UNIVERSIDAD NACIONAL DE CAJAMARCA ESCUELA DE POSGRADO

UNIDAD DE POSGRADO DE LA FACULTAD DE INGENIERÍA PROGRAMA DE MAESTRÍA EN CIENCIAS

TESIS:

EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTEROS CEMENTO - CAL, TIERRA ROJA - CAL, CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018

Para optar el Grado Académico de

MAESTRO EN CIENCIAS MENCIÓN: INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

Presentada por:

Bachiller: ERICK RAFAEL MUÑOZ BARBOZA

Asesor:

M. en I. HUGO MIRANDA TEJADA

Cajamarca - Perú

2022

COPYRIGHT © 2022 by ERICK RAFAEL MUÑOZ BARBOZA

Todos los derechos reservados

UNIVERSIDAD NACIONAL DE CAJAMARCA ESCUELA DE POSGRADO

UNIDAD DE POSGRADO DE LA FACULTAD DE INGENIERÍA PROGRAMA DE MAESTRÍA EN CIENCIAS

TESIS:

EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTEROS CEMENTO - CAL, TIERRA ROJA - CAL, CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018

Para optar el Grado Académico de

MAESTRO EN CIENCIAS MENCIÓN: INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

Presentada por:
Bachiller: ERICK RAFAEL MUÑOZ BARBOZA

JURADO EVALUADOR

M. en I. Héctor Hugo Miranda Tejada Asesor

Dr. Miguel Angel Mosqueira Moreno Jurado Evaluador

Dra. Yvonne Katherine Fernández León Jurado Evaluador M. Cs. Marco Antonio Silva Silva Jurado Evaluador

Cajamarca - Perú

Universidad Nacional de Cajamarca licenciada con resolución deconsejo directivo nº 080-2018-sunedu/cd

Escuela de Posgrado CAJAMARCA - PERU

PROGRAMA DE MAESTRÍA EN CIENCIAS

ACTA DE SUSTENTACIÓN DE TESIS

Siendo las horas, del día 27 de mayo de dos mil veintidós, reunidos en el Auditorio de la Escuela de Posgrado de la Universidad Nacional de Cajamarca, el Jurado Evaluador presidido por el M. Cs. MARCO ANTONIO SILVA SILVA, Dr. MIGUEL ANGUEL MOSOUEIRA MORENO, Dra. YVONNE KATHERINE FERNANDEZ LEÓN, , y en calidad de Asesor el M en I. HÉCTOR HUGO MIRANDA TEJADA, Actuando de conformidad con el Reglamento Interno y el Reglamento de Tesis de Maestría de la Escuela de Posgrado de la Universidad Nacional de Cajamarca, se dio inicio a la Sustentación de la Tesis titulada "EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTEROS CEMENTO - CAL, TIERRA ROJA – CAL, CEMENTO – YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018", presentada por el Bach. en Ingeniería Civil, ERICK RAFAEL MUÑOZ BARBOZA

Realizada la exposición de la Tesis y absueltas las preguntas formuladas por el Jurado Evaluador, y luego de la deliberación, se acordó. APROBARIA con la calificación de DIECISIETE (17) - EXCELENTE la mencionada Tesis; en tal virtud, el Bach. en Ingeniería Civil ERICK RAFAEL MUÑOZ BARBOZA, está apto para recibir en ceremonia especial el Diploma que lo acredita como MAESTRO EN CIENCIAS, de la Unidad de Posgrado de la Facultad de Ingeniería, con Mención en INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

Siendo las 16.10... horas del mismo día, se dio por concluido el acto.

M.en I. Héctor Hugo Miranda Tejada Asesor

Dra. Yvonne/Katherine Fernández León

Jurado Evaluador

Pr. Miguel Angel Mosqueira Moreno Jurado Evaluador

M. Cs. Marco Antonio Silvia Silva Jurado Evaluador

DEDICATORIA

Está investigación está dedicada:

Mis padres: **Rossina y Oscar**, Con todo mi cariño y amor, fueron los que hicieron todo en mi vida para que yo pudiera lograr mis sueños, por motivarme y darme la mano cuando sentía que el camino se terminaba, a ustedes por siempre mi corazón y mi agradecimiento.

A mi ahijado **Jano**, por ser quien motiva cada día mis sonrisas con su amor y ocurrencias, siendo el motivo de mi felicidad.

A mi abuelo **Rafael**, quien desde pequeño me inculco el hábito de la lectura y me enseño lo importante de ser perseverante, respetuoso y nunca a darme por vencido, siendo más que un padre toda la vida, enseñándome que para educar solo se necesita amor.

A mi abuelo **Alfonso**, por ser alguien de corazón noble quien siempre se preocupaba de nosotros, siempre apoyándonos en todo lo que puede.

A mis tíos **Edwin y Henry**, quienes me cuidaron siempre, engriéndome como su hijo o su hermano, siempre enseñándome todo lo necesario para crecer como humano y ser cada día mejor persona.

Erick Rafael.

AGRADECIMIENTO

Expreso mi agradecimiento a Dios, quien como guía estuvo presente en el caminar de mi vida, bendiciéndome y dándome fuerzas para continuar con mis metas trazadas.

Al señor de la Misericordia **Amito de Marcabalito**, quien me llena de fe cada momento en mi vida, gracias mi señor.

A mis maestros:

Dr. Orlando Aguilar Aliaga, siendo un guía en mi formación profesional y un amigo con cada consejo para progresar como persona y profesional.

Dr. Miguel Mosqueira Moreno, siendo de los mejores profesionales que conozco y donde sus enseñanzas me hicieron crecer constantemente.

Finalmente quiero expresar mi más grande y sincero agradecimiento al **M. en I. Hugo Miranda Tejada**, asesor del presente trabajo, guía durante todo el proceso de la investigación y a la Escuela De Posgrado De La Universidad Nacional de Cajamarca, quienes me brindaron todo el conocimiento necesario para seguir creciendo profesionalmente.

Muy agradecido.

"La ciencia puede divertirnos y fascinarnos, pero es la Ingeniería la que cambia el mundo"
- Isaac Asimov.

ÍNDICE DE CONTENIDOS

Contenido

CAPÍT	ULO 1.	INTRODUCCIÓN	1
1.1.	Plantean	niento del problema	1
	1.1.1.	Contextualización	1
1.2.	Justificad	ción e importancia de la investigación	7
	1.2.1.	Justificación de la investigación	7
	1.2.2.	Importancia de la investigación	7
1.3.	Delimitad	ción de la investigación	8
1.4.	Limitacio	nes de la investigación	9
1.5.	Objetivos	s de la investigación	10
	1.5.1.	Objetivo general	10
	1.5.2.	Objetivos específicos	10
CAPÍT	ULO 2.	MARCO TEÓRICO	11
2.1.	Anteced	entes de la investigación o marco referencial	11
2.2.	Marco co	onceptual	12
	2.2.2.	Prueba de succión	17
	2.2.3.	Prueba de absorción	17
2.3.	Definició	n de términos básicos	18
CAPÍT	ULO 3.	PLANTEAMIENTO DE LA HIPÓTESIS Y VARIABLES	23
3.1.	Hipótesis	S	23
	3.1.1.	Variables/categorías	
	3.1.2.	Variables / categorías:	
	3.1.3.	Operacionalización/ categorización de los componentes de las hipótesis	
CAPÍT	ULO 4.	MARCO METODOLÓGICO	25
4.1.	Ubicació	n geográfica (de acuerdo a la naturaleza de la investigación)	25
	4.1.1.	Ubicación	
	4.1.2.	Clima y altitud	25
4.2.	Diseño d	le la investigación	25
	4.2.1.	Selección de los adobes	25
	4.2.2.	Propuesta de aplicación	26
4.3.	Procedin	nientos de la investigación	34
	4.3.1.	Clasificación de suelos	34
	4.3.2.	Ensayos muestras individuales	35
	Α.	Ensayos absorción y succión muros	37
	4.3.3.	Tipo de diseño de investigación	40
4.4.	Població	n, muestra, unidad de análisis y unidades de observación	40
	4.4.1.	Población	40
	4.4.2.	Muestra	40
	4.4.3.	Unidad de análisis	40
4.5.	Técnicas	s e instrumentos de recopilación de información	41
4.6.	Técnicas	s para el procesamiento y análisis de la información	47
4.7.	Equipos,	materiales e insumos	47
	4.7.1.	Equipos:	47

	4.7.2.	Materiales e Insumos:	47
	4.7.3.	Matriz de consistencia metodológica	49
CAPÍ	TULO 5.	RESULTADOS Y DISCUSIÓN	50
5.1.	Presenta	ación de resultados	50
	5.1.1.	Análisis de suelos	50
	5.1.2.	Análisis de muestras Individuales	52
	5.1.3.	Análisis de muros de adobe – primer periodo	54
	5.1.4.	Análisis de muros de adobe – segundo periodo	
	5.1.5.	Análisis de muros de adobe – Tercer Periodo	
	5.1.6.	Análisis de muros de adobe – cuarto periodo	66
	5.1.7.	Costos unitarios – fabricación de muros	
5.2.	Análisis,	interpretación y discusión de resultados	69
5.3.		ación de hipótesis	
	5.3.1.	Análisis estadístico para contrastación de hipótesis	
CAPÍ	TULO 6.	CONCLUSIONES	126
CAPÍ	TULO 7.	RECOMENDACIONES	127
CAPÍ	TULO 8.	REFERENCIAS BIBLIOGRÁFICAS	128
CAPÍ	TULO 9.	ANEXO	130
9.1.	Proceso	de fabricación de los adobes	130
9.2.	Proceso	de fabricación de pozo impermeabilizado:	132
	9.2.1.	Proceso constructivo y supervisión del muro con tarrajeo de mortero Cer	
	9.2.2.	Proceso constructivo y supervisión del muro con recubrimiento de morter roja – Cal	
	9.2.3.	Proceso constructivo y supervisión del muro con tarrajeo de mortero Cer Yeso	
9.3.	Métodos	de investigación	142
	9.3.1.	Clasificación de suelos	142
	9.3.2.	Ensayos muestras Individuales	148
	9.3.3.	Análisis de suelos	155
	9.3.4.	Análisis de Muros de adobe – Primer Periodo	160
	9.3.5.	Análisis de Muros de adobe – Segundo Periodo	167
	9.3.6.	Análisis de Muros de adobe – Tercer Periodo	170
	9.3.7.	Análisis de Muros de adobe – Cuarto Periodo	172
	9.3.8.	Costos Unitarios – Fabricación de Muros	174

ÍNDICE DE TABLAS

Tabla 1 Distribución de viviendas según su tipo de material de construcción en el Perú	3
Tabla 2: Operacionalización de variables	
Tabla 3: Matriz de consistencia metodológica	49
Tabla 4: Contenido de humedad suelo utilizados	50
Tabla 5: Clasificación de suelos utilizados	51
Tabla 6: Determinación succión adobes individuales NTP 399.613 (Ensayo en 1 minuto)	52
Tabla 7: Determinación absorción - adobes individuales	
Tabla 8: Área de la base de muros de adobe	
Tabla 9: Costo unitario de muros	
Tabla 10: Acumulado última medida antes de colapso del muro patrón	
Tabla 11: Acumulado última medida antes de colapso del muro Tierra Roja – Cal	
Tabla 12: Probabilidad Normal Primer Periodo – Absorción	
Tabla 13: Intervalos de confianza de Bonferroni de 95% para desviaciones estándar	
Tabla 14: Estadística de Prueba - Absorción Primer Periodo	
Tabla 15: Análisis de Varianza - Primer Periodo Absorción	
Tabla 16: Resumen del Modelo	
Tabla 17: Comparaciones por parejas de Tukey: Tipo de Muro	
Tabla 18: Probabilidad Normal Primer Periodo – Succión	
Tabla 19: Intervalos de confianza de Bonferroni de 95% para desviaciones estándar	
Tabla 20: Estadística de Prueba - Absorción Primer Periodo	
Tabla 21: Análisis de Varianza - Primer Periodo Absorción	
Tabla 22: Resumen del Modelo	
Tabla 23: Comparaciones por parejas de Tukey: Tipo de Muro	
Tabla 24: Probabilidad Normal Segundo Periodo – Absorción	
Tabla 25: Intervalos de confianza de Bonferroni de 95% para desviaciones estándar	
Tabla 26: Estadística de Prueba - Absorción Segundo Periodo	
Tabla 27: Análisis de Varianza - Segundo Periodo Absorción	
Tabla 28: Resumen del Modelo	
Tabla 29: Comparaciones por parejas de Tukey: Tipo de Muro	
Tabla 30: Probabilidad Normal Segundo Periodo – Succión	
Tabla 31: Estadística de Prueba - Absorción Segundo Periodo	
Tabla 32: Análisis de Varianza - Segundo Periodo Absorción	
Tabla 33: Resumen del Modelo	
Tabla 34: Comparaciones por parejas de Tukey: Tipo de Muro	
Tabla 35: Probabilidad Normal Tercer Periodo – Absorción	
Tabla 36: Intervalos de confianza de Bonferroni de 95% para desviaciones estándar	
Tabla 37: Estadística De Prueba - Absorción Tercer Periodo	
Tabla 38: Análisis de Varianza - Tercer Periodo Absorción	110
Tabla 39: Resumen del Modelo	
Tabla 40: Comparaciones por parejas de Tukey: Tipo de Muro	.111
Tabla 41: Probabilidad Normal Tercer Periodo – Succión	
Tabla 42: Estadística de Prueba - Absorción Tercer Periodo	114
Tabla 43: Análisis de Varianza - Tercer Periodo Absorción	115
Tabla 44: Resumen del Modelo	115
Tabla 45: Comparaciones por parejas de Tukey: Tipo de Muro	115
Tabla 46: Probabilidad Normal Cuarto Periodo – Absorción	
Tabla 47: Intervalos de confianza de Bonferroni de 95% para desviaciones estándar	118
Tabla 48: Estadística de Prueba - Absorción Cuarto Periodo	
Tabla 49: Análisis de Varianza - Cuarto Periodo Absorción	
Tabla 50: Resumen del Modelo	
Tabla 51: Comparaciones por parejas de Tukey: Tipo de Muro	
Tabla 52: Probabilidad Normal Cuarto Periodo – Succión	
Tabla 53: Estadística de Prueba - Absorción Cuarto Periodo	
Tabla 54: Análisis de Varianza - Cuarto Periodo Absorción	
Tabla 55: Resumen del Modelo	
Tabla 56: Comparaciones por parejas de Tukey: Tipo de Muro	
II. II. parasiones per parajas de l'aneji lipo de maronimini	

Tabla 57: Cuadro Resumen Índice de plasticidad	155
Tabla 58 : Clasificación de Suelos - Marrón Rojizo	155
Tabla 59: Cuadro Resumen Índice de plasticidad	156
Tabla 60: Clasificación de Suelos - Marrón Rojizo	
Tabla 61: Cuadro Resumen Índice de plasticidad	158
Tabla 62: Clasificación de Suelo Rojo	
Tabla 63: Determinar Área Muro Patrón	
Tabla 92: Cálculo Succión y Absorción del Muro Patrón – Primer Periodo	160
Tabla 65: Determinar Área Muro Tierra Roja - Cal	162
Tabla 96: Cálculo Succión y Absorción del Muro Tierra Roja - Cal – Primer Periodo	162
Tabla 67: Determinar Área Muro Cemento - Cal	164
Tabla 68: Cálculo Succión y Absorción del Muro Cemento - Cal – Primer Periodo	
Tabla 69: Determinar Área Muro Cemento – Yeso	165
Tabla 70: Cálculo Succión y Absorción del Muro Cemento - Yeso – Primer Periodo	166
Tabla 71: Determinación de la Absorción y Succión - Muro Patrón - Segundo Periodo	
Tabla 72: Volumen Acumulado MP- Segundo Periodo	168
Tabla 73: Determinación de la Absorción y Succión - Muro Tierra Roja - Cal - Segundo Pe	eriodo
	168
Tabla 74: Volumen Acumulado MTR- Segundo Periodo	
Tabla 75: Determinación de la Absorción y Succión - Muro Cemento - Cal - Segundo Periodo	169
Tabla 76: Volumen Acumulado CC- Segundo Periodo	169
Tabla 77: Determinación de la Absorción y Succión - Muro Cemento - Yeso - Segundo Period	
Tabla 78: Volumen Acumulado CY- Segundo Periodo	
Tabla 79: Determinación de la Absorción y Succión - Muro Cemento - Cal - Tercer Periodo	171
Tabla 80: Volumen Acumulado CC- tercer Periodo	171
Tabla 81: Determinación de la Absorción y Succión - Muro Cemento - Yeso - Tercer Periodo.	172
Tabla 82: Volumen Acumulado CY- tercer Periodo	
Tabla 83: Determinación de la Absorción y Succión - Muro Cemento - Cal - Cuarto Periodo	173
Tabla 84: Volumen Acumulado CC- cuarto periodo	
Tabla 85: Determinación de la Absorción y Succión - Muro Cemento - Yeso - Cuarto Periodo	174
Tabla 86: Volumen Acumulado CC- cuarto periodo	174
Tabla 87: Costo Unitario - Muro Patrón	
Tabla 88: Costo Unitario - Muro Tierra Roja – Cal	
Tabla 89: Costo Unitario - Muro Cemento – Cal	175
Tabla 90: Costo Unitario - Muro Cemento -Yeso	176

ÍNDICE DE FIGURAS

Figura 1: Viviendas particulares con adobe o tapial predominante en las paredes exteriores	
Figura 2: Control de calidad de adobes	
Figura 3: Dimensiones del pozo	27
Figura 4: Supervisión de los pozos impermeabilizados	27
Figura 5: Muro con zócalo mortero cemento – cal	28
Figura 6: Muro Cemento - Cal	28
Figura 7: Muro con zócalo tierra roja - cal	29
Figura 8: Muro Tierra Roja – Cal	
Figura 9: Muro con zócalo Cemento - Yeso	
Figura 10: Muro Cemento - Yeso	30
Figura 11: Distribución Muro Patrón	31
Figura 12: Muro Patrón	31
Figura 13: Muro en pozo para pruebas	32
Figura 14: Elaboración muestras individuales Cemento - Cal	33
Figura 15: Elaboración muestras individuales Tierra Roja - Cal	33
Figura 16: Elaboración muestras individuales Cemento - Yeso	
Figura 17: Ingreso de muestras Contenido de Humedad	
Figura 18: Toma de Datos - Tamizado por Lavado - Malla Nº 200	35
Figura 19: Toma de Datos - Limite Liquido	
Figura 20: Ensayo de absorción - 24 horas (adobe TRC - adobe CC)	
Figura 21: Ensayo de absorción - 24 horas (adobe CY - adobe patrón)	
Figura 22: Ensayo succión (Adobe CC - adobe TRC)	
Figura 23: Ensayo succión (Adobe CY – Patrón)	
Figura 24: Medida Absorción en pozo impermeabilizado y succión en muros	
Figura 25: Protocolo primer periodo absorción - succión – 60 minutos	
Figura 26: Protocolo segundo periodo absorción - succión – cada 20 minutos (6 horas)	
Figura 27: Protocolo segundo periodo absorción - succión – cada 20 minutos (6 horas)	
Figura 28: Protocolo muestra individual absorción	
Figura 29: Protocolo muestra individual succión	43
Figura 30: Protocolo contenido de humedad	44
Figura 31: Protocolo granulometría por lavado	45
Figura 32: Protocolo Índice plástico	46
Figura 33: Comparación Succión – muestras individuales NTP 399.613 (Ensayo en 1 minuto)	
Figura 34: Comparación absorción – muestras individuales	
Figura 35: Primer periodo - descenso pozo por absorción - Muro Patrón (MP)	
Figura 36: Primer periodo - Ascenso capilar por succión- Muro Patrón (MP)	
Figura 37: Primer periodo - descenso pozo por absorción - Muro Tierra Roja – Cal (TRC)	
Figura 38: Primer periodo - Ascenso capilar por succión - Muro Tierra Roja – Cal (TRC)	
Figura 39: Primer periodo - descenso pozo por absorción - Cemento – Cal (CC)	
Figura 40: Primer periodo - Ascenso capilar por succión - Cemento – Cal (CC)	
Figura 41: Primer periodo - descenso pozo por absorción - Cemento – Yeso (CY)	
Figura 42: Primer periodo - Ascenso capilar por succión - Cemento - Yeso (CY)	
Figura 43: Segundo periodo - descenso pozo por absorción - Muro Patrón (MP)	
	60
Figura 45: Segundo periodo - descenso pozo por absorción - Muro Tierra Roja – Cal (TRC)	
Figura 46: Segundo periodo - Ascenso capilar por succión - Muro Tierra Roja – Cal (TRC)	61
Figura 47: Segundo periodo - descenso pozo por absorción - Muro Cemento – Cal (CC)	
Figura 48: Segundo periodo - Ascenso capilar por succión - Muro Cemento - Cal (CC)	
Figura 49: Segundo periodo - Ascenso capital por succion - Muro Cemento – Car (CC)	
Figura 50: Segundo periodo - Ascenso capilar por succión - Muro Cemento – Yeso (CY)	
Figura 51: Tercer periodo - descenso pozo por absorción - Muro Cemento – Cal (CC)	
Figura 52: Tercer periodo - Ascenso capilar por succión - Muro Cemento – Cal (CC)	
Figura 53: Tercer periodo - Ascenso capital por succión - Muro Cemento – Cal Figura 53: Tercer periodo - descenso pozo por absorción - Muro Cemento – Yeso (CY)	
Figura 54: Tercer periodo - Ascenso capilar por succión - Muro Cemento – Yeso	
Figura 55: Cuarto periodo - descenso pozo por absorción - Muro Cemento – Cal (CC)	
TIQUIA JA, QUALIO DEHOQO " DESCENSO DOVO DOL 80SOIGION " MONO GENERIO — GALIGA).	

	Cuarto periodo - Ascenso capilar por succión - Muro Cemento – Cal (CC)	
	Cuarto periodo - descenso pozo por absorción - Muro Cemento – Yeso (CY)	
	Cuarto periodo - Ascenso capilar por succión - Muro Cemento - Yeso (CY)	
	Comparación absorción de muros - primer periodo	
	Cuadro comparativo de la absorción en el primer periodo en los muros	
	Comparación ascenso capilar por succión - primer periodo	
	Cuadro comparativo de la succión en el primer periodo en los muros	
Figura 63: I	Perdidas de partículas Muro patrón	71
	Inclinación Muro Patrón parte posterior	
Figura 65:	Turbiedad del agua muro Tierra Roja – Cal	72
Figura 66: I	Perdida del Recubrimiento Tierra Roja – Cal	73
Figura 67: I	Inclinación Muro Tierra Roja – Cal	73
Figura 68:	Verticalidad del muro Cemento - Cal forma adecuada	74
Figura 69: 3	Succión y Absorción mínima - Muro Cemento – Cal	74
	Verificación de la Verticalidad del muro Cemento – Yeso	
	Comparación absorción de Muros - segundo periodo	
	Cuadro comparativo de la absorción en el segundo periodo en los muros	
	Colapso Muro Tierra Roja – Cal	
	Colapso Muro Patrón Medidas final segundo periodo - Muro Cemento – Cal	
Figure 77:	Medidas final segundo periodo - Muro Cemento – Yeso	70
	Comparación ascenso capital por succión - segundo periodo Cuadro comparativo de la succión en el segundo periodo en los muros	
	Cuadro comparativo de la succion en el segundo periodo en los muros	
	Comparación absorción de muros - tercer período	
	Comparación ascenso capilar por succión - tercer periodo	
	Cuadro comparativo de la succión en el tercer periodo en los muros	
Figura 83: \	Verificación estado de los muros tercer periodo - Muro Cemento - Yeso	83
	Verificación estado de los muros tercer periodo - Muro Cemento - Cal	
	Comparación absorción de muros - cuarto periodo	
	Cuadro comparativo de la absorción en el cuarto periodo en los muros	
	Comparación ascenso capilar por succión - cuarto periodo	
	Comparación absorción muestras individuales - NTP 399.613 (Ensayo 24 horas)	
Figura 89: (Comparación succión - muestras individuales	86
Figura 90: I	Comparación succión - muestras individuales Ensayo absorción - Muestra adobe patrón	87
Figura 91: I	Ensayo Succión - Muestra Adobe Patrón	87
	Pérdida de estructura - muestras Adobe Tierra Roja - Cal	
	Comparación en porcentaje del costo de fabricación de Muros	
	Porcentaje de variación en el costo de la Construcción de Muros	
	Probabilidad Normal Primer Periodo – Absorción	
	Prueba De Igualdad De Varianza: Residuo Vs Tipo De Muro - Absorción Primer Perio	
	·	92
Figura 97: I	Probabilidad Normal Primer Periodo – Succión	95
Figura 98: I	Prueba de Igualdad De Varianza: Residuo Vs Tipo De Muro - Capilaridad Primer Peric	do
		96
Figura 99: 0	Gráfica de Box - Cox de Ascenso Capilar – Primer Periodo	99
	: Probabilidad Normal Segundo Periodo – Absorción1	
Figura 101	: Prueba De Igualdad de Varianza: Residuo Vs Tipo De Muro - Absorción Segur	ndo
	: Probabilidad Normal Segundo Periodo – Succión1	
Figura 103	: Prueba De Igualdad de Varianza: Residuo Vs Tipo De Muro - Capilaridad Segur	ndo
	: Gráfica de Box - Cox de Ascenso Capilar – Segundo Periodo 1	
	: Probabilidad Normal Tercer Periodo – Absorción	
_	Prueba De Igualdad de Varianza: Residuo Vs Tipo De Muro - Absorción Tercer Perio	
	: Gráfica de Box - Cox de Ascenso Capilar – Segundo Periodo	
	: Probabilidad Normal Tercer Periodo – Succión	
Figura 109:	Prueba de Igualdad De Varianza: Residuo Vs Tipo De Muro - Capilaridad Tercer Perio	
		14

Figura 110: Gráfica de Box - Cox de Ascenso Capila	r – Tercer Periodo116
Figura 111: Probabilidad Normal Cuarto Periodo – Al	
Figura 112: Prueba De Igualdad de Varianza: Residu	
	118
Figura 113: Gráfica de Box - Cox de Ascenso Capilal	
Figura 114: Probabilidad Normal Cuarto Periodo – Se	
Figura 115: Prueba de Igualdad De Varianza: Residuo	
	122
Figura 116: Gráfica de Box - Cox de Ascenso Capilal	
Figura 117: Adobera Utilizada	
Figura 118: Secado de los adobes	
Figura 119: traslado de material	
Figura 120: Distribución de los adobes	
Figure 121: Control de calidad de adobes	
Figura 122: Dimensiones del pozo	
Figura 123: Inicio construcción pozos	
Figure 125: Sobresimiente de 50 mm	
Figura 125: Sobrecimiento de 50 mm Figura 126: Pozos Impermeabilizados MP - CC	
Figura 127: Pozos Impermeabilizados MP - CC	
Figura 128: Supervisión de los pozos - Pozo CY - Po	
Figura 129: Muro con zócalo mortero cemento – cal.	
Figura 130: Aplicación del Recubrimiento - Tarrajeo r	
Figura 131: Distribución muro con tarrajeo Cemento	
Figura 132: Muro Cemento - Cal	
Figura 133: Muro con zócalo tierra roja - cal	
Figura 134: Aplicación de Recubrimiento - Tarrajeo n	
Figura 135: Distribución muro con tarrajeo Tierra Roj	
Figura 136: Muro Tierra Roja - Cal	139
Figura 137: Muro con zócalo Cemento - Yeso	
Figura 138: Aplicación de Recubrimiento - Tarrajeo n	
Figura 139: Distribución muro con Cemento - Yeso, r	
Figura 140: Muro Cemento - Yeso	
Figura 141: Muestras tara más material Ensayo Cont	
Figura 142: Ingreso de muestras Contenido de Hume	
Figura 143: Toma de Datos - Tamizado por Lavado	
	144
Figura 144: Toma de Datos - Tamizado por Lavado -	- Suelo Marrón Rojizo – Malla N° 40 – 60 - 100
-	144
Figura 145: Toma de Datos - Tamizado por Lavado -	Suelo Marrón Rojizo – Malla Nº 200 144
Figura 146: Toma de Datos - Tamizado por Lavado -	
Figura 147: Toma de Datos - Tamizado por Lavado -	
Figura 148: Toma de Datos - Tamizado por Lavado -	
Figura 149: Toma de Datos - Tamizado por Lavado -	
Figura 150: Toma de Datos - Tamizado por Lavado -	
Figura 151: Toma de Datos - Tamizado por Lavado -	
Figura 152: Toma de Datos - Limite Liquido – Suelo I	
Figura 153: Determinación peso seco para Absorción	
Figura 154: Ingreso Adobe Patrón 24 horas Absorció	
Figura 155: Ensayo no aplicable - Adobes Patrón	
Figura 156: Determinación peso seco para Absorción	n - Adobe Tierra Roja Cal150
Figura 157: Ingreso Adobe Tierra Roja - Cal 24 horas	
Figura 158: Ensayo no aplicable - Adobes Tierra Roja	
Figura 159: Determinación peso seco para Absorción	
FIGURA THU: AGONES CEMENTO - CALSUMERGIGOS 24 NO	
	oras
Figura 161: Determinación peso húmedo para Absor	ción - Adobe Cemento – Cal151
Figura 161: Determinación peso húmedo para Absor Figura 162: Determinación peso seco para Absorción	ción - Adobe Cemento – Cal151 n - Adobe Cemento – Yeso152
Figura 161: Determinación peso húmedo para Absor	ción - Adobe Cemento – Cal

Figura 166: Ensayo Succión - Adobe Tierra Roja Cal Nº 1	153
Figura 167: Figura 59: Ensayo Succión - Adobe Cemento - Yeso N° 3	153
Figura 168: Succión Adobe Patrón - No aplicable	154
Figura 169: Grafica Limite Liquido - Marrón Rojizo	155
Figura 170: Grafica Limite Liquido – Marrón	157
Figura 171: Carta de Plasticidad - Suelo Marrón	158
Figura 172: Limite Liquido – Marrón	158
Figura 173: Carta de Plasticidad - Suelo Rojo	159

RESUMEN

Este estudio analiza la resistencia en el tiempo de los muros de adobe utilizando tarrajeos de mortero cemento con cal, mortero tierra roja con cal y mortero de cemento con yeso en comparación con un muro sin recubrimiento, bajo al efecto de inundaciones simuladas, dentro de pozos impermeabilizados, durante cuatro periodos, el primer periodo se tomó medidas al minuto por una hora, segundo periodo medidas cada 20 minutos por 6 horas, el tercer periodo mediciones cada 12 horas durante 7días y el cuarto periodo mediciones cada 24 horas durante 17 días, donde se registró la absorción, el ascenso capilar por succión y los cambios en sus estructuras de cada muro, obteniendo en el muro sin tarrajeo una absorción de 22.75 litros y un ascenso capilar de 73 mm, colapsando en el minuto 281, el muro tierra roja con cal una absorción de 43.55 litros y un ascenso capilar de 211 mm, colapso a los 373 minutos, el muro con tarrajeo de cemento con cal presentó una absorción de 156.87 litros y capilaridad de 300 mm y el muro con tarrajeo de cemento con yeso presentó una absorción 191.39 litros y capilaridad de 520 mm, donde se concluyó el cumplimiento parcial de la hipótesis, en el cual el muro con tarrajeo de tierra roja cal, aumento solo un 33% su resistencia en su tiempo de colapso, y los muros con tarrajeo de cemento con cal y cemento con yeso si superaron el 100% la resistencia en el tiempo, además de superar de manera adecuada los cuatro periodos de ensayos, siendo recomendable estas soluciones técnicas, además desde una perspectiva de seguridad y calidad en la construcción, por ser los muros de adobe altamente vulnerables a efectos de inundaciones, y como constructores la importancia del cuidado de la vida y los bienes materiales de los pobladores, este estudio enfatiza la necesidad de tener en cuenta la protección de los muros de adobe, brindado diferentes opciones técnicas para su cuidado.

Palabras clave: adobe, tarrajeo, resistencia en el tiempo, succión, absorción.

ABSTRACT

This study analyzes the resistance over time of adobe walls using cement mortar with lime, red earth mortar with lime and cement mortar with plaster in comparison with an uncoated wall under the effect of simulated flooding inside wells. waterproofed for four periods. In the first period measurements were taken every minute for one hour, in the second period measurements were taken every 20 minutes for 6 hours, in the third period measurements were taken every 12 hours for 7 days and in the fourth period, every 24 hours for 7 days. 17 days, where the absorption, the capillary ascent by suction and the changes in their structures of each wall took place, obtaining in the wall without plastering an absorption of 22.75 liters and a capillary lift of 73 mm. collapsing at minute 281. The red wall with lime presented an absorption of 43.55 liters and a capillary rise of 211 mm, it collapsed at 373 minutes. The wall with cement plaster with lime presented an absorption of 156.87 liters and capillarity of 300 mm. Finally, the wall with cement plaster with plaster presented an absorption of 191.39 liters and capillarity of 520 mm, where the partial fulfillment of the hypothesis was concluded, in which the wall with lime red earth plaster increased its resistance by only 33%. in their collapse time and the walls with cement plaster with lime and cement with plaster did exceed the resistance over time by 100%, in addition to adequately overcoming the four test periods, these technical solutions being recommended, in addition, from a perspective of safety and quality in construction because the adobe walls are highly vulnerable to the effects of flooding, and as builders in the importance of caring for the life and material goods of the inhabitants. This study emphasizes the need to take into account the protection of adobe walls, providing different techniques for their care.

Keywords: adobe, plastering, resistance over time, suction, absorption.

CAPÍTULO 1. INTRODUCCIÓN

1.1. Planteamiento del problema

1.1.1. Contextualización

El adobe es una de las técnicas de construcción más antiguas y populares del mundo, el adobe es uno de los materiales de construcción más antiguos y de uso más difundido. El uso de unidades de barro secadas al sol data desde 8000 B.C. (Houben & Guillaud, 1994).

Así mismo, el adobe como material de construcción para uso habitacional ha sido utilizado, durante miles de años, por los pueblos indígenas de América, tanto en el suroeste de los Estados Unidos como en Mesoamérica y la región andina en Sudamérica. Actualmente el 50 por ciento de las casas del mundo están construidos con este material (Gama, Cruz, & Pi, 2010).

Se conoce que, las construcciones en adobe son vulnerables a la humedad ambiental, cambios de temperatura, asoleamiento, lluvia y viento. Pero el principal causante de las degradaciones suele ser el agua, la cual puede llegar a cambiar las propiedades fisicoquímicas del muro haciéndolo más débil. Las humedades variables crean una expansión y contracción del muro que favorece la perdida de material y/o revestimiento, y con el tiempo, el degradado estructural (Hernandez, 2016).

En tal sentido, el agua que más afecta a los muros exteriores es la que sube por capilaridad o la lluvia directa, La capilaridad es constante en todo el perímetro del muro. Esta disgrega la tierra y ello puede derivar a la disminución de la resistencia del muro o incluso, al colapso de la estructura. Existe un grave problema de capilaridad en toda la base del muro. (Hernandez, 2016).

Por consiguiente, las inundaciones es el fenómeno hidrológico que reporta mayores impactos en la sociedad. Estas representan aproximadamente el 50% de los desastres naturales no biológicos que ocurren en el mundo (Guha, 2011).

Además, el Perú se ve afectado de manera periódica por un sistema de lluvias que, de propiciarse de manera intensiva, generan las inundaciones del tipo

fluvial, que es la principal causa de inundaciones en nuestro país (Cabrera & Huaynate, 2010).

Entonces, alrededor del 30% de la población mundial vive en construcciones de tierra, aproximadamente el 50% de la población de los países en desarrollo, incluyendo la mayoría de la población rural y por lo menos el 20% de la población urbana y urbano marginal, viven en casas de tierra (Houben & Guillaud, 1994).

A nivel nacional, el segundo material más utilizado en las paredes exteriores de las viviendas particulares es adobe o tapial, con 2 millones 148 mil 494, que representa al 27,9% del total de viviendas (Instituto Nacional de Estadística e Informatica, 2017).

Finalmente, en la ciudad de Cajamarca, en la zona urbana, el caso de las paredes, las que predominan como primer lugar son las viviendas de adobe o tapia en el 44,1% (Instituto Nacional de Estadística e Informatica, 2017).

Frente a que nos encontramos en la ciudad de Cajamarca, una zona altamente vulnerable frente a lluvias e inundaciones, además de tener un porcentaje muy alto de viviendas construidas con adobe, la situación es preocupante, acumulando la falta de investigaciones sobre el comportamiento de los muros de adobe frente a las inundaciones, nace la idea de investigar el comportamiento de los muros de adobe incorporando diferentes materiales de protección con tarrajeo en muros de adobe, como el cemento con cal, la tierra roja con cal y cemento con yeso.

Es por eso que, en este estudio se analizó los efectos de una inundación simulada en estado estático en el tiempo de colapso de muros de adobe a escala normal, con tres diferentes recubrimientos en comparación de un muro de adobe sin protección.

1.1.1.1. Descripción del problema

El adobe es uno de los materiales más antiguos conocidos por el hombre, en la actualidad se sigue realizando este tipo de construcciones, siento uno de los materiales más utilizados.

Siendo, uno de los defectos más críticos del adobe tradicional es su alta vulnerabilidad ante la exposición prolongada en el agua de estas inundaciones, que pueden causar el colapso de las viviendas de adobe (San Bartolomé, 2010).

Según el Censo del 2012, en el departamento de Cajamarca, del total de viviendas particulares con ocupantes presentes, que suman 325,399 viviendas, se destaca que 249,578 tienen como material predominante en las paredes exteriores adobe o tapia, lo que representa el 76,7%. (Instituto Nacional de Estadística e Informática, 2012).

Los resultados del Censo Nacional 2017: XII de Población y VII de Vivienda, revelan que 4 millones 298 mil 274 viviendas particulares tienen en sus paredes exteriores como material predominante el ladrillo o bloque de cemento, lo que representa el 55,8% del total de viviendas. De igual forma, 2 millones 148 mil 494 viviendas particulares tienen como material predominante en sus paredes exteriores adobe o tapia, lo que representa el 27,9%; mientras que 727 mil 778 viviendas tienen como material predominante en las paredes exteriores madera, que significa el 9,5% del total de viviendas particulares. Otros materiales que tienen las viviendas, pero en menores porcentajes son: triplay, calamina y estera (3,1%), quincha (2,1%), piedra con barro (1,0%) y piedra o sillar con cal o cemento (0,6%) (Instituto Nacional de Estadística e Informatica, 2017).

Tabla 1 Distribución de viviendas según su tipo de material de construcción en el Perú

PERÚ: VIVIENDAS PARTICULARES CON OCUPANTES PRESENTES, SEGÚN MATERIAL PREDOMINANTE EN LAS PAREDES EXTERIORES, 1993-2017										
(Absoluto y porcentaje)										
Material predominante en las	Censo 1993		Censo	Censo 2007		Censo 2017		Variación Intercensal 2007-2017		Tasa de crecimiento promedio
	Absoluto	%	Absoluto	%	Absoluto	%	Absoluto	%		anual
Total	4 427 517	100,0	6 400 131	100,0	7 698 900	100,0	1 298 769	20,3	129 877	1,9
Ladrillo o bloque de cemento	1581355	35.7	2991627	46.7	4298274	55.8	1306647	43.7	130665	3.7
Piedra o sillar con cal o cemento	54247	1.2	33939	0.5	43170	0.6	9231	27.2	923	2.4
Adobe o tapia	1917885	43.3	2229715	34.8	2148494	27.9	-81221	-3.6	-8122	-0.4
Quincha (caña con barro)	207543	4.7	183862	2.9	164538	2.1	-19324	-10.5	-1932	-1.1
Piedra con barro	136964	3.1	106823	1.7	77593	1	-29230	-27.4	-2923	-3.1
Madera (pona, tornillo etc.)	310379	7	617742	9.7	727778	9.5	110036	17.8	11004	1.7
Otro material 1/	219144	4.9	236423	3.7	239053	3.1	2630	1.1	263	0.1

Fuente: INEI - Censos Nacionales de Población y Vivienda, 2017.

En el último censo del 2017 del total de viviendas particulares con ocupantes presentes, se destaca que 264 310 tienen como material predominante en las paredes exteriores adobe o tapia, lo que representa el 70,3% (Instituto Nacional de Estadística e Informatica, 2017).

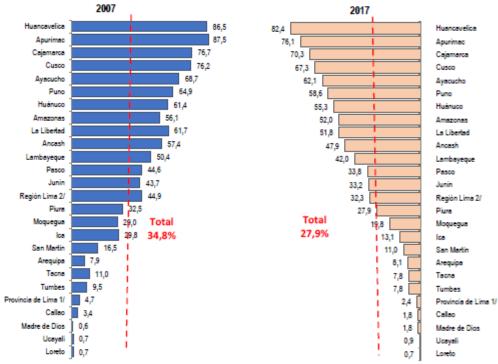


Figura 1: Viviendas particulares con adobe o tapial predominante en las paredes exteriores

Fuente: INEI - Censos Nacionales de Población y Vivienda, 2017.

Los resultados del censo de 2017, nos muestra a nivel departamental que Huancavelica tiene el mayor número de viviendas con paredes exteriores de adobe o tapia con 84 mil 835, que equivale al 82,4% del total de viviendas, seguido de Apurímac con 91 mil 752 viviendas (76,1%), Cajamarca con 264 mil 310 viviendas (70,3%) y Cusco con 217 mil 794 viviendas (67,3%), entre las principales (Instituto Nacional de Estadística e Informatica, 2017).

Las construcciones de adobe son poco resistentes frente a fenómenos naturales, entre los principales las inundaciones, estás son responsables de ocasionar principalmente fallas en los muros de adobe debido a su alta inestabilidad de sus propiedades mecánicas cuando son afectadas por la humedad ocasionada por el contacto directo con el agua.

El agua por efectos de absorción y succión produce humedad en los muros, afectando su resistencia en el tiempo, siendo principal causante del deterioro de las construcciones de tierra, siendo necesaria su protección a través de

recubrimientos resistentes a la humedad y el agua, cimientos y sobrecimiento que eviten el contacto del muro de adobe con el suelo, veredas perimetrales para evitar el contacto directo, aleros y sistemas de drenaje adecuados.

El agua produce sobre los muros de adobe, un efecto desgaste por erosión o lavado que afecta a la resistencia en el tiempo del muro, esto se origina por consecuencia de la inundación originada por las constantes lluvias. Para evitar el efecto negativo del agua de lluvia que se acumula en el suelo en momentos de precipitación intensa, los edificios construidos con adobe se sustentan sobre diferentes métodos, tal como, sobrecimientos, cimientos y recubrimientos para dotar de capacidad impermeable, o como medio de protección.

En el año 2010, en los departamentos de La Libertad, Piura y San Martin las inundaciones destruyeron 1750 viviendas y 4348 por lluvias intensas, generándose un aproximado de 718 viviendas destruidas; se sabe que son mayormente hechas sin el uso de fibras o paja. (Pereyra, 2012).

Los principales peligros naturales que amenazan a Cajamarca están relacionados con fenómenos de origen climático, debido a la presencia de períodos de lluvias extraordinarias no siempre vinculadas al Fenómeno del Niño; por lo que se prevé es necesario entonces tomar conciencia de esta situación (Instituto Nacional de Defensa Civil, 2012).

La norma E.080 (2017), en su ítem 6.9 nos dice que se debe evitar el deterioro de las edificaciones de tierra reforzada en referencia a la lluvia y la humedad, protegiéndolas a través de:

- Cimientos y sobrecimiento que eviten el humedecimiento del muro.
- Recubrimientos, revestimientos o enlucidos que los protejan de la lluvia, humedad y viento, y que permitan la evaporación de la humedad del muro.

El 07 abril de 2009, después de una torrencial lluvia acompañada de granizo y descargas eléctricas que duro aproximadamente tres horas, 50 viviendas construidas con adobe, resultaron inundadas en diversos sectores de Cajamarca, quedando no habitables, y de las cuales 7 colapsaron (Lozano, 2009).

El diario El Comercio informa que el 13 de enero de 2015 se produjo precipitaciones de hasta 20 litros por metro cuadrado, las cuales ocasionaron el colapso de del sistema de drenaje, afectando de forma grave a 26 viviendas de adobe (El Comercio, 2015).

Según Defensa Civil Cajamarca el 24 de noviembre de 2017, un total 175 viviendas de adobe quedaron afectadas por el desborde de 03 quebradas que inundaron parte del distrito de Baños del Inca (Cajamarca). El informe preliminar presentado por el área de Defensa Civil señala que 06 viviendas de adobe quedaron inhabitables, de las cuales 02 colapsaron (Instituto Nacional de Defensa Civil, 2017).

En base a lo visto anteriormente se identifica que la humedad afecta a la resistencia en el tiempo de colapso de las viviendas cuando son expuestas al contacto del agua, causando efectos en sus propiedades fisicoquímicas, debilitando los muros y conllevando a su colapso, por lo cual se determinó como problema la falta de protección de los muros de adobe en Cajamarca y el desconocimiento de la resistencia en el tiempo que brindan su protección.

En consecuencia, en esta tesis se analizó la resistencia del tiempo por efectos de la inundación en estado estático de muros de adobe con tarrajeos de morteros cemento - cal, tierra roja - cal, cemento - yeso y muro patrón, su comportamiento a pruebas simuladas y controladas.

1.1.1.2. Formulación del problema

¿Cuál es la diferencia porcentual de la resistencia en el tiempo frente a efectos de inundación simulada en muros de adobe aplicando tres métodos de recubrimiento con tarrajeos de mortero cemento - cal, mortero tierra roja - cal, y mortero de cemento - yeso, en comparación con un muro patrón sin recubrimiento, en la ciudad de Cajamarca?

1.2. Justificación e importancia de la investigación

1.2.1. Justificación de la investigación

La investigación se justifica porque aplica tres sistemas de tarrajeo en muros de adobe con morteros de cemento con cal, tierra roja con cal y cemento con yeso, para la mejora de la protección de los muros ante efectos de la inundación ocasionada por fenómenos naturales en la localidad de Cajamarca. Tratándose de que Cajamarca es un lugar con precipitaciones constantes y que tenemos un porcentaje alto de viviendas que utilizan el adobe como principal elemento constructivo, estos sistemas permitirán la protección de muros con la finalidad social de cuidar el patrimonio de los ciudadanos y evitar pérdidas materiales y humanas.

Esta investigación complementa el conocimiento que se tiene, con respecto al comportamiento de los muros con tres métodos de recubrimientos, se determinó la resistencia en el tiempo de muros por medio de la medición de su absorción, succión, capilaridad y el tiempo que soportan al efecto de inundación simulada, se determinara por medio de un porcentaje duración, determinado por el tiempo de colapso de cada muro con los recubrimientos de mortero Cemento - Cal, Mortero Tierra Roja – Cal, Mortero de Cemento – Yeso y muro patrón en la Ciudad de Cajamarca.

Se pretende en esta investigación brindar una contribución a la sociedad, brindando propuestas prácticas de protección de los muros de adobe para minimizar los desastres que vienen ocurriendo cuando se producen lluvias prolongadas.

La justificación personal, tiene como interés principal conocer de qué forma la humedad por efectos de la inundación en estado estático afecta la resistencia en el tiempo en las viviendas de Cajamarca y las medidas que se utilizan para atenuar el desastre.

1.2.2. Importancia de la investigación

La importancia de este estudio radica que existiendo en toda la ciudad de Cajamarca una gran cantidad de viviendas de adobe y habiéndose intensificado los cambios climáticos e inundaciones, ocasionando desgaste por efectos de la inundación en estado estático en los muros de adobe, es necesario mitigar el problema descrito. Buscando obtener viviendas de adobe con mejor comportamiento que el tradicional frente a este fenómeno. Ello es posible a la comparación de entre los muros propuestos aplicando nuevos sistemas de protección en el rubro de la construcción con adobe y la verificación de su comportamiento.

La presente investigación es importante ya que tiene un fin técnico - social, el cual nos permitirá conocer la resistencia en el tiempo de cada propuesta de recubriendo en los muros de adobe, con el fin de reducir el alto riesgo de colapso de las edificaciones de adobe por efectos de la humedad, la cual ocasiona desgaste y lavado en las cimentaciones de los muros de adobe, posteriormente su colapso.

Al realizar esta mejora en los muros de adobe se pretende obtener un beneficio fundamental de seguridad y estabilidad de las viviendas, y tratar de evitar futuras pérdidas humanas y económicas ante eventuales fenómenos producidos por efectos de la inundación en estado estático en un futuro.

