6.7 66.3 24.7 122.9 141.5 2001 196 65.3 260.5	1992	57	61.3	108.1	81.1	22.6	62.2	15.3	33.2	91.8	88.5	53.7	70.6
1995 60.5 43.2 77.6 25.8 61.7 28.1 26.7 0 22.8 93.1 88.3 150.9 1996 92.4 135.9 115.6 66.3 28.3 10.3 3 17.9 23.5 87.9 26.2 14.9 1997 59.5 44.8 67.7 134.9 24 24.6 0 14.9 35.2 48.5 96.8 114.1 1998 69 100.9 146 98.7 48.7 2.6 0 4.3 56.8 209.1 73.4 73.4 1999 136.7 284 60.5 40.2 82.6 104.5 8.2 5.5 90.9 27.9 145.7 12.9 2000 56.7 181.6 196.3 86.3 94.4 75.9 27.8 6.7 66.3 24.7 122.9 141.3 2001 196 65.3 260.5 43 52.9 4.5 4.6 0.3 51.2	1993	92.3	55.7	97.5	102	76.4	6.5	0	22.6	27.2	75.8	81.6	85.1
1996 92.4 135.9 115.6 66.3 28.3 10.3 3 17.9 23.5 87.9 26.2 14.9 1997 59.5 44.8 67.7 134.9 24 24.6 0 14.9 35.2 48.5 96.8 114.9 1998 69 100.9 146 98.7 48.7 2.6 0 4.3 56.8 209.1 73.4 73.4 1999 136.7 284 60.5 40.2 82.6 104.5 8.2 5.5 90.9 27.9 145.7 12.2 2000 56.7 181.6 196.3 86.3 94.4 75.9 27.8 6.7 66.3 24.7 122.9 141.5 2001 196 65.3 260.5 43 52.9 4.5 4.6 0.3 51.2 100.1 150.8 126.5 2002 61.5 136.7 197.6 165 68.1 2.8 36.6 0.3 39.3 133.5 154.1 174.9 2003 136.8 152.7 107.7 </td <td>1994</td> <td>76.7</td> <td>88.9</td> <td>78.2</td> <td>71.2</td> <td>27.2</td> <td>21.9</td> <td>1.2</td> <td>2.9</td> <td>46.7</td> <td>48.1</td> <td>63.9</td> <td>104.4</td>	1994	76.7	88.9	78.2	71.2	27.2	21.9	1.2	2.9	46.7	48.1	63.9	104.4
1997 59.5 44.8 67.7 134.9 24 24.6 0 14.9 35.2 48.5 96.8 114.3 1998 69 100.9 146 98.7 48.7 2.6 0 4.3 56.8 209.1 73.4 73.4 1999 136.7 284 60.5 40.2 82.6 104.5 8.2 5.5 90.9 27.9 145.7 12.4 2000 56.7 181.6 196.3 86.3 94.4 75.9 27.8 6.7 66.3 24.7 122.9 141.3 2001 196 65.3 260.5 43 52.9 4.5 4.6 0.3 51.2 100.1 150.8 126.7 2002 61.5 136.7 197.6 165 68.1 2.8 36.6 0.3 39.3 133.5 154.1 174.6 2003 136.8 152.7 107.7 125.1 49.4 41.6 1.3 41.3 79.1 94.3 115.9 106.3 2004 65.9 80.1 103	1995	60.5	43.2	77.6	25.8	61.7	28.1	26.7	0	22.8	93.1	88.3	150.9
1998 69 100.9 146 98.7 48.7 2.6 0 4.3 56.8 209.1 73.4 73.4 1999 136.7 284 60.5 40.2 82.6 104.5 8.2 5.5 90.9 27.9 145.7 12.4 2000 56.7 181.6 196.3 86.3 94.4 75.9 27.8 6.7 66.3 24.7 122.9 141.3 2001 196 65.3 260.5 43 52.9 4.5 4.6 0.3 51.2 100.1 150.8 126.7 2002 61.5 136.7 197.6 165 68.1 2.8 36.6 0.3 39.3 133.5 154.1 174.6 2003 136.8 152.7 107.7 125.1 49.4 41.6 1.3 41.3 79.1 94.3 115.9 106.3 2004 65.9 80.1 103.5 74.6 67.1 34.8 45.7 20.3 21.2 148.3 148.9 129 2005 63.5 144.9 174.5 141.2 11 2.9 6.1 3.5 37.1 161.6 56.8 138.9 2006 156 <t< td=""><td>1996</td><td>92.4</td><td>135.9</td><td>115.6</td><td>66.3</td><td>28.3</td><td>10.3</td><td>3</td><td>17.9</td><td>23.5</td><td>87.9</td><td>26.2</td><td>14.9</td></t<>	1996	92.4	135.9	115.6	66.3	28.3	10.3	3	17.9	23.5	87.9	26.2	14.9
1999 136.7 284 60.5 40.2 82.6 104.5 8.2 5.5 90.9 27.9 145.7 12.6 2000 56.7 181.6 196.3 86.3 94.4 75.9 27.8 6.7 66.3 24.7 122.9 141.3 2001 196 65.3 260.5 43 52.9 4.5 4.6 0.3 51.2 100.1 150.8 126.7 2002 61.5 136.7 197.6 165 68.1 2.8 36.6 0.3 39.3 133.5 154.1 174.6 2003 136.8 152.7 107.7 125.1 49.4 41.6 1.3 41.3 79.1 94.3 115.9 106.8 2004 65.9 80.1 103.5 74.6 67.1 34.8 45.7 20.3 21.2 148.3 148.9 129 2005 63.5 144.9 174.5 141.2 11 2.9 6.1 3.5 37.1 161.6 56.8 138.9 2006 156 130.5 289.2 56.1 10.4 33.7 28.9 3.1 46.4 116.8 112.7 165.4 2007 189.1<	1997	59.5	44.8	67.7	134.9	24	24.6	0	14.9	35.2	48.5	96.8	114.5
2000 56.7 181.6 196.3 86.3 94.4 75.9 27.8 6.7 66.3 24.7 122.9 141.5 2001 196 65.3 260.5 43 52.9 4.5 4.6 0.3 51.2 100.1 150.8 126.7 2002 61.5 136.7 197.6 165 68.1 2.8 36.6 0.3 39.3 133.5 154.1 174.6 2003 136.8 152.7 107.7 125.1 49.4 41.6 1.3 41.3 79.1 94.3 115.9 106.8 2004 65.9 80.1 103.5 74.6 67.1 34.8 45.7 20.3 21.2 148.3 148.9 129 2005 63.5 144.9 174.5 141.2 11 2.9 6.1 3.5 37.1 161.6 56.8 138.9 2006 156 130.5 289.2 56.1 10.4 33.7 28.9 3.1 46.4 116.8 112.7 165.4 2007 189.1 55.1 <td>1998</td> <td>69</td> <td>100.9</td> <td>146</td> <td>98.7</td> <td>48.7</td> <td>2.6</td> <td>0</td> <td>4.3</td> <td>56.8</td> <td>209.1</td> <td>73.4</td> <td>73.4</td>	1998	69	100.9	146	98.7	48.7	2.6	0	4.3	56.8	209.1	73.4	73.4
2001 196 65.3 260.5 43 52.9 4.5 4.6 0.3 51.2 100.1 150.8 126.7 2002 61.5 136.7 197.6 165 68.1 2.8 36.6 0.3 39.3 133.5 154.1 174.6 2003 136.8 152.7 107.7 125.1 49.4 41.6 1.3 41.3 79.1 94.3 115.9 106.3 2004 65.9 80.1 103.5 74.6 67.1 34.8 45.7 20.3 21.2 148.3 148.9 129 2005 63.5 144.9 174.5 141.2 11 2.9 6.1 3.5 37.1 161.6 56.8 138.9 2006 156 130.5 289.2 56.1 10.4 33.7 28.9 3.1 46.4 116.8 112.7 165.4 2007 189.1 55.1 187.8 149.3 29 2.3 23.1 38.2 37 121.4 151 71.9 2008 185.1 249.8 182.7 105.5 69.7 17 3.2 27 87.5 151.1 98.6 40.2	1999	136.7	284	60.5	40.2	82.6	104.5	8.2	5.5	90.9	27.9	145.7	124
2002 61.5 136.7 197.6 165 68.1 2.8 36.6 0.3 39.3 133.5 154.1 174.6 2003 136.8 152.7 107.7 125.1 49.4 41.6 1.3 41.3 79.1 94.3 115.9 106.8 2004 65.9 80.1 103.5 74.6 67.1 34.8 45.7 20.3 21.2 148.3 148.9 129 2005 63.5 144.9 174.5 141.2 11 2.9 6.1 3.5 37.1 161.6 56.8 138.9 2006 156 130.5 289.2 56.1 10.4 33.7 28.9 3.1 46.4 116.8 112.7 165.4 2007 189.1 55.1 187.8 149.3 29 2.3 23.1 38.2 37 121.4 151 71.9 2008 185.1 249.8 182.7 105.5 69.7 17 3.2 27 87.5 151.1 98.6 40.2	2000	56.7	181.6	196.3	86.3	94.4	75.9	27.8	6.7	66.3	24.7	122.9	141.5
2003 136.8 152.7 107.7 125.1 49.4 41.6 1.3 41.3 79.1 94.3 115.9 106.8 2004 65.9 80.1 103.5 74.6 67.1 34.8 45.7 20.3 21.2 148.3 148.9 129 2005 63.5 144.9 174.5 141.2 11 2.9 6.1 3.5 37.1 161.6 56.8 138.9 2006 156 130.5 289.2 56.1 10.4 33.7 28.9 3.1 46.4 116.8 112.7 165.4 2007 189.1 55.1 187.8 149.3 29 2.3 23.1 38.2 37 121.4 151 71.9 2008 185.1 249.8 182.7 105.5 69.7 17 3.2 27 87.5 151.1 98.6 40.4	2001	196	65.3	260.5	43	52.9	4.5	4.6	0.3	51.2	100.1	150.8	126.7
2004 65.9 80.1 103.5 74.6 67.1 34.8 45.7 20.3 21.2 148.3 148.9 129 2005 63.5 144.9 174.5 141.2 11 2.9 6.1 3.5 37.1 161.6 56.8 138.9 2006 156 130.5 289.2 56.1 10.4 33.7 28.9 3.1 46.4 116.8 112.7 165.4 2007 189.1 55.1 187.8 149.3 29 2.3 23.1 38.2 37 121.4 151 71.9 2008 185.1 249.8 182.7 105.5 69.7 17 3.2 27 87.5 151.1 98.6 40.4	2002	61.5	136.7	197.6	165	68.1	2.8	36.6	0.3	39.3	133.5	154.1	174.6
2005 63.5 144.9 174.5 141.2 11 2.9 6.1 3.5 37.1 161.6 56.8 138.9 2006 156 130.5 289.2 56.1 10.4 33.7 28.9 3.1 46.4 116.8 112.7 165.4 2007 189.1 55.1 187.8 149.3 29 2.3 23.1 38.2 37 121.4 151 71.9 2008 185.1 249.8 182.7 105.5 69.7 17 3.2 27 87.5 151.1 98.6 40.4	2003	136.8	152.7	107.7	125.1	49.4	41.6	1.3	41.3	79.1	94.3	115.9	106.8
2006 156 130.5 289.2 56.1 10.4 33.7 28.9 3.1 46.4 116.8 112.7 165.4 2007 189.1 55.1 187.8 149.3 29 2.3 23.1 38.2 37 121.4 151 71.9 2008 185.1 249.8 182.7 105.5 69.7 17 3.2 27 87.5 151.1 98.6 40.4	2004	65.9	80.1	103.5	74.6	67.1	34.8	45.7	20.3	21.2	148.3	148.9	129
2007 189.1 55.1 187.8 149.3 29 2.3 23.1 38.2 37 121.4 151 71.9 2008 185.1 249.8 182.7 105.5 69.7 17 3.2 27 87.5 151.1 98.6 40.4	2005	63.5	144.9	174.5	141.2	11	2.9	6.1	3.5	37.1	161.6	56.8	138.9
2008 185.1 249.8 182.7 105.5 69.7 17 3.2 27 87.5 151.1 98.6 40.4	2006	156	130.5	289.2	56.1	10.4	33.7	28.9	3.1	46.4	116.8	112.7	165.4
	2007	189.1	55.1	187.8	149.3	29	2.3	23.1	38.2	37	121.4	151	71.9
2009 290.6 141.7 144.1 131.7 91.1 35.1 18.7 6 52.2 134.4 156.2 152.6	2008	185.1	249.8	182.7	105.5	69.7	17	3.2	27	87.5	151.1	98.6	40.4
	2009	290.6	141.7	144.1	131.7	91.1	35.1	18.7	6	52.2	134.4	156.2	152.6
2010 98.2 116.4 134.5 68.8 71.1 41 28.1 3.4 41.5 50 104.2 83.0	2010	98.2	116.4	134.5	68.8	71.1	41	28.1	3.4	41.5	50	104.2	83.6
2011 105.4 63.2 225.2 137.9 51.9 17.9 19.7 8 80.1 70.2 91.7 187	2011	105.4	63.2	225.2	137.9	51.9	17.9	19.7	8	80.1	70.2	91.7	187.5
2012 202.7 208.9 127.6 113 38.9 11.1 0.5 8.7 18.2 95.5 145.6 139.	2012	202.7	208.9	127.6	113	38.9	11.1	0.5	8.7	18.2	95.5	145.6	139.1
	2013	133	108.4	303.5	109.7	102		17	67.3	7.6	135	20.3	168.6
													117.3
													135.9
									0				85.9
													89.8

