UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"COSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD"

PROYECTO PROFESIONAL

PARA OPTAR EL TÍTULO DE: INGENIERO CIVIL

PRESENTADO POR EL BACHILLER:

CARRANZA ARAUJO, JORGE LUIS

CAJAMARCA - PERU 2014

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE. EL BOSQUE. EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TITULO

"CONSTRUCCION DEL PUENTE CARROZABLE EL
BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE
SANAGORÁN, PROVINCIA SÁNCHEZ CARRIÓN, REGIÓN LA
LIBERTAD"

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

AGRADECIMIENTO

A la Universidad Nacional de Cajamarca nuestra alma mater, y a todos los docentes de la Facultad de Ingeniería que contribuyeron a nuestra formación profesional, en especial a mis Asesores Mg. Ing. Miguel Mosqueira Moreno y al Ing. Luis Vásquez Ramírez por el apoyo desinteresado e incondicional que nos brindaron para el desarrollo del presente Proyecto. Así mismo hacemos un especial reconocimiento a todos aquellos familiares y amigos que de una u otra forma hicieron posible tan anhelada Profesión.

Autor

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION; REGION LA LIBERTAD

DEDICATORIA

Dedico este proyecto a Dios, a mis padres: Eugenio y Santos por su constante apoyo y comprensión para poder lograr mis objetivos, a mis hermanos, abuelos y a quienes hicieron posible este sueño.

Jorge Luis Carranza Araujo.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

RESUMEN

El presente proyecto profesional, llamado "CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORÁN, PROVINCIA SÁNCHEZ CARRIÓN, REGIÓN LA LIBERTAD, tiene como objetivo un estudio definitivo de proyecto y a la ves Mediante esta obra de arte integrar a Caracmaca con la ciudad de Sanagorán. Integrando con la capital de la Provincia Sánchez Carrión (Huamachuco).

Se el trabajo inició con el reconocimiento de la zona de ubicación del puente existente, luego se determinó el área de influencia para realizar el levantamiento topográfico.

Con la finalidad de determinar el tipo y ancho de vía se realizó el conteo de vehículos que en época de estiaje cruzan el cauce del río; para determinar el ancho de las veredas a diseñar se realizó el conteo de peatones que transitan el puente peatonal existente.

Con respecto al estudio hidrológico e hidráulico se utilizó como fuente de información las intensidades de la Estación Augusto Weberbauer con la finalidad de realizar el modelamiento de las intensidades máximas, empleando la función de distribución de probabilidad de Gumbel; posteriormente se obtuvo el caudal máximo con el método racional modificado, se determinó el tirante con la fórmula de Manning, para luego estimar la profundidad de socavación, con los valores del tirante y el borde libre se determinó la altura del puente.

Para realizar el estudio geotécnico se excavaron 02 calicatas, de donde se obtuvo muestras de los diferentes estratos con la finalidad de clasificar el suelo y luego determinar la capacidad admisible del suelo donde se va cimentar y construir los estribos.

El puente diseñado es un puente Reticulado simplemente apoyado que consta de un solo tramo, con una luz libre de 36.00, de una sola vía de 3.60m de ancho, veredas peatonales a ambos extremos de 0.60m de ancho y 0.20m de peralte, bombeo de la superficie de rodadura de 2%, losa de 0.20m de peralte.

La subestructura conformada por estribos en voladizo, alas de concreto armado.

El proyecto será financiado por La Municipalidad Distrital de Sanagorán la fuente de financiamiento proviene del Canon y Sobrecanon con un monto de finaciamiento de 1'794,593.76 (un millón setecientos noventa y cuatro mil quinientos noventa y tres con 76/100).

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

INDICE GENERAL

CAPITULO I	<u>4</u>
1. INTRODUCCIÓN	5
1.1. OBJETIVOS	
1.2. ANTECEDENTES:	5
1.3. ALCANCES:	
1.4. CARACTERÍSTICAS LOCALES	7
1.5. JUSTIFICACIÓN DEL PROYECTO	8
1.6. ESTUDIO SOCIO ECONÓMICO	8
CAPITULO II	9
2 REVISIÓN DE LITERATURA	
2.1 DEFINICIONES PREVIAS	
2.2 CLASIFICACIÓN DE UN PUENTE:	
2.3 ESTUDIO TOPOGRÁFICO	
2.4 ESTUDIO HIDROLÓGICO E HIDRÁULICA	
2.4.1 CUENCA HIDROGRÁFICA	۱3 13
2.4.1 CUENCA HIDROGRAFICA 2.4.2 PRINCIPALES CARACTERÍSTICAS FISIOGRÁFICAS	14
2.4.2 PRINCIPALES CARACTERISTICAS FISIOGRAFICAS 2.4.3 CALCULO DE LA INTENSIDAD MAXIMA DE DISEÑO	16
2.4.3 CALCULO DE LA INTENSIDAD INIAXIMA DE DISENO 2.4.4 CALCULO DEL TIRANTE	23
2.4.5 ESTIMACIÓN DE LA PROFUNDIDAD DE SOCAVACIÓN	25 25
2.5 SISTEMA DE DRENAJE	
2.5.1 CONDICIONES DE UN BUEN DRENAJE	29
2.5.2 DRENAJE DE PUENTES Y PASOS A DESNIVEL	29
2.6 ESTUDIO GEOLÓGICO, GEOTÉCNICO Y CANTERA	
2.6.1 ESTUDIO GEOLÓGICO	30
2.6.2 ESTUDIO GEOTÉCNICO	30
2.6.3 ESTUDIO DE CANTERAS	44
2.7 ESTUDIO DE IMPACTO AMBIENTAL	
2.7.1 METODOLOGÍA	49
2.7.2 DEFINICIONES BÁSICAS	50
2.7.3 MARCO LEGAL	51
2.8 ESTUDIO DE VOLUMEN DE TRANSITO	
2.8.1 DOCUMENTACIÓN QUE COMPRENDE UN ESTUDIO DE TRÁFICO	54
2.8.2 MÉTODOS DE AFORO	54
2.8.3 VOLUMEN DE TRANSITO	54
2.8.4 CLASIFICACIÓN DE LA CARRETERA	. 55
2.9 ESTUDIO DE TRAZO Y DISEÑO VIAL DE LOS ACCESOS	55
2.9.1 DISEÑO GEOMÉTRICO DE LA VÍA	55
2.9.2 PARÁMETROS DEL DISEÑO VIAL	55
2.10 INGENIERÍA DEL PROYECTO	64
2.10.1 GEOMETRÍA GENERAL	65
2.10.2 GEOMETRÍA DE DETALLES	65
2.10.3 DETERMINACIÓN DE LA LUZ DEL PUENTE	66
2.10.4 DETERMINACIÓN DE LA ALTURA DEL PUENTE	66

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCC<mark>ION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,</mark>
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.10.5 ANCHO DE LA CALZADA Y DE LOS ANDENES	66
2.11 CONSIDERACIONES GENERALES DEL DISEÑO ESTRUCTURAL	67
2.11.1 ESPECIFICACIONES DE DISEÑO POR EL MÉTODO LRFD	67
2.11.2 ELEMENTOS ESTRUCTURALES	67
2.11.3 MATERIALES PARA LA CONSTRUCCIÓN DE PUENTES	68
2.11.4 FILOSOFÍA DE DISEÑO	69
2.11.5 CARGAS	71
2.11.6 FACTORES DE CARGA Y COMBINACIONES	74
2.12 DISEÑO DE LA SUPERESTRUCTURA DEL PUENTE	
2.12.1 LOSA PERPENDICULAR AL TRAFICO	77
2.12.2 ESTRUCTURAS METÁLICAS	77
2.12.3 DISEÑO DE MIEMBROS EN TRACCIÓN	81
2.12.4 DISEÑO DE MIEMBROS EN COMPRESIÓN	85
2.12.5 DISEÑO DE MIEMBROS EN FLEXIÓN	86
2.12.6 DISEÑO DE MIEMBROS EN CORTE	92
2.12.7 DISEÑO DE CONEXIONES	94
2.12.8 PERNOS Y PARTES ROSCADAS	100
2.14 DISEÑO DE LA SUBESTRUCTURA DEL PUENTE	
2.14.2 DISEÑO DE ALETAS	118
2.14.3 DISEÑO DE APOYOS	118
CAPITULO III	120
3. RECURSOS HUMANOS Y MATERIALES	121
3.1. RECURSOS HUMANOS	
3.2. RECURSOS MATERIALES. :	
CAPITULO IV	
4 METODOLOGÍA Y PROCEDIMIENTO	
4.2 ESTUDIO TOPOGRÁFICO	
4.3 ESTUDIO HIDROLÓGICO E HIDRÁULICA	
4.4 SISTEMA DE DRENAJE	
4.5 ESTUDIO GEOLÓGICO, GEOTÉCNICO Y CANTERA	
4.6 ESTUDIO DE IMPACTO AMBIENTAL	
4.7 ESTUDIO DE VOLUMEN DE TRANSITO	
4.8 DISEÑO DE LA SUPERESTRUCTURA DEL PUENTE	
4.9 DISEÑO DE LA SUB ESTRUCTURA DEL PUENTE	
CAPITULO V	
5.1 ESTUDIO TOPOGRÁFICO	
5.2 ESTUDIO HIDROLÓGICO E HIDRÁULICA	
5.3 ESTUDIO GEOLOGICO, GEOTECNICO Y CANTERA	166 166
5.3.3 ESTUDIO GEOLÓGICO	
5.3.4 ESTUDIO GEOTECNICO	166 167
5.3.5 ESTUDIO DE CANTERAS.	
5.3.6 DISEÑO DE MEZCLAS.	167
5.4 ESTUDIO DE IMPACTO AMBIENTAL	168

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORÁN, PROVINCIA SANCHEZ CARRIÓN, REGION LA LIBERTAD

5.5 ESTUDIO DE VOLUMEN DE TRANSITO	173
5.6 ESTUDIO DE TRAZO Y DISEÑO VIAL DE LOS ACCESOS	ACTIVITY OF THE PARTY OF THE PA
5.7.3 LOSA	173
5.7.4 ESTRUCTURAS METÁLICAS	174
5.8 DISEÑO DE LA SUBESTRUCTURA DEL PUENTE	
CAPITULO VI	
6 CONCLUSIONES Y RECOMENDACIONES	
6.1 CONCLUSIONES TRECOMENDACIONES	
6.2 RECOMENDACIONES	
ANEXOS	
ANEXOS N° 1 HIDROLOGÍA E HIDRÁULICA	
ANEXOS N° 2 GEOLÓGICO, GEOTÉCNICO Y ESTUDIO DE CANTERA	
ANEXO 2.1: ESTUDIO DE MECÁNICA DE SUELOS	
ANEXO 2.2: ESTUDIO GEOLÓGICO	
ANEXO 2.3: ESTUDIO DE CANTERAS Y DISEÑO DE MEZCLAS	
ANEXOS N° 3 ESTUDIO DE IMPACTO AMBIENTAL	289
ANEXOS N° 4 ESTUDIO DE TRAFICO	
ANEXOS N° 5: DISEÑO DE SÚPER ESTRUCTURA	321
ANEXOS N° 5.1: DISEÑO LOSA	
ANEXOS N° 5.2: DISEÑO DE TRAMO EN VOLADIZO	
ANEXOS N° 5.2: DISEÑO DE VEREDA	348
ANEXOS N° 6: DISEÑO DE ARMADURA	356
ANEXOS N° 7: DISEÑO DE SUB ESTRUCTURA	395
ANEXOS N° 7.1: DISEÑO DE ESTRIBO	
ANEXOS N° 7.2: DISEÑO DE ALETAS	
ANEXOS N° 7.3: DISEÑO DE ALETAS	434
ANEXOS N° 8: EXPEDIENTE TÉCNICO	437
ANEXOS N° 9: PANEL FOTOGRÁFICO	503
ANEXOS Nº 10: PROGRAMACIONES DE OBRA	508
ANEXOS N° 11: PLANOS	509
ÍNDICE DE TABLAS	510
ÍNDICE DE FIGURAS	511
BIBLIOGRAFÍA	512

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE:CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CAPITULO I

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

1. INTRODUCCIÓN

El puente es una estructura especial que surgió frente a la necesidad del hombre para poder desplazarse y salvar desniveles tales como: quebradas o cursos de aqua.

Dentro de la Ingeniería Civil una de las áreas más importantes es la de Transportes y según la realidad geográfica del Perú y nuestra Zona el transporte terrestre se realiza por vías que en su mayoría están interrumpidas y que son complementados con puentes.

El presente proyecto se encuentra ubicado en el Caserío de Caracmaca, Distrito de Sanagorán, Provincia de Sánchez Carrión, Región la Libertad, que beneficiara a los caseríos Caracmaca, La Calzada.

1.1. OBJETIVOS

1.1.1. Objetivo General:

Realizar el estudio del Puente Carrozable el Bosque ubicado sobre el Río Quillish en el Caserío Caracmaca, Distrito de Sanagorán, Sánchez Carrión, La Libertad

1.1.2. Objetivo específicos:

- -Aplicar los conocimientos adquiridos en nuestra facultad.
- Mediante esta obra de arte integrar a Caracmaca con la ciudad de Sanagorán. Integrando con la capital de la Provincia Sánchez Carrión (Huamachuco).
- Lograr la agilización del tránsito peatonal y vehicular, tanto para el acceso.

1.2. ANTECEDENTES:

1.2.1. Los motivos que generaron la propuesta de este proyecto

En la actualidad en rio Quillish no se cuenta con un puente para libre traslado de vehículos y peatones es que la Municipalidad Distrital de Sanagorán con su fin de Proporcionar al Poblador Sanagoranino un ambiente adecuado para elevar sus niveles de vida en cuanto a vivienda, salubridad, seguridad, abastecimiento, educación, recreación, transporte y comunicaciones a través de las prestaciones de servicio a la población, así como a través de realización de Obras de infraestructura pública, promocionando el Desarrollo Local.

El desarrollo de la actividad minera en la región y de algunas nuevas actividades económicas de la costa, comienza a generar la demanda de madera y da inicio a la actividad forestal que pasa a formar un rol importante. Esta actividad, genera una demanda de óxido de calcio (cal), carbón de piedra y da inicio a nuevas actividades productivas.

En los últimos años, el desarrollo de la demanda de alimentos en la costa peruana comienza a generar una gran demanda de papa llegando a ser Sanagorán uno de los distritos más sobresalientes de la provincia de Sánchez Carrión y por consiguientes afecta a Huamachuco siendo la segunda ciudad Liberteña productora de papa y una de las más importantes del país.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Se pueden identificar dos roles, punto de llegada del mercado productor distribuidor de la producción de la costa y acopio menor de la producción local principalmente de menestras, ganado y el sembrío de Eucaliptos.

Por lo tanto los transportistas han fusionado la actividad comercial: Acopio, comercio y transporte.

Por otro lado, otra actividad importante es el turismo, que actualmente tiene gran demanda tal como Aguas termales de Huairo, Ruina construida en su totalidad de piedras el Coro ubicadas en Cushuro, Plaza Principal de Sanagorán, Fiesta Patronal en honor a Santiago Apóstol, otros atractivos turísticos importantes.

Este conjunto de actividades económicas ha traído consigo un incremento abrupto de población y parque automotor, frente a lo cual, los caminos vecinales de Sanagorán han estado preparados, es así que la Municipalidad Distrital de Sanagorán conocedora de la situación problemática referente a sus accesos y lugares por donde se debe mejorar el tránsito, con su equipo técnico determinó la elaboración del presente proyecto, que servirá para interconectar Sanagorán, Caracmaca, La Calzada, Huamachuco, Trujillo.

1.2.2. Las características de la situación negativa que se intenta modificar

La Municipalidad Distrital de Sanagorán con el fin de mantener comunicación entre su capital y todos sus caseríos; pues ha construido una carretera que pueda comunicar Sanagorán Capital con Caracmaca, pero esta carretera no funciona adecuadamente en tiempo de inverno se genera dificultades de transitabilidad pues en el Km 06 Aprox. Se ubica el Rio Quillish donde acumula gran cantidad de caudal y arrastre materiales solidos con un tamaño Nominal de hasta 20" en consecuencia impiden el traslado de vehículos, además también impiden el pase de los pobladores y muchas veces arriesgándose a cruzarlo poniendo en riesgo su vida.

Siendo estos aspectos un problema para la población en general y especialmente los agricultores, comerciantes que se dedican al comercio de los productos que cultivan en sus parcelas agrícolas, así como la población en general de las localidades aledañas que transitan por esa vía a la ciudad de Sanagorán, por lo que es necesario contar con un puente adecuado.

El tramo se encuentra en una zona de topografía llana siendo los terrenos de material suelto. Debido a la ausencia de un puente en la vía es que los productos a ser comercializados se deterioran por no poder trasladarlos a tiempo, existencia de poca comercialización e integración del distrito con la capital del Distrito y la provincia, la demanda de producción agrícola de la zona se ve interrumpida por lo tanto la comercialización de los productos de la zona, se realiza en forma deficiente debido a que se utiliza el servicio de transporte frecuente por esa vía , encareciendo así el costo de los productos debido a la dificultad del transporte que se realiza por otras vías, generando además altos costos de transacción a las familias que transitan con unidades móviles particulares y/o públicas a la ciudad para diferentes actividades y necesidades como salud, educación, actividades sociales entre otras.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

1.3. ALCANCES:

Según la ficha SNIP de Proyecto N° 288188 el presente estudio será un puente de Estructuras Metálicas Reticulado de luz libre de 36.00m, 3.60 m. de ancho de calzada, con veredas laterales de 0.60 m. de ancho.

Dicho diseño se realizó teniendo en cuenta los estudios topográficos, transito, hidrológico e hidráulico, geológico, geotécnico, estructural y de impacto ambiental.

1.4. CARACTERÍSTICAS LOCALES

1.4.1. Ubicación:

Geográficamente el proyecto se ubica a: 813107.50 E, 9135355.78 N y a una altitud promedio de 2841.20 m.s.n.m.

Políticamente, su ubicación es la siguiente:

Región

: La Libertad

Departamento : La Libertad

Provincia

: Sánchez Carrión

Distrito

: Sanagorán

Caserio

: Caracmaca

Cuenca

: Rio Quillish

1.4.2. Topografía:

La zona en estudio presenta una topografía ondulada en su mayor recorrido y una topografía accidentada en pequeños tramos.

1.4.3. Clima:

En los Caserío Caracmaca, donde se encuentra ubicado el Proyecto tiene un excelente clima templado típico de la sierra norte del país de tipo sub húmedo con temperaturas actuales que varíanentre los 21° C y 7° C, con un promedio anual de 15° C; con precipitaciones pluviales variables durante el año. Las precipitaciones mínimas se presentan en los meses de mayo a setiembre y las máximas entre los meses de enero a marzo, con un promedio anual aproximado de 600 mm., presentando además una humedad relativa del 60 %.

1.4.4. Población beneficiada:

El presente proyecto beneficiará a los Caseríos de Caracmaca, La Calzada, Sanagorán ciudad, permitiendo mejorar el traslado de personas teniendo en cuenta que es una zona turística muy visitada; además de brindar una mayor facilidad para trasladar los productos agrícolas y pecuarios producidos en la zona de influencia del proyecto, que es la principal fuente de ingreso de los pobladores; siendo el número de beneficiarios directos 12983 personas.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

1.4.5. Accesibilidad:

TABLA N° 1: Distancias de acceso con respecto a Huamachuco

Desde	Hacia	Distancia (Km)	Tipo de Vía	Tiempo (minutos)	Frecuencia transporte
Huamachuco	Sanagorán ciudad	28	Afirmada	30	Diario
Sanagorán ciudad	Caracmaca	10	Trocha	20	Inter diario

1.5. JUSTIFICACIÓN DEL PROYECTO

El presente proyecto influirá en el desarrollo social y económico de los pobladores de los caseríos de Caracmaca, La Calzada y Sanagorán Ciudad.

La ejecución del proyecto justifica plenamente su ejecución ya que permitirá la seguridad y accesibilidad a todos los pobladores antes mencionados y transportistas, además será una variable impulsadora de desarrollo económico, agrícola, reduciendo costos de transporte, así como un fácil acceso en épocas de lluvia y permitiendo que los productores agrícolas y pecuarios lleguen a los mercados lleguen a los mercados a tiempo y en condiciones óptimas.

1.6. ESTUDIO SOCIO ECONÓMICO

El proyecto genera beneficios económicos y beneficios cualitativos.

- Seguridad para vehículos y peatones.
- Mayor producción agrícola.
- > Incremento de valorización de predios.
- Mejora del intercambio comercial y turístico.
- Mejora de la imagen Rural.
- Embellecimiento de la zona.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CAPITULO II

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2 REVISION DE LITERATURA

En este capítulo se consultó bibliografía y otros materiales que puedan ser útiles para los propósitos del estudio, así como en extraer y recopilar la información relevante y necesaria que atañe a nuestro estudio.

2.1 DEFINICIONES PREVIAS

2.1.1 DEFINICION DE PUENTE:

Un puente es una construcción que permite salvar un accidente geográfico o cualquier otro obstáculo físico como un río, un cañón, un valle, un camino, una vía férrea, un cuerpo de agua, o cualquier otro obstáculo. El diseño de cada puente varía dependiendo de su función y la naturaleza del terreno sobre el que el puente es construido.

2.1.2 ELEMENTOS DE UN PUENTE:

Los puentes constan fundamentalmente de dos partes, la superestructura, o conjunto de tramos que salvan los vanos situados entre los soportes, y la infraestructura o subestructura (apoyos o soportes).

2.1.2.1 LA SUBESTRUCTURA:

De un puente está formada por los estribos o pilares extremos, las pilas o apoyos centrales y los cimientos, que forman la base de ambos.

2.1.2.2 LA SUPERESTRUCTURA:

Consiste en el tablero o parte que soporta directamente las cargas y las armaduras, constituidas por vigas, cables, o bóvedas y arcos que transmiten las cargas del tablero a las pilas y los estribos, que soportan directamente los tramos citados, los estribos situadas en los extremos del puente, que conectan con el terraplén, y los cimientos o apoyos de estribos y pilas encargados de transmitir al terreno todos los esfuerzos.

2.2 CLASIFICACION DE UN PUENTE:

Los puentes pueden clasificarse de acuerdo a su longitud total, longitud de vano, calzada, objetivo, materiales y diseño o restructuración.

2.2.1.1 LONGITUD TOTAL

De acuerdo a la longitud total (L) los puentes pueden agruparse según el siguiente criterio de clasificación:

Puentes menores 10,0 m < L ≤ 40 m

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION L'A LIBERTAD

2.2.1.2 LONGITUD DE VANO

De acuerdo a la longitud de la luz libre o vano (Lv) las estructuras se clasifican en:

• Estructuras medianas 10 m < Lv ≤ 70 m

2.2.1.3 DE ACUERDO AL NUMERO DE CARRILES O VÍAS

De acuerdo al tránsito para el cual está diseñado el puente, este se puede clasificar como puente simple vía.

2.2.1.4 POR EL OBJETIVO

Con relación a su finalidad y objetivo, los puentes pueden clasificarse en:

Puentes rurales

2.2.1.5 MATERIALES

De acuerdo a los materiales constituyentes del puente, estos pueden ser:

· Puentes mixtos.

2.2.1.6 **DISEÑO**

De acuerdo a su diseño o estructuración, los puentes pueden clasificarse de acuerdo a los siguientes:

Metálico Reticulado

2.3 ESTUDIO TOPOGRÁFICO

La topografía tiene por objeto medir extensiones de tierra, tomando los datos necesarios para poder representar sobre un plano, a escala, su forma y accidentes. El estudio topográfico nos permite:

- Realizar los trabajos de campo para la elaboración de los planos topográficos.
- Proporcionar información para los estudios de hidrología e hidráulica.
- Establecer puntos de referencia para el replanteo durante la construcción. (MTC, 2007)

2.3.1 RECONOCIMIENTO DE LA ZONA

El reconocimiento de la zona constituye uno de los aspectos más importantes en todo proyecto de ingeniería, ya que este se realiza con la finalidad de efectuar una evaluación de las condiciones naturales del lugar y de esta manera definir la ubicación exacta del puente que cumpla con los requerimientos mínimos para su construcción.

2.3.2 LEVANTAMIENTO TOPOGRÁFICO

Se entiende por levantamiento Topográfico al conjunto de actividades que se realizan en el campo con el objeto de capturar la información necesaria que permita determinar las coordenadas

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

rectangulares de los puntos del terreno, ya sea directamente o mediante un proceso de cálculo, con las cuales se obtiene la representación gráfica del terreno levantado, el área y volúmenes de tierra cuando así se requiera es decir el proceso de medir, calcular y dibujar para determinar la posición relativa de los puntos que conforman una extensión de tierra". (Matera, 2003)

2.3.2.1 LEVANTAMIENTO CON ESTACIÓN TOTAL

Una de las grandes ventajas de levantamientos con estación total es que la toma y registro de datos es automático, eliminando los errores de lectura, anotación, transcripción y cálculo; ya que con estas estaciones la toma de datos es automática (en forma digital) y los cálculos de coordenadas se realizan por medio de programas de computación incorporados a dichas estaciones.

Generalmente estos datos son archivados en formato CSV para poder ser leidos por diferentes programas de topografía, diseño geométrico, diseño y edición gráfica. (Matera, 2003)

a. TRIANGULACIÓN

Es una red de apoyo planímetro formado por una serie de triángulos, en los cuales uno o más lados de cada triángulo son también de triángulos adyacentes.

Este método es usado en levantamientos de grandes extensiones de terreno y ofrece mayores ventajas. (Matera, 2003)

2.3.3 CLASIFICACIÓN DE LA TOPOGRAFÍA DEL TERRENO

TABLA N° 2: Clasificación del terreno según el ángulo de inclinación

Angulo respecto a la horizontal del terreno	Tipo de Topografía
0° a 10°	Llana
10° a 20°	Ondulada
20° a 30°	Accidentada
Mayor a 30°	Montañosa

Fuente: (Ghilan, 1997)

2.3.4 EQUIDISTANCIA.

La distancia vertical o desnivel entre dos curvas consecutivas es constante y se denomina equidistancia.

El valor de la equidistancia depende de la escala y de la precisión con que se desea elaborar el plano. (Gálvez, 1981).

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORÁN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA Nº 3: Elección de la equidistancia para curvas de nivel

Escala del plano	Tipo de	Equidistancia
	topografía	
Grande	Llana	0.10 a 0.25
1/1000 o menor	Ondulada	0.25 a 0.50
	Accidentada	0.50 a 1.00
Mediana	Llana	0.25, 0.50, 1.00
1/1000 a	Ondulada	0.50, 1.00, 2.00
1/10 000	Accidentada	2.00, 5.00
Pequeña	Llana	0.50, 1.00, 2.00
1/10 000 o mayor	Ondulada	2.00, 5.00
	Accidentada	5.00, 10.00, 20.00
	Montañosa	10.00, 20.00, 50.00

Fuente: (Gálvez, 1981)

2.4 ESTUDIO HIDROLÓGICO E HIDRÁULICA

Para el aprovechamiento del recurso hídrico de una cuenca, es necesario conocer, en un punto dado o a la salida de ella, el caudal disponible a partir de la o las lluvias que lo originan. El problema, aparentemente simple en su presentación, es de una solución en muchos casos compleja, y para ello se han ideado una serie de métodos que van de los más simples a los más complejos.

La aplicación exitosa de los diferentes métodos dependerá del tamaño de la cuenca así como de sus características fisiográficas, tipos, usos y cobertura del suelo. (Reyes, 1992)

Según el Manual de Diseño de Puentes del MTC Perú (2007)

Los estudios de hidrología e hidráulica nos permiten:

Establecer características hidrológicas de los regímenes de avenidas máximas.

2.4.1 CUENCA HIDROGRÁFICA

Es el área de terreno donde las aguas de escorrentía se distribuyen en una red natural de drenaje, confluyendo luego hacia un colector común o curso principal. El limite o frontera de la cuenca hidrográfica se conoce como "Divortium Aquarum" o divisoria de aguas y el punto más bajo o de total confluencia como punto emisor. (Reyes, 1992)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA Nº 4: Tamaño relativo de las cuencas hidrográficas

Unidad hidrográfica	Área (Km2)	Número de Orden
Micro cuenca	10-100	1, 2, 3
Sub cuenca	100-700	4, 5
Cuenca	700 a más	6 y más

Fuente: (Reyes, 1992)

2.4.1.1 DELIMITACIÓN DE UNA CUENCA

La delimitación de una cuenca, se hace sobre un plano a curvas de nivel, siguiendo las líneas del divortium acuarum, la cual es una línea imaginaria, que divide a las cuencas adyacentes y distribuye el escurrimiento originado por la precipitación, que en cada sistema de corriente, fluye hacia el punto de salida de la cuenca. (Villon, 2011)

2.4.2 PRINCIPALES CARACTERÍSTICAS FISIOGRÁFICAS

Para definir las características fisiográficas de una cuenca, se requiere información cartográfica de la zona de estudio y conocimientos de topografía. En hidrología Superficial, existe una relación muy estrecha entre variables y parámetros, relaciones que muchas veces solucionan problemas, referentes a la carencia de datos hidrológicos en la zona de estudio. (Reyes, 1992)

2.4.2.1 PARÁMETROS GEOMORFOLÓGICOS

Tiene que ver con la forma y tamaño de la cuenca y tiene influencia marcada en el efecto de los procesos dinámicos que en ella ocurren. Permiten predecir la capacidad erosiva y de transporte de sedimentos. Los principales parámetros geomorfológicos que definen la fisiografía de la cuenca son: (Reyes L. C., 1992)

a. ÁREA DE LA CUENCA (A)

Este factor tiene importancia efectiva en la hidrografía de una cuenca, se expresa generalmente en Km2. Para cuantificar el área es necesario delimitar la cuenca, haciendo uso de la Carta Nacional o plano a curvas de nivel, se traza la línea de "Divortium Aquarum" teniendo en cuenta que las líneas de flujo son perpendiculares a las curvas de nivel del terreno, hasta un punto del cauce que sirve como emisor de las aguas. (Reyes L. C., 1992)

b. PERÍMETRO DE LA CUENCA (P)

Es la longitud de la curva cerrada correspondiente al divortium aquarum, se expresa generalmente en Km. (Reyes L. C., 1992)

c. LONGITUD DEL CAUCE PRINCIPAL (L)

Es la distancia entre el punto emisor y el extremo final del tramo de igual orden que el de la cuenca. Generalmente se expresa en Km. (Reyes L. C., 1992)

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

d. PENDIENTE DEL CAUCE PRINCIPAL (S)

Es el promedio de las pendientes del cauce principal, está relacionado con la magnitud de socavamiento del cauce y la capacidad del transporte de sedimentos. En general, la pendiente del cauce principal varía a lo largo de toda su longitud, siendo necesario usar un método adecuado para estimar una pendiente representativa. Para salvar este inconveniente, se han desarrollado métodos basados en el uso del perfil longitudinal del cauce y considerando una pendiente equivalente mediante la siguiente expresión: (Reyes L. C., 1992)

$$S = \begin{bmatrix} \sum_{i=1}^{n} L_i \\ \sum_{i=1}^{n} \left(\frac{L_i^2}{S_i}\right)^{1/2} \end{bmatrix}$$

.....Ecuación N° 1

Donde:

Li = longitud de cada tramo de pendiente Si.

n = número de tramos en que se ha dividido el perfil del cauce.