La presente investigación cumple con los objetivos fundamentales de la Escuela de Posgrado de la Universidad Nacional de Cajamarca, la investigación en respuesta a los problemas inherentes de la sociedad Cajamarquina además permitirá innovar los materiales en el proceso de mejora y protección estructural del adobe.

1.3. Delimitación de la investigación

El estudio se centró para muros con unidades de adobe realizados en la ciudad de Cajamarca, por las características y propiedades de los materiales utilizados en su elaboración, además de las dimensiones de las unidades de adobe 30 x 40 x 10 cm, así como el material utilizado para asentar las unidades de adobe y los recubrimientos respectivos, así la investigación experimental considero:

- Estudio de clasificación de suelos por la metodología SUCS para la tierra utilizada en los la elaboración de los adobes, asentado de las unidades de adobe y para el recubrimiento del muro con tierra roja y cal.
- Construcción y análisis de tres muros mejorados en escala real de adobe por medio de recubrimiento con tarrajeo de mortero cemento - cal, mortero tierra

roja - cal, y mortero de cemento – yeso, en comparación con un muro patrón sin recubrimiento y su resistencia en el tiempo bajo el efecto de inundaciones simuladas.

- Tres muestras de adobe individual por cada tipo de tarrajeo y tres sin tarrajeo.
- Se realizó ensayos de succión, absorción, capilaridad en las muestras individuales.
- Se realizó ensayos de succión, absorción, capilaridad en los muros de escala real en pozos impermeabilizados construidos para simular una inundación controlada, esto durante cuatro periodos, en el primer periodo cada minuto durante los primeros 60 minutos luego de llenar el pozo hasta los 35 cm de altura base establecidos, el segundo periodo se realizó cada 20 minutos durante las 6 siguientes horas del primer periodo, y el tercer periodo se realizó cada 12 horas después del segundo periodo hasta el 7 día, y como complemento se realizó un cuarto periodo por 17 días más completando 24 días de ensayos, toda la simulación fue grabada por medio de cámaras especiales durante todo el proceso experimental.
- Finalmente se analizó el costo de construcción y protección de cada muro de adobe sometido al estudio.

El estudio se delimita como tema central determinar la resistencia en tiempo de muros de adobe frente a efectos de la inundación simuladas en estado estático, su comportamiento a pruebas de inundaciones simuladas y controladas determinando su succión, absorción y capilaridad en cada periodo de medición.

1.4. Limitaciones de la investigación

La Norma peruana no considera ensayos en muros de adobe para determinar la resistencia en el tiempo bajo efectos de inundaciones, por lo cual se adecuo en base a estudios previos para los muros y la norma E.070 de albañilería para las muestras individuales, todos los estudios y ensayos fueron ejecutados en el Laboratorio externo para las muestras individuales y en un domicilio habilitado especialmente para la ejecución de los ensayos en escala real, esto por motivo que los laboratorios de la zona no cuentan con equipamiento para realizar ensayos a escala natural, ni la implementación de cámaras para gravar el comportamiento de los muros.

La presente investigación es aplicable para la ciudad de Cajamarca, por el uso de materiales de la zona, y por el uso de unidades de adobe fabricadas en la localidad.

1.5. Objetivos de la investigación

1.5.1. Objetivo general

 Determinar la diferencia porcentual de resistencia en tiempo en muros de adobe utilizando recubrimiento de mortero cemento - cal, mortero tierra roja cal y mortero de cemento – yeso en comparación con un muro patrón sin recubrimiento, bajo el efecto de inundación simulada en la ciudad de Cajamarca.

1.5.2. Objetivos específicos

- Evaluar y cuantificar el porcentaje de resistencia en tiempo de colapso que sufren los muros de adobe mejorados con tarrajeos de mortero cemento - cal, mortero tierra roja cal, mortero de cemento – yeso en comparación con un muro de adobe patrón sin recubrimiento frente a efectos de inundaciones simuladas en estado estático.
- Determinar y comparar la absorción mediante mediciones programadas en los muros de adobe mejorados con tarrajeos de mortero cemento cal, mortero tierra roja cal, mortero de cemento – yeso y muro de adobe patrón bajo efecto de inundaciones simuladas en estado estático.
- Determinar y comparar el ascenso capilar por succión mediante mediciones programadas en los muros de adobe mejorados con tarrajeos de mortero cemento - cal, mortero tierra roja cal, mortero de cemento – yeso y muro de adobe patrón bajo efecto de inundaciones simuladas en estado estático.

CAPÍTULO 2. MARCO TEÓRICO

2.1. Antecedentes de la investigación o marco referencial

Según Teixeira Martins (2015), en su tesis doctoral "Estudio de las propiedades de las fábricas históricas de adobe como soporte a intervenciones de rehabilitación", llevado a cabo en la región de Aveiro (Portugal), tuvo como objetivos ampliar el conocimiento e investigación acerca de las propiedades y parámetros resistentes de las muros adobe, así como, analizar los principales mecanismos de daño asociados a las mismas, a la luz del el estado actual de estas construcciones, y su repercusión en el comportamiento resistente de las unidades de adobe, con especial énfasis para la influencia del agua y la humedad.

Para San Bartolomé (2010), en su tesis "Mejoramiento de las viviendas de adobe ante una exposición prolongada de agua por efecto de Inundaciones", con la finalidad de evitar el colapso de las viviendas de adobe convencional ante la exposición prolongada de agua causada por inundaciones, muy frecuentes en nuestro país, analizaron experimentalmente tres técnicas de mejoramiento que proporcionaron resultados satisfactorios.

Según Cabrea y Huaynate (2010), en el estudio "Mejoramiento de las construcciones de adobe ante una exposición prolongada de agua por efecto de inundaciones" donde se tuvo como objetivo principal contribuir al diseño de viviendas de adobe con la capacidad de resistir el impacto erosivo de inundaciones, teniendo como resultados que su muro patrón resistió sólo 20 minutos antes de colapsar y los muros con sobrecimiento, muro con adobe estabilizado y muro con tarrajeo soportaron los 16 días de ensayos, concluyendo la alta vulnerabilidad de los adobes convencionales ante la acción erosiva del agua y se recomienda evitar el uso del adobe convencional en zonas donde la probabilidad de ocurrencia de inundaciones sea elevada.

De acuerdo a Romero y Pereyra (2012), continuaron con los estudios en colaboración con Ángel San Bartolomé, su estudio viene a ser la segunda parte del proyecto "Mejoramiento de las construcciones de adobe ante una exposición

prolongada de agua por efecto de inundaciones – parte 2" y donde se analizan experimentalmente tres nuevos métodos de protección, muro con sobrecimiento de ladrillos, muro con sobrecimiento de concreto ciclópeo y muro con sobrecimiento tarrajeado, donde concluyeron principalmente que la presencia de otros factores los cuales son determinantes para la estabilidad del muro antes de su frágil colapso, los cuales son la selección del material y la preparación del mismo para formar adobe, además de La propuesta de tarrajeo sea aplicable para las casas actualmente construidas con muros de adobe, La propuesta cuyos resultados indicaron mayor capacidad de resistencia ante una inundación prolongada fue el muro de adobe con sobrecimiento de ladrillos de arcilla.

Según Ramírez Caparó (2016), en su tesis "Estudio de las Propiedades Mecánicas y Físicas del Adobe con Biopolímeros de Fuentes Locales" tiene como objetivo el estudio de la mejora de las propiedades de resistencia al agua y comportamiento mecánico de las construcciones de tierra. Para este propósito, utilizo biopolímeros naturales obtenidos de fuentes locales para la modificación de las propiedades del suelo.

Finalmente, Muñoz (2014), en la tesis "Comparación de la resistencia a la erosión hidráulica en muros de adobe con tarrajeos de mortero cemento - arena, tierra roja – cal cubierta con impermeabilizante de paleta de tuna y sin tarrajeo en la ciudad de Cajamarca, 2014" comprobó que los métodos alternativos para la protección de muros con nuevos materiales brindan protección ante los efectos de inundación, teniendo como principales conclusiones que los muros sin tarrajeo no soporta los efectos de erosión hidráulica por lo cual necesitan de una barrera que los proteja de estos efectos, obteniendo que la opción de tarrajeo con mortero cemento es la más recomendable por ser la más durable y de menor precio, en base a esto nos invita a continuar con el estudio actual.

2.2. Marco conceptual

Como se observó en la realidad problemática del estudio las construcciones de adobe son altamente vulnerables frente a fenómenos naturales, principalmente los sismos e inundaciones, las inundaciones ocasionan principales fallas en los muros de adobe debido a su alta inestabilidad de sus propiedades mecánicas cuando son afectadas por la humedad, además el adobe es uno de los materiales de construcción más antiguos y de uso más difundido, conociendo que el uso de unidades de barro secadas al sol data de 8000 B.C (Houben & Guillaud, 1994).

Así mismo, se indica que aproximadamente el 30% de la población mundial viven en casas de adobe, teniendo que en el Perú el adobe o tapial es el material predominante en las paredes exteriores de las viviendas en el Perú con 43.3%, marcando que en Cajamarca tenemos el aproximadamente el 76,7% de viviendas construidas con este tipo de material, siento un total de 249 578 viviendas (Houben & Guillaud, 1994).

El motivo de la construcción con este tipo de material en Cajamarca es que el adobe es un material de construcción que brinda diversos beneficios entre los principales el bajo costo y es de fácil accesibilidad, su bajo impacto ambiental, el bajo consumo energético, que es un buen aislante térmico y acústico, sin embargo ya conocemos que es altamente vulnerable a diversos fenómenos naturales, como la lluvia, el viento, pero principalmente a los efectos del agua, además que en Cajamarca es muy común la construcción informal o autoconstrucción, incluso la auto fabricación de sus adobes, mayormente en la zona rural.

Las estructuras de adobe son generalmente autoconstruidas, porque la técnica constructiva tradicional es simple y no requiere consumo adicional de energía (Gama, Cruz, & Pi-Puig, 2012).

Profesionales calificados (ingenieros y arquitectos) generalmente no están involucrados con este tipo de construcción y de allí la designación de "construcción no ingenieril", debido a esta forma de autoconstrucción es que tenemos casas con un índice muy alto de riesgo, propensas a fallar ante los efectos del agua por inundaciones. Producidas tanto por las lluvias como por desborde de ríos, quebradas o acequias (Gama, Cruz, & Pi-Puig, 2012).

La humedad afecta a la resistencia de los muros de adobe siendo responsable de la mayoría de las ruinas, tanto del deterioro por lluvias, como del desgaste producido por causa del agua. El agua, golpeará no solo en la cubierta, sino también en los parámetros exteriores de la construcción. De esta manera el agua golpea y va rompiendo y lavando la superficie, agravándose el problema cuando encuentra una abertura o cualquier tipo de discontinuidad o concavidad (penetra por el propio eje del muro y puede ocasionar que la pared se parta en dos) haciendo más fácil el derrumbe total (Proyecto Regional de Patrimonio Cultural y Desarrollo PNUD/UNESCO, 1983)

También, el causado por la humedad del suelo provoca deterioros serios; ya que, al no notarse en un principio, o ser despreciado por el usuario, el problema se va extendiendo hasta ser difícil su erradicación (Museo de Cultura Popular, 2014).

El problema del desgaste de los muros por efectos de succión y absorción afecta a la resistencia de los muros, no son sólo los derivados de un lavado o de un estancamiento de una masa líquida dentro de la construcción, sino también el producido por las sales solubles contenidas en ella. Es así que cuando el agua ataca el material llega con una cantidad de sales, al evaporarse y hasta secarse las sales quedan en el edificio, situadas en la zona en que se produjo la evaporación. Estas sales han reaccionado con la tierra y le han quitado la primera cohesión. Entonces la tierra, cae en polvo (Museo de Cultura Popular, 2014).

Es ampliamente aceptado el hecho que las construcciones de adobe son altamente vulnerables frente a fenómenos naturales como los sismos e inundaciones. Su casi nula resistencia a la tracción y la alta inestabilidad de sus propiedades mecánicas cuando son afectadas por la humedad han producido efectos desastrosos en incontables construcciones de este tipo a lo largo de la historia. Pese a ello, es todavía el material de construcción más utilizado por habitantes de las zonas rurales en el Perú y otros países del tercer mundo (Torrealva Davila, 2003).

La investigación sobre vivienda de adobe ha estado orientada por lo general a encontrar un procedimiento factible de refuerzo y a estabilizar el material frente a los efectos de la Erosión hídrica por humedad frente a factores del agua, por lluvias, inundaciones, huaycos, y otros desastres naturales que ocasionen presencia continua de agua. Desde el punto de vista del refuerzo, es imprescindible conocer y comprender como afectan las inundaciones a estas

construcciones y una forma de obtener este conocimiento es analizando los diversos tipos de falla que han ocurrido en construcciones de adobe en el pasado (Torrealva Davila, 2003).

En este trabajo se determinó la resistencia de construcciones de adobe por la humedad producida por el agua de las inundaciones en porcentaje comparándolas con un muro patrón, la forma arquitectónica corresponde a la utilizada en la ciudad de Cajamarca, es decir construcciones de uno y dos pisos por lo general, con muros ortogonales entre sí y entrepisos de madera y techos que pueden ser livianos o pesados, planos o inclinados. Se incluyen construcciones rurales y urbanas y dentro de estas últimas, construcciones coloniales y contemporáneas, el análisis será comparativo, por tal motivo se realizó la construcción de los muros con adobes que cumplan con las características que encontramos en forma general en Cajamarca, basando en su construcción en las recomendaciones que nos brinda la norma E.080 "Diseño Y Construcción Con Tierra Reforzada" actualizada a abril de 2017.

Por esta situación es que tenemos construcciones que no cumplen con las normas legales de construcción tal como la E.080 "Diseño Y Construcción Con Tierra Reforzada", ni lo estándares mínimos de seguridad, teniendo así casas inseguras y propensas a deterioro por efecto extras, nosotros trataremos el tema del efecto de las inundaciones.

La norma de E.080 de "Diseño Y Construcción Con Tierra Reforzada", recomienda Se debe evitar el deterioro de las edificaciones de tierra reforzada, causadas por el viento, la lluvia y la humedad, protegiéndolas a través de:

- a. Cimientos y sobrecimientos que eviten el humedecimiento del muro.
- Recubrimientos, revestimientos o enlucidos que los protejan de la lluvia, humedad y viento, y que permitan la evaporación de la humedad del muro.
- c. Aleros en el techo que protejan el muro de cualquier contacto con la lluvia. En las zonas bioclimáticas: Nº3 Interandino, Nº4 Meso andino, Nº5 Alto andino, Nº6 Nevado, Nº 7 Ceja de montaña, Nº8 Subtropical húmedo, Nº9 Tropical húmedo, se usan aleros no menores de 1 metro

de voladizo, adecuadamente anclados y con peso suficiente para no ser levantados por el viento.

- d. Veredas perimetrales con pendiente hacia el exterior de la edificación y que permitan la evacuación y evaporación del agua.
- e. Sistemas de drenaje adecuado (material granular suelto tipo piedras y gravas, con pendiente y colector inferior, evacuador de agua).
- f. En patios interiores, terrazas y otros espacios abiertos se asegura la evacuación y evaporación del agua o humedad depositada en el suelo o piso.

Tomando en cuenta la recomendación de la norma E.080 "Diseño Y Construcción Con Tierra Reforzada" en este estudio realizaremos del estudio del comportamiento de los muros, utilizando protección usando recubrimientos de materiales compuesto por morteros de cemento – cal, tarrajeo de tierra roja – cal, y mortero de cemento – yeso, este propuesta técnica se realiza con la finalidad de observar y medir el comportamiento de los muros ante los efectos de desgaste por los efectos de inundaciones, donde se calculara su porcentaje de absorción, el tiempo que resistente antes de su colapso, y se marcara el costo de la construcción de cada una de sus protecciones.

2.2.1.1. Para el análisis de resistencia en el tiempo por efectos de la humedad.

Con la finalidad de analizar las unidades de adobe el grado de impermeabilización de las distintas soluciones planteadas, se realizó pruebas de Succión en un minuto y Absorción en 24 horas, siguiéndose la NTP 399.613 para ladrillos de arcilla cocida, esto se debió a que la Norma de Adobe E.080 "Diseño y Construcción con Tierra Reforzada" no especifica procedimientos para estos ensayos.

Estas pruebas se ejecutaron sobre 03 especímenes de cada tipo, planteadas en la tesis.

De estas pruebas observaremos:

2.2.2. Prueba de succión

La prueba de Succión se adapta del acápite 11 de la NTP 399.613 para los especímenes de la presente investigación.

La prueba de succión busca determinar el índice de absorción temprana del espécimen analizado, lo que viene a ser la cantidad de agua que 200cm2 de la unidad de adobe puede absorber en un periodo normado en 1 minuto ± 1 segundo (Cabrera & Huaynate, 2010).

Según la NTP 399.613 Primeramente, las unidades se secan en un horno a una temperatura de 100°C durante 24 horas, Luego, se toma las dimensiones de la cara del espécimen que estará en contacto con el agua para determinar el área de succión, para después obtener los pesos secos de cada muestra haciendo uso de una balanza

Dónde:

S = Succión normalizada a un área de 200 cm2.

W = Diferencia de pesos del espécimen entre el estado húmedo y seco (gr).

L = Longitud del espécimen (cm).

B = Ancho del espécimen (cm).

Este método se aplicó a las pruebas individuales, para aplicar el ensayo utiliza el mismo que se usa en las pruebas de ladrillos, según la norma NTP 399.613.

2.2.3. Prueba de absorción

No existe un método establecido por la Norma Técnica Peruana E.080 "Diseño Y Construcción Con Tierra Reforzada" para el ensayo de unidades de adobe; por lo tanto, se adoptó la prueba de absorción de los ladrillos enunciada en la NTP 399.613. El objetivo del ensayo es conocer la capacidad

de absorción del adobe durante24 horas de inmersión en agua a una temperatura de 24°C ± 8°C.

absorción % = 100
$$\frac{(Ws - Wd)}{Wd}$$
(2)

Dónde:

Wd = Peso seco del espécimen.

Ws= Peso del espécimen saturado, después de la inmersión en agua fría durante 24 horas según sea el caso.

Este método se aplicó a las pruebas individuales, para aplicar el ensayo utiliza el mismo que se usa en las pruebas de ladrillos, según la norma NTP 399.613.

2.3. Definición de términos básicos

Aditivos naturales: Materiales naturales como la paja y la arena gruesa, que controlan las fisuras que se producen durante el proceso de secado rápido (Ministerio de Vivienda, Construcción y Saneamiento, 2017).

Adobe: Unidad de tierra cruda, que puede estar mezclada con paja u arena gruesa para mejorar su resistencia y durabilidad. (Ministerio de Vivienda, Construcción y Saneamiento, 2017).

Agua: El agua usada en la fabricación del adobe no debe contener, en lo posible, materia orgánica, sales u otras sustancias que pudieran ser nocivas, por lo que generalmente se usa agua potable.

El agua sirve para lubricar la mezcla de suelo y paja la que facilita su manejabilidad, las características de dureza, contenido de fierro, alcalinidad, PH, etc. Del agua, influyen en la consistencia del adobe. (Miranda, 1986).

Arena fina: Es un componente inerte, estable en contacto con agua y sin propiedades cohesivas, constituido por partículas de roca con tamaños comprendido entre 0.08 mm y 0.50 mm. Como el limo puede contribuir a lograr una mayor compacidad del suelo, en ciertas circunstancias (Ministerio de Vivienda, Construcción y Saneamiento, 2017).

Arena gruesa: Es un componente inerte, estable en contacto con el agua, sin propiedades cohesivas, constituido por partículas de roca comprendidas entre 0.6 mm y 4.75 mm (según Normas Técnicas Peruanas y/o las mallas Nº 30 y Nº 4 ASTM) que conforman la estructura granular resistente del barro en su proceso de secado. La adición de arena gruesa a suelos arcillosos disminuye el número y espesor de las fisuras creadas en el proceso de secado, lo que significa un aumento de la resistencia del barro seco según se ha comprobado en el laboratorio (Ministerio de Vivienda, Construcción y Saneamiento, 2017).

Cemento: Material pulverizado que por adición de una cantidad conveniente de agua forma una pasta aglomerante capaz de endurecer, tanto bajo el agua como en el aire. Quedan excluidos la cal hidráulica, la cal aérea y los yesos (Ministerio de Vivienda, Construcción y Saneamiento, 2020)

Cemento Portland: Producto obtenido por la pulverización del Clinker portland con la adición eventual de sulfato de calcio. Se admite la adición de otros productos que no excedan del 1% en peso del total siempre que la norma correspondiente establezca que su inclusión no afecta las propiedades del cemento resultante. Todos los productos adicionados deberán ser pulverizados conjuntamente con el Clinker. (Ministerio de Vivienda, Construcción y Saneamiento, 2020).

Colapso: Derrumbe súbito de muros o techos. Puede ser un derrumbe parcial o total (Ministerio de Vivienda, Construcción y Saneamiento, 2017).

Fisura o grieta estructural: Rajadura que se presenta en los muros de tierra producidas por cargas mayores a las que puede resistir el material, por gravedad, terremotos, accidentes u otros. Atraviesan los muros de lado a lado

y pueden ser de espesores variables o invisibles al ojo humano (Ministerio de Vivienda, Construcción y Saneamiento, 2017).

Geomallas.: Las geomallas son geosintéticos para refuerzo con una estructura plana abierta fabricadas con polímeros de alta resistencia y durabilidad. Actualmente disponemos de geomallas de poliéster y fibra de vidrio con recubrimientos específicos para cada aplicación, que proporcionan una resistencia a los rayos U.V. y rozaduras o mejoran su adherencia sobre superficies bituminosas (Texdelta, 2014)

Geomallas como refuerzo en construcciones de adobe: El material de refuerzo propuesto posee propiedades estándar de resistencia y rigidez, siendo fabricado de mantas de polímero de alta densidad, las cuales son perforadas a intervalos regulares y luego estiradas en ambas direcciones a temperatura y fuerza controlada, a fin de obtener una malla biaxial con aberturas rectangulares, nudos rígidos y costillas flexibles. (Texdelta, 2014)

Humedad: El agua y la humedad son enemigos naturales de la construcción con tierra, la resistencia a la compresión y al corte de la mampostería de adobe disminuyen drásticamente con el contenido de humedad (Real Academia Española, 2017).

Impermeabilizante: s un material que tiene propiedades protectoras contra el paso del agua y la formación de humedad en los techos y paredes. Su función principal es prolongar la vida útil de cualquier construcción. Cuando hablamos de impermeabilizar nos referimos a la aplicación de este producto sobre la construcción que tiene contacto con el agua y humedad (Ñucoyo, 2018).

Mortero: Material de unión de los adobes en una albañilería. Debe ser de barro mezclado con paja o con arena gruesa y eventualmente con otras sustancias naturales espesas para controlar las fisuras del proceso de secado (cal, mucílagos de cactus, y otros comprobados (Ministerio de Vivienda, Construcción y Saneamiento, 2017).

Muro: Es un muro arriostrado cuya estabilidad lateral está confinada a elementos de arriostre horizontales y/o verticales y que incluye refuerzos (Ministerio de Vivienda, Construcción y Saneamiento, 2017).

Paja o "Ichu": El Ichu es un material fibroso de forma bastante fina, que se añade a la mezcla de tierra – agua, con el objeto de absorber las tensiones provocadas por la contracción de la mezcla como consecuencia del secado. (Miranda, 1986).

Prueba de campo: Ensayo realizado sin herramientas a pie de obra o en laboratorio, basados en conocimientos comprobados en laboratorio a través de métodos rigurosos, que permite tomar decisiones de selección de canteras y dosificaciones (Ministerio de Vivienda, Construcción y Saneamiento, 2017).

Prueba de laboratorio: Ensayo de laboratorio que permite conocer las características mecánicas de la tierra, para diseñar y tomar decisiones de ingeniería (Ministerio de Vivienda, Construcción y Saneamiento, 2017).

Refuerzos: Elementos constituidos por materiales con alta capacidad de tracción, que sirven para controlar los desplazamientos de muros en caso de fi suras estructurales. Deben ser compatibles con el material tierra, es decir, flexibles y de baja dureza para no dañarlo, incluso durante las vibraciones que producen los sismos (Ministerio de Vivienda, Construcción y Saneamiento, 2017).

Secado: Proceso de evaporación del agua que existe en la tierra húmeda. El proceso debe controlarse para producir una evaporación muy lenta del agua, mientras la arcilla y barro se contraen y adquieren resistencia. Si la contracción es muy rápida, se producen fisuras (Ministerio de Vivienda, Construcción y Saneamiento, 2017).

Tierra: Material de construcción compuesto de cuatro componentes básicos: arcilla, limo, arena fina y arena gruesa (Ministerio de Vivienda, Construcción y Saneamiento, 2017).

Tierra roja: Suelo arcilloso de color rojo producido por la erosión de la piedra caliza, Marga o arcilla de color rojo-marrón directamente sobre la piedra caliza bien drenada que se encuentra típicamente en regiones con un clima mediterráneo, contenida en las rocas se acumula junto con cualquier material rocoso junto a otras no solubles. Bajo condiciones oxidantes, cuando los suelos están por encima de la mesa de agua, el óxido de hierro (herrumbre) se forma en la arcilla. Esto le da un color rojizo característico (Robinson, 1999).

CAPÍTULO 3. PLANTEAMIENTO DE LA HIPÓTESIS Y VARIABLES

3.1. Hipótesis

El porcentaje de resistencia en el tiempo de los muros con recubrimiento de mortero cemento - cal, mortero tierra roja cal y mortero de cemento – yeso es mayor al 100% en comparación con un muro patrón sin recubrimiento, bajo el efecto de inundación simulada en la ciudad de Cajamarca.

3.1.1. Variables/categorías

3.1.1.1. Operacionalización de las Variables

Se implemento la construcción de cuatro muros con recubrimientos de mortero cemento - cal, mortero tierra roja cal y mortero de cemento – y muro patrón sin recubrimiento los cuales se determinó la variación porcentual en la resistencia en el tiempo bajo los efectos de una inundación simulada controlada; donde se analizó las siguientes variables.

3.1.2. Variables / categorías:

Y: Tipo de recubrimiento:

- Y1: Muro Patrón sin Tarrajeo.
- Y2: Muro con tratamiento de tarrajeo con mortero Cemento Cal.
- Y3: Muro con tratamiento de tarrajeo con mortero Tierra Roja-Cal
- Y4: Muro con tratamiento de Tarrajeo con mortero Cemento Yeso.

X: Resistencia en el tiempo.

- X1: Absorción.
- X2: Succión.
- X3: Capilaridad.

3.1.3. Operacionalización/ categorización de los componentes de las hipótesis

Tabla 2: Operacionalización de variables

Título: "Efecto de Inundación Simulada en la resistencia en el tiempo de Muros de Adobe con Tarrajeo de Mortero Cemento - Cal, Mortero Tierra Roja – Cal, Mortero de Cemento – Yeso y muro patrón en la Ciudad de Cajamarca, 2018"

Cemento – reso y muro patron en la Ciudad de Cajamarca, 2018								
	5.6		Definición operacional de las variables/categorías					
Hipótesis	Definición conceptual de las variables/categorías	Variables/ categorías	Dimensiones/ factores	Indicadores/ cualidades	Fuente o instrumento de recolección de datos			
El porcentaje de	Tipos de Recubrimiento: En el presente estudio denominamos tipos de recubrimiento a los procesos seleccionados para la protección de los muros de adobe mediante diferentes tipos de tarrajeos.		Y1: Muro Patrón sin Tarrajeo	Área muro (m2)				
resistencia en el			Y2: Muro con tratamiento	Espesor Tarrajeo (mm)				
tiempo de los muros con			de tarrajeo con mortero	Dosificación tarrajeo	Protocolo de datos primer			
recubrimiento de		Y: tipo de	Cemento Cal.	Área muro (mm2)	periodo, segundo periodo,			
mortero cemento		recubrimiento	V2. N	Espesor Tarrajeo (mm)	tercer periodo, protocolos cuarto periodo y protocolos			
- cal, mortero		de recusimiento		Dosificación tarrajeo				
tierra roja cal y			Tierra Roja-Cal.	Área muro (mm2)	de muestras individuales.			
mortero de			Y4: Muro con tratamiento	Espesor Tarrajeo (mm)				
cemento – yeso			de tarrajeo con mortero	Dosificación tarrajeo				
es mayor al 100%			Cemento - Yeso.	Área muro (mm2)				
en comparación	Resistencia en el tiempo: En el			Contenido de Agua (%)				
con un muro	presente estudio la resistencia en		X1: Absorción	Descenso por Absorción (mm)				
patrón sin recubrimiento,	tiempo de colapso de los muros de			Tiempo (segundos)	Protocolo de datos primer			
bajo el efecto de	adobe se define como su capacidad	X: Resistencia		Diferencia de pesos (kg)	periodo, segundo periodo,			
inundación simulada en la	para resistir esfuerzos por la influencia del agua en estado estático	en tiempo.	X2: Succión	Tiempo (segundos)	tercer periodo, protocolos			
		2		Dimensiones de la muestra (mm)	cuarto periodo y protocolos			
ciudad de	sin colapsar, romperse, adquirir			Ascenso Capilar (mm)	de muestras individuales.			
Cajamarca.	deformaciones permanentes o		X3: Capilaridad					
	deteriorarse de algún modo.			Tiempo (segundos)				

CAPÍTULO 4. MARCO METODOLÓGICO

4.1. Ubicación geográfica (de acuerdo a la naturaleza de la investigación)

4.1.1. Ubicación

El proyecto se realizó en el departamento de Cajamarca, provincia de Cajamarca, distrito de Cajamarca; está ubicada entre las coordenadas 7°10′0″ S, 78°31′0″ W, UTM 9207085 774272 17M.

4.1.2. Clima y altitud

Cajamarca está ubicada a una altitud media de 2720 msnm, correspondiente a la región Quechua, lo que determina que su clima sea templado, seco; soleado durante el día, pero frío durante la noche. Su temperatura media anual es de 15,6 °C.

4.2. Diseño de la investigación

La investigación fue experimental, donde se analizó el ascenso capilar en la prueba de succión, Variación de dimensiones en la cantidad de agua en la prueba de absorción, Prueba de desgaste por efectos de la inundación en estado estático, tiempo de colapso, la factibilidad constructiva y económica mediante comparaciones entre los tres muros con recubrimientos y el muro patrón.

4.2.1. Selección de los adobes

Se realizó la clasificación de suelos para seleccionar la mejor opción de tierra, utilizando material de la zona de Cruz Blanca, donde se fabricó 350 adobes con medidas de 30 cm x 40 cm x 10 cm, está fabricación se hizo de manera artesanal.

Se puede observar el proceso de fabricación, selección y traslado de los adobes en el **anexo 9.1.**

Figura 2: Control de calidad de adobes

4.2.2. Propuesta de aplicación

Se construyó cuatro muros de adobe de 162 cm x 209 cm x 30cm en cuatro pozos impermeabilizados, la construcción los cuatro muros se realizará sobre un sobrecimiento de concreto ciclópeo de una altura de 5 cm con la finalidad de evitar que el agua ingrese por la parte baja del muro, en los pozos se sometió a los muros a los ensayos por efectos desgaste producido por la inundación simulada en estado estático afectando sus bases. Cada uno de los especímenes tendrá características diferentes en sus recubrimientos, como se indica a continuación:

4.2.2.1.1 Pozo impermeabilizado:

Es una estructura construida con ladrillos y mortero de cemento con agregado grueso, con tarrajeo cemento arena mezclado con aditivo impermeabilizante, que será adecuada para cumplir con los requisitos de impermeabilidad y estanqueidad, con la finalidad analizar las variables de absorción, capilaridad y desempeño a lo largo del tiempo de cada muro; este procedimiento consistirá en pruebas de estanqueidad, reparación de fisuras y puntos de filtración, terminando con el impermeabilizado final mediante tarrajeo con una mezcla incorporando aditivos impermeabilizantes, obteniendo como resultado un pozo adecuado para realizar las pruebas y análisis necesarios para el estudio.

Figura 3: Dimensiones del pozo

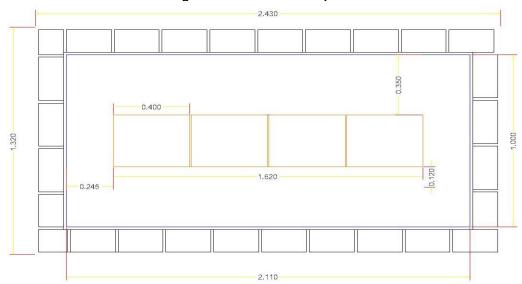
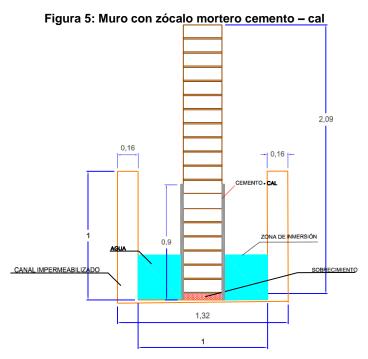


Figura 4: Supervisión de los pozos impermeabilizados


Se puede observar el proceso constructivo y la supervisión de los pozos impermeabilizados en el **anexo 9.2.**

A continuación, se indica las propiedades comunes que tendrán los cuatro muros y su proceso constructivo, se utilizó el mismo tipo de aparejo o amarre de "soga" para el asentado de los muros de adobe, cada muro tuvo su respectiva dosificación para su recubrimiento según lo seleccionado en el estudio, se continuó con la construcción de los muros, los cuales tuvieron las siguientes características:

Los muros en aparejo de soga presentan un espacio de 35 cm respecto a la cara interna del pozo y 24.5 cm en las partes laterales.

4.2.2.2. Muro con recubrimiento de mortero Cemento - Cal

En este muro se construyó un recubrimiento de cemento – cal, con una dosificación de 1:1:6 (cemento – cal – arena), de altura 90 cm desde la base del pozo, aplicado sobre una malla electro soldada ½" anclada al muro mediante clavos con separación de 10 cm. Este recubrimiento proporciono una barrera hidráulica con lo cual se disminuyó el porcentaje de absorción de agua del adobe.

Para observar el proceso constructivo del muro con recubrimiento de mortero Cemento – Cal, ir al **anexo 9.2.1.**

4.2.2.3. Muro con tarrajeo de Tierra Roja - Cal

En este muro se construyó un recubrimiento de Tierra Roja - Cal, con una dosificación de 2:1 (tierra - cal), de altura 90 cm desde la base del pozo, aplicado sobre una malla electro soldada ½" anclada al muro mediante clavos con separación de 10 cm. Este recubrimiento proporciono una barrera hidráulica con lo cual disminuyo el porcentaje de absorción de agua del adobe.

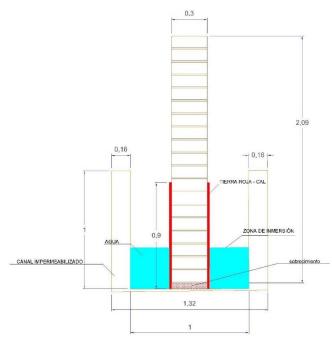


Figura 7: Muro con zócalo tierra roja - cal

Figura 8: Muro Tierra Roja – Cal

MURO TIERRA ROJA - CAL

T R C

Para observar el proceso constructivo del muro con recubrimiento de mortero Cemento – Cal, ir al **anexo 9.2.2**.

4.2.2.4. Muro con tarrajeo de mortero Cemento – Yeso

En este muro se construyó un zócalo de cemento - yeso de altura 90 cm desde la base del pozo, con una dosificación de 1:1:6 (cemento – yeso – arena), aplicado sobre una malla electro soldada ½" anclada al muro. Este zócalo proporciono una barrera hidráulica con lo cual disminuyo el porcentaje de absorción de agua del adobe.

Figura 9: Muro con zócalo Cemento - Yeso

Figura 10: Muro Cemento - Yeso

Para observar el proceso constructivo del muro con recubrimiento de mortero Cemento – yeso, ir al **anexo 9.2.3.**

4.2.2.5. Muro Patrón

En este muro se construyó sin recubrimiento, el asentado fue tipo soga. Este muro fue el patrón, a partir de este se compara los demás muros.

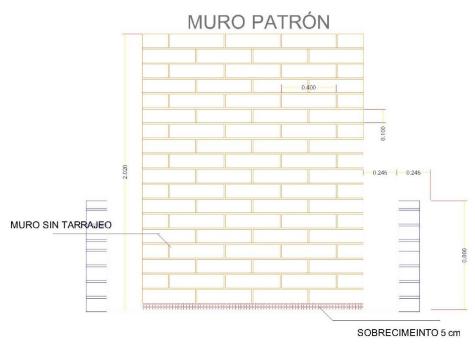


Figura 11: Distribución Muro Patrón

Luego de esperar el periodo indicado (28 días) se procedió con los ensayos de absorción y succión en el Muro patrón.

Este estudió comparó mediante un análisis en laboratorio las siguientes opciones mejoradas con tarrajeo de cemento – cal. Tierra roja – cal, cemento – yeso en comparación con un muro patrón, con la finalidad de ver cual opción

brinda mayor beneficio, y sea aplicable a las casas construidas con muros de adobe en la ciudad de Cajamarca.

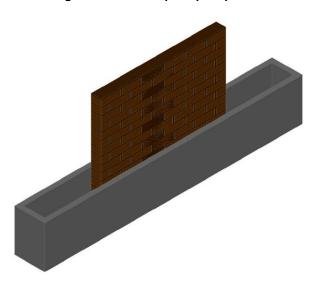


Figura 13: Muro en pozo para pruebas

Se realizaron pruebas de laboratorio consistentes en ensayos de succión y absorción de especímenes individuales y una prueba de inmersión de muros con la finalidad de simular las condiciones de una inundación controlada y recopilar datos del desempeño de las diversas variables ante periodos tempranos y prolongados de exposición al agua.

La información obtenida se utilizó para cuantificar el deterioro que sufren por la desgaste por efectos de la inundaciones en estado estático las estructuras de adobe ante la exposición del agua y, además, realizar un análisis de las soluciones planteadas en el estudio, comparando la efectividad y viabilidad de estos sistemas para que sean aplicados como soluciones prácticas al problema de la vulnerabilidad de las construcciones de adobe ante efectos de desgaste por inundación en estado estático en la ciudad de Cajamarca.

Todos los muros y unidades individuales fueron construidos por el mismo personal para eliminar el factor de incertidumbre por variación en la mano de obra.

4.2.2.6. Elaboración muestras individuales

4.2.2.6.1 Adobes con tarrajeo de mortero Cemento - Cal

Estas muestras fueron elaboradas sobre el adobe patrón (sin recubrimiento), primero se colocó la mala electrosoldada, luego se realizó la aplicación del mortero Cemento – Cal con una dosificación 1:1:6 (Cemento – Cal – Arena).

Figura 14: Elaboración muestras individuales Cemento - Cal

4.2.2.6.2 Adobes con tarrajeo de Tierra Roja - Cal

Estas muestras fueron elaboradas sobre el adobe patrón (sin recubrimiento), primero se colocó la mala electrosoldada, luego se realizó la aplicación del mortero Tierra Roja - Cal con una dosificación 2:1 (Tierra Roja - Cal).

Figura 15: Elaboración muestras individuales Tierra Roja - Cal

4.2.2.6.3 Adobes con tarrajeo de Cemento - Yeso

Estas muestras fueron elaboradas sobre el adobe patrón (sin recubrimiento), primero se colocó la mala electrosoldada, luego se realizó la aplicación del mortero Cemento – Yeso con una dosificación 1:1:6 (Cemento – Yeso – Arena).

4.3. Procedimientos de la investigación

4.3.1. Clasificación de suelos

(1) Contenido de humedad

Para determinar el contenido de humedad nos guiamos en las Normas MTC E 108 / ASTM D2216 / NTP 339.127, para el procedimiento y cálculo del porcentaje de humedad, se extrajo muestras en estado natural y luego fueron sometidas al ensayo, la determinación Contenido de humedad según la norma NTP 339.127, puede ver el procedimiento en el **anexo 9.3.1 (1)**

Figura 17: Ingreso de muestras Contenido de Humedad

(2) Granulometría mediante tamizado por lavado

Para el procedimiento para determinar la granulometría Mediante Tamizado Por Lavado se utilizó la norma ASTM D421 puede ver el procedimiento en el anexo 9.3.1 (2)

Figura 18: Toma de Datos - Tamizado por Lavado - Malla Nº 200

(3) Límites de plasticidad "Atterberg"

Para determinar los límites de plasticidad nos guiamos en las normas ASTM D4318 / NTP E339.130 – NTP E111, puede ver el procedimiento en el **anexo 8.3.1 (3)**

4.3.2. Ensayos muestras individuales

Para analizar las unidades de adobe, se realizaron pruebas de Succión y Absorción en, por motivo a que la Norma de Adobe E.080 no tiene normado estos procedimientos, se consideró la normativa de albañilería E.070 y la norma técnica NTP 399.613.

4.3.2.1. Ensayos absorción a las 24 horas de muestras individuales

El objetivo del ensayo de Absorción, es conocer la capacidad de absorción del adobe durante24 horas de inmersión en agua a una temperatura de 24°C ± 8°C (Cabrera & Huaynate, 2010).

Figura 20: Ensayo de absorción - 24 horas (adobe TRC - adobe CC)

Figura 21: Ensayo de absorción - 24 horas (adobe CY - adobe patrón)

Para ver el procedimiento de los ensayos de absorción a las 24 horas en las muestras individuales revisar el **anexo 9.3.2.1**

4.3.2.2. Ensayos de succión muestras individuales

La prueba de succión busca determinar el índice de absorción temprana del espécimen analizado, lo que viene a ser la cantidad de agua que 200cm2 de la unidad de adobe puede absorber en un periodo normado en 1 minuto ± 1 segundo (Cabrera & Huaynate, 2010).

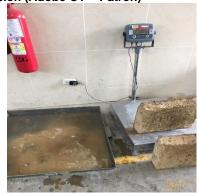

Figura 22: Ensayo succión (Adobe CC - adobe TRC)

Figura 23: Ensayo succión (Adobe CY - Patrón)

Para ver el procedimiento de los ensayos de succión al minuto en las muestras individuales revisar el **anexo 9.3.2.2**

A. Ensayos absorción y succión muros.

El ascenso capilar en la prueba de succión

Al finalizar la prueba de succión (contacto de la base del adobe con una película de agua de 3mm de espesor durante 1 minuto), se observó un ascenso capilar del agua, el cual fue analizado y comparado entre sí con cada muestra (Pereyra, 2012).

Variación de dimensiones en la prueba de absorción

El adobe humedecido trata de expandirse volumétricamente, por lo que antes y después de haberse sumergido 24 horas en agua se medió sus dimensiones, se tomó nota del incremento de cada muestra y se analizó el cambio entre sí de cada muestra (Cabrera & Huaynate, 2010).

Prueba de resistencia en el tiempo por efectos de la inundación en estado estático

Para este procedimiento se tomó como base los estudios realizados y asesoraros por el Ing. Ángel San Bartolomé y su metodología utilizada.

Después de 28 días de haberse construido los cuatro muros, se sometió a una inundación simulada para medir el desgaste por efectos de la inundación en estado estático mediante el siguiente procedimiento:

- Para medir la cantidad de agua absorbida por cada muro, se usó una regla de acero inoxidable.
- Para medir la cantidad de agua que sube a través de cada muro por capilaridad, se marcó un nivel a los 35 cm de altura del pozo y el muro.
- Se inundó el pozo impermeabilizado con un volumen conocido de agua, igual en cada caso.
- Desde el momento inicial de inundación se definieron cuatro periodos:
 - Primer Periodo: hasta cumplir las 01 horas de inundación.
 - Segundo Periodo: las primeras 06 horas de inundación, después del primer periodo.
 - Tercer Periodo: Los primeros 07 días de ensayo, después del segundo periodo.
 - Cuarto Periodo: 17 días después del tercer periodo, completando 24 días de ensayos.
- Durante el primer periodo la base del muro pasa de un estado de humedad natural a un estado de saturación. De no soportar este período se considera que el muro no resiste la inundación. Este periodo intenta representar una inundación por lluvias intensas.
- Durante el segundo periodo de desgaste por efectos de la inundación en estado estático se entiende que la base del muro se encuentra saturada y que sobrevivió al ambiente agresivo. Los muros que colapsaron durante este periodo se consideró que es resistente al desgaste por efectos de la inundación en estado estático, pero como producto de esta, sufre daños irreparables por desgaste por efectos de la inundación en estado estático que conllevan a descartar la solución empleada. Este periodo intenta representar la evaporación

paulatina del agua y el desaguado de la inundación. Cualquier muro que se mantenga en pie luego de este periodo, se considerará como exitoso en cuanto a la mejora empleada.

- Durante el tercer periodo se analizó la resistencia en el tiempo máxima los muros, y al superar este periodo se recomendará su construcción y la metodología aplicada.
- Durante el primer periodo se realizó mediciones de absorción y capilaridad cada minuto durante las primeras 01 horas del ensayo, y se grabó mediante dos filmadoras de manera continua para registrar el instante de colapso del muro, además se tiene un registro de fotografías de todos los cambios que se observó.
- Durante el segundo periodo se realizó mediciones de absorción y capilaridad cada 20 minutos, se grabó y se documentó mediante fotografías y mediciones registradas en los protocolos correspondientes.
- Durante el tercer periodo se realizará mediciones cada 12 horas, se registró mediante videos y fotografías, además se repuso el agua hasta los 350 milímetros del nivel del pozo señalado para reponer el agua que se absorbió en el ensayo y se perdió por evaporación.
- Después del tercer periodo, se optó por esperar completar 24 días de ensayo para observar que muros soportan este tiempo, en este proceso se medirá la absorción y succión en un periodo cada 24 horas.
- Concluido el ensayo se derrumbaron los muros que no han colapsado (del ser el caso) sacando los adobes desde la hilada superior, llevando un registro fotográfico de una unidad por cada hilada para documentar su consistencia al tacto y observar cuán húmedo se encontraba su núcleo.

Figura 24: Medida Absorción en pozo impermeabilizado y succión en muros

4.3.3. Tipo de diseño de investigación.

 Experimental: La presente investigación experimental se basó en la investigación mediante la observación estructurada directa, con un proceso cuantitativo y registro directo de la toma de datos en procesos repetitivos con análisis documental en protocolos.

4.4. Población, muestra, unidad de análisis y unidades de observación

4.4.1. Población.

 Muros de adobe con recubrimientos de Mortero Cemento - Cal, Mortero Tierra Roja - Cal, Mortero de Cemento - Yeso y muro patrón sin recubrimiento.

4.4.2. Muestra

Tres muros mejorados y un muro patrón:

- Muro con protección de la base con tarrajeo mortero cemento cal.
- Muro con protección de la base con tarrajeo Tierra roja cal.
- Muro con protección de la base con tarrajeo mortero cemento yeso.
- Muro de adobe patrón sin ningún tipo de recubrimiento.

Adobes individuales:

- 3 adobes tarrajeo cemento cal, 3 para prueba de succión y 3 para prueba de absorción.
- 3 adobes con tarrajeo de tierra roja cal, 3 para prueba de succión y 3 para prueba de absorción.
- 3 adobes con tarrajeo mortero cemento cal, 3 para prueba de succión y 3 para prueba de absorción.
- 6 adobes sin recubrimiento.

4.4.3. Unidad de análisis.

- Muros de adobe.
- Adobe.

4.5. Técnicas e instrumentos de recopilación de información

 Se utilizó formatos llamados "protocolos" para la recolección de datos, donde se registró la información obtenida mediante una calidez por contenido.