Prom	111.4	110.4	140.6	87.8	52.6	26.3	18.1	18.7	50.6	93.1	96.7	103.4
D.Est	53.68	57.51	69.59	32.62	27.87	24.01	16.06	19.54	23.47	48.47	37.01	40.64
Mín	33.9	6.7	8.1	1.5	7.9	0	0	0	7.6	15.5	20.3	14.9
Máx	290.6	284	303.5	165	129	106.2	82.4	96.9	123.7	209.1	214.6	187.5

Tabla 35.- Precipitación total mensual mm -Celendín

ESTACION	:					CI	ELENDI	N				
NORTE	:	92	240309.1	2		DEPA	RTAMI	ENTO	:	CA	JAMAR	CA
ESTE	:	8	18505.5	4		PR	ROVINC	IA	:	C	ELENDI	N
COTA	:	2470	m.s.n.m	1.		D	ISTRIT	O	:	C	ELENDI	N
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC
1968	98.3	144	135.4	38.5	17.6	6.5	4.2	3.3	158.6	76.4	78.4	84
1969	15.3	126.3	134.9	185.3	4.7	85.8	1.6	7.5	56.6	213.3	308.6	197.9
1970	147.6	51.1	113.6	96.7	42.4	20.4	11	2.8	18.3	93.1	99.3	126
1971	125.1	120.2	144.1	116.6	44.3	16.4	5.1	18.8	17.9	131.3	17.1	131.5
1972	41.8	63.7	196.3	184.1	58.4	0	0	21.4	66.2	31.8	181.4	89.3
1973	75.5	49.1	104.7	163.1	28.5	8.7	29	64	47	45	73	93.7
1974	37	210.2	185.1	61.3	0.2	42.8	0	42.2	28.5	162	109.1	77.3
1975	56.4	209.8	176.2	131.6	104.3	25.6	42.9	48.7	11.7	110.8	52.1	33.8
1976	111.8	87.2	212.7	82.4	46.8	21	0	19.2	13.9	55	43.6	52.1
1977	144.1	123.5	161	78	8.22	0	1.7	0.8	44.6	111.1	136.3	56.7
1978	54	50.9	88.4	119.9	93.9	2.5	49.6	2.4	17.8	98.5	72.1	112.5
1979	53	98.2	266.1	197.8	2.8	0.5	8.1	37.6	107.3	18.6	27	37.2
1980	27.6	50.1	158.8	53.2	164	18.4	0	22.4	16.9	147	390.6	118.1
1981	61.5	154.5	107.1	59.4	59.2	22.6	0	13.6	10.1	99.5	140.2	198.7
1982	81.7	60	124.9	68.4	34.3	0	8.2	0	69.6	139.4	153.2	144.8
1983	124.3	74.6	157.5	148.3	39.4	17.4	6.2	8	28.5	73.4	32.1	69.6
1984	47.6	219.8	157.3	114.2	61.2	4.2	16.9	15.3	4.1	104.8	128.5	41.8
1985	37	36.6	109.6	100.2	32.6	10	19.2	16.4	11.6	39.9	34.2	95.8
1986	110.8	67.2	102.7	116.2	34.6	3.1	6.7	23.5	0	35.9	73	82.1
1987	124.4	72	147.8	108.2	9.9	0	24.5	6	52.8	69	163.6	99.3
1988	117.1	84.1	79.6	143.2	21.2	4.9	0.2	0	19.5	66.9	82.5	100.7
1989	74.5	86.6	111.7	137.7	15.7	14.1	8.7	3	39.8	105.3	24.6	15
1990	84.4	98.5	83	86.6	19.9	28.3	0	27	20.5	169	227.2	48
1991	42.6	88.3	336.3	109.1	14.4	9.2	0	11.8	17.5	71.1	81.2	85.9
1992	55	14.7	70.8	77.6	16.3	30.3	0.6	12.7	32.7	101.5	17.2	72.9
1993	98.4	102.7	211.5	120.6	17.3	11.6	4.1	6.4	30.3	114.7	92.7	144
1994	122	139.8	203.3	158.2	37.8	0	10.3	0.3	21	82.2	81.3	115.3
1995	13.5	100.7	124.8	105.8	65.5	3.4	12.8	0	11	57.4	17.2	132.6
1996	69.5	104.5	136.1	74.5	28	0	0.5	0	24.4	176.3	62.6	17.2
1997	51.9	109.2	74.2	168.1	15.9	11.2	0	0	33.5	89.2	119.4	154.1

1998	74.4	156.1	242.4	169.5	49.3	0	0.7	0	18.3	174.3	91.8	44.8
1999	177.5	319.1	100.4	13	54.1	49.2	5.8	6.6	107.8	53.6	130.2	241.9
2000	107.7	224	220.6	112.4	45	54.8	1.9	9.8	60.7	5.7	53.4	160.4
2001	249.5	134.9	445	50.6	39.6	1.3	5.4	0	32.2	104.3	162.2	97
2002	57.9	90.5	289.1	172.6	27.9	1.9	29.3	0	2	208.6	122	151.8
2003	48.7	71.1	158.6	92.7	27.3	21.2	1.7	0.9	39.5	80.9	95.8	116.4
2004	51.3	63.5	101.7	106.6	32.9	0	20.5	2.5	50.3	94.4	225.4	143.2
2005	79.3	103.4	236.5	69.3	16.5	0	0	0	39	250.3	26.6	166.7
2006	98.5	136.1	349.8	62.4	3.4	11.8	9.1	3.9	66.3	118.3	123.1	144.6
2007	91.6	17.6	275.8	122.2	27.6	3	6	9.9	20	215.3	152.9	123.2
2008	98.5	180.2	98.8	98.7	48.5	28	11	21	21	132	142.5	38.8
2009	212.1	75.9	223.5	150.9	71.4	5.8	6.1	0	38.2	98.7	139.5	116
2010	84.7	200.4	176.3	61.8	69.9	2.8	18.7	3.9	39	60.4	123	135.1
2011	90	85.5	182.1	135.1	32.7	1.3	17.7	4.8	40.5	95.3	113.5	173.6
2012	217.7	115.6	127.2	100	42.7	3.4	6.6	1.7	0.3	142	208.1	79.7
2013	76.6	58.9	167.1	66.7	63	21.1	16.5	33.2	4.7	162.9	24.3	129.4
2014	78.1	136.7	166.6	84	126.8	1.3	0.3	4.4	33.2	70	62.2	79.2
2015	179.2	25.2	235.6	114.8	77.3	5.5	3.1	0	0.6	35.7	96.9	44.3
2016	100.3	169.8	130.8	42.9	6.7	2.1	1.8	2	30.6	134	19.4	213.6
2017	241.5	92.9	300.2	170.7	81.1	16.1	1.2	16.9	20.7	100	75.2	172
Prom.	94.4	109.1	172.9	108	41.7	13	8.7	11.1	33.9	104.5	106.1	108
D.Est.	54.95	60.48	78.74	43.25	32.52	16.81	11.04	14.14	29.81	53.74	74.66	52.38
Mín.	13.5	14.7	70.8	13	0.2	0	0	0	0	5.7	17.1	15
Máx.	249.5	319.1	445	197.8	164	85.8	49.6	64	158.6	250.3	390.6	241.9

A.4 Precipitación media mensual en la microcuenca Chirimayo

Tabla 36.- Precipitación media mensual de la microcuenca Chirimayo en mm

AÑO	ENE.	FEB.	MAR.	ABR	MAY	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.	TOTAL
1968	85.5	97.2	123.4	57.6	42.2	8.6	4.8	20.5	95.5	97.3	92.9	3.8	729.3
1969	3.8	97.7	131.7	146.0	3.8	48.9	3.6	17.8	40.2	128.1	183.5	153.0	957.9
1970	120.0	62.6	123.3	105.8	59.6	26.6	7.1	6.2	33.9	133.9	97.9	83.8	860.7
1971	97.0	110.5	245.6	103.7	41.1	20.5	16.8	19.0	42.5	130.0	66.3	91.7	984.7
1972	69.3	79.3	159.9	141.3	51.1	8.7	5.4	24.4	66.7	68.2	124.9	66.9	866.1
1973	135.8	73.0	133.7	154.4	49.0	21.1	17.5	35.2	104.0	88.2	95.2	90.6	997.5
1974	77.4	152.0	147.9	92.3	25.8	30.2	10.5	34.0	46.1	131.1	82.7	73.7	903.7
1975	112.3	158.3	194.8	125.7	97.2	21.6	21.6	29.1	43.0	114.6	88.9	32.3	1039.5
1976	138.4	82.7	148.2	86.6	68.9	31.6	3.4	10.8	21.3	70.8	75.9	59.4	798.0
1977	156.9	137.5	170.2	74.2	53.9	16.8	12.3	9.1	37.3	95.4	97.5	65.6	926.6
1978	47.7	57.3	80.6	81.6	93.6	12.2	29.7	9.9	38.5	66.7	81.0	77.6	676.3
1979	78.4	73.7	207.6	112.2	39.6	3.4	14.3	45.2	99.4	36.4	42.8	40.4	793.5
1980	66.7	62.1	127.9	60.5	73.3	20.7	4.0	14.0	20.8	185.5	222.1	77.1	934.5
1981	62.8	148.1	124.5	78.9	52.9	23.8	6.4	20.5	22.0	156.2	101.0	127.5	924.7
1982	78.2	85.0	111.0	117.8	72.7	18.9	9.1	1.7	77.1	161.1	123.7	118.9	975.0
1983	120.0	79.2	187.1	156.8	56.0	66.1	7.2	9.2	40.6	110.0	73.5	102.4	1008.0

1984	72.8	223.3	159.6	136.5	86.6	24.8	25.8	29.5	36.9	134.0	101.5	80.6	1111.8
1985	55.6	57.3	107.5	78.0	61.1	9.4	9.0	15.2	44.3	54.0	59.7	81.7	632.8
1986	83.3	61.1	107.2	166.3	39.2	9.5	4.2	30.8	10.2	83.0	97.9	84.9	777.4
1987	125.8	92.3	111.1	108.7	35.9	10.2	25.1	19.8	51.6	83.3	128.2	72.7	864.6
1988	112.5	101.6	88.9	147.7	38.2	8.5	1.8	7.4	60.1	94.5	92.2	81.6	834.8
1989	94.5	115.9	132.9	140.8	37.1	18.5	5.7	9.7	63.2	123.5	69.2	31.8	842.7
1990	92.7	75.0	90.5	67.9	52.5	29.8	2.4	14.6	47.2	152.1	148.2	66.5	839.3
1991	61.7	78.8	189.8	103.6	36.1	7.7	4.3	5.2	28.3	69.1	90.0	93.2	767.8
1992	64.8	38.3	103.1	77.8	38.2	34.3	6.1	16.2	69.6	110.9	52.7	58.7	670.8
1993	85.5	94.2	217.4	143.5	52.1	12.1	4.2	8.1	57.0	130.2	102.9	112.6	1019.9
1994	126.0	108.7	175.5	193.7	55.3	9.4	5.1	6.4	34.8	64.9	101.7	121.5	1003.0
1995	51.9	90.4	122.4	93.5	59.4	8.4	16.5	3.9	22.8	83.5	66.7	100.5	719.8
1996	51.2	64.1	78.6	56.8	38.4	20.2	11.4	13.3	16.4	74.7	38.8	19.2	483.1
1997	44.4	51.8	51.3	84.1	38.9	11.8	5.9	9.7	24.7	53.2	63.0	104.0	542.8
1998	103.8	176.3	212.5	178.7	68.3	7.2	0.5	7.2	41.2	169.7	81.7	90.4	1137.4
1999	146.4	296.1	114.0	78.8	93.1	62.5	16.3	14.8	129.7	54.1	142.4	183.6	1331.6
2000	77.5	179.5	195.4	114.2	86.8	37.5	4.2	33.1	81.8	24.9	72.4	74.4	981.7
2001	247.9	93.2	279.1	91.7	61.4	4.8	9.8	2.8	46.8	133.9	135.2	106.9	1213.4
2002	183.0	85.9	227.8	142.3	61.1	2.9	18.1	0.5	30.4	154.2	123.7	124.2	1153.9
2003	54.5	96.3	143.6	102.9	47.2	29.2	1.5	8.9	51.0	96.3	124.1	115.1	870.5
2004	92.0	72.6	93.4	105.4	50.2	9.4	25.3	2.3	49.2	158.6	145.4	155.1	958.7
2005	112.0	121.9	242.0	82.5	48.1	10.9	5.1	6.7	27.3	226.6	49.7	179.4	1112.1
2006	97.2	130.3	291.2	109.2	27.0	28.7	13.4	3.7	74.4	109.7	126.2	122.8	1133.7
2007	116.3	51.6	242.0	147.7	61.9	3.6	12.8	26.6	35.7	165.4	152.7	105.9	1122.1
2008	121.4	171.7	161.7	140.9	60.6	19.5	9.9	26.7	53.6	147.1	132.5	44.0	1089.6
2009	239.2	84.9	215.5	142.6	84.8	11.5	15.4	11.1	30.5	109.7	134.8	106.8	1186.6
2010	86.0	131.7	179.7	111.4	63.7	14.7	14.0	5.8	44.3	94.5	115.2	115.5	976.3
2011	89.1	93.3	177.3	147.3	48.6	7.0	17.8	6.3	55.6	81.4	110.0	178.7	1012.4
2012	196.8	122.7	125.1	118.4	61.4	12.3	2.3	10.4	11.8	162.3	173.1	86.3	1082.8
2013	90.6	91.6	189.7	70.4	101.0	16.0	11.1	34.4	12.0	164.2	49.6	131.6	962.2
2014	104.5	136.6	189.4	101.6	105.6	4.1	2.8	7.2	46.8	92.7	99.0	137.2	1027.6
2015	196.6	65.5	220.7	88.6	97.5	8.8	7.1	7.5	10.9	49.1	146.6	55.2	954.0
2016	130.8	110.0	131.7	73.8	21.9	19.8	2.9	5.4	55.7	114.4	34.8	200.1	901.1
2017	165.2	106.3	278.7	142.9	82.2	20.8	3.7	32.0	28.9	114.8	69.5	140.5	1185.5
MEDIA	104.5	104.5	161.3	111.7	57.6	18.5	9.9	15.0	46.3	110.1	101.6	96.6	937.6
DESV. EST.	48.7	47.2	56.9	33.5	22.3	13.7	7.2	10.9	25.3	42.4	39.1	42.3	175.2
MIN	3.8	38.3	51.3	56.8	3.8	2.9	0.5	0.5	10.2	24.9	34.8	3.8	483.1
MAX	247.9	296.1	291.2	193.7	105.6	66.1	29.7	45.2	129.7	226.6	222.1	200.1	1331.6