TIEMPO DE CONCENTRACIÓN (Tc) e.

Llamado también tiempo de equilibrio o tiempo de viaje, es el tiempo que toma la partícula hidráulicamente más lejana en viajar hasta el punto emisor. Se supone que ocurre una lluvia uniforme sobre toda la cuenca durante un tiempo, por lo menos, igual al tiempo de concentración. (Reyes L. C., 1992)

Según Temez podemos estimarlo con la siguiente expresión:

$$Tc = 0.3 \left[\frac{Lc}{s^{1/4}} \right]^{0.76}$$

.....Ecuación N° 2

Dónde:

Tc: tiempo de concentración (hrs.)

Lc: longitud del cauce principal (Km.)

S : pendiente del cauce principal

f. ALTITUD MEDIA DE LA CUENCA (H)

Este importante parámetro es muy útil para la generación de datos en regiones sin información. Este valor viene a ser una tendencia central, que está influenciada por la cantidad de área que se encuentra entre las diferentes curvas de nivel. (Reyes L. C., 1992)

FACULTAD DE INGENIERIA

SCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Se expresa de la siguiente manera:

$$\overline{H} = \frac{1}{A} \sum_{i=1}^{n} Hi \times Ai$$

.....Ecuación N° 3

Dónde:

 \overline{H} = altitud media en m.s.n.m

Hi = altura media correspondiente al área Ai

A = área de la subcuenca

n = número de áreas parciales de la Subcuenca

2.4.3 CALCULO DE LA INTENSIDAD MAXIMA DE DISEÑO

2.4.3.1 MODELAMIENTO PARA TRANSFERENCIA DE INTENSIDADES MÁXIMAS

Cuando no se tiene registros de intensidades de una cuenca, se puede generar a partir de una estación que tenga registro de intensidades y con la ayuda del análisis dimensional y semejanza dinámica, se obtiene una expresión que relaciona los principales parámetros geomorfológicos y variables de la cuenca en estudio. (Mijares, 1992)

La ecuación deducida mediante, análisis dimensional, para sistemas hidrológicos similares es:

$$I_B = \frac{I_A * H_B}{H_A}$$

.....Ecuación N° 4

Dónde:

l_B: Intensidad en la cuenca del proyecto.

la: Intensidad en la Estación Fuente.

H_B: Altitud media de la cuenca del proyecto.

Ha: Altitud de la Estación Fuente.

a. RIESGO DE FALLA (J)

Es el peligro a la posibilidad para que el diseño, sea superado por otro evento de mayor magnitud. Si llamamos "P" a la probabilidad de que si ocurra tal evento, es decir que la descarga considerada no sea igualada ni superada por otra. Entonces la probabilidad de que si ocurra dicho evento en "N" años consecutivos de vida representa el riesgo de falla "J" y viene dado por:

$$J = 1 - P^N$$

.....Ecuación N° 5

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

b. TIEMPO O PERIODO DE RETORNO (Tr)

Es el tiempo transcurrido para que un evento de magnitud dada se repita, en promedio. Se expresa en función de la probabilidad P de no ocurrencia, la probabilidad de ocurrencia está dada por 1 – P, y el tiempo de retorno Tr se expresa mediante:

$$Tr = \frac{1}{1 - P}$$
Ecuación N° 6

Eliminando el parámetro P de entre las ecuaciones (5) y (6) Se tiene:

$$Tr = \frac{1}{1 - (1 - J)^{1/N}}$$
Ecuación N° 7

Ecuación que se utiliza para estimar el tiempo de retorno **Tr** para diversos riesgos de falla **J** y vida útil **N** de la estructura.

c. VIDA UTIL (N)

Vida útil de la estructura es un concepto económico en relación con las depreciaciones y costos de las mismas. La vida física de las estructuras puede ser mayor y, en algunos casos es conveniente que sea la máxima posible para no provocar conflictos en generaciones futuras.

d. MODELOS PROBABILÍSTICO DE PREDICCION HIDROLOGICA

Varios son los modelos probabilísticos que se usan para estimar las máximas descargas, entre los cuales se pueden mencionar:

- 1. Distribución Normal.
- 2. Distribución Log Normal.
- 3. Distribución Exponencial.
- 4. Distribución Pearson Tipo III
- 5. Distribución Log Pearson Tipo III
- 6. Valor Extremo de Gumbel Tipo I (EV1).
- 7. La más usada es el Modelo EVI de Gumbel Tipo I.

Las etapas de un modelamiento probabilístico de variables aleatorias son:

- 1. Selección del modelo.
- 2. Estimación de los parámetros del modelo o calibración.
- 3. Ajuste del modelo.
- 4. Simulación del modelo.

FACULTAD DE INGENIERIA

OYECTO PROFESIONAL: CONSTRUCC<mark>ION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA.</mark>
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

e. PRUEBA DE BONDAD DE AJUSTE

Para datos sin agrupar como el caso que nos ocupa se puede usar la prueba de Smirnov-kolmogorov cuyo procedimiento es:

> PROCEDIMIENTO:

- 1. Ordenar los datos de menor a mayor.
- 2. Asignar una probabilidad empírica a cada dato. La probabilidad empírica más usada en hidrología es la de WEIBULL, mediante:

$$P\left(x \le xm\right) = \frac{m}{N+1} \qquad \qquad \qquad \text{......Ecuación N}^{\circ}$$

Donde:

 $P(x \le x_m)$: probabilidad que tiene el valor x_m de no ser superado, Cuando la serie ha sido ordenada en forma ascendente.

m : número de orden asignado a cada valor de la secuencia Ordenada: r =1, 2, 3,..., N

N: tamaño muestral de los datos no agrupados.

3. Obtener la desviación máxima entre la probabilidad empírica $P(x \le xm)$ y la probabilidad teórica ajustada según la ecuación $F(x \le xm)$.

$$F(x \le xm) = e^{-e^{-\alpha(Xm - \beta)}}$$
 Ecuación N° 9

Dónde:

e: 2,7172... Ctte. De NEPER

x : valor de cada registro de precipitación ordenado

Desviación máxima:

$$\Delta c = \max | F(x \le x_m) - P(x \le x_m) |$$
Ecuación N° 10

Dónde:

Δc: estadístico de Smirnov – Kolmogorov.

 $F(x \le xm)$: probabilidad de la distribución de ajuste. $P(x \le xm)$: probabilidad empírica de datos no agrupados

4. Obtener el valor crítico del estadístico Δt , el mismo que se encuentra tabulado para diferentes niveles de significación (α) y tamaño de muestra (N) en la Tabla N° 5.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PRÓVINCIA SANCHEZ CARRION; REGION LA LIBERTAD

TABLA N° 5: Valores críticos de Δt para la prueba de Smirnov – Kolmogorov de bondad de ajuste

Tamaño de la	α = 0.10	$\alpha = 0.05$	$\alpha = 0.01$
muestra (N)	(90%)	(95%)	(99%)
5	0.51	0.56	0.67
10	0.37	0.41	0.49
15	0.30	0.34	0.40
20	0.26	0.29	0.35
25	0.24	0.26	0.32
30	0.22	0.24	0.29
40	0.19	0.21	0.25
N grande	1.22/√N	1.36/√N	$1.63/\sqrt{N}$

Fuente: (Villon, 2011)

5. Se toman los criterios de decisión siguientes:

- Si Δc ≤ Δt Se acepta la Hipótesis Planteada (HP) en vista de que el ajuste es bueno para el nivel de significación seleccionado (α = 0.05).
- Si Δc > Δt Se rechaza HP para el nivel de significación seleccionado y se prueba con otra distribución teórica.

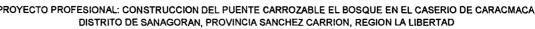
Nivel de significación (α)

En proyectos de ingeniería, los errores de hasta el 5% son aceptables. Pero en general, mientras mayor sea la exigencia del proyecto en cuanto a confiabilidad, menor debe ser el nivel de significación del error (α), esto es:

Nivel de confianza (%) = $(1 - \alpha)$ (100).

Frecuentemente, en Ingeniería Hidrológica es suficiente usar un valor máximo de $\alpha = 0.05$ ó lo que es lo mismo un nivel de confianza de 95%.

f. VALOR EXTREMO DE LA DISTRIBUCION I DE GUMBEL (EV1)


El modelo EV1 de Gumbel, es la distribución que más se adecua para valores extremos de variables aleatorias y ha dado muy buenos resultados para series anuales largas y buena calidad de la información. (Villon, 2011)

El modelo probabilístico EV1, representado mediante la ecuación (11), corresponde a la distribución de una variable aleatoria, definida como la mayor de una serie de N variables aleatorias independientes e idénticamente distribuidas, con una distribución tipo exponencial. En el campo de la Ingeniería Hidráulica, se hace imprescindible el conocimiento de las descargas máximas de diseño, sus probabilidades de ocurrencia y tiempos de retorno. (Villon, 2011)

FACULTAD DE INGENIERIA

En este sentido los modelos probabilísticos juegan un papel importante. Se asume que los datos observados, corresponden a una muestra homogénea y representativa de la población de caudales agrupados en una serie anual. Ajustados estos datos el modelo EV1, permite generar descargas extrapoladas para diferentes períodos de retorno y probabilidades de riesgo. (Villon, 2011)

La expresión matemática de este modelo es:

$$F(x \le xm) = e^{-e^{-\alpha(Xm-\beta)}}$$
Ecuación N° 11

Dónde:

 $F(x \le x_m) = Es$ la Probabilidad que no ocurrirán valores x_m mayores que x

El modelo EV1 permite, con mucha eficiencia, estimar las máximas descargas de diseño en relación al período de retorno, vida útil de las estructuras y riesgos de falla; todo lo cual constituye un problema muy frecuente en la práctica de la Ingeniería Hidráulica.

> Ecuación de predicción:

$$Xm = \beta - \frac{1}{\alpha} Ln \left\{ - Ln \left[F(x \le x_m) \right] \right\} \qquadEcuación N^{\circ} 12$$

$$F(x \le x_m) = 1 - \frac{1}{Tr} \qquad \qquad Ecuación N^{\circ} 13$$

La aplicación simultánea de las ecuaciones (12) y (13), permite obtener los eventos máximos para riesgos de falla J y períodos de vida útil N adoptados.

Los parámetros α y β del modelo se estiman a partir de la muestra hidrológica, ya sea utilizando el método de máxima verosimilitud o el método de momentos.

Las relaciones entre los parámetros del modelo y los estadísticos muestrales (media y desviación estándar), obtenidos por el método de momentos son:

$$\alpha = \frac{1.28255}{\hat{S}}$$
Ecuación N° 14

$$\beta = \overline{X} - 0.45005 \hat{S} \qquad \qquad \text{.....Ecuación N° 15}$$

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Dónde:

X: Media muestral estimada.

S: Desviación estándar estimada.

 α, β : Parámetros estimados a partir de la muestra.

2.4.3.2 CALCULO DEL CAUDAL LIQUIDO

Se han desarrollado diversos métodos que permiten relacionar la escorrentía superficial con la precipitación, es decir, relacionar causa-efecto. Mientras mayor sea el número de variables que se tenga en cuenta (mayor complejidad) en la metodología se aumenta la precisión del modelo, siempre y cuando se disponga de la suficiente información tanto en cantidad como en calidad, de no contar con los datos suficientes es preferible recurrir a modelos sencillos en concordancia con la información disponible. Uno de estos modelos es el racional, del cual trataremos a continuación:

a. MÉTODO RACIONAL MODIFICADO

Este método permite hacer estimaciones de los caudales máximos de escorrentía usando intensidades máximas de precipitación. Básicamente se formula, que el caudal máximo de escorrentía es directamente proporcional a la intensidad máxima media de lluvia, para un periodo de duración igual al tiempo de concentración y al área de la cuenca. Según (Morán, 1989).

$$Q = \underline{CIA}$$

$$3.6 * n$$

.....Ecuación N° 16

Dónde:

C: coeficiente de escorrentía, según Tabla N° 6

I: intensidad máxima (mm/h)

A: área de la cuenca (Km²)

Q: caudal máximo (m³/s)

K: coeficiente de escorrentía

n: coeficiente de uniformidad viene dado por:

3 para valores 25 < A < 100 Km²

3.5 para valores 100 < A < 1000 Km²

4 para valores 1000 < A < 10 000 Km²

5 para valores A > 10 000 Km²

Coeficiente de escorrentía (k):

Se determina en función de las características reales del suelo, vegetación, topografía y precipitación. Para estimar dicho valor se utiliza la Tabla 6.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° 6: Coeficientes de escorrentia

COEFICIENTES DE ESCORRENTÍA PARA SER USADOS EN EL MÉTODO RACIONAL

Características de la cunerficie			Perio	do de r	etorno (años)		
Características de la superficie	2	5	10	25	36.57	50	100	500
Áreas	s desar	rollada	S					
Asfáltico	0.73	0.77	0.81	0.86	0.88	0.90	0.95	1.00
Concreto / techo	0.75	0.80	0.83	0.88	0.90	0.92	0.97	1.00
Zonas verdes								
Condición pobre (Cubiert								
Plano, 0 - 2%	0.32	0.34	0.37	0.40	0.42	0.44	0.47	0.58
Promedio, 2 - 7%	0.37	0.40	0.43	0.46	0.47	0.49	0.53	0.61
Pendiente superior a 7%	0.40	0.43	0.45	0.49	0.50	0.52	0.55	0.62
Condición promedio (Cubie								
Plano, 0 - 2%	0.25	0.28	0.30	0.34	0.35	0.37	0.41	0.53
Promedio, 2 - 7%	0.33	0.36	0.38	0.42	0.43	0.45	0.49	0.58
Pendiente superior a 7%	0.37	0.40	0.42	0.46	0.47	0.49	0.53	0.60
Condición buena (Cubier	ta de pa				el área)			
Plano, 0 - 2%	0.21	0.23	0.25	0.29	0.30	0.32	0.36	0.49
Promedio, 2 - 7%	0.29	0.32	0.35	0.39	0.40	0.42	0.46	0.56
Pendiente superior a 7%	0.34	0.37	0.40	0.44	0.45	0.47	0.51	0.58
Areas no desarroladas	· ·							
Ar	ea de c	ultivo				·		
Plano, 0 - 2%	0.31	0.34	0.36	0.40	0.41	0.43	0.47	0.57
Promedio, 2 - 7%	0.35		0.41	0.44	0.46	0.48	0.51	0.60
Pendiente superior a 7%	0.39	0.42	0.44	0.48	0.49	0.51	0.54	0.61
	Pastiza	ales				,		
Plano, 0 - 2%	0.25	0.28	0.30	0.34	0.35	0.37	0.41	0.53
Promedio, 2 - 7%	0.33	0.36	0.38	0.42	0.43	0.45	0.49	0.58
Pendiente superior a 7%	0.37	0.40	0.42	0.46	0.47	0.49	0.53	0.60
	Bosqu		· · · · · · · · · · · · · · · · · · ·			1		r 2
Plano, 0 - 2%	0.22	0.25	0.28	0.31	0.33	0.35	0.39	0.48
Promedio, 2 - 7%	0.31		0.36	0.40	0.41	0.43	0.47	0.56
Pendiente superior a 7%	0.35	0.39	0.41	0.45	0.46	0.48	0.52	0.58

Fuente: (Valdivieso, 2011)

En la mayor parte de los casos, se obtendrá un valor, suficientemente aproximado, del coeficiente de escorrentía, utilizando la Tabla N° 6, a cada suma de indices K, para las cuatro (4) condiciones generales señaladas en la Tabla N° 6, corresponderá un valor de C, de acuerdo con los límites que en la misma se establecen. (Valdivieso, 2011)

2.4.3.3 CALCULO DEL CAUDAL SOLIDO

Se denomina gasto sólido de fondo, a la cantidad de partículas, en unidades de peso o volumen, que pasa por una sección determinada en la unidad de tiempo. (Felices, 1998)

La capacidad de transporte del material sólido de arrastre, será estimado mediante la ecuación de Schoklitsch:

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

$$Qs = \frac{Ts}{\gamma s} \times B$$

.....Ecuación N° 17

Dónde:

Qs: gasto sólido (m³/seg.)

γs: peso específico del material de arrastre (kg/m³)

B: ancho del cauce (m)

Ts : gasto sólido especifico (Kg./seg. por metro de ancho)

Además:

 $Ts = 2500 \times S^{3/2} (q - q_0)$

.....Ecuación N° 18

Dónde:

Ts: gasto líquido específico (Kg/seg. por metro de ancho)

S: pendiente del cauce

q :gasto específico del río (m³/seg. por metro de ancho)

Además:

$$q = \frac{Q_{\text{liquido}}}{B}$$

.....Ecuación N° 19

$$q_o = 0.26 \left(\frac{\gamma s - \gamma}{\gamma}\right) \frac{d^{3/2}}{S^{7/6}}$$

.....Ecuación N° 20

Dónde:

qo: gasto crítico de fondo

d : diámetro del 40% de las partícula (m)

γ: Peso específico del agua (1000 kg/m³)

2.4.3.4 CALCULO DEL CAUDAL MAXIMO

Este valor viene a ser la suma de los caudales líquido y solido:

Qmáx = Qlíquido + Qsólido

.....Ecuación N°21

2.4.4 CALCULO DEL TIRANTE

Para obtener el tirante del cauce en el lugar donde se proyectará la ubicación del Puente, se emplea la fórmula de Manning, para lo cual asume una sección rectangular y pendiente constante; la expresión de Manning es la siguiente: (Villon, 2011)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

$$Q = \frac{A * R^{2/3} * S^{1/2}}{n}$$
Ecuación N° 22

Dónde:

Q: Caudal de diseño

A: Area de la sección transversal = b*y

b: Ancho del río

R: Radio hidráulico. R = b*y / (b+2y).

S: Pendiente del Río.

n: Coeficiente de rugosidad de manning (Tabla 7)

Reemplazando valores en la fórmula de manning se obtiene y

TABLA N° 7: Coeficiente de rugosidad "n" a utilizar en la fórmula de Manning

En tierra ordinaria, superficie irregular En tierra con ligera vegetación En tierra con vegetación espesa O,040-0,050 En tierra excavada mecánicamente O,028-0,033 En roca, superficie uniforme y lisa En roca, superficie con aristas e irregularidades Cunetas y Canales revestidos Hormigón O,013-0,017 Encachado Paredes de hormigón, fondo de grava Paredes encachadas, fondo de grava Paredes encachadas, fondo de grava Revestimiento bituminoso Corrientes Naturales Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca importancia Lentas, con embalses profundos y canales ramificados, vegetación densa	Tipo de Superficie	Valores de n
En tierra ordinaria, superficie irregular En tierra con ligera vegetación En tierra con vegetación espesa O,040-0,050 En tierra excavada mecánicamente O,028-0,033 En roca, superficie uniforme y lisa En roca, superficie con aristas e irregularidades Cunetas y Canales revestidos Hormigón O,013-0,017 Encachado Paredes de hormigón, fondo de grava Paredes encachadas, fondo de grava Paredes encachadas, fondo de grava Revestimiento bituminoso Corrientes Naturales Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca importancia Lentas, con embalses profundos y canales ramificados, vegetación densa	Cunetas y canales sin revestir	
En tierra con ligera vegetación En tierra con vegetación espesa O,040-0,050 En tierra excavada mecánicamente O,028-0,033 En roca, superficie uniforme y lisa O,030-0,035 En roca, superficie con aristas e irregularidades O,035-0,045 Cunetas y Canales revestidos Hormigón O,013-0,017 Encachado O,020-0,030 Paredes de hormigón, fondo de grava O,017-0,020 Paredes encachadas, fondo de grava O,013-0,016 Corrientes Naturales Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca importancia Lentas, con embalses profundos y canales ramificados Lentas, con embalses profundos y canales ramificados, vegetación densa	En tierra ordinaria, superficie uniforme y lisa	0,020-0,025
En tierra con vegetación espesa O,040-0,050 En tierra excavada mecánicamente O,028-0,033 En roca, superficie uniforme y lisa O,030-0,035 En roca, superficie con aristas e irregularidades Cunetas y Canales revestidos Hormigón O,013-0,017 Encachado Paredes de hormigón, fondo de grava Paredes encachadas, fondo de grava O,017-0,020 Paredes encachadas, fondo de grava O,013-0,016 Corrientes Naturales Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca importancia Lentas, con embalses profundos y canales ramificados Lentas, con embalses profundos y canales ramificados, vegetación densa	En tierra ordinaria, superficie irregular	0,025-0,035
En tierra excavada mecánicamente En roca, superficie uniforme y lisa En roca, superficie con aristas e irregularidades Cunetas y Canales revestidos Hormigón O,013-0,017 Encachado Paredes de hormigón, fondo de grava Paredes encachadas, fondo de grava Revestimiento bituminoso Corrientes Naturales Limpias, orillas rectas, fondo uniforme, altura de Limpias, meandros, embalses y remolinos de poca importancia Lentas, con embalses profundos y canales ramificados Lentas, con embalses profundos y canales ramificados, vegetación densa	En tierra con ligera vegetación	0,035-0,045
En roca, superficie uniforme y lisa En roca, superficie con aristas e irregularidades Cunetas y Canales revestidos Hormigón O,013-0,017 Encachado Paredes de hormigón, fondo de grava Paredes encachadas, fondo de grava Paredes encachadas, fondo de grava O,017-0,020 Paredes encachadas, fondo de grava O,013-0,016 Corrientes Naturales Limpias, orillas rectas, fondo uniforme, altura de Limpias, meandros, embalses y remolinos de poca importancia Lentas, con embalses profundos y canales ramificados Lentas, con embalses profundos y canales ramificados, vegetación densa	En tierra con vegetación espesa	0,040-0,050
En roca, superficie con aristas e irregularidades Cunetas y Canales revestidos Hormigón Do,013-0,017 Encachado Paredes de hormigón, fondo de grava Paredes encachadas, fondo de grava Paredes encachadas, fondo de grava Revestimiento bituminoso Corrientes Naturales Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca importancia Lentas, con embalses profundos y canales ramificados Lentas, con embalses profundos y canales ramificados, vegetación densa	En tierra excavada mecánicamente	0,028-0,033
Cunetas y Canales revestidos Hormigón 0,013-0,017 Encachado 0,020-0,030 Paredes de hormigón, fondo de grava 0,017-0,020 Paredes encachadas, fondo de grava 0,023-0,033 Revestimiento bituminoso 0,013-0,016 Corrientes Naturales Limpias, orillas rectas, fondo uniforme, altura de 0,027-0,033 Iámina de agua suficiente Limpias, orillas rectas, fondo uniforme, altura de 0,033-0,040 Iámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca importancia Lentas, con embalses profundos y canales 0,060-0,080 ramificados Lentas, con embalses profundos y canales 0,100-0,200 ramificados, vegetación densa	En roca, superficie uniforme y lisa	0,030-0,035
Hormigón 0,013-0,017 Encachado 0,020-0,030 Paredes de hormigón, fondo de grava 0,017-0,020 Paredes encachadas, fondo de grava 0,023-0,033 Revestimiento bituminoso 0,013-0,016 Corrientes Naturales Limpias, orillas rectas, fondo uniforme, altura de 1,027-0,033 Iámina de agua suficiente Limpias, orillas rectas, fondo uniforme, altura de 1,033-0,040 Iámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca 1,035-0,050 importancia Lentas, con embalses profundos y canales 0,060-0,080 ramificados Lentas, con embalses profundos y canales 0,100-0,200 ramificados, vegetación densa	En roca, superficie con aristas e irregularidades	0,035-0,045
Encachado 0,020-0,030 Paredes de hormigón, fondo de grava 0,017-0,020 Paredes encachadas, fondo de grava 0,023-0,033 Revestimiento bituminoso 0,013-0,016 Corrientes Naturales Limpias, orillas rectas, fondo uniforme, altura de 1,0027-0,033 Iámina de agua suficiente Limpias, orillas rectas, fondo uniforme, altura de 1,0033-0,040 Iámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca 1,0035-0,050 importancia Lentas, con embalses profundos y canales 0,060-0,080 ramificados Lentas, con embalses profundos y canales 0,100-0,200 ramificados, vegetación densa	Cunetas y Canales revestidos	
Paredes de hormigón, fondo de grava Paredes encachadas, fondo de grava O,023-0,033 Revestimiento bituminoso Corrientes Naturales Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca importancia Lentas, con embalses profundos y canales ramificados Lentas, con embalses profundos y canales ramificados, vegetación densa O,017-0,020 O,023-0,036 O,027-0,033 O,033-0,040 O,033-0,040 O,035-0,050 O,035-0,050 O,060-0,080 O,060-0,080 O,100-0,200 O,100-0,200	Hormigón	0,013-0,017
Paredes encachadas, fondo de grava Revestimiento bituminoso Corrientes Naturales Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca importancia Lentas, con embalses profundos y canales ramificados Lentas, con embalses profundos y canales ramificados, vegetación densa O,0027-0,033 O,027-0,033 O,033-0,040 O,033-0,040 O,035-0,050 O,035-0,050 O,060-0,080 O,060-0,080 O,100-0,200	Encachado	0,020-0,030
Revestimiento bituminoso Corrientes Naturales Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca importancia Lentas, con embalses profundos y canales ramificados Lentas, con embalses profundos y canales ramificados, vegetación densa O,013-0,016 O,027-0,033 O,033-0,040 O,033-0,040 O,035-0,050 O,035-0,050 O,060-0,080 O,060-0,080 O,100-0,200	Paredes de hormigón, fondo de grava	0,017-0,020
Corrientes Naturales Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente Limpias, orillas rectas, fondo uniforme, altura de lámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca lámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca lámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca lámina de lámina de agua suficiente, algo de vegetación lámina de agua suficiente, algo de vegetación lámina de lámina d	Paredes encachadas, fondo de grava	0,023-0,033
Limpias, orillas rectas, fondo uniforme, altura de 1,0027-0,033 lámina de agua suficiente 2,1 Limpias, orillas rectas, fondo uniforme, altura de 1,0033-0,040 lámina de agua suficiente, algo de vegetación 2,035-0,050 limpias, meandros, embalses y remolinos de poca 1,035-0,050 limportancia 2,0060-0,080 ramificados 2,0060-0,080 lentas, con embalses profundos y canales 2,0060-0,200 ramificados, vegetación densa 3,0060-0,200 limpias, meandros, vegetación densa 3,0060-0,200 limpias, meandros, fondo uniforme, altura de 2,007-0,033 limpias, orillas rectas, fondo uniforme, altura de 2,0033-0,040 limpias, orillas rectas, fondo uniforme, alt	Revestimiento bituminoso	0,013-0,016
Limpias, orillas rectas, fondo uniforme, altura de 0,033-0,040 Limpias, meandros, embalses y remolinos de poca 0,035-0,050 Limportancia Lentas, con embalses profundos y canales ramificados Lentas, con embalses profundos y canales 0,100-0,200 ramificados, vegetación densa	Corrientes Naturales	
Limpias, orillas rectas, fondo uniforme, altura de 0,033-0,040 lámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca 0,035-0,050 importancia Lentas, con embalses profundos y canales ramificados Lentas, con embalses profundos y canales 0,100-0,200 ramificados, vegetación densa	Limpias, orillas rectas, fondo uniforme, altura de	0,027-0,033
lámina de agua suficiente, algo de vegetación Limpias, meandros, embalses y remolinos de poca importancia Lentas, con embalses profundos y canales ramificados Lentas, con embalses profundos y canales o,100-0,200 ramificados, vegetación densa	lámina de agua suficiente	
Limpias, meandros, embalses y remolinos de poca importancia Lentas, con embalses profundos y canales ramificados Lentas, con embalses profundos y canales o,100-0,200 ramificados, vegetación densa	Limpias, orillas rectas, fondo uniforme, altura de	0,033-0,040
importancia Lentas, con embalses profundos y canales ramificados Lentas, con embalses profundos y canales con embalses profundos y canales ramificados, vegetación densa	lámina de agua suficiente, algo de vegetación	
Lentas, con embalses profundos y canales ramificados Lentas, con embalses profundos y canales	Limpias, meandros, embalses y remolinos de poca	0,035-0,050
ramificados Lentas, con embalses profundos y canales 0,100-0,200 ramificados, vegetación densa	importancia	
Lentas, con embalses profundos y canales 0,100-0,200 ramificados, vegetación densa	Lentas, con embalses profundos y canales	0,060-0,080
ramificados, vegetación densa	ramificados	
	Lentas, con embalses profundos y canales	0,100-0,200
0.000.0000	ramificados, vegetación densa	
	Rugosas, corrientes en terreno rocoso de montaña	0,050-0,080
Áreas de inundación adyacentes al canal ordinario 0,030-0,200	Áreas de inundación adyacentes al canal ordinario	0,030-0,200

Fuente: S.M. Woodward and C. J Posey, "Hydraulics of steady flow in open channels"

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

ROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

**El borde libre está determinado por el 30% del tirante máximo.

2.4.5 ESTIMACIÓN DE LA PROFUNDIDAD DE SOCAVACIÓN

La socavación es un fenómeno natural causado por la acción erosiva del agua que arranca y acarrea material del lecho y de las bancas de un río y es una de las principales causas de falla de los puentes, especialmente durante épocas de creciente. (Felices, 1998)

La socavación en puentes ocurre en las pilas, en los estribos, o en las laderas del río y puede llegar a poner en peligro la estructura. La necesidad de minimizar las fallas de puentes, que es un problema prácticamente en todos los países del mundo, ha llevado a desarrollar una gran cantidad de investigaciones especialmente usando modelos de laboratorio a escala con el fin de establecer metodologías para calcular la máxima profundidad de socavación que puede afectar a una estructura. (Felices, 1998)

2.4.5.1 SOCAVACIÓN GENERAL DEL CAUCE

Para la determinación de la socavación general del cauce se presenta el criterio propuesto por L.L. Lischtvan-Lebediev:

Velocidad erosiva, que es la velocidad media que se requiere para degradar el fondo, está dado por las siguientes expresiones: (Badillo, MECANICA DE SUELOS TOMO I, 2010)

Ve = 0.68 β $d_m^{0.28} H_s^x$ (m/seg.) Suelos no cohesivosEcuación N° 23

Dónde:

Ve: Velocidad erosiva suficiente para degradar el cauce (m/seg).