Figura 25: Protocolo primer periodo absorción - succión - 60 minutos UNIVERSIDAD NACIONAL DE CAJAMARCA **ESCUELA DE POSGRADO** INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN "EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL, MORTERO DE CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018" Periodo: Lugar PERIDO 1 (60 MINUTOS) Ensavado Por: Muñoz Barboza Erick Rafael Muestra: Fecha de inicio: Hora de inicio: Determinación de la..... / Muro / Periodo Uno (cada minuto) 1min 21min 41min 2mir 22min 42min 3mir 23min 43min 24min 44min 25min 45min 5mir 6mir 26min 46min 7mir 27min 47min 28min 48min 8min 9mir 29min 49min 30min 10min 50min 11min 31min 51min 12min 32min 52min 13mir 33min 53min 14mir 34min 54min 15min 35min 55min 16min 36min 56min 17min 37min 57min 18min 38min 58min 19min 39min 59min 20min 40min 60min Observaciones: **EJECUTÓ** ASESOR

ING. MUÑOZ BARBOZA ERICK RAFAEL

41

MG. ING. MIRANDA TEJADA HUGO

Figu	ra 26: Protocolo s	egundo periodo abs	orción - s	succión – c	ada 20 minu	tos (6 horas)			
		UNIVERSIDAD NACIONAL DE CAJAMARCA ESCUELA DE POSGRADO							
\	IN	GENIERÍA Y GEI	RENCIA	DE LA C	CONSTRUC	CIÓN			
	"EFECTO DE INUN	"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DI							
Escuela de Posgrado	MORTERO CEMEN	ITO - CAL, MORTERO TII PATRÓN EN L				IENTO – YESO Y MURO			
Lugar		TATION EN E	(0100710	DE 07 107 11VI7 11	Periodo:	PERIODO 2 (6 HORAS)			
Muestra:				Ensayado Po	r: Muñoz Barb	oza Erick Rafael			
Fecha de inicio:				Hora de inicio S	Segundo Periodo:				
Determ	inación de Absorción v S	Succión - Muro	Periode			MEDIDA EN (mm)			
Fecha:	hora:	tiempo en minutos		rción (mm)		apilaridad (mm)			
	00:20:00	20min		,		,			
	00:40:00	40min							
	01:00:00	60min							
	01:20:00	80min							
	01:40:00	100min							
	02:00:00	120min							
	02:20:00	140min							
	02:40:00	160min							
	03:00:00	180min							
	03:20:00	200min							
	03:40:00	220min							
	04:00:00	240min							
	04:20:00	260min							
	04:40:00	280min							
	05:00:00	300min							
	05:20:00	320min							
	05:40:00	340min							
	06:00:00	360min							
EJECUTÓ				ASESOR					
	ING. MUÑOZ BARBO	DZA ERICK RAFAEL			MG. ING. MIRANDA	TEJADA HUGO			
FECHA:				FECHA:					

Figura 27: Protocolo segundo periodo absorción - succión - cada 20 minutos (6 horas)

	<u> </u>		gando periodo abo	-		-	ee (e nerae)		
			UNIVERSIDAD	NACIOI	NAL DE CA	JAMARCA			
		ESCUELA DE POSGRADO							
*		IN	GENIERÍA Y GEF	RENCIA	DE LA C	ONSTRUC	CIÓN		
	"EFECTO D	E INUNE	ACIÓN SIMULADA EN L	A RESISTI	ENCIA DE MUI	ROS DE ADOBE	CON TARRAJEOS DE		
Escuela de Posgrado	MORTERO	CEMEN	TO - CAL, MORTERO TIE	ERRA ROJ	A – CAL, MOR	TERO DE CEMI	ENTO – YESO Y MURO		
			PATRÓN EN LA	CIUDAD	DE CAJAMAR	CA, 2018"			
Lugar						Periodo:	PERIODO 3 ((7 días)		
Muestra:					Ensayado Po	r: Muñoz Barbo	za Erick Rafael		
Fecha de inicio:					Hora de inicio T	ercer Periodo:			
Deter	minación de Ab	sorción y	Succión	Period	o tres (Cada 12 I	noras)	MEDIDA EN (mm)		
Fecha:	hora	a:	tiempo en minutos	abso	rción (mm)	ca	pilaridad (mm)		
			Horas						
			12Horas						
			24Horas						
			36Horas						
			48Horas						
			60Horas						
			72Horas						
			84Horas						
			96Horas						
			108Horas						
			120Horas						
			132Horas						
			144Horas						
			156Horas						
			168Horas						
Observaciones:									
EJECUTÓ					ASESOR				
	ING. MUÑ	NOZ BARBOZ	ZA ERICK RAFAEL						
						MG. ING. MIRANDA T	EJADA HUGU		
FECHA:					FECHA:				

Figura 28: Protocolo muestra individual absorción

	UNIVERSIDAD NACIONAL DE CAJAMARCA							
				ESCUELA DE	POSGRAD	0		
Escuela de Posgrado				SISTENCIA DE MUI DE CEMENTO – Y				
Laboratorio:				Fecha de Ensayo:				
Muestra:				Ensayado Por:				
			Determinació	n de la Absorción - ΝΊ	P 399.613			
Nº Muestra			1		2		3	
Descripción:								w =
Peso muestra seca	Wd							
Peso muestra húmeda	Ws							
Peso de Agua	w							
Porc. Humedad (%)	100 x ((Ws-Wd))/Wd							
Observaciones:								
					1			
EJECUTÓ				ASESOR				
	ING. MUÑO	Z BARBOZA ERICK RA	FAEL			MG. ING. M	IRANDA TEJADA HUGO	
FECHA:					FECHA:			

Figura 29: Protocolo muestra individual succión

	UNIVERSIDAD NACIONAL DE CAJAMARCA								
	ESCUELA DE POSGRADO								
Escuela de Posgrado					MUROS DE ADOBE (– YESO Y MURO PA				
Laboratorio:				Fecha de Ensayo:					
Muestra:				Ensayado Por:					
		Determi	nación de la Succió	n - NTP 399.613 (Ensa					
Nº Muestra			1		2	;	3	S =	
Descripción:									
Peso muestra seca	Wd								
Peso muestra húmeda	Ws								
Longitud del espécimen	L D								
Ancho del espécimen	B W								
Peso de Agua Succión	S=200w÷LB								
Observaciones:	5=200W-LD	L							
Observaciones.									
ΕJΕCUΤÓ					ASESOR				
						MG. ING. MIRANDA T	EJADA HUGO		
FECHA:					FECHA:				

Figura 30: Protocolo contenido de humedad

I		UNIVERSIDAD NACIONAL DE CAJAMARCA ESCUELA DE POSGRADO					
	ENSAYO:	CONTENIDO DE HUMEDAD CÓDIGO DEL DOCUMENT					
	NORMA:	MTC E 108 / ASTM D2216 / NTP 339.	AGTL-LS-UPNC:				
Escueta de Posgrado	TESIS:	"EFECTO DE INUNDACION SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL, MORTERO DE CEMENTO - YESO Y MURO PATRON EN LA CIUDAD DE CAJAMARCA, 2018"					
UBICACIÓN:		COLOR DE MATE	RIAL:				
FECHA DE M	UESTREO:	RESPONSABLE:					
FECHA DE ENSAYO:		REVISADO POR:					

Temperatura de Secado

<u>Método</u>

110°C

Horno 110 ± 5 °C

	CONTENIDO DE HUMEDAD									
ID	DESCRIPCION	UND	1							
A	Identificación del recipiente o Tara	-								
В	Peso del Recipiente	gr								
С	Recipiente + Material Natural	gr								
D	Recipiente + Material Seco	gr								
E	Peso del material húmedo (Wmh) = C - B	gr								
F	Peso del material Seco (Ws)= D - B	gr								
W %	Porcentaje de humedad (E-F / F) * 100	%								
G	Promedio Porcentaje Humedad	%								

$$(W\%) = \frac{Wmh - Ws}{Ws} * 100$$

Nota: Materia hace mención tanto al suelo como a los agregados tanto grueso como fino.

OB SERVACIONES:		
TESISTA:	ASESOR	
NOMBRE: Ing. Erick Rafael Muñoz Barboza	NOMBRE: Mag. Ing. Hugo Miranda Tejada	
FECHA	FECHA:	
	<u> </u>	

44

Figura 31: Protocolo granulometría por lavado

	UNIVERSIDAD NACIONAL DE CAJAMARCA							
Temper	ESCUELA DE POSGRADO							
	ENSAYO:	ANÂLISIS GRANULOMETRIA MEDIANTE TAMIZADO POR LAVADO CÓDIGO DEL DOCUMENTO AGTI-LS-UPNC:						
	NORMA:	ASTM D421						
	TESIS:	"EFECTO DE INUNDACION SIMULADA EN LA R CON TARRAJEOS DE MORTERO CEMENTO - C MORTERO DE CEMENTO - YESO Y MURO PATR 2018"	AL, MORTERO TIERRA ROJA – CAL,					
UBICACIÓN:		COLOR DE MATERIAL:						
FECHA DE MUESTREO:		RESPONSABLE:						
FECHA DE ENSAYO:		REVISADO POR:						

Peso de muestra inicial seca	gr
Peso de muestra seca; Ws	gr

Malla	Abertura (mm)	Peso Retenido (gr)	%Parcial Retenido (& RP)	%Acumulado Retenido (%RA)	% Que pasa
Nº 4	4.750				
Nº 10	2.000				
Nº 20	0.840				
N°30	0.590				
Nº 40	0.425				
Nº 60	0.250				
Nº 100	0.150				
Nº 200	0.075				
Cazoleta					
TOTAL					

Peso de muestra seca; Ws		gr	
--------------------------	--	----	--

Malla		Peso	%Parcial	%Acumulado	
mana	Abertura (mm)	Retenido (gr)	Retenido (& RP)	Retenido (%RA)	% Que pasa
Nº 4	4.750				
Nº 10	2.000				
Nº 20	0.840				
N°30	0.590				
Nº 40	0.425				
Nº 60	0.250				
Nº 100	0.150				
Nº 200	0.075				
Cazoleta					
TOTAL					

OBSERVACIONES:	
TESISTA:	ASESOR
NOMBRE: Ing. Erick Rafael Muñoz Barboza	NOMBRE: Mag. Ing. Hugo Miranda Tejada
FECHA	FECHA:

Figura 32: Protocolo Índice plástico

		rigara oz. ri rotocolo inalco piactico						
		UNIVERSIDAD NACIONAL DE CAJAMARCA						
_		ESCUELA DE POSGRADO						
	ENSAYO:	LÍMITES DE PLASTICIDAD	CÓDIGO DEL DOCUMENTO:					
Fronts de	NORMA:	NTP E339.130 - NTP E111 / ASTM D4318	AGTL-LS-UPNC:					
Posgrado Posgrado	TESIS:	"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CO TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA – CAL, MORTER DE CEMENTO – YESO Y MURO PATRON EN LA CIUDAD DE CAJAMARCA, 2018"						
UBICACIÓN	:	COLOR DE MATERIAL:						
FECHA DE MUESTREO:		RESPONSABLE:						
FECHA DE ENSAYO:		REVISADO POR:						
	·							

	DETERMINACION LIMITE LIQUIDO (LL)						
ID	DESCRIPCION	UND	1	2	3		
Α	Identificación de Recipiente	N°	2-005100	2-005110	2-005089		
В	Suelo Húmedo + Recipiente	gr	93.79	91.88	93.20		
С	Suelo Seco + Recipiente	gr	89.62	88.20	89.55		
D	Peso de Recipiente	gr	68.82	68.71	69.57		
E	Peso del Agua	gr	4.17	3.68	3.65		
F	Peso Suelo Seco	gr	20.80	19.49	19.98		
G	Número de Golpes	N	14	20	28		
Н	Contenido de Humedad	%	20.05%	18.88%	18.27%		

	DETERMINACION LIMITE PLASTICO (LP)						
ID	DESCRIPCION	UND	1	2			
Α	Identificación de Recipiente	N°	2-005090	2-005144			
В	Suelo Húmedo + Tara	gr	83.63	84.74			
С	Suelo Seco + Tara	gr	81.70	82.72			
D	Peso de Tara	gr	69.29	69.78			
E	Peso del Agua	gr	1.93	2.02			
F	Peso Suelo Seco	gr	12.41	12.94			
G	Contenido de Humedad	%	15.55%	15.61%			
Н	Promedio Límite Plástico		15.58%				

OBSERVACIONES:	
TESISTA:	ASESOR
NOMBRE: Ing. Erick Rafael Muñoz Barboza	NOMBRE: Mag. Ing. Hugo Miranda Tejada
FECHA	FECHA:

4.6. Técnicas para el procesamiento y análisis de la información

Para cuantificar la información se utilizó el software Microsoft Excel 2016 donde se realizó:

- Tablas comparativas mediante tabulación y graficas de datos.
- Tablas comparativas resistencia en el tiempo de colapso de cada muro.
- Tabla comparativa de costos de la elaboración de cada muro.

4.7. Equipos, materiales e insumos

4.7.1. **Equipos**:

- Balanza con aproximación de 0.01 gr.
- Horno de Temperatura: 100±10°C.
- Taras.
- Adobera.
- Cronómetro.
- Cámara fotográfica.
- Cámara filmadora con infrarrojo.
- · Cámara filmadora.
- Wincha 300 cm.
- Reglas Metálicas 100 cm.
- Nivel de Carpintero.
- Plomada.
- Regla.

4.7.2. Materiales e Insumos:

- Adobes de 30 x 40 x 10 cm.
- Cemento Tipo I.
- Arena gruesa.
- Arena Fina.
- Clavos de calamita 2"".
- Malla Electro soldada ½".
- Agua.
- Impermeabilizante aditivo.
- Cal hidratada.

- Yeso de construcción.
- Ladrillos de arcilla.
- Tierra roja

4.7.3. 2Matriz de consistencia metodológica

Tabla 3: Matriz de consistencia metodológica

	Tabla 3: Matriz de consistencia metodológica Título: "Efecto de Inundación Simulada en la resistencia de Muros de Adobe con Tarrajeo de Mortero Cemento - Cal, Mortero Tierra Roja – Cal, Mortero de Cemento – Yeso y muro patrón en la Ciudad de Cajamarca, 2018"							
Formulación del problema	Objetivo General	Hipótesis	Variables/ categorías	Dimensiones/ factores	Indicadores/ cualidades	Fuente o instrumento de recolección de datos	Metodología	Población y muestra
¿Cuál es la	Determinar la			Y1 : Muro Patrón sin Tarrajeo	Área muro (m2)			
diferencia porcentual de la	diferencia porcentual de			Y2: Muro con	Espesor Tarrajeo (mm)			
resistencia en el tiempo frente a	resistencia en tiempo en	El porcentaje de		tratamiento de tarrajeo con mortero Cemento Cal.	Dosificación tarrajeo Área muro (m2)			Población: Muros de adobe con recubrimientos de Mortero Cemento - Cal,
efectos de inundación	muros de adobe	resistencia en el	Y: tipo de	Y3: Muro con	Espesor Tarrajeo (mm)	Protocolo de datos primer periodo, segundo periodo, tercer periodo, cuarto periodo y	Se construirán cuatro muros de adobe de	Mortero Tierra Roja – Cal, Mortero de Cemento
simulada en	utilizando	tiempo de los muros con recubrimiento de	recubrimiento	tratamiento de tarrajeo con mortero Tierra Roja-	Docificación tarraigo	protocolos de muestras individuales.	1.62m x 2.09 m x 0.30 m en cuatro pozos impermeabilizados, la construcción los cuatro muros se realizara sobre un sobrecimiento de concreto ciclópeo de una altura de 5 cm con la	– Yeso y muro patrón sin recubrimiento.
muros de adobe	recubrimiento	mortero cemento -		Cal	Área muro (m2)			Muestra :
aplicando tres métodos de	de mortero cemento - cal,	cal, mortero tierra roja cal y mortero de		Y4: Muro con Espesor Tarrajeo (mm)	Espesor Tarrajeo (mm)			- Muro con protección de la base con tarrajeo mortero cemento - cal.
recubrimiento con tarrajeos de	mortero tierra roja cal y	cemento – yeso es		tratamiento de Tarrajeo con mortero	Dosificación tarrajeo		finalidad de evitar que el agua ingrese por la parte baja del muro, que permite someter a	- Muro con protección de la base con tarrajeo
mortero cemento		mayor al 100% en		Cemento - Yeso.	Área muro (m2)		los muros a los efectos desgaste por efectos	Tierra roja - cal.
,	cemento – yeso	muro natrón sin			Contenido de Agua (%)		de la inundación en estado estático simulada	- Muro con protección de la base con tarrajeo mortero cemento - yeso.
tierra roja - cal, y mortero de	con un muro	recubrimiento, bajo el		X1 : Absorción	Descenso por Absorción (mm)		afectando sus bases. Cada uno de los especímenes tendrá características diferentes	- Muro de adobe patrón sin ningún tipo de
cemento – yeso,	patrón sin	efecto de inundación simulada en la ciudad			Tiempo (segundos)		en sus bases	recubrimiento.
en comparación	recubrimiento,	de Cajamarca.	X: Resistencia en		Diferencia de pesos (kg)	Protocolo de datos primer periodo, segundo periodo, tercer periodo, cuarto periodo y		
con un muro patrón sin	bajo el efecto de inundación		el tiempo.	X2 : Succión	Tiempo (segundos)	protocolos de muestras individuales.		
recubrimiento,	simulada en la				Dimensiones de la muestra (mm)			
en la ciudad de Cajamarca?	ciudad de Cajamarca.			X3 : Capilaridad	Ascenso Capilar (mm)			
					Tiempo (segundos)			

CAPÍTULO 5. RESULTADOS Y DISCUSIÓN

5.1. Presentación de resultados

A continuación, presentamos los resultados de los ensayos realizados para la tesis distribuyendo en los análisis de los suelos utilizados, análisis de las muestras individuales y los muros con cada tarrajeo a los ensayos de absorción, succión, tiempo de colapso y el costo en la construcción de cada uno.

5.1.1. Análisis de suelos

Para el análisis de los suelos utilizados tanto en la fabricación de adobes, asentado de adobe para la elaboración de los muros, y tarrajeo del muro Tierra Roja – Cal, se realizó la clasificación de sus suelos.

5.1.1.1. Contenido de humedad suelos

Para el análisis de los suelos utilizados tanto en la fabricación de adobes, asentado de adobe para la elaboración de los muros, y tarrajeo del muro Tierra Roja – Cal, se realizó la clasificación de sus suelos.

A. Contenido de humedad Suelos.

Tabla 4: Contenido de humedad suelo utilizados

Nombre	Uso	Promedio Porcentaje Humedad (w%)
Suelo Marrón Rojizo	fabricación de adobes	13.685%
Suelo Marrón	Asentado de adobes	9.479%
Suelo Rojo	Tarrajeo tierra Roja	14.428%

Del ensayo de cálculo que el suelo marrón rojizo se obtuvo % 13.69 de contenido de humedad, del ensayo de cálculo que el suelo marrón se obtuvo % 9.48 de contenido de humedad, del ensayo de calculo que el suelo Rojo se obtuvo % 14.43 de contenido de humedad, el cálculo de los resultados de los ensayos de contenido de humedad se puede observar en el los protocolos.

5.1.1.2. Clasificación de los suelos SUCS

Se realizó los ensayos de granulometría por el método de lavado y se determinó los Límites de Atterberg de los tres suelos utilizados, obteniendo los siguientes resultados, para ver el cálculo y procesamiento de datos ir a los protocolos, y la clasificación al **anexo 9.3.3.**

A. Clasificación de suelo marrón rojizo

La clasificación de suelos por el método de Clasificación de suelos Unificados (SUCS) para el suelo obtenido del km 11 carretera hacía Bambamarca, suelo utilizado para la fabricación de los adobes, dio como resultado un suelo SC (Arena arcillosa, mezclas de grava, arena y arcilla).

B. Clasificación de suelo marrón (asentado)

La clasificación de suelos por el método de clasificación de suelos unificados (SUCS) para el suelo obtenido del km 7 carretera hacía Bambamarca, suelo utilizado para el asentado de los adobes, es un suelo MI (Limos inorgánicos, polvo de roca, limos arenosos o arcillosos ligeramente plásticos.).

C. Clasificación de suelo rojo (tarrajeo)

La clasificación de suelos por el método de Clasificación de suelos Unificados (SUCS) para el suelo obtenido del km 7 carretera hacía Bambamarca, suelo utilizado para la mezcla del tarrajeo del muro "Tierra Roja – Cal, es un suelo mixto entre CL Y ML (Arcilla Limo Arenosa).

Tabla 5: Clasificación de suelos utilizados

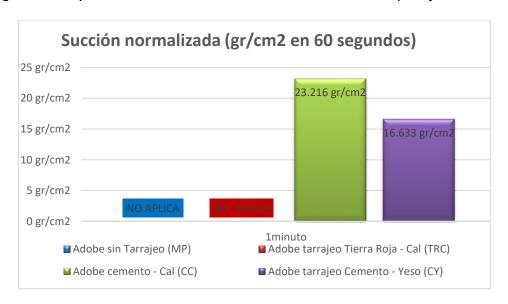
Nombre	Uso	Тіро
Suelo Marrón Rojizo	fabricación de adobes	Suelo SC (Arena arcillosa, mezclas de grava, arena y arcilla)
Suelo Marrón	Asentado de adobes	Suelo MI (Limos inorgánicos, polvo de roca, limos arenosos o arcillosos ligeramente plásticos.)
Suelo Rojo	Tarrajeo tierra Roja	Suelo mixto entre CL Y ML (Arcilla Limo Arenosa).

5.1.2. Análisis de muestras Individuales

Con la finalidad de analizar las unidades de adobe el grado de impermeabilización de las distintas soluciones planteadas, se realizó pruebas de Succión en un minuto y Absorción en 24 horas.

5.1.2.1. Pruebas de succión

En la tabla se resumen los resultados de la prueba de succión en las muestras de adobe sin recubrimiento y con recubrimiento.


La prueba de succión busca determinar el índice de absorción temprana del espécimen analizado, lo que viene a ser la cantidad de agua que 200cm2 de la unidad de adobe puede absorber en un periodo normado en 1 minuto ± 1 segundo.

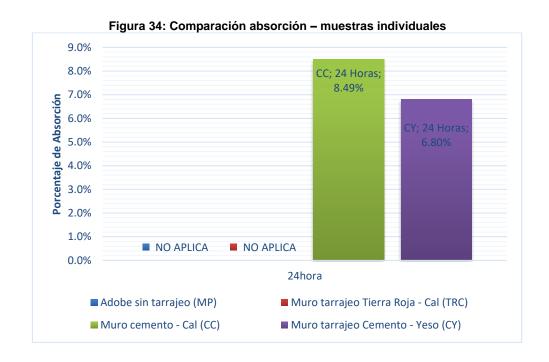
.

Tabla 6: Determinación succión adobes individuales NTP 399.613 (Ensayo en 1 minuto)

Descripción	Muestra 1 (gr/cm2)	Muestra 2 (gr/cm2	Muestra 3(gr/cm2	Promedio (gr/cm2	
Adobe sin Tarrajeo (Muro Patrón)		NO AP	LICA		
Adobe tarrajeo Tierra Roja - Cal (TRC)	NO APLICA				
Adobe cemento - Cal (CC)	24.978 gr/cm2	23.924 gr/cm2	20.747 gr/cm2	23.216 gr/cm2	
Adobe tarrajeo Cemento - Yeso (CY)	17.092 gr/cm2	16.891 gr/cm2	15.917 gr/cm2	16.633 gr/cm2	

Figura 33: Comparación Succión – muestras individuales NTP 399.613 (Ensayo en 1 minuto)

Para ver el cálculo y procesamiento de datos del ensayo de succión de muestras individuales ir a los protocolos.


5.1.2.1. Pruebas de absorción:

En la tabla se resumen los resultados de la prueba de absorción en las muestras de adobe sin recubrimiento y con recubrimiento.

Las unidades que cantidad de agua absorber en un periodo normado en 24 horas.

Tabla 7: Determinación absorción - adobes individuales

Determinación de la Absorción - NTP 399.613 (Ensayo 24 horas)					
Descripción	Muestra 1 (%)	Muestra 2 (%)	Muestra 3(%)	Promedio (%)	
Adobe sin Tarrajeo (Muro Patrón)		NO AP	LICA		
Adobe tarrajeo Tierra Roja - Cal (TRC)		NO AP	LICA		
Adobe cemento - Cal (CC)	7.82%	8.54%	9.12%	8.49%	
Adobe tarrajeo Cemento - Yeso (CY)	6.68%	6.33%	7.40%	6.80%	

Para ver el cálculo y procesamiento de datos del ensayo de succión de muestras individuales ir a los protocolos.

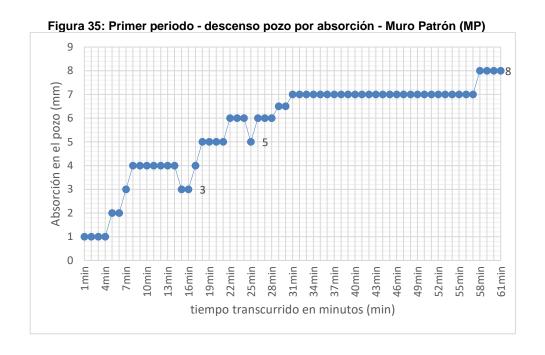
5.1.3. Análisis de muros de adobe – primer periodo

Con la finalidad de analizar los muros de adobe el grado de impermeabilización de las distintas soluciones planteadas, se realizó pruebas de Succión y Absorción, en el primer periodo se midió cada minuto durante los primeros 60 minutos después de que el pozo fue llenado hasta los 35 cm establecidos como base.

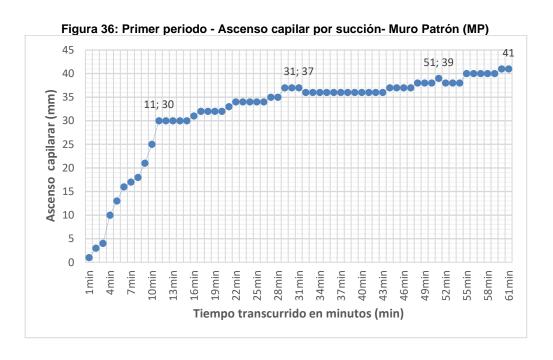
Tabla 8: Área de la base de muros de adobe

Descripción	Área (mm2)
Muro sin Tarrajeo (Muro Patrón)	489316 mm2
Muro tarrajeo Tierra Roja - Cal (TRC)	484500 mm2
Muro cemento - Cal (CC)	537840 mm2
Muro tarrajeo Cemento - Yeso (CY)	537740 mm2

Para ver el cálculo y procesamiento del área de los muros ver anexo 9.3.4.1 (A, B, C, D)

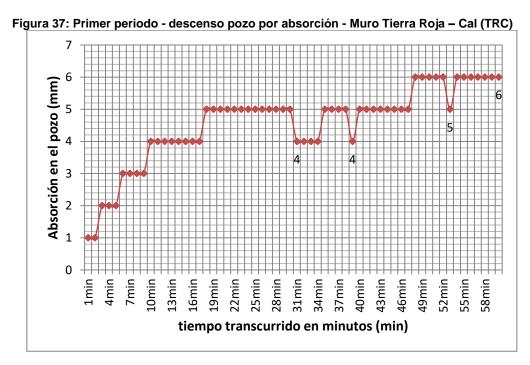

5.1.3.1. Pruebas de succión y absorción en muros - primer periodo

En las gráficas se resumen los resultados de la prueba de succión y absorción en las muestras de adobe sin recubrimiento y con recubrimiento, medias cada intervalo de un minuto.


Para ver el cálculo y procesamiento de succión y absorción en muros – Primer Periodo (60 minutos) ver **anexo 9.3.4.1 (A, B, C, D).**

A. Muro Patrón (MP)

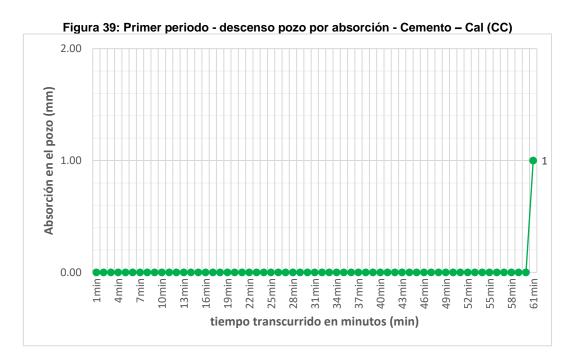
Resultados de la prueba de absorción y succión en el muro patrón durante el primer periodo.

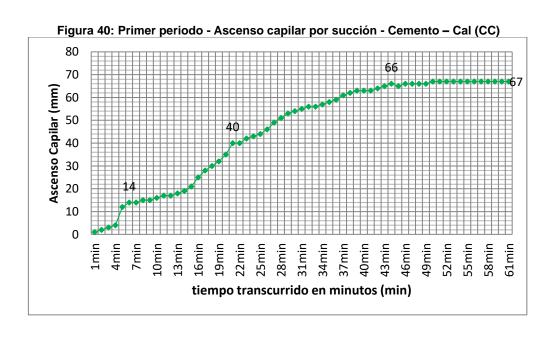

Observamos que en el minuto 14 y minuto 24 el muro produjo un fenómeno de asentamiento, por lo cual el volumen del agua aumento en este periodo. El volumen total de agua absorbida es de 13 litros durante el primer periodo correspondiente a 60 minutos de ensayo.

Observamos que en hasta el minuto 11 hay un ascenso capilar pronunciado hasta los 30 mm, al culminar el primer periodo (60 minutos) se llegó a un ascenso capilar de 41 mm.

B. Muro Tierra Roja – Cal (TRC)

Resultados de la prueba de absorción y succión en el con recubrimiento de Tierra Roja –Cal.

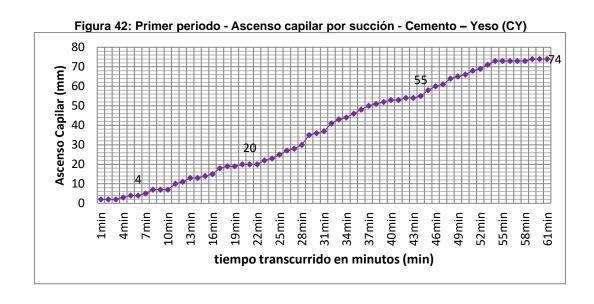

Observamos que en el minuto 30, minuto 38 y minuto 52 el muro produjo un fenómeno de asentamiento, el agua ingresa en el muro cambiando su estructura, por lo cual el volumen del agua aumento en este periodo. El volumen total de agua absorbida es de 9.68 litros durante el primer periodo correspondiente a 60 minutos de ensayo.


Observamos que ascenso capilar por succión es creciente llegando a un máximo de 74 mm en el primer periodo correspondiente a 60 minutos de ensayo.

C. Muro Cemento – Cal (CC)

Resultados de la prueba de absorción y succión en el con recubrimiento de Cemento-Cal.

Observamos que el volumen total de agua absorbida es de 1.55 litros durante el primer periodo correspondiente a 60 minutos de ensayo.


Observamos que ascenso capilar por succión es creciente llegando a un máximo de 67 mm en el primer periodo correspondiente a 60 minutos de ensayo.

D. Muro Cemento – Yeso (CY)

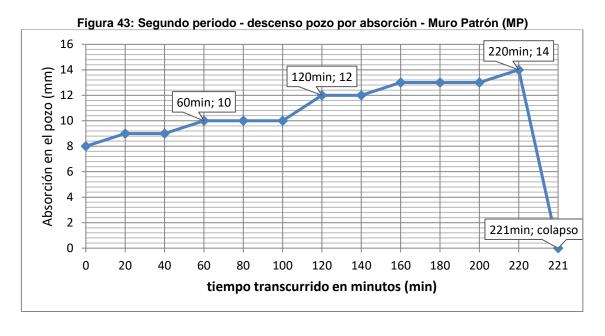
Resultados de la prueba de absorción y succión en el con recubrimiento de Cemento-Cal.

Observamos que el volumen total de agua absorbida es de 1.57 litros durante el primer periodo correspondiente a 60 minutos de ensayo.

Observamos que ascenso es creciente llegando a un máximo de 74 mm en el primer periodo correspondiente a 60 minutos de ensayo

5.1.4. Análisis de muros de adobe – segundo periodo

Se realizó pruebas de succión y absorción, en el segundo periodo se midió cada 20 minutos durante las siguientes 6 horas después de del primer periodo ensayado.


5.1.4.1. Pruebas de succión y absorción en muros – segundo periodo

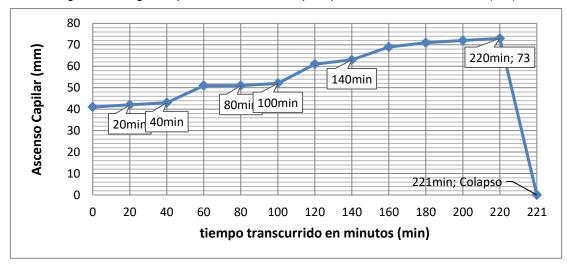
En las gráficas se resumen los resultados de la prueba de succión y absorción en las muestras de adobe sin recubrimiento y con recubrimiento, medidas cada intervalo de 20 minutos.

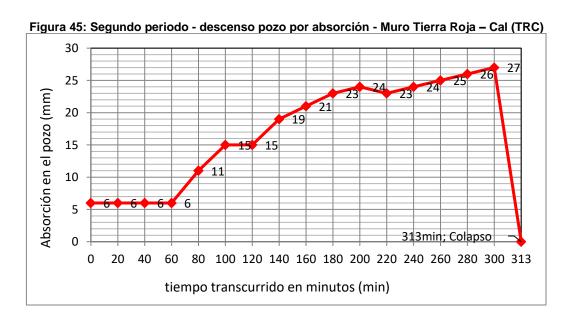
Para ver el cálculo y procesamiento de succión y absorción en muros segundo periodo ver anexo 9.3.5.1 (A, B, C, D)

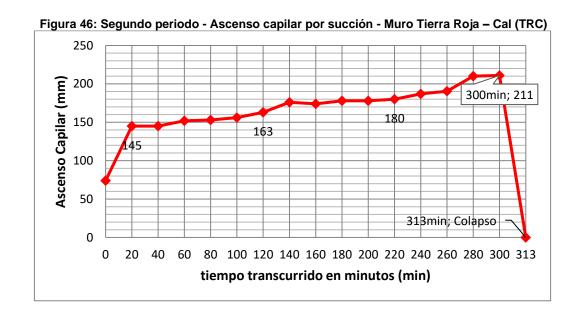
A. Muro Patrón (MP)

Resultados de la prueba de absorción y succión en el muro patrón durante el segundo periodo.

Observamos que en el segundo periodo correspondiente el muro absorbió hasta 14 mm en el minuto 220 un total de 9.75 litros, siento un total acumulado de 22.75 litros, posteriormente el muro colapso.



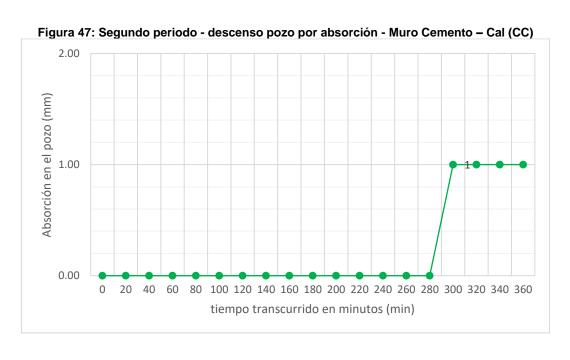

Figura 44: Segundo periodo - Ascenso capilar por succión - Muro Patrón (MP)

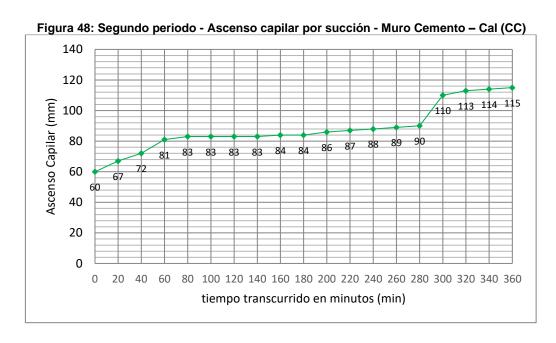

Observamos que ascenso capilar por succión es creciente llegando a un máximo de 73 mm en el segundo periodo, antes de colapsar, el muro colapso a las 11:56 am, a las 4 horas con 41 minutos (281 minutos de iniciado los ensayos) aproximadamente de empezar el primer periodo de los ensayos, no completo el segundo periodo.

B. Muro Tierra Roja – Cal (TRC)

Resultados de la prueba de absorción y succión en el muro tierra roja – cal durante el segundo periodo.

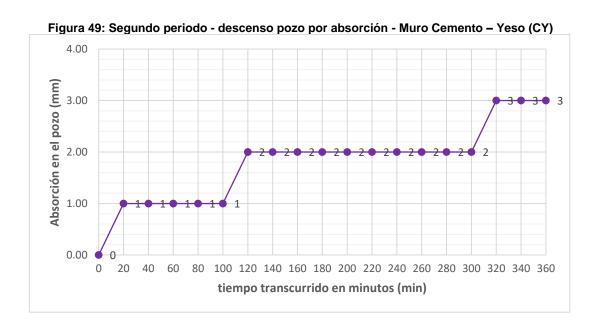
Observamos que en el segundo periodo correspondiente el muro absorbió hasta el minuto 300 un total de 33.87 litros, siento un total acumulado de 43.55 litros, posteriormente el muro colapso.

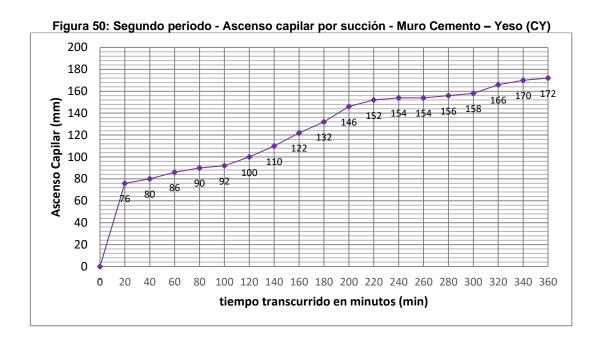



Observamos que ascenso creciente llegando a un máximo de 211 mm en el segundo periodo, antes de colapsar, El muro colapso a las 5:46 pm, a las 6 horas con 13 minutos aproximadamente de empezar el primer periodo de los ensayos, no completo el segundo periodo.

C. Muro Cemento – Cal (CC)

Resultados de la prueba de absorción y succión en el muro cemento – cal durante el segundo periodo.


Observamos que en el segundo periodo correspondiente el muro absorbió hasta el minuto 360 un total de 1.55 litros, siento un total acumulado de 3.11 litros, culminando satisfactoriamente el segundo periodo.


Observamos que ascenso es creciente llegando a un máximo de 115 mm en el segundo periodo.

D. Muro Cemento - Yeso (YS)

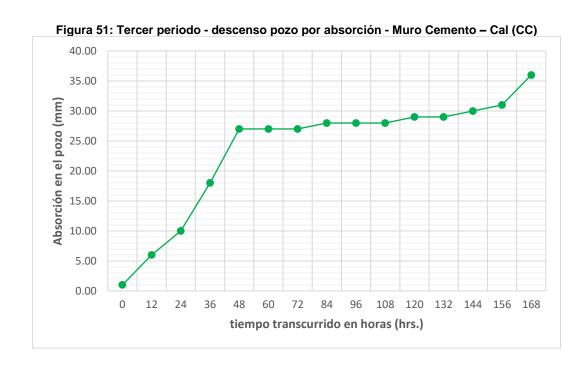
Resultados de la prueba de Absorción y succión en el muro Cemento – Yeso durante el segundo periodo.

Observamos que en el segundo periodo correspondiente el muro absorbió hasta el minuto 360 un total de 4.71 litros, siento un total acumulado de 6.28 litros, culminando satisfactoriamente el segundo periodo.

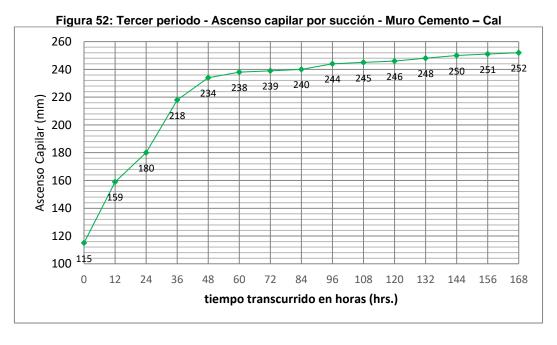
Observamos que ascenso es creciente llegando a un máximo de 172 mm en el segundo periodo.

5.1.5. Análisis de muros de adobe - Tercer Periodo

Se realizó pruebas de succión y absorción, en el tercer periodo se midió cada 12 horas durante los siguientes 7 días después del segundo periodo ensayado.

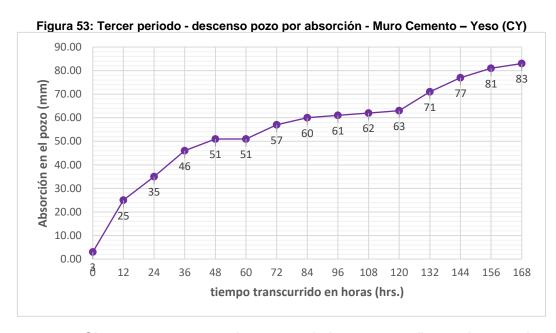

5.1.5.1. Pruebas de Succión y Absorción en muros – tercer Periodo

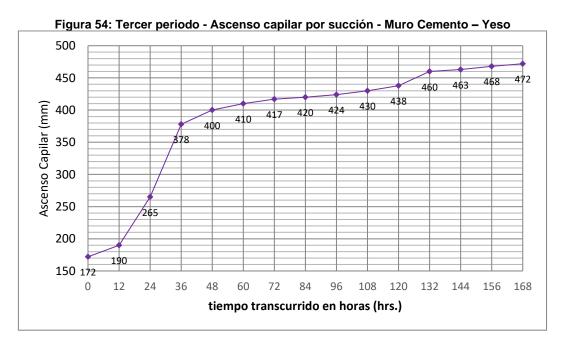
En las gráficas se resumen los resultados de la prueba de succión y absorción en las muestras de adobe con recubrimiento, medidas cada intervalo de 12 horas.


Para ver el cálculo y procesamiento de succión y absorción en muros tercer periodo ver **anexo 9.3.7.1 (A, B)**

A. Muro Cemento – Cal (CC)

Resultados de la prueba de absorción y succión en el muro cemento cal durante el tercer periodo.


Observamos que en el tercer periodo correspondiente el muro absorbió hasta las 168 horas después del segundo periodo un total de 54.36 litros, siento un total acumulado de 57.47 litros.


El ascenso capilar por succión es creciente llegando a un máximo de 252 mm en el tercer periodo, el muro en este periodo permaneció estable.

B. Muro Cemento – Yeso (YS)

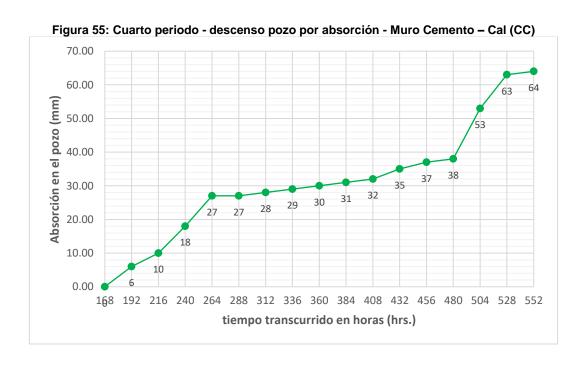
Resultados de la prueba de absorción y succión en el muro patrón durante el tercer periodo.

Observamos que en el tercer periodo correspondiente el muro absorbió hasta las 168 horas después del segundo periodo un total de 125.50 litros, siento un total acumulado de 131.78 litros.

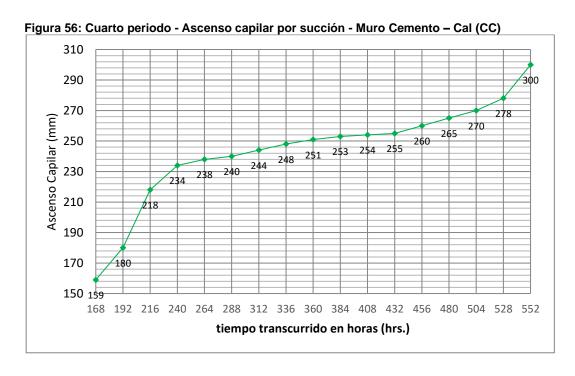
El ascenso capilar por succión es creciente llegando a un máximo de 472 mm en el tercer periodo, el muro en este periodo permaneció estable.

5.1.6. Análisis de muros de adobe – cuarto periodo

Se realizó pruebas de Succión y Absorción, en el cuarto periodo se midió cada 24 horas durante los siguientes 17 días después del tercer periodo ensayado.

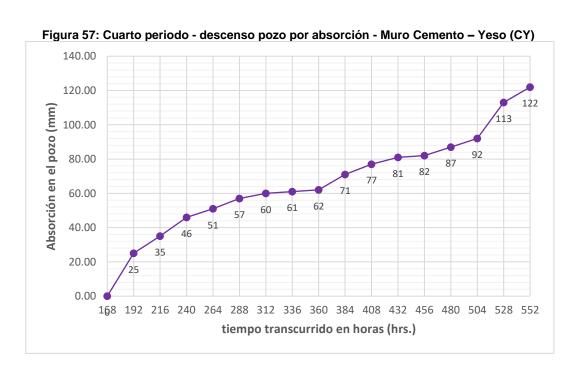

5.1.6.1. Pruebas de succión y absorción en muros – cuarto periodo

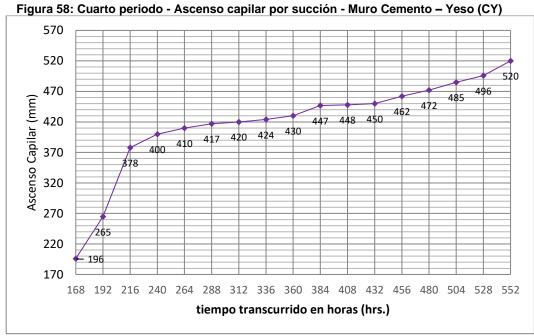
En las tablas se resumen los resultados de la prueba de succión y absorción en las muestras de adobe sin recubrimiento y con recubrimiento, medidas cada intervalo de 24 horas.


Para ver el cálculo y procesamiento de succión y absorción en muros cuarto periodo ver anexo 9.3.7.1 (A, B)

A. Muro Cemento – Cal (CC)

Resultados de la prueba de absorción y succión en el muro cemento cal durante el cuarto periodo.


Observamos que en el cuarto periodo correspondiente el muro absorbió hasta las 408 horas después del tercer periodo un total de 99.40 litros, siento un total acumulado de 156.87 litros.


El ascenso capilar por succión es creciente llegando a un máximo de 300 mm en el cuarto periodo, el muro en este periodo permaneció estable.

B. Muro Cemento – Yeso (YS)

Resultados de la prueba de absorción y succión en el muro patrón durante el cuarto periodo.

Observamos que en el cuarto periodo correspondiente el muro absorbió hasta las 408 horas después del tercer periodo un total de 191.39 litros, siento un total acumulado de 323.17 litros.

El ascenso capilar por succión es creciente llegando a un máximo de 520

mm en el cuarto periodo, el muro en este periodo permaneció estable.

5.1.7. Costos unitarios – fabricación de muros

Para el análisis costo unitario se realizó el cálculo para cada muro, se incluyó mano de obra, materiales y equipos utilizados.

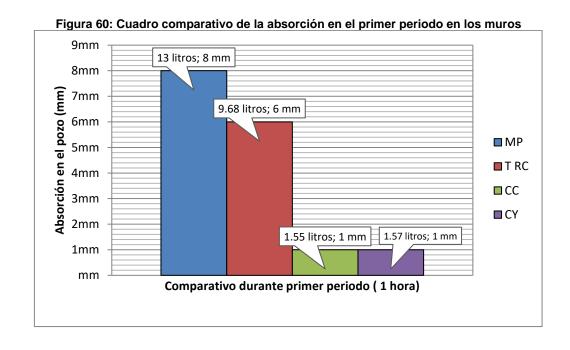
Para ver el cálculo y procesamiento de los cortos unitarios de la construcción de los muros ver **anexo 9.3.7**

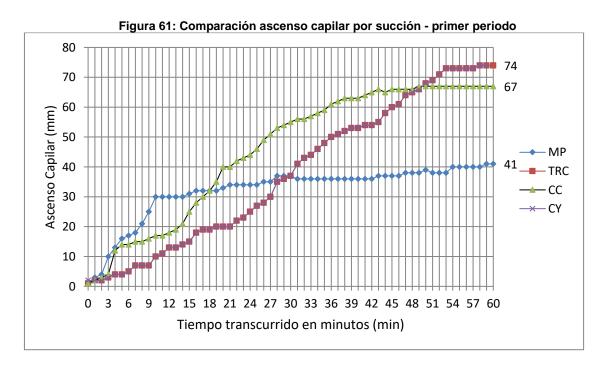
Tabla 9: Costo unitario de muros

rabia or occio annano do marco				
Descripción	Unidad	total (S/.)		
Costo Unitario Muro Patrón	MP	S/. 189.00		
Costo Unitario muro tierra roja - cal	TRC	S/. 232.60		
Costo Unitario muro tarrajeo cemento - Cal	CC	S/. 275.15		
Costo Unitario muro tarrajeo cemento - Cal	CY	S/. 282.07		

5.2. Análisis, interpretación y discusión de resultados

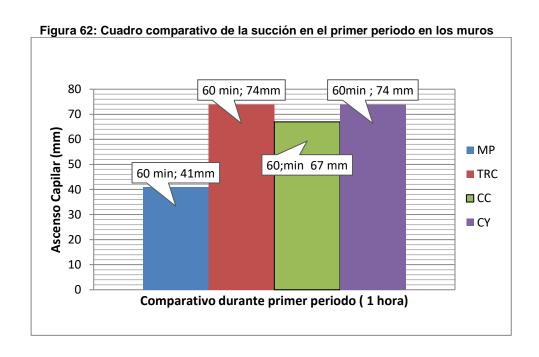
5.2.1.1. Pruebas de Succión y Absorción en muros – Primer Periodo


Se presenta la gráfica de resultados para comparar las pruebas de succión y absorción para los 4 muros ensayados, durante el primer periodo (60 minutos) después de llenar los pozos hasta la marca de 35 cm establecida.