Tabla 37.- Precipitación efectiva generadas para la microcuenca Chirimayo (mm/mes)

AÑO	ENE.	FEB.	MAR.	ABR	MAY	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.
1968	41.32	46.96	59.64	27.84	20.37	4.16	2.33	9.88	46.14	47.01	44.87	1.83
1969	1.81	47.19	63.63	70.53	1.83	23.62	1.75	8.58	19.40	61.88	88.64	73.91
1970	57.99	30.26	59.57	51.12	28.77	12.87	3.43	3.01	16.39	64.67	47.28	40.49
1971	46.87	53.41	118.65	50.08	19.85	9.88	8.10	9.20	20.55	62.81	32.02	44.30
1972	33.46	38.33	77.24	68.28	24.67	4.22	2.62	11.77	32.22	32.93	60.35	32.34
1973	65.62	35.24	64.60	74.59	23.66	10.18	8.46	17.00	50.22	42.59	45.97	43.77
1974	37.41	73.44	71.47	44.58	12.47	14.58	5.07	16.44	22.26	63.31	39.96	35.61
1975	54.27	76.47	94.13	60.75	46.94	10.43	10.45	14.05	20.76	55.39	42.96	15.61
1976	66.84	39.94	71.59	41.84	33.30	15.29	1.64	5.20	10.29	34.22	36.67	28.71

1977	75.80	66.42	82.21	35.85	26.06	8.12	5.93	4.39	18.00	46.11	47.10	31.70
1978	23.05	27.68	38.95	39.41	45.21	5.88	14.36	4.77	18.58	32.21	39.11	37.51
1979	37.88	35.60	100.31	54.19	19.15	1.66	6.93	21.84	48.03	17.60	20.65	19.54
1980	32.21	30.00	61.78	29.25	35.42	9.98	1.91	6.74	10.06	89.60	107.29	37.27
1981	30.36	71.56	60.17	38.10	25.57	11.47	3.07	9.91	10.63	75.48	48.82	61.61
1982	37.76	41.07	53.65	56.89	35.10	9.11	4.42	0.80	37.24	77.84	59.77	57.43
1983	57.95	38.28	90.37	75.74	27.06	31.93	3.49	4.44	19.63	53.13	35.51	49.45
1984	35.17	107.89	77.09	65.94	41.83	11.96	12.46	14.27	17.83	64.72	49.03	38.93
1985	26.85	27.69	51.95	37.67	29.52	4.52	4.36	7.35	21.39	26.07	28.85	39.47
1986	40.25	29.53	51.77	80.34	18.92	4.58	2.05	14.86	4.90	40.08	47.29	40.99
1987	60.75	44.57	53.69	52.51	17.34	4.94	12.13	9.58	24.91	40.24	61.94	35.12
1988	54.33	49.08	42.93	71.33	18.46	4.11	0.86	3.58	29.03	45.67	44.54	39.40
1989	45.66	56.00	64.21	68.01	17.93	8.91	2.76	4.71	30.54	59.65	33.41	15.37
1990	44.79	36.22	43.72	32.79	25.38	14.40	1.14	7.03	22.82	73.49	71.59	32.12
1991	29.83	38.07	91.72	50.06	17.45	3.72	2.07	2.49	13.65	33.38	43.48	45.02
1992	31.31	18.49	49.83	37.58	18.47	16.58	2.95	7.83	33.63	53.59	25.46	28.35
1993	41.32	45.52	105.05	69.34	25.15	5.84	2.04	3.92	27.56	62.88	49.70	54.41
1994	60.86	52.53	84.81	93.57	26.70	4.53	2.44	3.10	16.83	31.34	49.14	58.71
1995	25.07	43.66	59.15	45.18	28.68	4.04	7.97	1.86	11.03	40.35	32.22	48.53
1996	24.74	30.95	37.97	27.46	18.55	9.75	5.53	6.41	7.92	36.08	18.76	9.29
1997	21.46	25.02	24.76	40.62	18.78	5.68	2.87	4.71	11.95	25.71	30.43	50.26
1998	50.15	85.16	102.64	86.32	32.99	3.50	0.24	3.45	19.90	81.97	39.48	43.68
1999	70.72	143.06	55.09	38.08	44.96	30.18	7.86	7.15	62.64	26.12	68.78	88.71
2000	37.42	86.71	94.40	55.16	41.94	18.11	2.05	16.00	39.51	12.05	34.98	35.96
2001	119.77	45.02	134.82	44.31	29.67	2.33	4.71	1.33	22.60	64.67	65.34	51.63
2002	88.40	41.48	110.03	68.75	29.52	1.42	8.73	0.24	14.70	74.47	59.74	60.01
2003	26.32	46.52	69.38	49.69	22.82	14.11	0.71	4.29	24.63	46.52	59.97	55.62
2004	44.46	35.08	45.12	50.90	24.23	4.55	12.22	1.09	23.76	76.60	70.23	74.94
2005	54.10	58.87	116.94	39.88	23.22	5.26	2.46	3.23	13.18	109.47	24.01	86.66
2006	46.94	62.93	140.70	52.75	13.05	13.88	6.45	1.79	35.92	53.00	60.98	59.35
2007	56.20	24.92	116.92	71.35	29.88	1.74	6.20	12.84	17.23	79.90	73.77	51.18
2008	58.65	82.93	78.14	68.07	29.30	9.43	4.78	12.90	25.88	71.08	64.01	21.25
2009	115.55	41.04	104.11	68.87	40.95	5.55	7.45	5.36	14.72	52.98	65.14	51.58
2010	41.54	63.63	86.82	53.81	30.76	7.08	6.75	2.82	21.40	45.66	55.63	55.78
2011	43.07	45.05	85.64	71.18	23.46	3.37	8.60	3.05	26.87	39.34	53.14	86.33
2012	95.06	59.26	60.43	57.21	29.64	5.96	1.13	5.01	5.72	78.41	83.61	41.71
2013	43.77	44.25	91.67	34.03	48.81	7.71	5.38	16.61	5.81	79.32	23.95	63.57
2014	50.49	66.00	91.50	49.09	51.00	2.00	1.37	3.47	22.61	44.79	47.85	66.28
2015	94.97	31.65	106.62	42.81	47.08	4.25	3.42	3.62	5.25	23.70	70.85	26.67
2016	63.21	53.15	63.61	35.65	10.59	9.56	1.39	2.59	26.89	55.26	16.79	96.66
2017	79.83	51.35	134.64	69.05	39.73	10.04	1.80	15.46	13.95	55.47	33.58	67.87
MEDIA	50.47	50.50	77.92	53.97	27.84	8.94	4.79	7.24	22.35	53.22	49.09	46.65
D. EST	23.55	22.78	27.49	16.20	10.79	6.62	3.50	5.28	12.21	20.48	18.90	20.45
MIN	1.81	18.49	24.76	27.46	1.83	1.42	0.24	0.24	4.90	12.05	16.79	1.83
MAX	119.77	143.06	140.70	93.57	51.00	31.93	14.36	21.84	62.64	109.47	107.29	96.66

A.5 Generación de descargas con modelo estocástico

Tabla 38.- Números aleatorios normalmente distribuidos

AÑO	ENE.	FEB.	MAR.	ABR	MAY	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.
1968	0.44	-0.01	0.60	0.56	0.95	-0.13	0.38	0.10	1.23	0.63	-1.75	0.05
1969	0.47	0.17	0.79	-1.87	0.03	-1.04	-0.47	-1.43	1.75	-0.02	1.15	0.42
1970	-0.39	-1.26	-2.04	-0.36	0.52	-0.68	-0.07	1.50	-0.16	1.64	0.73	-0.06
1971	0.39	-0.43	0.86	1.43	-0.94	0.12	0.78	-0.37	-0.67	0.90	0.13	-1.81
1972	-1.17	1.29	1.77	0.07	-0.75	0.06	-0.89	1.07	-0.23	1.64	0.16	-1.45
1973	0.86	-0.25	-2.29	-1.02	0.73	-0.16	0.05	0.40	0.18	1.59	0.75	1.94
1974	-0.88	1.57	-0.27	0.53	1.53	0.81	1.36	1.24	-0.76	-1.90	1.40	0.57
1975	-0.69	-0.17	-0.10	-0.32	1.11	0.02	-0.77	0.48	-0.05	-1.81	0.04	-0.65
1976	-1.18	0.97	0.27	0.37	0.32	-0.24	-0.26	-0.30	-1.14	0.31	-1.89	-0.40
1977	0.33	-1.45	-0.27	-0.53	2.03	-0.53	-1.09	-1.59	-2.36	-0.03	-1.13	-0.98
1978	-1.20	1.11	1.96	0.00	-1.46	-0.34	0.20	0.55	-0.37	0.85	-0.54	1.20
1979	0.71	-1.10	0.51	-0.35	0.18	-1.51	0.00	-1.29	-1.17	0.05	0.43	-0.05
1980	1.69	-0.64	-0.79	-3.56	-0.21	-0.67	0.78	0.56	1.59	1.27	-0.08	1.02
1981	0.96	1.28	1.69	0.00	0.68	0.77	0.03	1.00	0.95	0.94	0.96	0.44
1982	0.05	0.09	-0.60	0.90	-1.17	-0.61	0.15	-0.86	-1.16	-0.67	-0.24	-1.88
1983	-0.60	0.13	-0.97	-1.76	0.14	-0.67	2.35	-1.34	1.35	-0.23	0.13	-1.02
1984	1.99	2.46	1.02	-2.36	0.22	-0.12	-1.15	0.23	-0.31	-1.47	-0.07	-0.32
1985	-0.72	0.66	-1.53	0.64	1.10	-0.32	0.32	0.41	-0.56	0.02	-0.92	0.50
1986	0.13	-0.35	-0.01	0.33	-0.31	1.77	-0.17	0.61	-1.19	-0.15	0.08	1.40
1987	0.53	-0.60	-1.58	1.49	1.70	-0.01	1.16	0.49	2.16	0.37	-0.48	1.46
1988	1.78	0.08	-0.14	-0.18	-1.39	0.04	1.16	0.66	1.61	-0.14	0.24	1.23
1989	-0.84	1.27	0.91	0.87	0.41	1.36	-0.07	-1.12	0.65	0.95	-0.63	-1.73
1990	-0.09	-0.21	1.43	0.52	0.79	1.74	0.30	-1.19	0.28	-0.27	-1.39	1.39
1991	-0.93	-0.65	-0.06	0.90	-1.00	-0.02	0.12	-0.44	-0.68	1.00	-1.34	0.04
1992	0.00	1.87	-0.79	-0.72	-0.90	1.51	0.08	0.83	0.06	-0.77	0.53	-0.31
1993	1.86	1.63	-0.18	-0.87	-0.24	-0.20	-0.20	0.61	-3.30	0.50	-0.41	-1.70
1994	-2.29	-0.58	-0.59	-0.16	-0.49	0.52	0.77	-0.01	1.53	1.74	1.94	1.06
1995	-0.22	0.51	0.90	0.26	-0.98	-1.45	1.77	0.62	0.73	-1.00	-0.37	0.16
1996	-0.38	1.02	-3.03	0.02	1.24	-1.57	-2.82	-1.27	0.63	-0.33	-0.37	0.63
1997	-1.46	0.41	0.18	1.51	0.47	-2.29	0.28	0.37	0.57	-0.03	-0.80	-0.26
1998	0.92	1.42	-1.24	0.84	-0.45	-0.20	-0.97	-0.91	1.07	0.49	-2.19	1.37
1999	-1.32	1.19	-1.08	-0.87	1.89	-1.29	-2.04	0.75	-1.15	-0.90	-0.47	0.10
2000	1.01	-1.83	0.38	-0.57	-0.55	2.04	2.21	0.40	-0.44	-0.01	-0.85	0.37
2001	0.49	0.99	0.79	0.06	0.65	0.68	-0.50	0.40	0.68	1.83	0.23	-1.61
2002	0.70	0.22	-1.00	-1.08	1.92	-1.88	-2.07	0.15	1.59	0.58	-0.62	-0.01
2003	-0.72	-1.20	0.13	-0.32	1.57	-0.49	1.69	-0.34	0.87	0.86	-0.54	0.25
2004	-0.74	0.29	-0.27	-0.10	1.44	-0.26	-0.38	1.65	0.11	0.63	-0.49	-0.14
2005	-2.08	-0.76	0.97	0.71	1.35	0.09	-0.53	-2.03	0.16	-1.18	-0.04	-1.36
2006	-0.50	0.40	0.67	-1.28	0.12	2.35	1.47	1.61	1.62	0.35	-0.17	-1.34
2007	0.18	0.10	0.18	0.48	-0.88	-0.75	0.49	-0.44	0.19	-1.42	-1.44	-0.11