- γ_d: Peso volumétrico del material seco que se encuentra a una profundidad Hs, medida desde la superficie del agua (Tn/m3).
- β : Coeficiente que depende de la frecuencia con que se repite la avenida que se estudia, Tabla N° 8
- x y 1/1+x : Exponente variable que está en función del peso volumétrico γ_s del material seco (Tn/m³) o del diámetro medio de los granos, Tabla N° 9
- H_s: Tirante considerado, a cuya profundidad se desea conocer qué valor de Ve se requiere para arrastrar y levantar al material (m).
- d_m : Diámetro medio (mm.) de los granos del fondo obtenido según la expresión:

d_m =0.01 ∑ di piEcuación N° 24

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

ROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQ<mark>UE EN EL CASERIO DE CARACMACA</mark> DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Dónde:

di : Diámetro medio, en mm, de una fracción en la curva granulométrica de la muestra total que se analiza.

pi : Peso como porcentaje de esa misma porción, comparada respecto al peso total de la muestra. Las fracciones escogidas no deben necesariamente ser iguales entre sí.

Suelos no cohesivos:
$$Hs = \left[\frac{\alpha * H_0^{\frac{5}{3}}}{0.68 \beta d_m^{0.28}}\right]^{1/(1+x)}$$
.....Ecuación N° 28

Dónde:

 $\alpha : Q_d / (H_m^{5/3} B_e \mu)$

Q_d: Caudal de diseño (m³/seg).

Be: Ancho efectivo de la superficie del líquido en la sección transversal.

μ : Coeficiente de contracción, Tabla 9

H_m: Tirante medio de la sección = Área hidráulica / B_e.

x y 1/1+x: Exponente variable que depende del diámetro del material, Tabla 8

dm: Diámetro medio (mm).

Ho: Profundidad antes de la erosión.

TABLA N° 8: Valores del coeficiente β

Probabilidad anual (%) que presente el gasto de diseño	Coeficiente β
100	0.77
50	0.82
20	0.86
10	0.90
5	0.94
2	0.97
1	1.00
0.3	1.03
0.2	1.05
0.1	1.07

Fuente: (Badillo, mecanica de suelos tomo 1, 2010)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA Nº 9: Valores del diámetro del material

SUELOS NO COHESIVOS			
d (mm)	X	1/1+x	
0.05	0.43	0.70	
0.15	0.42	0.70	
0.50	0.41	0.71	
1.00	0.40	0.71	
1.50	0.39	0.72	
2.50	0.38	0.72	
4.00	0.37	0.73	
6.00	0.36	0.74	
8.00	0,35	0.74	
10.00	0.34	0.75	
15.00	0.33	0.75	
20.00	0.32	0.76	
25.00	0.31	0.76	
40.00	0.30	0.77	
60.00	0.29	0.78	
90.00	0.28	0.78	
140.00	0.27	0.79	
190.00	0.26	0.79	
250.00	0.25	0.80	
310.00	0.24	0.81	
370.00	0.23	0.81	
450.00	0.22	0.83	
570.00	0.21	0.83	
750.00	0.20	0.83	
1000.00	0.19	0.84	

Fuente: (Badillo, mecanica de suelos tomo I, 2010)

TABLA Nº 10: Coeficiente de contracción µ

Velocidad erosiva en la sección	Longitud libre entre dos estribos (m)												
(m/seg.)	10	13	16	18	21	25	30	42	52	63	106	124	200
Menor de 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	0.96	0.97	0.98	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.50	0.94	0.96	0.97	0.97	0.97	0.98	0.99	0.99	0.99	0.99	1.00	1.00	1.00
2.00	0.93	0.94	0.95	0.96	0.97	0.97	0.98	0.98	0.99	0.99	0.99	0.99	1.00
2.50	0.90	0.93	0.94	0.95	0.96	0.96	0.97	0.98	0.98	0.99	0.99	0.99	1.00
3.00	0.89	0.91	0.93	0.94	0.95	0.96	0.96	0.97	0.98	0.98	0.99	0.99	0.99
3.50	0.87	0.90	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.98	0.99	0.99	0.99
4.00 ó Mayor	0.85	0.89	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	0.99	0.99

Fuente: (Badillo, mecanica de suelos tomo I, 2010)

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRIÓN, REGION LA LIBERTAD

2.4.5.2 SOCAVACIÓN AL PIE DE ESTRIBOS

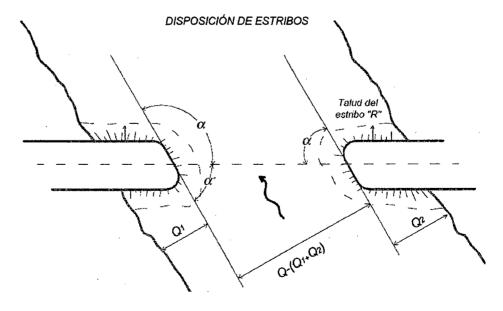
Los estribos son, igual que los pilares, elementos extraños dentro de la corriente e implican generalmente una reducción del ancho del río. Esta circunstancia debe ser tomada en cuenta cuidadosamente. Durante las grandes avenidas el río trata de adquirir el ancho que le corresponde y entonces pueden ocurrir graves fallas en los puentes. (Badillo, mecanica de suelos tomo I, 2010)

Para la determinación de la socavación al pie de los estribos se presenta el método propuesto por K. F. Artamonov:

 $S_T = Pa Pa Pa PR H_0$

.....Ecuación N° 26

Dónde:


Pα: Coeficiente que depende del ángulo α que forma el eje del estribo con la corriente, su valor se obtiene de la Tabla 11

Pq: Coeficiente que depende de la relación Q₁/Q, Q1 es el gasto que teóricamente pasaría por el lugar ocupado por el estribo si este no existiera y Q el gasto total que escurre por el río, su valor se obtiene de la Tabla 12

P_R: Coeficiente que depende del talud que tienen los lados del estribo, su valor se obtiene de la Tabla N° 13

Ho: Tirante que tiene la zona cercana al estribo.

Figura 1: Croquis con una distribución frecuente de estribos

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA Nº 11: Valores del coeficiente correctivo Pa en función de a

α	20°	60°	90°	120°	150°
Pα	0.84	0.94	1.00	1.07	1.188

Fuente: (Badillo, mecanica de suelos tomo 1, 2010)

TABLA N° 12: Valores del coeficiente Pq en función de Q1/Q

C	21/Q	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80
	Pq	2.00	2.65	3.22	3.45	3.67	3.87	4.06	4.20

Fuente: (Badillo, mecanica de suelos tomo 1, 2010)

TABLA N° 13: Valores del coeficiente correctivo P_R en función de R

Talud R	0	0.5	1.0	1.5	2.0	3.0
PR	1.0	0.91	0.85	0.83	0.61	0.50

(Badillo, mecanica de suelos tomo I, 2010)

2.5 SISTEMA DE DRENAJE

El drenaje es uno de los factores más importantes en el diseño de obras de ingeniería: carreteras, canales, puentes y otras porque mediante este podemos controlar el movimiento de las aguas superficiales y subterráneas, con el fin de no afectar la estructura y así conseguir la durabilidad y conservación de esta. (ARMCO, 1958)

2.5.1 CONDICIONES DE UN BUEN DRENAJE

Para lograr que un puente cuente con un buen drenaje debe evitarse lo siguiente:

- Que el agua humedezca la losa del puente originado cambios volumétricos perjudiciales.
- La circulación de agua en cantidades excesivas sobre la estructura.
- Que los taludes de corte se saturen de agua, debilitando su estabilidad cercanos a la estructura de la obra hidráulica.
- Que el agua subterránea debilite la cimentación de la estructura disminuyendo la capacidad del suelo para soportar las cargas de servicio trayendo como consecuencia asentamientos superficiales en la estructura del puente. (ARMCO, 1958)

2.5.2 DRENAJE DE PUENTES Y PASOS A DESNIVEL

Las estructuras principales como puentes, pasos superiores, pasos inferiores, etc., deben protegerse y estabilizarse por medio del drenaje.

La falta de drenaje del terraplén situado detrás de un estribo o de un muro de sostenimiento puede apresurar la desintegración de dicho muro. Igualmente, las presiones laterales que tienden a

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

producir el volteo del muro aumentan en intensidad. Si se presenta la congelación, el empuje lateral puede ocasionar su destrucción. (ARMCO, 1958)

2.5.2.1 AGUA SUPERFICIAL

El agua que cae sobre la superficie de un puente debe de descargarse por medio de tubos de bajada adosados a los estribos, para evitar que estos se manchen o erosionen. En pasos superiores largos, el agua se conduce a los sumideros de las cloacas o zanjas de drenaje. (ARMCO, 1958)

Al extremo de un puente, el agua por lo general se filtra a través del balasto hacia una depresión situada en el centro o en las orillas del piso, en donde se instala un conducto semicircular perforado, para recoger y conducir el agua hacia una salida en el estribo. (ARMCO, 1958)

2.5.2.2 SUBDRENAJE

El agua que se filtra del terraplén o relleno situado contra el estribo o muro de sostenimiento debe conducirse hacia un "dren interceptante" que consiste en una capa de material permeable de 30 cm. o más que se coloca directamente contra la pared. Después, en el punto más bajo donde puede lograrse una salida adecuada, se coloca un tubo metálico con material impermeable debajo del mismo hasta el nivel de la línea inferior de perforaciones puestas hacia arriba, asegurando así que toda el agua entre en el tubo. (ARMCO, 1958)

La fuerza de empuje hacia arriba o supresión es una presión hidrostática transmitida a la base de los pilares y los estribos; la magnitud de esta fuerza es de 500 kg/m3, para la parte enterrada bajo el nivel freático y de 1000 kg/m3 para la parte sumergida; esta fuerza puede desaparecer cuando existe la posibilidad de abatir el nivel freático por debajo del nivel de cimentación mediante la construcción de drenajes subterráneos. (ARMCO, 1958)

Los accesos en corte a un paso inferior en terreno húmedo deben ser perfectamente subdrenados, ya sea por medio de un tubo interceptante en cada cuneta o bien rodeando todo el proyecto. (ARMCO, 1958)

2.6 ESTUDIO GEOLOGICO, GEOTECNICO Y CANTERA

2.6.1 ESTUDIO GEOLÓGICO

Establecer las características geológicas, es decir la estratigrafía, la identificación de la geología estructural y geodinámica externa de los suelos para el diseño de cimentaciones estables. (MTC, 2007)

2.6.2 ESTUDIO GEOTECNICO

Establecer las características geotécnicas, es decir las propiedades físicas y mecánicas de los suelos para el diseño de cimentaciones estables.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARA

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.6.2.1 ESTUDIO DE MECANICA DE SUELOS

El conocimiento de las principales características físicas de los suelos es de fundamental importancia en el estudio de la Mecánica de Suelos, pues mediante su interpretación se puede predecir el comportamiento de un terreno bajo cargas. (Das, 1989)

2.6.2.2 GENERALIDADES

El estudio de los suelos del lugar donde se ubicará la subestructura de un puente. es de suma importancia, ya que nos provee de una información valiosa sobre el posible comportamiento de los suelos ante cargas aplicadas a la cimentación. (Das, 1989)

Suele denominarse terreno de cimentación a aquel que recibe directamente la acción de la parte de la estructura que se apoya sobre él. Evidentemente por terreno hay que entender no solamente la parte de contacto con la cimentación, sino el conjunto de capas yuxtapuestas que corresponden a espesores de suelos más o menos homogéneos, estratos rocosos y capas freáticas en equilibrio o sometidas a movimiento de filtración (Das, 1989)

Otro objetivo importante de la mecánica de suelos es determinar la iteración entre suelo y estructura, cuando ésta le transmite una carga, para poder prever y adoptar medidas que eviten asentamientos perjudiciales tanto uniformes como diferenciales aumentando al mismo tiempo la inestabilidad. La iteración aludida produce un cambio, tanto en la estructura como en el suelo. La alteración del estado de equilibrio inicial de un suelo se puede manifestar en dos efectos principales que pueden llegar a dejar fuera de servicio a una estructura: (Das, 1989)

- El suelo se deforma produciendo asentamientos.
- Si la tensión aplicada es muy grande y supera la capacidad del suelo, la cimentación se hunde bruscamente.

Uno de los problemas a solucionar más habituales con los que se enfrenta el ingeniero es la manipulación del terreno para adaptarla a la construcción de obras. El estudio de las características físicas, mecánicas del suelo, mecánica de rocas y el conjunto de técnicas disponibles para materializar dicha tarea recibe el nombre de geotecnia. (Das, 1989)

2.6.2.3 EXCAVACIONES Y PERFORACIONES

EXCAVACIONES a.

Pozos a cielo abierto, el método más importante para reconocer el terreno consiste en excavar un pozo donde se ven las capas del suelo en plena estratificación, la profundidad de estas excavaciones es muy limitada, varía de 2 a 5 metros de profundidad.

En tales excavaciones hay muestras alteradas como inalteradas, una vez encontrada la napa freática ya no se puede penetrar más y la excavación se da por terminada.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION; REGION LA LIBERTAD

2.6.2.4 TOMA DE MUESTRAS PARA ENSAYOS DE LABORATORIO

a. MUESTRAS ALTERADAS

Estas muestras se obtienen tanto en pozos, a cielo abierto, como en perforaciones, la textura original del suelo ya está destruida con este tipo de sondajes.

No es posible determinar la capacidad y el peso volumétrico (densidad aparente del suelo),

No obstante sirven para precisar otras propiedades físicas, tales como la granulometría, límites de plasticidad, peso específico de sólidos.

La muestra alterada se sacará en todo cambio de los estratos, o por lo menos en cada metro de profundidad. Para poder determinar el contenido de humedad es necesario poner la nuestra dentro de un recipiente hermético cerrado, al menos que exista un equipo para averiguar el contenido de humedad in–situ. (Wicke)

2.6.2.5 ENSAYOS DE LABORATORIO

Con las muestras, procedentes de prospección geotécnica se realizan los ensayos de laboratorio, los cuales se realizan con la finalidad de identificación y clasificación de los suelos, para poder determinar su capacidad portante.

Los ensayos a realizar son: contenido de humedad, peso específico, análisis granulométrico, límites de consistencia. (Das, 1989)

a. CONTENIDO DE HUMEDAD (ASTM D-2216, MTC E108)

La humedad o contenido de agua, de una muestra de suelo en su estado natural, es la relación del peso de agua, contenida en dicha muestra al peso de la muestra secada al horno a una temperatura de 105 °C, expresado en tanto por ciento. (Badillo, MECANICA DE SUELOS TOMO I, 2010)

$$w(\%) = (\frac{Psh - Pss}{Pss})*100 \qquad \qquad Ecuación N° 27$$

Dónde:

W(%): contenido de humedad. Psh: peso de suelo húmedo. Pss: peso de suelo seco.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

ROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

b. ANÁLISIS GRANULOMÉTRICO (ASTM D-422, MTC E107)

Para clasificar un suelo, es fundamental determinar la distribución del tamaño de las partículas, lo que se logra mediante el análisis granulométrico.

El análisis granulométrico estudia la distribución de las partículas que conforman un suelo según su tamaño, lo cual ofrece un criterio para su clasificación.

> Análisis granulométrico por malla.

Un análisis granulométrico por mallas se efectúa Tomando una cantidad medida de suelo seco, bien pulverizado y pasándolo a través de una serie de mallas cada vez más pequeñas y con una charola en el fondo. La cantidad de suelo retenida en cada malla se mide y el por ciento acumulado de suelo que pasa a través de cada malla es determinado. Este porcentaje es generalmente denominado el "porcentaje que pasa".

El porcentaje que pasa por cada malla, determinado por un análisis granulométrico por mallas, se grafica sobre papel semi-logarítmico, como muestra la siguiente figura.

1.00 DIAMETRO (mm)

Figura 2: cueva de distribución granulométrica

➤ Coeficiente de uniformidad (Cu)

0.10

0.01

El coeficiente de uniformidad, se define como el tamaño en mm del 60% dividido por el tamaño del 10% que pasa. Se determina la intersección de la curva con la línea del 60% que pasa y se anota el tamaño de las partículas correspondientes a este punto. Se repite para la línea 10% y se calcula el coeficiente de uniformidad.

Es un valor que define o cuantifica el grado de no uniformidad del suelo:

$$Cu = \frac{D_{60}}{D_{10}}$$
Ecuación N° 28

10.00

Según el coeficiente de uniformidad un suelo puede ser:

 $C_u < 3$ suelo uniforme.

C_u >3 suelo no uniforme o heterogéneo.

100.00

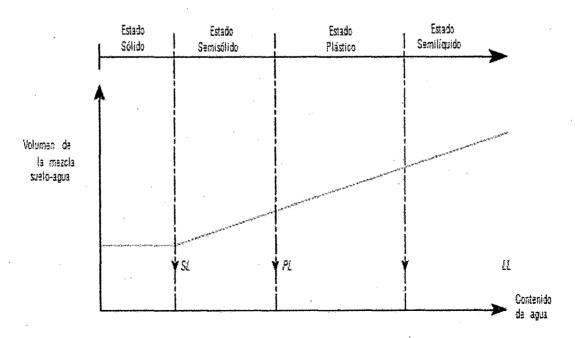
FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN **EL CASERIO DE** CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA L'IBERTAD

> Coeficiente de curvatura (Cc)

Este coeficiente define la graduación de un suelo, es decir, si un suelo es bien o mal graduado.


$$Cc = \frac{(D_{30})^2}{D_{60} * D_{10}}$$
Ecuación N° 29

- D₃₀: Diámetro en mm correspondiente al 30% que pasa.
- Si 1 < C_c < 3 bien graduado.
- Caso contrario mal graduado.

c. LÍMITES DE ATTERBERG

Cuando un suelo arcilloso se mezcla con una cantidad excesiva de agua, éste puede fluir como un semilíquido. Si el suelo es secado gradualmente, se comportará como un material plástico, semisólido o sólido, dependiendo de su contenido de agua. Este, en por ciento, con el que el suelo cambia de un estado líquido a un estado plástico se define como límite líquido (LL). Igualmente a los contenidos de agua, en por ciento, con el que el suelo cambia de un estado plástico a un semisólido y de un semisólido a un sólido se define como límite plástico (PL) y el límite de contracción (SL) respectivamente. Éstos se denominan límites de Atterberg, ver la siguiente figura.

Figura 3: Límites de Atterberg

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

➤ Limite líquido (LL) (ASTM D-4318, MTC E110)

Contenido de humedad, que corresponde al límite arbitrario entre los estados de consistencia semilíquido y plástico de un suelo. El suelo con contenido de humedad menor a su límite líquido se comporta como material plástico.

Es determinado por medio de la copa de Casagrande (designación de prueba D-4318 de la ASTM) y se define como el contenido de agua en el cual se cierra una ranura de media pulgada (12.7 mm) mediante 25 golpes. (Badillo, mecanica de suelos tomo I)

La ecuación de la curva de flujo es:

$$W\% = -If.LogN + C$$

.....Ecuación N° 30

Donde:

W: Contenido de agua como porcentaje del peso seco.

If: Índice de fluidez, pendiente de la curva de fluidez, igual a la variación del contenido de agua correspondiente a un ciclo de la escala logarítmica.

N: Número de golpes

C: Constante que representa la ordenada de la abscisa de un golpe; se calcula prolongando el trazo de la curva de fluidez

$$If = \frac{\Delta W\%}{\Delta N^{\circ} golpes} = \frac{W_1\% + W_2\%}{N_1 + N_2}$$
Ecuación N° 31

Para construir la curva de fluidez sin salirse del intervalo en que puede considerarse recta, A. Casagrande recomienda registrar valores entre los 6 y los 35 golpes.

➤ Limite plástico (LP) (ASTM D-4318, MTC E110)

Contenido de humedad, que corresponde al límite arbitrario entre los estados de consistencia plástico y semisólido de un suelo. El suelo con contenido de humedad menor a su LP se considera como material no plástico. (Badillo, MECANICA DE SUELOS TOMO I, 2010)

Se define como el contenido de agua con el cual el suelo se agrieta al formarse un rollito de 1/8 de pulgada (3.18 mm) de diámetro (designación de prueba D-4318 de la ASTM). (Badillo, MECANICA DE SUELOS TOMO I, 2010)

➤ Índice de plasticidad (IP)

Indica el rango de humedad, a través del cual los suelos con cohesión tienen propiedades de un material plástico, se define como la diferencia del LL y LP, un índice de plasticidad elevado,

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

indica mayor plasticidad. Cuando un material no tiene plasticidad (arena por ejemplo), se considera el IP como cero y se indica: IP = NP (no plástico).

Se define como contenido de agua con el cual el suelo no sufre ningún cambio adicional de volumen con la pérdida de agua (Designación de prueba D-427 de la ASTM)

d. PESO ESPECÍFICO

Es la relación, entre el peso y el volumen de las partículas minerales de la muestra del suelo. Los ensayos se realizan según el tipo de material: grava gruesa o piedra y material fino.

> Peso específico de grava gruesa:

$$\gamma_s = \frac{\text{Waire}}{\text{Waire} - \text{Wsumer}}$$
Ecuación N° 32

Dónde:

 γ_s : peso especifico.

Wa: peso de la piedra en el aire Ws: peso de la piedra sumergida

> Peso específico de material fino:

$$\gamma_s = \frac{W_S}{W_S + W_{fw} - W_{fws}}$$
Ecuación N° 33

Dónde:

γs : peso especifico.

Ws : peso de la muestra seca

Wfw: peso de la fiola con agua hasta la marca 500ml

Wfws: peso de fiola mas muestra más agua

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL P<mark>UENTE CARROZABLE EL BOSQUE.EN EL CASERIO DE CARACMAC</mark> DISTRITO DE SANAGORAN, PRO<mark>VINCIA SANCHEZ CARRION, REGION LA LIBERTAD</mark>

2.6.2.6 ENSAYOS DE RESISTENCIA

a. ENSAYO DE CORTE

Se realiza con muestras pequeñas y sólo proporciona la resistencia en un punto de la masa del suelo, y son de dos tipos:

- Prueba de Corte Directo.
- Pruebas de Triaxiales.

2.6.2.7 CLASIFICACIÓN DE SUELOS

Los sistemas de clasificación de suelos dividen a éstos en grupos y subgrupos en base a propiedades ingenieriles comunes tales como la distribución granulométrica, el límite líquido y el límite plástico. Los dos sistemas principales de clasificación actualmente en uso son:

- Sistema AASHTO (American Association of State Highway and Transportatios Officials)
- Unified Soild Classification System (también ASTM), conocido como Sistema Unificado

Clasificación de suelos método S. U. C. S.

Este sistema para la clasificación de suelos toma en cuenta lo siguiente:

- a. Porcentaje de la fracción que pasa por el tamiz Nº 200 (0.075 mm).
- b. Forma de la curva de distribución granulométrica.
- c. Características de Plasticidad

Los suelos se dividen en tres grandes grupos para su mejor comprensión:

- 1. Suelos de grano grueso.
- 2. Suelos de grano fino.
- 3. Suelos altamente orgánicos.

1. Suelos de grano grueso:

Un suelo se considera grueso si más del 50% de sus partículas son retenidas por la malla Nº 200. Estos a su vez se dividen en gravas (G) y arenas (S):

• Gravas (G).

Si más del 50% de la fracción gruesa queda retenida en el tamiz Nº 4.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

• Arenas (S).

Si más del 50% de la fracción gruesa pasa por el tamiz Nº 4.

Tanto las gravas como las arenas se dividen en cuatro grupos secundarios:

GW, GP, GM, GC, SW, SP, SM, SC respectivamente, según la cantidad, el tipo de los finos y la forma de la curva granulométrica, así tenemos:

Si menos del 5% del material pasa a través del tamiz N° 200, los suelos son gravas o arenas limpias, bien o mal graduadas: GW, GP, ó SW, SP.

La designación bien o mal graduadas depende de dos valores característicos que son el coeficiente de uniformidad Cu y el coeficiente de curvatura Cc, así para GW y SW, Cu > 4 y 1 < Cc < 3, los suelos GP y SP no cumplen estos requisitos.

Si más del 12% del material pasa a través del tamiz N° 200, los suelos son gravas o arenas con finos: GM, GC, ó SM, SC; M = limo; C = arcilla.

La designación limo o arcilla se determina después de obtener los valores de los límites líquido y plástico de la fracción menor al tamiz Nº 40 y utilizando los criterios de la Carta de Plasticidad, la cual es otra de las contribuciones de Casagrande al sistema.

Así tenemos que para los suelos GM y SM los límites deben encontrarse bajo la línea "A" ó el índice de plasticidad lp < 4, para GC y SC los límites deben encontrarse sobre la línea "A" o el índice de plasticidad lp > 7.

Si entre 5 y 12% del material pasa a través del tamiz N° 200, las gravas y las arenas se pueden clasificar en:

GW - GC	SW - SC	GP – GC	SP-SC
GW – GM	SW - SM	GP GM	SP - SM

2. Suelos de grano fino:

Un suelo se considera fino si pasa más del 50% de sus partículas por el tamiz Nº 200. Los suelos de grano fino se subdividen en limos (M) y arcillas (C), según su límite líquido y su índice de plasticidad.

El limo y la arcilla se dividen a su vez en dos grupos secundarios, basados en el hecho que el suelo tiene un límite líquido bajo (L = Low) o alto (H = High). En tal sentido:

Los Grupos CL y CH (constituidos por arcillas inorgánicas)

- CL comprende a la zona sobre la línea "A", LL < 50% e lp > 7%.
- CH corresponde a la zona arriba de la línea "A", LL > 50%.

Los Grupos ML y MH (limos inorgánicos)

- El grupo ML comprende la zona bajo la línea "A" con LL < 50% y una porción sobre la línea "A" con lp < 4%.
- El grupo MH corresponde a la zona abajo de la línea "A" con LL> 50%.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

 Los suelos finos que caen sobre la línea "A", con 4% < 1p se considera como casos de frontera, asignándoles el símbolo doble CL – ML.

Grupos OL y OH (suelos orgánicos): Las zonas correspondientes son las mismas que las de los grupos ML y MH. Una pequeña adición de materia orgánica coloidal, hace que el límite líquido de una arcilla crezca, sin apreciable cambio de su índice plástico.

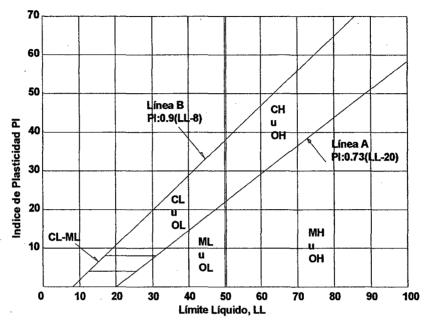
3. Suelos altamente orgánicos:

Son usualmente muy compresibles y tienen características inadecuadas para la construcción. Se clasifican dentro del grupo designado por el símbolo Pt: Turba (del inglés Peat). El humus y los suelos de pantano son ejemplos típicos de este grupo de suelos.

TABLA N° 14: Sistema Unificado de Clasificación; símbolos de grupo para suelos tipo grava

Símbolo de grupo	Criterios
GW	Menos de 5% pasa la malla N° 200; Cu = D60/D30 ≥ 4; Cc = (D30)² /(D10*D60) entre 1 y 3
GP	Menos de 5% pasa la malla N° 200; no cumple ambos criterios para GW.
GM	Más de 12% pasa la malla Nº 200; los límites se grafican debajo de la línea A; IP < 4.
GC	Más de 12% pasa la malla Nº 200; los límites se grafican debajo de la línea A; IP > 7.
GC-GM	Más de 12% pasa la malla Nº 200; los límites caen en área sombreada marcada CL-ML.
GW-GM	El porcentaje que pasa la malla Nº 200 está entre 5 y 12; cumple los criterios para GW-GM.
GW-GC	El porcentaje que pasa la malla Nº 200 está entre 5 y 12; cumple los criterios para GW-GC.
GP-GM	El porcentaje que pasa la malla Nº 200 está entre 5 y 12; cumple los criterios para GP-GM.
GP-GC	El porcentaje que pasa la malla Nº 200 está entre 5 y 12; cumple los criterios para GP-GC.

Fuente: (Das, 1989)



FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Figura 4: Carta de plasticidad

Fuente: (Badillo, MECANICA DE SUELOS TOMO I, 2010)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° 15: Tabla De Clasificación S.U.C.S

	GRAVAS	Gravas limpias	GW	Gravas, bien graduadas, mezclas grava-arena, pocos finos o sin finos.	Determinar porcentaje de grava y arena en la curva	1=D _{ef} /D ₁₀ >4 Cc=(D30) ² /O ₁₀ xD ₆₀ entre 1 <u>y</u>
SUELOS DE GRANO GRUESO	Más de la mitad de la fracción gruesa es	(sin o con pocos finos)	GP	Grav as mai graduadas, mezclas grav a-arena, pocos finos o sin finos.	granutométrica. Según el porcentaje de finos (tracción inferior al tarriz número 200). Los suelos de grano grueso se	No cumplen con las especificaciones de granulometria para GW.
	retenida por el tamiz número 4 (4,76 mm)	Gravas con finos	GM	Grav as limosas, mezclas grav a- arena-limo	clasifican como sigue:	Limines Atterberg debajo Encima de linea A de la linea A o con IP entre 4 y 7 ÎP<4. son casos limite
		(apreciable cantidad de finos)	GC	Grav as arcillosas, mezcias grav a- arena-arcilla		Limites de que requieren Atterberg sobre la doble símbolo. Ilnea A con IP>7.
Más de la mitad	ARENAS	Arenas limpias	sw	Arenas bien graduadas, arenas con grava, pocos finos o sin finos.	(3%-2GVI,GF,3VI,SF.	=D _{ef} /D _{tg} >6 Cc=(D30) ² /D _{tg} x D _{ec} entre 1 t
del material retenido en el tamiz número 200	Más de la mitad de la fracción	(pocos o sin inos)	SP	prenas mar graduadas, arenas con grava, pocos finos o sin finos,	5 al 12%->casos limite que requieren usar doble	Cuando no se cumplen simultáneamente las condiciones para SW.
	gruesa pasa por el tamiz número 4 (4,76 mm)		SM	osas, mezdas de are	símbolo.	Limites de Los limites Atterberg debajo de la linea A o zona rayada con IP<4. IP entre 4 y 7 son
		(apreciable cantidad de finos)	sc	Arenas arcillosas, mezclas arena- arcilla.		Limites de casos intermedios Atterberg sobre la línea A con IP>7.
SUELOS DE GRANO FINO	Limos y	arcilias:	ML	Limos inorgánicos y arenas muy finas, limos fimpios, arenas finas, limosas o arcitlosas, o fimos arcitlosos con figera		
	Limite liquido meno	or de 50	CL	Arcillas inorgánicas de plasticidad baja a media, arcillas con grava, arcillas arenosas, arcillas		
			OL	Limos orgánicos y arcillas orgánicas limosas de baja plasticidad.	l	
	Limos y	arcillas:	МН	Limos inorgánicos, suetos arenosos finos o limosos con mica o diatomeas, timos etásticos.		
Más de la mitad del material pasa por el tamiz número 200	Limite liquido may	or de 50	СН	Arcillas inorgánicas de plasticidad alta. Arcillas organicas de		
numa U ZW			ОН	plasticidad media a elevada; limos orgánicos. Turba y dros suelos		
Suelos muy orgá			PT	de alto contenido orgánico.	1	

Fuente: (Badillo, MECANICA DE SUELOS TOMO I, 2010)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORÁN, PRÓVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.6.2.8 DETERMINACION DE LA CAPACIDAD PORTANTE DEL TERRENO

Para el instante de falla el Dr. Terzaghi, expreso la siguiente ecuación de la capacidad de carga última, para cimentaciones que exhiben falla local por corte: (Das, 1989)

$$q_u = \frac{2}{3} * c * N'_c + q * N'_q + \frac{1}{2} * g_m * B * N'_g (Kg/cm^2)$$
Ecuación N° 34

Dónde:

qu : Presión por unidad de área por debajo de la cimentación (presión de contacto)
 en el límite de provocar la falla (Kg/cm²)

c : Cohesión del suelo (kg/ cm²)

N'c: Coeficiente adimensional relativo a la cohesión

 $q : \gamma_m^* D_f$

γm : Peso volumétrico del suelo (densidad aparente en Kg/cm³)

Df: Profundidad de cimentación (cm.)