Pudimos observar, que los cuatro muros soportaron el primer periodo de ensayos, siendo el muro que más absorbió el muro Patrón con un total de 13.00 litros, el muro con recubrimiento de Tierra Roja — Cal, tuvo una absorción de 9.68 litros, el muro de Cemento — Yeso una absorción de 1.57 litros, y el muro que menos absorbió fue el muro Cemento — Cal, con 1.55 litros.

Podemos observar que el muro con mayor absorción fue el Muro Patrón con 8 mm de descenso por absorción, luego el muro con recubrimiento Tierra Roja – Cal con 6 mm de descenso por absorción, finalmente los muros Cemente – Cal y muro Cemento – Yeso tuvieron el mismo descenso por absorción de 1 mm.

En resumen, el descenso por absorción en los pozos mostramos el siguiente cuadro comparativo entre los 4 muros.



En la comparación del ascenso capilar por succión en el primer periodo obtuvimos el siguiente resultado.

Pudimos observar que el ascenso Capilar mayor lo tuvo el muro de Cemento – Yeso un ascenso capilar de 74 mm al igual que el muro con recubrimiento de Tierra Roja, en tercer lugar, el muro Cemento – Cal ascenso capilar de 67 mm, y al final el muro Patrón con un ascenso capilar de 41 mm.

En resumen, a el ascenso capilar por succión en los muros mostramos el siguiente cuadro comparativo entre los 4 muros.

Todos los muros soportaron el primer periodo de ensayos con un tiempo de duración de 60 minutos, sin embargo, **el muro patrón** presento perdidas en las partículas de su muro, el agua se volvió turbia y el muro presento una leve inclinación hacia su parte posterior.

El muro con **recubrimiento de Tierra Roja – Cal**, presento perdidas en las partículas de su tarrajeo, el agua se volvió turbia y el muro presento una leve inclinación hacia su parte posterior.

Se produjo desprendimiento del recubrimiento ingresando el agua al muro, el muro tiene contacto directo con el agua, empieza a fallar, el recubrimiento no garantiza protección frente a los efectos del agua en el muro, observamos que la malla electro soldada es una protección adicional para mantener la estabilidad del muro.

Observamos que el muro con recubriendo Tierra Roja – Cal empieza a presentar inclinación hacia su parte posterior, esto fue comprobado con la plomada.

El muro con **recubrimiento de Cemento – Cal**, no presento modificación en su estructura correspondiente a los 60 minutos después de haber alcanzado la medida base de 35 cm, presenta absorción leve equivalente a

1.51 litros, no hay descenso considerable en el pozo por absorción 1 mm, el ascenso capilar es constante y creciente, en los últimos minutos de la primera etapa su ascenso fue más lento.

El muro con recubrimiento de Cemento – Cal, no fue afectado en el primer periodo de los ensayos durante 60 minutos.

El muro con recubrimiento de Cemento – Yeso, no presento modificación en su estructura, presenta absorción en el primer periodo lenta, 1 mm, equivalente a 1.57 litros, Ascenso capilar no constante, en los últimos

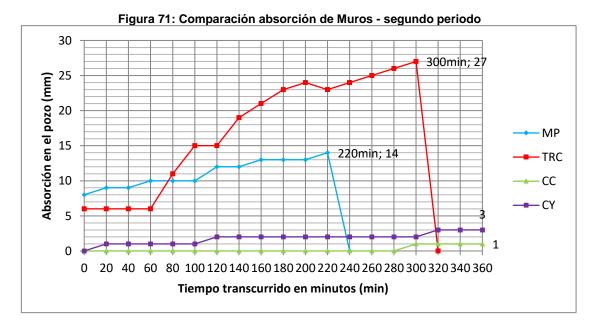

minutos de la primera etapa su ascenso fue más lento, pero obtuvo el mayor ascenso capilar junto al muro con Tarrajeo tierra Roja – Cal de todos los muros equivalente a 74 mm.

Figura 70: Verificación de la Verticalidad del muro Cemento - Yeso

5.2.1.2. Pruebas de succión y absorción en muros – segundo periodo

Se presenta la gráfica de resultados para comparar de las pruebas de succión y absorción para los 4 muros ensayados, durante el segundo periodo 6 horas después del primer periodo, la medición se realizó cada 20 minutos.

75

Pudimos observar, que solo dos muros soportaron el segundo periodo de ensayos, el muro de con tarrajeo de cemento – cal y el muro con tarrajeo de cemento yeso, además, el muro con recubrimiento de Tierra Roja – Cal el que más absorbió hasta su colapso en el minuto 313, con un total 43.55 litros acumulados en el minuto 300 (en el segundo periodo absorbió 33.87 litros), siguiendo el muro Patrón con un total de 22.75 litros acumulados de absorción al minuto 220 (en el segundo periodo absorbió 9.75 litros), colapso en el minuto 221, posteriormente el muro de Cemento – Yeso una absorción de 6.28 litros acumulados (en el segundo periodo absorbió 4.71 litros), y finalmente el muro que menos absorbió fue el muro Cemento – Cal, con 3.11 litros acumulados (en el segundo periodo absorbió 1.55 litros).

En resumen, al descenso por absorción en los pozos durante el segundo periodo se muestra en el siguiente grafico comparativo entre los 4 muros:

Podemos observar que el muro con mayor absorción fue el Muro con tarrajeo de mortero de tierra roja – cal, cuya la última medida fue a los 300 minutos del segundo periodo con una absorción de 27 mm, el muro con recubrimiento Tierra Roja – Cal, colapso a las 5:46 pm del día 17 de febrero

de 2019 después de 6 horas con 13 minutos desde el inicio del primer ensayo.

Figura 73: Colapso Muro Tierra Roja - Cal

Notamos del cuadro que el segundo muro con mayor absorción fue el muro Patrón, cuya última medida fue de 14 mm a los 220 minutos del segundo periodo, el muro Patrón colapso a las 11:46 am del día 17 de febrero de 2019 después de 4 horas con 41 minutos desde el inicio del primer ensayo, fue el primer muro en colapsar.

Figura 74: Colapso Muro Patrón

El muro con recubrimiento Cemento – Cal, paso satisfactoriamente este periodo de ensayos, con 1 mm de absorción durante el segundo periodo, equivalente a 1.55 litros de agua, siendo el cuarto muro en menor absorción.

Figura 75: Medidas final segundo periodo - Muro Cemento - Cal

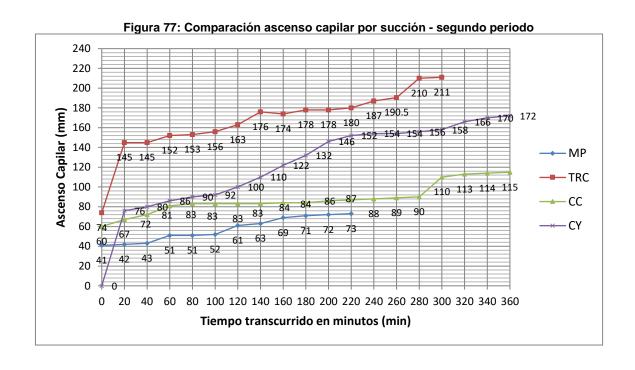
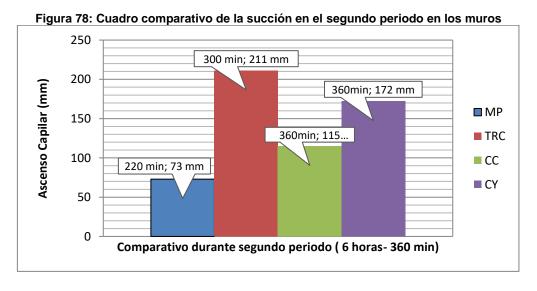

El muro con recubrimiento Cemento – Yeso, paso satisfactoriamente este periodo de ensayos, con 3 mm de absorción durante el segundo periodo, equivalente a 4.71 litros, siendo el tercer muro en absorción.

Figura 76: Medidas final segundo periodo - Muro Cemento - Yeso



En la comparación del ascenso capilar por succión en el segundo periodo obtuvimos el siguiente resultado.

Pudimos observar que el ascenso Capilar mayor lo tuvo el muro de tierra roja - cal un ascenso capilar de 211 mm antes de su colapso, el segundo fue el muro con tarrajeo de cemento – yeso con 172 mm, el tercero el muro con tarrajeo de cemento – cal con115 mm, y al final el muro Patrón con un ascenso capilar de 73 mm en su punto más alto.

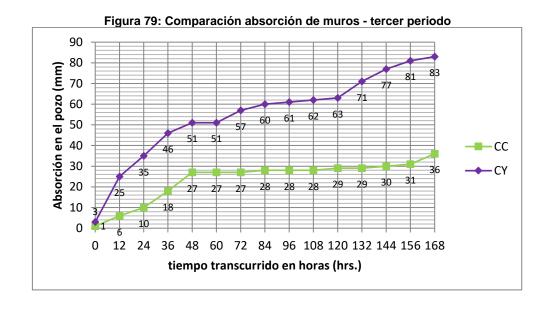
En resumen, a el ascenso capilar por succión en los muros mostramos el siguiente cuadro comparativo entre los 4 muros.

Es importante notar que hubo dos muros que colapsaron, el muro patrón a los 221 minutos de iniciado el segundo periodo, en caso de este muro la última medida se realizó a los 220 minutos del segundo periodo, por lo cual se considera importante realizar una comparativa de cuanta absorción acumulada se tiene de los otros muros en este momento.

Tabla 10: Acumulado última medida antes de colapso del muro patrón

ACUMULADO DE LITROS A LOS 220 MINUTOS			
DESCRIPCIÓN	TIPO DE MURO	LITROS	
Muro patrón	MP	22.75	
Muro tierra roja - cal	TRC	37.10	
Muro cemento - cal	CC	1.55	
Muro cemento - yeso	CY	4.71	

Además del muro con tarrajeo de tierra roja – cal, cuya última medida fue a los 300 minutos del segundo periodo.


Tabla 11: Acumulado última medida antes de colapso del muro Tierra Roja – Cal

ACUMULADO DE LITROS A LOS 300 MINUTOS			
DESCRIPCIÓN	TIPO DE MURO	LITROS	
Muro tierra roja - cal	TRC	43.55	
Muro cemento - cal	CC	3.11	
Muro cemento - yeso	CY	4.71	

5.2.1.3. Pruebas de succión y absorción en muros – tercer periodo

Se presenta la gráfica de resultados para comparar las pruebas de succión y absorción para los 2 muros que no colapsaron, muro con tarrajeo de cemento – cal y muro con tarrajeo de cemento - yeso.

en el tercer periodo (7días) se realizó después del segundo periodo, las medidas se fueron tomadas cada 12 horas, recordar que para este periodo se llenó nuevamente los pozos hasta la línea base de inicio de los ensayos, por lo cual las tomas se realizan desde el punto cero.

Pudimos observar, que los 2 muros soportaron el tercer periodo de ensayos, siendo el muro que más absorbió el muro de Cemento – Yeso, con una absorción de 125.50 litros en el tercer periodo, teniendo un acumulado de 131.78 litros, y el muro que menos absorbió menos fue el muro Cemento – Cal, con 54.36 litros en el tercer periodo, teniendo un acumulado de 57.47 litros.

Podemos observar que el muro con mayor absorción fue el Muro Cemento – Yeso tuvieron tiene descenso por absorción de 83 mm, y el muro Cemento

- Cal tiene descenso por absorción de 36 mm.

En resumen, el descenso por absorción en los pozos mostramos el siguiente cuadro comparativo entre los 2 muros.

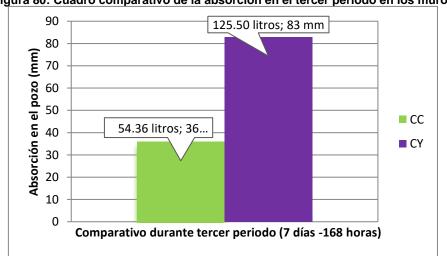
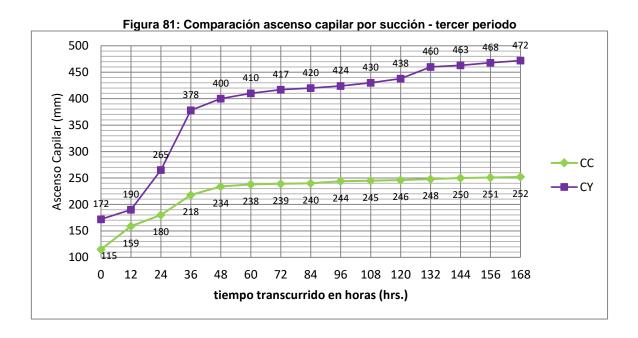



Figura 80: Cuadro comparativo de la absorción en el tercer periodo en los muros

En la comparación del ascenso capilar obtuvimos el siguiente resultado.

Pudimos observar que el ascenso Capilar mayor lo tuvo el muro de Cemento – Yeso un ascenso capilar de 472 mm, el mero Cemento – Cal tuvo un ascenso capilar de 252 mm.

En resumen, a el ascenso capilar por succión en los muros mostramos el siguiente cuadro comparativo entre los 2 muros.

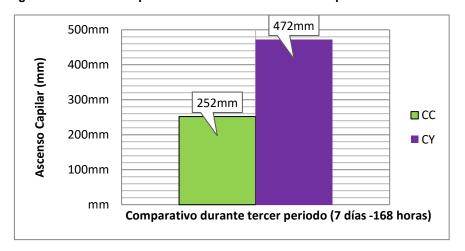


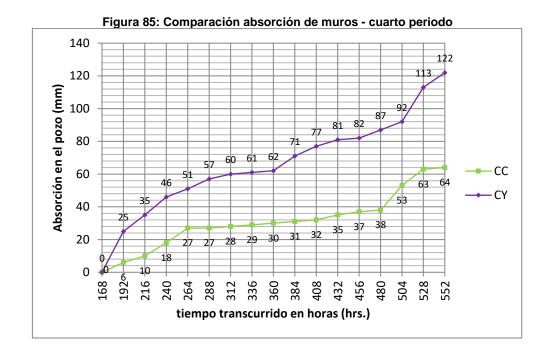
Figura 82: Cuadro comparativo de la succión en el tercer periodo en los muros

Ambos muros soportaron el tercer periodo de ensayos con un tiempo de curación de 7 días después del segundo periodo, sin embargo, muro con

recubrimiento de Cemento – Yeso, tiene una mayor absorción y succión, donde el ascenso capilar está cerca al borde del tarrajeo (90 cm), por lo cual se consideró conveniente en coordinación con el asesor aplicar un cuarto periodo de ensayo adicional, donde se realizarán las medias de forma semanal, durante 17 días más, luego de este periodo se realizara a desmoldar los muros que soporten este periodo.

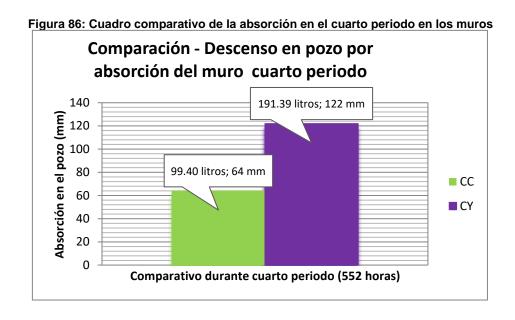
Figura 83: Verificación estado de los muros tercer periodo - Muro Cemento - Yeso

Figura 84: Verificación estado de los muros tercer periodo - Muro Cemento - Cal



5.2.1.4. Pruebas de succión y absorción en muros - cuarto periodo

Se presenta la gráfica de resultados para comparar las pruebas de succión y absorción para los 2 muros que no colapsaron, muro con tarrajeo de cemento – cal y muro con tarrajeo de cemento - yeso.


en el cuarto periodo (17días) se realizó después del tercer periodo, las medidas se fueron tomadas cada 24 horas, recordar que para este periodo se llenó nuevamente los pozos hasta la línea base de inicio de los ensayos, por lo cual las tomas se realizan desde el punto cero.

Pudimos observar, que los 2 muros soportaron el cuarto periodo de ensayos, siendo el muro que más absorbió el muro de Cemento – Yeso, con una absorción de 191.39 litros en el cuarto periodo, teniendo un acumulado de 323.17 litros, y el muro que menos absorbió menos fue el muro Cemento – Cal, con 99.40 litros en el tercer periodo, teniendo un acumulado de 156.87 litros.

Podemos observar que el muro con mayor absorción fue el Muro Cemento – Yeso tuvieron tiene descenso por absorción de 122 mm, y el muro Cemento – Cal tiene descenso por absorción de 64 mm.

En resumen, el descenso por absorción en los pozos mostramos el siguiente cuadro comparativo entre los 2 muros.

En la comparación del ascenso capilar obtuvimos el siguiente resultado.

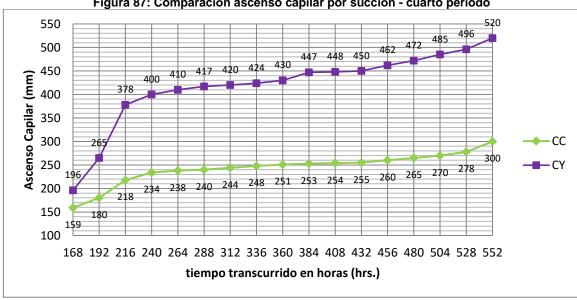


Figura 87: Comparación ascenso capilar por succión - cuarto periodo

Pudimos observar que el ascenso Capilar mayor lo tuvo el muro de Cemento - Yeso un ascenso capilar de 520 mm, el mero Cemento - Cal tuvo un ascenso capilar de 300 mm, notamos que también al inicio del periodo la capilaridad anterior descendió por lo cual notamos que mientras pasan más periodos prolongamos los muros pierden el ascenso capilar.

5.2.1.5. Pruebas de succión y absorción muestras individuales

Se presenta la gráfica porcentual de resultados, para comparar las pruebas absorción para las muestras, este ensayo de absorción se realizó durante

24 horas, teniendo como resultado que solo las muestras con recubriendo de Cemento – Cal, y muestras con recubrimiento de Cemento – Yeso superaron el tiempo del ensayo, y succión al minuto, notando que en las muestras patrón y muestras con recubrimiento Tierra Roja – Cal no son aplicables los ensayos debido a que los adobes pierden su forma y estructura, además de perder partículas, lo cual no hacen validos los resultados.

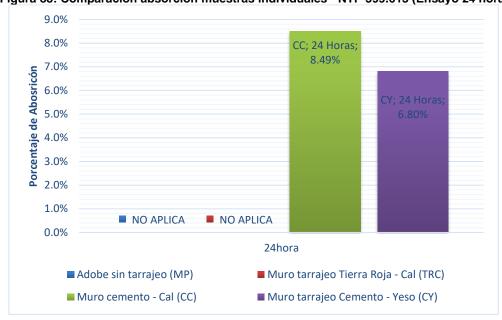


Figura 88: Comparación absorción muestras individuales - NTP 399.613 (Ensayo 24 horas)

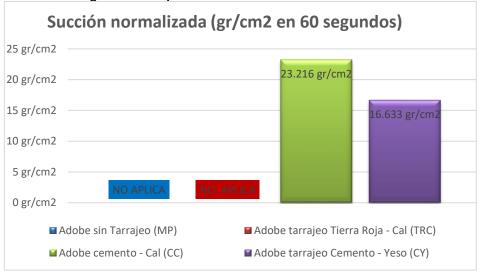


Figura 90: Ensayo absorción - Muestra adobe patrón

Figura 91: Ensayo Succión - Muestra Adobe Patrón

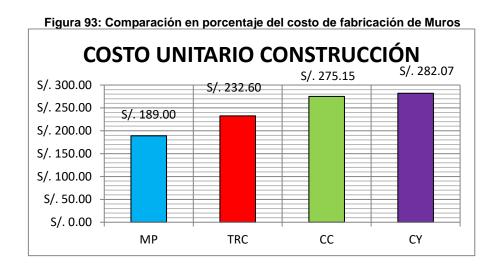
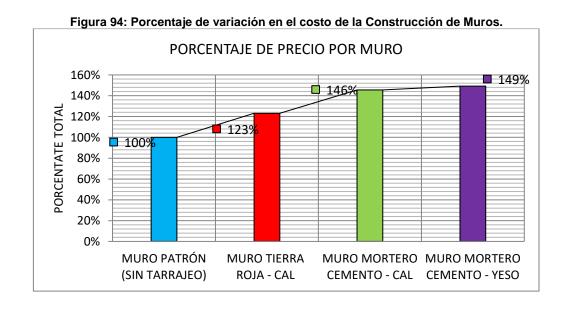


Figura 92: Pérdida de estructura - muestras Adobe Tierra Roja - Cal



5.2.1.6. Análisis de Costos Unitarios – Fabricación de muros.

Para el análisis costo unitario se realizó el cálculo para cada muro, se incluyó mano de obra, materiales y equipos utilizados, El costo del Muro Patrón fue 189 soles, este se tomará como base para realizar la comparación en la fabricación de cada muro, por lo cual el costo unitario del muro patrón es considerado el 100 %.

El muro con mayor costo es el muro con recubrimiento de mortero de Cemento – Yeso con un costo de 282.07 soles, continua el muro con recubriendo de mortero de Cemento – Cal con un costo de 275.15 soles, y finalmente el muro con recubriendo de mortero Tierra Roja – Cal con un costo de 232.60 soles. Comparando precios se dedujo el incremento de cada muro en porcentaje como podemos observar en el siguiente cuadro.

El muro con mayor porcentaje de costo unitario es el muro con recubrimiento de Cemento – Yeso, con un 49 % más del costo con respecto al muro Patrón.

5.3. Contrastación de hipótesis

Se comprobó que el porcentaje de resistencia en el tiempo de los muros bajo efecto de inundación simulada en muros de adobe será mayor con recubrimiento de mortero cemento - cal, mortero tierra roja cal y mortero de cemento - yeso en comparación con un muro patrón sin recubrimiento, bridando mayor resistencia en el tiempo de colapso de los muros. Superando los muros con tarrajeo de mortero cemento - cal y muro con tarrajeo de mortero cemento - yeso todos los periodos de ensayo, siendo mayor al 100 % de la resistencia en el tiempo de colapso del muro patrón, no obstante, el muro con tarrajeo de mortero tierra roja - cal, si supero la resistencia en el tiempo del muro patrón, sin embargo no fue superior al 100% de está en tiempo de colapso, solo llegando a resistir 92 minutos más, siendo solo el 33% más de resistencia en el tiempo de colapso del muro patrón.

Según Daniel Torrealva, en su estudio "Caracterización de los Daños Producidos por Terremotos en Construcciones de adobe" indica que las construcciones de adobe son altamente vulnerables frente a inundaciones. En comparación con el estudio podemos indicar que se cumple lo que señala pues observamos que el muro patrón sin recubrimiento no paso el segundo periodo de pruebas, cumpliendo lo indicado en su estudio que señala que tienen estas construcciones nula resistencia a la tracción y la alta inestabilidad de sus propiedades mecánicas cuando son afectadas por la humedad.

Daniel Arias en su tesis "mejoramiento de las construcciones de Adobe ante una exposición prolongada de Agua por efecto de inundación" corrobora la alta vulnerabilidad al agua ante condiciones de exposición a corto plazo, comparando con nuestro estudio notamos que el muro sin recubrimiento y el análisis de las muestras individuales sin recubrimiento no soportan los periodos de prueba perdiendo partículas desde el momento de contacto con el agua, por lo cual Arias recomienda que las viviendas de adobe convencional que no cuenten con un adecuado sistema de protección contra la erosión del agua, no sean construidas en lugares con alta probabilidad de inundaciones.

Javier Pereyra realizó la segunda parte del estudio "mejoramiento de las construcciones de Adobe ante una exposición prolongada de Agua por efecto de inundación" en la cual utiliza sobrecimientos de ladrillo y cemento, los cuales brindan mayor resistencia de los muros a los efectos del agua, indicando los factores que determinan la resistencia ante el colapso son el grosor del muro y la consistencia del adobe. En esta segunda parte se percibió la presencia de otros factores los cuales son determinantes para la estabilidad del muro antes de su frágil colapso, los cuales son la selección del material y la preparación del mismo para formar adobe, en estos ensayos observamos que los muros sin recubrimiento colapsan en promedio de 20 a 30 minutos, sin embargo nuestro muro patrón colapso a las 4 horas con un minuto, indicando que la calidad de material seleccionada para su construcción es fundamental para determinar la resistencia del muro ante los efectos de inundación.

Comparando la resistencia en el tiempo del muro Patrón, que resistió 4 horas con 41 minutos al colapsar, con el muro con recubrimiento de Tierra Roja Cal, que duro 6 horas con 13 minutos en colapsar, tenemos que el muro Tierra Roja Cal resistió 33% más que el muro patrón en el tiempo de colapso. Los muros con recubrimiento de morteros Cemento – Cal, Cemento – Yeso pasaron exitosamente todos los periodos, siendo ambos recubrimientos recomendables en la protección de muros.

5.3.1. Análisis estadístico para contrastación de hipótesis

5.3.1.1. Primer Periodo - Efecto de inundación simulada en la resistencia en el tiempo - absorción de muros de adobe con tarrajeos de morteros cemento - cal, tierra roja - cal, cemento - yeso y muro patrón a un nivel de significancia del 0.05

5.3.1.1.1 Normalidad de los errores primer periodo - Absorción

Verificamos los supuestos del modelo en la normalidad de los errores, donde observamos que los puntos no coinciden en su totalidad con la línea recta, por lo cual se denota que no existe normalidad de los datos.

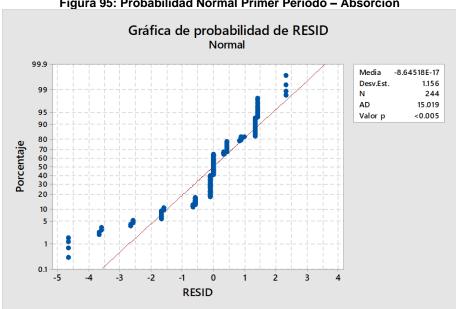
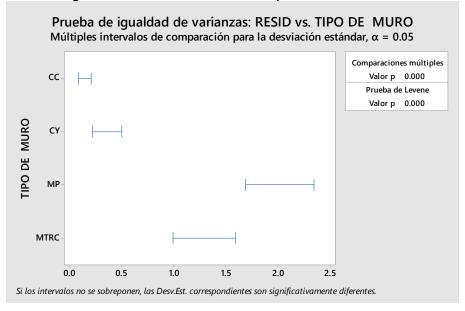


Figura 95: Probabilidad Normal Primer Periodo – Absorción


Tabla 12: Probabilidad Normal Primer Periodo - Absorción

Hipótesis:	Orcion
H ₀ : Los errores se distribuyen normalmente	
H ₁ : Los errores no se distribuyen normalmente	
Nivel de significación:	
$\alpha = 0.05$	
Estadístico de prueba (Anderson Darling):	
AD = 15.019	
p- valor:	
P< 0.05	
Decisión estadística:	
Se rechaza Ho	
Conclusión:	
Con una significancia del 5%, no se cumple el supuesto de	normalidad

Análisis: Con una significancia del 5%, no se cumple el supuesto de normalidad. Como el valor estadístico de prueba Anderson Darling (AD) = 15.019 tiene una probabilidad asociada Valor p < 0.005 al nivel de significancia 0.05, por lo tanto, se tiene razón para rechazar la hipótesis nula, cómo resultado la distribución no normal de los residuos no brinda un buen ajuste para la distribución de la resistencia en el tiempo a la absorción en el primer periodo.

5.3.1.1.2 Homogeneidad de varianzas primer periodo

Figura 96: Prueba De Igualdad De Varianza: Residuo Vs Tipo De Muro - Absorción Primer Periodo

La distribución de probabilidad por homogeneidad tiene cómo resultado posiciones superpuestas de los intervalos de confianza denota la presencia de variabilidad constante en los datos de los cuatro muros en el primer periodo de absorción, indicando que tenemos una menor absorción en los muros CC - CY y una mayor en los muros MTRC y la máxima en el muro MP.

Tabla 13: Intervalos de confianza de Bonferroni de 95% para desviaciones estándar

TIPO DE MURO	N	Desv.Est.	IC
сс	61	0.12804	(0.03476; 0.49175)
CY	61	0.32137	(0.20469; 0.52610)
MP	61	1.94483	(1.51162; 2.60903)
MTRC	61	1.22987	(0.91136; 1.73054)

Nivel de confianza individual = 98.75%

Podemos concluir que el estudio tiene un nivel de confianza mayor al 95%, dando valides a los resultados.

Tabla 14: Estadística de Prueba - Absorción Primer Periodo

Método	Estadística	Valor p
	de prueba	

Comparaciones múltiples	_	0.000
Levene	24.74	0.000

Análisis: Con una significancia del 5%, se cumple el supuesto de homogeneidad de varianzas. Al ser el Estadístico Levene de 24.74, con un p-valor menor a 5%, se rechaza la hipótesis nula por no tener varianzas homogéneas para la resistencia en el tiempo a la absorción en el primer periodo.

Verificación si los sistemas de protección diferencian al evaluar la resistencia en el tiempo a la absorción durante el primer periodo de evaluación.

Tabla 15: Análisis de Varianza - Primer Periodo Absorción

Fuente	GL	SC Ajust.	MC Ajust.	Valor F	Valor p
TIPO DE MURO	3	1601.3	533.754	394.31	0.000
Error	240	324.9	1.354		
Total	243	1926.1			

Estadístico de prueba: F = 394.31

• p- valor: p = 0.000

Decisión estadística: Se rechaza Ho

Análisis: Con una significancia del 5%, al menos un promedio es diferente, por lo tanto, el Sistema de protección que se use en los muros de adobe afectan la resistencia en el tiempo a la absorción de los muros. Al comparar el valor p de los Sistemas de protección con el nivel de significancia de 0.05 podemos decir que se rechaza la hipótesis nula para los métodos de protección y se concluye que existe una diferencia significativa en cuanto a sistemas de protección, es decir los Sistemas de protección si influyen en la absorción de los muros de adobe.

 Tabla 16: Resumen del Modelo

 S
 R-cuad.
 R-cuad.
 R-cuad.
 (pred)

 1.16347
 83.13%
 82.92%
 82.57%

Análisis: El Resumen del modelo se observa que la variable resistencia en el tiempo a la absorción de los muros de adobe se explica en un 83.13% por el sistema de protección (R2=83.13).

5.3.1.1.3 Prueba de Tukey Primer periodo Absorción.

Agrupar información utilizando el método de Tukey y una confianza de 95% Las medias que no comparten una letra son significativamente diferentes.

Tabla 17: Comparaciones por parejas de Tukey: Tipo de Muro

TIPO DE MURO	N	Media	Agrupación
MP	61	5.67213	Α
MTRC	61	4.59016	В
CY	61	0.11475	С
СС	61	0.01639	С

Análisis: Las medias que no comparten una letra son significativamente diferentes. Con una significancia del 5%, se concluye que los muros con sistema de protección CY – CC son lo que brindan mayor resistencia en el tiempo a la absorción con un promedio de 0.11475 y 0.01639 respectivamente en el primero periodo de la investigación, por lo cual se agruparon en la letra CC, es decir tienen comportamientos similares.

5.3.1.1.4 Transformación de BOX - COX para identificación de distribución individual.

Análisis: para el primer periodo de absorción no aplica realizar el análisis BOX – COX, porque en el estudio obtuve datos con valor de cero (0), durante este primer periodo de 60 minutos, dicho valor no permite el análisis, concluyendo que tenemos muros como el CC – CY tienen una mayor resistencia en el tiempo a la absorción y que tuvieron un primer proceso de saturación previo al primer periodo durante el llenado de los pozos hasta los 35 cm indicados.

5.3.1.2. Primer Periodo - Efecto de inundación simulada en la succión de muros de adobe con tarrajeos de morteros cemento - cal, tierra roja - cal, cemento - yeso y muro patrón a un nivel de significancia del 0.05

5.3.1.2.1 Normalidad de los errores primer periodo - Succión

Verificamos los supuestos del modelo en la normalidad de los errores, donde observamos que los puntos no coinciden en su totalidad con la línea recta, por lo cual se denota que no existe normalidad de los datos.

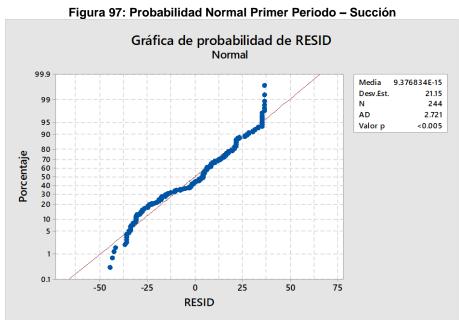


Tabla 18: Probabilidad Normal Primer Periodo – Succión

Hipótesis:

H₀: Los errores se distribuyen normalmente

H₁: Los errores no se distribuyen normalmente

Nivel de significación:

α = 0.05

Estadístico de prueba (Anderson Darling):

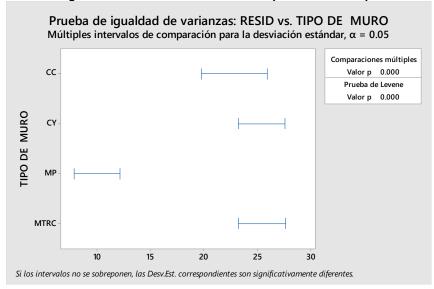
AD = 2.721

p- valor:

P< 0.05

Decisión estadística:

Se rechaza Ho


Conclusión:

Con una significancia del 5%, no se cumple el supuesto de normalidad

Análisis: Con una significancia del 5%, no se cumple el supuesto de normalidad. Como el valor estadístico de prueba Anderson Darling (AD) = 2.721 tiene una probabilidad asociada Valor p < 0.005 al nivel de significancia 0.05, por lo tanto, se rechaza la hipótesis nula, cómo resultado la distribución no normal de los residuos no brinda un buen ajuste para la distribución de capilaridad por succión en el primer periodo.

5.3.1.2.2 Homogeneidad de varianzas primer periodo

Figura 98: Prueba de Igualdad De Varianza: Residuo Vs Tipo De Muro - Capilaridad Primer Periodo

La distribución de probabilidad por homocedasticidad tiene cómo resultado posiciones superpuestas de los intervalos de confianza denota la presencia de variabilidad constante en los datos de los cuatro muros en el primer periodo de ascenso capilar, indicando que tenemos un menor ascenso capilar por succión en los muros MTRC - CY, muy cerca a estos muros se observó al muro CC y por abajo muro MP.

Tabla 19: Intervalos de confianza de Bonferroni de 95% para desviaciones estándar

TIPO DE MURO	N	Desv.Est.	IC
СС	61	22.1347	(18.8180; 27.1477)
СҮ	61	24.7878	(22.1951; 28.8653)
MP	61	9.5323	(6.4196; 14.7587)
MTRC	61	24.8123	(22.2112; 28.9014)

Nivel de confianza individual = 98.75%

Podemos concluir que el estudio tiene un nivel de confianza mayor al 95%, dando valides a los resultados.

Tabla 20: Estadística de Prueba - Absorción Primer Periodo

Método	Estadística de prueba	
Comparaciones múltiples	ue prueba	0.000
Levene	27.50	0.000

Análisis: Con una significancia del 5%, se cumple el supuesto de homogeneidad de varianzas. Al ser el Estadístico Levene de 27.50, con un p-valor menor a 5%, se rechaza la hipótesis nula por no tener varianzas homogéneas para el ascenso capilar en el primer periodo.

Verificación si los sistemas de protección diferencian al evaluar el ascenso capilar por succión durante el primer periodo de evaluación.

Tabla 21: Análisis de Varianza - Primer Periodo Absorción

Fuente	GL	SC Ajust.	MC Ajust.	Valor F	Valor p
TIPO DE MURO	3	5710	1903.3	4.20	0.006
Error	240	108654	452.7		
Total	243	114364			

• Estadístico de prueba: F = 4.20

• p- valor: p = 0.006

• Decisión estadística: Se rechaza Ho

Análisis: Con una significancia del 5%, al menos un promedio es diferente, por lo tanto, el Sistema de protección que se use en los muros de adobe afectan la resistencia en el tiempo a la absorción de los muros. Al comparar el valor p de los Sistemas de protección con el nivel de significancia de 0.05 podemos decir que se rechaza la hipótesis nula para los métodos de protección y se concluye que existe una diferencia significativa en cuanto a sistemas de protección con el muro sin protección, es decir los Sistemas de protección si influyen en el ascenso capilar por succión de los muros de adobe.

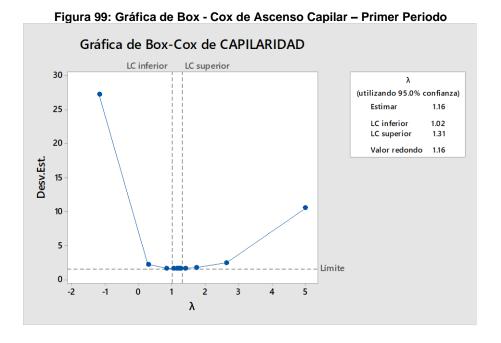
Tab	Tabla 22: Resumen del Modelo				
S	R-cuad.	R-cuad. (ajustado)	R-cuad. (pred)		
21.2773	4.99%	3.81%	1.80%		

Análisis: El Resumen del modelo se observa que la variable del ascenso capilar de los muros de adobe se explica en un 4.99% por el sistema de protección

(R2=4.99), esto denota que el ascenso capilar es mayor en los muros con protección, teniendo muy poca variabilidad.

5.3.1.2.3 Prueba de Tukey Primer periodo Succión.

Agrupar información utilizando el método de Tukey y una confianza de 95% Las medias que no comparten una letra son significativamente diferentes.


Tabla 23: Comparaciones por parejas de Tukey: Tipo de Muro

TIPO DE MURO	N	Media	Agrı	upación
СС	61	45.5902	Α	
CY	61	37.8852	Α	В
MTRC	61	37.8689	Α	В
МР	61	31.9672		В

Análisis: Las medias comparten una letra significativamente. Con una significancia del 5%, se concluye que los muros con sistema de protección CY – CC – MTRC son lo que presentan mayor ascenso capilar por succión con un promedio de 0.45.5902, 37.8852 y 37.8689, mientras que el muro MP tiene otra agrupación con 31.9672 en el primero periodo de la investigación.

5.3.1.2.4 Transformación de BOX - COX para identificación de distribución individual.

Realizamos el análisis BOX – COX para determinar los supuestos de normalidad y homocedasticidad, se procedió a determinar la estimación puntual e intervalo de confianza para λ de la transformación para identificación de distribución individual (λ =0.16).

Análisis: Se pudo observar que por no presentar normalidad en los datos tenemos una estimación de 1.16 con un límite inferior de 1.02 y un límite superior de 1.31, donde cuyo valor redondo es de 1.16, adecuándose al modelo $z(\lambda) = 1$.

5.3.1.3. Segundo Periodo - Efecto de inundación simulada en la resistencia en el tiempo - absorción de muros de adobe con tarrajeos de morteros cemento - cal, tierra roja - cal, cemento - yeso y muro patrón a un nivel de significancia del 0.05

5.3.1.3.1 Normalidad de los errores segundo periodo - Absorción

Verificamos los supuestos del modelo en la normalidad de los errores, donde observamos que los puntos no coinciden en su totalidad con la línea recta, por lo cual se denota que no existe normalidad de los datos.

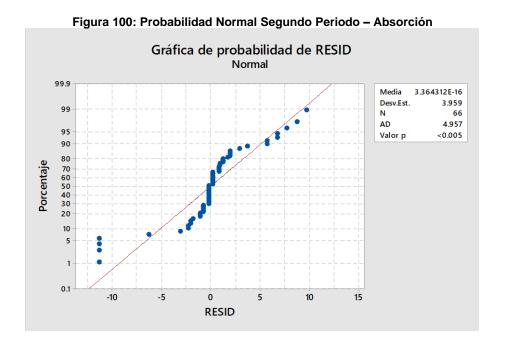
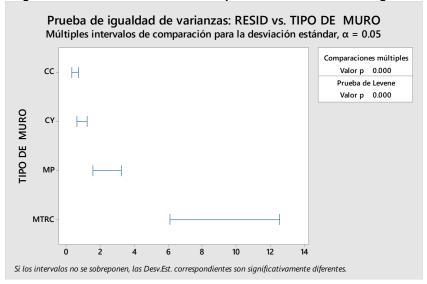


Tabla 24: Probabilidad Normal Segundo Periodo – Absorción


Hipótesis:
H ₀ : Los errores se distribuyen normalmente
H ₁ : Los errores no se distribuyen normalmente
Nivel de significación:
$\alpha = 0.05$
Estadístico de prueba (Anderson Darling):
AD = 4.957
p- valor:
P< 0.05
Decisión estadística:
Se rechaza Ho
Conclusión:

Con una significancia del 5%, no se cumple el supuesto de normalidad

Análisis: Con una significancia del 5%, no se cumple el supuesto de normalidad. Como el valor estadístico de prueba Anderson Darling (AD) = 4.957 tiene una probabilidad asociada Valor p < 0.005 al nivel de significancia 0.05, por lo tanto, se rechaza la hipótesis nula, cómo resultado la distribución no normal de los residuos no brinda un buen ajuste para la distribución de la resistencia en el tiempo a la absorción en el segundo periodo.

5.3.1.3.2 Homogeneidad de varianzas Segundo periodo

Figura 101: Prueba De Igualdad de Varianza: Residuo Vs Tipo De Muro - Absorción Segundo Periodo

La distribución de probabilidad por homogeneidad tiene cómo resultado posiciones superpuestas de los intervalos de confianza denota la presencia de variabilidad constante en los datos de los cuatro muros en el segundo periodo de absorción, indicando que tenemos una menor absorción en los muros CC - CY y una mayor en los muros MTRC.

Tabla 25: Intervalos de confianza de Bonferroni de 95% para desviaciones estándar

TIPO DE MURO	N	Desv.Est.	IC
сс	19	0.41885	(0.22919; 0.8813)
CY	19	0.78733	(0.52303; 1.3645)
MP	12	1.97523	(1.42683; 3.4531)
MTRC	16	8.00599	(6.07578; 12.5009)

Nivel de confianza individual = 98.75%

Podemos concluir que el estudio tiene un nivel de confianza mayor al 95%, dando valides a los resultados.

Tabla 26: Estadística de Prueba - Absorción Segundo Periodo

Método	Estadística	Valor p	
	de prueba		
Comparaciones múltiples	_	0.000	
Levene	27.78	0.000	

Análisis: Con una significancia del 5%, se cumple el supuesto de homogeneidad de varianzas. Al ser el Estadístico Levene de 27.78, con un p-valor menor a 5%, se rechaza la hipótesis nula por no tener varianzas homogéneas para la resistencia en el tiempo a la absorción en el segundo periodo.

Verificación si los sistemas de protección diferencian al evaluar la resistencia en el tiempo a la absorción durante el segundo periodo de evaluación.

Tabla 27: Análisis de Varianza - Segundo Periodo Absorción						
Fuente GL SC MC Ajust. Valor F Valor Ajust.						
TIPO DE MURO	3	3290	1096.79	66.75	0.000	
Error	62	1019	16.43			
Total	65	4309				

Estadístico de prueba: F = 66.75

• p- valor: p = 0.000

Decisión estadística: Se rechaza Ho

Análisis: Con una significancia del 5%, al menos un promedio es diferente, por lo tanto, el Sistema de protección que se use en los muros de adobe afectan la resistencia en el tiempo a la absorción de los muros. Al comparar el valor p de los Sistemas de protección con el nivel de significancia de 0.05 podemos decir que se rechaza la hipótesis nula para los métodos de protección y se concluye que existe una diferencia significativa en cuanto a sistemas de protección, es decir los Sistemas de protección si influyen en la absorción de los muros de adobe.

Tabla 28: Resumen del Modelo						
S	R-cuad.	R-cuad. (ajustado)				
4.05341	76.36%	75.22%	73.06%			

Análisis: El Resumen del modelo se observa que la variable resistencia en el tiempo a la absorción de los muros de adobe se explica en un 76.36% por el sistema de protección (R2=76.36).

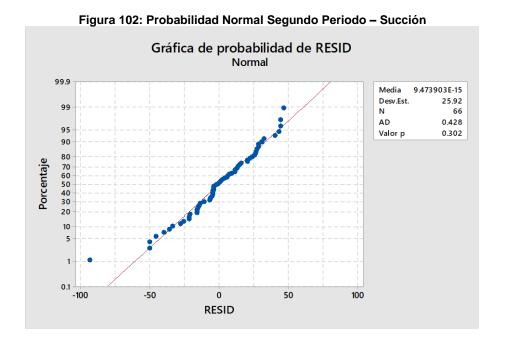
5.3.1.3.3 Prueba de Tukey Segundo Periodo Absorción.

Agrupar información utilizando el método de Tukey y una confianza de 95% Las medias que no comparten una letra son significativamente diferentes.

Tabla 29: Comparaciones por parejas de Tukey: Tipo de Muro

TIPO DE MURO	N	Media	Agrupación	
MTRC	16	17.3125	А	
MP	12	11.0833	В	
CY	19	1.7895		С
СС	19	0.2105		С

Análisis: Las medias que no comparten una letra son significativamente diferentes. Con una significancia del 5%, se concluye que los muros con sistema de protección CY – CC son lo que brindan mayor resistencia en el tiempo a la absorción con un promedio de 1.7895 y 0.2105 respectivamente en el segundo periodo de la investigación.


5.3.1.3.4 Transformación de BOX - COX para identificación de distribución individual.

Análisis: para el segundo periodo de absorción no aplica realizar el análisis BOX – COX, porque en el estudio obtuve datos con valor de cero (0), durante este segundo, dicho valor no permite el análisis, concluyendo que tenemos muros como el CC – CY tienen una mayor resistencia en el tiempo a la absorción, además que en este periodo colapsaron el muro patrón (MP) y el muro tierra roja – cal (MTRC).

5.3.1.4. Segundo Periodo - Efecto de inundación simulada en la succión de muros de adobe con tarrajeos de morteros cemento - cal, tierra roja - cal, cemento - yeso y muro patrón a un nivel de significancia del 0.05

5.3.1.4.1 Normalidad de los errores segundo periodo - Succión

Verificamos los supuestos del modelo en la normalidad de los errores, donde observamos que los puntos sí coinciden en su mayoría con la línea recta, por lo cual se denota que existe normalidad de los datos.

Tabla 30: Probabilidad Normal Segundo Periodo – Succión Hipótesis:

H₀: Los errores se distribuyen normalmente

H₁: Los errores no se distribuyen normalmente

Nivel de significación:

 $\alpha = 0.05$

Estadístico de prueba (Anderson Darling):

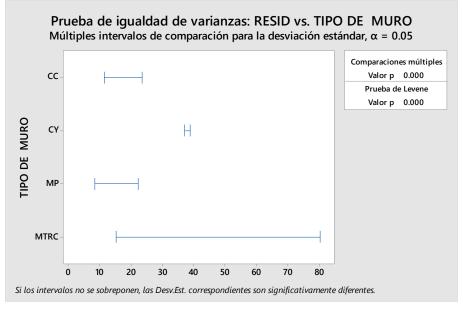
AD = 0.428

p- valor:

P=0.302

Decisión estadística:

No se rechaza Ho


Conclusión:

Con una significancia del 5%, cumple el supuesto de normalidad

Análisis: Con una significancia del 5%, Se cumple el supuesto de normalidad. Como el valor estadístico de prueba Anderson Darling (AD) = 0.428 tiene una probabilidad asociada Valor p = 0.302 al nivel de significancia 0.05, por lo tanto, no se rechaza la hipótesis nula, cómo resultado la distribución normal de los residuos brinda un buen ajuste para la distribución de capilaridad por succión en el segundo periodo.