2008	-1.44	0.65	-0.73	0.37	-0.90	-0.01	0.01	1.07	-0.04	0.26	0.27	-2.84
2009	0.43	-0.39	-1.39	0.35	1.48	1.88	-0.71	-0.40	0.15	-1.75	0.14	0.20
2010	1.68	0.07	-1.08	-0.05	1.11	-0.90	-0.79	-0.04	-0.94	-0.34	-0.78	-0.95
2011	1.40	-1.74	0.02	-0.58	1.56	-2.51	-0.78	-0.62	1.01	-1.23	-0.51	-0.59
2012	0.31	0.08	-0.55	-1.73	0.42	0.96	0.75	0.00	0.01	1.20	-0.90	0.26
2013	-2.20	-0.21	1.18	-0.82	-0.37	-0.73	-1.58	-0.14	0.00	0.91	0.07	-0.04
2014	0.11	0.01	1.43	-1.19	0.40	0.82	-0.53	2.72	1.10	-1.83	0.58	-1.70
2015	0.16	-1.17	0.98	0.98	1.40	-0.47	2.30	-0.17	-1.66	1.52	1.07	0.07
2016	-0.97	1.47	-0.81	-0.43	0.13	-0.91	0.73	-1.15	0.19	0.04	0.59	0.87
2017	0.22	-0.87	1.46	-0.09	1.41	1.75	-0.49	-0.71	1.01	-0.25	0.06	0.04
Med	-0.06	0.15	-0.05	-0.18	0.36	-0.07	0.05	0.05	0.13	0.11	-0.19	-0.13
D. Est.	1.06	0.98	1.11	1.00	0.98	1.11	1.10	0.96	1.11	1.02	0.84	1.06

Tabla 39.- Generación de descargas por el modelo estocástico (mm/mes)

AÑO	ENE.	FEB.	MAR.	ABR	MAY	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.
1968	45.06	45.17	53.52	40.85	33.42	18.92	13.99	14.90	37.00	44.12	38.07	20.17
1969	14.53	33.89	51.70	53.39	26.11	22.77	12.44	8.64	22.94	43.89	69.24	69.45
1970	58.98	38.23	42.11	44.92	37.81	23.19	14.74	16.38	18.22	48.85	49.23	43.43
1970	45.78	47.29	84.54	66.90	37.20	24.05	20.18	15.46	18.27	45.51	38.35	35.34
1971	30.84	39.56	63.87	63.41	38.85	21.71	11.07	17.88	26.45	36.30	48.94	34.69
1972			45.18			24.45						
	53.20	41.75		55.65	40.14		18.15	21.04	37.97	45.45	47.30	50.85
1974	39.84	61.45	62.92	52.75	36.08	28.23	22.23	25.12	22.60	38.31	43.66	40.87
1975	44.93	59.26	73.88	62.30	55.59	31.23	19.09	20.23	22.27	34.52	39.20	25.20
1976	43.42	44.22	58.00	48.94	40.96	27.07	14.77	11.56	10.08	26.16	26.48	27.52
1977	53.73	53.53	65.17	45.82	41.76	22.86	12.52	6.07	7.78	30.07	35.69	30.72
1978	23.76	30.90	42.07	40.26	37.67	20.77	20.11	16.24	18.58	30.25	33.72	39.96
1979	40.99	34.35	69.20	57.11	36.68	14.45	13.29	16.03	30.53	25.06	25.68	23.79
1980	35.06	30.76	44.37	24.46	30.69	18.98	15.14	15.31	20.39	60.89	81.12	57.84
1981	45.08	61.62	63.79	48.13	37.98	27.31	16.52	18.84	19.95	52.60	52.21	56.74
1982	45.38	42.67	45.62	53.30	38.71	21.87	15.45	7.84	21.98	49.30	52.46	47.14
1983	49.50	43.05	62.82	60.72	41.89	34.30	27.04	12.61	23.31	38.99	37.54	40.14
1984	43.92	83.10	78.42	59.98	49.22	29.04	18.00	19.07	19.52	39.19	43.71	39.63
1985	30.73	32.14	37.60	39.75	38.04	20.31	15.37	15.19	18.95	24.63	25.17	35.30
1986	38.45	32.80	42.76	61.97	36.87	26.71	15.11	19.47	10.35	27.69	38.81	44.37
1987	53.51	45.36	43.50	52.21	38.83	21.83	22.58	19.40	31.23	37.65	48.17	45.32
1988	54.80	50.34	44.80	56.62	31.00	18.51	15.66	14.27	29.46	37.98	42.01	44.25
1989	41.47	52.43	59.65	64.23	39.62	28.58	16.52	9.34	25.15	46.80	37.06	20.68
1990	34.25	34.95	44.29	39.54	34.89	30.72	17.78	10.77	20.66	47.95	54.01	45.86
1991	33.94	34.29	63.02	56.74	31.82	18.43	12.84	9.00	12.29	28.87	32.74	39.52
1992	35.23	33.29	39.44	35.97	24.53	26.98	16.49	17.24	27.85	39.24	33.96	30.57
1993	42.79	48.92	75.00	65.21	41.46	22.68	13.44	13.41	12.35	41.92	43.99	42.91
1994	43.78	45.56	62.27	74.60	45.10	25.83	18.02	12.76	22.54	34.29	48.40	55.82
1995	37.81	42.37	53.13	48.32	34.19	14.85	19.74	14.87	17.89	27.99	29.96	40.58
1996	31.13	35.10	26.91	28.43	28.60	15.12	3.62	4.62	11.99	25.73	22.40	19.64
1997	17.77	24.92	26.85	39.84	30.67	11.52	11.05	12.05	16.72	23.41	25.88	38.47
1998	47.19	69.67	78.46	80.60	50.71	25.14	10.97	7.23	20.41	54.55	38.02	45.29
1999	52.78	99.89	67.19	46.62	50.98	34.94	15.12	16.13	37.89	29.10	48.24	67.53
2000	52.56	61.92	76.65	59.79	46.66	38.15	27.38	24.18	31.87	22.65	27.68	34.12
2001	78.71	60.66	97.58	64.67	46.43	25.76	15.00	12.03	22.37	51.11	57.46	47.10

2002	68.88	52.52	76.20	64.69	50.49	18.54	9.00	8.31	19.96	50.93	51.82	54.29
2003	36.20	37.56	53.83	48.94	39.86	25.21	19.96	13.03	24.38	39.68	47.79	51.39
2004	44.02	39.82	41.36	45.37	38.73	20.77	17.15	16.86	22.96	53.32	58.41	63.87
2005	49.30	50.29	85.20	59.74	43.56	24.18	13.15	4.29	12.93	59.80	39.42	58.28
2006	48.73	55.87	98.22	64.74	36.43	33.05	25.16	20.19	35.25	45.51	51.78	49.62
2007	52.17	37.34	77.54	71.62	44.24	19.95	16.69	15.68	19.53	46.91	54.54	50.66
2008	48.49	66.55	66.74	65.39	41.43	25.09	16.44	20.55	24.98	50.15	56.56	27.63
2009	73.88	52.27	71.91	67.77	55.94	35.03	19.30	13.09	17.12	31.52	49.39	49.85
2010	49.89	55.62	65.63	56.52	45.28	22.51	13.78	10.85	16.01	32.06	41.87	45.20
2011	47.91	39.68	62.38	62.15	45.32	15.42	11.95	8.34	24.13	29.19	40.37	60.99
2012	76.36	63.86	57.46	49.50	39.71	25.84	17.32	13.46	12.34	51.92	63.17	50.54
2013	38.55	40.62	69.55	45.69	45.14	23.32	10.83	16.22	13.41	51.85	36.66	50.04
2014	49.28	56.36	76.46	54.67	52.29	28.34	14.25	20.38	27.02	31.07	42.05	48.05
2015	70.75	43.82	77.59	59.10	55.35	26.46	23.79	14.76	7.14	23.72	52.19	38.13
2016	47.39	54.01	54.33	41.80	26.26	16.24	13.63	7.05	20.94	40.00	30.14	66.91
2017	70.82	54.62	97.32	76.37	58.47	37.83	18.29	16.71	20.96	39.15	36.44	52.32
PROM	46.27	47.92	61.56	54.56	40.59	24.30	16.24	14.30	21.34	39.36	43.38	43.97
D.EST	13.56	14.07	17.21	11.91	7.99	6.08	4.49	4.89	7.47	10.38	11.83	12.35
MIN	14.53	24.92	26.85	24.46	24.53	11.52	3.62	4.29	7.14	22.65	22.40	19.64
MAX	78.71	99.89	98.22	80.60	58.47	38.15	27.38	25.12	37.97	60.89	81.12	69.45

Tabla 40.- Generación de descargas por el modelo estocástico (m³/s)

AÑO	ENE.	FEB.	MAR.	ABR	MAY	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.
1968	1.23	1.36	1.46	1.15	0.91	0.53	0.38	0.41	1.04	1.20	1.07	0.55
1969	0.40	1.02	1.41	1.50	0.71	0.64	0.34	0.24	0.65	1.20	1.95	1.89
1970	1.61	1.15	1.15	1.26	1.03	0.65	0.40	0.45	0.51	1.33	1.39	1.18
1971	1.25	1.43	2.30	1.88	1.01	0.68	0.55	0.42	0.51	1.24	1.08	0.96
1972	0.84	1.19	1.74	1.79	1.06	0.61	0.30	0.49	0.74	0.99	1.38	0.95
1973	1.45	1.26	1.23	1.57	1.09	0.69	0.49	0.57	1.07	1.24	1.33	1.39
1974	1.09	1.85	1.71	1.49	0.98	0.79	0.61	0.68	0.64	1.04	1.23	1.11
1975	1.22	1.79	2.01	1.75	1.51	0.88	0.52	0.55	0.63	0.94	1.10	0.69
1976	1.18	1.33	1.58	1.38	1.12	0.76	0.40	0.31	0.28	0.71	0.75	0.75
1977	1.46	1.61	1.78	1.29	1.14	0.64	0.34	0.17	0.22	0.82	1.00	0.84
1978	0.65	0.93	1.15	1.13	1.03	0.58	0.55	0.44	0.52	0.82	0.95	1.09
1979	1.12	1.04	1.89	1.61	1.00	0.41	0.36	0.44	0.86	0.68	0.72	0.65
1980	0.96	0.93	1.21	0.69	0.84	0.53	0.41	0.42	0.57	1.66	2.28	1.58
1981	1.23	1.86	1.74	1.36	1.03	0.77	0.45	0.51	0.56	1.43	1.47	1.55
1982	1.24	1.29	1.24	1.50	1.05	0.62	0.42	0.21	0.62	1.34	1.48	1.28
1983	1.35	1.30	1.71	1.71	1.14	0.97	0.74	0.34	0.66	1.06	1.06	1.09
1984	1.20	2.51	2.14	1.69	1.34	0.82	0.49	0.52	0.55	1.07	1.23	1.08
1985	0.84	0.97	1.02	1.12	1.04	0.57	0.42	0.41	0.53	0.67	0.71	0.96
1986	1.05	0.99	1.17	1.74	1.00	0.75	0.41	0.53	0.29	0.75	1.09	1.21
1987	1.46	1.37	1.19	1.47	1.06	0.61	0.62	0.53	0.88	1.03	1.36	1.23
1988	1.49	1.52	1.22	1.59	0.84	0.52	0.43	0.39	0.83	1.03	1.18	1.21
1989	1.13	1.58	1.63	1.81	1.08	0.80	0.45	0.25	0.71	1.28	1.04	0.56
1990	0.93	1.05	1.21	1.11	0.95	0.86	0.48	0.29	0.58	1.31	1.52	1.25
1991	0.92	1.03	1.72	1.60	0.87	0.52	0.35	0.25	0.35	0.79	0.92	1.08
1992	0.96	1.00	1.07	1.01	0.67	0.76	0.45	0.47	0.78	1.07	0.96	0.83
1993	1.17	1.48	2.04	1.84	1.13	0.64	0.37	0.37	0.35	1.14	1.24	1.17
1994	1.19	1.37	1.70	2.10	1.23	0.73	0.49	0.35	0.63	0.93	1.36	1.52
1995	1.03	1.28	1.45	1.36	0.93	0.42	0.54	0.41	0.50	0.76	0.84	1.11