 N'_c , N'_q , N'_γ : Son los factores de capacidad de carga modificada, están en función del ángulo de fricción.

B: Ancho de la cimentación en cm.

Los valores de N'c, N'q, N'γ se pueden obtener de la Tabla 16

TABLA N° 16: Factores de capacidad de carga modificados de Terzaghi

$\varphi^{'}$	N.º	N_q'	N_{γ}'	φ	N.	. N _q ' .	N/	
0	5.70	1.00	0.00	26	15.53	6.05	2.59	
1	5.90	1.07	0.005	27	16.30	6,54	2.88	
2	6.10	1.14	0.02	28	17.13	7.07	3.29	
3	6.30	1.22	0.04	29	18.03	7.66	3.76	
4	6.51	1.30	0.055	30	18.99	8.31	4,39	
5	6.74	1.39	0.074	31	20.03	9.03	4.83	
6	6.97	1.49	0.10	32	21.16	9.82	5,51	-
7	7.22	1.59	0.128	33	22.39	10.69	6.32	
8	7.47	1.70	0.16	34	23.72	11.67	7.22	
9	7.74	1.82	0.20	35	25.18	12.75	8.35	
10	8.02	1.94	0.24	36	26.77	13.97	9.41	
11	8.32	2.08	0.30	37	28.51	15.32	10.90	
12	8.63	2.22	0.35	38	30.43	16.85	12.75	
13	8.96	2.38	0.42	39	32.53	18.56	14.71	
14	9.31	2.55	0.48	40	34.87	20.50	17.22	
15	9.67	2.73	0.57	41	37.45	22.70	19.75	
16	10.06	2.92	0.67	42	40.33	25.21	22.50	
17	10.47	3.13	0.76	43	43.54	28.06	26.25	
18	10.90	3.36	0.88	44	47.13	31.34	30.40	
19	11.36	3.61	1.03	45	51.17	35.11	36.00	
20	11.85	3.88	1.12	46.	55.73	39.48	41.70	
21	12.37	4.17	1.35	47	60.91	44.45	49.30	
22	12.92	4.48	1.55	48	66.80	50.46	59.25	
23	13.51	4.82	1.74	49	73.55	57.41	71.45	
24	14.14	5.20	1.97	50	81.31	65.60	85.75	
25	14.80	5.60	2.25					

Fuente: (Das, 1989)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

a. PARAMETROS CARATERISTICOS DEL SUELO

Estos valores son básicos para los estudios de suelos con fines de cimentación, análisis de estabilidad de taludes, empuje de tierras.

TABLA N° 17: Parámetros característicos del suelo

	DENSIDAD APARENTE			ANGULO DE	COHESION
TIPO DE SUELO	Sobre el nivel freático (Tn/m³)		Bajo el nivel freático (Tn/m3)	FRICCION INTERNA (°)	(C) (Tn/m2)
A.No cohesivos	Húm.	Satu.			
Arena suelta compacidad 0.3	1.7	1.9	0.9	30	0
Arena media compactada compacidad 0.3-0.5	1.8	2.0	1.0	32.5	0
Arena compactada compacidad 0.3	1.9	2.1	1.1	35	0
Grava arena	1.7	2.0	1.0	35	0
Grava arena heterogenea	1.9	2.1	1.1	35	0
Piedras, piedra chancada	1.7	-	1.0	35	.0
B.Cohesivos					
Arcilla media dura	1.9		1.10	15	2.5
Arcilla rígida	1.8		1.00	15	1.0
Arcilla plástica	1.7		0.80	15	0
Arena arenosa (marga) rígida	2.2		1.20	22.5	0.5
Arena arenosa (marga) plástica	2.1		1.10	22.5	0
Limo	2		1.00	22.5	0.2
Limo plástico	1.9		0.90	22.5	0
Limo orgánico	1.7		0.70	10	0
Turba	1.1		0.10	15	0

Fuente: (Ortiz, 1989)

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

b. PRESION ADMISIBLE

También conocida como Presión de Trabajo, Presión de Diseño, Carga Admisible, y se calcula con la siguiente fórmula:

$$q_a = \frac{q_u}{FS} \left(kg/cm^2 \right)$$

.....Ecuación N° 35

Dónde:

 $q_{\text{\tiny B}}$: capacidad de carga admisible (kg / cm²).

qu : capacidad de carga última (kg/cm²).

FS: factor de seguridad (min= 3, según RNE).

2.6.3 ESTUDIO DE CANTERAS

Teniendo en cuenta que alrededor de las tres cuartas partes del volumen de concreto, son ocupados por los agregados; es de suponer que la calidad de estos influirá directamente en el comportamiento del concreto, razón por la cual el Ingeniero necesita conocer las prestaciones básicas de los agregados, como materiales esenciales para la elaboración de concretos; es decir determinar las diferentes propiedades físicas y mecánicas de los agregados fino, grueso para concreto. (NTP, 2006)

2.6.3.1 CARACTERÍSTICAS FÍSICAS DEL AGREGADO FINO PARA CONCRETO

a. PESOS ESPECÍFICO DE MASA (NTP 400.037 – ASTM C136)
AGREGADO GRUESO: (NTP 400.021 – ASTM C127)
AGREGADO FINO : (NTP 400.021 – ASTM C128)

> Definición:

Se define como la relación entre la masa en el aire de un volumen unitario del material, incluyendo sus poros abiertos y cerrados, y de un volumen igual de agua a una temperatura determinada.

......Ecuación N° 36

V – Va

Dónde:

Wo: Peso en el aire de la muestra seca al horno (gr.)

Va: Peso (gr.) o volumen (cm3) del agua añadida a la fiola

V: Volumen del fiola (cm3)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

b.	PESOS ESPECÍFICO DE MASA SATURADA CON SUPERFICIE SECA
	AGREGADO GRUESO: (NTP 400.021 - ASTM C127)
	AGREGADO FINO : (NTP 400.021 – ASTM C128)

> Definición:

Es la relación entre la masa saturada superficialmente seca y un volumen igual de agua.

Pesss = 500Ecuación N° 37

V - Va

Dónde:

Va: Volumen (cm3) del agua añadida a la fiola

V: Volumen del fiola (cm3)

PESOS ESPECÍFICO APARENTE C.

AGREGADO GRUESO: (NTP 400.021 - ASTM C127)

AGREGADO FINO

: (NTP 400.021 - ASTM C128)

> Definición:

Se define como la relación entre la masa en el aire de un volumen unitario del material y la de un volumen igual de agua a una temperatura determinada.

Pea = Wo

.....Ecuación N° 38

(V - Va)-(500-Wo)

Dónde:

Wo: Peso en el aire de la muestra secada al horno

Va: Volumen (cm3) del agua añadida a la fiola

Volumen del fiola (cm3)

d. PORCENTAJE DE ABSORCIÓN

AGREGADO GRUESO: (NTP 400.021 – ASTM C127)

AGREGADO FINO : (NTP 400.021 – ASTM C128)

> Definición:

Se define como la capacidad que tienen los agregados de llenar sus poros abiertos, al estar en contacto con el agua en un tiempo determinado de 24h.

Ab = 500 - Wo X 100

.....Ecuación N° 39

Wo

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Dónde:

Wo: Peso en el aire de la muestra secada al horno (gr.)

e. CONTENIDO DE HUMEDAD: (NTP 339.185 – ASTM C566)

➤ Definición

Es la cantidad de agua que contiene un material (agregado) en su estado natural.

$$W(\%) = Ph - Ps \times 100$$

.....Ecuación N° 40

Ps

Dónde:

Ps: Peso de la muestra secada al horno (gr.)

Ph: Peso de la muestra húmeda (gr.)

f. ANÁLISIS GRANULOMÉTRICO (NTP 400.037 – ASTM C136)

> Definición:

Es el estudio de la forma en que se encuentran distribuidas las partículas de un agregado.

Para el agregado fino los requerimientos indican que debe estar graduado dentro de los límites siguientes:

TABLA N° 18: límites de graduado fino

Tamiz	% Que pasa
3/8"	100
N° 4	85-100
Nº 8	65-100
Nº 16	45-100
N° 30	25-80
N° 50	5-48
Nº 100	0-12

> Especificación Técnica:

Norma N.T.P 400.037, consta de tres Husos Granulométricos C, M y F, que para el presente ensayo se utilizará el Huso M.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA Nº 19: Limites de graduado grueso

Tamiz	% Que pasa
3/8"	100
Nº 4	85-100
Nº 8	65-100
Nº 16	45-100
Nº 30	25-80
Nº 50	5-48
Nº 100	0-12

> Módulo de finura (mf):

Viene hacer la relación entre la sumatoria de los porcentajes retenidos acumulados en cada uno de los tamices (3", 1 ½", 3/4", 3/8", N° 4, N° 8, N° 16, N° 30, N° 50, N° 100) sobre 100.

M.F. =
$$\frac{\% \text{Ret.ac}(3", 1\frac{1}{2}", 3/4", 3/8", N^{\circ}4, N^{\circ}8, N^{\circ}16, N^{\circ}30, N^{\circ}50, N^{\circ}100)}{100}$$
Ecuación N° 45

> Superficie específica (se):

Se define como la relación del área entre el volumen de una determinada partícula.

Sup. Espec. =
$$0.06 \times S$$

.....Ecuación N° 42

G

G: Gravedad Específica de Masa de Agregado Fino (2.57 gr/cm³)

g. PESO UNITARIO (NTP 400.017 – ASTM C29)

> Definición:

Es el peso de la muestra seca al ocupar un recipiente de volumen conocido en estado suelto o compactado.

$$PU = (A - B) x f$$

.....Ecuación N° 43

Dónde:

A: Peso del recipiente más agregado (gr.)

B: Peso del recipiente (gr.)

f: Factor de calibración del recipiente.

* First State of the state of t

UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORÁN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Dónde:

 $f = 1000 \text{ Kg/m}^3$

.....Ecuación N° 44

Wa

Wa: Peso del agua para llenar el recipiente a 16.7°C

h. PARTICULAS FINAS QUE PASAN EL TAMIZ N° 200 (NTP 400.018 – ASTM C117)

> Definición:

Definido como la cantidad de material que pasa la malla N° 200 (material contaminante).

 $%T_{200} = Wi - Wf \times 100$

.....Ecuación N° 45

Wi

Dónde:

Wi: Peso inicial seco.

Wf: Peso final del agregado lavado y secado.

i. ABRASIÓN (NTP 400.019 – ASTM C131)

> Definición:

Oposición que presentan los agregados sometidos a fuerzas de impacto y al desgaste por abrasión y frotamiento, ya sea de carácter mecánico o hidráulico. Se mide en función inversa al incremento de material fino; cuando la pérdida de peso se expresa en porcentaje de la muestra original se denomina porcentaje de desgaste. El método usado para medir la abrasión utilizad es la Prueba de los Ángeles

De = Wo - Wf

.....Ecuación N° 46

Wo

Dónde:

Wo: Peso original de la muestra (gr.)

Wf: Peso final de la muestra (gr.)

De: Porcentaje de desgaste

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.7 ESTUDIO DE IMPACTO AMBIENTAL

La construcción de un puente modifica el medio y en consecuencia las condiciones socio – económicas, culturales y ecológicas de ámbito donde se ejecuta; y es allí cuando surge la necesidad de una evaluación bajo un enfoque ambiental.

Muchas veces esta modificación es positiva para los objetivos sociales y económicos que se tratan de alcanzar, pero muchas veces otras ocasiones la falta de un debido planeamiento en su ubicación, fase de construcción y etapa de operación puede conducir a serios desajustes debido a la alteración del medio. (MTC, 2007) (Ripoll, 1997)

2.7.1 METODOLOGIA

La metodología aplicada en este estudio en impacto ambiental es empleando lo siguiente:

2.7.1.1 MATRIZ DE LEOPOLD

Este sistema utiliza una tabla con columnas y filas. En las columnas pone las acciones humanas que pueden alterar el sistema y en las filas las características del medio que pueden ser alteradas. En la tabla original hay 100 acciones y 88 factores ambientales, lo que nos da un total de 8.800 interacciones, aunque no todas tienen la misma importancia.

Cuando se comienza el estudio se tiene la matriz sin rellenar las cuadrículas. Se va mirando una a una las cuadrículas situadas bajo cada acción propuesta y se ve si puede causar impacto en el factor ambiental correspondiente. Si es así, se marca trazando una diagonal en la cuadrícula. Cuando se ha completado la matriz se vuelve a cada una de las cuadrículas marcadas y se pone a la izquierda un número de 1 a 10 que indica la gravedad del impacto: 10 la máxima y 1 la mínima (el 0 no vale). Con un + si el impacto es positivo y - si es negativo. En la parte inferior derecha se califica de 1 a 10 la importancia del impacto, es decir si es regional o solo local, etc.

2.7.1.2 IDENTIFICACIÓN DE LOS IMPACTOS

Consiste en identificar los probables impactos a ser investigados, para lo cual es necesario conocer primero de la manera más amplia el escenario sobre el cual incide el proyecto, cuya ubicación, ejecución y operación afectara al entorno.

2.7.1.3 PREVISIÓN DE IMPACTOS

El objetivo en este nivel está orientado hacia la descripción cualitativa de los principales impactos ambientales que se han detectado en el análisis previo.

2.7.1.4 INTERPRETACIÓN DE IMPACTOS

Implica analizar cuán importante es la alteración medio ambiental en relación a la conservación del área.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.7.1.5 PLAN DE MONITOREO O CONTROL AMBIENTAL

Fundamentalmente en esta etapa se debe tener en cuenta las propuestas de las medidas de mitigación y de compensación, en función de los problemas detectados en los pasos previos considerados en el estudio.

2.7.2 DEFINICIONES BASICAS

2.7.2.1 MEDIO AMBIENTE

Es el entorno vital; el conjunto de factores físico – naturales, sociales, culturales, económicos y estéticos que interactúan entre sí, con el individuo y con la comunidad en la que vive, determinando su forma, carácter, relación y supervivencia. (Ripoll, 1997)

2.7.2.2 MEDIO FÍSICO O MEDIO NATURAL

Sistema constituido por los elementos y procesos del ambiente natural tal como lo encontramos en la actualidad y sus relaciones con la población, está conformado por tres subsistemas:

- a. Medio inerte o medio físico propiamente dicho: aire, tierra y agua.
- b. Medio biótico: flora y fauna.
- c. Medio perceptual: Unidades de paisaje (cuencas visuales, valles y vistas).

2.7.2.3 MEDIO SOCIOECONÓMICO

Sistema constituido por las estructuras y condiciones sociales, histórico cultural y económicas en general, de las comunidades humanas o de la población de un área determinada.

2.7.2.4 FACTORES AMBIENTALES

Factores ambientales o parámetros ambientales vienen a ser los diversos componentes del medio ambiente entre los cuales se desarrolla la vida en nuestro planeta, son el soporte de toda actividad humana, éstos son:

- a. El hombre, la flora y la fauna.
- b. El suelo, el agua, el aire, el clima y el paisaje.
- c. Las interacciones entre los anteriores.
- d. Los bienes materiales y el patrimonio cultural.

2.7.2.5 ENTORNO DE UN PROYECTO

Es el ambiente que interacciona con el proyecto en términos de entradas (recursos, mano de obra, espacio, etc.) y de salidas (productos, empleos, rentas, etc.).

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.7.2.6 IMPACTO AMBIENTAL (IA)

Se dice que hay impacto ambiental cuando una acción o actividad produce una alteración favorable o desfavorable en el medio, o en alguno de los componentes del medio. Esta acción puede ser un proyecto de ingeniería, un programa, un plan, una ley o una disposición administrativa con implicaciones ambientales. El término impacto no implica negatividad, ya que éstos pueden ser tanto positivos como negativos.

El impacto de un proyecto sobre el medio ambiente es la diferencia entre la situación del medio ambiente futuro modificado, tal y como se manifestaría como consecuencia de la realización del proyecto y la situación del medio ambiente futuro tal como habría evolucionado normalmente sin tal actuación.

2.7.2.7 EVALUACIÓN DE IMPACTO AMBIENTAL (EIA)

La EIA, es un proceso jurídico administrativo que tiene por objetivo la identificación, predicción e interpretación de los impactos ambientales que un proyecto o actividad produciría en caso de ser ejecutado, así como la prevención, corrección y valoración de los mismos; todo ello con el fin de ser aceptado, modificado o rechazado por parte de las distintas administraciones públicas competentes.

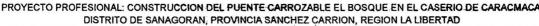
2.7.2.8 ESTUDIO DE IMPACTO AMBIENTAL (EIA)

Es el estudio técnico, de carácter interdisciplinario, que incorporado en el procedimiento de la EIA está destinado a predecir, identificar, valorar y corregir las consecuencias o efectos ambientales que determinadas acciones pueden causar sobre la calidad de vida del hombre y su entorno.

2.7.3 MARCO LEGAL

CONSTITUCIÓN POLÍTICA DEL PERÚ

1. CONSTITUCION POLÍTICA DEL PERU (29 de Diciembre de 1993):


Art. 66: Los recursos naturales renovables y no renovables son patrimonio de la nación, el estado es soberano en su aprovechamiento.

Art. 67: El estado determina la política nacional del ambiente. Promueve el uso sostenible de los recursos naturales.

Art. 68: El estado está obligado a promover la conservación de la diversidad biológica y de las áreas naturales protegidas.

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

2. CODIGO DEL MEDIO AMBIENTE Y DE LOS RECURSOS NATURALES (D.L. 613 del 08/09/90):

- Art. 1.- Toda persona tiene derecho irrenunciable a un ambiente saludable, ecológicamente equilibrado y adecuado para el desarrollo de la vida, asimismo a la preservación del paisaje y la naturaleza. Todos tienen el deber de conservar dicho ambiente.
- **Art. 2.-** El Medio Ambiente y los recursos naturales constituyen patrimonio de la Nación. Su protección y conservación son de interés social y pueden ser invocados como causa de necesidad y utilidad públicas.
- **Art. 3.-** Toda persona tiene derecho a exigir una acción rápida y efectiva ante la justicia, en defensa del medio ambiente y recursos naturales.
- **Art. 6.-** Toda persona tiene derecho a participar en la política y en las medidas de carácter nacional, y local relativas al medio ambiente y a los recursos naturales, de igual modo a ser informadas de las medidas o actividades que puedan afectar directa o indirectamente la salud de las personas o de la integridad del ambiente y los recursos naturales.
- **Art. 14.-** Es prohibida la descarga de sustancias contaminantes que provoquen degradación de los ecosistemas o alteren la calidad del ambiente sin adoptarse precauciones para la depuración.
- **Art. 15.-** Queda prohibido verter o emitir residuos sólidos, líquidos o gaseosos u otras formas de materias o de energía que alteren las aguas en proporción capaz de hacer peligroso su uso.
- **Art. 36.-** El patrimonio natural de la nación está constituido por la diversidad ecológica, biológica y genética que albergue su territorio.
- **Art. 39.-** El estado concede protección especial a las especies de carácter singular y a los ejemplares representativos de los tipos de ecosistemas, así como al germoplasma de las especies domésticas nativas.
- **Art. 49.-** El estado protege y conserva los ecosistemas en su territorio entendiéndose esto como las interrelaciones de los organismos vivos entre sí y con ambiente físico.
- **Art. 50.-** Es obligación del Estado proteger los diversos tipos de ecosistemas naturales en el territorio nacional a través de un sistema de área protegidas.
- **Art. 54.-** El estado reconoce el derecho de propiedad de las comunidades campesinas y nativas ancestrales sobre las tierras que poseen dentro de las áreas naturales protegidas y en sus zonas de influencia.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACO DISTRITO DE SANAGORÁN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

- **Art. 59.-** El estado reconoce como recurso natural cultural toda obra arqueológica o histórica que al estar integrada al medio ambiente permite su uso sostenible.
- **Art. 73.-** Los aprovechamientos energéticos, su infraestructura, transporte, transformación, distribución, almacenamiento y utilización final de la energía deben ser realizados sin ocasionar contaminación del suelo, agua o del aire.
- **Art. 78.-** El estado promueve y fomenta la distribución de poblaciones en el territorio en base a la capacidad de soporte de los ecosistemas.
- 3. LEY MARCO PARA EL CRECIMIENTO DE LA INVERSION PRIVADA (D.L N° 757 del 08/11/91):
- **Art. 49.-** El estado estimula el crecimiento del desarrollo económico la conservación del ambiente y el uso sostenible de los recursos naturales.
- **Art. 50.-** Las autoridades sectoriales competentes para conocer sobre asuntos relacionados con la aplicación de las disposiciones del código del medio ambiente y los recursos naturales son los Ministerios de los Sectores correspondientes a las actividades que desarrollan las empresas, sin perjuicio de las atribuciones que correspondan a los gobiernos regional y local conforme a lo dispuesto en la constitución Política.
- **Art. 52.-** En los casos de peligro grave e inminente para el medio ambiente la autoridad sectorial competente podrá disponer la adopción de una de las siguientes medidas de seguridad por parte del titular de la actividad.
 - a. Procedimientos que hagan desaparecer el riesgo o lo disminuyan a niveles permisibles estableciendo para el efecto los plazos adecuados según su gravedad e inminencia.
 - b. Medidas que limiten el desarrollo de actividades capaz de causar daños irreversibles con peligro grave para el medio ambiente, la vida o la salud de la población, la autoridad sectorial competente podrá suspender los permisos, licencias o autorizaciones que hubiera otorgado para el efecto.
- **Art. 54.-** La calidad del área natural protegida puede otorgarse por decreto supremo que cumple con el voto aprobatorio del Consejo de Ministros.
- **Art. 56.-** El estado puede adjudicar tierras con fines de ecoturismo a particulares, en propiedad en uso previa, previa presentación del denuncio correspondiente.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.8 ESTUDIO DE VOLUMEN DE TRANSITO

2.8.1 DOCUMENTACIÓN QUE COMPRENDE UN ESTUDIO DE TRÁFICO

Resultados de la clasificación por tipo de vehículo. Índice Medio diario (IMD). (Goza, 2007)

2.8.2 MÉTODOS DE AFORO

Los aforos se toman para registrar el número de vehículos o peatones que pasan por un punto.

Existen dos métodos básicos de aforo:

- El mecánico o registro automático
- El Manual.

2.8.3 VOLUMEN DE TRANSITO

Los estudios sobre volúmenes de transito se realizan con el propósito de obtener datos reales relacionados con el movimiento de vehículos y personas sobre puntos o secciones específicas, dentro de un sistema vial. Dichos datos de volumen de transito son expresados con respecto al tiempo, y de su conocimiento de hace posible el desarrollo de estimaciones razonables de la calidad del servicio prestado a los usuarios.

2.8.3.1 VOLUMEN DE TRÁNSITO VEHICULAR (q)

Se define volumen de tránsito vehicular, como el número de vehículos que pasan por un punto o sección transversal dados, de un carril o una calzada, durante un periodo determinado. Se expresa como:

q = n/TEcuación N° 47

Donde:

q= vehículos que pasan por unidad de tiempo. n=número total de vehículos que pasan T=periodo determinado.

a. TRANSITO DIARIO (TD)

Es el número total de vehículos que pasan durante un día.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN. PROVINCIA SANCHEZ CARRION. REGION LA LIBERTAD

2.8.4 CLASIFICACIÓN DE LA CARRETERA

2.8.4.1 CLASIFICACIÓN DE ACUERDO A LA DEMANDA.

Según del Manual de Diseño Geométrico de Carreteras DG Perú (2001)

a. CARRETERAS DE TERCERA CLASE

Son aquellas de una calzada que soportan menos de 400 veh/día.

2.9 ESTUDIO DE TRAZO Y DISEÑO VIAL DE LOS ACCESOS

2.9.1 DISEÑO GEOMETRICO DE LA VIA

Las carreteras se clasifican teniendo en cuenta lo siguiente: siguientes parámetros.

2.9.1.1 SELECCIÓN DEL TIPO DE VÍA

Se selecciona el tipo de vía a diseñar teniendo en cuenta varios aspectos.

a. SEGÚN SU JURISDICCIÓN

• Caminos Troncales Vecinales:

Conformado por aquellas carreteras de carácter local y que unen las aldeas y pequeñas poblaciones entre sí.

2.9.1.2 CLASIFICACIÓN POR EL TIPO DE RELIEVE Y CLIMA

Carreteras en terrenos: planos, ondulados, accidentados y muy accidentados; se ubican indistintamente en la Costa (poca lluvia), Sierra (Iluvia moderada) y Selva (muy Iluviosa). (Manual Para Diseño de Carreteras)

2.9.2 PARÁMETROS DEL DISEÑO VIAL

2.9.2.1 VELOCIDAD DIRECTRIZ (V)

Es la velocidad de diseño, establecida en el proceso de planeamiento, para adoptar en el diseño, como elemento rector de las características geométricas del camino. (Manual Para Diseño de Carreteras)

Teniendo en cuenta lo anterior tenemos el siguiente cuadro:

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° 20: Clase de Carretera por la Topografía

CLASE DE	TOPOGRAFÍA					
CARRETERA	LLANA	ONDULADA	ACCIDENTADA			
Primera	100	60	45			
Segunda	80	45	30			
Tercera	50	35	25			
Cuarta	30	25	20			

Fuente:

(Manual Para Diseño de Carreteras).

2.9.2.2 DISTANCIA DE VISIBILIDAD

DISTANCIA DE VISIBILIDAD DE PARADA O FRENADO (DVP)

Es la mínima distancia requerida, para que el conductor detenga a un vehículo que viaja a la velocidad directriz, antes que alcance un objeto inmóvil que encuentra en su trayectoria. Se considera que el objetivo inmóvil tiene una altura de 0.60 m y que los ojos del conductor se ubican a 1.10 m por encima de la rasante del camino. (Ministerio de Transportes y Comunicaciones, 2008).

TABLA N° 21: Distancia de Velocidad de Parada

VELOCIDAD DIRECTRIZ	PEN	PENDIENTE NULA O EN BAJADA			PENDIE	NTE EN	SUBIDA
(KM/h)	0%	3%	6%	9%	3%	6%	9%
20	20	20	20	20	19	18	18
30	35	35	35	35	31	30	29
40	50	50	50	53	45	44	43
50	65	66	70	74	61	59	58
60	85	87	92	97	80	77	75

Fuente:

(Manual Para Diseño de Carreteras)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.9.2.3 CURVAS HORIZONTALES

Figura 5: Elementos De Curva Horizontal

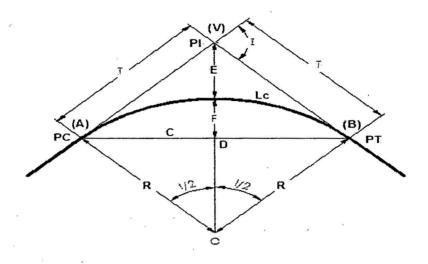


TABLA N° 22: Elementos de Curva

Elemento	Símbolo	Fórmula
Tangente	T	T = R Tan (1/2)
Longitud de curva	Lc	Lc = πRI/180°
Cuerda	С	C = 2 R Sen (1/2)
Externa	E	E = R[Sec(1/2) - 1]
Flecha	F	F = R[1 - Cos(1/2)]

Donde:

Pl : Punto de Intersección de dos alineamientos.

PC : Principio de Curva.

PT : Principio de tangencia o termino de curva.

T : Tangente de la curva (m).

Lc : Longitud de curva circular (m).

C : Cuerda (m).
E : Externa (m).
F : Flecha (m).

F: Flecha (m).
R: Radio de la curva (m).

1 : Ángulo de intersección de los alineamientos.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRÍON, REGION LA LIBERTAD

a. RADIOS DE DISEÑO

El mínimo radio de curvatura es un valor límite que está dado en función del valor máximo del peralte y el factor máximo de fricción seleccionados para una velocidad directriz. El valor del radio mínimo puede ser calculado por la expresión.

$$R_{\min} = \frac{v^2}{127(0.01e_{\max} + f_{\max})}$$
Ecuación N° 48

Donde:

R_{min}: Radio mínimo en metros.

V : Velocidad de Diseño

e_{méx} : Peralte máximo de la curva en valor decimal.

f máx. : Factor máximo de fricción.

TABLA N° 23: Fricción Transversal Máxima en Curvas

Velocidad Directriz (Km/h)	f
20	0.18
30	0.17
40	0.17
50	0.16
60	0.15
70	0.14
80	0.14

Fuente: (Manual Para Diseño de Carreteras)

a. PERALTE

Se denomina peralte a la sobre elevación de la parte exterior de un tramo de la carretera en curva con relación a la parte interior del mismo, con el fin de contrarrestar la acción de la fuerza centrífuga, las curvas horizontales deben ser peraltadas.

El peralte máximo tendrá como valor máximo normal 8% y como valor excepcional 10%. En carreteras afirmadas bien drenadas en casos extremos podría justificarse un peralte máximo alrededor de 12%.

n l

UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERIA

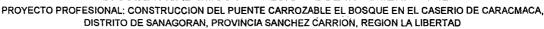


TABLA N° 24: Radios mínimos y peraltes máximos.