5.3.1.4.2 Homogeneidad de varianzas segundo periodo

Figura 103: Prueba De Igualdad de Varianza: Residuo Vs Tipo De Muro - Capilaridad Segundo Periodo

La distribución de probabilidad por homocedasticidad tiene cómo resultado posiciones superpuestas de los intervalos de confianza denota la presencia de variabilidad constante en los datos de los cuatro muros en el segundo periodo de ascenso capilar, indicando que tenemos un menor ascenso capilar por succión en los muros CC - MP, muy cerca a estos muros se observó al muro CY y siendo el mayor el muro MTRC, en este segundo periodo tuvimos el colapso de los muros MP – MTRC.

Tabla 31: Estadística de Prueba - Absorción Segundo Periodo

Método	Estadística de prueba	Valor p
Comparaciones múltiples	_	0.000
Levene	6.82	0.000

Análisis: Con una significancia del 5%, se cumple el supuesto de homogeneidad de varianzas. Al ser el Estadístico Levene de 6.82, con un p-valor menor a 5%, se rechaza la hipótesis nula por no tener varianzas homogéneas para el ascenso capilar en el segundo periodo.

Verificación si los sistemas de protección diferencian al evaluar el ascenso capilar por succión durante el segundo periodo de evaluación.

Tabla 32: Análisis de Varianza - Segundo Periodo Absorción

Fuente	GL	SC Ajust.	MC Ajust.	Valor F	Valor p
TIPO DE MURO	3	98802	32934.1	46.77	0.000
Error	62	43656	704.1		
Total	65	142458			

• Estadístico de prueba: F = 46.77

• p- valor: p = 0.000

Decisión estadística: Se rechaza Ho

Análisis: Con una significancia del 5%, al menos un promedio es diferente, por lo tanto, el Sistema de protección que se use en los muros de adobe afectan la resistencia en el tiempo a la absorción de los muros. Al comparar el valor p de los Sistemas de protección con el nivel de significancia de 0.05 podemos decir que se rechaza la hipótesis nula para los métodos de protección y se concluye que existe una diferencia significativa en cuanto a sistemas de protección con el muro sin protección, es decir los Sistemas de protección si influyen en el ascenso capilar por succión de los muros de adobe.

 Tabla 33: Resumen del Modelo

 S
 R-cuad.
 R-cuad.
 R-cuad.
 (pred)

 26.5354
 69.36%
 67.87%
 65.51%

Análisis: El Resumen del modelo se observa que la variable del ascenso capilar de los muros de adobe se explica en un 69.36% por el sistema de protección (R2=69.36), esto denota que el ascenso capilar es mayor en los muros con protección, teniendo muy poca variabilidad.

5.3.1.4.3 Prueba de Tukey Segundo periodo Succión.

Agrupar información utilizando el método de Tukey y una confianza de 95% Las medias que no comparten una letra son significativamente diferentes.

Tabla 34: Comparaciones por parejas de Tukey: Tipo de Muro

TIPO DE MURO	N	Media	Agrupación
MTRC	16	167.031	Α
CY	19	125.895	В
СС	19	88.000	С
MP	12	57.417	D

Análisis: Las medias no comparten una letra significativamente. Con una significancia del 5%, se concluye que los muros tienen diferente comportamiento al efecto de ascenso capilar por succión durante el segundo periodo.

5.3.1.4.4 Transformación de BOX - COX para identificación de distribución individual.

Realizamos el análisis BOX - COX para determinar los supuestos de normalidad y homocedasticidad, se procedió a determinar la estimación puntual e intervalo de confianza para λ de la transformación para identificación de distribución individual (λ=0.16).

Gráfica de Box-Cox de CAPILARIDAD LC inferior LC superior 40 (utilizando 95.0% confianza) 35 Estimar 0.19 LC inferior LC superior 30 Valor redondo 0.00 Desv.Est. 25 Límite -5.0 -2.5 0.0 2.5 5.0

Figura 104: Gráfica de Box - Cox de Ascenso Capilar - Segundo Periodo

Análisis: Se pudo observar que por no presentar normalidad en los datos tenemos una estimación de 0.19 con un límite inferior de -0.38 y un límite superior de 0.79, donde cuyo valor redondo es de 0.00, adecuándose al modelo $z(\lambda) = \lg(y)$.

5.3.1.5. Tercer Periodo - Efecto de inundación simulada en la resistencia en el tiempo - absorción de muros de adobe con tarrajeos de morteros cemento - cal, tierra roja - cal, cemento - yeso y muro patrón a un nivel de significancia del 0.05

5.3.1.5.1 Normalidad de los errores Tercer periodo - Absorción

Verificamos los supuestos del modelo en la normalidad de los errores, donde observamos que los puntos coinciden en su mayoría con la línea recta, por lo cual se denota que existe normalidad de los datos.

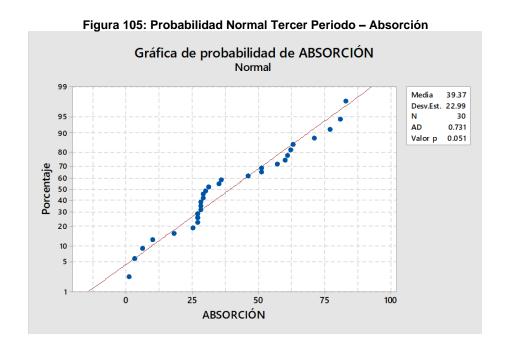


Tabla 35: Probabilidad Normal Tercer Periodo – Absorción
Hipótesis:

H₀: Los errores se distribuyen normalmente
H₁: Los errores no se distribuyen normalmente
Nivel de significación:

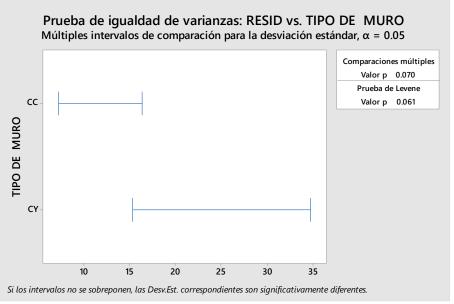
α = 0.05

Estadístico de prueba (Anderson Darling):

AD = 0.731

p- valor:
P=0.051

Decisión estadística:
No se rechaza Ho


Conclusión:

Con una significancia del 5%, se cumple el supuesto de normalidad

Análisis: Con una significancia del 5%, se cumple el supuesto de normalidad. Como el valor estadístico de prueba Anderson Darling (AD) = 0.731 tiene una probabilidad asociada Valor p = 0.051 al nivel de significancia 0.05, por lo tanto, no se rechaza la hipótesis nula, cómo resultado la distribución normal de los residuos brinda un buen ajuste para la distribución de la resistencia en el tiempo a la absorción en el Tercer periodo.

5.3.1.5.2 Homogeneidad de varianzas Tercer periodo

Figura 106: Prueba De Igualdad de Varianza: Residuo Vs Tipo De Muro - Absorción Tercer Periodo

La distribución de probabilidad por homocedasticidad tiene cómo resultado posiciones superpuestas de los intervalos de confianza denota la presencia de variabilidad constante en los datos de dos muros restantes CC – CY.

Tabla 36: Intervalos de confianza de Bonferroni de 95% para desviaciones estándar

TIPO DE MURO	N	Desv.Est.	IC
СС	15	10.1325	(5.6080; 21.5232)
CY	15	21.5389	(12.4291; 43.8831)

Nivel de confianza individual = 97.50%

Podemos concluir que el estudio tiene un nivel de confianza mayor al 95%, dando valides a los resultados.

Tabla 37: Estadística De Prueba - Absorción Tercer Periodo

Método	Estadística de prueba	Valor p
Comparaciones múltiples	3.27	0.070
Levene	3.82	0.061

Análisis: Con una significancia del 5%, se cumple el supuesto de homogeneidad de varianzas. Al ser el Estadístico Levene de 3.82, con un p-valor mayor a 5%, no se rechaza la hipótesis nula por tener varianzas homogéneas para la resistencia en el tiempo a la absorción en el Tercer periodo.

Verificación si los sistemas de protección diferencian al evaluar la resistencia en el tiempo a la absorción durante el Tercer periodo de evaluación.

Tabla 38: Análisis de Varianza - Tercer Periodo Absorción

Fuente	GL	SC Ajust.	MC Ajust.	Valor F	Valor p
TIPO DE MURO	1	7395	7394.7	26.10	0.000
Error	28	7932	283.3		
Total	29	15327			

• Estadístico de prueba: F = 26.10

• p- valor: p = 0.000

Decisión estadística: Se rechaza Ho

Análisis: Con una significancia del 5%, al menos un promedio es diferente, por lo tanto, el Sistema de protección que se use en los muros de adobe afectan la resistencia en el tiempo a la absorción de los muros. Al comparar el valor p de los Sistemas de protección con el nivel de significancia de 0.05 podemos decir que se rechaza la hipótesis nula para los métodos de protección y se concluye que existe una diferencia significativa en cuanto a sistemas de protección, es decir los Sistemas de protección si influyen en la absorción de los muros de adobe.

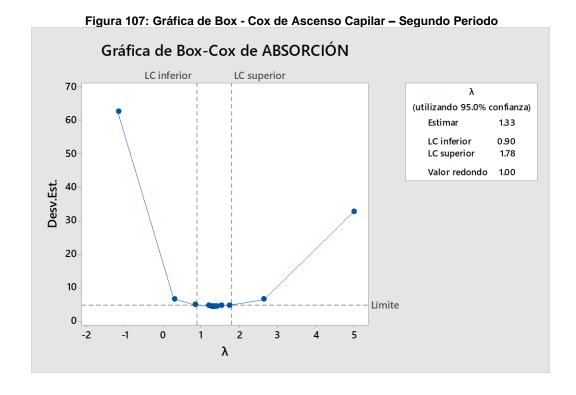
Tabla 39: Resumen del Modelo				
S	R-cuad.	R-cuad.	R-cuad.	
		(ajustado)	(pred)	

16.8314	48.25%	46.40%	40.59%

Análisis: El Resumen del modelo se observa que la variable resistencia en el tiempo a la absorción de los muros de adobe se explica en un 48.25% por el sistema de protección (R2=48.25).

5.3.1.5.3 Prueba de Tukey Tercer Periodo Absorción.

Agrupar información utilizando el método de Tukey y una confianza de 95% Las medias que no comparten una letra son significativamente diferentes.


Tabla 40: Comparaciones por parejas de Tukey: Tipo de Muro

TIPO DE MURO	N	l Media Agrupació	
CY	15	55.0667	Α
сс	15	23.6667	В

Análisis: Las medias que no comparten una letra son significativamente diferentes. Con una significancia del 5%, se concluye que los muros con sistema de protección CY – CC son lo que brindan mayor resistencia en el tiempo a la absorción con un promedio de 55.0667 y 23.6667, siendo el CC, el muro que brinda mayor resistencia en el tiempo.

5.3.1.5.4 Transformación de BOX - COX para identificación de distribución individual.

Realizamos el análisis BOX – COX para determinar los supuestos de normalidad y homocedasticidad, se procedió a determinar la estimación puntual e intervalo de confianza para λ de la transformación para identificación de distribución individual (λ =0.16).

Análisis: Se pudo observar que por no presentar normalidad en los datos tenemos una estimación de 1.33 con un límite inferior de 0.90 y un límite superior de 1.78, donde cuyo valor redondo es de 1.00, adecuándose al modelo $z(\lambda) = Y$.

 5.3.1.6. Tercer Periodo - Efecto de inundación simulada en la succión de muros de adobe con tarrajeos de morteros cemento - cal, tierra roja - cal, cemento - yeso y muro patrón a un nivel de significancia del 0.05

5.3.1.6.1 Normalidad de los errores Tercer periodo - Succión

Verificamos los supuestos del modelo en la normalidad de los errores, donde observamos que los puntos no coinciden en su totalidad con la línea recta, por lo cual se denota que no existe normalidad de los datos.

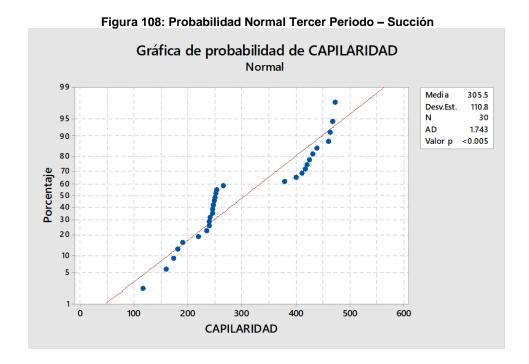


Tabla 41: Probabilidad Normal Tercer Periodo – Succión
Hipótesis:

H₀: Los errores se distribuyen normalmente

H₁: Los errores no se distribuyen normalmente

Nivel de significación:

α = 0.05

Estadístico de prueba (Anderson Darling):

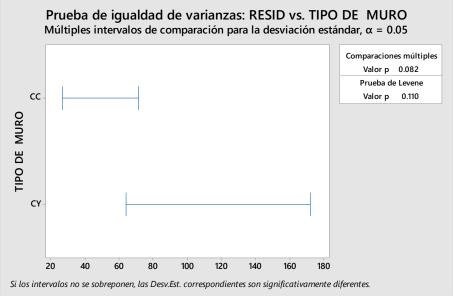
AD = 1.743

p- valor:

P<0.005

Decisión estadística:

Se rechaza Ho


Conclusión:

Con una significancia del 5%, no cumple el supuesto de normalidad

Análisis: Con una significancia del 5%, no cumple el supuesto de normalidad. Como el valor estadístico de prueba Anderson Darling (AD) = 1.743 tiene una probabilidad asociada Valor p < 0.005 al nivel de significancia 0.05, por lo tanto, se tiene razón para rechazar la hipótesis nula, cómo resultado la distribución no normal de los residuos no brinda un buen ajuste para la distribución de capilaridad por succión en el Tercer periodo.

5.3.1.6.2 Homogeneidad de varianzas Tercer periodo

Figura 109: Prueba de Igualdad De Varianza: Residuo Vs Tipo De Muro - Capilaridad Tercer Periodo

La distribución de probabilidad por homocedasticidad tiene cómo resultado posiciones superpuestas de los intervalos de confianza denota la presencia de variabilidad constante en los datos de dos muros restantes CC – CY.

Tabla 42: Estadística de Prueba - Absorción Tercer Periodo

Método	Estadística de prueba	Valor p
Comparaciones múltiples	3.03	0.082
Levene	2.72	0.110

Análisis: Con una significancia del 5%, se cumple el supuesto de homogeneidad de varianzas. Al ser el Estadístico Levene de 2.72, con un p-valor mayor a 5%, se rechaza la hipótesis nula por tener que las varianzas homogéneas para el ascenso capilar en el Tercer periodo.

Verificación si los sistemas de protección diferencian al evaluar el ascenso capilar por succión durante el Tercer periodo de evaluación.

Tabla 43: Análisis de Varianza - Tercer Periodo Absorción

Fuente	GL	SC Ajust.	MC Ajust.	Valor F	Valor p
TIPO DE MURO	1	199757	199757	35.78	0.000
Error	28	156341	5584		
Total	29	356097			

Estadístico de prueba: F = 35.78

• p- valor: p = 0.000

Decisión estadística: Se rechaza Ho

Análisis: Con una significancia del 5%, al menos un promedio es diferente, por lo tanto, el Sistema de protección que se use en los muros de adobe afectan la resistencia en el tiempo a la absorción de los muros. Al comparar el valor p de los Sistemas de protección con el nivel de significancia de 0.05 podemos decir que se rechaza la hipótesis nula para los métodos de protección y se concluye que existe una diferencia significativa en cuanto a sistemas de protección con el muro sin protección, es decir los Sistemas de protección si influyen en el ascenso capilar por succión de los muros de adobe.

 Tabla 44: Resumen del Modelo

 S
 R-cuad.
 R-cuad.
 R-cuad.
 (pred)

 74.7235
 56.10%
 54.53%
 49.60%

Análisis: El Resumen del modelo se observa que la variable del ascenso capilar de los muros de adobe se explica en un 56.10% por el sistema de protección (R2=56.10), esto denota que el ascenso capilar es mayor en los muros con protección, teniendo muy poca variabilidad.

5.3.1.6.3 Prueba de Tukey Tercer periodo Succión.

Agrupar información utilizando el método de Tukey y una confianza de 95% Las medias que no comparten una letra son significativamente diferentes.

Tabla 45: Comparaciones por parejas de Tukey: Tipo de Muro

TIPO DE MURO	N	Media	Agrupación
CY	15	387.133	Α
cc	15	223.933	В

Análisis: Las medias no comparten una letra significativamente. Con una significancia del 5%, se concluye que los muros tienen diferente comportamiento al efecto de ascenso capilar por succión durante el Tercer periodo.

5.3.1.6.4 Transformación de BOX - COX para identificación de distribución individual.

Realizamos el análisis BOX - COX para determinar los supuestos de normalidad y homocedasticidad, se procedió a determinar la estimación puntual e intervalo de confianza para λ de la transformación para identificación de distribución individual (λ=0.16).

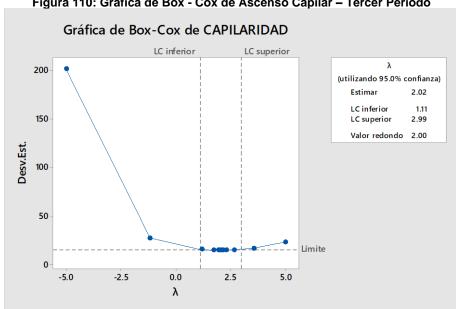


Figura 110: Gráfica de Box - Cox de Ascenso Capilar - Tercer Periodo

Análisis: Se pudo observar que por no presentar normalidad en los datos tenemos una estimación de 2.02 con un límite inferior de 1.11 y un límite superior de 2.99, donde cuyo valor redondo es de 2.00, adecuándose al modelo $z(\lambda) = 2Y$.

5.3.1.7. Cuarto Periodo - Efecto de inundación simulada en la resistencia en el tiempo - absorción de muros de adobe con tarrajeos de morteros cemento - cal, tierra roja - cal, cemento - yeso y muro patrón a un nivel de significancia del 0.05

5.3.1.7.1 Normalidad de los errores Cuarto periodo - Absorción

Verificamos los supuestos del modelo en la normalidad de los errores, donde observamos que los puntos coinciden en su mayoría con la línea recta, por lo cual se denota que existe normalidad de los datos.

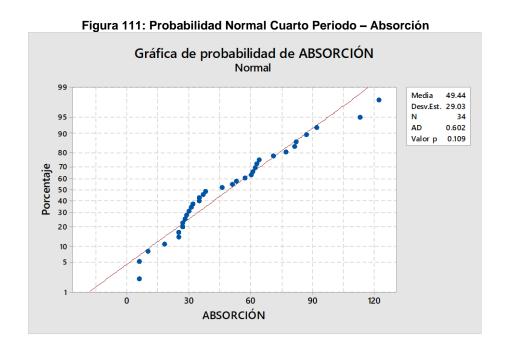


Tabla 46: Probabilidad Normal Cuarto Periodo – Absorción
Hipótesis:

H₀: Los errores se distribuyen normalmente

H₁: Los errores no se distribuyen normalmente

Nivel de significación:

α = 0.05

Estadístico de prueba (Anderson Darling):

AD = 0.602

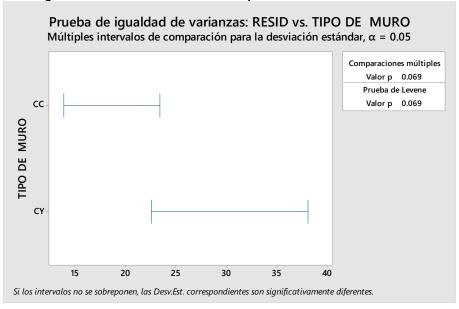
p- valor:

P=0.109

Decisión estadística:

No se rechaza Ho

Conclusión:


Con una significancia del 5%, se cumple el supuesto de normalidad

Análisis: Con una significancia del 5%, se cumple el supuesto de normalidad. Como el valor estadístico de prueba Anderson Darling (AD) = 0.602 tiene una probabilidad asociada Valor p = 0.109 al nivel de significancia 0.05, por lo tanto, no se rechaza la hipótesis nula, cómo resultado la distribución normal de los

residuos brinda un buen ajuste para la distribución de la resistencia en el tiempo a la absorción en el Cuarto periodo.

5.3.1.7.2 Homogeneidad de varianzas Cuarto periodo

Figura 112: Prueba De Igualdad de Varianza: Residuo Vs Tipo De Muro - Absorción Cuarto Periodo

La distribución de probabilidad por homocedasticidad tiene cómo resultado posiciones superpuestas de los intervalos de confianza denota la presencia de variabilidad constante en los datos de dos muros restantes CC – CY.

Tabla 47: Intervalos de confianza de Bonferroni de 95% para desviaciones estándar

TIPO DE MURO	N	Desv.Est.	IC
СС	17	16.9597	(11.4551; 28.9230)
CY	17	27.5661	(19.3934; 45.1335)

Nivel de confianza individual = 97.50%

Podemos concluir que el estudio tiene un nivel de confianza mayor al 95%, dando valides a los resultados.

Tabla 48: Estadística de Prueba - Absorción Cuarto Periodo

Método	Estadística de prueba	Valor p
Comparaciones múltiples	3.31	0.069
Levene	3.54	0.069

Análisis: Con una significancia del 5%, se cumple el supuesto de homogeneidad de varianzas. Al ser el Estadístico Levene de 3.54, con un p-valor mayor a 5%, no se rechaza la hipótesis nula por tener varianzas homogéneas para la resistencia en el tiempo a la absorción en el Cuarto periodo.

Verificación si los sistemas de protección diferencian al evaluar la resistencia en el tiempo a la absorción durante el Cuarto periodo de evaluación.

Tabla 49: Análisis de Varianza - Cuarto Periodo Absorción

Fuente	GL	SC Ajust.	MC Ajust.	Valor F	Valor p
TIPO DE MURO	1	11052	11052.0	21.10	0.000
Error	32	16760	523.8		
Total	33	27812			

• Estadístico de prueba: F = 21.10

• p- valor: p = 0.000

Decisión estadística: Se rechaza Ho

Análisis: Con una significancia del 5%, al menos un promedio es diferente, por lo tanto, el Sistema de protección que se use en los muros de adobe afectan la resistencia en el tiempo a la absorción de los muros. Al comparar el valor p de los Sistemas de protección con el nivel de significancia de 0.05 podemos decir que se rechaza la hipótesis nula para los métodos de protección y se concluye que existe una diferencia significativa en cuanto a sistemas de protección, es decir los Sistemas de protección si influyen en la absorción de los muros de adobe.

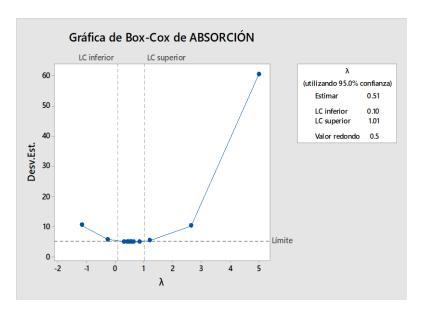
Tabla 50: Resumen del Modelo						
S R-cuad. R-cuad. R-cu						
		(ajustado)	(pred)			
22.8858	39.74%	37.85%	31.97%			

Análisis: El Resumen del modelo se observa que la variable resistencia en el tiempo a la absorción de los muros de adobe se explica en un 48.25% por el sistema de protección (R2=48.25).

5.3.1.7.3 Prueba de Tukey Cuarto Periodo Absorción.

Agrupar información utilizando el método de Tukey y una confianza de 95% Las medias que no comparten una letra son significativamente diferentes.

Tabla 51: Comparaciones por parejas de Tukey: Tipo de Muro


TIPO DE MURO	N	Media	Agrupación
СУ	17	67.4706	Α
СС	17	31.4118	В

Análisis: Las medias que no comparten una letra son significativamente diferentes. Con una significancia del 5%, se concluye que los muros con sistema de protección CY – CC son lo que brindan mayor resistencia en el tiempo a la absorción con un promedio de 67.4706 y 31.4118, siendo el CC, el muro que brinda mayor resistencia en el tiempo.

5.3.1.7.4 Transformación de BOX - COX para identificación de distribución individual.

Realizamos el análisis BOX – COX para determinar los supuestos de normalidad y homocedasticidad, se procedió a determinar la estimación puntual e intervalo de confianza para λ de la transformación para identificación de distribución individual (λ =0.16).

Figura 113: Gráfica de Box - Cox de Ascenso Capilar - Segundo Periodo

Análisis: Se pudo observar que por no presentar normalidad en los datos tenemos una estimación de 0.51 con un límite inferior de 0.10 y un límite superior de 1.01, donde cuyo valor redondo es de 0.5, adecuándose al modelo $z(\lambda) = \sqrt{Y}$.

5.3.1.8. Cuarto Periodo - Efecto de inundación simulada en la succión de muros de adobe con tarrajeos de morteros cemento - cal, tierra roja - cal, cemento - yeso y muro patrón a un nivel de significancia del 0.05

5.3.1.8.1 Normalidad de los errores Cuarto periodo - Succión

Verificamos los supuestos del modelo en la normalidad de los errores, donde observamos que los puntos no coinciden en su totalidad con la línea recta, por lo cual se denota que no existe normalidad de los datos.

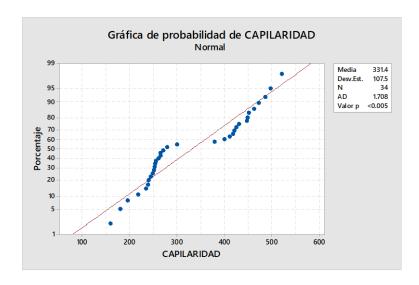
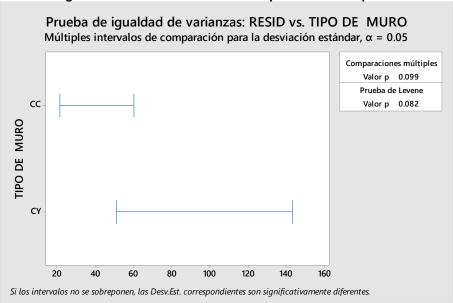


Figura 114: Probabilidad Normal Cuarto Periodo - Succión

Tabla 52: Probabilidad Normal Cuarto Periodo - Succión


Tabla 52. Probabilidad Normal Cuarto Periodo – Succion
Hipótesis:
H ₀ : Los errores se distribuyen normalmente
H ₁ : Los errores no se distribuyen normalmente
Nivel de significación:
$\alpha = 0.05$
Estadístico de prueba (Anderson Darling):
AD = 1.708
p- valor:
P<0.005
Decisión estadística:

Se rechaza Ho
Conclusión:
Con una significancia del 5%, no cumple el supuesto de normalidad

Análisis: Con una significancia del 5%, no cumple el supuesto de normalidad. Como el valor estadístico de prueba Anderson Darling (AD) = 1.708 tiene una probabilidad asociada Valor p < 0.005 al nivel de significancia 0.05, por lo tanto, se tiene razón para rechazar la hipótesis nula, cómo resultado la distribución no normal de los residuos no brinda un buen ajuste para la distribución de capilaridad por succión en el Cuarto periodo.

5.3.1.8.2 Homogeneidad de varianzas Cuarto periodo

Figura 115: Prueba de Igualdad De Varianza: Residuo Vs Tipo De Muro - Capilaridad Cuarto Periodo

La distribución de probabilidad por homocedasticidad tiene cómo resultado posiciones superpuestas de los intervalos de confianza denota la presencia de variabilidad constante en los datos de dos muros restantes CC – CY.

Tabla 53: Estadística de Prueba - Absorción Cuarto Periodo

	Valor p
de prueba	
2.72	0.099
3.22	0.082
	2.,, 2

Análisis: Con una significancia del 5%, se cumple el supuesto de homogeneidad de varianzas. Al ser el Estadístico Levene de 3.22, con un p-valor mayor a 5%, se rechaza la hipótesis nula por tener que las varianzas homogéneas para el ascenso capilar en el Cuarto periodo.

Verificación si los sistemas de protección diferencian al evaluar el ascenso capilar por succión durante el Cuarto periodo de evaluación.

Tabla 54: Análisis de Varianza - Cuarto Periodo Absorción

Fuente	GL	SC Ajust.	MC Ajust.	Valor F	Valor p
TIPO DE MURO	1	259963	259963	68.39	0.000
Error	32	121629	3801		
Total	33	381592			

• Estadístico de prueba: F = 68.69

• p- valor: p = 0.000

• Decisión estadística: Se rechaza Ho

Análisis: Con una significancia del 5%, al menos un promedio es diferente, por lo tanto, el Sistema de protección que se use en los muros de adobe afectan la resistencia en el tiempo a la absorción de los muros. Al comparar el valor p de los Sistemas de protección con el nivel de significancia de 0.05 podemos decir que se rechaza la hipótesis nula para los métodos de protección y se concluye que existe una diferencia significativa en cuanto a sistemas de protección con el muro sin protección, es decir los Sistemas de protección si influyen en el ascenso capilar por succión de los muros de adobe.

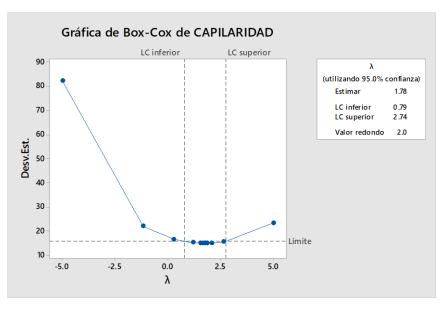
Tabla 55: Resumen del Modelo				
S	S R-cuad.		R-cuad.	
		(ajustado)	(pred)	
61.6516	68.13%	67.13%	64.02%	

Análisis: El Resumen del modelo se observa que la variable del ascenso capilar de los muros de adobe se explica en un 68.13% por el sistema de protección (R2=68.13), esto denota que el ascenso capilar es mayor en los muros con protección, teniendo muy poca variabilidad.

5.3.1.8.3 Prueba de Tukey Cuarto periodo Succión.

Agrupar información utilizando el método de Tukey y una confianza de 95% Las medias que no comparten una letra son significativamente diferentes.

Tabla 56: Comparaciones por parejas de Tukey: Tipo de Muro


TIPO DE MURO	N	Media	Agrupación
CY	17	418.824	Α
СС	17	243.941	В

Análisis: Las medias no comparten una letra significativamente. Con una significancia del 5%, se concluye que los muros tienen diferente comportamiento al efecto de ascenso capilar por succión durante el Cuarto periodo.

5.3.1.8.4 Transformación de BOX - COX para identificación de distribución individual.

Realizamos el análisis BOX – COX para determinar los supuestos de normalidad y homocedasticidad, se procedió a determinar la estimación puntual e intervalo de confianza para λ de la transformación para identificación de distribución individual (λ =0.16).

Figura 116: Gráfica de Box - Cox de Ascenso Capilar – Cuarto Periodo

Análisis: Se pudo observar que por no presentar normalidad en los datos tenemos una estimación de 1.78 con un límite inferior de 0.79 y un límite superior de 2.74, donde cuyo valor redondo es de 2.00, adecuándose al modelo z $(\lambda) = 2Y$.

CAPÍTULO 6. CONCLUSIONES

- La hipótesis se cumplió parcialmente ya que la resistencia en el tiempo de los muros de adobe con recubrimiento de tarrajeo mortero cemento cal y tarrajeo de mortero de cemento yeso si aumentó en más del 100 % en comparación con un muro patrón sin recubrimiento, bajo los efectos de la inundación simulada, superando los cuatro periodos de prueba, sin embargo, el muro con tarrajeo de tierra roja cal, solo aumentó en un 33 % más de resistencia en el tiempo de colapso bajo los efectos de inundación simulada, por lo cual no superó el 100 % planificado.
- El porcentaje de resistencia en tiempo de los muros de adobe bajo efecto de inundación simulada es mayor al muro patrón, donde el muro de adobe con tarrajeo mortero tierra roja cal aumentando en un 33 % de tiempo antes del colapso (373 minutos), además los muros de tarrajeo cemento cal y tarrajeo de cemento yeso superaron los cuatro periodos de prueba (576 horas acumuladas) en comparación con un muro patrón sin recubrimiento que resistió 4 horas con 41 minutos acumulados al colapsar.
- El muro patrón presentó una absorción hasta el minuto 280 un total acumulado de 22.75 litros, colapsando en el minuto 281, el muro tierra roja cal absorbió hasta el minuto 360 un total acumulado de 43.55 litros, colapso a los 373 minutos, ambos muros no soportaron el segundo periodo, el muro con tarrajeo de cemento cal presentó una absorción de 156.87 litros acumulados y el muro con tarrajeo de cemento yeso presentó una absorción 191.39 litros acumulados, ambos soportaron los cuatro periodos de ensayos durante 24 días.
- El ascenso capilar por succión del muro patrón hasta el minuto 220 fue de 73 mm, del muro tierra roja - cal hasta el minuto 360 fue de 211 mm, del muro con tarrajeo de cemento – cal fue de 300 mm y el muro con tarrajeo de cemento – yeso fue de 520 mm.

CAPÍTULO 7. RECOMENDACIONES

- Investigar la aplicación de nuevos métodos usando productos naturales con diferentes procesos de impermeabilización, diferentes dosificaciones y métodos constructivos.
- Teniendo en Cajamarca el 70.3 % de las construcciones realizadas con adobe o tapial, se recomienda proteger los muros con diferentes sistemas de protección ante los efectos del agua, como tarrajeo con mortero que incluyan cemento, por ser el material que brinda mejores resultados de resistencia en el tiempo a la inundación simulada.
- Continuar la investigación aplicando nuevos métodos de ensayos, sometidos a precipitaciones e inundaciones simuladas con agua en estado dinámico; además de agregar cargar estáticas a los muros, queda abierta la invitación a estudiar más propuestas de mejora.

CAPÍTULO 8. REFERENCIAS BIBLIOGRÁFICAS

- Cabrera, D., & Huaynate, w. (2010). *Mejoramiento de las Construcciones de Adobe ante una Exposición Prolongada de Agua por Efecto de Inundaciones*. Lima: Pontificie Universidad Catolica del Perú.
- De La Peña, D. (1997). Tesis "Adobe, características y sus Principales usos en la Construcción". México D.F.: Instituto Tecnológico De La Construcción.
- El Comercio. (13 de enero de 2015). Lluvia en Cajamarca causó inundación por mal sistema de drenaje. *Diario El Comercio*, págs. https://elcomercio.pe/autor/redaccion-ec.
- Gama, J. E., Cruz, T., & Pi, T. (2010). *Architecture of earth: adobe as construction material in.* México D.F.: Boletín de la Sociedad Geológica Mexicana.
- Gama, J., Cruz, T., & Pi-Puig, T. A. (2012). "Arquitectura de tierra: el adobe como material de construcción en la época prehispánica". Mexico: Boletín de la Sociedad Geológica de México.
- Guha, D. (2011). Desastres en cifras 2010. Ginebra: Universidad de Lovaina.
- Guillard, H. y. (1994). vigencia y pertinencia de la tierra como sistema constructivo para la habitabilidad del medio rural.
- Hernandez, J. (2016). Construcción Con Tierra: Análisis, conservación y mejora. Un Caso Práctico en Senegal. Departamento de Tenología De La Arquitectura. Barcelona: Departamento de Tenología De La Arquitectura.
- Houben, H., & Guillaud, H. (1994). *Earth Construction A Comprehensive Guide.ITDG.* London: ITDG Publishing.
- Instituto Nacional de Defensa Civil. (2012). *Peligros Naturales en el Norte del Pais.* Cajamarca: INDECI.
- Instituto Nacional de Defensa Civil. (2017). Registro "Precipitaciones en Cajamarca". Cajamarca: INDECI.
- Instituto Nacional de Estadística e Informática. (2012). Censos Nacionales 2007: Xi De Población Y Vi De Vivienda. Lima: INEI.
- Instituto Nacional de Estadística e Informatica. (2017). Características de las viviendas particulares censadas: Los Censos Nacionales 2017: XII de Población y VII de Vivienda. Lima: INEI.
- Lozano, E. (07 de abril de 2009). Torrencial Iluvia inundó medio centenar de viviendas en Cajamarca. *Andina Agencia Peruana de Noticias*, pág. https://andina.pe/agencia/noticia.aspx?id=226844.
- Ministerio de Vivienda, Construcción y Saneamiento. (2017). *Norma E.80: Diseño y Construcción con tierra Reforzada.* Perú: REsolución Ministerial N° 121 2017 Vivienda.
- Ministerio de Vivienda, Construcción y Saneamiento. (2020). NORMA E.060 CONCRETO ARMADO. LIMA.
- Miranda, H. (1986). *Tesis: "Efectos del agua en los muros de adobe"*. Cajamarca: Universidad Nacional de Cajamarca.
- Museo de Cultura Popular. (2014). *Intervención de Bienes Arquitectónicos Terrenos*. Santa Lucia, Costa Rica.: Universidad Nacional de Costa Rica UNA.
- Nucoyo. (2018). ¿Qué Es Un Impermeabilizante? México D.F.: http://nucoyo.mx/que-es-un-impermeabilizante.
- Pereyra, J. y. (2012). Mejoramiento de las construcciones de adobe Ante una exposición prolongada de agua por Efecto de inundaciones parte 2. Lima: Pontificia Universidad Católica Del Perú.
- Proyecto Regional de Patrimonio Cultural y Desarrollo PNUD/UNESCO. (1983). El adobe "Simposio Internacional u curso Taller sobre conservación del adobe". Centro Internacional de Estudio para la Conservación y la Restauraciónde los Bienes Culturales.
- Ramírez Caparó, J. E. (2016). Tesis: "Estudio de las Propiedades Mecánicas y Físicas del Adobe con Biopolímeros de Fuentes Locales". Lima: Pontificia Universidad Católica del Perú.
- Real Academia Española. (2017). *Diccionario de la Lengua Española*. Madrid: Asociación de Academias de la Lengua Española.
- Robinson. (1999). terra rossa. Oxford: Oxford University Company.

- San Bartolomé, Á. (2010). tesis "Mejoramiento de las viviendas de adobe ante una exposición prolongada de agua por efecto de Inundaciones". Lima: Pontificia Universidad Católica del Perú.
- Teixeira Martins, H. T. (2015). Estudio de las propiedades de las fábricas históricas de adobe como soporte a intervenciones de rehabilitación. Madrid: Universidad Politécnica de Madrid.
- Texdelta. (2014). Geomallas para la estabilización y refuerzo. Lima.
- Torrealva Davila, D. E. (2003). *Tesis: "Caracterización de los Daños Producidos por Terremotos en Construcciones de adobe"*. Lima: Pontificia Universidad Católica del Perú.

CAPÍTULO 9. ANEXO

9.1. Proceso de selección de los adobes

Se realizó la clasificación de suelos para seleccionar la mejor opción, utilizando material de la zona de Cruz Blanca, donde se fabricó 350 adobes con medidas de 30 cm x 40 cm x 10 cm, está fabricación se hizo de manera artesanal.

Las adoberas utilizadas son de madera, la fabricación es de modo artesanal, bajo conocimientos empíricos, sin criterios técnicos, por lo cual se supervisó la dosificación para la elaboración de todos los adobes.

El proceso de secado es al aire libre, cada 7 días son volteados para airear todos los lados, luego de 15 días se apilan para su transporte.

El transporte de los adobes se realiza en vehículos de carga, donde las muestras sufren deterioro en su estructura, por lo cual se seleccionó las mejores muestras, la descarga la realice de forma manual, a los 15 días de ser fabricados los adobes.

Figura 119: traslado de material

Para el transporte se tuvo cuidado en no mover bruscamente los adobes para no alterar su estructura, se dio prioridad al cuidado y fueron ubicados en una zona adecuada.

Luego de ser descargados del camión, los adobes fueron ubicados en hiladas con un espaciamiento adecuado, para garantizar el ingreso del aire, y permitir continuar con el proceso de secado.

Figura 120: Distribución de los adobes

Al cumplir los 28 días se inspecciono y midió los adobes apilados, descartando las muestras que no cumplen con la calidad mínima o presenta fallas en su

composición o estructura, y solo se autorizó el trabajo con los adobes que pasaron el control de calidad.

Figura 121: Control de calidad de adobes

9.2. Proceso de fabricación de pozo impermeabilizado:

Es una estructura construida con ladrillos y mortero de cemento con agregado grueso, con tarrajeo cemento arena mezclado con aditivo impermeabilizante, que será adecuada para cumplir con los requisitos de impermeabilidad y estanqueidad, con la finalidad analizar las variables de absorción, capilaridad y desempeño a lo largo del tiempo de cada muro; este procedimiento consistirá en pruebas de estanqueidad, reparación de fisuras y puntos de filtración, terminando con el impermeabilizado final mediante tarrajeo con una mezcla incorporando aditivos impermeabilizantes, obteniendo como resultado un pozo adecuado para realizar las pruebas y análisis necesarios para el estudio.

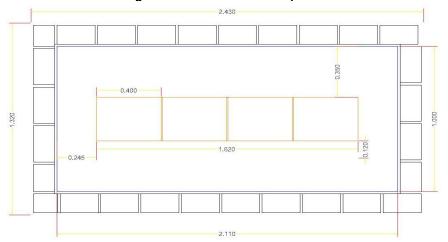


Figura 122: Dimensiones del pozo

La construcción se realizó en aparejo de soga, con separación de 15 mm entre cada, tanto en la parte vertical como en la horizontal, la altura del muro de pozos es de 800 mm en la parte interna, de lado cada pozo tiene 1000 mm de ancho en parte interna, 2110 mm de largo parte interna.

Figura 123: Inicio construcción pozos

Luego de terminar el asentado de los ladrillos, se procedió a realizar el tarrajeo y con mezcla de cemento, y aditivo impermeabilizante.

Figura 124: Mortero con Impermeabilizante

Luego se construyó un sobrecimiento en cada pozo con una altura de 50 mm, para evitar que el agua ingreso por la parte en contacto con el suelo de los muros, finalmente se realizó el tarrajeo con 15 mm de espesor tanto en las paredes como en el suelo de los muros del pozo.

Figura 125: Sobrecimiento de 50 mm

Finalmente, como protección a los pozos y muros se construyó un techo con madera y calamina para garantizar que los muros no serán afectados por lluvias.

Figura 126: Pozos Impermeabilizados MP - CC

Figura 127: Pozos Impermeabilizados CY -TRC

Luego de tener listo los pozos, se realizó la supervisión de cada uno de ellos, donde se midió altura, ancho, largo, perpendicularidad y se comprobó que los 4 pozos cumplen con la calidad necesaria para realizar la construcción de los muros. Se dejó secar el material por 28 días.

Figura 128: Supervisión de los pozos - Pozo CY - Pozo TRC - Pozo CC - Pozo MP

9.2.1. Proceso constructivo y supervisión del muro con tarrajeo de mortero Cemento – Cal

En este muro se construyó un recubrimiento de cemento – cal, con una dosificación de 1:1:6 (cemento – cal – arena), de altura 90 cm desde la base del pozo, aplicado sobre una malla electro soldada ½" anclada al muro mediante clavos con separación de 10 cm. Este recubrimiento proporciono una barrera hidráulica con lo cual se disminuyó el porcentaje de absorción de agua del adobe.

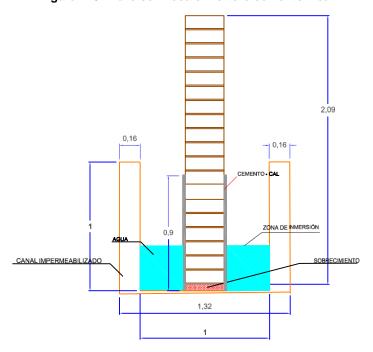


Figura 129: Muro con zócalo mortero cemento - cal

Para la fabricación del muro se hizo primero asentando los adobes, se esperó 7 días que secaran, luego de eso se clavó la malla electro soldaba y se aplicó el recubrimiento.

Figura 130: Aplicación del Recubrimiento - Tarrajeo mortero Cemento - Cal

Finalmente se verifico que el muro se construyera con la condición de calidad requerida, y se esperó 28 días para ensayarlo.

TARRAJEO CEMENTO - CAL

SOBRECIMEINTO 5 cm

Figura 131: Distribución muro con tarrajeo Cemento - Cal respecto al pozo

Luego de esperar el periodo indicado (28 días) se procedió con los ensayos de absorción y succión en el muro con recubrimiento de Cemento – Cal y arena.

Figura 132: Muro Cemento - Cal

9.2.2. Proceso constructivo y supervisión del muro con recubrimiento de mortero Tierra roja – Cal

En este muro se construyó un recubrimiento de Tierra Roja - Cal, con una dosificación de 2:1 (tierra - cal), de altura 90 cm desde la base del pozo, aplicado sobre una malla electro soldada ½" anclada al muro mediante clavos con separación de 10 cm. Este recubrimiento proporciono una barrera hidráulica con lo cual disminuyo el porcentaje de absorción de agua del adobe.

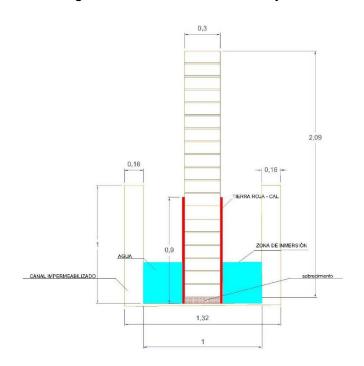


Figura 133: Muro con zócalo tierra roja - cal

Para la fabricación del muro se hizo primero asentando los adobes, se esperó 7 días que secaran, luego de eso se clavó la malla electro soldaba y se aplicó el recubrimiento.

Figura 134: Aplicación de Recubrimiento - Tarrajeo mortero Tierra Roja - Cal

Finalmente se verifico que el muro se construyera con la condición de calidad requerida, y se esperó 28 días para ensayarlo.

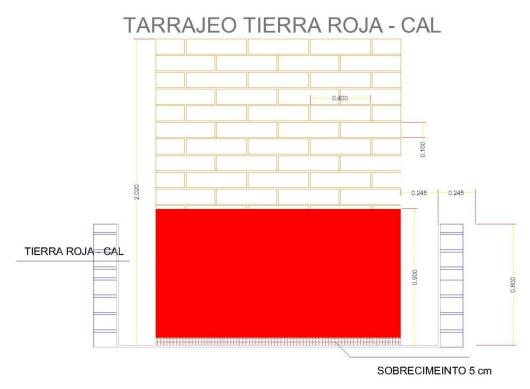


Figura 135: Distribución muro con tarrajeo Tierra Roja - Cal, respecto al pozo

Luego de esperar el periodo indicado (28 días) se procedió con los ensayos de absorción y succión en el muro con recubrimiento Tierra Roja – Cal.

Figura 136: Muro Tierra Roja - Cal

9.2.3. Proceso constructivo y supervisión del muro con tarrajeo de mortero Cemento – Yeso

En este muro se construyó un zócalo de cemento - yeso de altura 90 cm desde la base del pozo, con una dosificación de 1:1:6 (cemento – yeso – arena), aplicado sobre una malla electro soldada ½" anclada al muro. Este zócalo proporciono una barrera hidráulica con lo cual disminuyo el porcentaje de absorción de agua del adobe.

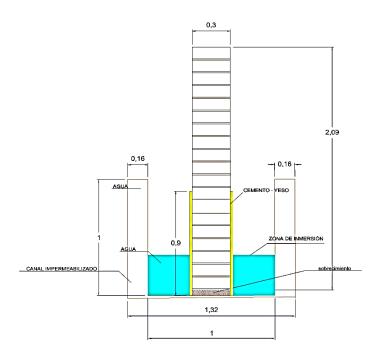


Figura 137: Muro con zócalo Cemento - Yeso

Para la fabricación del muro se hizo primero asentando los adobes, se esperó 7 días que secaran, luego de eso se clavó la malla electro soldaba y se aplicó el recubrimiento.

Figura 138: Aplicación de Recubrimiento - Tarrajeo mortero Cemento - Yeso

Finalmente se verifico que el muro se construyera con la condición de calidad requerida, y se esperó 28 días para ensayarlo.

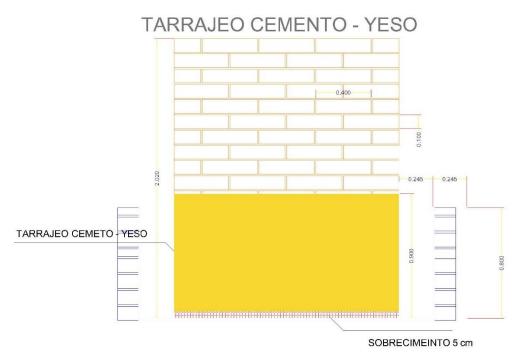


Figura 139: Distribución muro con Cemento - Yeso, respecto al pozo

Luego de esperar el periodo indicado (28 días) se procedió con los ensayos de absorción y succión en el muro con recubrimiento de Cemento – Cal y arena.