1996	0.85	1.06	0.73	0.80	0.78	0.43	0.10	0.13	0.34	0.70	0.63	0.54
1997	0.48	0.75	0.73	1.12	0.84	0.32	0.30	0.33	0.47	0.64	0.73	1.05
1998	1.29	2.10	2.14	2.27	1.38	0.71	0.30	0.20	0.57	1.49	1.07	1.23
1999	1.44	3.01	1.83	1.31	1.39	0.98	0.41	0.44	1.07	0.79	1.36	1.84
2000	1.43	1.87	2.09	1.68	1.27	1.07	0.75	0.66	0.90	0.62	0.78	0.93
2001	2.14	1.83	2.66	1.82	1.27	0.73	0.41	0.33	0.63	1.39	1.62	1.28
2002	1.88	1.58	2.08	1.82	1.38	0.52	0.25	0.23	0.56	1.39	1.46	1.48
2003	0.99	1.13	1.47	1.38	1.09	0.71	0.54	0.36	0.69	1.08	1.35	1.40
2004	1.20	1.20	1.13	1.28	1.06	0.58	0.47	0.46	0.65	1.45	1.64	1.74
2005	1.34	1.52	2.32	1.68	1.19	0.68	0.36	0.12	0.36	1.63	1.11	1.59
2006	1.33	1.69	2.68	1.82	0.99	0.93	0.69	0.55	0.99	1.24	1.46	1.35
2007	1.42	1.13	2.11	2.02	1.21	0.56	0.45	0.43	0.55	1.28	1.54	1.38
2008	1.32	2.01	1.82	1.84	1.13	0.71	0.45	0.56	0.70	1.37	1.59	0.75
2009	2.01	1.58	1.96	1.91	1.52	0.99	0.53	0.36	0.48	0.86	1.39	1.36
2010	1.36	1.68	1.79	1.59	1.23	0.63	0.38	0.30	0.45	0.87	1.18	1.23
2011	1.31	1.20	1.70	1.75	1.23	0.43	0.33	0.23	0.68	0.80	1.14	1.66
2012	2.08	1.93	1.57	1.39	1.08	0.73	0.47	0.37	0.35	1.41	1.78	1.38
2013	1.05	1.23	1.90	1.29	1.23	0.66	0.30	0.44	0.38	1.41	1.03	1.36
2014	1.34	1.70	2.08	1.54	1.42	0.80	0.39	0.56	0.76	0.85	1.18	1.31
2015	1.93	1.32	2.11	1.66	1.51	0.75	0.65	0.40	0.20	0.65	1.47	1.04
2016	1.29	1.63	1.48	1.18	0.72	0.46	0.37	0.19	0.59	1.09	0.85	1.82
2017	1.93	1.65	2.65	2.15	1.59	1.07	0.50	0.46	0.59	1.07	1.03	1.43
Prom.	1.26	1.45	1.68	1.54	1.11	0.68	0.44	0.39	0.60	1.07	1.22	1.20
D. Est.	0.37	0.42	0.47	0.34	0.22	0.17	0.12	0.13	0.21	0.28	0.33	0.34
MIN	0.40	0.75	0.73	0.69	0.67	0.32	0.10	0.12	0.20	0.62	0.63	0.54
MAX	2.14	3.01	2.68	2.27	1.59	1.07	0.75	0.68	1.07	1.66	2.28	1.89

A.6 Generación de descargas con modelo de transposición de caudales

Tabla 41.- Caudales medios mensuales de la cuenca Tres Ríos (m³/s)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
2008	0.554	0.867	0.947	0.891	0.431	0.267	0.197	0.154	0.125	0.183	0.211	0.107
2009	0.329	0.414	0.538	0.953	0.473	0.220	0.159	0.133	0.151	0.419	0.282	0.614
2010	0.202	0.326	0.339	0.928	0.311	0.187	0.167	0.142	0.120	0.132	0.116	0.151
2011	0.802	1.502	0.803	0.671	0.438	0.271	0.211	0.210	0.168	0.152	0.123	0.272
2012	0.370	0.531	1.691	0.734	0.242	0.217	0.173	0.099	0.144	0.204	0.406	0.202
2013	0.306	0.392	1.093	0.491	0.273	0.261	0.234	0.162	0.132	0.222	0.167	0.313
2014	0.322	0.312	0.837	0.481	0.463	0.300	0.269	0.166	0.125	0.148	0.194	0.251
2015	0.816	0.519	1.230	0.639	0.449	0.331	0.298	0.264	0.221	0.144	0.213	0.208
2016	0.637	0.572	0.458	0.377	0.302	0.287	0.203	0.155	0.308	0.262	0.409	0.434
2017	0.499	0.530	0.543	0.275	0.254	0.314	0.188	0.273	0.403	0.583	0.476	0.589
Media	0.48	0.60	0.85	0.64	0.36	0.27	0.21	0.18	0.19	0.24	0.26	0.31
Desv.Est.	0.21	0.36	0.41	0.24	0.09	0.05	0.05	0.06	0.09	0.15	0.13	0.18

Tabla 42.- Precipitación media en la cuenca Tres Ríos (mm/mes)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
2008	35.78	50.58	61.16	55.69	27.84	16.69	12.72	9.95	7.81	11.82	13.19	6.91
2009	21.25	24.15	34.75	59.57	30.55	13.75	10.27	8.59	9.44	27.06	17.63	39.66

2010	13.05	19.02	21.89	58.00	20.09	11.69	10.79	9.17	7.50	8.53	7.25	9.75
2011	51.80	87.62	51.86	41.94	28.29	16.94	13.63	13.56	10.50	9.82	7.69	17.57
2012	23.90	30.98	109.22	45.88	15.63	13.56	11.17	6.39	9.00	13.18	25.38	13.05
2013	19.76	22.87	70.59	30.69	17.63	16.31	15.11	10.46	8.25	14.34	10.44	20.22
2014	20.80	18.20	54.06	30.06	29.90	18.75	17.37	10.72	7.81	9.56	12.13	16.21
2015	52.70	30.28	79.44	39.94	29.00	20.69	19.25	17.05	13.81	9.30	13.31	13.43
2016	41.15	33.38	29.58	23.56	19.53	17.95	13.11	10.03	19.26	16.90	25.54	28.04
2017	32.25	30.91	35.04	17.20	16.39	19.65	12.16	17.66	25.18	37.63	29.73	38.05
Media	31.24	34.80	54.76	40.25	23.48	16.60	13.56	11.36	11.86	15.81	16.23	20.29
D .Est.	13.86	20.74	26.62	14.78	6.12	2.87	2.91	3.64	5.93	9.42	8.00	11.37

Tabla 43.- Descargas medias mensuales de la microcuenca Chirimayo (m³/s)

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
2008	4.025	6.300	6.881	6.474	3.132	1.940	1.431	1.119	0.908	1.330	1.533	0.777
2009	2.391	3.008	3.909	6.925	3.437	1.599	1.155	0.966	1.097	3.044	2.049	4.461
2010	1.468	2.369	2.463	6.743	2.260	1.359	1.213	1.032	0.872	0.959	0.843	1.097
2011	5.827	10.914	5.835	4.875	3.183	1.969	1.533	1.526	1.221	1.104	0.894	1.976
2012	2.688	3.858	12.287	5.333	1.758	1.577	1.257	0.719	1.046	1.482	2.950	1.468
2013	2.223	2.848	7.942	3.568	1.984	1.896	1.700	1.177	0.959	1.613	1.213	2.274
2014	2.340	2.267	6.082	3.495	3.364	2.180	1.955	1.206	0.908	1.075	1.410	1.824
2015	5.929	3.771	8.937	4.643	3.262	2.405	2.165	1.918	1.606	1.046	1.548	1.511
2016	4.629	4.158	3.328	2.738	2.197	2.087	1.475	1.128	2.239	1.902	2.969	3.154
2017	3.628	3.850	3.942	1.999	1.844	2.285	1.369	1.987	2.927	4.234	3.457	4.280
Media	3.51	4.33	6.16	4.68	2.64	1.93	1.53	1.28	1.38	1.78	1.89	2.28
D.Est.	1.56	2.58	2.99	1.72	0.69	0.33	0.33	0.41	0.69	1.06	0.93	1.28

A.7 Registro de descargas de los aforos realizados

Tabla 44.- Control de caudales medios mensuales en el río Chirimayo

	Equipo utilizado: Correntómetro Flow Probe, 3.7-6', Modelo: FP111, serie: 1602000259								
F	Río o Curso de	agua: Chirimayo		Estación de	Estación de Aforo: Sección del río Chirimayo a 2393 msnm				
Fecha	: Sorochuco,	20 de Agosto de 20	17.	Hora:	07:50				
Obser	vador: Bach. V	Wilmer Alaya Zaba	leta	Q _{Tmed} :	0.4929				
Observaciones: Tiempo soleado y agua clara									
PUNTO	Distancia	Profundidad	Vmáx	Vmed	Área	Qmáx	Qmed		
MD	0	0	-	-	0	-	-		
1	0.2	5	0.1	0.1	0.005	0.0005	0.0005		
2	0.4	13	0.6	0.6	0.036	0.0216	0.0216		
3	0.4	64	0.6	0.6	0.154	0.0924	0.0924		
4	0.4	42.5	0.2	0.2	0.213	0.0426	0.0426		
5	0.4	37.5	0.1	0.1	0.16	0.016	0.016		
6	0.4	48.5	0.1	0.1	0.172	0.0172	0.0172		
7	0.4	16	0.3	0.3	0.129	0.0387	0.0387		
8	0.4	36.5	0.8	0.8	0.105	0.084	0.084		

9	0.4	32.5	0.9	0.9	0.138	0.1242	0.1242
10	0.4	29	0.3	0.3	0.123	0.0369	0.0369
11	0.4	18	0.2	0.2	0.094	0.0188	0.0188
MI	0.4	2	-	-	0.069	-	-
	TOTAL					0.4929	0.4929

Fuente: Sistema de Gestión de Calidad - NTP ISO/IEC 17025

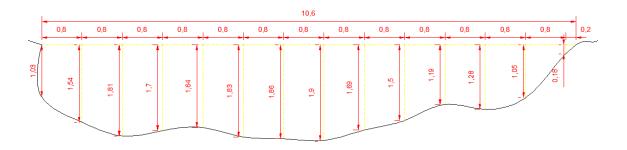


Figura 35.- Sección máxima aguas abajo del río Chirimayo a la altura de 2393 msnm

Figura 36 y Figura 37.- Visita al lugar donde se recopilo la información, y selección de la ubicación de la sección de aforo

Figura 38 y Figura 39.- Nivelación y medición de alturas en la sección de aforo del río Chirimayo a la altura de 2393 msnm.

Figura 40 y Figura 41.- Midiendo tirantes de agua y velocidades en la sección del río Chirimayo a la altitud de $2393~\mathrm{msnm}$.

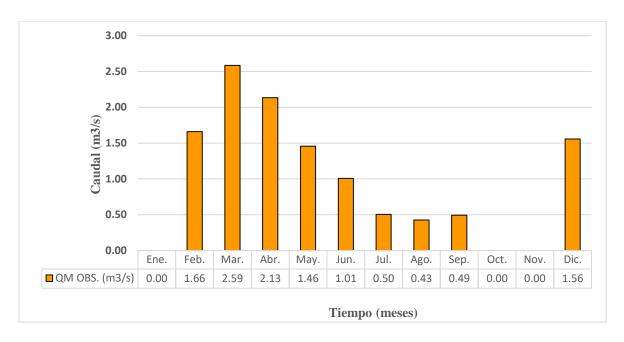


Figura 42.- Hidrograma de medición de Caudales medios mensuales del Río Chirimayo