VELOCIDAD DIRECTRIZ	Peralte	Valor Límite de	Calculado Radio	Redondeo Radio
Km/h	Máximo en (%)	fricción f _{max}	mínimo (m)	mínimo (m)
20	4	0.18	14.3	15
30	4	0.17	33.7	35
40	4	0.17	60	60
50	4	0.16	98.4	100
60	4	0.15	149.1	150
20	6	0.18	13.1	15
30	6	0.17	30.8	30
40	6	0.17	54.7	55
50	6	0.16	89.4	90
60	6	0.15	134.9	135
20	8	0.18	12.1	10
30	8	0.17	28.3	30
40	8	0.17	50.4	50
50	8	0.16	82	80
60	8	0.15	123.2	125
20	10	0.18	11.2	10
30	10	0.17	26.2	25
40	10	0.17	46.6	45
50	10	0.16	75.7	75
60	10	0.15	113.3	115
20	12	0.18	10.5	10
30	12	0.17	24.4	25
40	12	0.17	43.4	45
50	12	0.16	70.3	70
60	12	0.15	104.9	105

Fuente: (Manual Para Diseño de Carreteras).

b. SOBREANCHO

La fórmula de cálculo está propuesta por VOSHELL y recomendada por la AASHTO:

$$s_{\alpha} = n\left(R - \sqrt{R^2 - L^2}\right) + \frac{V}{10\sqrt{R}}$$

.....Ecuación N° 49

Donde:

N: número de carriles.

R: radio de la curva (m)

L: distancia entre el eje delantero y el eje posterior de vehículo (m)

V: velocidad directriz (Km/h)

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.9.2.4 CURVAS VERTICALES

Los tramos consecutivos de rasante, serán enlazados con curvas verticales parabólicas cuando la diferencia algebraica de sus pendientes sea mayor a 1%, para carreteras pavimentadas y mayor a 2% para las afirmadas.

Las curvas verticales serán proyectadas de modo que permitan, cuando menos, la visibilidad en una distancia igual a la de visibilidad mínima de parada, y cuando sea razonable una visibilidad mayor a la distancia de visibilidad de paso.

Para la determinación de la longitud de las curvas verticales se seleccionará el Índice de Curvatura K. La longitud de la curva vertical será igual al Índice K multiplicado por el valor absoluto de la diferencia algebraica de las pendientes (A).

$$L = K \times A$$
Ecuación N° 50

Los valores de los índices K se muestran en el Cuadro Nº 25, para curvas convexas y en el Cuadro Nº 26 para curvas cóncavas.

TABLA N° 25: Índice K para el cálculo de la Longitud de Curva vertical Convexa

Velocidad	LONGITUD CONTROLADA POR VISIBILIDAD DE FRENADO		LONGITUD CONTROLADA POR VISIBILIDAD DE ADELANTAMIENTO		
Directriz	DISTANCIADE INDICE DE		DISTANCIADE	INDICE DE	
//cm/h\	VELOCIDAD	CURVATURA	VELOCIDAD DE CURVAT		
(km/h)	DE FRENADO	K	ADELANTAMIENTO	K	
20	20	0.60	-	-	
30	35	1.90	200.00	46.00	
40	50	3.80	270.00	84.00	
50	65	6.40	345.00	138.00	
60	85	11.00	410.00	195.00	

Fuente:

(Manual Para Diseño de Carreteras)

El Índice de Curvatura es la longitud (L) de la curva de las pendientes (A) K = L/A por el porcentaje de la diferencia algebraica.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUÈNTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° 26: Índice para el cálculo de la Longitud de Curva vertical Cóncava

Velocidad Directriz (Km/h)	DISTANCIADE VELOCIDAD DE FRENADO	INDICE DE CURVATURA K	
20	20	2.10	
30	35	5.10	
40	50	8.50	
50	65	12.20	
60	85	17.30	

Fuente:

(Manual Para Diseño de Carreteras)

El Índice de Curvatura es la longitud (L) de la curva de las pendientes (A) K = L/A por el porcentaje de la diferencia algebraica.

2.9.2.5 PENDIENTES

La pendiente es la relación en porcentaje del desnivel entre dos puntos y su distancia horizontal.

En los tramos en corte se evitará preferiblemente el empleo de pendientes menores a 0.5%. Podrá hacerse uso de rasantes horizontales en los casos en que las cunetas adyacentes puedan ser dotadas de la pendiente necesaria para garantizar el drenaje y la calzada cuente con un bombeo igual o superior a 2%.

En tramos carreteros con altitudes superiores a los 3,000 msnm, los valores máximos del Cuadro N° 27 para terreno montañoso o terreno escarpados se reducirán en 1%

TABLA N° 27: Pendientes Máximas

OROGRAFIA		,		
VELOCIDAD DE DISEÑO	TERRENO PLANO	TERRENO ONDULADO	TERRENO MONTAÑOSO	TERRENO ESCARPADO
20	8	9	10	12
30	8	9	10	12
40	8	9	10	10
50	8	8	8	8
60	8	8	8	8

Fuente:

(Manual Para Diseño de Carreteras).

En el caso de ascenso continuo y cuando la pendiente sea mayor del 5%, se proyectará, más o menos cada tres kilómetros, un tramo de descanso de una longitud no menor de 500 m, con pendiente no mayor de 2%. Se determinará la frecuencia y la ubicación de estos tramos de descanso de manera que se consigan las mayores ventajas y los menores incrementos del costo de construcción.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCIÓN DEL PUENTE CARROZÁBLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

En general cuando se emplee pendientes mayores a 10%, el tramo con esta pendiente no debe exceder a 180 m.

Es deseable que la máxima pendiente promedio en tramos de longitud mayor a 2000 m no supere el 6%, las pendientes máximas que se indican en el Cuadro Nº 27 son aplicables.

En curvas con radios menores a 50 m debe evitarse pendientes en exceso a 8%, debido a que la pendiente en el lado interior de la curva se incrementa muy significativamente.

2.9.2.6 SECCIÓN TRANSVERSAL

La sección transversal influye fundamentalmente en la capacidad de la vía, en su costo de expropiación, construcción y conservación, y también en la seguridad de la circulación. Un proyecto realista deberá en general adaptarse a las condiciones existentes o previstas a corto plazo, pero estudiará la viabilidad de las ampliaciones necesarias en el futuro.

Los elementos fundamentales de la sección transversal de una carretera son: Superficie de rodadura o calzada, bombeo, bermas, cunetas, taludes de corte o de relleno y plazoletas de estacionamiento.

a. CALZADA

El diseño de carreteras de muy bajo volumen de tránsito IMDA< 50, la calzada podrá estar dimensionada para un solo carril. En los demás casos, la calzada se dimensionará para dos carriles.

b. BERMAS

A cada lado de la calzada se proveerán bermas con un ancho mínimo de 0.50 m. Este ancho deberá permanecer libre de todo obstáculo incluyendo señales y guardavías. Cuando se coloque guardavías se construirá un sobre ancho mínimo de 0.50 m.

En los tramos en tangentes las bermas tendrán una pendiente de 4% hacia el exterior de la plataforma.

La berma situada en el lado inferior del peralte seguirá la inclinación de este cuando su valor sea superior a 4%. En caso contrario la inclinación de la berma será igual al 4%.

La berma situada en la parte superior del peralte tendrá en lo posible una inclinación en sentido contrario al peralte igual a 4%, de modo que escurra hacia la cuneta.

c. CUNETAS

Las cunetas tendrán en general sección triangular y se proyectarán para todos los tramos al pie de los taludes de corte.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCIÓN DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° 28: Dimensiones mínimas de Cunetas.

REGIÓN	PROFUNDIDAD (m)	ANCHO (m)
Seco	0.2	0.5
Lluvioso	0.3	0.75
Muy Iluvioso	0.5	1

Fuente: (Manual Para Diseño de Carreteras)

d. BOMBEO

Las carreteras no pavimentadas estarán provistas de bombeo con valores entre 2% y 3%. En los tramos en curva, el bombeo será sustituido por el peralte. En los caminos de bajo volumen de tránsito con IMDA inferior a 200 veh/día se puede sustituir el bombeo por una inclinación transversal de la superficie de rodadura de 2.5% a 3% hacia uno de los lados de la calzada.

En caminos cuyo IMDA de diseño sea inferior a 200 vehículos por día y la velocidad directriz igual o menor a 30 km/h, el peralte de todas las curvas podrá ser igual al 2.5%.

- Longitud De Transición

Se denomina así a la variación de la inclinación de la sección transversal desde la sección con bombeo en el tramo recto hasta la sección con peralte pleno.

TABLA N° 29: Longitudes mínimas de transición de bombeo Y transición de peralte (m)

Velocidad		Valor del Peralte					T	
Directriz	2%	4%	6%	8%	10%	12%	Transición de Bombeo	
(km/h)		Longitud de Transición de Peralte (m)*						
20	9	18	27	36	45	54	9	
30	10	19	29	38	48	57	10	
40	10	21	31	41	51	62	10	
50	11	22	32	43	54	65	11	
60	12	24	36	48	60	72	12	

Fuente: (Manual Para Diseño de Carreteras)

e. TALUDES

Se realizará una evaluación general de la estabilidad de los taludes existentes; se identificará los taludes críticos o susceptibles de inestabilidad, en este caso (se determinarán en lo posible, considerando los parámetros obtenidos de ensayos y cálculos o tomando en cuenta la experiencia del comportamiento de los taludes in situ y/o ejecutados en rocas o suelos de naturaleza y características geológicas, geotécnicas similares que se mantienen estables ante condiciones ambientales semejantes) determinará la inclinación de los taludes definiendo la relación H: V de diseño.

ROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° 30: Taludes de Corte

TA	LUDES DE COR	TE			
CLASE DE TERRENO	TALUD (V:H)				
CLASE DE L'ERRENO	H < 5.00	5 < H < 10	H > 10		
Roca Fija	10:1	(*)	(*)		
Roca Suelta	6:1-4:1	(*)	(*)		
Conglomerados Cementados	4:1	(*)	(*)		
Suelos Consolidados Compactos	4:1	(*)	(*)		
Conglomerados Comunes	3:1	(*)	(*)		
Tierra Compacta	2:1-1:1	(*)	(*)		
Tierra Suelta	1:1	(*)	(*)		
Arenas Sueltas	1:2	(*)	(*)		
Zonas blandas con abundante arcillas o zonas	1:2	(*)	(*)		
humedecidas por filtraciones	hasta 1 : 3		()		

(*) Requiere Banqueta o análisis de estabilidad. Fuente: (Manual Para Diseño de Carreteras).

TABLA N° 31: Taludes de relleno

TALUDES DE RELLENO					
MATERIALES -	TALUD (V:H)				
MATERIALES	H < 5	5 < H < 10	H >10		
Enrocado	1:1	(*)	(*)		
Suelos diversos compactados (mayoría de suelos)	1:1	(*)	(*)		
Arena Compactada	1:2	(*)	(*)		

Fuente: (Manual Para Diseño de Carreteras).

2.10 INGENIERIA DEL PROYECTO

En la actualidad se cuenta con el Manual de diseño de puentes, según resolución ministerial N° 589-2003-MTC/02, del 31 de Julio del 2003 y cuyo objetivo es definir las normas que rijan el diseño de las estructuras que conforman los puentes para el beneficio de los usuarios de la infraestructura vial, debiendo ser aplicado a nivel nacional, y contiene las normas técnicas fundamentales, pautas y lineamientos básicos necesarios para el planeamiento, análisis y diseño de puentes. (MTC, 2007)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

La integración con la vía de comunicación y el medio ambiente es el objetivo principal del proyecto geométrico del puente. Se consideran dos aspectos dentro de la geometria de un puente: (MTC, 2007)

2.10.1 GEOMETRÍA GENERAL

2.10.1.1 DESARROLLO EN PERFIL LONGITUDINAL

El puente debe estar integrado completamente al desarrollo geométrico de la carretera, tanto en planta como en perfil.

2.10.1.2 DESARROLLO EN PLANTA DEL PUENTE

Será en lo posible aquel que cruce el desnivel, río o camino transversal aproximadamente a 90°.

2.10.2 GEOMETRÍA DE DETALLES

En esta sección se presentan los detalles y los elementos a ser considerados para su empleo y funcionamiento.

• Secciones transversales.- El ancho no será menor que el ancho del acceso del puente y será proyectada con los siguientes elementos: vía de tráfico, veredas, barandas y elementos de drenaje. Además, para drenaje del tablero las secciones transversales deberán tener pendiente transversal mínima de 2%, para las superficies de rodadura.

2.10.2.1 DISPOSITIVOS BÁSICOS DE PROTECCIÓN (BARANDAS)

Las barandas deben ser seguras, económicas y estéticas. Las soluciones mixtas de barandas de metal más concreto satisfacen generalmente estos requisitos.

2.10.2.2 DISPOSITIVOS BÁSICOS DE TRANSICIÓN Y CONTENCIÓN

De acuerdo a los tipos de apoyos que tendrá el puente, se deberán disponer los elementos que constituyan la transición con la vía, los cuales son principalmente estribos, y alas.

a. ESTRIBOS

Serán dimensionados considerando la función de servir como transición entre el puente y la vía, además de servir como apoyo de los extremos de la superestructura y como elementos de contención y estabilización de los terraplenes de acceso.

b. ALAS

Son estructuras laminares con una geometría adecuada para la contención lateral de los terraplenes de acceso. Las alas deben tener un espesor no menor a 0.25 m.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

c. JUNTAS DE DILATACION

Las juntas de dilatación deben ser limitadas a lo estrictamente necesario, por estar constituidas por dispositivos con una vida útil limitada.

Las juntas de dilatación intermedias y aquellas situadas en los estribos deben ser escogidas en función del desplazamiento previsto después de su colocación.

2.10.3 DETERMINACION DE LA LUZ DEL PUENTE

La luz del puente es el primer parámetro que se tendrá en cuenta, cuando se inicia el proceso de selección del tipo de puente a diseñar. La luz del puente se determina después de haber realizado el levantamiento topográfico y quedar bien definida la ubicación de los apoyos. Tener en cuenta no estrechar el cauce del río por que el río siempre tratara de recuperar su cauce y puede traer abajo la estructura. (Mantilla, 1996)

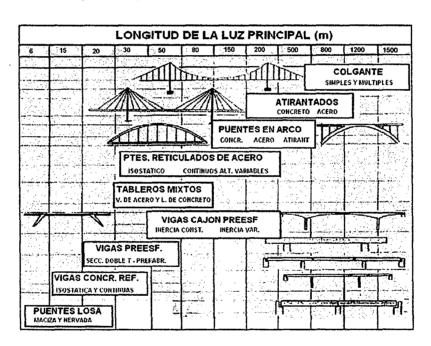


Figura 6: Tipos De Puentes Según Su Luz Libre

2.10.4 DETERMINACION DE LA ALTURA DEL PUENTE

La altura del puente queda determinada después de haber realizado el estudio hidrológico determinado por los parámetros más importantes a tomar en cuenta tales como: Tirante máximo, borde libre, profundidad de socavación. Además de las condiciones topográficas de la zona de emplazamiento de la estructura. (Mantilla, 1996)

2.10.5 ANCHO DE LA CALZADA Y DE LOS ANDENES

El ancho de la calzada, es el ancho libre medido normalmente al eje longitudinal del puente, entre bordes inferiores de los bordillos (guardarruedas) o andenes.

Para los casos en que no se construyan los bordillos o los andenes, la medida se toma entre las caras interiores de las barandas.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Al ancho del andén, se mide normalmente al eje longitudinal del puente, entre su borde exterior y el borde interior más bajo.

2.11 CONSIDERACIONES GENERALES DEL DISEÑO ESTRUCTURAL

2.11.1 ESPECIFICACIONES DE DISEÑO POR EL METODO LRFD

Con El método de diseño LRFD toma en cuenta la variabilidad en las propiedades de los elementos estructurales de una manera explícita. El LRFD se apoya en el uso extensivo de métodos estadísticos que determinan acertadamente los factores de carga y resistencia adecuados para cada tipo de elemento estructural. (MTC, 2007)

El formato adoptado para el manual es el de CARGAS Y RESISTENCIAS FACTORADAS LRFD, lo que permite la consideración adecuada de la variabilidad tanto en las cargas como en las propiedades de los elementos resistentes. Los puentes se diseñan para satisfacer una serie de condiciones límite de seguridad y servicio, todas ellas de igual importancia, teniendo en cuenta aspectos constructivos, de posibilidad de inspección, de estética y de economía. (MTC, 2007)

El formato LRFD es más racional que el tradicional diseño en condiciones de servicio, lo que explica la tendencia mundial hacia la adopción de códigos en ese formato. El camión de diseño a utilizar es el HL93. (MTC, 2007)

2.11.2 ELEMENTOS ESTRUCTURALES

2.11.2.1 **PUENTE**

Para muchos, los puentes son sólo grandes y casi indestructibles obras de ingeniería. Son muy pocas las personas que al verlos se detienen y reflexionan acerca de su utilidad, de su forma, su estructura y otras importantes características que hacen de ellos obras muy necesarias para el desarrollo de un país, pueblo o región. (AASTHO, 2011)

2.11.2.2 ELEMENTOS ESTRUCTURALES DE UN PUENTE

El rol que juegan los elementos estructurales de un puente en el proceso de construcción es de vital importancia. Se presentan a continuación los principales componentes de los puentes:

a. LA SUPERESTRUCTURA

Se denomina superestructura al sistema estructural formado por el tablero y la estructura portante principal.

> El tablero

Está constituido por los elementos estructurales que soportan, en primera instancia, las cargas de los vehículos para luego transmitir sus efectos a la estructura principal.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Accesorios del Tablero

En el tablero se deben colocar elementos accesorios como veredas, barandas, etc, que en general constituyan carga muerta adicional.

La estructura principal

Se denomina así al sistema estructural que soporta el tablero y salva el vano entre apoyos, transmitiendo las cargas a la subestructura.

b. LA SUBESTRUCTURA

La subestructura está formada por los elementos estructurales que soportan la superestructura y que transmiten las cargas al terreno a través de la cimentación. Dependiendo su ubicación, se denominan estribos o pilares.

Los estribos

Son los apoyos extremos del puente.

c. LA CIMENTACIÓN

Cimentación superficial

Es la que se hace mediante zapatas que trasmiten la carga al suelo portante. Este tipo de cimentación se utiliza cuando el estrato portante adecuado se encuentra a pequeñas profundidades y a la cual es posible llegar mediante excavaciones.

d. DISPOSITIVOS DE CONEXIÓN

En los puentes, además de los elementos estructurales indicados anteriormente, existen dispositivos de conexión que deben ser analizados y diseñados cuidadosamente y generosamente por cuanto se ha observado que su comportamiento es de suma importancia durante sismos, huaycos y cambios de temperaturas. A los dispositivos de conexión entre la superestructura y la subestructura se les denomina aparatos de apoyo que pueden ser fijos o móviles.

2.11.3 MATERIALES PARA LA CONSTRUCCION DE PUENTES

Los materiales que más se utilizan actualmente en la construcción de puentes son el concreto y el acero: (MTC, 2007)

2.11.3.1 CONCRETO

En la superestructura de los puentes no se debe utilizar concreto de menos de 28MPa (fc = 280 Kg/cm²).

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.11.3.2 ACERO

El acero se utiliza en la construcción de puentes bajo tres formas: Acero estructural, acero de refuerzo y acero pre esforzado.

2.11.4 FILOSOFÍA DE DISEÑO

Los puentes deberán ser diseñados teniendo en cuenta los Estados Limite que se especificarán, para cumplir con los objetivos de constructibilidad, seguridad y serviciabilidad, así como con la debida consideración en lo que se refiere a inspección, economía y estética. (MTC, 2007)

2.11.4.1 ESTADOS LÍMITE

Los componentes y conexiones deberán satisfacer la ecuación N° 62 para cada estado límite.

n ∑vi Qi < ØRn=Rr

.....Ecuación N° 51

Para lo cual:

 $\eta = \eta D \eta R \eta I \ge 0.95$

.....Ecuación N° 52

Dónde:

γ_i: factor de carga (es un multiplicador obtenido estadísticamente que se aplica a los efectos de fuerza).

Ø: factor de resistencia (es un multiplicador obtenido estadísticamente que se aplica a la resistencia nominal de acuerdo al material y/o elemento.

η: factor que relaciona a la ductilidad, redundancia, e importancia operativa.

 η_{D} :factor relacionado con la ductilidad

ηκ: factor relacionado con la redundancia

ηι:factor relacionado con la importancia operativa

Qi: efectos de fuerza

R_n: Resistencia nominal

R_r: Resistencia factorizada: ØR_n

a. ESTADO LÍMITE DE SERVICIO

El estado límite de servicio será tomado en cuenta como una restricción sobre los esfuerzos, deformaciones y ancho de grietas bajo condiciones regulares de servicio.

El estado límite de servicio da experiencia segura relacionada a provisiones, los cuales no pueden ser siempre derivados solamente de resistencia o consideraciones estadísticas.

^{*} La ecuación 52 es la base del método LRFD

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

b. ESTADO LÍMITE DE FATIGA Y FRACTURA

El estado límite de fatiga será tomado en cuenta como un juego de restricciones en el rango de esfuerzos causados por un solo camión de Diseño que ocurre en el número esperado de ciclos correspondientes a ese rango es esfuerzos.

El estado límite de fractura será tomado en cuenta como un juego de requerimientos de tenacidad del material.

El estado límite de fatiga asegura limitar el desarrollo de grietas bajo cargas repetitivas para prevenir la rotura durante la vida de diseño de puentes.

c. ESTADO LÍMITE DE RESISTENCIA

Se debe considerar el estado límite de resistencia para garantizar que se provee resistencia y estabilidad, tanto local como global, para resistir las combinaciones de cargas estadísticamente significativas especificadas que se anticipa que el puente experimentará durante su período de diseño.

d. ESTADO LÍMITE CORRESPONDIENTE A EVENTOS EXTREMOS

Se debe considerar el estado límite correspondiente a eventos extremos para garantizar la supervivencia estructural de un puente durante una inundación o sismo significativo, o cuando es embestido por una embarcación, un vehículo o un flujo de hielo, posiblemente en condiciones socavadas.

e. DUCTILIDAD

El sistema estructural de un puente se debe dimensionar y detallar de manera que se asegure en los estados de resistencia y evento extremo el desarrollo de deformaciones inelásticas significativas y visibles antes de la falla.

Valores de no para el estado Límite de Resistencia:

 $\eta_D = 1.05$ para componentes y conexiones no dúctiles

 $\eta_D = 0.95$ para componentes y conexiones dúctiles

Para los demás Estados Límite:

 $\eta_{\rm D} = 1.00$

f. REDUNDANCIA

Deberán usarse rutas múltiples de carga y estructuras continuas a menos que se tenga razones convincentes de lo contrario.

Valores de na para el estado Límite de Resistencia:

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

 η_R = 1.05 para miembros no redundantes

 η_R = 0.95 para miembros redundantes

Para los demás Estados Límite:

 $\eta_{R} = 1.00$

g. IMPORTANCIA OPERATIVA

Este artículo será aplicado solamente a los Estados Límite de Resistencia y Evento Extremo.

El propietario puede aclarar si un puente, una conexión o una componente estructural tienen importancia operativa.

La clasificación referente a importancia operativa deberá tomar en cuenta los requerimientos sociales, de supervivencia, de seguridad y de defensa.

Si un puente es considerado de importancia operativa:

 $\eta_R \le 1.05$

Otros puentes

 $\eta_{R} = 0.95$

*Puentes clasificados como críticos o esenciales deben ser considerados como de importancia operativa.

2.11.5 CARGAS

2.11.5.1 CARGAS PERMANENTES

Son aquellas que actúan durante toda la vida útil de la estructura sin variar significativamente, o que varían en un solo sentido hasta alcanzar un valor límite. Corresponden a este grupo el peso propio de los elementos estructurales y las cargas muertas adicionales tales como las debidas al peso de la superficie de rodadura o al balasto, empuje de tierra, los rieles y durmientes de ferrocarriles. (MTC, 2007)

2.11.5.2 PESO PROPIO Y CARGAS MUERTAS

El peso propio se determinará considerando todos los elementos que sean indispensables para que la estructura funcione como tal las cargas muertas incluirán el peso de todos los elementos no estructurales, tales como veredas, superficies de rodadura, balasto, rieles, durmientes, barandas, postes, tuberías, ductos y cables.

El peso propio y las cargas muertas serán estimados sobre la base de las dimensiones indicadas en planos en cada caso considerando los valores medios de los correspondientes pesos específicos.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

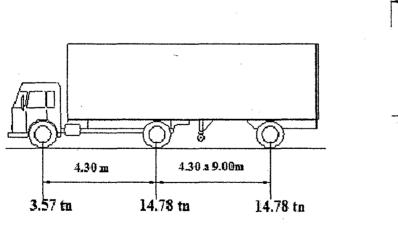
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.11.5.3 CARGAS VARIABLES

Son aquellas para las que se observan variaciones frecuentes y significativas en términos relativos a su valor medio. Las cargas variables incluyen los pesos de los vehículos y personas, así como los correspondientes efectos dinámicos, las fuerzas de frenado y aceleración, las fuerzas centrifugas, fuerzas debidas al empuje de agua y subpresiones, las acciones de sismos y las acciones de viento.

2.11.5.4 CARGAS VIVAS DE VEHICULOS

a. CARGAS VIVAS DE DISEÑO


La carga viva correspondiente a cada vía será la suma de:

- Camión de diseño más sobrecarga distribuida
- Tándem más sobrecarga distribuida

1. Camión de Diseño

Las cargas por eje y los espaciamientos entre ejes serán los indicados en la Figura N°7, la distancia entre los dos ejes de 14.78 Tn será tomada como aquella que, estando entre los límites de 4.30 m y 9.00m resulta en los mayores efectos.

Figura 7: Características del camión de diseño

a) Longitudinalmente

b) Transversalmente

Fuente: (MTC, 2007)

2. Tándem de Diseño:

El Tándem de diseño consistirá en un conjunto de dos ejes, cada uno con una carga de 11.2 Tn espaciados a 1.20 m. La distancia entre las ruedas de cada eje, en dirección transversal, será de 1.80 m.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

b. SOBRECARGA DISTRIBUIDA

Se considerará una sobrecarga de 0.97 Tn/m, uniformemente distribuida en dirección longitudinal. Se supondrá que esta carga se distribuye uniformemente sobre un ancho de 3.00 m. en dirección transversal.

c. MODIFICACIÓN POR NÚMERO DE VÍAS CARGADAS

Los efectos máximos de las cargas vivas serán determinados considerando todas las posibles combinaciones de número de vías cargadas, multiplicando en cada caso las cargas por los factores indicados en la Tabla N° 32.

TABLA N° 32: Modificación por número de vías cargadas

Número de Vías Cargadas	Factor
1	1.20
2	1.00
3	0.85
4 a más	0.65

Fuente: (MTC, 2007)

2.11.5.5 UBICACIÓN DE LAS CARGAS VIVAS

a. POSICIÓN DE LAS CARGAS EN DIRECCIÓN LONGITUDINAL

En la dirección longitudinal, el puente será cargado en forma continua o discontinua según resulte más crítico para el efecto en estudio, considerando los siguientes casos:

- Camión de diseño más carga distribuida, la distancia entre los ejes de 14.78 Tn será aquella que produzca el efecto más desfavorable en cada caso.
- Tándem de diseño más carga distribuida.

b. POSICIÓN DE LAS CARGAS EN DIRECCIÓN TRANSVERSAL

Cada vía cargada, así como la franja de 3.00m de ancho sobre la que actúa la sobrecarga distribuida, se deberá colocar en dirección transversal en la posición que produzca los máximos efectos en cada caso.

*El camión y el tándem de diseño se ubicarán en las posiciones más desfavorables respetando los límites siguientes:

 Para el diseño del voladizo del tablero el centro de la rueda estará a por lo menos 0.30m del sardinel o baranda.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

 Para el diseño del resto de los elementos el centro de la rueda estará por lo menos 0.60m del borde de la vía cargada.

2.11.5.6 CARGAS SOBRE VEREDAS, SARDINELES Y BARANDAS

a. SOBRECARGAS EN VEREDAS

Se deberá aplicar una carga peatonal de 360 Kg/m² en todas las veredas de más de 60 cm de ancho, y simultáneamente con la sobrecarga vehicular de diseño.

b. FUERZAS SOBRE SARDINELES

Los sardineles serán diseñados para resistir una fuerza lateral no menor que 750 Kg/m de sardinel, aplicada en el tope del sardinel o una elevación de 0.25m sobre el tablero si el sardinel tuviera mayor altura.

c. FUERZAS SOBRE BARANDAS

Según las especificaciones AASHTO las fuerzas mínimas sobre barandas, una carga horizontal de 225 Kg/m y una carga vertical de 150 Kg/m.

2.11.5.7 INCREMENTO POR CARGA DINAMICA (IM)

Las cargas vivas correspondientes al camión o al tándem de diseño se incrementarán en los porcentajes indicados en la Tabla 33, para tener los efectos de amplificación dinámica y de impacto.

TABLA N° 33: Incremento por carga dinámica

COMPONENTE	IM
Juntas del Tablero	75 %
Todos los Estados Límites	1370
Todos los demás componentes	
Estado límite de fatiga y fractura	33%
Todos los demás estados límites	

Fuente: (MTC, 2007)

2.11.6 FACTORES DE CARGA Y COMBINACIONES

Se especifican los requerimientos mínimos para las cargas y las fuerzas. Los límites de su aplicación, los factores de carga y las combinaciones de carga a ser usadas en el diseño de puentes nuevos.

Cuando se considera niveles diversos de condiciones de carga, la selección de la condición de diseño será responsabilidad del propietario de la obra. (MTC, 2007)

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DÉL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.11.6.1 CARGAS Y NOTACION

Se considera las siguientes cargas y fuerzas permanentes y transitorias:

- Cargas Permanentes
 - DC = carga muerta de componentes estructurales y no estructurales
 - DW = carga muerta de la superficie de rodadura y dispositivos auxiliares
- · Cargas Transitorias

EQ = sismo

IM = carga de impacto

LL = carga viva vehicular

PL = carga viva de peatones

BR = fuerza de frenado vehicular

FR = fricción

2.11.6.2 FACTORES DE CARGA Y COMBINACIONES

La carga total factorizada será calculada como:

 $Q = n \sum \gamma_i q_i$

.....Ecuación N° 53

Dónde:

n: modificador de carga que relaciona ductilidad, redundancia e operativa

importancia

γi : factores especificados en la Tabla N° 38 y Tabla n° 39

qi : carga especificada en esta sección

Los componentes y las conexiones de un puente satisfaceran la ecuación N° 53 para las combinaciones aplicables de los efectos de la fuerza extrema factorizada como se especifica en los estados límites siguientes:

a. RESISTENCIA I

Combinación básica de carga relacionada con el uso vehicular normal, sin considerar viento.

b. SERVICIO I

Combinación de carga relacionada al uso operativo normal del puente con viento a 90 Km/h y con todas las cargas a su valor nominal.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

ECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

c. SERVICIO II

Combinación de carga considerada para controlar la fluencia de la estructura de acero y el deslizamiento de las conexiones críticas, debidos a la carga viva vehicular.

d. FATIGA

Combinación de fatiga y carga de fractura, relacionada con la carga viva vehicular repetitiva y las respuestas dinámicas bajo un camión de diseño simple con el espaciamiento entre ejes.