Figura 140: Muro Cemento - Yeso

9.3. Métodos de investigación

9.3.1. Clasificación de suelos

(1) Contenido de Humedad

Para determinar el contenido de humedad nos guiamos en las Normas MTC E 108 / ASTM D2216 / NTP 339.127, para el procedimiento y cálculo del porcentaje de humedad, se extrajo muestras en estado natural y luego fueron sometidas al ensayo.

Figura 141: Muestras tara más material Ensayo Contenido de Humedad

Luego de determinar el contenido de humedad se procedió a realizar la clasificación SUCS (Sistema Unificado de Clasificación de Suelos), para esta clasificación se realizó

Figura 142: Ingreso de muestras Contenido de Humedad

Procedimiento: Determinación Contenido de humedad según la norma NTP 339.127:

- Identificación del recipiente (A)
- Pesar el recipiente o tara (B).
- Pesar la muestra húmeda en el recipiente o tara (C).
- Secar la muestra en la estufa durante 24 horas a 105°C.
- Pesar la muestra seca en el recipiente o tara (D).
- Determinar el peso del agua Ww(E) = C B.
- Determinar el peso del suelo seco Ws(F) = D B
- Determinar el contenido de humedad (G) = (E / F) * 100
- $\bullet \quad (W\%) = \frac{Ww}{Ws} * 100$
- Determinar el promedio del contenido de humedad (H).

(2) Granulometría Mediante Tamizado Por Lavado

Procedimiento Determinación Granulometría Mediante Tamizado Por Lavado

- Pesarla muestra seca (Ws)
- Colocar la muestra en un recipiente, cubrir con agua y dejar durante algunas horas dependiendo del tipo de material.
- Tamizar la muestra por la malla N°200 mediante chorro de agua
- La muestra retenida en la malla N°200 se retira en un recipiente y se deja secar.
- Pasar la muestra seca por el juego de tamices, agitando en forma manual o mediante tamizador.
- Determinar los porcentajes de los pesos retenidos en cada tamiz (%RP)

$$\%RP = \frac{PRP}{Wt} * 100$$

- Determinar los porcentajes retenidos acumulados en cada tamiz %RA, para lo cual se sumarán en forma progresiva los %RP, es decir
- %RA1 = %RP1
- %RA2 = %RP1 + %RP2
- %RA3 = %RP1 + %RP2 + %RP3, euc.
- Determinar los porcentajes acumulados que pasan en cada tamiz
- % que pasa %rve qata = 100% %R. A.

 Dibujar la curva granulométrica en escala semilogarítmica, en el eje de las abscisas se registrará la abertura de las mallas en milímetros, y en el eje de las ordenadas se registrará los porcentajes acumulados que pasan en las mallas que se utilizan.

Figura 143: Toma de Datos - Tamizado por Lavado - Suelo Marrón Rojizo - Malla Nº 10 - 20 -30

Figura 144: Toma de Datos - Tamizado por Lavado - Suelo Marrón Rojizo - Malla Nº 40 - 60 - 100

Figura 145: Toma de Datos - Tamizado por Lavado - Suelo Marrón Rojizo - Malla Nº 200

Figura 146: Toma de Datos - Tamizado por Lavado - Suelo Marrón - Malla Nº 10 - 20 - 30

Figura 147: Toma de Datos - Tamizado por Lavado - Suelo Marrón - Malla Nº 40 - 60 - 100

Figura 148: Toma de Datos - Tamizado por Lavado - Suelo Marrón – Malla N° 200

Figura 150: Toma de Datos - Tamizado por Lavado - Suelo Rojo - Malla Nº 40 - 60 - 100

Figura 151: Toma de Datos - Tamizado por Lavado - Suelo Rojo - Malla Nº 200

(3) Límites de Plasticidad "Atterberg"

Para determinar los límites de plasticidad nos guiamos en las normas ASTM D4318 / NTP E339.130 – NTP E111:

Ensayo - Límite Líquido

Procedimiento:

- En una cápsula de porcelana mezclar el suelo con agua mediante una espátula hasta obtener una pasta uniforme
- Colocar una porción de la pasta en la copa de Casagrande, nivelar mediante la espátula hasta obtener un espesor de 1 cm.
- En el centro hacer una ranura con el acanalador de tal manera que la muestra queda divida en dos partes
- Elevar y caer la copa mediante la manivela a razón de 2 caídas por segundo hasta que las dos mitades de suelo se pongan en contacto en la parte inferior de la ranura y a lo largo de 1.27 cm, registrar el número de golpes.
- Mediante la cápsula retirar la porción de suelo que se ha puesto en contacto en la parte inferior de la ranura y colocarlo en una tara para determinar su contenido de humedad.
- Retirar el suelo de la copa de Casagrande y colocar en la capsula de porcelana, agregar agua si el número de golpes del ensayo anterior ha sido alto, o agregar suelo si el número de golpes ha sido bajo. (el número de golpes debe estar comprendido entre 6 y 35)
- Lavar y secar el acanalador
- Repetir el ensavo minino 2 veces
- Dibujar a curva de fluidez (la recta) en escala semilogarítmica, en el eje de las abscisas se registrará el número de golpes en escala logarítmica, en el eje de ordenadas los contenidos de humedad en escala natural.
- Determinar la ordenada correspondiente a los 25 golpes en la curva de fluidez, este valor será el límite líquido del suelo.

Ensayo - Límite Plástico

- A la porción de la mezcla preparada para el límite liquido agregar suelo seco de tal manera que la pasta baje su contenido de humedad.
- Enrollar la muestra con la mano sobre una placa de vidrio hasta obtener cilindros de 3 mm de diámetro y que presenten agrietamientos, determinar su contenido de humedad.
- Repetir el ensayo una vez más
- El límite plástico es el promedio de los 2 valores de contenidos de humedad.

9.3.2. Ensayos muestras Individuales

9.3.2.1. Ensayos Absorción a las 24 horas de muestras individuales

Con la finalidad de analizar las unidades de adobe el grado de impermeabilización de las distintas soluciones planteadas, se realizó pruebas de Succión en un minuto y Absorción en 24 horas.

El objetivo del ensayo de Absorción, es conocer la capacidad de absorción del adobe durante24 horas de inmersión en agua a una temperatura de 24°C ± 8°C.

Figura 153: Determinación peso seco para Absorción - Adobe Patrón

Figura 154: Ingreso Adobe Patrón 24 horas Absorción

Figura 155: Ensayo no aplicable - Adobes Patrón

Figura 156: Determinación peso seco para Absorción - Adobe Tierra Roja Cal

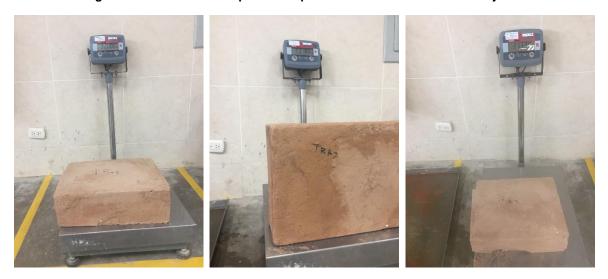


Figura 157: Ingreso Adobe Tierra Roja - Cal 24 horas Absorción

Figura 158: Ensayo no aplicable - Adobes Tierra Roja - Cal

Figura 160: Adobes Cemento - Cal sumergidos 24 horas

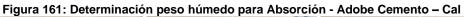


Figura 163: Adobes Cemento - Yeso sumergidos 24 horas

9.3.2.2. Ensayos de succión muestras individuales

La prueba de succión busca determinar el índice de absorción temprana del espécimen analizado, lo que viene a ser la cantidad de agua que 200cm2 de la unidad de adobe puede absorber en un periodo normado en 1 minuto ± 1 segundo.

Figura 165: Ensayo Succión - Adobe Cemento - Cal N°1

Figura 166: Ensayo Succión - Adobe Tierra Roja Cal Nº 1

Figura 167: Figura 59: Ensayo Succión - Adobe Cemento - Yeso N° 3

Figura 168: Succión Adobe Patrón - No aplicable

9.3.3. Análisis de suelos

9.3.3.1. Clasificación de los suelos SUCS

Se realizó los ensayos de granulometría por el método de lavado, se puede observar en los protocolos y se determinó los Límites de Atterberg de los tres suelos utilizados, obteniendo los siguientes resultados.

A. Clasificación de suelo Marrón Rojizo

Tabla 57: Cuadro Resumen Índice de plasticidad

Límite Líquido:	LL =	25.77%
Límite Plástico:	LP =	17.76%
Índice de Plasticidad:	IP =	8.01%

Figura 169: Grafica Limite Liquido - Marrón Rojizo

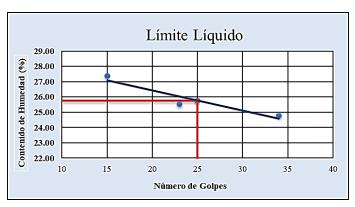


Tabla 58 : Clasificación de Suelos - Marrón Rojizo

DIVISIÓN	PROC	EDIMIEN	NTO DE IDE	ENTIFICACIÓN EN EL CAMPO	SIMBOLO	NOMBRES TÍPICOS
rícullas el material i la malla	10	AS de la fracción A por la malla LIMPIAS (poco o partículas finas)		apreciables de tamaños		Arenas bien gradadas, mezclas de grava y arena con poco ó nada de finos
DE PARTÍ DE PARTÍ La mitad del TENIDO en l GRAVAS		e la mitad de l s RETENIDA	GRAVAS LIM nada de part	Predominio de un tamaño o un tipo de tamaño, con ausencia de algunos intermedios.	GP	Arenas mal gradadas, mezclas de grava y arena con poco ó nada de finos
SUELC Más de es RE		Más de gruesa es	GRAVAS CON FINOS (cantidad	Fracción fino poco o nada plástica (para identificarla véase grupo Mt)	GM d	Arenas limosas, mezclas de grava, arena y arcilla.

			Fracción fina plástica (para identificarla véase grupo CL)	GC		Arenas arcillosas, mezclas de grava, arena y arcilla.
	gruesa PASA	LIMPIAS (poco o partículas finas)	Amplia gama en los tamaños de las partículas y cantidades			Arenas bien gradadas, mezclas de grava y arena con poco ó nada de finos
ARENAS	fracción nalla Nº4.	ARENAS LIMI nada de parti	Predominio de un tamaño o un tipo de tamaño, con ausencia de algunos intermedios.	a de SP		Arenas mal gradadas, mezclas de grava y arena con poco ó nada de finos
ARI	tad de la por la m	VAS CON F dad aprecia rtículas fin	Fracción fino poco o nada plástica (para identificarla véase grupo Mt)	SM -	d u	Arena limosas, mezclas de grava, arena y arcilla.
Más de la mitad po			Fracción fina plástica (para identificarla véase grupo CL)	SC		Arena arcillosas, mezclas de grava, arena y arcilla.

Clasificación por Sistema Unificado de Suelos (SUCS), La clasificación del material en estudio es un SC (Arena arcillosa, mezclas de grava, arena y arcilla)

B. Clasificación de suelo Marrón (Asentado)

Suelo utilizado para el asentado en soga de los adobes en la construcción de los muros, En las siguientes tablas se observa el cálculo de datos para la clasificación de suelos por el método de Clasificación de suelos Unificados (SUCS) para el suelo obtenido del km 7 carretera hacía Bambamarca, la granulometría se puede observar en los protocolos.

Tabla 59: Cuadro Resumen Índice de plasticidad

Límite Líquido:	LL =	18.97%
Límite Plástico:	LP =	15.58%
Índice d Plasticidad:	ie IP =	3.39%

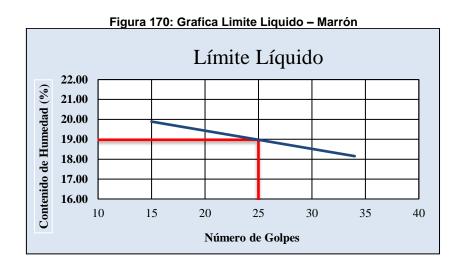
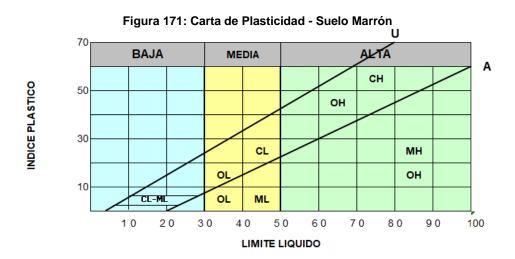



Tabla 60: Clasificación de Suelos - Marrón Rojizo

PROCEDIMIENTO DE IDENTIFICACIÓN EN LA FRACCION QUE PASA LA MALLA Nº 40 MOVILIDAD TENACIDAD **ESTADO SECO DEL AGUA** (consistencia (característica al rompimiento) (reacción al agitado) cerca del límite plástico) Rápida polvo de roca, limos renosos ó arcillosos IMITE LIQUIDO menor de 50 ML Nula o ligera Nula alenta igeramente plásticos IMOS Y ARCILLAS la malla número 200 Arcillas inorgánicas de baja a media plásticidad, arcillas con Nula a muy CL Media a alta media grava, arcillas lenta arenosas, arcillas limosas, arcillas pobres. **SUELO DE PARTÍCULAS FINAS** Limos orgánicos y arcillas limosas Ligera a media OL Lenta Ligera orgánicas de baja Más de la mitad del material PASA en plasticidad. Limos inorgánicos, LIMITE LIQUIDO mayor de 50 Ligera a limos micaceos ó MH Ligera a media Lenta a nula diatomeos, limos media **LIMOS Y ARCILLAS** elásticos. Arcillas inorgánicas de Nula a muy Alta a muy alta Alta CH alta plasticidad, arcillas lenta francas. Arcillas orgánicas de media ó alta Nula a muy Ligera a Media a alta OH plasticidad, limos lenta media orgánicos de media plasticidad. **SUELOS** Fácilmente identificable por su color, olor, sensación Turbas y otros suelos ALTAMENTE Pt esponjosa y, frecuentemente, por su textura fibrosa. altamente orgánicos. **ORGANICOS**

Clasificación por Sistema Unificado de Suelos (SUCS), La clasificación del material en estudio es un MI (Limos inorgánicos, polvo de roca, limos arenosos o arcillosos ligeramente plásticos.)

C. Clasificación de suelo Rojo (Tarrajeo)

Suelo utilizado para la mezcla del tarrajeo del muro "Tierra Roja – Cal, En las siguientes tablas se observa el cálculo de datos para la clasificación de suelos por el método de Clasificación de suelos Unificados (SUCS) para el suelo obtenido del km 7 carretera hacía Bambamarca, la granulometría se puede observar en los protocolos.

Tabla 61: Cuadro Resumen Índice de plasticidad

Límite Líquido:	LL =	22.16%
Límite Plástico:	LP =	15.68%
Indice de Plasticidad :	IP =	6.48%

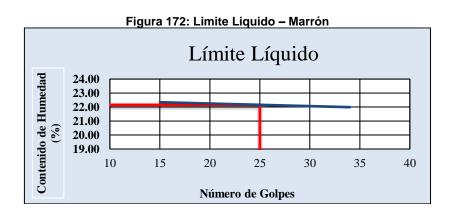
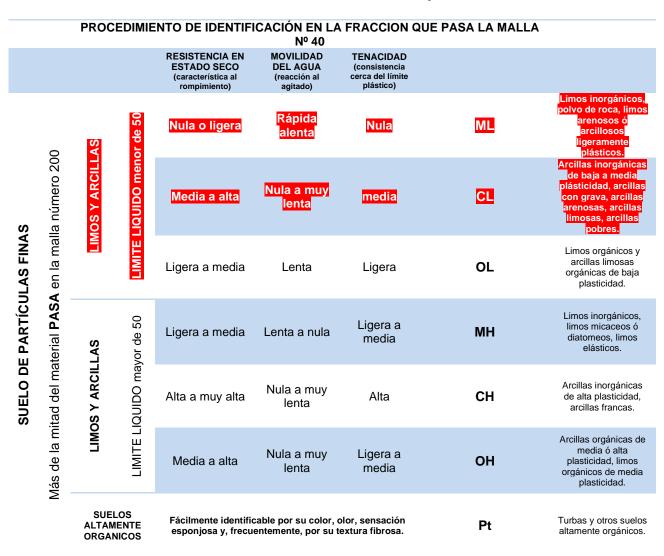



Tabla 62: Clasificación de Suelo Rojo

Clasificación por Sistema Unificado de Suelos (SUCS), La clasificación del material en estudio es un mixto entre CL Y ML (Arcilla Limo Arenosa)

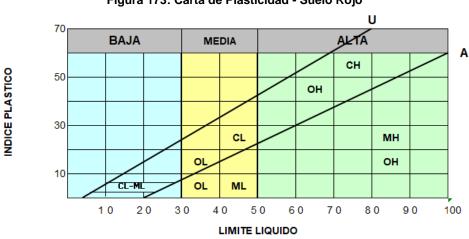


Figura 173: Carta de Plasticidad - Suelo Rojo

9.3.4. Análisis de Muros de adobe - Primer Periodo

Con la finalidad de analizar los muros de adobe el grado de impermeabilización de las distintas soluciones planteadas, se realizó pruebas de Succión y Absorción, en el primer periodo se midió cada minuto durante los primeros 60 minutos después de que el pozo fue llenado hasta los 35 cm establecidos como base.

9.3.4.1. Pruebas de Succión y Absorción en muros – Primer Periodo

En las Tablas se resumen los resultados de la prueba de succión y absorción en las muestras de adobe sin recubrimiento y con recubrimiento, medias cada intervalo de un minuto.

A. Muro Patrón (MP)

Resultados de la prueba de Absorción y succión en el muro patrón durante el primer periodo.

Tabla 63: Determinar Área Muro Patrón

ÁREA INTERIOR DE LA BASE DEL CANAL EN mm2							
LONGITUD INTERIOR DEL CANAL		2116	mm				
ANCHO DE LA BASE DEL CANAL		999	mm				
ÁREA INTERNA DEL POZO	AIP	2113884	mm2				
ÁREA DEL MURO EN mm2							
LONGITU DEL MURO		1642	mm				
ANCHO DEL MURO		298	mm				
ÁREA MURO	AM	489316	mm2				
ÁREA FINAL (AIP-AM)		1624568	mm2				

Tabla 64: Cálculo Succión y Absorción del Muro Patrón - Primer Periodo

Hora	Tiempo (min)	Absorcion	Capilaridad	Diferencia abs	Litros absorbidos	Acumulado
07:14	0	1	1	1	1.624568	1.624568
07:15	1	1	3	0	0	1.624568
07:16	2	1	4	0	0	1.624568
07:17	3	1	10	0	0	1.624568
07:18	4	2	13	1	1.624568	3.249136
07:19	5	2	16	0	0	3.249136

07:20	6	2	17	1	1 (245(0	4.072704
07:21	7	3	17	1	1.624568	4.873704
07:21	8	4	18	1	1.624568	6.498272
07:22	9	4	21	0	0	6.498272
07:24	10	4	25	0	0	6.498272
		4	30	0	0	6.498272
07:25	11	4	30	0	0	6.498272
07:26	12	4	30	0	0	6.498272
07:27	13	4	30	0	0	6.498272
07:28	14	3	30	-1	-1.624568	4.873704
07:29	15	3	31	0	0	4.873704
07:30	16	4	32	1	1.624568	6.498272
07:31	17	5	32	1	1.624568	8.12284
07:32	18	5	32	0	0	8.12284
07:33	19	5	32	0	0	8.12284
07:34	20	5	33	0	0	8.12284
07:35	21	6	34	1	1.624568	9.747408
07:36	22	6	34	0	0	9.747408
07:37	23	6	34	0	0	9.747408
07:38	24	5	34	-1	-1.624568	8.12284
07:39	25	6	34	0	0	8.12284
07:40	26	6	35	0	0	8.12284
07:41	27	6	35	0	0	8.12284
07:42	28	6.5	37	0.5	0.812284	8.935124
07:43	29	6.5	37	0	0	8.935124
07:44	30	7	37	0.5	0.812284	9.747408
07:45	31	7	36	0	0	9.747408
07:46	32	7	36	0	0	9.747408
07:47	33	7	36	0	0	9.747408
07:48	34	7	36	0	0	9.747408
07:49	35	7	36	0	0	9.747408
07:50	36	7	36	0	0	9.747408
07:51	37	7	36	0	0	9.747408
07:52	38	7	36	0	0	9.747408
07:53	39	7	36	0	0	9.747408
07:54	40	7	36	0	0	9.747408
07:55	41	7	36	0	0	9.747408
07:56	42	7	36	0	0	9.747408
07:57	43	7	37	0	0	9.747408
07:58	44	7	37	0	0	9.747408
07:59	45	7	37	0	0	9.747408
08:00	46	7	37	0	0	9.747408
08:01	47	7	38	0	0	9.747408
08:02	48	7	38	0	0	9.747408
08:03	49	7	38	0	0	9.747408
08:04	50	7	39	0	0	9.747408
08:05	51	7	38	0	0	9.747408
08:06	52	7	38	0	0	9.747408

08:07	53	7	38	0	0	9.747408
08:08	54	7	40	0	0	9.747408
08:09	55	7	40	0	0	9.747408
08:10	56	7	40	0	0	9.747408
08:11	57	8	40	1	1.624568	11.371976
08:12	58	8	40	0	0	11.371976
08:13	59	8	41	0	0	11.371976
08:14	60	8	41	0	0	11.371976

B. Muro Tierra Roja – Cal (TRC)

Resultados de la prueba de Absorción y succión en el con recubrimiento de Tierra Roja –Cal.

Tabla 65: Determinar Área Muro Tierra Roja - Cal

ÁREA INTERIOR DE LA BASE DEL CANAL EN mm2							
LONGITUD INTERIOR DEL CANAL		2108	mm				
ANCHO DE LA BASE DEL CANAL		995	mm				
ÁREA INTERNA DEL POZO	AIP	2097460	mm2				
ÁREA DEL MURO EN mm2							
LONGITU DEL MURO		1615	mm				
ANCHO DEL MURO		300	mm				
ÁREA MURO	AM	484500	mm2				
ÁREA FINAL (AIP-AM)		1612960	mm2				

Tabla 66: Cálculo Succión y Absorción del Muro Tierra Roja - Cal - Primer Periodo

Hora	Tiempo (min)	Absorción	Capilaridad	Diferencia abs	Litros absorbidos	Acumulado
11:33	0	1	1	1	1.61296	1.61296
11:34	1	1	2	0	0	1.61296
11:35	2	2	2	1	1.61296	3.22592
11:36	3	2	3	0	0	3.22592
11:37	4	2	4	0	0	3.22592
11:38	5	3	4	1	1.61296	4.83888
11:39	6	3	5	0	0	4.83888
11:40	7	3	7	0	0	4.83888
11:41	8	3	7	0	0	4.83888
11:42	9	4	7	1	1.61296	6.45184
11:43	10	4	10	0	0	6.45184
11:44	11	4	11	0	0	6.45184
11:45	12	4	13	0	0	6.45184
11:46	13	4	13	0	0	6.45184
11:47	14	4	14	0	0	6.45184
11:48	15	4	15	0	0	6.45184
11:49	16	4	18	0	0	6.45184
11:50	17	5	19	1	1.61296	8.0648

11:51	18	5	19	0	0	8.0648
11:52	19	5	20	0	0	8.0648
11:53	20	5	20	0	0	8.0648
11:54	21	5	20	0	0	8.0648
11:55	22	5	22	0	0	8.0648
11:56	23	5	23	0	0	8.0648
11:57	24	5	25	0	0	8.0648
11:58	25	5	27	0	0	8.0648
11:59	26	5	28	0	0	8.0648
12:00	27	5	30	0	0	8.0648
12:01	28	5	35	0	0	8.0648
12:02	29	5	36	0	0	8.0648
12:03	30	4	37	-1	-1.61296	6.45184
12:04	31	4	41	0	0	6.45184
12:05	32	4	43	0	0	6.45184
12:06	33	4	44	0	0	6.45184
12:07	34	5	46	1	1.61296	8.0648
12:08	35	5	48	0	0	8.0648
12:09	36	5	50	0	0	8.0648
12:10	37	5	51	0	0	8.0648
12:11	38	4	52	-1	-1.61296	6.45184
12:12	39	5	53	1	1.61296	8.0648
12:13	40	5	53	0	0	8.0648
12:14	41	5	54	0	0	8.0648
12:15	42	5	54	0	0	8.0648
12:16	43	5	55	0	0	8.0648
12:17	44	5	58	0	0	8.0648
12:18	45	5	60	0	0	8.0648
12:19	46	5	61	0	0	8.0648
12:20	47	6	64	1	1.61296	9.67776
12:21	48	6	65	0	0	9.67776
12:22	49	6	66	0	0	9.67776
12:23	50	6	68	0	0	9.67776
12:24	51	6	69	0	0	9.67776
12:25	52	5	71	-1	-1.61296	8.0648
12:26	53	6	73	1	1.61296	9.67776
12:27	54	6	73	0	0	9.67776
12:28	55	6	73	0	0	9.67776
12:29	56	6	73	0	0	9.67776
12:30	57	6	73	0	0	9.67776
12:31	58	6	74	0	0	9.67776
12:32	59	6	74	0	0	9.67776
12:33	59	6	74	0	0	9.67776

C. Muro Cemento – Cal (CC)

Resultados de la prueba de Absorción y succión en el con recubrimiento de Cemento-Cal.

Tabla 67: Determinar Área Muro Cemento - Cal						
ÁREA INTERIOR DE LA BASE D	DEL CA	NAL EN mn	12			
LONGITUD INTERIOR DEL CANAL		2110	mm			
ANCHO DE LA BASE DEL CANAL		991	mm			
ÁREA INTERNA DEL POZO	AIP	2091010	mm2			
ÁREA DEL MURO EN mm2						
LONGITU DEL MURO		1660	mm			
ANCHO DEL MURO		324	mm			
ÁREA MURO	AM	537840	mm2			
ÁREA FINAL (AIP-AM)		1553170	mm2			

	Tabla 68: Cálculo Succión y Absorción del Muro Cemento - Cal – Primer Periodo							
Hora	Tiempo (min)	Absorción	Capilaridad	Diferencia abs	Litros absorbidos	Acumulado		
13:31	0	0	1	0	0	0		
13:32	1	0	2	0	0	0		
13:33	2	0	3	0	0	0		
13:34	3	0	4	0	0	0		
13:35	4	0	12	0	0	0		
13:36	5	0	14	0	0	0		
13:37	6	0	14	0	0	0		
13:38	7	0	15	0	0	0		
13:39	8	0	15	0	0	0		
13:40	9	0	16	0	0	0		
13:41	10	0	17	0	0	0		
13:42	11	0	17	0	0	0		
13:43	12	0	18	0	0	0		
13:44	13	0	19	0	0	0		
13:45	14	0	21	0	0	0		
13:46	15	0	25	0	0	0		
13:47	16	0	28	0	0	0		
13:48	17	0	30	0	0	0		
13:49	18	0	32	0	0	0		
13:50	19	0	35	0	0	0		
13:51	20	0	40	0	0	0		
13:52	21	0	40	0	0	0		
13:53	22	0	42	0	0	0		
13:54	23	0	43	0	0	0		
13:55	24	0	44	0	0	0		
13:56	25	0	46	0	0	0		
13:57	26	0	49	0	0	0		
13:58	27	0	51	0	0	0		

14:00 29 0 54 0 0 0 14:01 30 0 55 0 0 0 14:02 31 0 56 0 0 0 14:03 32 0 56 0 0 0 14:04 33 0 57 0 0 0 14:05 34 0 58 0 0 0 14:06 35 0 59 0 0 0 14:07 36 0 61 0 0 0 14:08 37 0 62 0 0 0 14:09 38 0 63 0 0 0 14:10 39 0 63 0 0 0 14:11 40 0 63 0 0 0 14:12 41 0 64 0 0 0	13:59	28	0	53	0	0	0
14:02 31 0 56 0 0 0 14:03 32 0 56 0 0 0 14:04 33 0 57 0 0 0 14:05 34 0 58 0 0 0 14:06 35 0 59 0 0 0 14:07 36 0 61 0 0 0 14:08 37 0 62 0 0 0 14:09 38 0 63 0 0 0 14:10 39 0 63 0 0 0 14:11 40 0 63 0 0 0 14:11 40 0 63 0 0 0 14:12 41 0 64 0 0 0 14:13 42 0 65 0 0 0	14:00	29	0	54	0	0	0
14:03 32 0 56 0 0 0 14:04 33 0 57 0 0 0 14:05 34 0 58 0 0 0 14:06 35 0 59 0 0 0 14:07 36 0 61 0 0 0 14:08 37 0 62 0 0 0 14:09 38 0 63 0 0 0 14:10 39 0 63 0 0 0 14:11 40 0 63 0 0 0 14:12 41 0 64 0 0 0 14:13 42 0 65 0 0 0 14:14 43 0 66 0 0 0 14:15 44 0 65 0 0 0	14:01	30	0	55	0	0	0
14:04 33 0 57 0 0 0 14:05 34 0 58 0 0 0 14:06 35 0 59 0 0 0 14:07 36 0 61 0 0 0 14:08 37 0 62 0 0 0 14:09 38 0 63 0 0 0 14:10 39 0 63 0 0 0 14:11 40 0 63 0 0 0 14:12 41 0 64 0 0 0 14:13 42 0 65 0 0 0 14:14 43 0 66 0 0 0 14:15 44 0 65 0 0 0 14:16 45 0 66 0 0 0	14:02	31	0	56	0	0	0
14:05 34 0 58 0 0 0 14:06 35 0 59 0 0 0 14:07 36 0 61 0 0 0 14:08 37 0 62 0 0 0 14:09 38 0 63 0 0 0 14:10 39 0 63 0 0 0 14:11 40 0 63 0 0 0 14:12 41 0 64 0 0 0 14:13 42 0 65 0 0 0 14:14 43 0 66 0 0 0 14:15 44 0 65 0 0 0 14:16 45 0 66 0 0 0 14:17 46 0 66 0 0 0	14:03	32	0	56	0	0	0
14:06 35 0 59 0 0 0 14:07 36 0 61 0 0 0 14:08 37 0 62 0 0 0 14:09 38 0 63 0 0 0 14:10 39 0 63 0 0 0 14:11 40 0 63 0 0 0 14:12 41 0 64 0 0 0 14:13 42 0 65 0 0 0 14:14 43 0 66 0 0 0 14:15 44 0 65 0 0 0 14:16 45 0 66 0 0 0 14:17 46 0 66 0 0 0 14:18 47 0 66 0 0 0	14:04	33	0	57	0	0	0
14:07 36 0 61 0 0 0 14:08 37 0 62 0 0 0 14:09 38 0 63 0 0 0 14:10 39 0 63 0 0 0 14:11 40 0 63 0 0 0 14:12 41 0 64 0 0 0 14:13 42 0 65 0 0 0 14:14 43 0 66 0 0 0 14:14 43 0 66 0 0 0 14:15 44 0 65 0 0 0 14:16 45 0 66 0 0 0 14:17 46 0 66 0 0 0 14:18 47 0 66 0 0 0	14:05	34	0	58	0	0	0
14:08 37 0 62 0 0 0 14:09 38 0 63 0 0 0 14:10 39 0 63 0 0 0 14:11 40 0 63 0 0 0 14:12 41 0 64 0 0 0 14:13 42 0 65 0 0 0 14:14 43 0 66 0 0 0 14:15 44 0 65 0 0 0 14:16 45 0 66 0 0 0 14:17 46 0 66 0 0 0 14:18 47 0 66 0 0 0 14:19 48 0 66 0 0 0 14:20 49 0 67 0 0 0		35	0	59	0	0	0
14:09 38 0 63 0 0 0 14:10 39 0 63 0 0 0 14:11 40 0 63 0 0 0 14:12 41 0 64 0 0 0 14:13 42 0 65 0 0 0 14:14 43 0 66 0 0 0 14:15 44 0 65 0 0 0 14:16 45 0 66 0 0 0 14:17 46 0 66 0 0 0 14:18 47 0 66 0 0 0 14:19 48 0 66 0 0 0 14:20 49 0 67 0 0 0 14:21 50 0 67 0 0 0 14:22 51 0 67 0 0 0 <td< th=""><th>14:07</th><th>36</th><th>0</th><th>61</th><th>0</th><th>0</th><th>0</th></td<>	14:07	36	0	61	0	0	0
14:10 39 0 63 0 0 0 14:11 40 0 63 0 0 0 14:12 41 0 64 0 0 0 14:13 42 0 65 0 0 0 14:14 43 0 66 0 0 0 14:15 44 0 65 0 0 0 14:16 45 0 66 0 0 0 14:17 46 0 66 0 0 0 14:18 47 0 66 0 0 0 14:19 48 0 66 0 0 0 14:20 49 0 67 0 0 0 14:21 50 0 67 0 0 0 14:22 51 0 67 0 0 0 14:23 52 0 67 0 0 0 <td< th=""><th></th><th>37</th><th>0</th><th>62</th><th>0</th><th>0</th><th>0</th></td<>		37	0	62	0	0	0
14:11 40 0 63 0 0 0 14:12 41 0 64 0 0 0 14:13 42 0 65 0 0 0 14:14 43 0 66 0 0 0 14:15 44 0 65 0 0 0 14:16 45 0 66 0 0 0 14:17 46 0 66 0 0 0 14:18 47 0 66 0 0 0 14:19 48 0 66 0 0 0 14:20 49 0 67 0 0 0 14:21 50 0 67 0 0 0 14:22 51 0 67 0 0 0 14:23 52 0 67 0 0 0 14:24 53 0 67 0 0 0 <td< th=""><th>14:09</th><th>38</th><th>0</th><th>63</th><th>0</th><th>0</th><th>0</th></td<>	14:09	38	0	63	0	0	0
14:12 41 0 64 0 0 0 14:13 42 0 65 0 0 0 14:14 43 0 66 0 0 0 14:15 44 0 65 0 0 0 14:16 45 0 66 0 0 0 14:17 46 0 66 0 0 0 14:18 47 0 66 0 0 0 14:19 48 0 66 0 0 0 14:20 49 0 67 0 0 0 14:21 50 0 67 0 0 0 14:22 51 0 67 0 0 0 14:23 52 0 67 0 0 0 14:24 53 0 67 0 0 0 14:25 54 0 67 0 0 0 <td< th=""><th></th><th></th><th>0</th><th>63</th><th>0</th><th>0</th><th>0</th></td<>			0	63	0	0	0
14:13 42 0 65 0 0 0 14:14 43 0 66 0 0 0 14:15 44 0 65 0 0 0 14:16 45 0 66 0 0 0 14:17 46 0 66 0 0 0 14:18 47 0 66 0 0 0 14:19 48 0 66 0 0 0 14:20 49 0 67 0 0 0 14:21 50 0 67 0 0 0 14:22 51 0 67 0 0 0 14:23 52 0 67 0 0 0 14:24 53 0 67 0 0 0 14:25 54 0 67 0 0 0 14:26 55 0 67 0 0 0 <td< th=""><th>14:11</th><th>40</th><th>0</th><th>63</th><th>0</th><th>0</th><th>0</th></td<>	14:11	40	0	63	0	0	0
14:14 43 0 66 0 0 0 14:15 44 0 65 0 0 0 14:16 45 0 66 0 0 0 14:17 46 0 66 0 0 0 14:18 47 0 66 0 0 0 14:19 48 0 66 0 0 0 14:20 49 0 67 0 0 0 14:21 50 0 67 0 0 0 14:22 51 0 67 0 0 0 14:23 52 0 67 0 0 0 14:24 53 0 67 0 0 0 14:25 54 0 67 0 0 0 14:25 54 0 67 0 0 0 14:26 55 0 67 0 0 0 <td< th=""><th></th><th></th><th>0</th><th>64</th><th>0</th><th>0</th><th>0</th></td<>			0	64	0	0	0
14:15 44 0 65 0 0 0 14:16 45 0 66 0 0 0 14:17 46 0 66 0 0 0 14:18 47 0 66 0 0 0 14:19 48 0 66 0 0 0 14:20 49 0 67 0 0 0 14:21 50 0 67 0 0 0 14:22 51 0 67 0 0 0 14:23 52 0 67 0 0 0 14:24 53 0 67 0 0 0 14:25 54 0 67 0 0 0 14:25 54 0 67 0 0 0 14:26 55 0 67 0 0 0 14:27 56 0 67 0 0 0 <td< th=""><th></th><th></th><th>0</th><th>65</th><th>0</th><th>0</th><th>0</th></td<>			0	65	0	0	0
14:16 45 0 66 0 0 0 14:17 46 0 66 0 0 0 14:18 47 0 66 0 0 0 14:19 48 0 66 0 0 0 14:20 49 0 67 0 0 0 14:21 50 0 67 0 0 0 14:22 51 0 67 0 0 0 14:23 52 0 67 0 0 0 14:24 53 0 67 0 0 0 14:25 54 0 67 0 0 0 14:26 55 0 67 0 0 0 14:27 56 0 67 0 0 0 14:28 57 0 67 0 0 0 14:29 58 0 67 0 0 0 <td< th=""><th></th><th>43</th><th>0</th><th>66</th><th>0</th><th>0</th><th>0</th></td<>		43	0	66	0	0	0
14:17 46 0 66 0 0 0 14:18 47 0 66 0 0 0 14:19 48 0 66 0 0 0 14:20 49 0 67 0 0 0 14:21 50 0 67 0 0 0 14:22 51 0 67 0 0 0 14:23 52 0 67 0 0 0 14:24 53 0 67 0 0 0 14:25 54 0 67 0 0 0 14:26 55 0 67 0 0 0 14:27 56 0 67 0 0 0 14:28 57 0 67 0 0 0 14:29 58 0 67 0 0 0 14:30 59 0 67 0 0 0 <th></th> <th></th> <th>0</th> <th>65</th> <th>0</th> <th>0</th> <th>0</th>			0	65	0	0	0
14:18 47 0 66 0 0 0 14:19 48 0 66 0 0 0 14:20 49 0 67 0 0 0 14:21 50 0 67 0 0 0 14:22 51 0 67 0 0 0 14:23 52 0 67 0 0 0 14:24 53 0 67 0 0 0 14:25 54 0 67 0 0 0 14:26 55 0 67 0 0 0 14:27 56 0 67 0 0 0 14:28 57 0 67 0 0 0 14:29 58 0 67 0 0 0 14:30 59 0 67 0 0 0			0	66	0	0	0
14:19 48 0 66 0 0 0 14:20 49 0 67 0 0 0 14:21 50 0 67 0 0 0 14:22 51 0 67 0 0 0 14:23 52 0 67 0 0 0 14:24 53 0 67 0 0 0 14:25 54 0 67 0 0 0 14:25 54 0 67 0 0 0 14:26 55 0 67 0 0 0 14:27 56 0 67 0 0 0 14:28 57 0 67 0 0 0 14:29 58 0 67 0 0 0 14:30 59 0 67 0 0 0			0	66	0	0	0
14:20 49 0 67 0 0 0 14:21 50 0 67 0 0 0 14:22 51 0 67 0 0 0 14:23 52 0 67 0 0 0 14:24 53 0 67 0 0 0 14:25 54 0 67 0 0 0 14:26 55 0 67 0 0 0 14:27 56 0 67 0 0 0 14:28 57 0 67 0 0 0 14:29 58 0 67 0 0 0 14:30 59 0 67 0 0 0			0	66	0	0	0
14:21 50 0 67 0 0 0 14:22 51 0 67 0 0 0 14:23 52 0 67 0 0 0 14:24 53 0 67 0 0 0 14:25 54 0 67 0 0 0 14:25 55 0 67 0 0 0 14:26 55 0 67 0 0 0 14:27 56 0 67 0 0 0 14:28 57 0 67 0 0 0 14:29 58 0 67 0 0 0 14:30 59 0 67 0 0 0		48	0	66	0	0	0
14:22 51 0 67 0 0 0 14:23 52 0 67 0 0 0 14:24 53 0 67 0 0 0 14:25 54 0 67 0 0 0 14:26 55 0 67 0 0 0 14:27 56 0 67 0 0 0 14:28 57 0 67 0 0 0 14:29 58 0 67 0 0 0 14:30 59 0 67 0 0 0		49	0	67	0	0	0
14:23 52 0 67 0 0 0 14:24 53 0 67 0 0 0 14:25 54 0 67 0 0 0 14:26 55 0 67 0 0 0 14:27 56 0 67 0 0 0 14:28 57 0 67 0 0 0 14:29 58 0 67 0 0 0 14:30 59 0 67 0 0 0			0	67	0	0	0
14:24 53 0 67 0 0 0 14:25 54 0 67 0 0 0 14:26 55 0 67 0 0 0 14:27 56 0 67 0 0 0 14:28 57 0 67 0 0 0 14:29 58 0 67 0 0 0 14:30 59 0 67 0 0 0			0	67	0	0	0
14:25 54 0 67 0 0 0 14:26 55 0 67 0 0 0 14:27 56 0 67 0 0 0 14:28 57 0 67 0 0 0 14:29 58 0 67 0 0 0 14:30 59 0 67 0 0 0			0	67	0	0	0
14:26 55 0 67 0 0 0 14:27 56 0 67 0 0 0 14:28 57 0 67 0 0 0 14:29 58 0 67 0 0 0 14:30 59 0 67 0 0 0			0	67	0	0	0
14:27 56 0 67 0 0 0 14:28 57 0 67 0 0 0 14:29 58 0 67 0 0 0 14:30 59 0 67 0 0 0			0	67	0	0	0
14:28 57 0 67 0 0 0 14:29 58 0 67 0 0 0 14:30 59 0 67 0 0 0			0	67	0	0	0
14:29 58 0 67 0 0 0 14:30 59 0 67 0 0 0			0	67	0	0	0
14:30 59 0 67 0 0			0	67	0	0	0
			0	67	0	0	0
14:31 60 1 67 1 1.55317 1.55317			0		0		
	14:31	60	1	67	1	1.55317	1.55317

D. Muro Cemento - Yeso (CY)

Resultados de la prueba de Absorción y succión en el con recubrimiento de Cemento-Cal.

Tabla 69: Determinar Área Muro Cemento - Yeso

ÁREA INTERIOR DE LA BASE DEL CANAL EN mm2						
LONGITUD INTERIOR DEL CANAL		2115	mm			
ANCHO DE LA BASE DEL CANAL		996	mm			
ÁREA INTERNA DEL POZO	AIP	2106540	mm2			
ÁREA DEL MURO EN mm2						

LONGITU DEL MURO		1670	mm
ANCHO DEL MURO		322	mm
ÁREA MURO	AM	53774	mm2
ÁREA FINAL (AIP-AM)		1568800	mm2

Tabla 70: Cálculo Succión y Absorción del Muro Cemento - Yeso - Primer Periodo

Hora	Tiempo (min)	Absorción	Capilaridad	Diferencia abs	Litros absorbidos	Acumulado
15:02	0	0	2	0	0	0
15:03	1	0	2	0	0	0
15:04	2	0	2	0	0	0
15:05	3	0	3	0	0	0
15:06	4	0	4	0	0	0
15:07	5	0	4	0	0	0
15:08	6	0	5	0	0	0
15:09	7	0	7	0	0	0
15:10	8	0	7	0	0	0
15:11	9	0	7	0	0	0
15:12	10	0	10	0	0	0
15:13	11	0	11	0	0	0
15:14	12	0	13	0	0	0
15:15	13	0	13	0	0	0
15:16	14	0	14	0	0	0
15:17	15	0	15	0	0	0
15:18	16	0	18	0	0	0
15:19	17	0	19	0	0	0
15:20	18	0	19	0	0	0
15:21	19	0	20	0	0	0
15:22	20	0	20	0	0	0
15:23	21	0	20	0	0	0
15:24	22	0	22	0	0	0
15:25	23	0	23	0	0	0
15:26	24	0	25	0	0	0
15:27	25	0	27	0	0	0
15:28	26	0	28	0	0	0
15:29	27	0	30	0	0	0
15:30	28	0	35	0	0	0
15:31	29	0	36	0	0	0
15:32	30	0	37	0	0	0
15:33	31	0	41	0	0	0
15:34	32	0	43	0	0	0
15:35	33	0	44	0	0	0
15:36	34	0	46	0	0	0
15:37	35	0	48	0	0	0
15:38	36	0	50	0	0	0
15:39	37	0	51	0	0	0
15:40	38	0	52	0	0	0
15:41	39	0	53	0	0	0
15:42	40	0	53	0	0	0

15:43	41	0	54	0	0	0
15:44	42	0	54	0	0	0
15:45	43	0	55	0	0	0
15:46	44	0	58	0	0	0
15:47	45	0	60	0	0	0
15:48	46	0	61	0	0	0
15:49	47	0	64	0	0	0
15:50	48	0	65	0	0	0
15:51	49	0	66	0	0	0
15:52	50	0	68	0	0	0
15:53	51	0	69	0	0	0
15:54	52	0	71	0	0	0
15:55	53	0	73	0	0	0
15:56	54	1	73	1	1.5688	1.5688
15:57	55	1	73	0	0	1.5688
15:58	56	1	73	0	0	1.5688
15:59	57	1	73	0	0	1.5688
16:00	58	1	74	0	0	1.5688
16:01	59	1	74	0	0	1.5688
16:02	60	1	74	0	0	1.5688

9.3.5. Análisis de Muros de adobe - Segundo Periodo

Se realizó pruebas de Succión y Absorción, en el segundo periodo se midió cada 20 minutos durante las siguientes 6 horas después de del primer periodo ensayado.

9.3.5.1. Pruebas de Succión y Absorción en muros – Segundo Periodo

En las Tablas se resumen los resultados de la prueba de succión y absorción en las muestras de adobe sin recubrimiento y con recubrimiento, medidas cada intervalo de 20 minutos.

A. Muro Patrón (MP)

Resultados de la prueba de Absorción y succión en el muro patrón durante el segundo periodo.

Tabla 71: Determinación de la Absorción y Succión - Muro Patrón - Segundo Periodo

Fecha	Hora	Tiempo (hr/min)	Absorción	Capilaridad	Diferencia abs	Litros absorbidos	Acumulado
17/02/2019	08:14	min	8	41	0	0	0

17/02/2019	08:34	20min	9	42	1	1.624568	1.624568
17/02/2019	08:54	40min	9	43	0	0	1.624568
17/02/2019	09:14	60min	10	51	1	1.624568	3.249136
17/02/2019	09:34	80min	10	51	0	0	3.249136
17/02/2019	09:54	100min	10	52	0	0	3.249136
17/02/2019	10:14	120min	12	61	2	3.249136	6.498272
17/02/2019	10:34	140min	12	63	0	0	6.498272
17/02/2019	10:54	160min	13	69	1	1.624568	8.12284
17/02/2019	11:14	180min	13	71	0	0	8.12284
17/02/2019	11:34	200min	13	72	0	0	8.12284
17/02/2019	11:54	220min	14	73	1	1.624568	9.747408

Tabla 72: Volumen Acumulado MP- Segundo Periodo

Volumen de agua absorbido acumulado primer periodo	13.00	litros
Volumen de agua absorbido acumulado segundo periodo	9.75	litros
	22.75	litros

B. Muro Tierra Roja – Cal (TRC)

Resultados de la prueba de Absorción y succión en el muro patrón durante el segundo periodo.

Tabla 73: Determinación de la Absorción y Succión - Muro Tierra Roja - Cal - Segundo Periodo

Hora	Tiempo (hr/min)	Absorcion	Capilaridad	Diferencia abs	Litros absorbidos	Acumulado
12:33	min	6	74	0	0	0
12:53	20min	6	145	0	0	0
13:13	40min	6	145	0	0	0
13:33	60min	6	152	0	0	0
13:53	80min	11	153	5	8.0648	8.0648
14:13	100min	15	156	4	6.45184	14.51664
14:33	120min	15	163	0	0	14.51664
14:53	140min	19	176	4	6.45184	20.96848
15:13	160min	21	174	2	3.22592	24.1944
15:33	180min	23	178	2	3.22592	27.42032
15:53	200min	24	178	1	1.61296	29.03328
16:13	220min	23	180	-1	-1.61296	27.42032
16:33	240min	24	187	1	1.61296	29.03328
16:53	260min	25	190.5	1	1.61296	30.64624
17:13	280min	26	210	1	1.61296	32.2592
17:33	300min	27	211	1	1.61296	33.87216

Tabla 74: Volumen Acumulado MTR- Segundo Periodo

Volumen de agua absorbido acumulado primer periodo	9.678	litros
Volumen de agua absorbido acumulado segundo periodo	33.87	litros
	43.55	litros

C. Muro Cemento – Cal (CC)

Resultados de la prueba de Absorción y succión en el muro patrón durante el segundo periodo.