A.8 Pruebas de bondad de ajuste

Tabla 45.- Distribución normal – prueba de Smirnov Kolmogorov

MES:	ENERO				MES:	FEBRE	CRO		
N =	50		Δ max	0.1155	N =	50		Δ max	0.0875
$\bar{x} =$	1.26		α	5%	$\bar{x} =$	1.45		α	5%
S=	0.37		Δο	0.192	S=	0.42		Δο	0.192
Δ max	<	Δ o	BUEN A	AJUSTE	Δ max	<	Δ o	BUEN A	JUSTE

m	Q=X (m3/s)	P(X) m/n+1	Z= (X- \$\bar{x})/S	F(Z)	F(Z)- P(X)
1	0.40	0.02	-2.344	0.010	0.010
2	0.48	0.04	-2.105	0.018	0.022
3	0.65	0.06	-1.663	0.048	0.011
4	0.84	0.08	-1.149	0.125	0.047
5	0.84	0.10	-1.141	0.127	0.029
6	0.85	0.12	-1.119	0.132	0.014
7	0.92	0.14	-0.912	0.181	0.044
8	0.93	0.16	-0.889	0.187	0.030
9	0.96	0.18	-0.829	0.203	0.027
10	0.96	0.20	-0.817	0.207	0.011
11	0.99	0.22	-0.746	0.228	0.012
12	1.03	0.24	-0.627	0.265	0.030
13	1.05	0.25	-0.579	0.281	0.026
14	1.05	0.27	-0.573	0.283	0.009
15	1.09	0.29	-0.477	0.317	0.023
16	1.12	0.31	-0.392	0.347	0.034
17	1.13	0.33	-0.357	0.361	0.027
18	1.17	0.35	-0.259	0.398	0.045
19	1.18	0.37	-0.213	0.416	0.043

m	Q=X (m3/s)	P(X) m/n+1	Z=(X- \$\bar{x})/S	F(Z)	F(Z)- P(X)
1	0.75	0.02	-1.637	0.051	0.031
2	0.93	0.04	-1.221	0.111	0.072
3	0.93	0.06	-1.211	0.113	0.054
4	0.97	0.08	-1.123	0.131	0.052
5	0.99	0.10	-1.076	0.141	0.043
6	1.00	0.12	-1.041	0.149	0.031
7	1.02	0.14	-0.999	0.159	0.022
8	1.03	0.16	-0.971	0.166	0.009
9	1.04	0.18	-0.966	0.167	0.010
10	1.05	0.20	-0.924	0.178	0.018
11	1.06	0.22	-0.913	0.181	0.035
12	1.13	0.24	-0.754	0.226	0.010
13	1.13	0.25	-0.738	0.230	0.025
14	1.15	0.27	-0.690	0.245	0.029
15	1.19	0.29	-0.596	0.276	0.018
16	1.20	0.31	-0.587	0.279	0.035
17	1.20	0.33	-0.577	0.282	0.051
18	1.23	0.35	-0.520	0.301	0.052
19	1.26	0.37	-0.440	0.330	0.043

20	1.19	0.39	-0.186	0.426	0.034
21	1.20	0.41	-0.176	0.430	0.018
22	1.20	0.43	-0.169	0.433	0.002
23	1.22	0.45	-0.102	0.460	0.009
24	1.23	0.47	-0.090	0.464	0.007
25	1.24	0.49	-0.069	0.473	0.018
26	1.25	0.51	-0.039	0.484	0.025
27	1.28	0.53	0.043	0.517	0.012
28	1.29	0.55	0.065	0.526	0.023
29	1.29	0.57	0.080	0.532	0.037
30	1.31	0.59	0.118	0.547	0.041
31	1.32	0.61	0.161	0.564	0.044
32	1.33	0.63	0.178	0.571	0.057
33	1.34	0.65	0.219	0.587	0.060
34	1.34	0.67	0.221	0.587	0.079
35	1.35	0.69	0.235	0.593	0.093
36	1.36	0.71	0.264	0.604	0.102
37	1.42	0.73	0.432	0.667	0.058
38	1.43	0.75	0.461	0.678	0.067
39	1.44	0.76	0.477	0.683	0.081
40	1.45	0.78	0.509	0.695	0.090
41	1.46	0.80	0.532	0.703	0.101
42	1.46	0.82	0.548	0.708	0.116
43	1.49	0.84	0.627	0.735	0.109
44	1.61	0.86	0.935	0.825	0.038
45	1.88	0.88	1.665	0.952	0.070
46	1.93	0.90	1.803	0.964	0.062
47	1.93	0.92	1.808	0.965	0.043
48	2.01	0.94	2.034	0.979	0.038
49	2.08	0.96	2.217	0.987	0.026
50	2.14	0.98	2.391	0.992	0.011

i i					
20	1.28	0.39	-0.396	0.346	0.046
21	1.29	0.41	-0.375	0.354	0.058
22	1.30	0.43	-0.348	0.364	0.067
23	1.32	0.45	-0.293	0.385	0.066
24	1.33	0.47	-0.264	0.396	0.075
25	1.37	0.49	-0.183	0.427	0.063
26	1.37	0.51	-0.169	0.433	0.077
27	1.38	0.53	-0.146	0.442	0.087
28	1.43	0.55	-0.046	0.482	0.067
29	1.48	0.57	0.070	0.528	0.041
30	1.52	0.59	0.167	0.567	0.022
31	1.52	0.61	0.170	0.568	0.040
32	1.58	0.63	0.308	0.621	0.006
33	1.58	0.65	0.319	0.625	0.022
34	1.58	0.67	0.326	0.628	0.039
35	1.61	0.69	0.398	0.655	0.032
36	1.63	0.71	0.432	0.667	0.039
37	1.65	0.73	0.475	0.683	0.043
38	1.68	0.75	0.546	0.708	0.038
39	1.69	0.76	0.564	0.714	0.051
40	1.70	0.78	0.599	0.725	0.059
41	1.79	0.80	0.805	0.790	0.014
42	1.83	0.82	0.905	0.817	0.006
43	1.85	0.84	0.961	0.832	0.011
44	1.86	0.86	0.973	0.835	0.028
45	1.87	0.88	0.994	0.840	0.042
46	1.93	0.90	1.132	0.871	0.031
47	2.01	0.92	1.323	0.907	0.014
48	2.10	0.94	1.545	0.939	0.002
49	2.51	0.96	2.500	0.994	0.033
50	3.01	0.98	3.694	1.000	0.019

MES: MARZO

N =50 Δ max 0.0975 $\bar{\mathbf{x}} =$ 1.68 α 5% S=0.47 Δ o 0.192 Δ max Δ o **BUEN AJUSTE**

<

P(X) Z=(X-Q=X $|\mathbf{F}(\mathbf{Z})$ - $\mathbf{F}(\mathbf{Z})$ m **x**)/S P(X)(m3/s)m/n+11 0.73 0.02 -2.018 0.022 0.002 0.73 0.04 -2.014 0.022 0.017 -1.393 1.02 0.06 0.0820.023 3 4 1.07 0.08 -1.286 0.099 0.0215 1.13 0.10 -1.174 0.120 0.022 1.15 0.12 -1.133 0.129 0.011 6 7 1.15 0.14 -1.131 0.129 0.0088 1.17 0.16 -1.093 0.137 0.020 9 1.19 0.18 -1.050 0.147 0.030 10 1.21 0.20 -1.004 0.158 0.038 11 1.21 0.22 -0.999 0.159 0.057 12 1.22 0.24 -0.975 0.165 0.070 MES: ABRIL

N =50 Δ max 0.0605 $\bar{\mathbf{x}} =$ 1.54 5% α S=0.34 Δ o 0.192 Δ max < Δ o **BUEN AJUSTE**

m	Q=X (m3/s)	P(X) m/n+1	Z=(X- \$\bar{x})/S	F(Z)	F(Z)- P(X)
1	0.69	0.02	-2.529	0.006	0.014
2	0.80	0.04	-2.195	0.014	0.025
3	1.01	0.06	-1.562	0.059	0.000
4	1.11	0.08	-1.262	0.103	0.025
5	1.12	0.10	-1.245	0.107	0.009
6	1.12	0.12	-1.237	0.108	0.010
7	1.13	0.14	-1.202	0.115	0.023
8	1.15	0.16	-1.143	0.127	0.030
9	1.18	0.18	-1.072	0.142	0.035
10	1.26	0.20	-0.810	0.209	0.013
11	1.28	0.22	-0.772	0.220	0.004
12	1.29	0.24	-0.745	0.228	0.007

13	1.23	0.25	-0.952	0.170	0.084
14	1.24	0.27	-0.927	0.177	0.097
15	1.41	0.29	-0.574	0. 283	0.011
16	1.45	0.31	-0.490	0.312	0.002
17	1.47	0.33	-0.451	0.326	0.008
18	1.47	0.35	-0.450	0.326	0.026
19	1.48	0.37	-0.420	0.337	0.035
20	1.57	0.39	-0.239	0.406	0.014
21	1.58	0.41	-0.207	0.418	0.006
22	1.63	0.43	-0.111	0.456	0.024
23	1.70	0.45	0.041	0.516	0.065
24	1.70	0.47	0.048	0.519	0.048
25	1.71	0.49	0.073	0.529	0.039
26	1.71	0.51	0.079	0.531	0.022
27	1.72	0.53	0.084	0.534	0.004
28	1.74	0.55	0.129	0.551	0.002
29	1.74	0.57	0.134	0.553	0.015
30	1.78	0.59	0.209	0.583	0.005
31	1.79	0.61	0.236	0.593	0.014
32	1.82	0.63	0.301	0.618	0.009
33	1.83	0.65	0.327	0.628	0.019
34	1.89	0.67	0.444	0.671	0.005
35	1.90	0.69	0.464	0.679	0.008
36	1.96	0.71	0.601	0.726	0.020
37	2.01	0.73	0.716	0.763	0.037
38	2.04	0.75	0.781	0.783	0.037
39	2.08	0.76	0.850	0.802	0.038
40	2.08	0.78	0.866	0.807	0.022
41	2.09	0.80	0.877	0.810	0.006
42	2.11	0.82	0.928	0.823	0.000
43	2.11	0.84	0.931	0.824	0.019
44	2.14	0.86	0.979	0.836	0.026
45	2.14	0.88	0.982	0.837	0.045
46	2.30	0.90	1.335	0.909	0.007
47	2.32	0.92	1.374	0.915	0.006
48	2.65	0.94	2.078	0.981	0.040
49	2.66	0.96	2.093	0.982	0.021
50	2.68	0.98	2.131	0.983	0.003

tabia					
13	1.29	0.25	-0.734	0.231	0.024
14	1.31	0.27	-0.668	0.252	0.022
15	1.36	0.29	-0.541	0.294	0.000
16	1.36	0.31	-0.524	0.300	0.014
17	1.38	0.33	-0.473	0.318	0.015
18	1.38	0.35	-0.472	0.318	0.035
19	1.39	0.37	-0.425	0.335	0.037
20	1.47	0.39	-0.198	0.422	0.029
21	1.49	0.41	-0.152	0.439	0.028
22	1.50	0.43	-0.106	0.458	0.026
23	1.50	0.45	-0.099	0.461	0.010
24	1.54	0.47	0.009	0.503	0.033
25	1.57	0.49	0.091	0.536	0.046
26	1.59	0.51	0.164	0.565	0.055
27	1.59	0.53	0.173	0.569	0.039
28	1.60	0.55	0.183	0.573	0.024
29	1.61	0.57	0.214	0.585	0.016
30	1.66	0.59	0.381	0.648	0.060
31	1.68	0.61	0.435	0.668	0.060
32	1.68	0.63	0.439	0.670	0.042
33	1.69	0.65	0.455	0.675	0.028
34	1.71	0.67	0.517	0.698	0.031
35	1.74	0.69	0.622	0.733	0.047
36	1.75	0.71	0.637	0.738	0.032
37	1.75	0.73	0.650	0.742	0.017
38	1.79	0.75	0.743	0.771	0.026
39	1.81	0.76	0.812	0.792	0.027
40	1.82	0.78	0.849	0.802	0.018
41	1.82	0.80	0.851	0.803	0.001
42	1.82	0.82	0.854	0.804	0.020
43	1.84	0.84	0.894	0.814	0.029
44	1.84	0.86	0.910	0.818	0.044
45	1.88	0.88	1.037	0.850	0.032
46	1.91	0.90	1.109	0.866	0.036
47	2.02	0.92	1.433	0.924	0.002
48	2.10	0.94	1.684	0.954	0.013
49	2.15	0.96	1.832	0.966	0.006
50	2.27	0.98	2.187	0.986	0.005

MES: MAYO

m	Q=X (m3/s)	P(X) m/n+1	Z=(X- \$\bar{x})/S	F(Z)	F(Z)- P(X)
1	0.67	0.02	-2.010	0.022	0.003
2	0.71	0.04	-1.811	0.035	0.004
3	0.72	0.06	-1.794	0.036	0.022
4	0.78	0.08	-1.500	0.067	0.012
5	0.84	0.10	-1.241	0.107	0.009

N = 50 $\Delta \max 0.0556$ $\bar{x} = 0.68$ $\alpha 5\%$ S = 0.17 $\Delta o 0.192$

 Δ o

MES: JUNIO

<

 Δ max

Q=XP(X) Z=(X- $|\mathbf{F}(\mathbf{Z})$ m $\mathbf{F}(\mathbf{Z})$ (m3/s)m/n+1 \bar{x})/S P(X)1 0.32 0.02 -2.101 0.018 0.002 2 0.41 0.04 -1.621 0.053 0.013 3 0.42 0.06 -1.554 0.060 0.001 4 0.43 0.08 -1.510 0.066 0.013 5 0.43 0.10 -1.460 0.072 0.026