TABLA N° 34: Combinaciones de Carga y Factores de Carga

Combinación de Cargas	DC DD DW	LL IM CE	WA	WS	WL	FR	TU CR SH	TG	SE	lindicade	olament os en es embinaci	e uno tas colur ón	de los nnas en
	EH EV ES	BR PL LS					5.1			EQ	IC	СТ	CV
Estado Límite					<u> </u>	<u> </u>				<u> </u>			
RESISTENCIA I	70	1.75	1.00			1.00	0.50/1.20	Υтg	YSE				
RESISTENCIA II	γ _o	1.35	1.00			1.00	0.50/1.20	Υrg	YSE				
RESISTENCIA III	γp		1.00	1.40		1.00	0.50/1.20	Ύтg	/SE				
RESISTENCIA IV Solamente EH, EV, ES, DW, DC	γ _ρ 1.5		1.00			1.00	0.50/1.20						
RESISTENCIA V	γ́P	1.35	1.00	0.40	0.40	1.00	0.50/1.20	Ϋ́τG	ΊSΕ				
EVENTO EXTREMO I	Ϋ́ρ	γEQ	1.00			1.00				1.00			
EVENTO EXTREMO II	7 _P	0.50	1.00			1.00					1.00	1.00	1.00
SERVICIO 1	1.00	1.00	1.00	0.30	0.30	1.00	1.00/1.20	ΫτG	/SE				
SERVICIO II	1.00	1.30	1.00			1.00	1.00/1.20						
SERVICIO III	1.00	0.80	1.00			1.00	1.00/1.20	ΫŢĠ	YSE				
FATIGA - Solamente LL,IM y CE		0.75								,			

Fuente: (MTC, 2007)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° 35: Factores de Carga para Cargas Permanentes ye

TIPO DE CARGA	FACTOR D	E CARGA
	Máximo	Mínimo
DC : Componentes y Auxiliares	1.25	0.90
DD : Fuerza de arrastre hacia abajo	1.80	0.45
DW : Superficies de Rodadura y Accesorios	1.50	0.65
EH : Presión horizontal de tierra		
* Activa	1.50	0.90
* En reposo.	1.35	0.90
EV : Presión vertical de tierra		·
* Estabilidad global	1.35	N/A
* Estructuras de Retención	1.35	1.00
* Estructuras Rígidas Empotradas	1.30	0.90
* Pórticos Rígidos	1.35	0.90
* Estructuras Flexibles empotra - dos excepto alcantarillas metáli - cas	1.95	0.90
* Alcantarillas Metálicas	1.50	0.90
ES: Carga superficial en el terreno	1.50	0.75

Fuente: (MTC, 2007)

2.12 DISEÑO DE LA SUPERESTRUCTURA DEL PUENTE

2.12.1 LOSA PERPENDICULAR AL TRAFICO

2.12.1.1 PREDIMENSIONAMIENTO

a. ESPESOR LOSA

HL= 1.2 * (S+3000)

.....Ecuación N° 54

30

Dónde:

HL: espesor de losa (mm)

S: longitud de separación entre vigas (mm)

2.12.2 ESTRUCTURAS METALICAS

2.12.2.1 DISPOSICIONES GENERALES

El diseño de miembros y conexiones deberá ser consistente con el comportamiento que se espera que tenga el sistema estructural y las hipótesis hechas en el análisis. A menos que exista una restricción impuesta por la normativa de edificación que corresponda, puede dotarse de resistencia y estabilidad a la estructura mediante cualquier combinación de miembros y conexiones.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN. PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.12.2.2 BASE DE DISEÑO

El diseño se realizará de acuerdo con las disposiciones del método *Diseño en Base a Factores de Carga y Resistencia* (LRFD).

a. RESISTENCIA REQUERIDA

La resistencia requerida de los miembros estructurales y conexiones será determinada mediante análisis estructural para las combinaciones de carga que corresponda.

Se acepta realizar el diseño mediante análisis elástico, inelástico o plástico. Las disposiciones para el análisis inelástico o plástico.

b. ESTADOS LÍMITE

El diseño estará basado en el principio que cuando la estructura es sometida a las combinaciones de carga apropiadas, ningún estado límite aplicable, sea resistente o de servicio, será excedido.

c. DISEÑO POR RESISTENCIA USANDO DISEÑO EN BASE A FACTORES DE CARGA Y RESISTENCIA (LRFD)

El diseño de acuerdo a las disposiciones de Diseño en Base a Factores de Carga y Resistencia (LRFD) satisface los requisitos de esta Especificación cuando la resistencia de diseño de cada componente estructural es mayor o igual a la resistencia requerida determinada de acuerdo a las combinaciones de carga LRFD. (AASTHO, 2001)

El diseño se realizará de acuerdo con la ecuación 65:

$$R_{n} \leq \emptyset \cdot R_{n}$$

.....Ecuación N° 55

Donde:

 R_u = resistencia requerida (LRFD)

 R_n = resistencia nominal.

Ø = factor de resistencia.

 $\emptyset R_n$ = resistencia de diseño

d. DISEÑO DE CONEXIONES

Los miembros de conexión se diseñarán de acuerdo con las disposiciones en ítems que se describen más adelante. Las fuerzas y deformaciones de diseño deberán ser consistentes con el desempeño esperado de la unión y las hipótesis del análisis estructural.

> Conexiones Simples

Una conexión simple trasmite un momento de magnitud despreciable. En el análisis de la estructura, se puede suponer que las conexiones simples permiten la rotación relativa de los

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

miembros que conectan. La conexión simple tendrá una capacidad de rotación suficiente para acomodar las rotaciones requeridas por el análisis de la estructura. Se permite la rotación inelástica de la unión.

> Conexiones de Momento

Una conexión de momento trasmite momento, lo que da lugar a dos tipos de conexiones, denominadas FR y PR, tal como se explica a continuación.

• Conexiones de Momento Completamente Restringidas (FR)

Una conexión de momento completamente restringida trasmite momento con una rotación despreciable entre los miembros conectados. En el análisis de la estructura se puede suponer que la conexión no permite la rotación relativa. Una conexión FR, deberá tener suficiente resistencia y rigidez para mantener el ángulo entre los miembros conectados en los estados límite resistentes.

• Conexiones de Momento Parcialmente Restringidas (PR)

Una conexión de momento parcialmente restringida trasmite momento pero la rotación entre los miembros conectados no es despreciable. En el análisis de la estructura, la relación fuerza-deformación de la conexión debe ser incluida. Las curvas características de las conexiones PR que se usen, deberán encontrarse documentadas en la literatura técnica o en su defecto ser determinadas mediante métodos analíticos o experimentales. Los miembros componentes de una conexión PR deberán tener suficiente resistencia rigidez y capacidad de deformación en los estados límite resistente.

2.12.2.3 ESPECIFICACIONES Y CODIGOS DE CONSTRUCCIÓN.

El Diseño de la mayoría de las estructuras está regido por especificaciones o normas, aún si éstas no rigen el diseño, el proyectista las tomará como una guía. Las especificaciones de ingeniería son desarrolladas por varias organizaciones y contienen las opiniones más valiosas de esas instituciones sobre la buena práctica de la ingeniería.

Algunas organizaciones publican prácticas que se recomiendan para el uso regional o nacional; sus especificaciones no son legalmente obligatorias, al menos que estén contenidas en el código de edificación local o formen parte de un contrato en particular; entre esas organizaciones están; (AASTHO, 2001)

2.12.2.4 CARGAS

No debe dejarse de considerar cualquier carga que pueda llegar a presentarse.

Después de que se han estimado las cargas es necesario investigar las condiciones más desfavorables que pueden ocurrir en un momento dado.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

a. CARGAS MUERTAS

Son cargas de magnitud constante que permanecen fijas en un mismo lugar; para diseñar una estructura es necesario estimar los pesos o cargas muertas de sus partes.

Los tamaños y pesos exactos de las partes no se conocen hasta que se hacen un análisis estructural y se seleccionan los miembros de la estructura.

b. CARGAS VIVAS

Son aquella que puede cambiar de lugar y magnitud. Dicho simplemente, todas las cargas que no son muertas son vivas. Las cargas que se mueven bajo su propio impulso, como camiones, gente, grúas, etc; se denominan cargas móviles y aquellas que pueden ser desplazadas como muebles, materiales en un almacén etc, se denominan cargas movibles. Otras cargas vivas son aquellas causadas al construir, por al viento, lluvia, sismo, voladuras, suelos y cambios de temperatura.

2.12.2.5 DEFINICIÓN DE LOS MÉTODOS DE DISEÑO: ELÁSTICO Y PLÁSTICO

Casi todas las estructuras de acero existentes se diseñaron con métodos elásticos. El proyectista estima las cargas de trabajo o servicio, es decir, las cargas que la estructura tiene que soportar y diseña los miembros estructurales con base en ciertos esfuerzos permisibles. Éstos, usualmente, son cierta fracción del esfuerzo mínimo de fluencia especificado del acero.

Se ha visto que la ductilidad del acero proporciona una reserva de resistencia y esta circunstancia es la base del diseño plástico. En este método las cargas de trabajo se estiman y se multiplican por ciertos factores de seguridad y los elementos estructurales se diseñan con base en sus resistencias al colapso.

2.12.2.6 ELECCIÓN DEL MÉTODO DE DISEÑO

a. MÉTODO POR ESFUERZOS PERMISIBLES

Se puede emplear el diseño por esfuerzos permisibles o también conocido como el método de servicio (ASD- Allowable Strees Desing), integramente para el diseño en acero, es decir, se harán todos los cálculos con el método de los esfuerzos permisibles, como para deflexiones, agrietamientos, fatiga, pandeo, esfuerzos combinados y demás cálculos que se tengan que hacer de acuerdo a las especificaciones que nos da la ASSHTO. (AASTHO, 2001)

b. DISEÑO CON FACTORES DE CARGA Y RESISTENCIA (LRFD)

El LRFD es similar al diseño plástico en tanto que considera la condición de falla o de resistencia última. Las cargas se multiplican por factores de carga y los miembros se diseñan para proporcionar suficiente resistencia frente a las cargas factorizadas. Además la capacidad nominal o teórica de cada miembro se multiplica por un factor de resistencia menor que 1. El criterio LRFD se puede expresar como:

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Resistencia útil o de diseño efectos de las cargas factorizadas

El método LRFD es más económico cuando las cargas vivas son pequeñas comparadas con las cargas muertas.

2.12.3 DISEÑO DE MIEMBROS EN TRACCION

2.12.3.1 LÍMITES DE ESBELTEZ

No existen límites de esbeltez para miembros en tracción.

Nota: Para miembros diseñados básicamente en tracción, la razón de esbeltez L/r preferiblemente no debe exceder de 300. Esta sugerencia no se aplica a barras o colgadores en tracción.

2.12.3.2 RESISTENCIA EN TRACCIÓN

La resistencia de diseño en tracción, $\phi_z P_n$, y la resistencia admisible en tracción, P_π/Ω_z , de miembros solicitados a tracción debe ser el menor valor obtenido de acuerdo a los estados límite de fluencia en tracción en la sección bruta y fractura en tracción en la sección neta.

1. Para fluencia en tracción en la sección bruta:

$$P_n = F_y A_y$$
Ecuación N° 56 $\Omega_t = 0.90 (\text{LRFD})$ $\Omega_t = 1.67 (\text{ASD})$

2. Para fractura en tracción en la sección neta:

$$P_{n}=F_{n}A_{p}$$
Ecuación N° 57 $\emptyset_{r}=0.75({
m LRFD})$ $\Omega_{r}=2.00({
m ASD})$

Donde:

 A_e = área neta efectiva, cm² (mm²)

 A_{α} = área bruta del miembro, cm² (mm²)

Fy = tensión de fluencia mínima especificada del tipo de acero utilizado, kgf/cm² (MPa)

 $F_{\it u}$ = tensión última mínima especificada del tipo de acero utilizado, kgf/cm² (MPa

Cuando se presentan perforaciones en el miembro con conexiones soldadas en sus extremos, o en conexiones soldadas mediante soldadura de ranura o tapón, debe usarse el área neta efectiva a través de las perforaciones en la Ecuación 56.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORÁN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.12.3.3 DETERMINACIÓN DE ÁREAS

a. ÁREA BRUTA

El área bruta, A_{Q_i} de un miembro es el área total de la sección transversal.

b. ÁREA NETA

El área neta de un miembro, A_n , es la suma de los productos que se obtienen de multiplicar los espesores por los correspondientes anchos netos de los miembros de cada elemento calculados de la siguiente manera:

Para calcular el área neta para tensión y corte, el ancho de una perforación se tomará como 2 mm más grande que la *dimensión nominal* de la perforación.

Para una cadena de perforaciones que se extiende a través de una pieza, en una línea en diagonal o zigzag, el ancho neto de esa parte se obtendrá deduciendo del ancho bruto, la suma de diámetros o ranuras de todas las perforaciones en una cadena, y agregando, para cada cambio de línea perpendicular a la dirección de la fuerza, la cantidad **s²/4g**.

Donde:

- s = espaciamiento longitudinal, medido entre centros (paso) de dos perforaciones consecutivas, cm (mm)
- g = espaciamiento transversal, medido entre centros (gramil) de dos perforaciones consecutivas, cm (mm)

Para ángulos, el gramil de perforaciones en alas adyacentes será la suma de los gramiles medidos desde la espalda del ala de menor espesor.

Para secciones tubulares (HSS) soldadas a una plancha gusset, el área neta, A_n , es el área bruta menos el producto del espesor por el ancho total del material removido por la ranura.

Para determinar el área neta a través de soldaduras de tapón o ranura, no se considerara que el metal soldado colabore con el área neta.

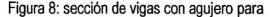
c. ÁREA NETA EFECTIVA

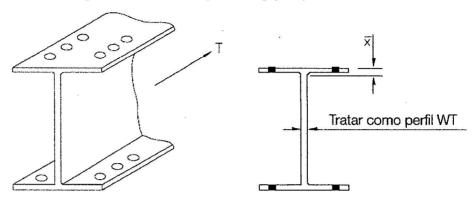
El área neta efectiva de los miembros traccionados debe ser determinada de la siguiente forma:

$$A_{\kappa} = A_{n} U$$
Ecuación N° 58

Donde *U*, el factor de corte diferido (shear lag), es determinado como se muestra en la Tabla 36.

Miembros tales como ángulos simples, ángulos dobles y secciones T laminadas (WT) deben tener conexiones diseñadas de manera tal que U es igual o mayor que 0.60.


pasadores


UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Fuente: (AEISC, 2005)

TABLA N° 36: Factor de Corte Diferido para Conexiones de Miembros en

Todos los miembros en tracción donde la carga es transmitida directamente a cada uno de los elementos de la sección por conectores o soldaduras (excepto en los Casos 3, 4, 5 y 6) Todos los miembros en tracción, excepto las planchas y tubos, donde la carga es transmitida por conectores o soldaduras (Alternativamente, el Caso 7 puede ser utilizado para perfiles W, M, S y HP) Todos los miembros en tracción donde la carga es transmitida por conectores o soldaduras (Alternativamente, el Caso 7 puede ser utilizado para perfiles W, M, S y HP) Todos los miembros en tracción donde la carga es transmitida por soldaduras (Alternativamente, el Caso 7 puede ser utilizado para perfiles W, M, S y HP) Todos los miembros en tracción donde la carga es transmitida por soldaduras transversales a Solio algunos elementos de la sección. Planchas donde la carga de tracción es transmitida solamente por soldaduras longitudinales. Tubos redondos con sólio una placa gusset concéntrica. Con sólio una placa gusset concéntrica. Tubo Rectangular Con sólio una placa gusset concéntrica. Con dos placas gusset concéntricas Tubo Rectangular Con dos placas gusset concéntricas Tubo Rectangular Con dos placas gusset concéntricas Con dos placas gusset concéntricas Tubo Rectangular Con dos pl		10-00-00000000 B 0			
planchas y tubos, donde la cargá as transmitida por coneciores o soldaduras (Alternativamente, el Caso 7 puede ser utilizado para perfiles W, M, S y HP) Todos los miembros en tracción donde la carga as transmitida por soldaduras transversales a sollo algunos elementos de la sección. Planchas donde la carga de tracción es transmitida solamente por soldaduras iongitudinales. Planchas donde la carga de tracción es transmitida solamente por soldaduras iongitudinales. V = 1.0	1	da es transmitida directamente a cada uno de		U = 1.0	
3 doubt lost himmer os ent uncontrol se a canga ga es transmitida por soldaduras transversales a sólo algunos elementos de la sección. 4 Planchas donde la carga de tracción es transmitida solamente por soldaduras I≥2w U = 1.0	2	planchas y tubos, donde la sólo algunos de los elemer conectores o soldaduras (A	carga es transmitida por itos de la sección por ilternativamente, el Caso 7	$U = 1 - \overline{x} / I$	-
transmitida solamente por soldaduras $2w > / \ge 1.5 \ w \ U = 0.87$ $1.5 \ w > / \ge W \ U = 0.75$ Tubos redondos con sólo una placa gusset $2w > / \ge 1.3 \ D \ U = 1.0$ Tubo Rectangular $2w > I \ge 1.3 \ D \ U = 1.0$ Con sólo una placa gusset concéntrica $I \ge 1.3 \ D \ U = 1 - \overline{Y} \ I$ $\overline{X} = O/\pi$ I $\ge H \ U = 1 - \overline{X} / I$ $\overline{X} = \frac{B^2 - 2BH}{4(B + H)}$ Perfiles W, M, S o HP, o T cortadas a partir de estos perfiles (Si U es calculado según Caso 2, se permite utilizar el mayor valor) Angulos simples (Si U es calculado según Caso 2, se permite utilizar el mayor valor) Angulos simples (Si U es calculado según Caso 2, se permite utilizar el mayor valor) Angulos simples (Si U es calculado según Caso 2, se permite utilizar el mayor valor) Angulos simples (Si U es calculado según Caso 2, se permite utilizar el mayor valor) Con al a conectores por línea en la dirección de carga Con 2 ó 3 conectores valor (D e 0.60)	3	ga es transmitida por soldaduras transversales		y An = área de los elementos conecta-	
Tubos redondos con sólo una placa gusset $ \begin{array}{c} $	4	transmitida solamente por soldaduras		$2w > / \ge 1.5 \text{ w} \dots U = 0.87$	
Tubo Rectangular Tubo No Storic Ha piaca gusset concéntrica Tubo Rectangular Tub	5	Tubos redondos con sólo una placa gusset concéntrica.		D / ≤ 1.3 D U = 1- ⅓ I	
Rectangular Con dos placas gusset concéntricas $1 \ge H \dots U = 1 - \overline{x}/1$ $x = \frac{B^2 - BH}{4(B + H)}$ $x = \frac{B^2 - BH}{4(B + H)}$	6	gusset concentrica			<u></u>
o T cortadas a partir de estos perfiles (Si U es calculado según Caso 2, se permite utilizar el mayor valor) Angulos simples (Si U es calculado según Caso 2, se permite utilizar el mayor valor) Angulos simples (Si U es calculado según Caso 2, se permite utilizar el mayor valor) $ \begin{array}{cccccccccccccccccccccccccccccccccc$,	Rectangular	con dos placas gusset concéntricas		_
Caso 2, se permite utilizar el mayor valor) Angulos simples (Si U es calculado según Caso 2, se permite utilizar el mayor valor) Caso 2, se permite con alma conectada con 4 o más conectores en la dirección de carga Con 4 o más conectores por línea en la dirección de carga U = 0.70 U = 0.80	7	o T cortadas a partir de estos perfiles (Si	más conectores por línea		·
Angulos simples (Si U es calculado según caso 2, se permite utilizar el mayor valor) Angulos simples (Si U es calculado según de carga con 2 ó 3 conectores por línea en la dirección U = 0.80 — U = 0.80 — U = 0.80 — U = 0.80 — U = 0.60		Caso 2, se permite con alma conectada con 4 o más conectores en la		<i>U</i> = 0.70	
utilizar el mayor con 2 ó 3 conectores valor) con 2 ó 3 conectores por línea en la dirección $u = 0.60$	8	U es calculado según	por línea en la dirección	· U = 0.80	-
		utilizar el mayor	por línea en la dirección	<i>U</i> = 0.60	

I = longitud de conexión, cm (mm); w = ancho plancha, cm (mm); = excentricidad de conexión, cm (mm); B = ancho total del tubo rectangular, medido 90° respecto al plano de conexión, cm (mm); H = altura total del tubo rectangular, medido en el plano de conexión, cm (mm)

Fuente: (AISC, 2005)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

ROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.12.3.4 MIEMBROS CONECTADOS POR PASADORES

a. RESISTENCIA EN TRACCIÓN

La resistencia de diseño en tracción, $\phi_{c}P_{x}$ y la resistencia admisible en tracción, Pn/Ω_{t} de miembros conectados por pasadores, debe ser el menor valor determinado de acuerdo a los estados límite de rotura en tracción, rotura en corte, aplastamiento y fluencia.

Para rotura en tracción en el área neta efectiva será:

$$P_n=2tb_{s_{ff}}F_u$$
Ecuación N° 59 $\emptyset_z=0.75({\rm LRFD})$ $\Omega_z=2.00({\rm ASD})$

(b) Para rotura en corte en el área efectiva:

$$P_n = 0.6 F_u \, A_{Sf}$$
Ecuación N° 60 $A_{Sf} = 0.75 ({
m LRFD})$ $\Omega_{Sf} = 2.00 ({
m ASD})$

Donde

 $A_{Sf} = 2t (a + d/2), cm^2 (mm^2)$

 a = Distancia más corta desde el borde de la perforación del pasador hasta el borde del miembro medido paralelamente a la dirección de la fuerza, mm (cm)

beff = 2t + 1.6, cm (= 2t + 16, mm) pero no más que la distancia actual entre el borde de la perforación hasta el borde de la parte medida en la dirección normal a la fuerza aplicada

d = Diámetro del pasador, cm (mm)

t = Espesor de la placa, cm (mm)

b. REQUERIMIENTOS DIMENSIONALES

La perforación del pasador debe estar localizada a media distancia entre los bordes del miembro en la dirección normal a la fuerza aplicada. Cuando se espera que el pasador permita el movimiento relativo entre las partes conectadas bajo máxima carga, el diámetro de la perforación del pasador no debe ser 1 mm más grande que el diámetro del pasador.

El ancho de la placa donde se encuentra la perforación del pasador no debe ser menor que 2beff. La mínima extensión, a, más allá del extremo sometido a aplastamiento de la perforación del pasador, paralelo al eje del miembro, no debe ser menor que 1.33 x beff.

Las esquinas más allá de la perforación del pasador están permitidas para ser cortadas en

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

ROFESIONAL: CONSTRUCCIÓN DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACM DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

45° al eje del miembro, siempre que el área neta más allá de la perforación del pasador, en un plano perpendicular al corte, no sea menor que la requerida más allá de la perforación del pasador paralelo al eje del miembro. (AISC, 2005)

2.12.4 DISEÑO DE MIEMBROS EN COMPRESIÓN

2.12.4.1 **DISPOSICIONES GENERALES**

La resistencia de diseño en compresión, $\phi_{\kappa} P_{\mu}$, y la resistencia admisible en compresión, P_n/Ω_{c_i} deben ser determinadas de la siguiente manera:

La resistencia de compresión nominal, P_n , es el menor valor obtenido de acuerdo con los estados límite de pandeo por flexión, pandeo torsional y pandeo flexo-torsional.

- Para secciones de simetría doble y secciones de simetría simple se aplica el estado límite de pandeo por flexión.
- Para secciones de simetría simple, secciones asimétricas y ciertas secciones de simetría doble, tales como columnas cruciformes o columnas armadas, los estados límite de pandeo torsional y flexo-torsional también son aplicables. (AISC, 2005)

$$\phi_c = 0.90(LRFD)$$

$$\Omega_a = 1.67 (ASD)$$

LÍMITES DE ESBELTEZ Y LONGITUD EFECTIVA

El factor de longitud efectiva, K, para calcular la esbeltez de columna, KLIr,

Donde:

L = longitud no arriostrada lateralmente del miembro, cm (mm)

r = radio de giro, cm (mm)

K = factor de longitud efectiva

Nota: Para miembros diseñados sólo en compresión, se recomienda que la razón de esbeltez KL/r no sea mayor que 200.

PANDEO POR FLEXIÓN DE MIEMBROS SIN ELEMENTOS ESBELTOS 2.12.4.3

Esta sección aplica para miembros solicitados en compresión con secciones compactas y no compactas, para elementos en compresión uniforme.

Nota: Cuando la longitud torsional no arriostrada es mayor que la longitud lateral no arriostrada, esta sección puede controlar el diseño de columnas de ala ancha y formas similares.

La resistencia de compresión nominal, P_{II} , debe ser determinada basándose en el estado límite de

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLÉ EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

pandeo por flexión: (AISC, 2005)

$$P_n = F_{\sigma r} A_{\sigma}$$

.....Ecuación N° 61

La tensión de pandeo por flexión, F_{cr} , se determina como sigue:

$$ullet$$
 Cuando $rac{RL}{r} \leq 4.71 \sqrt{rac{E}{F_y}} \left(o \ F_s \geq 0.44 F_y
ight)$

$$F_{cr} = \left[0.658^{\frac{F_y}{F_c}}\right] F_y$$

.....Ecuación N° 62

• Cuando
$$\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}} \left(o F_e < 0.44 F_y \right)$$

$$F_{cr} = 0.377 F_{\sigma}$$

.....Ecuación N° 63

Donde:

F_e = tensión crítica de pandeo elástico determinada de acuerdo a la Ecuación 64, cuando es aplicable, kgf/cm² (MPa)

$$F_{\rm g} = \frac{\pi^2 E}{\left(\frac{RL}{\epsilon}\right)^2}$$

.....Ecuación N° 64

Nota: Las dos ecuaciones para calcular los límites, basada en KL / r y la otra basada en F_e , dan los mismos resultados.

2.12.5 DISEÑO DE MIEMBROS EN FLEXIÓN

Para ayuda en la determinación de la sección apropiada de este item a aplicar, puede ser usada la Tabla N° 37.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° 37: Selección para las aplicaciones en secciones

Sección en Capítulo F	Sección	Esbeltez Ala	Esbeltez Alma	Estados Límite
F2		С	С	Y, LTB
F3		NC, S	С	LTB, FLB
F4		C, NC S	C, NC	Y, LTB, FLB, TFY
F5		C,NC, S	S	Y, LTB, FLB, TFY
F6		C, NC, S	N/A	Y, FLB
F7		C, NC, S	C, NC	Y, FLB, WLB
F8		N/A	N/A	Y, LB
F9		C, NC, S	N/A	Y, LTB, FLB
F10		N/A	N/A	Y, LTB, LLB
F11	• [N/A	N/A	Y, LTB
F12	Pe	N/A	N/A	Todos

Y= fluencia, LTB = pandeo lateral-torsional, FLB = pandeo local ala, WLB = pandeo local alma, TFY = fluencia ala tracción, LLB = pandeo local ala, LB = pandeo local, C = compacto, NC = no-compacto, S = esbelto

Fuente: (AEISC, 2005)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

ROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMAC DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.12.5.1 **DISPOSICIONES GENERALES**

La resistencia de diseño en flexión, $\phi_b M_n$, y la resistencia admisible en flexión, M_n / Ω_b , deben ser determinadas de la siguiente manera:

$$\phi_b = 0.90 \text{ (LRFD)}$$
 $\Omega_b = 1.67 \text{ (ASD)}$

$$\Omega_b = 1.67 \text{ (ASD)}$$

Los siguientes términos son comunes en las ecuaciones de este capítulo excepto donde se diga lo contrario:

> C_b = factor de modificación por pandeo lateral-torsional para diagramas de momento no uniformes cuando ambos extremos del segmento no arriostrado están restringidos a volcamiento.

$$C_b = \frac{12.5M_{max}}{2.5M_{max} + 3M_A + 4M_B + 3M_C} R_m \le 3.0$$

Donde:

Mmax = valor absoluto del máximo momento en el segmento no arriostrado, T-m (N-

 M_A = valor absoluto del momento en primer cuarto del segmento no arriostrado, T- m (N-mm)

 M_B = valor absoluto del momento en el centro del segmento no arriostrado, T-m (N-

 $M_{\rm C}$ = valor absoluto del momento en tercer cuarto del segmento no arriostrado, T-m (N-mm)

 R_m = parámetro de monosimetría de la sección transversal

= 1.0 para miembros con doble simetría

= 1.0 para miembros con simple simetría solicitados a flexión con curvatura simple

= $0.5 + 2 \left(\frac{l_{yw}}{l_{ex}}\right)^2$ miembros con simple simetría solicitados por flexión con doble curvatura

= momento de inercia en torno al eje principal y, cm4 (mm4) l

= momento de inercia del ala en compresión en torno al eje principal y, o si lyc flexión es en curvatura reversible, el momento de inercia de la menor ala, cm4 (mm4)

En miembros con simetría simple solicitados por flexión con curvatura simple, la resistencia de pandeo lateral-torsional debe ser verificada para ambas alas. La resistencia disponible de flexión debe ser mayor o igual que el máximo momento requerido que causa compresión del ala bajo consideración.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCIÓN DÉL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Es permitido tomar conservadoramente C_b igual a 1.0 en todos los casos. Para voladizos o extremos colgados donde el extremo libre no está arriostrado, $C_b = 1.0$. (AASTHO, 2001)

a. MIEMBROS COMPACTOS DE SECCIÓN H DE SIMETRÍA DOBLE Y CANALES FLECTADAS EN TORNO A SU EJE MAYOR

Esta sección aplica a miembros de sección H con simetría doble y canales flectados en torno a su eje mayor, teniendo almas compactas y alas compactas.

Nota: Todos los perfiles de uso común ASTM A6 W, S, M, C y MC excepto W21x48, W14x99, W14x90, W12x65, W10x12, W8x31, W8x10, W6x15, W6x9, W6x8.5 y MC4x6 tienen alas compactas para Fy = 3520 kgf/cm² (345 MPa); todos los perfiles de uso común ASTM A6 W, S, M, HP, C y MC tienen almas compactas para $F_y \le 4590 \text{ kgf/cm}^2$ (450 MPa).

La resistencia nominal de flexión, M_n , debe ser el menor valor obtenido de acuerdo con los estados límite de fluencia (momento plástico) y pandeo lateral-torsional.