Tabla 75: Determinación de la Absorción y Succión - Muro Cemento - Cal - Segundo Periodo

Hora	Tiempo (hr/min)	Absorción	Capilaridad	Diferencia abs	Litros absorbidos	Acumulado
14:31	min	0	60	0	0	0
14:51	20min	0	67	0	0	0
15:11	40min	0	72	0	0	0
15:31	60min	0	81	0	0	0
15:51	80min	0	83	0	0	0
16:11	100min	0	83	0	0	0
16:31	120min	0	83	0	0	0
16:51	140min	0	83	0	0	0
17:11	160min	0	84	0	0	0
17:31	180min	0	84	0	0	0
17:51	200min	0	86	0	0	0
18:11	220min	0	87	0	0	0
18:31	240min	0	88	0	0	0
18:51	260min	0	89	0	0	0
19:11	280min	0	90	0	0	0
19:31	300min	1	110	1	1.55317	1.55317
19:51	320min	1	113	0	0	1.55317
20:11	340min	1	114	0	0	1.55317
20:31	360min	1	115	0	0	1.55317

Tabla 76: Volumen Acumulado CC- Segundo Periodo

Volumen de agua absorbido acumulado primer periodo	1.55	litros
Volumen de agua absorbido acumulado segundo periodo	1.55	litros
	3.11	litros

D. Muro Cemento - Yeso (YS)

Resultados de la prueba de Absorción y succión en el muro patrón durante el segundo periodo.

Tabla 77: Determinación de la Absorción y Succión - Muro Cemento - Yeso - Segundo Periodo

Hora	Tiempo (hr/min)	Absorción	Capilaridad	Diferencia abs	Litros absorbidos	Acumulado
16:02	min	0	0	0	0	0
16:22	20min	1	76	1	1.5688	1.5688
16:42	40min	1	80	0	0	1.5688
17:02	60min	1	86	0	0	1.5688
17:22	80min	1	90	0	0	1.5688
17:42	100min	1	92	0	0	1.5688
18:02	120min	2	100	1	1.5688	3.1376
18:22	140min	2	110	0	0	3.1376
18:42	160min	2	122	0	0	3.1376
19:02	180min	2	132	0	0	3.1376
19:22	200min	2	146	0	0	3.1376
19:42	220min	2	152	0	0	3.1376
20:02	240min	2	154	0	0	3.1376
20:22	260min	2	154	0	0	3.1376
20:42	280min	2	156	0	0	3.1376
21:02	300min	2	158	0	0	3.1376
21:22	320min	3	166	1	1.5688	4.7064
21:42	340min	3	170	0	0	4.7064
22:02	360min	3	172	0	0	4.7064

Tabla 78: Volumen Acumulado CY- Segundo Periodo

Volumen de agua absorbido acumulado primer periodo	1.57	litros
Volumen de agua absorbido acumulado segundo periodo	4.71	litros
	6.28	litros

9.3.6. Análisis de Muros de adobe - Tercer Periodo

Se realizó pruebas de Succión y Absorción, en el tercer periodo se midió cada 12 horas durante los siguientes 7 días después de del segundo periodo ensayado.

9.3.6.1. Pruebas de Succión y Absorción en muros – tercer Periodo

En las Tablas se resumen los resultados de la prueba de succión y absorción en las muestras de adobe con recubrimiento, medidas cada intervalo de 12 horas.

A. Muro Cemento – Cal (CC)

Resultados de la prueba de Absorción y succión en el muro cemento cal durante el tercer periodo.

Tabla 79: Determinación de la Absorción y Succión - Muro Cemento - Cal - Tercer Periodo

Fecha	Hora	Tiempo (hr/min)	Absorción	Capilaridad	Diferencia abs	Litros absorbidos	Acumulado
18/02/2019	20:31	Horas	1	115	0	0	0
19/02/2019	08:31	12Horas	6	159	5	7.76585	7.76585
19/02/2019	20:31	24Horas	10	180	4	6.21268	13.97853
20/02/2019	08:31	36Horas	18	218	8	12.42536	26.40389
20/02/2019	20:31	48Horas	27	234	9	13.97853	40.38242
21/02/2019	08:31	60Horas	27	238	0	0	40.38242
21/02/2019	20:31	72Horas	27	239	0	0	40.38242
22/02/2019	08:31	84Horas	28	240	1	1.55317	41.93559
22/02/2019	20:31	96Horas	28	244	0	0	41.93559
23/02/2019	08:31	108Horas	28	245	0	0	41.93559
23/02/2019	20:31	120Horas	29	246	1	1.55317	43.48876
24/02/2019	08:31	132Horas	29	248	0	0	43.48876
24/02/2019	20:31	144Horas	30	250	1	1.55317	45.04193
25/02/2019	08:31	156Horas	31	251	1	1.55317	46.5951
25/02/2019	20:31	168Horas	36	252	5	7.76585	54.36095

Tabla 80: Volumen Acumulado CC- tercer Periodo

Volumen de agua absorbido acumulado primer y segundo periodo	3.11	litros
Volumen de agua absorbido acumulado tercer periodo	54.36	litros
	57.47	litros

B. Muro Cemento – Yeso (YS)

Resultados de la prueba de Absorción y succión en el muro patrón durante el tercer periodo.

Tabla 81: Determinación de la Absorción y Succión - Muro Cemento - Yeso - Tercer Periodo

Fecha	Hora	Tiempo (hr/min)	Absorción	Capilaridad	Diferencia abs	Litros absorbidos	Acumulado
18/02/2019	22:02	Horas	3	172	0	0	0
19/02/2019	10:02	12Horas	25	190	22	34.5136	34.5136
19/02/2019	22:02	24Horas	35	265	10	15.688	50.2016
20/02/2019	10:02	36Horas	46	378	11	17.2568	67.4584
20/02/2019	22:02	48Horas	51	400	5	7.844	75.3024
21/02/2019	10:02	60Horas	51	410	0	0	75.3024
21/02/2019	22:02	72Horas	57	417	6	9.4128	84.7152
21/02/2019	10:02	84Horas	60	420	3	4.7064	89.4216
22/02/2019	22:02	96Horas	61	424	1	1.5688	90.9904
22/02/2019	10:02	108Horas	62	430	1	1.5688	92.5592
23/02/2019	22:02	120Horas	63	438	1	1.5688	94.128
23/02/2019	10:02	132Horas	71	460	8	12.5504	106.6784
24/02/2019	22:02	144Horas	77	463	6	9.4128	116.0912
24/02/2019	10:02	156Horas	81	468	4	6.2752	122.3664
25/02/2019	22:02	168Horas	83	472	2	3.1376	125.504

Tabla 82: Volumen Acumulado CY- tercer Periodo

Volumen de agua absorbido acumulado primer y segundo periodo	6.28	litros
Volumen de agua absorbido acumulado tercer periodo	125.50	litros
-	131.78	litros

9.3.7. Análisis de Muros de adobe - Cuarto Periodo

Se realizó pruebas de Succión y Absorción, en el cuarto periodo se midió cada 24 horas durante los siguientes 24 días después de del tercer periodo ensayado.

9.3.7.1. Pruebas de Succión y Absorción en muros – cuarto Periodo

En las Tablas se resumen los resultados de la prueba de succión y absorción en las muestras de adobe sin recubrimiento y con recubrimiento, medidas cada intervalo de 24 horas.

A. Muro Cemento – Cal (CC)

Resultados de la prueba de Absorción y succión en el muro cemento cal durante el cuarto periodo.

Tabla 83: Determinación de la Absorción y Succión - Muro Cemento - Cal - Cuarto Periodo

Fecha	Hora	Tiempo (hr/min)	Absorción	Capilaridad	Diferencia abs	Litros absorbidos	Acumulado
25/02/2019	20:31	168Horas	0	159	0	0	0
26/02/2019	20:30	192Horas	6	180	6	9.31902	9.31902
27/02/2019	20:32	216Horas	10	218	4	6.21268	15.5317
28/02/2019	20:30	240Horas	18	234	8	12.42536	27.95706
1/03/2019	20:45	264Horas	27	238	9	13.97853	41.93559
2/03/2019	20:38	288Horas	27	240	0	0	41.93559
3/03/2019	20:31	312Horas	28	244	1	1.55317	43.48876
4/03/2019	20:44	336Horas	29	248	1	1.55317	45.04193
5/03/2019	20:55	360Horas	30	251	1	1.55317	46.5951
6/03/2019	21:30	384Horas	31	253	1	1.55317	48.14827
7/03/2019	20:28	408Horas	32	254	1	1.55317	49.70144
8/03/2019	21:32	432Horas	35	255	3	4.65951	54.36095
9/03/2019	21:14	456Horas	37	260	2	3.10634	57.46729
10/03/2019	20:55	480Horas	38	265	1	1.55317	59.02046
11/03/2019	22:30	504Horas	53	270	15	23.29755	82.31801
12/03/2019	21:02	528Horas	63	278	10	15.5317	97.84971
13/03/2019	19:56	552Horas	64	300	1	1.55317	99.40288

Tabla 84: Volumen Acumulado CC- cuarto periodo

Volumen de agua absorbido acumulado primer y segundo periodo	57.47	litros
Volumen de agua absorbido acumulado tercer periodo	99.40	litros
	156.87	litros

B. Muro Cemento – Yeso (YS)

Resultados de la prueba de Absorción y succión en el muro patrón durante el cuarto periodo.

Tabla 85: Determinación de la Absorción y Succión - Muro Cemento - Yeso - Cuarto Periodo

Fecha	Hora	Tiempo (hr/min)	Absorción	Capilaridad	Diferencia abs	Litros absorbidos	Acumulado
25/02/2019	22:02	168Horas	0	196	0	0	0
26/02/2019	22:00	192Horas	25	265	25	39.22	39.22
27/02/2019	22:10	216Horas	35	378	10	15.688	54.908
28/02/2019	21:55	240Horas	46	400	11	17.2568	72.1648
1/03/2019	22:02	264Horas	51	410	5	7.844	80.0088
2/03/2019	22:03	288Horas	57	417	6	9.4128	89.4216
3/03/2019	23:00	312Horas	60	420	3	4.7064	94.128
4/03/2019	22:02	336Horas	61	424	1	1.5688	95.6968
5/03/2019	22:01	360Horas	62	430	1	1.5688	97.2656
6/03/2019	21:20	384Horas	71	447	9	14.1192	111.3848
7/03/2019	21:30	408Horas	77	448	6	9.4128	120.7976
8/03/2019	22:30	432Horas	81	450	4	6.2752	127.0728
9/03/2019	22:03	456Horas	82	462	1	1.5688	128.6416
10/03/2019	21:02	480Horas	87	472	5	7.844	136.4856
11/03/2019	22:15	504Horas	92	485	5	7.844	144.3296
12/03/2019	22:15	528Horas	113	496	21	32.9448	177.2744
13/03/2019	19:58	552Horas	122	520	9	14.1192	191.3936

Tabla 86: Volumen Acumulado CC- cuarto periodo

Volumen de agua absorbido acumulado primer y segundo periodo	131.78	litros
Volumen de agua absorbido acumulado tercer periodo	191.39	litros
	323.17	litros

9.3.8. Costos Unitarios – Fabricación de Muros

Para el análisis costo unitario se realizó el cálculo para cada muro, se incluyó mano de obra, materiales y equipos utilizados.

Tabla 87: Costo	Unitario - Mur	o Patrón
-----------------	----------------	----------

MURO PATRÓN (SIN TARRAJEO)							
Descripción	Unidad	Cantidad	precio unitario	Parcial	total (S/.)		
			(S/.)	(S/.)			

Mano de Obra					S/. 90.00
Operario	día	1.00	S/. 50.00	S/. 50.00	
Peón	día	1.00	S/. 40.00	S/. 40.00	
Materiales		0.00			S/. 94.50
Tierra para muro	m3	0.27	S/. 40.00	S/. 10.90	
Adobe	Und	76.00	S/. 1.10	S/. 83.60	
Equipo		0.00			S/. 4.50
Herramientas	%MO	5.00	S/. 90.00	S/. 4.50	
manuales					
MP		Costo Unit	ario Muro Patrón		S/. 189.00

El costo del Muro Patrón fue 189 soles, este se tomará como base para realizar la comparación en la fabricación de cada muro.

Tabla 88: Costo Unitario - Muro Tierra Roja - Cal

MURO TIERRA ROJA - CAL							
Descripción	Unidad	Cantidad	precio unitario	Parcial	total (S/.)		
			(S/.)	(S/.)			
Mano de Obra					S/. 130.00		
Operario	hh	1.00	S/. 50.00	S/. 50.00			
Peón	hh	2.00	S/. 40.00	S/. 80.00			
Materiales		0.00			S/. 96.10		
Tierra para muro	m3	0.27	S/. 40.00	S/. 10.90			
Adobe	m3	76.00	S/. 1.10	S/. 83.60			
Tierra roja	m3	0.02	S/. 40.00	S/. 0.98			
Cal apagada	bls	0.01	S/. 50.00	S/. 0.61			
Equipo		0.00			S/. 6.50		
Herramientas	%MO	5.00	S/. 130.00	S/. 6.50			
manuales							
TRC	Costo U	nitario muro	o tierra roja - cal		S/. 232.60		

Tabla 89: Costo Unitario - Muro Cemento - Cal

MURO MORTERO CEMENTO - CAL								
Descripción	Unidad	Cantidad	precio unitario	Parcial	total (S/.)			
			(S/.)	(S/.)				
Mano de Obra					130.00			
Operario	hh	1.00	S/. 50.00	S/. 50.00				
Peón	hh	2.00	S/. 40.00	S/. 80.00				
Materiales		0.00			S/. 138.65			

Tierra para muro	m3	0.27	S/. 40.00	S/. 10.90		
Adobe	und	76.00	S/. 1.10	S/. 83.60		
Cemento	bls	0.67	S/. 23.00	S/. 15.51		
Cal	bls	0.28	S/. 28.00	S/. 7.73		
Arena fina	m3	0.15	S/. 60.00	S/. 9.30		
malla electro soldada	m2	1.84	S/. 6.30	S/. 11.61		
Equipo		0.00			S/. 6.50	
Herramientas	%MO	5.00	S/. 130.00	S/. 6.50		
manuales						
СС	Costo U	nento - Cal	S/. 275.15			

Tabla 90: Costo Unitario - Muro Cemento -Yeso

	Tabla 90. Costo Officario - Muro Cemento - Teso							
MURO MORTERO CEMENTO - YESO								
Descripción	Unidad	Cantidad	precio unitario	Parcial	total (S/.)			
			(S/.)	(S/.)				
Mano de Obra					130.00			
Operario	hh	1.00	S/. 50.00	S/. 50.00				
Peón	hh	2.00	S/. 40.00	S/. 80.00				
Materiales		0.00			S/. 145.57			
Tierra para muro	m3	0.27	S/. 40.00	S/. 10.90				
Adobe	und	76.00	S/. 1.10	S/. 83.60				
Cemento	bls	0.67	S/. 23.00	S/. 15.51				
Yeso	bls	1.06	S/. 13.80	S/. 14.65				
Arena fina	m3	0.15	S/. 60.00	S/. 9.30				
malla electro soldada	m2	1.84	S/. 6.30	S/. 11.61				
Equipo		0.00			S/. 6.50			
Herramientas	%MO	5.00	S/. 130.00	S/. 6.50				
manuales								
СҮ	Costo U	nitario muro	tarrajeo Mortero cei	mento - Cal	S/. 282.07			

Protocolos Firmados

18min

19min

20min

5mm

5mm

5mm

UNIVERSIDAD NACIONAL DE CAJAMARCA

ESCUELA DE POSGRADO

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL, MORTERO DE CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

			Periodo:	PERIDO 1 (60 N	MNUTOS)
MURO PATRÓN (MP)	Ensayado Por:	Muñoz Barboza	Erick Rafael	
17 de febrero de 2	019	Hora de inicio:		07:14:14	
ninación de la Abs	sorción - Mur	o Patrón (MP) - s	in Tarrajeo - Per	iodo Uno (cada min	uto)
1mm	21min			41min	7mn
1mm	22min	6mr	n	42min	7mn
1mm	23min	6mr	n	43min	7mm
2mm	24min	5mr	n	44min	7mn
2mm	25min	6mr	n	45min	7mn
3mm	26min	6mr	n	46min	7mm
4mm	27min	6mr	n	47min	7mm
4mm	28min	6.5mr	n	48min	7mm
4mm	29min	6.5mn	n	49min	7mm
4mm	30min	7mn	n	50min	7mm
4mm	31min	7mn	n	51min	7mm
4mm	32min	7mn	n	52min	7mm
4mm	33min	7mn	n	53min	7mm
3mm	34min	7mn	n	54min	7mm
3mm	35min	7mn	n	55min	7mm
4mm	36min	7mn	n	56min	7mm
5mm	37min	7mm	n	57min	8mm
	17 de febrero de 2 ninación de la Abs 1mm 1mm 2mm 2mm 3mm 4mm 4mm 4mm 4mm 4	17 de febrero de 2019 ninación de la Absorción - Mur 1mm 21min 1mm 22min 1mm 23min 2mm 24min 2mm 25min 3mm 26min 4mm 27min 4mm 29min 4mm 30min 4mm 31min 4mm 32min 4mm 33min 3mm 34min 3mm 35min 4mm 35min	17 de febrero de 2019 Ninación de la Absorción - Muro Patrón (MP) - s 1mm 21min 6mr 1mm 22min 6mr 1mm 23min 6mr 2mm 24min 5mr 2mm 25min 6mr 3mm 26min 6mr 4mm 27min 6mr 4mm 28min 6.5mr 4mm 29min 6.5mr 4mm 30min 7mr 4mm 31min 7mr 4mm 32min 7mn 4mm 33min 7mn 3mm 34min 7mn 3mm 35min 7mn 4mm 30min 7mn	MURO PATRÓN (MP) 17 de febrero de 2019 Ininación de la Absorción - Muro Patrón (MP) - sin Tarrajeo - Per 1 mm 21 min 21 min 22 min 6 mm 1 mm 22 min 6 mm 23 min 24 min 25 min 26 min 3 mm 26 min 4 mm 27 min 4 mm 29 min 4 mm 30 min 7 mm 4 mm 31 min 32 min 7 mm 4 mm 33 min 34 min 3 mm 35 min 7 mm 4 mm 30 min 7 mm 3 mm 36 min 7 mm 4 mm 30 min 7 mm 3 mm 36 min 7 mm 7 mm	MURO PATRÓN (MP) Ensayado Por: Muñoz Barboza Erick Rafael 17 de febrero de 2019 Hora de inicio: 07:14:14 ninación de la Absorción - Muro Patrón (MP) - sin Tarrajeo - Período Uno (cada min damin d

8mm Observaciones: El muro presenta un alto grado de absorción, y conforme pasa el tiempo pierde partículas, el agua se presenta turbia, con un color oscuro marrón, los momentos que desciende la absorción corresponde a que el muro pierde partículas y se esta asentando.

7mm

7mm

7mm

58min

59min

60min

8mm

8mm

38min

39min

40min

EJECUTÓ	ASESOR
ING. MUNOZ BARBOZA ERICK RAFAEL	MG. ING. MIRANDA TEJADA HUGO
FECHA: 17/02/19	FECHA: 17/02/10

Escuela de Posgrado

UNIVERSIDAD NACIONAL DE CAJAMARCA

ESCUELA DE POSGRADO

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL, MORTERO DE CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

Lugar			Periodo	PERIDO 1 (60 I	MINUTOS)
Muestra:	MORTERO TIERRA ROJA	A – CAL (TRC) Ens	ayado Por: Muñoz B	arboza Erick Rafael	
Fecha de inicio:	17 de febrero de 2019	Hora	de inicio:	11:32:47	
	Determinación de la Al	sorción / Muro Tierra F	toja - Cal (TRC) / Perio	do Uno (cada minuto)	
1min	1mm	21min	5mm	41min	5mm
2min	2mm	22min	5mm	42min	5mm
3min	2mm	23min	5mm	43min	5mm
4min	2mm	24min	5mm	44min	5mm
5mir	3mm	25min	5mm	45min	5mm
6mir	3mm	26min	5mm	46min	5mm
7mir	3mm	27min	5mm	47min	6mm
8mir	3mm	28min	5mm	48min	6mm
9mir	4mm	29min	5mm	49min	6mm
10mir	4mm	30min	4mm	50min	6mm
11mir	4mm	31min	4mm	51min	6mm
12mir	4mm	32min	4mm	52min	5mm
13mir	4mm	33min	4mm	53min	6mm
14mir	4mm	34min	5mm	54min	6mm
15mir	4mm	35min	5mm	55min	6mm
16mir	4mm	36min	5mm	56min	6mm
17mir	5mm	37min	5mm	57min	6mm
18min	5mm	38min	4mm	58min	6mm
19min	5mm	39min	5mm	59min	6mm
20min		40min	5mm	60min	6mm
Observaciones: E	l muro al iniciar presento	en algunas zonas desp	rendimiento del Tarraj	eo.	,
	EJECUT	ó	ASESOR		
	ING. MUÑOZ BARBOZA	BERICK RAFAEL		Splan	1
ECHA:	17/02/10		FECHA:	MG. ING. MIRANDA TEJADA	HUGO
			IFECHA:	1710011	

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL, MORTERO DE CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

Lugar				Periodo:	PERIDO 1 (60 MINUTOS)	
Muestra:	MORTERO CE	EMENTO - CAL (CC)	Ensayado Por:	Muñoz Barboza Erick	Rafael	
Fecha de inicio:	18 de febrero	de 2019	Hora de inicio:	13:31	:12	
Det	erminación de	la Absorción / Muro Mo	ortero Cemento -	Cal (CC) / Periodo Uno	(cada minuto)	
1min	-	21min	-	41	min -	
2min	-	22min	-	42	min -	
3min	-	23min	-	43	min -	
4min	-	24min	•	44	min -	
5min	-	25min	-	45	min -	
6min	-	26min	-	46	min -	
7mir	-	27min	-	47	min -	
8mir	-	28min		48	min -	
9mir	-	29min	-	49	min -	
10mir	-	30min	-	50	min -	
11mir	-	31min	-	51	min -	
12mir	-	32min	-	52	min -	
13min	-	33min	-	53	min -	
14min	_	34min	-	54	min -	
15min	-	35min	-	55	min -	
16min	-	36min		56	min -	
17min	-	37min	-	1.00	min -	
18min		38min		581	min -	
19min	-	39min		591	min -	
20min	-	40min		60r	min	
observaciones: No alcanzado la medidi	base de 35 ch	rción en le primer period n. :JECUTÓ	do de los ensayos	correspondiente a las 6	0 minutos después de haber	
	ING. MUNOZ BA	ARBOZA ERICK RAFAEL		MG. ING MIRANDA TEJADA HUGO		
ECHA:	18/	02/19		FECHA: 18	102/49	

Estuela de Posgrado

UNIVERSIDAD NACIONAL DE CAJAMARCA

ESCUELA DE POSGRADO

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL, MORTERO DE CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

Lugar				Periodo:	PERIDO 1 (60 MINUTOS)
Muestra:	MORTERO DE CEMENTO - YESO (CY)		Ensayado Por:	Muñoz Barboza Erick Rafa	ael
Fecha de inicio:	18 de febrero de 2019		Hora de inicio:	15:02:10)
	Determinación de la Absorción / Mu	uro Morte	ero Cemento - Yes	so / Periodo Uno (cada mii	nuto)
1min	-	21min	-	41mir	-
2min	-	22min	-	42mir	
3min	-	23min	-	43mir	-
4min		24min	-	44mir	-
5min	-	25min	-	45mir	1 -
6min	-	26min	+	46mir	-
7min	-	27min	-	47mir	-
8min	-	28min		48mir	-
9min	-	29min	-	49mir	-
10min	-	30min	-	50mir	-
11min	-	31min		51mir	
12min	-	32min		52mir	-
13min	-	33min	-	53mir	-
14min	-	34min		54mir	1mm
15min		35min	-	55mir	1mm
16min	-	36min	-	56min	1mn
17min		37min	-	57min	1mm
18min		38min	-	58min	1mm
19min		39min	-	59min	
20min	-	40min	-	60min	
Observaciones: Pr	esenta Absorción muy lenta.			4	1
	EJECUTÓ			ASESOR	, /
	ING. MYNOZ BARBOZA ERICK RAFAEL			3/6	day
ECHA:	18/02/19				DA TEJADA HUGO
				FECHA:	3/02/19

UNIVERSIDAD NACIONAL DE CAJAMARCA

ESCUELA DE POSGRADO

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL, MORTERO DE CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

Lugar

Periodo:

PERIDO 1 (60 MINUTOS)

Muestra:

MURO PATRÓN (MP)

Ensayado Por: Muñoz Barboza Erick Rafael Hora de inicio:

Deterr	ninación de l	a Succión - Muro	Patrón (MP) - sin	Tarrajeo - Periodo Uno (ca	da minuto)
1min	3mm	21min	34mm	41min	36mm
2min	4mm	22min	34mm	42min	36mm
3min	10mm	23min	34mm	43min	37mm
4min	13mm	24min	34mm	44min	37mm
5min	16mm	25min	34mm	45min	37mm
6min	17mm	26min	35mm	46min	37mm
7min	18mm	27min	35mm	47min	38mm
8min	21mm	28min	37mm	48min	38mm
9min	25mm	29min	37mm	49min	38mm
10min	30mm	30min	37mm	50min	39mm
11min	30mm	31min	36mm	51min	38mm
12min	30mm	32min	36mm	52min	38mm
13min	30mm	33min	36mm	53min	38mm
14min	30mm	34min	36mm	54min	40mm
15min	31mm	35min	36mm	55min	40mm
16min	32mm	36min	36mm	56min	40mm
17min	32mm	37min	36mm	57min	40mm
18min	32mm	38min	36mm	58min	40mm
19min	32mm	39min	36mm	59min	41mm
20min	33mm	40min	36mm	60min	41mm

Observaciones: El ascenso capilar se dio de forma constante.

	EJECUTÓ	ASESOR
	ING. MUNOZ BARBOZA ERICK RAFAEL	MG. ING. MIRANDA TEJADA HUGO
FECHA:	17/02/19	FECHA: 17/02/19

Escuela de Descardo

UNIVERSIDAD NACIONAL DE CAJAMARCA

ESCUELA DE POSGRADO

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL, MORTERO DE CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

Lugar				Periodo:	PERIDO 1 (60 MINUT)	OS)
Muestra:	MORTERO TIEF	RRA ROJA – CAL (TRC)	Ensayado Por:	Muñoz Barboza Eri	ck Rafael	
Fecha de inicio:	17 de febrero de	2019	Hora de inicio:	11	1:32:47	
	Determinació	n de la Succión / Muro Ti	ierra Roja - Cal (T	RC) / Periodo Uno (cada minuto)	
1min	31mm	21min	58mr	m	41min	83mm
2min	32mm	22min	60mr	m	42min	84mm
3min	32mm	23min	63mr	m	43min	84mm
4min	42mm	24min	71mr	m	44min	85mm
5min	43mm	25min	72mr	m	45min	86mm
6min	48mm	26min	72mr	m	46min	87mm
7min	49mm	27min	72mi	m	47min	89mm
8min	49mm	28min	73mi	m	48min	91mm
9min	49mm	29min	73mi	m	49min	92mm
10min	50mm	30min	74mi	m	50min	94mm
11min	50mm	31min	74mi	m	51min	95mm
12min	51mm	32min	75mr	m	52min	95mm
13min	51mm	33min	75mr	m	53min	96mm
14min	52mm	34min	76mr	m	54min	98mm
15min	53mm	35min	76mr	m	55min	98mm
16min		36min	78mr		56min	102mm
17min	56mm	37min	81mr		57min	103mm
18min	56mm	38min	81mr		58min	105mm
19min	57mm	39min	82mn		59min	106mm
20min		40min	83mn	m	60min	106mm
Observaciones: pro	esento un asens	so capilar constante, mas	s alto en compara	ción con el muro pa	itrón.	10011111
	F	EJECUTÓ		ASESOR	^	1
	ING. MUNOZ E	AARBOZA ERICK RAFAEL		MG IN	GMIRANDA TEJADA HUGO	
ECHA:	17/0	02/19		FECHA:	17/02/10	

Escuela de Posgrado

UNIVERSIDAD NACIONAL DE CAJAMARCA

ESCUELA DE POSGRADO

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA – CAL, MORTERO DE CEMENTO – YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

Lugar				Periodo:	PERIDO 1 (60 MINUTOS)
Muestra:	MORTERO	CEMENTO - CAL (CC)	Ensayado Por:	Muñoz Barboza Erick Ra	fael
Fecha de inicio:	18 de febre	ro de 2019	Hora de inicio:	13:31:	12
	eterminació	on de la Succión / Muro Mo	ortero Cemento - C	al (CC) / Periodo Uno (c	ada minuto)
1min	2mm	21min	40mn	n 41m	in 64mm
2min	3mm	22min	42mn	n 42m	in 65mm
3min	4mm	23min	43mn	n 43m	in 66mm
4min	12mm	24min	44mn	n 44m	in 65mm
5min	14mm	25min	46mn	45m	in 66mm
6min	14mm	26min	49mn	46m	in 66mm
7min	15mm	27min	51mn	47m	in 66mm
8min	15mm	28min	53mn	48m	in 66mm
9min	16mm	29min	54mn	49m	in 67mm
10min	17mm	30min	55mn	50m	in 67mm
11min	17mm	31min	56mn	51m	in 67mm
12min	18mm	32min	56mn	52m	in 67mm
13min	19mm	33min	57mn	53m	in 67mm
14min	21mm	34min	58mn	54m	in 67mm
15min	25mm	35min	59mn	55m	in 67mm
16min	28mm	36min	61mm	56m	in 67mm
17min	30mm	37min	62mm	57m	in 67mm
18min	32mm	38min	63mm	58m	in 67mm
19min	35mm	39min	63mm	59m	in 67mm
20min	40mm	40min	63mm	60mi	n 67mm
- Sur raviones, Asi	censo capila	ir no constante, en los últi	mos minutos de la	primera etapa su ascens	so fue más lento.
		EJECUTÓ		ASESOR	
	ING. MUÑO	MB Z BARBOZA ERICK RAFAEL		MG, ING, MIRA	INDA TEJADA HUGO
ECHA:	18	102/19			18/02/19

Escuela de Posgrado

UNIVERSIDAD NACIONAL DE CAJAMARCA

ESCUELA DE POSGRADO

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA – CAL, MORTERO DE CEMENTO – YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

Lugar				Periodo:	PERIDO 1 (60 MINUTOS)
Muestra:	MORTERO DE O	EMENTO - YESO	Ensayado Por:	Muñoz Barboza Erick F	
Fecha de inicio:	18 de febrero de		Hora de inicio:	15:02	
	Determinación de	a la Succión / Muro Me	ortero Cemento -	Yeso / Periodo Uno (c	
1min		21min	20mn		
2min	2mm	22min	22mn		O TITLE
3min	3mm	23min	23mm		0 411111
4min	4mm	24min	25mm		COITIII
5min	4mm	25min	27mm		3011111
6min	5mm	26min	28mm		9011111
7min	7mm	27min	30mm		0111111
8min	7mm	28min	35mm		O TITUL
9min	7mm	29min	36mm		Commi
10min	10mm	30min	37mm		0011111
11min	11mm	31min	41mm		3011111
12min	13mm	32min	43mm		OSITILIT
13min	13mm	33min	44mm	0211	
14min	14mm	34min	46mm		, John Market Ma
15min	15mm	35min	48mm		7011111
16min	18mm	36min	50mm		
17min	19mm	37min	51mm	57m	
18min	19mm	38min	52mm		
19min	20mm	39min	53mm	59m	, 411111
20min	20mm	40min	53mm	00	
ASSET VACIONES. AS		cutó		primera etapa su ascer	aso fue más lento.
	A	OZA ERICK RAFAEL		MG. ING. MIRA	ANDA TEJADA HUGO
ECHA:	180	2//9		FECHA:	3/02/19

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA – CAL, MORTERO DE CEMENTO – YESO Y MURO

		PATRON EN LA	PATRON EN LA CIUDAD DE CAJAMARCA, 2018"	2018"	
Lugar				Doriodo.	000000000000000000000000000000000000000
Muestra:	MURO PATRÓN (MP)		- Control		Mission Barborn Erick Dates
Fecha de inicio:	17 de febrero de 2019		Lord de inicia Seconda Berinda	Munoz Barbo	Sza Erick Kataei
	Determinación de Absor	Determinación de Absorción v Succión Muna Batrán Barrán	Hora de micio seg	undo reriodo:	11:11:0
Fecha	bora.	tions and serious Fer	lodo dos (cada 20 minutos)		MEDIDA EN (mm)
17/02/2019	834.14	somulu en minutos	absorción (mm)	3	capilaridad (mm)
17/02/2019	8.54.14	ZUMIN	9mm		42mm
17/02/2019	0.14.14	40min	9mm		43mm
17/02/2019	0.34.14	60min	10mm		51mm
17/02/2019	954:14	80min	10mm		51mm
17/02/2019	10:14:14	nimun	10mm		52mm
47/00/040	10.14.14	120min	12mm		61mm
17/02/2019	10:34:14	140min	12mm		63mm
17/02/2019	10:54:14	160min	13mm		60mm
17/02/2019	11:14:14	180min	7		24
17/02/2019	11:34:14	size000	Lomm.		/Imm
17/02/2019	11:54:14	11111022	ISMM		/Zmm
17/02/2019	1214-14	SZUMIN	14mm		73mm
17/02/2019	1234:14	260min			
17/02/2019	1254:14	280min			
17/02/2019	13:14:14	300min			
17/02/2019	13:34:14	320min			
17/02/2019	13.54:14	340min			
17/02/2019	14:14:14	360min			

Observaciones: El muro colapso a las 11:56 am, a las 4 horas con 41 minutos aproximadamente de empezar el primer periodo de los ensayos, no completo el segundo periodo.

L			1	
EJECUTO		ASESOR		
	ING. WINOZ BARBOZA ERICK RAFAEL		Mic and Michael at Party Hillion	
FECHA:	17/01/19		47/02/14d	

Fecha de inicio: Muestra: Lugar

UNIVERSIDAD NACIONAL DE CAJAMARCA **ESCUELA DE POSGRADO**

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA — CAL, MORTERO DE CEMENTO — YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018" Periodo:

PERIODO 2 (6 HORAS)

Milostra.	AGGITT DOTTOOM	044		Long Contract Contract
desda.	17 de februaria ROJA – CAL (TRC)	JA - CAL (TRC)	Ensayado Por: IN	OOZA ETICK K
recha de inicio:	17 de tebrero de 2019		Hora de inicio Segundo Periodo:	do Periodo: 12:32:4/
Deterr	Determinación de Absorción y Su	cción - Muro Tierra Roja - Cal (T	ción y Succión - Muro Tierra Roja - Cal (TRC) - Periodo dos (cada 20 minutos)	SS) MEDIDA EN (mm)
Fecha:	hora:	tiempo en minutos	absorción (mm)	capilaridad (mm)
17/02/2019	12:52:47	20min	6mm	145mm
17/02/2019	13:12:47	40min	- Gmm	145mm
17/02/2019	13:32:47	60min	9 emm	152mm
17/02/2019	13:52:47	80min	11mm	153mm
17/02/2019	14:12:47	100min	15mm	156mm
17/02/2019	14:32:47	120min	15mm	163mm
17/02/2019	14:52:47	140min	19mm	176mm
17/02/2019	15:12:47	160min	21mm	174mm
17/02/2019	15:32:47	180min	23mm	178mm
17/02/2019	15:52:47	200min	24mm	178mm
17/02/2019	16:12:47	220min	23mm	180mm
17/02/2019	16:32:47	240min	24mm	187mm
17/02/2019	16:52:47	260min	25mm	191mm
17/02/2019	17:12:47	280min	26mm	210mm
17/02/2019	17:32:47	300min	27mm	211mm
17/02/2019	17:52:47	320min		
17/02/2019	18:12:47	340min		
17/02/2019	18:32:47	360min		

Observaciones: El muro colapso a las 5.46 pm, a las 6 horas con 13 minutos aproximadamente de empezar el primer periodo de los ensayos, no completo el segundo periodo.

•				
EJECUTO		ASESOR	, ,	
	ING. MUNOZ BARBOZA ERICK RAFAEL		S/1/00/	
FECHA:	17/02/19	FECHA:	MG. ING. MIRANDA I EDADA HUGO	

UNIVERSIDAD NACIONAL DE CAJAMARCA

ESCUELA DE POSGRADO

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE

MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL, MORTERO DE CEMENTO - YESO Y MURO 14:31:12 PERIODO 2 (6 HORAS) Ensayado Por: Muñoz Barboza Erick Rafael Hora de inicio Segundo Periodo: 14:31: Periodo: PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018" MORTERO CEMENTO - CAL (CC) 17 de febrero de 2019 Fecha de inicio: Muestra: Lugar

The second secon	le Absorcion y succ	SION -MURIERO CEMENTO - CA	extermination de Absorcion y Succion -MOR LERO CEMENTO - CAL (CC) - Periodo dos (cada 20 minutos)	utos) MEDIDA EN (mm)
Fecha:	hora:	tiempo en minutos	absorción (mm)	capilaridad (mm)
18/02/2019	14:51:12	20min	()	, 92 87 87
18/02/2019	15:11:12	40min		72mm
18/02/2019	15:31:12	60min		81mm
18/02/2019	15:51:12	80min		83mm
18/02/2019	16:11:12	100min	[1	83mm
18/02/2019	16:31:12	120min		83mm
18/02/2019	16:51:12	140min		83mm
18/02/2019	17:11:12	160min	. 1	84mm
18/02/2019	17:31:12	180min		84mm
18/02/2019	17:51:12	200min		86mm
18/02/2019	18:11:12	220min	1	87mm
18/02/2019	18:31:12	240min		88mm
18/02/2019	18:51:12	260min	1	89mm
18/02/2019	19:11:12	280min	- 1	90mm
18/02/2019	19:31:12	300min	1mm	110mm
18/02/2019	19:51:12	320min	1mm	113mm
18/02/2019	20:11:12	340min	1mm	114mm
18/02/2019	20:31:12	360min	- Lange	115mm

Observaciones: El muro soporto el segundo periodo de ensayo, sin presentar deformaciones.

			/	
EJECUTÓ		ASESOR	111	
	ING. MÅNOZ BARBOZA ERICK RAFAEL		MG. ING. MIRANDA TEJADA HUGO	
FECHA:	61/20/21	- N	10/02/19	

UNIVERSIDAD NACIONAL DE CAJAMARCA

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO – YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018" STERO DE CEMENTO – YESO (CY) RESAURA ROJA – CAL, MORTERO DE CEMENTO – YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018" Periodo: Periodo 2019 Hora de inicio Segundo Periodo: MEDIDA EN (mm) 16:02 16:02:10 20min 17:02:10 60min 1mm 80mm 1mm 86mm
E ADOBE CON TAR DE CEMENTO – YE 18" iodo: PERIODO 2 Inoz Barboza Erick o Periodo: NEI nutos) MEI Romm 80mm 86mm

0

110mm

2mm 2mm 2mm 2mm 2mm

120min 140min

18:02:10 18:22:10 18:42:10

18/02/2019 18/02/2019 18/02/2019 19:02:10

18/02/2019

18/02/2019 18/02/2019

19:22:10 19:42:10 20:02:10

160min 180min

122mm

100mm

132mm

146mm 152mm

154mm 154mm

2mm

200min 220min 240min

260min

20:22:10

18/02/2019 18/02/2019

18/02/2019 18/02/2019

18/02/2019

280min 300min 320min 340min

2mm 2mm 2mm 3mm 3mm

158mm

156mm

170mm

166mm

Observaciones: El muro soporto el segundo periodo de ensayo, sin presentar deformaciones, presenta un alto indice de asenso 172mm 360min 21:02:10 21:22:10 21:42:10 22:02:10 18/02/2019

	//
EJECUIO	ASESOR
ING. MUÑOZ BARBOZA ERICK RAFAEL	MG ING WIPAWIA TELADA HIIGO
FECHA:	FECHA: (8/02/19

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

'EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA – CAL, MORTERO DE CEMENTO – YESO Y MURO

PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

MEDIDA EN (mm) 20:31:00 Ensayado Por: Muñoz Barboza Erick Rafael PERIODO 3 ((7 días) capilaridad (mm) 180mm 234mm 115mm 159mm 218mm 238mm 239mm 240mm 244mm 250mm 251mm 245mm 246mm 248mm Hora de inicio Tercer Periodo: Periodo: Determinación de Absorción y Succión -MORTERO CEMENTO - CAL (CC) - Periodo tres (Cada 12 horas) absorción (mm) 28mm 6mm 10mm 27mm 27mm 27mm 28mm 31mm 1mm 18mm **28mm** 29mm 29mm 30mm tiempo en minutos 132Horas 156Horas 168Horas 24Horas 36Horas 108Horas 120Horas 144Horas 60Horas 72Horas 84Horas 12Horas 48Horas 96Horas Horas MORTERO CEMENTO - CAL (CC) 20:31:00 20:31:00 20:31:00 8:31:00 8:31:00 20:31:00 20:31:00 8:31:00 8:31:00 20:31:00 8:31:00 8:31:00 20:31:00 8:31:00 20:31:00 hora 18/02/2019 18/02/2019 19/02/2019 19/02/2019 20/02/2019 20/02/2019 21/02/2019 21/02/2019 22/02/2019 echa de inicio: 22/02/2019 23/02/2019 23/02/2019 24/02/2019 24/02/2019 25/02/2019 25/02/2019 Muestra: -ugar

MG. ING/MURANDA TEJADA HUGO 25/02/19 ASESOR FECHA ING. MUNOZ BARBOZA ERICK RAFAEL 25/02/19 EJECUTÓ FECHA:

252mm

36mm

Observaciones: El muro soporto de manera exitosa el tercer periodo, recubrimiento recomendable para su aplicación.

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL, MORTERO DE CEMENTO - YESO Y MURO

Ensayado Por: Muñoz Barboza Erick Rafael PERIODO 3 ((7 dias) Periodo: PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018" MORTERO DE CEMENTO - YESO (CY) 18/02/2019 Fecha de inicio: Muestra: Lugar

MENTO – YESO (CY) - Periodo tres (Cada 12 horas) utos absorción (mm) 3mm 25mm 35mm 46mm 51mm 60mm 61mm 62mm 81mm 83mm	centa de mitero.	10/02/2013		Hora de inicio Tercer Periodo:	rcer Periodo:	22:02:00
hora: tiempo en minutos absorción (mm) 22:02:00 Horas 3mm 10:02:00 12Horas 25mm 22:02:00 24Horas 46mm 10:02:00 48Horas 51mm 22:02:00 60Horas 57mm 10:02:00 84Horas 60mm 22:02:00 96Horas 62mm 10:02:00 10:02:00 132Horas 22:02:00 132Horas 63mm 10:02:00 144Horas 77mm 22:02:00 156Horas 81mm 22:02:00 168Horas 83mm	Determinaci	ión de Absorción y Succión	1 - MORTERO DE CEMENTO -	YESO (CY) - Periodo tres (Cada	12 horas)	MEDIDA EN (mm)
22:02:00 Horas 3mm 10:02:00 12Horas 25mm 22:02:00 24Horas 35mm 10:02:00 36Horas 46mm 22:02:00 48Horas 51mm 10:02:00 60Horas 57mm 10:02:00 84Horas 60mm 22:02:00 96Horas 61mm 10:02:00 120Horas 63mm 10:02:00 132Horas 77mm 22:02:00 144Horas 81mm 10:02:00 156Horas 81mm	Fecha:	hora:	tiempo en minutos	ahsorción (mm)		ilaridad (mm)
10:02:00 12Horas 25mm 22:02:00 24Horas 35mm 10:02:00 48Horas 51mm 22:02:00 60Horas 51mm 10:02:00 72Horas 57mm 10:02:00 84Horas 60mm 22:02:00 96Horas 61mm 10:02:00 120Horas 63mm 10:02:00 132Horas 77mm 10:02:00 156Horas 81mm 22:02:00 168Horas 83mm	18/02/2019	22:02:00	Horas	3mm		172mm
22:02:00 24Horas 35mm 10:02:00 36Horas 46mm 22:02:00 48Horas 51mm 10:02:00 60Horas 57mm 10:02:00 84Horas 60mm 22:02:00 96Horas 61mm 10:02:00 120Horas 62mm 22:02:00 132Horas 63mm 22:02:00 144Horas 77mm 10:02:00 156Horas 81mm 22:02:00 168Horas 83mm	19/02/2019	10:02:00	12Horas	25mm		190mm
10:02:00 36Horas 46mm 22:02:00 48Horas 51mm 10:02:00 60Horas 57mm 10:02:00 84Horas 60mm 22:02:00 96Horas 61mm 10:02:00 120Horas 62mm 22:02:00 132Horas 63mm 22:02:00 144Horas 77mm 10:02:00 156Horas 81mm 22:02:00 168Horas 83mm	19/02/2019	22:02:00	24Horas	35mm		265mm
22:02:00 48Horas 51mm 10:02:00 60Horas 51mm 22:02:00 72Horas 60mm 22:02:00 96Horas 61mm 10:02:00 108Horas 62mm 22:02:00 120Horas 63mm 10:02:00 132Horas 77mm 10:02:00 156Horas 81mm 22:02:00 168Horas 83mm	20/02/2019	10:02:00	36Horas	46mm		378mm
10:02:00 60Horas 51mm 22:02:00 72Horas 57mm 10:02:00 84Horas 60mm 22:02:00 96Horas 62mm 10:02:00 120Horas 63mm 10:02:00 132Horas 71mm 22:02:00 144Horas 77mm 22:02:00 168Horas 81mm	20/02/2019	22:02:00	48Horas	51mm		400mm
22:02:00 72Horas 57mm 10:02:00 84Horas 60mm 22:02:00 96Horas 62mm 10:02:00 120Horas 63mm 10:02:00 132Horas 71mm 22:02:00 144Horas 77mm 10:02:00 168Horas 81mm 22:02:00 168Horas 83mm	21/02/2019	10:02:00	60Horas	51mm		410mm
10:02:00 84Horas 60mm 22:02:00 96Horas 61mm 10:02:00 108Horas 62mm 22:02:00 120Horas 63mm 10:02:00 144Horas 71mm 10:02:00 156Horas 81mm 22:02:00 168Horas 83mm	21/02/2019	22:02:00	72Horas	57mm		417mm
22:02:00 96Horas 61mm 10:02:00 108Horas 62mm 22:02:00 120Horas 71mm 22:02:00 144Horas 77mm 10:02:00 156Horas 81mm 22:02:00 168Horas 83mm	22/02/2019	10:02:00	84Horas	60mm		420mm
10:02:00 108Horas 62mm 22:02:00 120Horas 63mm 10:02:00 132Horas 71mm 10:02:00 144Horas 77mm 22:02:00 156Horas 81mm 22:02:00 168Horas 83mm	22/02/2019	22:02:00	96Horas	81mm		424mm
22:02:00 120Horas 63mm 10:02:00 132Horas 71mm 22:02:00 144Horas 77mm 10:02:00 156Horas 81mm 22:02:00 168Horas 83mm	23/02/2019	10:02:00	108Horas	Sam		430mm
10:02:00 132Horas 71mm 22:02:00 144Horas 77mm 10:02:00 156Horas 81mm 22:02:00 168Horas 83mm	23/02/2019	22:02:00	120Horas	63mm		438mm
22:02:00 144Horas 77mm 10:02:00 156Horas 81mm 22:02:00 168Horas 83mm	24/02/2019	10:02:00	132Horas	71mm		460mm
10:02:00 156Horas 83mm	24/02/2019	22:02:00	144Horas	77mm		463mm
22:02:00 168Horas 83mm	25/02/2019	10:02:00	156Horas	81mm		468mm
	25/02/2019	22:02:00	168Horas	83mm		472mm

Observaciones: El muro soporto de manera exitosa el tercer periodo, recubrimiento recomendable para su aplicación.