BUEN AJUSTE

6	0.84	0.12	-1.239	0.108	0.010
7	0.84	0. 14	-1.200	0.115	0.022
8	0.87	0.16	-1.098	0.136	0.021
9	0.91	0.18	-0.892	0.186	0.010
10	0.93	0.20	-0.801	0.211	0.015
11	0.95	0.22	-0.714	0.238	0.022
12	0.98	0.24	-0.565	0.286	0.051
13	0.99	0.25	-0.521	0.301	0.046
14	1.00	0.27	-0.490	0.312	0.038
15	1.00	0.29	-0.466	0.321	0.027
16	1.01	0.31	-0.425	0.335	0.022
17	1.03	0.33	-0.366	0.357	0.024
18	1.03	0.35	-0.349	0.364	0.011
19	1.03	0.37	-0.327	0.372	0.001
20	1.04	0.39	-0.319	0.375	0.017
21	1.05	0.41	-0.236	0.407	0.005
22	1.06	0.43	-0.233	0.408	0.024
23	1.06	0.45	-0.220	0.413	0.038
24	1.06	0.47	-0.218	0.414	0.057
25	1.08	0.49	-0.122	0.451	0.039
26	1.08	0.51	-0.111	0.456	0.054
27	1.09	0.53	-0.091	0.464	0.066
28	1.09	0.55	-0.057	0.477	0.072
29	1.12	0.57	0.046	0.518	0.050
30	1.13	0.59	0.105	0.542	0.046
31	1.13	0.61	0.108	0.543	0.065
32	1.14	0.63	0.146	0.558	0.070
33	1.14	0.65	0.162	0.564	0.083
34	1.19	0.67	0.371	0.645	0.022
35	1.21	0.69	0.456	0.676	0.010
36	1.23	0.71	0.564	0.714	0.008
37	1.23	0.73	0.569	0.715	0.010
38	1.23	0.75	0.586	0.721	0.024
39	1.23	0.76	0.592	0.723	0.042
40	1.27	0.78	0.730	0.767	0.017
41	1.27	0.80	0.759	0.776	0.028
42	1.34	0.82	1.079	0.860	0.036
43	1.38	0.84	1.238	0.892	0.049
44	1.38	0.86	1.265	0.897	0.034
45	1.39	0.88	1.300	0.903	0.021
46	1.42	0.90	1.463	0.928	0.026
47	1.51	0.92	1.846	0.968	0.046
48	1.51	0.94	1.876	0.970	0.028
49	1.52	0.96	1.920	0.973	0.012
50	1.59	0.98	2.237	0.987	0.007

	a .	. ,							
	Contin	i	de tab	la	ı		•	ı	
-1.239	0.108	0.010		6	0.46	0.12	-1.326	0.092	0.025
-1.200	0.115	0.022		7	0.52	0.14	-0.965	0.167	0.030
-1.098	0.136	0.021		8	0.52	0.16	-0.952	0.171	0.014
-0.892	0.186	0.010		9	0.52	0.18	-0.948	0.172	0.005
-0.801 -0.714	0.211	0.015		10 11	0.53	0.20	-0.882	0.189	0.007
-0.714	0.236	0.022		12	0.56	0.22	-0.875 -0.715	0.191	0.023
-0.521	0.301	0.031		13	0.57	0.24	-0.713	0.256	0.002
-0.490	0.312	0.038		14	0.58	0.27	-0.581	0.281	0.006
-0.466	0.321	0.027		15	0.58	0.29	-0.581	0.281	0.014
-0.425	0.335	0.022		16	0.61	0.31	-0.426	0.335	0.021
-0.366	0.357	0.024		17	0.61	0.33	-0.406	0.343	0.009
-0.349	0.364	0.011		18	0.62	0.35	-0.399	0.345	0.008
-0.327	0.372	0.001		19	0.63	0.37	-0.295	0.384	0.011
-0.319	0.375	0.017		20	0.64	0.39	-0.267	0.395	0.003
-0.236	0.407	0.005		21	0.64	0.41	-0.252	0.400	0.011
-0.233	0.408	0.024		22	0.64	0.43	-0.237	0.406	0.025
-0.220	0.413	0.038		23	0.65	0.45	-0.182	0.428	0.023
-0.218	0.414	0.057		24	0.66	0.47	-0.161	0.436	0.035
-0.122	0.451	0.039		25	0.68	0.49	-0.041	0.484	0.006
-0.111	0.456	0.054		26	0.68	0.51	-0.020	0.492	0.018
-0.091	0.464	0.066		27	0.69	0.53	0.025	0.510	0.019
-0.057	0.477	0.072		28 29	0.71	0.55	0.130	0.552	0.003
0.046	0.518	0.050		30	0.71	0.57	0.137	0.555	0.014
0.103	0.543	0.046		31	0.71	0.59	0.130	0.595	0.029
0.146	0.558	0.070		32	0.73	0.63	0.251	0.599	0.028
0.162	0.564	0.083		33	0.73	0.65	0.253	0.600	0.047
0.371	0.645	0.022		34	0.75	0.67	0.355	0.639	0.028
0.456	0.676	0.010		35	0.75	0.69	0.396	0.654	0.032
0.564	0.714	0.008		36	0.76	0.71	0.440	0.670	0.036
0.569	0.715	0.010		37	0.76	0.73	0.455	0.675	0.050
0.586	0.721	0.024		38	0.77	0.75	0.494	0.689	0.056
0.592	0.723	0.042		39	0.79	0.76	0.647	0.741	0.024
0.730	0.767	0.017		40	0.80	0.78	0.664	0.747	0.038
0.759	0.776	0.028		41	0.80	0.80	0.703	0.759	0.045
1.079	0.860	0.036		42	0.82	0.82	0.779	0.782	0.042
1.238	0.892	0.049		43	0.86	0.84	1.055	0.854	0.011
1.265	0.897	0.034		44	0.88	0.86	1.139	0.873	0.010
1.300	0.903	0.021		45	0.93	0.88	1.439	0.925	0.043
1.463	0.928	0.026		46	0.97	0.90	1.644	0.950	0.048
1.846 1.876	0.968	0.046		47 48	0.98	0.92	1.749	0.960 0.961	0.038
1.920	0.970	0.028		49	1.07	0.94	2.225	0.987	0.026
2.237	0.973	0.012		50	1.07	0.98	2.223	0.989	0.020
4.431	0.707	0.007	j l	50	1.07	0.70	2.270	0.707	0.000

MES:	JULIO		
N =	50	Δ max	0.0690
$\mathbf{\bar{x}} =$	0.44	α	5%
S=	0.12	Δο	0.192

< Δ o BUEN AJUSTE Δ max

MES: AGOSTO N =50 Δ max 0.0671 $\mathbf{\bar{x}} =$ 0.39 5% α S= 0.13 0.192 Δ o Δ max < Δ 0 BUEN AJUSTE

	Q=X	P(X)	Z=(X-		F (Z)-
m	(m3/s)	m/n+1	x)/S	F(Z)	P(X)
1	0.10	0.02	-2.814	0.002	0.017
2	0.25	0.04	-1.613	0.053	0.014
3	0.30	0.06	-1.206	0.114	0.055
4	0.30	0.08	-1.175	0.120	0.042
5	0.30	0.10	-1.158	0.123	0.025
6	0.30	0.12	-1.153	0.124	0.007
7	0.33	0.14	-0.956	0.170	0.032
8	0.34	0.16	-0.848	0.198	0.041
9	0.34	0.18	-0.830	0.203	0.027
10	0.35	0.20	-0.759	0.224	0.028
11	0.36	0.22	-0.689	0.245	0.030
12	0.36	0.24	-0.657	0.255	0.020
13	0.37	0.25	-0.625	0.266	0.011
14	0.37	0.27	-0.583	0.280	0.006
15	0.38	0.29	-0.549	0.292	0.003
16	0.38	0.31	-0.501	0.308	0.005
17	0.39	0.33	-0.445	0.328	0.005
18	0.40	0.35	-0.335	0.369	0.016
19	0.40	0.37	-0.329	0.371	0.001
20	0.41	0.39	-0.277	0.391	0.001
21	0.41	0.41	-0.252	0.400	0.011
22	0.41	0.43	-0.251	0.401	0.030
23	0.41	0.45	-0.247	0.403	0.048
24	0.42	0.47	-0.194	0.423	0.047
25	0.42	0.49	-0.177	0.430	0.060
26	0.43	0.51	-0.130	0.448	0.061
27	0.45	0.53	0.044	0.518	0.012
28	0.45	0.55	0.055	0.522	0.027
29	0.45	0.57	0.061	0.524	0.044
30	0.45	0.59	0.063	0.525	0.063
31	0.45	0.61	0.100	0.540	0.068
32	0.47	0.63	0.203	0.580	0.047
33	0.47	0.65	0.240	0.595	0.052
34	0.48	0.67	0.344	0.634	0.032
35	0.49	0.69	0.392	0.652	0.034
36	0.49	0.71	0.397	0.654	0.051
37	0.49	0.73	0.425	0.665	0.061
38	0.50	0.75	0.457	0.676	0.069
39	0.52	0.76	0.635	0.737	0.027
40	0.53	0.78	0.681	0.752	0.032
41	0.54	0.80	0.781	0.782	0.021
42	0.54	0.82	0.828	0.796	0.027
43	0.55	0.84	0.863	0.806	0.037
44	0.55	0.86	0.879	0.810	0.053
45	0.61	0.88	1.335	0.909	0.027
46	0.62	0.90	1.413	0.921	0.019
47	0.65	0.92	1.681	0.954	0.032
48	0.69	0.94	1.987	0.977	0.035
49	0.74	0.96	2.406	0.992	0.031
50	0.75	0.98	2.482	0.993	0.013

	Q=X	P(X)	Z=(X-		F (Z)-
m	(m3/s)	m/n+1	Z=(X= X̄)/S	F(Z)	P(X)
1	0.12	0.02	-2.044	0.020	0.001
2	0.13	0.04	-1.978	0.024	0.015
3	0.17	0.06	-1.681	0.046	0.012
4	0.19	0.08	-1.481	0.069	0.009
5	0.20	0.10	-1.444	0.074	0.024
6	0.21	0.12	-1.320	0.093	0.024
7	0.23	0.12	-1.224	0.110	0.027
8	0.23	0.14	-1.217	0.112	0.045
9	0.24	0.18	-1.156	0.112	0.053
10	0.25	0.20	-1.082	0.140	0.056
11	0.25	0.22	-1.014	0.155	0.060
12	0.29	0.24	-0.722	0.235	0.000
13	0.30	0.25	-0.705	0.240	0.014
14	0.31	0.27	-0.560	0.288	0.013
15	0.33	0.29	-0.464	0.321	0.013
16	0.33	0.23	-0.459	0.323	0.009
17	0.34	0.31	-0.345	0.365	0.003
18	0.35	0.35	-0.314	0.377	0.032
19	0.36	0.33	-0.259	0.377	0.024
20	0.36	0.37	-0.239	0.402	0.023
21	0.37	0.39	-0.182	0.402	0.016
22	0.37	0.41	-0.172	0.428	0.000
23	0.37	0.45	-0.172	0.432	0.047
24	0.40	0.47	0.095	0.538	0.047
25	0.40	0.49	0.073	0.547	0.056
26	0.41	0.45	0.117	0.549	0.040
27	0.41	0.53	0.124	0.572	0.043
28	0.42	0.55	0.206	0.582	0.033
29	0.42	0.57	0.237	0.594	0.025
30	0.43	0.59	0.282	0.611	0.023
31	0.44	0.61	0.354	0.638	0.030
32	0.44	0.63	0.374	0.646	0.018
33	0.44	0.65	0.391	0.652	0.005
34	0.44	0.67	0.398	0.655	0.012
35	0.45	0.69	0.424	0.664	0.022
36	0.46	0.71	0.492	0.689	0.017
37	0.46	0.73	0.522	0.699	0.026
38	0.47	0.75	0.601	0.726	0.019
39	0.49	0.76	0.732	0.768	0.003
40	0.51	0.78	0.928	0.823	0.039
41	0.52	0.80	0.975	0.835	0.031
42	0.53	0.82	1.043	0.852	0.028
43	0.53	0.84	1.057	0.855	0.012
44	0.55	0.86	1.204	0.886	0.023
45	0.55	0.88	1.212	0.887	0.005
46	0.56	0.90	1.242	0.893	0.009
47	0.56	0.92	1.277	0.899	0.022
48	0.57	0.94	1.377	0.916	0.025
49	0.66	0.96	2.018	0.978	0.017
50	0.68	0.98	2.211	0.986	0.006
	5.00	0.70	2.211	0.700	0.000

MES: SEPTIEMBRE

m	Q=X (m3/s)	P(X) m/n+1	Z=(X- \$\bar{x})/S	F(Z)	F(Z)- P(X)
1	0.20	0.02	-1.901	0.029	0.009
2	0.20	0.02	-1.816	0.029	0.005
3	0.22	0.04	-1.508	0.066	0.003
4	0.29	0.08	-1.472	0.000	0.007
5	0.23	0.10	-1.252	0.105	0.007
6	0.35	0.10	-1.212	0.113	0.007
7	0.35	0.14	-1.205	0.114	0.023
8	0.35	0.16	-1.204	0.114	0.043
9	0.36	0.18	-1.126	0.130	0.046
10	0.38	0.20	-1.062	0.144	0.052
11	0.45	0.22	-0.714	0.238	0.022
12	0.47	0.24	-0.619	0.268	0.033
13	0.48	0.25	-0.565	0.286	0.031
14	0.50	0.27	-0.462	0.322	0.048
15	0.51	0.29	-0.417	0.338	0.044
16	0.51	0.31	-0.411	0.341	0.027
17	0.52	0.33	-0.369	0.356	0.023
18	0.53	0.35	-0.320	0.374	0.021
19	0.55	0.37	-0.243	0.404	0.031
20	0.55	0.39	-0.242	0.404	0.012
21	0.56	0.41	-0.187	0.426	0.014
22	0.56	0.43	-0.185	0.427	0.005
23	0.57	0.45	-0.127	0.450	0.001
24	0.57	0.47	-0.124	0.451	0.020
25	0.58	0.49	-0.090	0.464	0.026
26	0.59	0.51	-0.053	0.479	0.031
27	0.59	0.53	-0.051	0.480	0.050
28	0.62	0.55	0.086	0.534	0.015
29	0.63	0.57	0.125	0.550	0.019
30	0.63	0.59	0.138	0.555	0.033
31	0.63	0.61	0.161	0.564	0.044
32	0.64	0.63	0.170	0.567	0.060
33	0.65	0.65	0.215	0.585	0.062
34	0.65	0.67	0.218	0.586	0.080
35	0.66	0.69	0.264	0.604	0.082
36	0.68	0.71	0.374	0.646	0.060
37	0.69	0.73	0.408	0.658	0.067
38	0.70	0.75	0.488	0.687	0.058
39	0.71	0.76	0.510	0.695	0.070
40	0.74	0.78	0.684	0.753	0.031
41	0.76	0.80	0.761	0.777	0.027
42	0.78	0.82	0.872	0.808	0.015
43	0.83	0.84	1.089	0.862	0.019