> Fluencia

$$M_n = M_p = F_y Z_x$$
Ecuación N° 66

Donde:

Fy = tensión de fluencia mínima especificada del tipo de acero utilizado, kgf/cm² (MPa)

 $Z_X = m \circ dulo de sección plástico en torno al eje x, cm³ (mm³)$

Pandeo Lateral-Torsional

- Cuando $L_b \le L_p$, el estado límite de pandeo lateral-torsional no aplica
- Cuando $L_p < L_b \le L_r$

$$M_n = C_b \left[M_p - \left(M_p - 0.7 F_y S_x \right) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p \quad \text{............ Ecuación N° 67}$$

Cuando L_b > L_r

$$M_{TL} = F_{er}S_x \le M_p$$
Ecuación N° 68

Donde:

L_b = longitud entre puntos que están o arriostrados contra desplazamientos laterales

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN. PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

de compresión de ala o arriostrados contra giro de la sección, cm (mm)

$$F_{cr} = \frac{c_b \pi^2 E}{\left(\frac{L_b}{r_{cc}}\right)^2} \sqrt{1 + 0.078 \frac{J_c}{S_x h_c} \left(\frac{L_b}{r_{tc}}\right)^2} \qquad \qquad \qquad \text{Ecuación N° 69}$$

Donde:

E = módulo de elasticidad del acero = 2.04x106 kgf/cm² (200 000 Mpa)

 $J = \text{constante torsional, cm}^4 \text{ (mm}^4\text{)}$

 S_x = módulo de sección elástico en torno al eje x, cm³ (mm³)

Nota: El término raíz cuadrada en Ecuación 115 puede tomarse conservadoramente igual a 1.0.

Las longitudes límites L_p y L_r se determinan a continuación:

$$L_p = 1.76r_y \sqrt{\frac{E}{\hat{r}_y}}$$
Ecuación N° 76

$$L_r - 1.95 r_{rs} \frac{E}{0.7 F_y} \sqrt{1 + \sqrt{1 + 6.76 \left(\frac{0.7 F_y}{E} \frac{S_x n_n}{I_c} \right)^2}}$$
Ecuación N° 71

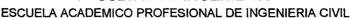
Donde:

$$r_{tx}^2 = \frac{\sqrt{r_y r_{vr}}}{s_x}$$
Ecuación N° 72

c = 1.0; para secciones H con simetría doble

$$c = \frac{h_3}{2} \sqrt{\frac{I_y}{C_w}}$$
; Para canales, donde

 $h_0 = \text{distancia}$ entre centroide de alas, cm (mm)


Nota: Si se toma el término raíz cuadrada conservadoramente igual a 1.0 en Ecuación (71), Ecuación (74) se reduce a:

$$L_r = \pi r_{ts} \sqrt{\frac{E}{0.7 \bar{r}_y}}$$
Ecuación N° 73

Se debe tener presente que esta aproximación puede ser extremadamente conservadora. Para secciones H con doble simetría y alas rectangulares.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA.

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

 $C_{w} = \frac{l_{y}h_{3}^{2}}{4}$ y entonces Ecuación (85) se reduce a:

$$r_{ts}^2 = \frac{l_7 h_0}{2S_r}$$

.....Ecuación N° 74

rts puede ser aproximado conservadoramente como el radio de giro del ala en compresión más un sexto del alma:

$$r_{zs} = \frac{b_f}{\sqrt{12\left(1 + \frac{2ht_w}{6b_f t_f}\right)}}$$
Ecuación N° 75

b. MIEMBROS DE SECCIÓN H Y CANALES FLECTADOS EN TORNO A SU EJE MENOR

Esta sección aplica para miembros de sección H y canales flectados en torno a su eje menor.

La resistencia de flexión nominal, M_n , debe ser el menor valor obtenido de acuerdo con los estados límite de fluencia (momento plástico) y pandeo local del ala. (AISC, 2005)

> Fluencia

$$M_{_{\rm Pl}} = M_{_{\rm Pl}} = F_{_{\rm Pl}} Z_{_{\rm Pl}} \le 1.60 F_{_{\rm Pl}} Z_{_{\rm Pl}}$$

....Ecuación N° 76

> Pandeo Local de Ala

Para secciones con alas compactas, no aplica el estado límite de pandeo local.

Nota: Todos los perfiles actuales ASTM A6 W, S, M, C y MC excepto W21x48, W14x99, W14x90, W12x65, W10x12, W8x31, W8x10, W6x15, W6x9, W6x8.5 y M4x6 tienen alas compactas para Fy = 3520 kgf/cm² (345 MPa).

• Para secciones con alas no compactas

$$M_n = \left[M_p - \left(M_p - 0.7 F_p S_p \right) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right]$$

.....Ecuación N° 77

Para secciones con alas esbeltas

$$M_m = F_{ar} S_w$$

.....Ecuación N° 78

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Donde

$$F_{cr} = \frac{0.69E}{\left(\frac{b_f}{zt_f}\right)^2}$$

.....Ecuación N° 79

Donde:

$$\lambda - \frac{b}{t}$$

 $\lambda_{gf} = \lambda_g$ es la esbeltez límite para ala compacta.

 $\lambda_{rf} - \lambda_r$ es la esbeltez límite para ala no compacta.

 \mathbf{S}_{w} para un canal debe tomarse como el módulo de sección mínimo.

2.12.6 DISEÑO DE MIEMBROS EN CORTE

2.12.6.1 DISPOSICIONES GENERALES

Se presentan dos métodos para calcular la resistencia de corte. El método presentado. No utiliza la *resistencia post pandeo del miembro (campo de tracciones)*. El método presentado en Sección 5.3. Utiliza el campo de tracciones.

La resistencia de corte de diseño, $\phi_v V_n$, y la resistencia de corte admisible, V_n / Ω_V , deben ser determinada de la siguiente manera: (ACI, 1994)

$$\phi_{\rm v} = 0.90 \, ({\rm LRFD})$$

$$\Omega_V = 1.67 \text{ (ASD)}$$

2.12.6.2 MIEMBROS CON ALMAS NO ATIESADAS O ATIESADAS

a. Resistencia de corte nominal

Esta sección aplica para las almas de miembros de simetría doble o simple y canales solicitados a corte en el plano del alma.

La resistencia de corte nominal, V_n , de almas no atiesadas o atiesadas de acuerdo al estado límite de fluencia en corte y pandeo en corte, es:

$$V_n = 0.6 F_y A_w C_y$$

.....Ecuación N° 80

• Para almas de miembros laminados de sección H co $h/t_w \le 2.24\sqrt{E/F_v}$ n

$$\phi_v = 1.00 \text{ (LRFD)}$$

$$\Omega_V = 1.50 \text{ (ASD)}$$

$$C_{\rm V} = 1.0$$

.....Ecuación N° 81

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Nota: Todos los perfiles actuales ASTM A6 W, S y HP, excepto los perfiles W44x230, W40x149, W36x135, W33x118, W30x90, W24x55, W16x26 y W12x14, $para F_y = 3520 \text{ kgf/cm}^2$ (345 MPa).

- Para almas de todos los otros perfiles de simetría doble o simple y canales, Excepto tubos circulares, el coeficiente de corte del alma, se determina de la siguiente manera:
 - (i) Cuando $h/t_w \leq 1.10\sqrt{k_x E/F_y}$

 $C_{\rm v} = 1.0$

.....Ecuación N° 82

(ii) Cuando $1.10\sqrt{k_v E/F_v} < h/t_w \le 1.37\sqrt{k_v E/F_v}$

$$C_v = \frac{1.10\sqrt{k_v E/F_y}}{h/c_w}$$

.....Ecuación N° 83

(iii) Cuando $h/t_w \leq 1.37 \sqrt{k_w E/F_y}$

$$C_v = \frac{1.51Ek_v}{(h/r_w)^2 F_v}$$

......Ecuación N° 84

Donde:

 A_W = la altura total multiplicada por el espesor del alma, cm² (mm²) El coeficiente de pandeo de placa del alma, k_V , se determina como se indica a continuación:

(i) Para almas no atiesadas $con \frac{h}{t_{tr}} \leq 2.60$:

$$k_{\rm s} = 5$$

Excepto para el alma de perfiles T donde $k_{ij} = 1.2$

(ii) Para almas aties adas:

$$k_v = 5 + \frac{5}{4(a/h)^2}$$

= 5 cuando $a/h > 3.0 \text{ o } a/h > \left[\frac{260}{(h/x_c)}\right]^2$

Donde:

a = distancia libre entre atiesadores transversales, cm (mm)

h = para secciones laminadas, la distancia libre entre alas menos el filete o radio de

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

esquina, cm (mm)

- = para secciones armadas soldadas, la distancia libre entre alas, cm (mm)
- = para secciones armadas apernadas, la distancia entre líneas de sujetadores, cm (mm)
- = para secciones T, la altura total, cm (mm)

Nota: Para todos los perfiles ASTM A6 W, S, M y HP, excepto para los perfiles M12.5x12.4, M12.5x11.6, M12x11.8, M12x10.8, M12x10, M10x8 y M10x7.5, donde 3 520 kgf/cm^2 (345 MPa), C_V =1.0

2.12.7 DISEÑO DE CONEXIONES

2.12.7.1 DISPOSICIONES GENERALES

a. BASES DE DISEÑO

La resistencia de diseño, ϕR_n , y la resistencia admisible, R_n/Ω , de las conexiones debe ser determinada de acuerdo con las disposiciones de este Item.

La resistencia requerida de las conexiones debe ser determinada mediante análisis estructural para las cargas de diseño especificadas, consistente con el tipo de construcción especificada, o bien una proporción de la resistencia requerida del miembro conectado cuando así se especifica.

Se deben considerar los efectos de excentricidad cuando los ejes centroidales de los miembros cargados axialmente no se intersectan en un mismo punto. (AISC, 2005)

b. CONEXIONES SIMPLES

Las conexiones simples de vigas o enrejados deben ser diseñadas como flexibles y se permite dimensionarlas solamente para reacciones de corte, excepto que se indique lo contrario en los documentos de diseño. Las conexiones flexibles de vigas simples deben ser capaces de soportar las rotaciones de esas vigas en sus extremos. Se permite que la conexión desarrolle algo de deformación inelástica, pero auto-limitante, para acomodar las rotaciones de una viga simple en sus extremos. (AISC, 2005)

c. CONEXIONES DE MOMENTO

Las conexiones en los extremos empotrados de vigas y enrejados deben ser diseñadas para el efecto combinado de fuerzas de momento y de corte inducidos por la rigidez de las conexiones. (AISC, 2005)

2.12.7.2 SOLDADURAS

En esta Especificación, se aplican todas las disposiciones de la AWS D1.1, con la excepción de las secciones de la Especificación AISC enumeradas a continuación, que aplican en vez de las disposiciones AWS citadas: (AISC, 2005)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

a. SOLDADURAS DE TOPE

Área Efectiva

Se debe considerar el área efectiva de las soldaduras de tope como la longitud de la soldadura por el espesor de la garganta efectiva.

El espesor de la garganta efectiva de una soldadura de tope con junta de penetración completa (CJP) debe ser el espesor de la parte más delgada conectada.

El espesor de garganta efectivo de una soldadura de tope con junta de penetración parcial (PJP) debe ser el que se muestra en la Tabla N° 38.

Nota: El tamaño de la garganta efectiva de una soldadura de tope con junta de penetración parcial depende del proceso utilizado y de la posición de la soldadura. Los documentos contractuales deben indicar la garganta efectiva o la resistencia de la soldadura requerida, y el fabricante debe detallar la junta basándose en el proceso de soldadura y en la posición a utilizar para soldar la junta.

El tamaño de la soldadura efectiva para soldaduras de tope con bisel convexo, cuando se llena al nivel de la superficie de una barra redonda, del doblez de 90° en una sección conformada, o en un tubo rectangular, debe ser como se muestra en la Tabla 39 a no ser que otras gargantas efectivas sean demostradas por ensayos. El tamaño efectivo de las soldaduras de tope con bisel convexo no llenado a ras deben ser como se muestra en la Tabla N° 39, menos la mayor dimensión perpendicular medida desde la línea de nivelado de la superficie del metal base hasta la superficie de soldadura.

Se permiten espesores de garganta efectiva mayores que los mostrados en la Tabla N° 39, siempre que el fabricante pueda establecer por calificación la producción consistente de tales espesores mayores de garganta efectiva. La calificación debe consistir en el seccionamiento de soldaduras normales en su eje en la mitad y en sus extremos terminales. Tal seccionamiento debe ser realizado en un número de combinaciones de tamaños de material representativo del rango a ser utilizado en la fabricación. (AISC, 2005)

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° 38: Garganta Efectiva de Soldaduras de tope con Junta de Penetración Parcial

Proceso de Soldado	Posición de Soldado F (estirado), H (horizontal), V (vertical), OH (sobre cabeza)	Tipo de surco (Figura 3.3, AWS D1.1)	Garganta Efectiva
Arco de electrodo revestido (SMAW)	Todos	Bisel J o U	
Arco metálico y gas (GMAW) Arco con púcleo de fundente	Todos	60° V	Profundidad del bisel
Arco Sumergido	F	Bisel Jo U	
Arco metálico y gas (GMAW) Arco con núcleo de fundente (FCAW)	F, H	Bisel 45°	Profundidad del bisel
Arco de electrodo revestido (SMAW)	Todos	Bisel 45°	Profundidad del bisel menos 3 mm
Arco metálico y gas (GMAW) Arco con núcleo de fundente (FCAW)			Profundidad del bisel menos 3 mm
con núcleo de fundente (FCAW)	V, OH	Bisel 45°	3 mm

Fuente: (AEISC, 2005)

TABLA N° 39:Tam	año de Soldadura Efectiva Soldad	uras de tope Biseladas
Proceso de Soldado	Surco de Bisel Curvo[a]	Surco V Curvo
GMAW y FCAW-G	5/8 R	3/4 R
SMAW y FCAW-S	5/16 R	5/8 R
SAW	5/16 R	1/2 R

[a] Para surcos de bisel curvo con R < 10 mm usar solamente soldadura de filete de refuerzo en juntas llenadas a tope. Nota general: $R = \text{radio de la superficie de junta (se puede suponer igual a 2t para secciones tubulares), mm.$

Fuente: (AEISC, 2005)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

> Limitaciones

El espesor mínimo de la garganta efectiva de una soldadura de tope con junta de penetración parcial no debe ser menor que el tamaño requerido para transmitir las fuerzas calculadas ni el tamaño mostrado en la Tabla 40. El tamaño de soldadura mínimo se determina como la más delgada de las dos partes unidas.

Espesor de material de la parte unida más delgada, mm	Espesor mínimo de garganta efectiva, mm
Hasta6 inclusive	3
Entre 6 y 13	5
Entre 13 y 19	6
Entre 19 y 38	8
Entre 38 y 57	10
Entre 57 y 150	13
Mayor que 150	16

Fuente: (AEISC, 2005)

b. SOLDADURAS DE FILETE

➤ Área Efectiva

El área efectiva de una soldadura de filete será la longitud efectiva multiplicada por la garganta efectiva. La garganta efectiva de una soldadura de filete debe ser la menor distancia desde la raíz hasta la superficie de la soldadura. Se permite un aumento en la garganta efectiva si se demuestra una penetración consistente más allá de la raíz de la soldadura mediante ensayos consistentes al proceso de producción y las variables de procedimiento.

Para soldadura de filete en perforaciones y ranuras, la longitud efectiva debe ser la longitud del eje central de la soldadura a lo largo del plano que pasa a través de la garganta. En el caso de filetes traslapados, el área efectiva no debe exceder el área nominal de la perforación o ranura, en el plano de la superficie de contacto. (AISC, 2005)

> Limitaciones

El tamaño mínimo de las soldaduras de filete no debe ser menor que el tamaño requerido para transmitir las fuerzas calculadas, ni menor que el tamaño que se muestra en la Tabla N° 41. Estas disposiciones no aplican para refuerzos de soldadura de filete en soldaduras de tope con junta de penetración parcial o completa. (AISC, 2005)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRIÓN, REGION LA LIBERTAD

Espesorde la parte unida más delgada, mm	Tamaño mínimo de soldadura de filete[a], mm
Hasta 6 inclusive	3
Entre6 y 13	5
Entre 13 y 19	6
Mayor que 19	8

Fuente: (AEISC, 2005)

El tamaño máximo de soldadura de filete para partes conectadas debe ser:

- A lo largo de los bordes del material con espesor menor a 6 mm, no mayor que el espesor del material.
- A lo largo de los bordes del material con espesor igual o mayor a 6 mm, no mayor que el espesor del material menos 2 mm, a no ser que la soldadura sea designada especialmente en los planos para ser ejecutada de manera de obtener el espesor de la garganta completa. En la condición de soldado, se permite que la distancia entre el borde del metal base y el talón de la soldadura sea menor que 2 mm siempre que sea posible verificar el tamaño de la soldadura.
- La longitud efectiva mínima de las soldaduras de filete diseñadas por resistencia no debe ser menor que cuatro veces el tamaño nominal, en caso contrario, se debe considerar que el tamaño de la soldadura no exceda un cuarto de su longitud efectiva. Cuando las soldaduras de filete longitudinales son empleadas solamente en las conexiones de los extremos de los miembros modelados como estructuras de barras planas solicitadas a tracción, la longitud de cada filete de soldadura no debe ser menor que la distancia perpendicular entre ellas.
- Para soldaduras de filete de carga extrema con una longitud de hasta 100 veces la dimensión del pie, se permite tomar la longitud efectiva igual a la longitud real. Cuando la longitud de la soldadura de filete de carga extrema excede de 100 veces el tamaño de soldadura, la longitud efectiva debe ser determinada multiplicando la longitud real por el factor de reducción, β, determinado a continuación:

$$\beta = 1.2 - 0.002(L/w) \le 1.0$$

.....Ecuación N° 85

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Donde:

L = longitud existente de la soldadura en los extremos cargados, mm

w = tamaño de la soldadura, mm

Cuando la longitud de la soldadura excede de 300 veces el tamaño de la soldadura, el valor de β se debe tomar igual a 0.60.

Se permite utilizar las soldaduras de filete intermitentes para transmitir las tensiones calculadas a través de la junta o superficies de contacto cuando la resistencia requerida es menor que la desarrollada por una soldadura de filete continúa con el menor tamaño permitido, para unir componentes de miembros armados. La longitud efectiva de cualquier segmento de soldadura de filete intermitente no debe ser menor que cuatro veces el tamaño de la soldadura, con un mínimo de 38 mm.

En juntas de traslape, la cantidad mínima de traslapo debe ser de cinco veces el espesor de la parte unida más delgada, pero no menor que 25 mm. Las juntas de traslape que unen planchas o barras solicitadas por tracción axial, y que solamente utilizan soldaduras de filete transversal, deben ser soldadas a lo largo del extremo de ambas partes traslapadas, excepto donde la flexión de las partes traslapadas esté suficientemente restringida para prevenir una apertura de la junta bajo condiciones de carga máxima.

Se permite que durante el proceso de soldado, las detenciones de soldadura de filete sean cortas, extendidas a los extremos de las partes, o ser cerradas, excepto por las limitaciones presentadas a continuación:

- Para los elementos traslapados de miembros en que una parte conectada se ex- tiende más allá del borde de otra parte conectada solicitada por la tracción cal- culada, las soldaduras de filete deben terminar a una distancia no menor que el tamaño de la soldadura desde el borde.
- Para conexiones donde se requiere de flexibilidad de los elementos sobresalientes, cuando se utilizan retornos extremos, la longitud del retorno no debe exceder cuatro veces el tamaño nominal de la soldadura ni la mitad del ancho de la parte.
- Las soldaduras de filete que conectan atiesadores transversales a las almas de vigas de espesor 19 mm o menor, deben terminar a una distancia no menor que cuatro veces ni mayor que seis veces el espesor del alma en el pie donde se ubican las soldaduras almaala, excepto donde los extremos de los atiesadores sean soldados al ala.
- Soldaduras de filete que ocurren en lados opuestos en un plano común deben ser interrumpidas en la esquina común de ambas soldaduras.

Nota: Las terminaciones de soldadura de filete deben ser ubicadas aproximadamente a un alto de soldadura desde el borde de la conexión para minimizar muescas en el metal base. Las soldaduras

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

de filete terminadas en el extremo de la junta, que no sean aquellas que conectan atiesadores a almas de vigas, no necesitan ser corregidas.

Las soldaduras de filete en perforaciones y ranuras pueden utilizarse para transmitir corte en juntas de traslape o para prevenir el pandeo o separación de partes traslapadas y para unir las partes que componen a los miembros armados. Las soldaduras de filete en perforaciones o ranuras no deben considerarse como soldaduras de tapón. (AISC, 2005)

2.12.8 PERNOS Y PARTES ROSCADAS

2.12.8.1 PERNOS DE ALTA RESISTENCIA

El uso de pernos de alta resistencia debe satisfacer las disposiciones de la Specification for Structural Joints Using ASTM A325 or A490 Bolts, de ahora en adelante referida como la Especificación RCSC, aprobada por el Consejo de Investigación de Uniones Estructurales, excepto cuando se disponga lo contrario en esta Especificación.

Todas las superficies de la junta cuando es ensamblada, incluyendo aquellas adyacentes a las arandelas o golillas, deben estar libres de escamas, excepto las escamas de fábrica. Todos los pernos ASTM A325 y A490 deben ser apretados a una tensión de perno, excepto lo que se indica a continuación. Con la excepción antes mencionada, se debe asegurar la instalación por cualquiera de los siguientes métodos: método del giro de la tuerca, un indicador de tensión directo, llave calibrada o diseño alternativo.

Se permite que los pernos sean instalados en la condición de apriete ajustado cuando se usan en:

- Conexiones de tipo aplastamiento, o
- Aplicaciones de tracción o combinación de corte y tracción, solamente para pernos ASTM A325, donde la pérdida o fatiga debido a vibración o fluctuaciones de la carga no se considera en el diseño.

La condición de apriete ajustado se define como la más firme alcanzada tanto por pequeños impactos de una llave de impacto o por el máximo esfuerzo de un trabajador con una llave de palanca corriente que permite que las piezas conectadas queden en contacto firme. Se deben identificar claramente aquellos pernos que serán sujetos a apriete ajustado en los planos de diseño y de montaje.

Nota: Se permite que los pernos sean apretados en exceso respecto de la condición de apriete ajustado, si se especifica este tipo de apriete en los pernos.

Cuando se usan pernos ASTM A490 de más de 25 mm de diámetro en perforaciones

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ranuradas o sobredimensionadas en plegados externos, sólo una golilla endurecida de material ASTM F436, excepto con espesor mínimo de 8 mm, debe ser utilizada en vez de una golilla estándar.

En conexiones de deslizamiento crítico, cuando la dirección de la carga es en la dirección del borde de una parte conectada, se debe proveer una adecuada resistencia de aplastamiento basada en los requisitos aplicables.

Cuando no se pueden entregar los requisitos para pernos ASTM A325, F1852 o A490, debido a que los requisitos de longitud exceden de 12 diámetros o los diámetros exceden de 38 mm, se permite utilizar pernos o barras roscadas de material ASTM A354 Gr. BC, A354 Gr. BD o A449, de acuerdo con las disposiciones para barras roscadas en la Tabla 42

Cuando se utilizan pernos o barras roscadas de material ASTM A354 Gr. BC, A354 Gr. BD o A449 en conexiones de deslizamiento crítico, la geometría del perno incluyendo la cabeza y la(s) tuerca(s) debe ser igual o proporcional (si son mayores en diámetro) a las entregadas por los pernos ASTM A325 o A490. La instalación debe cumplir con los requisitos aplicables por la Especificación RCSC con modificaciones según lo requiera para el diámetro aumentado y/o la longitud para proveer la pretensión de diseño.

TABLA N° 42:Pretensión Mínima de Pernos, kips*				
Tamaño Perno, in	Pernos A325	Pernos A490		
1/2	12	15		
5/8	19	24		
3/4	28	35		
7/8	39	49		
1	51	64		
1 1/8	56	80		
1 1/4	71	102		
1 3/8	85	121		

^{*} Igual a 0.70 veces la resistencia última de los pernos, redondeada al valor entero más cercano, tal como lo especifican las Especificaciones ASTM para pernos A325 y A490 con hilo UNC.

Fuente: (AEISC, 2005)

FACULTAD DE INGENIERIA

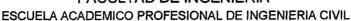
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

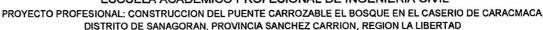
TABLA N° 43:Pretensión Tensión Nominal de Conectores y Partes Ros	scadas, kgf/cm ²
(MPa)	

• •	·
Tensión de Tracción Nominal, <i>F_{nt}</i> , kgf/cm ² (MPa)	Tensión de Corte Nominal en Conexiones de Tipo Aplastamiento, Fnv, kgf/cm ² (MPa)
3 160 (310)[a][b]	1 680 (165) ^{[b][c][f]}
6 320 (620)[e]	3 360 (330)[f]
•	
6 320 (620)[e]	4 220 (414)[f]
7 950 (780)[e]	4 220 (414)[f]
7 950 (780)[e]	5 300 (520)[f]
0.75 F _U [a][d]	0.40 F _U
0.75 F _U [a][d]	0.50 F _U
	Nominal, F _{nt} , kgf/cm ² (MPa) 3 160 (310)[a][b] 6 320 (620)[e] 6 320 (620)[e] 7 950 (780)[e] 7 950 (780)[e] 0.75 F _U [a][d]

- [a] Para pernos A307 los valores tabulados deben ser reducidos por 1% para cada 2 mm sobre 5 diámetros de longitud en el agarre
- [b] Rosca permitida en los planos de corte.
- [c] La resistencia de tracción nominal para la porción roscada de una barra con extremos ensanchados, basada en el área de la sección correspondiente al diámetro mayor de la rosca, A_D, que debe ser mayor que el valor obtenido al multiplicar F_y por el área del cuerpo nominal de la barra antes de su ensanchamiento.
- [d] Para pernos A325 y A490 solicitados por carga de tracción de fatiga.

Fuente: (AEISC, 2005)


2.12.8.2 TAMAÑO Y USO DE LAS PERFORACIONES


Los tamaños máximos de perforaciones para pernos se entregan en la Tabla N° 44, excepto en el caso de detalles de placa base de columnas, en los cuales se permiten perforaciones más grandes, pues se requieren una mayor tolerancia, para la ubicación de los pernos de anclaje en las fundaciones de concreto.

Se deben proveer perforaciones estándar o perforaciones de ranura corta transversal a la dirección de la carga, de acuerdo con las disposiciones de esta Especificación, a menos que el

FACULTAD DE INGENIERIA

ingeniero estructural responsable del proyecto apruebe por escrito a la inspección técnica contratada perforaciones sobremedidas, perforaciones de ranura corta paralela a la dirección de carga o perforaciones de ranura larga. Se permiten cuñas ranuradas de hasta 6 mm en conexiones de deslizamiento crítico diseñadas en la base de perforaciones estándar sin reducción de la resistencia de corte nominal del conector por aquel especificado para perforaciones ranuradas.

Se permiten perforaciones sobremedidas en cualquiera o todas las piezas de conexiones de deslizamiento crítico, sin embargo, estas no deben ser utilizadas en conexiones de tipo aplastamiento. Se deben instalar arandelas o golillas endurecidas en perforaciones sobremedidas en la pieza exterior.

Se permiten perforaciones de ranura corta en cualquiera o todas las piezas de conexiones de deslizamiento crítico o de tipo aplastamiento. Se permiten las ranuras sin consideración de la dirección de carga en conexiones de deslizamiento crítico, pero en conexiones tipo aplastamiento la longitud debe ser normal a la dirección de carga. Las arandelas o golillas deben ser instaladas sobre las perforaciones de ranura corta en la pieza exterior; tales arandelas o golillas deben ser endurecidas cuando se utilizan pernos de alta resistencia.

Se permiten perforaciones de ranura larga solamente en una de las partes conectadas tanto de conexión de deslizamiento crítico o de tipo aplastamiento como en una superficie de contacto individual. Se permiten perforaciones de ranura larga sin consideración de la dirección de carga en conexiones de deslizamiento crítico, pero deben ser perpendiculares a la dirección de carga en conexiones de tipo aplastamiento. Cuando se utilizan perforaciones de ranura larga en una pieza exterior, se debe proveer de planchas de ajuste (lainas), o una barra continúa con perforaciones estándar, que tenga un tamaño suficiente para cubrir completamente la ranura después de la instalación. En conexiones con pernos de alta resistencia, tales planchas de ajuste o barras continuas deben tener un espesor no menor que 8 mm y deben ser de un material con grado estructural, pero no necesitan ser endurecidas. Cuando se necesiten arandelas o golillas endurecidas para ser utilizadas en pernos de alta resistencia, las golillas endurecidas deben ser ubicadas sobre la superficie exterior de la plancha de ajuste o barra. (AISC, 2005).

Dimensiones Agujero				
Diámetro	Estándar	Sobremedida	Ranura Corta	Ranura Larga
Perno	(Dia.)	(Dia.)	(Ancho x Largo)	(Ancho x Largo)
1/2	9/16	5/8	9/16 x 11/16	9/16 x 11/4
5/8	11/16	13/16	11/16 x 7/8	11/16 x 19/16
3/4	13/16	15/16	13/16 x 1	13/16 x 17/8
7/8	15/16	11/16	15/16 x 11/8	15/16 x 23/16
1	1 1/16	11/4	11/16 x 1 5/16	11/16 x 2 1/2
≥ 11/8	d + 11/16	d + 5/16	(d + 1/16) x (d + 3/8)	(d + 1/16) x (2.5 + d)

Fuente: (AISC, 2005)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.12.8.3 ESPACIAMIENTO MÍNIMO

La distancia entre centros de perforaciones estándar, sobremedidas o ranuradas, no debe ser menor que 2-2/3 veces el diámetro nominal, *d*, del conector; se prefiere una distancia de 3*d*. (AISC, 2005)

2.12.8.4 DISTANCIA MÍNIMA AL BORDE

La distancia desde el centro de una perforación estándar hasta el borde de una parte conectada en cualquier dirección no debe ser menor que el valor aplicable de la Tabla N° 45.

	TABLA N° 45: Distancia Mínima al Borde ^[a] , in, desde el Centro del Agujero Estándar ^[b] hasta el Borde de la Parte Conectada					
Diámetro Perno (in)	En bordes aserrados	En bordes laminados de Planchas, Perfiles o Barras, o en bordes por corte térmico[c]				
1/2	7/8	3/4				
5/8	1 1/8	7/8				
3/4	1 1/4	1				
7/8	1 1/2[d]	11/8				
1	1 3/4 [d]	11/4				
11/8 11/4 Sobre 11/4	2 2 1/4 1 3/4 x d	11/2 15/8 11/4 x d				

[[]a] Se permite utilizar distancias de borde menor provisto que se satisface de forma apropiada.

Fuente: (AISC, 2005)

2.12.8.5 DISTANCIAS A LOS BORDES Y ESPACIAMIENTO MÁXIMO

La distancia máxima desde el centro de cualquier perno o remache hasta el borde más cercano de partes en contacto debe ser 12 veces el espesor de la parte conectada bajo consideración, pero no debe exceder de 150 mm. El espaciamiento longitudinal de los conectores entre elementos en contacto continuo consistentes de un perfil o dos placas debe ser la siguiente:

- Para miembros pintados o sin pintar no sujetos a corrosión, el espaciamiento no debe exceder de 24 veces el espesor de la placa más delgada o 305 mm.
- Para miembros sin pintar de acero de alta resistencia a la corrosión atmosférica, el espaciamiento no debe exceder de 14 veces el espesor de la placa más delgada o 180 mm. (AISC, 2005)

[[]b] Se permite que todas las distancias de borde en esta columna sean reducidas 1/8 in cuando el agujero esta en un punto donde la resistencia requerida no exceda de 25% de la resistencia máxima en el elemento. [d] Se permite que estas sean 1¼ in en ambos extremos de los ángulos de conexión de vigas y en placas de cabeza de corte.