EJECUTÓ		ASESOR	1
	ING. MŰNOZ BARBOZA ERICK RAFAEL	MG. Ily	MG. ING. MIRANDA TEJADA HUGO
FECHA:	25/02/19	FECHA:	25/62/40

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA — CAL, MORTERO DE CEMENTO — YESO Y MURO

PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

Lugar

MEDIDA EN (mm) 20:31:00 Ensayado Por: Muñoz Barboza Erick Rafael Hora de inicio Cuarto Periodo: Periodo: Determinación de Absorción y Succión - MORTERO CEMENTO - CAL (CC) - Periodo cuadro (cada 24 horas) MORTERO CEMENTO - CAL (CC) 25 de febrero de 2019 Fecha de inicio: Muestra:

Looks.		AN CHIEFING CONT.	Canada Se Inolas)	MEDIDA EN (IIIII)	
recila.	nora:	tiempo en minutos	aheoroión (mm)	(mm) habitalidad	Г
25/02/2019	20:31:00	168Horas	mm mm	150mm	Т
26/02/2019	20:30:00	102Horas		100	
27/02/2019	20:32:00	24611222	Omm	IOUTILITY	
28/02/2019	20-30-00	ZIOHOFAS	10mm	Z18mm	
0400000	00.00	Z40Horas	18mm	234mm	Т
01/03/2019	20:45:00	264Horas	27mm	238mm	П
02/03/2019	20:38:00	288Horas	27mm	240mm	Т
03/03/2019	20:31:00	312Horas	28mm	240IIIII	Т
04/03/2019	20:44:00	336Horas	ZOLIIIII	240	Т
05/03/2010	0011.00	Spiritings	Zamm	Z40IIIII	
6102/00/00	20:55:00	360Horas	30mm	251mm	
06/03/2019	21:30:00	384Horas	31mm	253mm	
07/03/2019	20:28:00	408Horas	3222	254mm	
08/03/2019	21-3200	20101007	3211111	20#IIIII	
0000000000	0030:13	432Horas	35mm	255mm	
09/03/2019	21:14:00	456Horas	37mm	260mm	
10/03/2019	20:55:00	480Horas	38mm	265mm	
11/03/2019	22:30:00	504Horas	53mm	22011111	Т
12/03/2019	21:02:00	Spicial	Somme	27011111	
12/02/2010	0000	2201 101 dS	osmm	Z/8IIIII	
13/03/2013	19:56:00	552Horas	64mm	300mm	

Observaciones: El muro soporto de manera exitosa el cuarto perido, recubrimiento recomendable para su aplicación, se procedio al llenado del tanque el día 5, día 14 y día 17 despues del tercer periodo.

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA — CAL, MORTERO DE CEMENTO — YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

Feriodo: Periodo: Molectar: MORTERO DE CEMENTO – YESO (CY) Ensayado Por: Muñoz Balanto de inicio. Fecha de inicio: 25 de febrero de 2019 Hora de inicio. Ensayado Por: Muñoz Balanto de inicio. Fecha: Determinación de Absorción y Succión - MORTERO DE CEMENTO – YESO (CY) - Periodo cuatro (cada 24 horas) Hora de inicio. Hora de inicio. Periodo cuatro (cada 24 horas) Fecha: hora 168 Horas absorción (mm) mm 25/02/2019 mm mm 25/02/2019 25.00:00 192 Horas 25mm 25	
MOK ERO DE CEMENTO – YESO (CY) 25 de febrero de 2019 125 de febrero de 2019 168 Horas 168 Horas 168 Horas 168 Horas 168 Horas 192 Horas 192 Horas 192 Horas 192 Horas 192 Horas 193	Periodo; PERIODO 4 (23 días)
25 de febrero de 2019 1	Sarboza
Inación de Absorción y hora:	io Cuarto Periodo: 22:02:00
hora: 22:02:00 22:00:00 22:10:00 21:55:00 22:02:00 22:02:00 22:02:00 22:02:00 22:02:00 22:02:00 22:02:00 22:02:00 22:02:00 22:02:00 22:02:00 22:02:00 22:02:00 22:02:00 22:02:00 22:02:00 22:00:00 22:00:00 22:00:00 22:00:00 22:00:00 22:00:00 22:00:00 22:00:00 22:00:00 22:00:00 22:00:00 22:00:00	(cada 24 horas) MEDIDA EN (mm)
22:02:00 168Horas 22:00:00 192Horas 22:10:00 246Horas 21:55:00 240Horas 22:03:00 264Horas 22:03:00 264Horas 22:03:00 312Horas 22:02:00 336Horas 22:01:00 360Horas 21:20:00 384Horas 21:30:00 408Horas 22:03:00 456Horas 22:03:00 450Horas 22:03:00 450Horas 22:05:00 504Horas 22:15:00 504Horas	capilaric
22:00:00 192Horas 22:10:00 216Horas 21:55:00 240Horas 22:02:00 264Horas 22:03:00 264Horas 22:02:00 312Horas 22:01:00 336Horas 22:01:00 360Horas 21:20:00 408Horas 22:30:00 432Horas 22:03:00 456Horas 22:02:00 528Horas 22:15:00 528Horas	196mm
22:10:00 216Horas 21:55:00 240Horas 22:02:00 264Horas 22:03:00 288Horas 23:00:00 312Horas 22:01:00 360Horas 21:20:00 384Horas 21:30:00 408Horas 22:03:00 456Horas 22:03:00 480Horas 22:05:00 528Horas 22:15:00 528Horas	265mm
21:55:00 240Horas 22:02:00 264Horas 22:03:00 288Horas 23:00:00 312Horas 22:02:00 336Horas 22:01:00 360Horas 21:20:00 408Horas 22:03:00 432Horas 22:03:00 456Horas 22:05:00 528Horas 22:15:00 528Horas	378mm
22:02:00 264Horas 22:03:00 288Horas 23:00:00 312Horas 22:02:00 36Horas 22:01:00 36Horas 21:20:00 408Horas 21:30:00 408Horas 22:03:00 456Horas 22:05:00 480Horas 22:15:00 528Horas 22:15:00 528Horas	400mm
22:03:00 288Horas 23:00:00 312Horas 22:02:00 336Horas 22:01:00 360Horas 21:20:00 408Horas 22:30:00 432Horas 22:03:00 456Horas 22:05:00 504Horas 22:15:00 528Horas	410mm
23:00:00 312Horas 22:02:00 336Horas 22:01:00 360Horas 21:20:00 384Horas 21:30:00 408Horas 22:30:00 432Horas 22:03:00 480Horas 22:15:00 504Horas 22:15:00 528Horas	417mm
22:02:00 336Horas 22:01:00 360Horas 21:20:00 384Horas 21:30:00 408Horas 22:30:00 432Horas 22:03:00 456Horas 22:15:00 504Horas 22:15:00 528Horas	420mm
22:01:00 360Horas 21:20:00 384Horas 21:30:00 408Horas 22:30:00 432Horas 22:03:00 456Horas 22:15:00 504Horas 22:15:00 528Horas	424mm
21:20:00 384Horas 21:30:00 408Horas 22:30:00 432Horas 22:03:00 456Horas 21:02:00 480Horas 22:15:00 528Horas	430mm
21:30:00 408Horas 22:30:00 432Horas 22:03:00 456Horas 21:02:00 480Horas 22:15:00 504Horas 22:15:00 528Horas	447mm
22:30:00 432Horas 22:03:00 456Horas 21:02:00 480Horas 22:15:00 504Horas 22:15:00 528Horas	448mm
22:03:00 456Horas 21:02:00 480Horas 22:15:00 504Horas 22:15:00 528Horas	450mm
21:02:00 480Horas 22:15:00 504Horas 22:15:00 528Horas	462mm
22:15:00 504Horas 22:15:00 528Horas	472mm
22:15:00 528Horas	485mm
	496mm
13/03/2019 19:58:00 552Horas 122mm	520mm

del tercer periodo.

EJECUTÓ		ASESOR	
	ING. MŮÑOZ BARBOZA ERICK RAFAEL	ONLOW	MG-ING/MIRANDA-TE/ADA HUGO
FECHA:	13/03/19	FECHA:	13/63/10

	Marie	UNIVERS	IDAD NACIONAL DE CAJ	AMARCA	
			ESCUELA DE POSGRADO)	
	ENSAYO:	ANÁLISIS GRANU TAMIZADO	D POR LAVADO	CÓDIGO DEL DOCUMENTO:	
	NORMA:	AS	"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADO		
Escuela de Posigrado	TESIS:	"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS I CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA RO MORTERO DE CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CA 2018"			
UBICACIÓN:	N: KM 7 BAMBAMARCA		COLOR DE MATERIAL:	MARRÓN (ASENTADO)	
FECUA DE I	MUESTREO:	OF ORDINATION		Erick Rafael Muñoz Barboza	
		04 - 12 - 2018	REVISADO POR:	Hugo Miranda Tejada	
FECHA DE	ENSATU.	07 - 12 -2010			

			LÍQUIDO (LL)	2	3
ID	DESCRIPCIÓN	UND	1		
Α	Identificación de Recipiente	N°	2-005100	2-005110	2-005089
В	Suelo Húmedo + Recipiente	gr	93.79	91.88	93.20
С	Suelo Seco + Recipiente	gr	89.62	88.20	89.55
D	Peso de Recipiente	gr	68.82	68.71	69.57
E	Peso del Agua	gr	4.17	3.68	3.65
F	Peso Suelo Seco	gr	20.80	19.49	19.98
G	Número de Golpes	N	14	20	28
Н	Contenido de Humedad	%	20.05%	18.88%	18.27%

	DETERMINACIÓN	LIMITE PLAST	ICO (LP)	
ID	DESCRIPCIÓN	UND	1	2
Α	Identificación de Recipiente	N°	2-005090	2-005144
В	Suelo Húmedo + Tara	gr	83.63	84.74
С	Suelo Seco + Tara	gr	81.70	82.72
D	Peso de Tara	gr	69.29	69.78
E	Peso del Agua	gr	1.93	2.02
F	Peso Suelo Seco	gr	12.41	12.94
G	Contenido de Humedad	%	15.55%	15.61%
Н	Promedio Límite Plástico		15.5	58%

OBSERVACIONES:	
TESISTA:	ASESOR
M43	St daeut
NOMBRE: Ing. Erick Rafael Muñoz Barboza	NOMBRE: Mag. Ing. Hugo Miranda Tejada
FECHA 03/12/2018	FECHA: 10 L1 - 12 - 20/8

UNIVERSIDAD NACIONAL DE CAJAMARCA ESCUELA DE POSGRADO ANÁLISIS GRANULOMETRIA MEDIANTE CÓDIGO DEL DOCUMENTO: TAMIZADO POR LAVADO ENSAYO: AGTL-LS-UPNC: ASTM D421 "EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE NORMA: CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL, MORTERO DE CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, TESIS: 2018" ROJO (TARRAJEO) COLOR DE MATERIAL: KM 7 UBICACIÓN: BAMBAMARCA Erick Rafael Muñoz Barboza RESPONSABLE: 03 - 12 - 2018 FECHA DE MUESTREO: Hugo Miranda Tejada REVISADO POR: 04 - 12 - 2018 FECHA DE ENSAYO:

Peso de muestra inicial seca	713.70	gr
Peso de muestra seca; Ws	709.20	gr

Malla	Abertura	Peso Retenido	%Parcial Retenido (& RP)	%Acumulado Retenido (%RA)	% Que pasa
	(mm)	(gr)	0.00%	0.00%	100.00%
Nº 4	4.750	0.00		0.49%	99.51%
Nº 10	2.000	3.50	0.49%	1.59%	98.41%
Nº 20	0.840	7.80	1.10%		95.61%
N°30	0.590	19.80	2.79%	4.39%	
Nº 40	0.425	42.80	6.03%	10.42%	89.58%
Nº 60	0.250	112.50	15.86%	26.28%	73.72%
Nº 100	0.150	96.20	13.56%	39.85%	60.15%
	0.075	50.90	7.18%	47.02%	52.98%
Nº 200	0.073		52.98%	100.00%	0.00%
Cazoleta		375.70			
TOTAL		709.20	100.00%		

Peso de muestra seca; Ws	300.00	gr

Malla	Abertura (mm)	Peso Retenido (gr)	%Parcial Retenido (& RP)	%Acumulado Retenido (%RA)	% Que pasa
Nº 4	4.750	0.00	0.00%	0.00%	100.00%
Nº 10	2.000	1.48	0.49%	0.49%	99.51%
Nº 20	0.840	3.30	1.10%	1.59%	98.41%
N°30	0.590	8.38	2.79%	4.39%	95.61%
Nº 40	0.425	18.10	6.03%	10.42%	89.58%
Nº 60	0.250	47.59	15.86%	26.28%	73.72%
Nº 100	0.150	40.69	13.56%	39.85%	60.15%
Nº 200	0.075	21.53	7.18%	47.02%	52.98%
Cazoleta		158.93	52.98%	100.00%	0.00%
TOTAL		300.00	100.00%		

OBSERVACIONES:	
TESISTA:	_ ASESOR _
MAS	Siday
NOMBRE: Ing. Erick Rafael Muñoz Barboza	NOMBRE: Mag. Ing.(Hugo Miranda Tejada
FECHA 05/12/2018	FECHA: 04-12-2018

		UNIVERS	IDAD NACIONAL DE CAJ	AMARCA			
Engals de Posserses	ESCUELA DE POSGRADO						
	ENSAYO:			CÓDIGO DEL DOCUMENTO:			
	NORMA:	AS	TM D421				
	TESIS:			ESISTENCIA DE MUROS DE ADOBE AL, MORTERO TIERRA ROJA – CAL, RÓN EN LA CIUDAD DE CAJAMARCA,			
UBICACIÓN: FECHA DE MUESTREO:		KM 11 BAMBAMARCA	COLOR DE MATERIAL:	MARRON			
		03 - 12 - 2018	RESPONSABLE:	Erick Rafael Muñoz Barboza			
FECHA DE E		04 - 12 -2018	REVISADO POR:	Hugo Miranda Tejada			

Peso de muestra inicial seca	1000.00	gr
Peso de muestra seca; Ws	848.10	gr

Malia	Abertura (mm)	Peso Retenido (gr)	%Parcial Retenido (& RP)	%Acumulado Retenido (%RA)	% Que pasa
Nº 4	4.750	0.00	0.00%	0.00%	100.00%
Nº 10	2.000	32.00	3.77%	3.77%	96.23%
Nº 20	0.840	20.00	2.36%	6.13%	93.87%
N°30	0.590	22.60	2.66%	8.80%	91.20%
Nº 40	0.425	54.50	6.43%	15.22%	84.78%
Nº 60	0.250	136.00	16.04%	31.26%	68.74%
Nº 100	0.150	94.40	11.13%	42.39%	57.61%
Nº 200	0.075	59.80	7.05%	49.44%	50.56%
Cazoleta		428.80	50.56%	100.00%	0.00%
TOTAL					

Peso de muestra seca; Ws 254.43 gr

Malla	Abertura (mm)	Peso Retenido (gr)	%Parcial Retenido (& RP)	%Acumulado Retenido (%RA)	% Que pasa
Nº 4	4.750	0.00	0.00%	0.00%	100.00%
Nº 10	2.000	9.60	3.77%	3.77%	96.23%
Nº 20	0.840	6.00	2.36%	6.13%	93.87%
N°30	0.590	6.78	2.66%	8.80%	91.20%
Nº 40	0.425	16.35	6.43%	15.22%	84.78%
Nº 60	0.250	40.80	16.04%	31.26%	68.74%
Nº 100	0.150	28.32	11.13%	42.39%	57.61%
Nº 200	0.075	17.94	7.05%	49.44%	50.56%
Cazoleta		128.64	50.56%	100.00%	0.00%
TOTAL		254.43	100.00%		

OBSERVACIONES:	
TESISTA:	ASESOR
MB	Sidaeal
NOMBRE: Ing. Erick Rafael Muñoz Barboza	NOMBRE: Mag. Ing. Hugo Miranda Tejada
FECHA 05/12/2018	FECHA: 04-12-2018

UNIVERSIDAD NACIONAL DE CAJAMARCA ESCUELA DE POSGRADO ANÁLISIS GRANULOMETRIA MEDIANTE CÓDIGO DEL DOCUMENTO: TAMIZADO POR LAVADO ENSAYO: AGTL-LS-UPNC: ASTM D421 "EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE NORMA: CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL, MORTERO DE CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, TESIS: 2018" MARRÓN ROJISO KM 7 COLOR DE MATERIAL: UBICACIÓN: BAMBAMARCA Erick Rafael Muñoz Barboza RESPONSABLE: 03 - 12 - 2018 FECHA DE MUESTREO: Hugo Miranda Tejada REVISADO POR 04 - 12 - 2018 FECHA DE ENSAYO:

Peso de muestra inicial seca	751.20	gr
Peso de muestra seca; Ws	751.20	gr

Malla	Abertura (mm)	Peso Retenido (gr)	%Parcial Retenido (& RP)	%Acumulado Retenido (%RA)	% Que pasa
Nº 4	4.750	0.00	0.00%	0.00%	100.00%
Nº 10	2.000	15.70	2.23%	2.23%	97.77%
Nº 20	0.840	14.90	2.12%	4.36%	95.64%
N°30	0.590	19.80	2.82%	7.17%	92.83%
Nº 40	0.425	43.60	6.21%	13.38%	86.62%
Nº 60	0.250	131.30	18.69%	32.07%	67.93%
Nº 100	0.150	123.70	17.61%	49.68%	50.32%
Nº 200	0.075	67.60	9.62%	59.30%	40.70%
Cazoleta		285.90	40.70%	100.00%	0.00%
TOTAL		702.50	100.00%		

Peso de muestra seca; Ws 280.00 gr

Malla	Abertura (mm)	Peso Retenido (gr)	%Parcial Retenido (& RP)	%Acumulado Retenido (%RA)	% Que pasa
Nº 4	4.750	0.00	0.00%	0.00%	100.00%
Nº 10	2.000	6.26	2.23%	2.23%	97.77%
Nº 20	0.840	5.94	2.12%	4.36%	95.64%
N°30	0.590	7.89	2.82%	7.17%	92.83%
Nº 40	0.425	17.38	6.21%	13.38%	86.62%
Nº 60	0.250	52.33	18.69%	32.07%	67.93%
Nº 100	0.150	49.30	17.61%	49.68%	50.32%
Nº 200	0.075	26.94	9.62%	59.30%	40.70%
Cazoleta		113.95	40.70%	100.00%	0.00%
TOTAL		280.00	100.00%		

OBSERVACIONES:	
TESISTA:	ASESOR
MS	Sidaeul
NOMBRE: Ing. Erick Rafael Muñoz Barboza	NOMBRE: Mag. Ing/ Hugo Miranda Tejada
FECHA 03/12/2013	FECHA: (0 L1-12-2018

	UNIVERSIDAD NACIONAL DE CAJAMARCA ESCUELA DE POSGRADO				
Econol Tompzo	ENSAYO:	CONTENIDO DE HUMEDAD		CÓDIGO DEL DOCUMENTO: AGTL-LS-UPNC:	
	NORMA:				
	TESIS:	"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE "EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL, MORTERO DE CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"			
UBICACIÓN:		KM 7 BAMBAMARCA	COLOR DE MATERIAL:	ROJO (TARRAJEO)	
FECHA DE MUESTREO:		03 - 12 - 2018	RESPONSABLE:	Erick Rafael Muñoz Barboza	
FECHA DE ENSAYO:		04 - 12 -2018	REVISADO POR:	Hugo Miranda Tejada	

Temperatura de Secado

Método

110 °C

Horno 110 ± 5 °C

CONTENIDO DE HUMEDAD				
D DESCRIPCIÓN		UND	1	
Α	Identificación del recipiente o Tara	-	T2	
В	Peso del Recipiente	gr	62.21	
С	Recipiente + Material Natural	gr	805.33	
D	Recipiente + Material Seco	gr	711.63	
E	Peso del material húmedo (Wmh) = C - B	gr	743.12	
F	Peso del material Seco (Ws)= D - B	gr	649.42	
W%	Porcentaje de humedad (E-F / F) * 100	%	14.428	
G	Promedio Porcentaje Humedad	%	14.428	

$$(W\%) = \frac{Wmh - Ws}{Ws} * 100$$

Nota: Materia hace mención tanto al suelo como a los agregados tanto grueso como fino.

DBSERVACIONES:	
TESISTA:	ASESOR
ma	Sideen
NOMBRE: Ing. Erick Rafael Muñoz Barboza	NOMBRE: Mag. Ing. Hugo Miranda Tejada
FECHA 03-12-2016	FECHA: 04-12-2018

	UNIVERSIDAD NACIONAL DE CAJAMARCA ESCUELA DE POSGRADO				
	ENSAYO:	CONTENIDO DE HUMEDAD		CÓDIGO DEL DOCUMENTO: AGTL-LS-UPNC:	
Educit Se Posigrado	NORMA:	MTC E 108 / ASTM D2216 / NTP 339.127		DESISTENCIA DE MUROS DE ADOBE	
	TESIS:	MTC E 108 / ASTM D2216 / NTP 339.127 "EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL MORTERO DE CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARO, 2018"			
UBICACIÓN: FECHA DE MUESTREO:		KM 7	COLOR DE MATERIAL:	MARRÓN (ASENTADO)	
		03 – 12 - 2018	RESPONSABLE:	Erick Rafael Muñoz Barboza	
TEALIA DE I	MIECTOLI	113-12-2010	1/201 0110	Hugo Miranda Tejada	

Temperatura de Secado

Método

110 °C

Horno 110 ± 5 °C

CONTENIDO DE HUMEDAD				
ID	DESCRIPCIÓN	UND	1	
А	Identificación del recipiente o Tara	-	Т1	
В	Peso del Recipiente	gr	96.33	
C Recipiente + Material Natural		gr	1079.05	
D	Recipiente + Material Seco	gr	993.96	
E	Peso del material húmedo (Wmh) = C - B	gr	982.72	
F	Peso del material Seco (Ws)= D - B	gr	897.63	
W%	Porcentaje de humedad (E-F / F) * 100	%	9.479	
G	Promedio Porcentaje Humedad	%	9.479	

$$(W\%) = \frac{Wmh - Ws}{Ws} * 100$$

Nota: Materia hace mención tanto al suelo como a los agregados tanto grueso como fino.

OBSERVACIONES:	
TESISTA:	ASESOR
m13	Sidant
NOMBRE: Ing. Erick Rafael Muñoz Barboza	NOMBRE: Mag. Ing. Hugo Miranda Tejada
FECHA 03/12/2018	FECHA: 04-12-2018

	1	UNIVERS	IDAD NACIONAL DE CAJ.	AMARCA
	ENSAYO:		O DE HUMEDAD	CÓDIGO DEL DOCUMENTO:
	NORMA:	MTC E 108 / AST	M D2216 / NTP 339.127	RESISTENCIA DE MUROS DE ADOBE
Escuria de Posegracio	TESIS:			CAL, MORTERO TIERRA ROJA – CAL, RÓN EN LA CIUDAD DE CAJAMARCA,
UBICACIÓN	:	KM 7 BAMBAMARCA	COLOR DE MATERIAL:	
FECHA DE I	MUESTREO:	03 - 12 - 2018	RESPONSABLE:	Erick Rafael Muñoz Barboza
FECHA DE I		04 - 12 -2018	REVISADO POR:	Hugo Miranda Tejada

Temperatura de Secado

Método

110 °C

Horno 110 ± 5 °C

	CONTENIDO DE	HUMEDAD	
ID	DESCRIPCIÓN	UND	1
Α	Identificación del recipiente o Tara	-	Т3
В	Peso del Recipiente	gr	197.08
С	Recipiente + Material Natural	gr	1666.3
D	Recipiente + Material Seco	gr	1489.44
E	Peso del material húmedo (Wmh) = C - B	gr	1469.22
F	Peso del material Seco (Ws)= D - B	gr	1292.36
W%	Porcentaje de humedad (E-F / F) * 100	%	13.685
G	Promedio Porcentaje Humedad	%	13.685

$$(W\%) = \frac{Wmh - Ws}{Ws} * 100$$

Nota: Materia hace mención tanto al suelo como a los agregados tanto grueso como fino.

OBSERVACIONES:	
TESISTA:	ASESOR
MB	Sideen
NOMBRE: Ing. Erick Rafael Muñoz Barboza	NOMBRE: Mag. Ing. Hugo Miranda Tejada
FECHA 03/12/2018	FECHA: (04-17-2018)

	Between 650	UNIVERS	SIDAD NACIONAL DE CAJ	AMARCA
			ESCUELA DE POSGRADO)
	ENSAYO:		JLOMETRIA MEDIANTE O POR LAVADO	CÓDIGO DEL DOCUMENTO:
	NORMA:		TM D421	AGTL-LS-UPNC;
Escuela de Posgrado	TESIS:	CON TARRAJEOS	DE MORTERO CEMENTO - C	RESISTENCIA DE MUROS DE ADOBE AL, MORTERO TIERRA ROJA – CAL, RÓN EN LA CIUDAD DE CAJAMARCA,
UBICACIÓN:		KM 7 BAMBAMARCA	COLOR DE MATERIAL:	ROJA (TARRAJEO)
FECHA DE M	IUESTREO:	03 - 12 - 2018	RESPONSABLE:	Erick Rafael Muñoz Barboza
FECHA DE E	NSAYO:	04 - 12 - 2018	REVISADO POR:	Hugo Miranda Tejada

	DETERMIN	ACIÓN LÍMIT	E LÍQUIDO (LL)		
ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación de Recipiente	N°	2-005170	2-005218	2-005178
В	Suelo Húmedo + Recipiente	gr	88.13	89.06	88.34
С	Suelo Seco + Recipiente	gr	84.34	85.34	84.80
D	Peso de Recipiente	gr	67.36	68.61	68.69
E	Peso del Agua	gr	3.79	3.72	3.54
F	Peso Suelo Seco	gr	16.98	16.73	16.11
G	Número de Golpes	N	14	21	29
Н	Contenido de Humedad	%	22.32%	22.24%	21.97%

	DETERMINACIÓN	LIMITE PLAS	TOU (LF)	
ID	DESCRIPCIÓN	UND	1	2
Α	Identificación de Recipiente	N°	2-005220	2-005216
В	Suelo Húmedo + Tara	gr	83.61	86.31
С	Suelo Seco + Tara	gr	81.66	84.04
D	Peso de Tara	gr	69.21	69.58
E	Peso del Agua	gr	1.95	2.27
F	Peso Suelo Seco	gr	12.45	14.46
G	Contenido de Humedad	%	15.66%	15.70%
Н	Promedio Límite Plástico		15.6	904

OBSERVACIONES:	
TESISTA:	ASESOR
MA3	St Scent
NOMBRE: Ing. Erick Rafael Muñoz Barboza FECHA 0つ/12/2018	NOMBRE: Mag. Ing. Hugo Miranda Tejáda FECHA: 0 4 - 1 - 2 - 2 2 1 8

UNIVERSIDAD NACIONAL DE CAJAMARCA

ESCUELA DE POSGRADO

Posgrado	"EFECTO DE INUNDA	"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA – CAL, MORTERO DE CEMENTO – YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"	TENCIA DE MUROS DI CEMENTO – YESO Y	E ADOBE CON TARRAJEOS DE MURO PATRÓN EN LA CIUDAD	MORTERO CEMENTO - CAL DE CAJAMARCA, 2018"	-, MORTERO
Laboratorio: Muestra:	Laboratorio UPN Muro tarrajeo Tierra Roja - Cal	-	Fecha de Ensayo: Ensayado Por:	2○/○2 / / 今 Muñoz Barboza Erick Rafael		
		Determinaci	Determinación de la Absorción - NTP 399.613	399.613		
N° Muestra			2		8	
Descripción:		TRCA1	TRCA2	A2	TRCA3	W =
Peso muestra seca	Wd	32000 gr.	33185 gr.	5 gr.	31330 gr.	
Peso muestra húmeda	Ws	no aplicable	no aplicable	cable	no aplicable	%00.0
Peso de Agua	W					
Porc. Humedad (%)	100 x ((Ws-Wd))/Wd					

EJECUTÓ		ASESOR		
ING. MUÑOZ BARBOZA ERICK RAFAEL	ERICK RAFAEL		MG. ING. MRANDA TEJADA HUGO	
20/02/ 16	9	FECHA:	201102119	

Se sumergieron los adobes con tarrajeo de tierra roja cal, los cuales pierden su homogeneidad conforme va avanzando el tiempo, hasta perder particulas y su forma.

Observaciones:

UNIVERSIDAD NACIONAL DE CAJAMARCA

ESCUELA DE POSGRADO

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA - CAL, MORTERO DE CEMENTO - YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

Laboratorio: Muestra:	orio: ı:	Laboratorio UPN Adobe sin tarrajeo (Muro Patrón)	Patrón)	Fecha de Ensayo: Ensayado Por: Hora de inicio:	20/02/2019 Muñoz Barboza Erick Rafael 11:11:44		
			Determina	Determinación de la Absorción - NTP 399.613	rP 399.613		
N° Muestra	B		1		2	3	
Descripción:	in:		ADOBE SIN TARRAJEO	ADOBE SIN	ADOBE SIN TARRAJEO	ADOBE SIN TARRAJEO	- M
Peso muestra seca	ifra seca	ννd	21235 gr.	213	21315 gr.	21 gr.	
Peso mues	Peso muestra húmeda	Ws	no aplicable	no ap	no aplicable	no aplicable	
Peso de Agua	gua	W					%0.0
Porc. Humedad (%)	edad (%)	$100 \times ((Ws-Wd))/Wd$					
Observaciones:	nes:	Se sumergieron los adobes,	, en el primer minuto empezó a desprender pa	ırtículas y perdiendo su forma	, en los primeros 10 minutos promedic	Se sumergieron los adobes, en el primer minuto empezó a desprender partículas y perdiendo su forma, en los primeros 10 minutos promedio empezaron a desmoronarse, a las 35 minutos el agua se torno furbia	s el agua se torno

EJECUTÓ	ASESOR (// // //
MA	
ING. MUÑOZ BARBOZA ERICK RAFAEL	MG ING MIRANDA TETADA HIGO

20/02/29

FECHA:

20/02/19

FECHA:

UNIVERSIDAD NACIONAL DE CAJAMARCA

ESCUELA DE POSGRADO

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA – CAL, MORTERO DE CEMENTO – YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

20/02/19

Fecha de Ensayo: Ensayado Por:

Laboratorio UPN

Laboratorio: Muestra:

Laboratorio.		Laboratorio Or IN		· come ac miner			
Muestra:		Muro tarrajeo Cemento - Yeso	os	Ensayado Por: Hora de inicio:	Muñoz Barboza Erick Rafael 12:45:00		
			Defermina	Determinación de la Absorción - NTP 399.613	TP 399.613		
N° Muestra			1		2	8	
Descripción:	12		CYA1		CYA2	CYA3	= M
Peso muestra seca	ra seca	Wd	33980 gr.	33	33830 gr.	33835 gr.	
Peso muestra húmeda	ra húmeda	Ws	36250 gr.	36	35970 gr.	36340 gr.	
Peso de Agua	ına	W	2270 gr.	2	2140 gr.	2505 gr.	%8.9
Porc. Humedad (%)	(%)	100 x ((Ws-Wd))/Wd	6.7%		6.3%	7.4%	
Observaciones:		Se notarón algunas burbujas a	Se notarón algunas burbujas al ingresar las muestras en la poza de curado.				

ASESOR EJECUTÓ

ING. MUNOZ BARBOZA ERICK RAFAEL

FECHA:

MG. ING/MIRANDA TEJADA HUGO 20/02/19 FECHA: 61/10/02

UNIVERSIDAD NACIONAL DE CAJAMARCA

ESCUELA DE POSGRADO

"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA – CAL, MORTERO DE CEMENTO – YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

Laboratorio: Muestra:	Laboratorio UPN Muro cemento - Cal (CC)		Fecha de Ensayo: Ensayado Por: Hora de inicio:	19/02/2019 Muñoz Barboza Erick Rafael 12:25:00	
		Determinació	Determinación de la Absorción - NTP 399.613		
N° Muestra		-	2	က	
Descripción:		CC A1	CCA2	CCA3	= M
Peso muestra seca	Wd	33775 gr.	31165 gr.	32935 gr.	
Peso muestra húmeda	Ws	36415 gr.	33825 gr.	35940 gr.	
Peso de Agua	W	2640 gr.	2660 gr.	3005 gr.	8.5%
Porc. Humedad (%)	100 x ((Ws-Wd))/Wd	7.8%	8.5%	9.1%	
Observaciones:	Se notarón algunas burbujas al ir	Se notarón algunas burbujas al ingresar las muestras en la poza de curado.			

EJECUTÓ		ASESOR		
	ING. MUÑOZ BARBOZA ERICK RAFAEL		MG. ING. MIRANDA TEJADA HUGO	
FECHA:	20/02/19	FECHA:	(20/02/19	

		UNIN	VERSIDAD NAC	ERSIDAD NACIONAL DE CAJAMARCA	CA	
			ESCUELA	ESCUELA DE POSGRADO		
Escuela de Posgrado	"EFECTO DE INU	"EFECTO DE INUNDACIÓN SIMULADA EN LA RESIST TIERRA ROJA – CAL, MORTERO DE (TENCIA DE MURO E CEMENTO – YES	S DE ADOBE CON TARR. O Y MURO PATRÓN EN L	ENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO CEMENTO – YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"	AL, MORTERO
Laboraforio: Muestra:	Laboratorio UPN Adobe sin tarrajeo (Muro Patrón)		Fecha de Ensayo: Ensayado Por: Hora de inicio:	20/02/2019 Muñoz Barboza Erick Rafael		
		Determinación de la Succión - NTP 399.613 (Ensayo en 1 minuto)	NTP 399.613 (Ensayo	en 1 minuto)		
Nº Muestra		_		2	3	= 8
Descripción:		MTRCS1	MTI	MTRCS2	MTRCS3)
Peso muestra seca	Md	32435 gr.	319	31995 gr.	31605 gr.	
Peso muestra húmeda	Ws	•		1		
Longitud del espécimen		43.05cm	42.9	42.95cm	42.56cm	
Ancho del espécimen	В	32.84cm	32.7	32.25cm	31.98cm	NO APLICA
Peso de Agua	W	1		-	1	
2)	S=200w÷LB					
Observaciones:	Después te colocar en o	Después te colocar en contacto con el agua durante un minuto se desprendes las partículas, incluso en bloque, por lo cual se indica que el ensayo no es medible en estás muestras.	endes las partículas, inclu	iso en bloque, por lo cual se indica	i que el ensayo no es medible en estás muestras.	
EJECUTÓ				ASESOR		
	ING. MUÑ	MINOZ BARBOZA ERICK RAFAEL			MG. ING. MIRANDA TEJADA HUGO	
FECHA:	10/02	61/20		FECHA:	20/02/19	

		UNI	VERSIDAD NACIONAL DE CAJAMARCA	ONAL DE CAJ	AMARCA
		AND THE PROPERTY OF THE PROPER	ESCUELA	ESCUELA DE POSGRADO	
Escuela de Posgrado	"EFECTO DE INUNDAC TIERR	INDACIÓN SIMULADA EN LA RESIST TIERRA ROJA – CAL, MORTERO DE	TENCIA DE MUROS CEMENTO - YESC	S DE ADOBE CON S Y MURO PATRÓ	"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA — CAL, MORTERO DE CEMENTO — YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"
Laboratorio: Muestra:	Laboratorio UPN Adobe sin Tarrajeo (Muro Patrón)		Fecha de Ensayo: Ensayado Por:	20/02/2019 Muñoz Barboza Erick Rafael	k Rafael
		Deserminación de la Succión - NTP 389,613 (Ensayo en 1 minuto)	NTP 399,613 (Ensayo	en 1 minuto)	
Nº Muestra			~		3
Descripción:		MPS1	MPS2	S2	MPS3
Peso muestra seca	Wd	21200 gr.	21305 gr.	5 gr.	21325 gr.
Peso muestra húmeda	Ws	5			
Longitud del espécimen	7	38.90cm	39,90cm	Jcm	
Ancho del espécimen	В	30.43cm	30.39cm	Jorn	29.96cm NO APLICA
Peso de Agua	A	1	•		
Succión	S=200w+LB				THE PROPERTY OF THE PROPERTY O
Observaciones:	La muestra pierde particulas con	La muestra pierde particulas con el contactos con el agua, por lo cual el	ensayo no procede en estas muestras.	tas muestras.	
EJECUTÓ				ASESOR	
	ING/MUÑOZ BARE	ING/MUÑOZ BARBOZA ERICK RAFAEL			MG, ING, MIRANDA TEJADA HUGO
FECHA: 2c	20/02/20/9			FECHA:	20/02/2019
AND AND ADDRESS OF THE PARTY OF THE WEST OF THE PARTY OF	many for some party manners of consist with party and consist which the party of th	principality of the same of th			

"EFECTO D
Escuela de Posgrado

UNIVERSIDAD NACIONAL DE CAJAMARCA ESCUELA DE POSGRADO

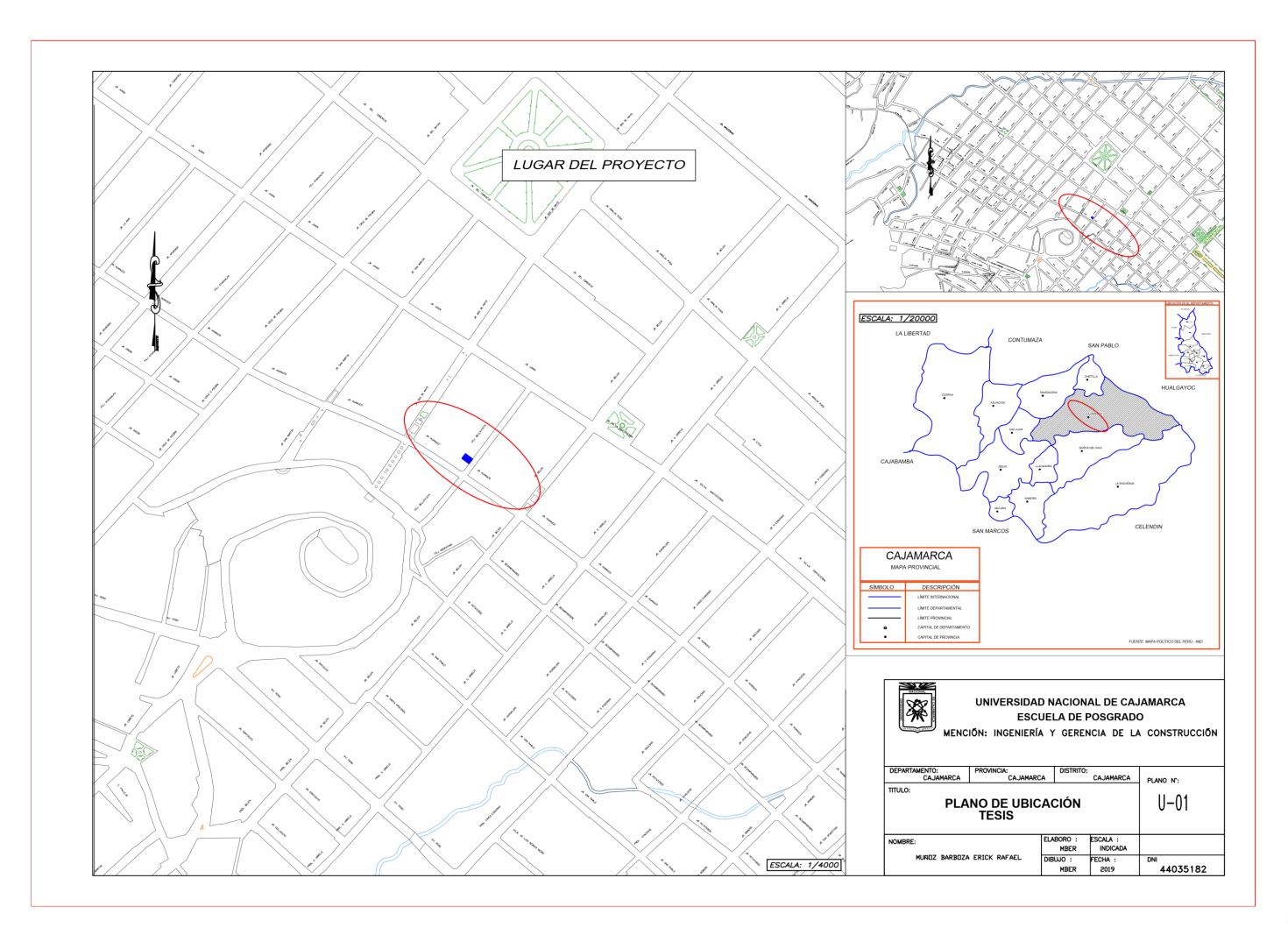
DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA -- CAL, MORTERO DE CEMENTO -- YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

Laboratorio: Laboratorio UPN Fecha de Ensayo: 20/02/2019 Muestra: Adobe tarrajeo Tierra Roja - Cal Potemilnaclón de la Succión - MTP 389, 613 (Ensayo en 1 minuto) Antifica Barboza Erick Rafael Nº Muestra Nº Muestra MTRCS1 MTRCS2 MTRCS2 Peso muestra seca Wd 32.435 gr. 31995 gr. MTRCS3 Peso muestra húmeda Ws 43.05cm 42.95cm 42.56cm Longitud del espécimen B 32.84cm 32.25cm 31.98cm Ancho del espécimen W - - - Peso de Agua W - - - Succión (gr/cm2) S=200w+LB - - - Succión (gr/cm2) S=200w+LB - - - Succión (gr/cm2) Después te colocar en contacto con el agua durante un minuto se desprendes las particulas, incluso en bloque, por lo cuel se retás muestras.				CONTRACTOR OF THE PERSON NAMED IN CONTRA	AND THE PARTY OF THE PARTY AND THE PARTY OF	and the second control of the Charles of Sept. March 1994 (Charles of Sept. 1994) (Sept. 1994) (And the state of t
ca meda écimen cimen	Laboratorio: Muestra:	Laboratorio UPN Adobe tarrajeo Tierra Roja - Cal		Fecha de Ensayo: Ensayado Por:	20/02/2019 Muñoz Barboza Erick Rafael		
meda ecimen cimen	AND THE PROPERTY OF THE PROPER	mande district de trait de la comparation del la comparation de la comparation del la comparation de la comparation de la comparation de la comparation del la comparation de la comparation del la comparat	Deferminación de la Succió	n - MTP 399.613 (Ensayo	on 1 minuto)		
ca meda écimen cimen	Nº Muestra				2	3	"
ca ecimen cimen	Descripción:		MTRCS1	MTR	RCS2	MTRCS3	2
meda écimen cimen	Peso muestra seca	Wd	32435 gr.	3196	95 gr.	31605 gr.	The second secon
cimen	Peso muestra húmeda		ı				
cimen	Longitud del espécime	T ui	43.05cm	42.8	95cm	42.56cm	
	Ancho del espécimer		32.84cm	32.2	25cm	31.98cm	NO APLICA
	Peso de Agua	X	1				
	Succión (gr/cm2)	S=200w+LB	1				
	Observaciones:	Después te colocar en contacto con e	l agua durante un minuto se de	sprendes las partículas, inclu	iso en bloque, por lo cual se indica que el	ensayo no es medible en estás muestras.	

EJECUTÓ		ASESOR	() 0
	ING,/MUNOZ BARBOZA ERICK RAFAEL.		MG. ING. MIRANDA TEJADA HUGO
FECHA:	20/02/14	FECHA:	70/02/19

"EFECTO DE INUNDACIÓN SIMU TIERRA ROJA
Egeneta de Fosgrado

UNIVERSIDAD NACIONAL DE CAJAMARCA ESCUELA DE POSGRADO


ULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO - CAL, MORTERO DE CEMENTO -- YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"

Laboratorio: Muestra:	Laboratorio UPN Adobe cemento - Cal (CC)		Fecha de Ensayo: Ensayado Por:	20/02/2019 Muñoz Barboza Erick Rafael		
westignists describe the section of		Deferminación de la Succ	Determinación de la Succión - NTP 399.613 (Ensayo en 1 minuto)	en 1 minuto)		
Nº Muestra	And the second s	AND THE RESIDENCE OF THE PARTY		2	က	J
Descripción:		CCS1	00	ccs2	ccs3)
Peso muestra seca	Wd	34190 gr.	3310	33105 gr.	33280 gr.	
Peso muestra húmeda	Ws	34365 gr.	3327	33270 gr.	33425 gr.	
Lonaitud del espécimen		42.80cm	42.2	42.23cm	42.86cm	
Ancho del espécimen	B	32.74cm	32.6	32.66cm	32.61cm	23.216 gr/cm2
Peso de Agua	M	175 gr.	168	165 gr.	145 gr.	
Succión (gr/cm2)	S=200w+LB	24.978	23.	23.924	20.747	
Observaciones:						

EJECUTÓ		ASESOR	
	ING. MUÑOZ BÅRBOZA ERICK RAFAEL.		MG. ING/MIRANDA TEJADA ĤUGO
FECHA:	20/02/19	FECHA:	70/02/14

			HINVEDSIDAD NACIONAL DE CAJAMABCA	SIONAL DE CA	IAMARCA
	managaman na (calma dalmana) mayo maya inabama aya da basati ista		ESCUELA	ESCUELA DE POSGRADO	0
Escuela de Fosgrado	"EFECTO DE IN	IUNDACIÓN SIMULADA EN LA RESIST TIERRA ROJA – CAL, MORTERO DE	ESISTENCIA DE MUR(O DE CEMENTO – YE	OS DE ADOBE CC SO Y MURO PATE	"EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTERO CEMENTO - CAL, MORTERO TIERRA ROJA — CAL, MORTERO DE CEMENTO — YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018"
Laboratorio: Muestra:	Laboratorio UPN Adobe tarrajeo Cemento - Yeso (CY)	ento - Yeso (CY)	Fecha de Ensayo: Ensayado Por:	20/02/2019 Wuñoz Barboza Erick Rafael	ck Rafael
AND THE PROPERTY OF THE PROPER		Determinación de la Succión -	ción - NTP 399,613 (Ensayo en 1 minuto)	ro en 1 minuto)	
Nº Muestra				2	3
Descripción:		CYS1	0	CYS2	
Peso muestra seca	Md	33495 gr.	33.	33810 gr.	34100 gr.
Peso muestra húmeda	Ws	33615 gr.	33:	33926 gr.	34210 gr.
Longitud del espécimen	7	42.30cm	42	42.73cm	
Ancho del espécimen	B	33.19cm	32	32.15cm	32.42cm 16.633 gr/cm2
Peso de Agua	M	120 gr.	_	116 gr.	110 gr.
Succión (gr/cm2)	S=200w+LB	17.092	7	16.891	15.917
Observaciones:					
EJECUTÓ			A STATE OF THE PROPERTY OF THE	ASESOR	
	ING, AND	ING, MÜNGZ BARBOZA ERICK RAFAEL.			MG. ING, MIRANDA TEJADA HUGO
FECHA:		20/02/2019		FECHA:	20/02/2019
CONTRACTOR OF THE PROPERTY OF THE RESPONSION AND PROPERTY OF THE PROPERTY OF T	synderent excellentisments profit with darking with a heart Whiteway	THE PROPERTY OF THE PROPERTY O	the procession and interestinations and the property of the procession of the proces	Second State of State	

Plano de Ubicación

Permiso Uso Laboratorio

AUTORIZACION DE ASESOR

Cajamarca, 05 de noviembre de 2018

Sr: Erick Rafael Muñoz Barboza

Por medio de la presente, se autoriza utilizar instalaciones externas de los laboratorios de ingeniera civil de la Universidad Nacional, en los ensayos (pruebas técnicas) de su estudio de tesis de posgrado titulada "EFECTO DE INUNDACIÓN SIMULADA EN LA RESISTENCIA DE MUROS DE ADOBE CON TARRAJEOS DE MORTEROS CEMENTO - CAL, TIERRA ROJA – CAL, CEMENTO – YESO Y MURO PATRÓN EN LA CIUDAD DE CAJAMARCA, 2018", así mismo me comprometo a supervisar los ensayos y pruebas, siguiendo la normativa correspondiente.

Los ensayos realizados en todas sus muestras son:

- Clasificación de suelos:
 - o Contenido de Humedad.
 - o Granulometría Mediante Tamizado Por Lavado.
 - o Límites de Plasticidad "Atterberg"
- Ensayos de Absorción, succión y asenso capilar de muestras de adobes.
 - o Muro Patrón (MP)
 - Muro Tierra Roja Cal (TRC)
 - o Muro Cemento Cal (CC)
 - o Muro Cemento Yeso (CY)

Nota: Los laboratorios de ingeniera civil de la Universidad Nacional de Cajamarca se encuentran en remodelación y manteniendo, no funcionando actualmente.

Mg. Ing. Hygo Miranda/Tejada

Asesor de tesis