MES: OCTUBRE

m	Q=X	P(X)	Z=(X-	F(Z)	F (Z)-
m	(m3/s)	m/n+1	x)/S	r(Z)	P (X)
1	0.62	0.02	-1.609	0.054	0.034
2	0.64	0.04	-1.536	0.062	0.023
3	0.65	0.06	-1.505	0.066	0.007
4	0.67	0.08	-1.418	0.078	0.000
5	0.68	0.10	-1.377	0.084	0.014
6	0.70	0.12	-1.312	0.095	0.023
7	0.71	0.14	-1.271	0.102	0.035
8	0.75	0.16	-1.124	0.131	0.026
9	0.76	0.18	-1.094	0.137	0.040
10	0.79	0.20	-1.010	0.156	0.040
11	0.79	0.22	-0.988	0.162	0.054
12	0.80	0.24	-0.979	0.164	0.072
13	0.82	0.25	-0.894	0.186	0.069
14	0.82	0.27	-0.877	0.190	0.084
15	0.85	0.29	-0.798	0.212	0.082
16	0.86	0.31	-0.755	0.225	0.089
17	0.87	0.33	-0.702	0.241	0.092
18	0.93	0.35	-0.487	0.313	0.040
19	0.94	0.37	-0.466	0.321	0.052
20	0.99	0.39	-0.294	0.384	0.008
21	1.03	0.41	-0.164	0.435	0.023
22	1.03	0.43	-0.132	0.447	0.016
23	1.04	0.45	-0.100	0.460	0.009
24	1.06	0.47	-0.035	0.486	0.015
25	1.07	0.49	-0.020	0.492	0.002
26	1.07	0.51	-0.016	0.494	0.016
27	1.07	0.53	-0.011	0.495	0.034
28	1.08	0.55	0.031	0.512	0.037
29	1.09	0.57	0.062	0.525	0.044
30	1.14	0.59	0.247	0.598	0.009
31	1.20	0.61	0.437	0.669	0.061
32	1.20	0.63	0.459	0.677	0.049
33	1.24	0.65	0.587	0.721	0.074
34	1.24	0.67	0.592	0.723	0.056
35	1.24	0.69	0.593	0.723	0.037
36	1.28	0.71	0.717	0.763	0.057
37	1.28	0.73	0.727	0.766	0.041
38	1.31	0.75	0.828	0.796	0.051
39	1.33	0.76	0.915	0.820	0.055
40	1.34	0.78	0.958	0.831	0.047
41	1.37	0.80	1.040	0.851	0.047
42	1.39	0.82	1.114	0.867	0.044
43	1.39	0.84	1.131	0.871	0.028

44	0.86	0.86	1.231	0.891	0.028
45	0.88	0.88	1.325	0.907	0.025
46	0.90	0.90	1.410	0.921	0.019
47	0.99	0.92	1.864	0.969	0.047
48	1.04	0.94	2.098	0.982	0.041
49	1.07	0.96	2.218	0.987	0.026
50	1.07	0.98	2.228	0.987	0.007

44	1.41	0.86	1.204	0.886	0.023
45	1.41	0.88	1.210	0.887	0.005
46	1.43	0.90	1.275	0.899	0.003
47	1.45	0.92	1.345	0.911	0.011
48	1.49	0.94	1.463	0.928	0.013
49	1.63	0.96	1.969	0.976	0.015
50	1.66	0.98	2.073	0.981	0.001

MES: NOVIEMBRE

۱ max	<	Λo	BUEN A	JUSTE
S=	0.33		Δο	0.192
$\mathbf{\bar{x}} =$	1.22		α	5%
N =	50		Δ max	0.0626

m	Q=X (m3/s)	P(X) m/n+1	Z=(X- \bar{x})/S	F(Z)	F(Z)- P(X)
1	0.63	0.02	-1.774	0.038	0.018
2	0.71	0.04	-1.539	0.062	0.023
3	0.72	0.06	-1.496	0.067	0.009
4	0.73	0.08	-1.479	0.070	0.009
5	0.75	0.10	-1.428	0.077	0.021
6	0.78	0.12	-1.327	0.092	0.025
7	0.84	0.14	-1.135	0.128	0.009
8	0.85	0.16	-1.119	0.132	0.025
9	0.92	0.18	-0.900	0.184	0.008
10	0.95	0.20	-0.817	0.207	0.011
11	0.96	0.22	-0.797	0.213	0.003
12	1.00	0.24	-0.651	0.258	0.022
13	1.03	0.25	-0.587	0.279	0.024
14	1.03	0.27	-0.569	0.285	0.010
15	1.04	0.29	-0.534	0.297	0.003
16	1.06	0.31	-0.494	0.311	0.003
17	1.07	0.33	-0.453	0.325	0.008
18	1.07	0.35	-0.449	0.327	0.026
19	1.08	0.37	-0.425	0.335	0.037
20	1.09	0.39	-0.386	0.350	0.042
21	1.10	0.41	-0.354	0.362	0.050
22	1.11	0.43	-0.335	0.369	0.063
23	1.14	0.45	-0.254	0.400	0.051
24	1.18	0.47	-0.128	0.449	0.022
25	1.18	0.49	-0.116	0.454	0.036
26	1.18	0.51	-0.112	0.455	0.055
27	1.23	0.53	0.023	0.509	0.020
28	1.23	0.55	0.027	0.511	0.038
29	1.24	0.57	0.052	0.521	0.048
30	1.33	0.59	0.331	0.630	0.041
31	1.35	0.61	0.372	0.645	0.037
32	1.36	0.63	0.405	0.657	0.030
33	1.36	0.65	0.410	0.659	0.012
34	1.36	0.67	0.424	0.664	0.002
35	1.38	0.69	0.469	0.681	0.006
36	1.39	0.71	0.494	0.689	0.017

MES: DICIEMBRE

Δ max	<	Δ o	BUEN A	JUSTE
S=	0.34		Δ o	0.192
$\bar{\mathbf{x}} =$	1.20		α	5%
N =	50		Δ max	0.0456

	Q=X	P(X)	Z=(X-	F(F)	F (Z)-
m	(m3/s)	m/n+1	x)/S	F(Z)	P(X)
1	0.54	0.02	-1.970	0.024	0.005
2	0.55	0.04	-1.927	0.027	0.012
3	0.56	0.06	-1.886	0.030	0.029
4	0.65	0.08	-1.634	0.051	0.027
5	0.69	0.10	-1.520	0.064	0.034
6	0.75	0.12	-1.332	0.091	0.026
7	0.75	0.14	-1.323	0.093	0.044
8	0.83	0.16	-1.085	0.139	0.018
9	0.84	0.18	-1.073	0.142	0.035
10	0.93	0.20	-0.797	0.213	0.017
11	0.95	0.22	-0.751	0.226	0.011
12	0.96	0.24	-0.702	0.241	0.006
13	0.96	0.25	-0.699	0.242	0.013
14	1.04	0.27	-0.473	0.318	0.044
15	1.05	0.29	-0.445	0.328	0.034
16	1.08	0.31	-0.360	0.359	0.046
17	1.08	0.33	-0.351	0.363	0.029
18	1.09	0.35	-0.325	0.373	0.020
19	1.09	0.37	-0.310	0.378	0.006
20	1.11	0.39	-0.275	0.392	0.000
21	1.11	0.41	-0.251	0.401	0.011
22	1.17	0.43	-0.086	0.466	0.034
23	1.18	0.45	-0.044	0.482	0.032
24	1.21	0.47	0.022	0.509	0.038
25	1.21	0.49	0.032	0.513	0.023
26	1.23	0.51	0.100	0.540	0.030
27	1.23	0.53	0.106	0.542	0.013
28	1.23	0.55	0.109	0.543	0.006
29	1.25	0.57	0.153	0.561	0.008
30	1.28	0.59	0.253	0.600	0.012
31	1.28	0.61	0.256	0.601	0.007
32	1.31	0.63	0.330	0.629	0.002
33	1.35	0.65	0.457	0.676	0.029
34	1.36	0.67	0.476	0.683	0.016
35	1.36	0.69	0.491	0.688	0.002
36	1.38	0.71	0.532	0.703	0.003

37	1.39	0.73	0.508	0.694	0.031
38	1.46	0.75	0.710	0.761	0.016
39	1.46	0.76	0.713	0.762	0.003
40	1.47	0.78	0.745	0.772	0.013
41	1.47	0.80	0.746	0.772	0.032
42	1.48	0.82	0.767	0.778	0.045
43	1.52	0.84	0.898	0.816	0.028
44	1.54	0.86	0.942	0.827	0.036
45	1.59	0.88	1.114	0.867	0.015
46	1.62	0.90	1.190	0.883	0.019
47	1.64	0.92	1.270	0.898	0.024
48	1.78	0.94	1.672	0.953	0.012
49	1.95	0.96	2.185	0.986	0.025
50	2.28	0.98	3.190	0.999	0.019

37	1.38	0.73	0.542	0.706	0.019
38	1.39	0.75	0.557	0.711	0.034
39	1.40	0.76	0.600	0.726	0.039
40	1.43	0.78	0.676	0.751	0.034
41	1.48	0.80	0.835	0.798	0.006
42	1.52	0.82	0.959	0.831	0.008
43	1.55	0.84	1.034	0.849	0.006
44	1.58	0.86	1.123	0.869	0.007
45	1.59	0.88	1.159	0.877	0.006
46	1.66	0.90	1.378	0.916	0.014
47	1.74	0.92	1.611	0.946	0.025
48	1.82	0.94	1.857	0.968	0.027
49	1.84	0.96	1.908	0.972	0.011
50	1.89	0.98	2.063	0.980	0.000

A.9 Lagunas en el área de influencia de la microcuenca Chirimayo

Tabla 46.- Caracterización de lagunas

Georreferenciación		Área	Perímetro	Dáginan	ll	Dh			
Este	Norte	Altura	(Km2)	(Km)	Régimen	Uso	Ph		
Laguna Lípiac									
795999	9229601	3796	0.011	0.382	Permanente	Doméstico, riego	6.78		
	Laguna Alforjacocha								
794907	9231740	3786	0.194	2.615	Permanente	Industrial, Riego	8.4		
	Laguna Chica								
796691	9231316	3693	0.014	0.482	Permanente	Doméstico, riego	7.8		
	Laguna Perol								
793176	9234750	3960	0.165	1.548	Permanente	Doméstico, riego	7.5		
	Laguna Chaquicocha								
798348	9231783	3614	0.015	0.827	Efímera	Riego	7.51		
Laguna Papacuay									
794807	9231730	3800	0.073	1.105	Permanente	Riego			
Laguna Las Huashwas									
794707	9231720	4000	0.0136	0.5145	Permanente	Riego			

A.10 Panel fotográfico

Figura 43.- Ganadería en el llano de La Chorrera

Figura 44.- Vegetación cerca al cauce

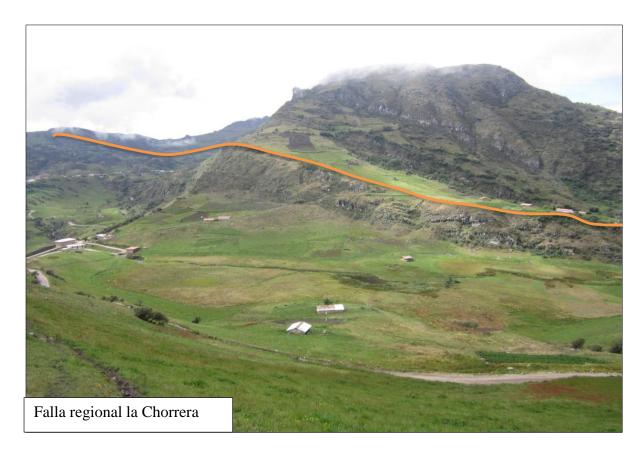


Figura 45.- Vista panorámico de la Falla la Chorrera

Fuente: Alaya, 2014.

Figura 46.- Falla normal Lípiac

Fuente: Alaya, 2014.

Figura 47.- Falla Regional El Tingo

Fuente: Alaya, 2014.

Figura 48.- Anticlinal Alforjacocha

Fuente: Alaya, 2014.