N. C. W.

UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.12.8.6 Resistencia de Tracción y Corte de Pernos y Partes Enroscadas

La resistencia de diseño de tracción y de corte, ϕR_{xz} , y la resistencia admisible de tracción y de corte, R_N / Ω , de un perno de alta resistencia con apriete ajustado o pre tensionado o de una parte roscada deben ser determinadas de acuerdo con los estados límites de fractura en tracción y fractura en corte como se indica a continuación:

$$R_n = F_n A_h$$

.....Ecuación N°86

$$\phi = 0.75 \text{ (LRFD)}$$

 Ω =2.00 (ASD)

Donde

 F_n = tensión de tracción nominal, F_{nt} , o tensión de corte nominal, F_{nv} , según la Tabla N° 48

 A_b = área bruta del perno o parte roscada (para barras con extremos ensanchados, ver nota al pie [d], Tabla 6.3.2), cm² (mm²)

La resistencia requerida de tracción debe incluir cualquier tracción resultante por la acción de palanca producida por la deformación de las partes conectadas. (AISC, 2005)

2.12.8.7 COMBINACIÓN DE TRACCIÓN Y CORTE EN CONEXIONES TIPO APLASTAMIENTO

La resistencia disponible de tracción de un perno solicitado por una combinación de tracción y corte debe ser determinada de acuerdo a los estados límite de rotura en tracción y en corte de acuerdo con lo siguiente:

$$R_m = F_{m}^l A_k$$

.....Ecuación N° 87

$$\phi = 0.75 \text{ (LRFD)}$$

 Ω =2.00 (ASD)

Donde:

F'_{nx}= tensión de tracción nominal modificada para incluir los efectos de la tensión de corte, kgf/cm2 (MPa)

$$F'_{nt} = 1.3F_{nt} - \frac{F_{nt}}{9F_{nt}}f_v \le F_{nt}$$
 (LRFD)Ecuación N° 88

F_{nt} = tensión de tracción nominal según la Tabla N° 43, kgf/cm² (MPa)

 F_{nv} = tensión de corte nominal según la Tabla N° 43, kgf/cm² (MPa)

 f_{v} = tensión requerida de corte, kgf/cm² (MPa)

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACM.

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

La resistencia disponible de corte del conector debe ser igual o mayor que la tensión requerida de corte, f_v . (AISC, 2005)

2.12.8.8 PERNOS DE ALTA RESISTENCIA EN CONEXIONES DE DESLIZAMIENTO CRÍTICO

Se permite que los pernos de alta resistencia en conexiones de deslizamiento crítico sean diseñados ya sea para prevenir el deslizamiento para el estado límite de servicio o para satisfacer el estado límite de resistencia requerida. Las conexiones deberán ser verificadas en su resistencia al corte, las conexiones de deslizamiento crítico deben ser diseñadas como se muestra a continuación, a no ser que la inspección técnica del contrato indique lo contrario.

Las conexiones con perforaciones estándar o ranuras transversales a la dirección de la carga deben ser diseñadas para deslizamiento en el estado límite de servicio. Las conexiones con perforaciones sobremedidas o ranuras paralelas a la dirección de la carga deben ser diseñadas para prevenir el deslizamiento para el nivel de resistencia requerida.

La resistencia de deslizamiento disponible, ϕR_n , y la resistencia de deslizamiento admisible, R_n/Ω , serán determinadas para el estado límite de deslizamiento de la siguiente forma: (AISC, 2005)

$$R_D = \mu D_U h_{SC} T_D N_S$$
Ecuación N° 89

• Para las conexiones en que la prevención del deslizamiento es un estado límite de servicio:

$$\phi$$
 = 1.00 (LRFD) Ω = 1.50 (ASD)

 Para las conexiones diseñadas para prevenir el deslizamiento para el nivel de resistencia requerida:

$$\phi$$
= 0.85 (LRFD) Ω = 1.76 (ASD)

Donde:

- μ = coeficiente de deslizamiento promedio para superficies Clase A o B, cuan- do sea aplicable, determinado mediante ensayos.
- 0.35; para superficies Clase A (superficies de acero sin pintar, limpias, con escamas de fábrica o superficies con baño Clase A en acero limpiado a chorro de arena y galvanizada en caliente y superficies rugosas)
- = 0.50; para superficies Clase B (superficies de acero sin pintar, limpiadas mediante

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

chorro de arena o superficies con baño Clase B en acero limpia- do mediante chorro de arena).

Du = 1.13; multiplicador que refleja la razón entre la pretensión media del perno instalado y la pretensión mínima especificada del perno; el uso de otros valores puede ser aprobado por el ingeniero estructural responsable del proyecto.

 h_{SC} = factor de perforación, determinado según se indica a continuación:

• Para perforaciones de tamaño estándar:

 $h_{SC} = 1.00$

- Para perforaciones sobremedidas y de ranura corta: hsc = 0.85
- Para perforaciones de ranura larga:

 $h_{SC} = 0.70$

N_S = número de planos de deslizamiento

Tb = tracción mínima del conector entregada en la Tabla 48, T (kN)

Nota: Existen casos especiales donde, con perforaciones sobremedidas y ranuras paralelas a la carga, el posible movimiento debido al deslizamiento de la conexión puede causar una falla estructural. Se entregan factores de resistencia y de seguridad para las conexiones donde se previene el deslizamiento hasta que se alcanza la carga que produce la resistencia requerida.

Las cargas de diseño son usadas para cualquiera de los métodos de diseño y todas las conexiones excepto las conexiones de deslizamiento crítico diseñadas para prevenir el deslizamiento en el nivel de resistencia requerida, se deben revisar para la resistencia de una conexión de tipo aplastamiento. (AISC, 2005)

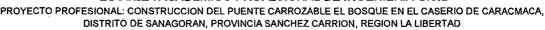
2.12.8.9 COMBINACIÓN DE TRACCIÓN Y CORTE EN CONEXIONES DE DESLIZAMIENTO CRÍTICO

Cuando una conexión de deslizamiento crítico es solicitada por una tracción que disminuye la fuerza de apriete neta, la resistencia de deslizamiento disponible por perno, debe ser multiplicada por el factor, $k_{\rm s}$, como se muestra a continuación: (AISC, 2005)

$$k_s = 1 - \frac{T_u}{D_u T_b N_b}$$
 (LRFD)Ecuación N° 90

$$k_s = 1 - \frac{1.5T_0}{D_0T_0N_0}$$
 (ASD)Ecuación N° 91

Donde:


N_b = número de pernos que transmiten la tracción aplicada

Ta = carga de tracción debida a las combinaciones de carga ASD, T (kN)

 $T_b = \text{carga de tracción mínima en el conector, T (kN)}$

FACULTAD DE INGENIERIA

 T_U = carga de tracción debida a las combinaciones de carga LRFD, T (kN)

2.12.8.10 RESISTENCIA DE APLASTAMIENTO DE PERFORACIONES DE PERNOS

La resistencia de aplastamiento disponible, ϕR_n y R_n/Ω , en perforaciones de pernos debe ser determinada para el estado límite de aplastamiento como se muestra a continuación:

$$\phi = 0.85 (LRFD)$$

$$\Omega = 1.76 (ASD)$$

- Para un perno en una conexión con perforaciones estándar, sobremedidas y de ranura corta, independiente de la dirección de carga, o en perforaciones de ranura larga con la ranura paralela a la dirección de la fuerza de aplastamiento
- (Cuando la deformación en la perforación del perno bajo cargas de servicio se considera en el diseño

$$R_n = 1.2L_v \ tF_u \le 2.4d \ tF_u$$

.....Ecuación N° 92

 Cuando la deformación en el perforación del perno bajo cargas de servicio no se considera en el diseño

$$R_n = 1.5L_c tF_n \le 3.0d tF_n$$

.....Ecuación N° 93

 Para un perno en una conexión con perforaciones de ranura larga con la ranura perpendicular a la dirección de la fuerza

$$R_n = 1.0 \ tF_u \le 2.0 d \ tF_v$$

.....Ecuación N° 94

Donde:

d = diámetro nominal del perno, cm (mm)

 $-F_U$ = resistencia última mínima especificada del material conectado, kgf/cm² (MPa)

L_C = distancia libre, en la dirección de la carga, entre el borde de la perforación y el borde de la perforación adyacente o borde del material, cm (mm)

t = espesor del material conectado, cm (mm)

La resistencia al aplastamiento de las conexiones debe ser tomada como la suma de las resistencias de aplastamiento de los pernos individuales.

La resistencia de aplastamiento debe ser revisada tanto para las conexiones de tipo

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

perforaciones de ranura corta y larga paralelos a la línea de carga se restringe a conexiones de deslizamiento crítico.

2.12.8.11 ELEMENTOS INVOLUCRADOS DE MIEMBROS Y ELEMENTOS CONECTADOS

Esta Sección aplica para los elementos de miembros en conexiones y elementos conectores, tales como planchas, gussets, ángulos y soportes.

a. RESISTENCIA DE ELEMENTOS EN TRACCIÓN

La resistencia de diseño, ϕR_n , y la resistencia disponible, R_n/Ω , de elementos involucrados y conectores cargados en tracción debe ser el menor valor obtenido de acuerdo con los estados límite de fluencia en tracción y fractura en tracción.

Para fluencia en tracción de elementos conectores:

$$R_n = F_V A_Q$$

.....Ecuación N° 95

$$\phi = 0.90 \text{ (LRFD)}$$

$$\Omega$$
 = 1.67 (ASD)

Para fractura en tracción de elementos conectores:

$$R_n = F_U A_{\Theta}$$

.....Ecuación N° 96

$$\phi$$
= 0.75 (LRFD)

$$\Omega$$
 = 2.00 (ASD)

Donde:

 $A_{\rm e}$ = área neta efectiva como se define en la Sección D3.3, cm² (mm²); para planchas de empalme apernadas, $A_{\rm e} = A_{\rm n} \le 0.85 \, A_{\rm g}$

b. RESISTENCIA DE ELEMENTOS EN CORTE

La resistencia de corte disponible de elementos involucrados y elementos conectores en corte debe ser el menor valor obtenido de acuerdo con los estados límite de fluencia en corte y fractura en corte: (AISC, 2005)

Para fluencia en corte del elemento:

$$Rn = 0.60 \text{ Fy Ag}$$

.....Ecuación N° 97

 ϕ = 1.00 (LRFD)

 Ω = 1.50 (ASD)

Name of the last o

UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZÁBLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN. PROVINCIA SANCHEZ CARRION. REGION LA LIBERTAD

Para fractura en corte del elemento:

$$Rn = 0.6 Fu Anv$$

.....Ecuación N° 98

$$\phi = 0.75 \text{ (LRFD)}$$

$$\Omega$$
 = 2.00 (ASD)

Donde:

 A_{nv} = área neta solicitada a corte, cm² (mm²)

c. RESISTENCIA DE BLOQUE DE CORTE

La resistencia disponible para el estado límite de bloque de corte a lo largo de la (s) trayectoria(s) de falla por corte y una trayectoria perpendicular de falla por tracción debe tomarse como (AISC, 2005)

$$R_{\rm m} = 0.6F_{\rm u}A_{\rm mv} + U_{\rm bz}F_{\rm u}A_{\rm mc} \le 0.6F_{\rm y}A_{\rm gw} + U_{\rm bz}F_{\rm u}A_{\rm mt}$$

.....Ecuación Nº 99

$$\phi = 0.75 \text{ (LRFD)}$$

$$\Omega = 2.00 \text{ (ASD)}$$

Donde:

 A_{gv} = área bruta solicitada a corte, cm² (mm²)

 A_{nt} = área neta solicitada a tracción, cm² (mm²)

 A_{nv} = área neta solicitada a corte, cm² (mm²)

Cuando la tensión de tracción es uniforme, U_{DS} = 1; si la tensión de tracción es no uniforme Ubs = 0.5.

Nota: Los casos donde deben tomarse igual a 0.5 se ilustran en el Comentario.

d. RESISTENCIA DE ELEMENTOS EN COMPRESIÓN

La resistencia disponible de elementos conectados en compresión para los estados límite de fluencia y pandeo se determinan de acuerdo con lo siguiente.

Para KL/r ≤ 25

$$P_n = F_y A_g$$

.....Ecuación N° 100

 ϕ = 0.90 (LRFD)

$$\Omega = 1.67 \text{ (ASD)}$$

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.14 DISEÑO DE LA SUBESTRUCTURA DEL PUENTE

2.14.1 DISEÑO DE ESTRIBOS

Los apoyos extremos se denominan estribos, los cuales reciben la reacción de un tramo de puente y soporta a su vez el empuje de tierras. (ACI, 1994)

Un estribo se compone de dos partes principales:

ELEVACIÓN

Es la parte del estribo que sobresale del terreno soportando el empuje de tierras. La elevación del estribo comprende; el cuerpo y las alas. En el cuerpo del estribo está situada la cajuela en la cual se aloja la superestructura.

➤ LA CIMENTACIÓN

Es la parte enterrada, recibe el empuje de tierras por todos lados y que por consiguiente se anulan. Sirve para transmitir las cargas al terreno de fundación.

2.14.1.1 FINALIDAD DE LOS ESTRIBOS

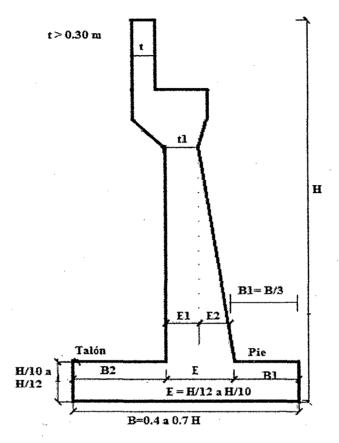
Los estribos tienen por objeto:

- Conseguir una superficie de apoyo al nivel que se proyecta ejecutar el puente.
- Contener el relleno de tierra.
- Obtener un apoyo que permanezca en una cota fija, transmitiendo al terreno presiones susceptibles de ser soportados por este.

2.14.1.2 ESTRIBOS EN VOLADIZO DE CONCRETO ARMADO

Los estribos de concreto armado se usan cuando las alturas están entre 5 a 10m de altura o cuando el terreno no es de buena resistencia, o también cuando económicamente sea más económico que el estribo de gravedad.

Los estribos en voladizo son siempre de concreto armado pues los esfuerzos a los cuales están sometidos no pueden ser resistidos por el concreto simple.


La verificación de la estabilidad es el primer paso en el diseño. El peso en estos tipos de estribos es menor que los estribos de concreto ciclópeo, por lo que se aumenta la longitud de la base para aumentar el peso del relleno y que la estabilidad no sea critica. (Reyes E. R., 2003)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Figura 9: Estribo en voladizo de concreto armado

Fuente: (Reyes E. R., 2003)

> Pre dimensionamiento:

Parapeto:

h parapeto = h viga + espesor de junta El espesor mínimo del parapeto es de 0.30m (t).

Pantalla:

El espesor mínimo recomendable en la parte superior de la pantalla es de 30 cm (t₁). El espesor de la base de la pantalla varía de 1/12 a 1/10 de la altura total.

• Zapata:

El espesor mínimo es de 40 cm. Se dimensiona de 1/12 a 1/10 de la altura total.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.14.1.3 FUERZAS QUE ACTÚAN SOBRE UN ESTRIBO

a. FUERZAS VERTICALES

a) Reacción De La Superestructura

Es una fuerza vertical considerada en el eje del apoyo cajuela y será la máxima reacción por concepto de carga muerta más sobrecarga vehicular sin incluir impacto. (Mantilla, 1996)

b) Peso Propio Del Estribo

Es el peso del estribo en sí, obtenido de multiplicar su volumen por el peso específico del material del que está constituido. Esta fuerza actúa en su centro de gravedad. Según Jerónimo H. Herrera Mantilla (1996)

c) Peso Del Relleno Que Favorece La Estabilidad

Es una fuerza vertical que actúa sobre la zapata cuyo punto de aplicación es el centro de gravedad del relleno. (Mantilla, 1996)

d) Presiones Sobre El Terreno De Fundación

Al producirse una compresión mayor a la capacidad portante del terreno, se produce un hundimiento de la estructura. Esta falla también puede presentarse por la socavación del terreno por acción del agua. Para prevenir esta falla se debe garantizar que las presiones transmitidas por el estribo sean inferiores a las admisibles del terreno, así como la profundidad de cimentación sea mayor que la profundidad de socavación (ACI, 1994)

b. FUERZAS HORIZONTALES

> Fuerzas de frenado

Es la fuerza longitudinal proveniente del frenado y aceleración de los vehículos, se la considera como una carga estática la cual se debe considerar en el diseño de los estribos. Para puentes carreteros el 5% de la sobrecarga(S/C) equivalente al tren de cargas y se considera aplicada a 1.80 m sobre el nivel de la losa del tablero. (Herrera, 1980)

Fuerza de fricción

Para el diseño de los estribos y pilares, se debe considerar la fuerza de fricción originada por los apoyos del puente al rodar al deslizarse una placa sobre la otra, y su valor se estima en 15% para apoyos de simple resbalamiento y de 5% para apoyos de rodillos.

Fuerzas sísmicas

En zonas de riesgo sísmico importante, es necesario tener en cuenta fuerzas laterales que producen los sismos. Existe una serie de teorías para análisis sismico, pero la forma más simple y que proporciona resultados aceptables para calcular estas fuerzas, consiste en que

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

la aceleración sísmica en cimentaciones es de 1/10 de la gravedad y que esta aceleración se trasmite integramente a la estructura; luego:

Fsismo = W/g * g/10 = 0.10 W

.....Ecuación N° 101

Dónde: W es el peso de la estructura

Efecto de los sismos sobre el valor de los empujes de tierra

Cuando se proyectan muros de retención de tierras en zonas sísmicas es conveniente considerar el efecto temporal que la vibración del suelo produce sobre el valor de los empujes clásicos de tierras debido al sismo. Aunque durante un sismo el muro de retención de tierras normalmente se mueve en conjunto con el suelo que detiene, la aceleración de los dos elementos muro-tierra puede no ser simultanea e entonces se incrementa el valor del empuje de las tierras debido a la inercia. Para alturas moderadas se acostumbra considerar, por efecto del sismo, un aumento de 10% en el valor del empuje convencional, con lo cual se supone que el muro funciona bien. (MTC, 2007)

Empuje de tierras

Los estribos y otras partes de la estructura que retienen tierra deberán diseñarse para resistir las correspondientes presiones, las mismas que serán calculadas de acuerdo con los principios de mecánica de suelos.

Cuando se prevea tráfico a una distancia horizontal, medida desde la parte superior de la estructura menor e igual a la mitad de su altura, las presiones serán incrementadas añadiendo una sobrecarga vertical no menor que la equivalente a 0.60m de altura de relleno. (MTC, 2007)

- Empuje de tierra:

El empuje de tierras se calculara por el método analítico de Rankine. (ACI, 1994)

El valor del empuje dado por Rankine es:

 $E = \frac{1}{2} * vt * hr^{2} * C$

.....Ecuación N° 102

En la teoría de Rankine, se supone que la cara interna del muro es vertical (ψ = 90°), y que el empuje de tierras es paralelo a la inclinación de la superficie del terreno, es decir, forma un ángulo Θ w con la horizontal, es este sentido, esta fuerza no es siempre horizontal. Las componentes horizontal y vertical de E se obtienen adecuando la expresión (182) según Rankine de la siguiente manera:

EH = E*Cos(@w)

.....Ecuación N° 103

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA.

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

EV = E*Sen(1w)	Ecuación N° 104
Dónde: E: empuje activo (Kg/m) hr: altura de muro (m) C = Cosb*(Cosb-(Cos²b-Cos²f) ^{0,5})/(Cosb+(Cos²b-Cos²t) (t) : peso específico del terreno (Kg/m3)	s ² f) ^{0,5}) (185)
EH: empuje horizontal (Kg/m) EV: empuje vertical (Kg/m) b: ángulo de la horizontal del talud de material. f: ángulo de fricción interna o reposo. Ow: pendiente	
 El valor del coeficiente C esta dado para el caso de que Superior del relleno sea horizontal por: 	e la superficie
C = (Tan(45°-f/2))2 = (1-sen f) / (1+se	enf)Ecuación N° 105
- Cuando sobre el relleno exista una sobrecarga, el emp	uje se calcula con la fórmula:
$E = (1/2)^* \gamma t^* h r^* (h r + 2^* h')^* C$	Ecuación N° 106
- El punto de aplicación del empuje dista de la base una	altura que está dada por:
d = (hr/3)*((hr+3*h')/(hr+2*h'))	Ecuación N° 107
• Empuje pasivo: Cuando un muro o estribo empuja contra el terreno se gener nombre de empuje pasivo de la tierra Ep, la tierra así compri	•

 $\mathsf{Ep} = \underline{\mathsf{Cp*yt*h^2}}$

.....Ecuación N° 108

2

origina un aumento de su resistencia hasta alcanzar su valor límite superior **Ep**, la resultante de esta reacción del suelo se aplica en el extremo del tercio inferior de la altura. (Belándria,

 $C p = Cos\delta^*(Cos\delta - (Cos^2\delta - Cos^2\varnothing t)^{0,5})/(Cos\delta + (Cos^2\delta - Cos^2\varnothing t)^{0,5})$

.....Ecuación N° 109

2008)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

- Cuando δ = 0, la expresión de Cp es:

Cp= 1 + Sen Øt

.....Ecuación N° 110

1 - SenØt

c. VERIFICACIÓN DE LA ESTABILIDAD DEL ESTRIBO

Tanto los estribos como los muros de contención en forma general, tienden a perder estabilidad o a fallar por tres razones fundamentales:

- Teniendo el perfil inicial se procede a verificar la estabilidad por volteo, deslizamiento y por presiones sobre el terreno de fundación. Esta verificación se realiza para dos estados de carga:
- 2) Estribo sin puente (superestructura), con relleno sobrecargado y las fuerzas a considerar serán peso propio, peso del relleno, empuje de tierras y sobrecarga en el relleno.
- 3) Estribo con puente, con relleno sobrecargado y considerando además de las fuerzas anteriores las fuerzas horizontales en los dispositivos de apoyo (frenado y fricción), la máxima reacción en los apoyos de la superestructura por carga muerta. (ACI, 1994)

1) Estabilidad al volteo:

El estribo por acción de las fuerzas horizontales trata de voltear sobre su arista, para que esto no suceda, es necesario que el momento estabilizador generado por las fuerzas verticales, sea mayor que el momento de volteo.

Coeficiente de seguridad al volteo:

$$CSV = \frac{Me}{Mv}$$

.....Ecuación N° 111

Dónde:

Me: momento de estabilizador (Kg-m)

Mv: momento de volteo (Kg-m)

CSV debe ser ≥ 2

2) Estabilidad al deslizamiento:

Un estribo puede deslizarse sobre su base, en el mismo sentido de la acción resultante de las fuerzas horizontales. Para evitar esto, es necesario que el producto de las fuerzas verticales por el coeficiente de rozamiento (f), sea superior a la suma de las fuerzas horizontales.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Coeficiente de seguridad al deslizamiento:

$$CSD = \frac{\sum FV.f}{\sum FH}$$

.....Ecuación N° 112

Dónde:

FV: fuerzas verticales (Kg) FH: fuerzas horizontales (Kg)

CSD debe ser ≥ 1.5

f: coeficiente de fricción entre la zapata y el terreno, en la Tabla N° 46 ,se muestra algunos valores referenciales coeficiente de fricción.

TABLA N° 46: Coeficiente de fricción

Material	Coeficiente de fricción (f)			
Albañilería sobre albañilería	0.70			
Albañilería sobre roca	0.70			
Albañileria sobre relleno	0.60			
Albañilería sobre tierra	0.50			
Albañilería sobre arcilla húmeda	0.33			

Fuente (ACI, 1994)

3) Chequeo de compresiones y tracciones

Este chequeo se hace siempre para comprobar si las presiones transmitidas por el estribo son menores a las que puede soportar el terreno y también para ver si las tracciones son menores a las que puede soportar la albañilería. (Pastor, 2006)

Presión máxima:

$$\sigma m \dot{a} x = [\sum FV/(B^*L)]^* (1+6^*e/B) < \sigma t$$

Ecuación N° 113

Presión mínima:

$$\sigma min = \sum FV / (B*L)]* (1-6*e/B) < \sigma t$$

.....Ecuación N° 114

Dónde:

omáx : esfuerzo máximo actuante omín : esfuerzo mínimo actuante ot : esfuerzo admisible del terreno

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUÈNTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

B : ancho de bas e: excentricidad

 $e = B/2 - [(Mr-Mv)/\sum FV]$

.....Ecuación N° 115

**La resultante debe caer siempre dentro del tercio central de la base.

2.14.2 DISEÑO DE ALETAS

La inclinación, longitud y alto está en función de la topografía del terreno. Las alas son estructuras que se utilizan básicamente para contener el relleno de acceso al puente, en planta pueden ser perpendiculares al estribo o tener cierta inclinación con respecto a éstos. El diseño de las alas se realiza de igual modo que los estribos pero sin considerar las reacciones debido a carga muerta y carga viva. (ACI, 1994)

2.14.3 DISEÑO DE APOYOS

La estructura de un puente, estará sometida constantemente a solicitaciones y movimientos que varían en el espacio y en el tiempo. Las funciones de un dispositivo de apoyo son:

- Permitir la libre dilatación del puente.
- Permitir las rotaciones.
- Transmitir las cargas a los estribos.

Para puentes de concreto armado de un tramo simplemente apoyado y con luces menores que 20 m se podrá utilizar un apoyo fijo tipo dowels y un apoyo móvil de simple resbalamiento.

2.14.3.1 APOYO FIJO

Dispositivo que permite giros más no desplazamientos, el más adecuado y económico consiste en apoyar directamente la superestructura, en el estribo o pilar con bastones de anclaje entre ellos. El número y diámetro de los bastones se diseña de tal manera, que puedan absorber por cortante las fuerzas horizontales que tengan que ser transmitidas a la subestructura.

2.14.3.2 APOYO MÓVIL

Dispositivo que permite se produzca giros y movimientos horizontales, un apoyo de simple resbalamiento consiste en dos placas metálicas, una anclada a la superestructura y la otra a la subestructura colocando entre las dos placas un material que reduzca la fricción, en la actualidad el material más usado es el neopreno.

Los anclajes de las placas, consisten en varillas soldadas o pernos, cuya longitud debe ser por lo menos la longitud de desarrollo correspondiente de la varilla, el número y el diámetro de los

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

anclajes, se calcula para absorber el cortante que origina la fuerza horizontal de fricción en dicho apoyo.

Para calcular el espesor de las placas de apoyo, se tiene que tener en cuenta que éstas deben resistir la presión y el cortante originado por máxima reacción del apoyo, para tal fin se considera que las placas actúan como un doble voladizo en su eje y con una reacción igual a la máxima reacción, en el apoyo correspondiente. (Herrera, 1980)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CAPITULO III

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

YECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BÔSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

3. RECURSOS HUMANOS Y MATERIALES

3.1. RECURSOS HUMANOS.

La ejecución del presente proyecto se realiza con la participación directa del proyectista en coordinación con los asesores y docentes de la Facultad de Ingería.

3.1.1. Asesor:

- Mg. Ing. Miguel Mosqueira Moreno.
- Ing. Luis Vásquez Ramírez

3.1.2. Proyectista:

Bach. Jorge Luis Carranza Araujo.

3.1.3. Colaboradores:

- Docentes de la Facultad de Ingeniería.
- > Técnicos de los laboratorios usados en la ejecución del proyecto.
- Municipalidad Distrital de Sanagorán.

3.2. RECURSOS MATERIALES.

En la ejecución del presente proyecto se necesitó lo siguiente:

3.2.1. Equipo Topográfico:

- Estación Total Topcon GTS 246NW.
- GPS.
- Eclímetro.
- Primas.
- Jalones.
- Estacas.
- Pintura.
- Wincha de 30 m.
- Libreta de campo y lapiceros.

3.2.2. Equipo de Laboratorio:

- > Tamices.
- > Recipientes metálicos (taras).
- Balanza electrónica.
- Probeta graduada.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZÁBLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD


- > Horno eléctrico.
- Copa de casagrande.
- Matraz o fiola.
- Mortero.
- Espátula.
- Moldes metálicos.
- Defloculante.

3.2.3. Material de Escritorio:

- Carta Nacional a escala 1/25000.
- Papel bond A-4.
- Disquetes.
- Compact Disc.
- Memorias USB.
- > Computadora.
- Tinta para impresora.
- Plotter.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CAPITULO IV

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

4 METODOLOGIA Y PROCEDIMIENTO

Para el desarrollo del proyecto se tuvo en cuenta todas las herramientas disponibles que puedan ser aplicables y entre ellos los conocimientos, habilidades, herramientas y técnicas.

El trabajo se realizó partiendo del estudio topográfico, estudio de volumen de tránsito, estudio hidrológico e hidráulico, estudio de geológico y geotécnico, para realizar el diseño geométrico y estructural del puente.

El presente estudio se realizó en tres etapas.

- 1. Campo
- 2. Laboratorio
- Gabinete

La metodología considerada para llevar a cabo el estudio se detalla a continuación:

4.1 RECONOCIMIENTO DE LA ZONA

El reconocimiento de la zona fue realizado mediante visitas continuas a la zona de estudio, entrevistando a los pobladores y autoridades de la zona en lo referente a:

- El ancho real del río en la zona de emplazamiento del puente, el mismo que se verificó con el levantamiento topográfico.
- Altura en el centro de la luz libre del cauce.
- Caudal aproximado o altura de la huella en las máximas avenidas.
- Área de inundación en crecientes del río Quillish.
- Tipo de uso de los terrenos aledaños.
- Estado de los accesos y ubicación.

4.2 ESTUDIO TOPOGRÁFICO

4.2.3 LEVANTAMIENTO TOPOGRAFICO

4.2.3.1 PUNTO DE REFERENCIA

q. PUNTO INICIAL:

Situado a la margen izquierda del Río Chillish ubicado en una roca a 60 m del eje del rio se hace la ubicación del B.M.1

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

h. PUNTO DE PASO OBLIGADO:

Se tiene un punto de paso obligado de los denominados controles naturales que lo constituye el Río Quillish, sobre la cual se plantea el puente Reticulado.

i. PUNTO FINAL:

Situado aproximadamente a 220 m. aguas abajo donde se intersecta con el Rio Caracmaca forman un solo flujo.

4.2.3.2 TRABAJO DE CAMPO

a. Comprende:

- Reconocimiento visual del terreno en estudio.
- Colocación de estacas para ubicar la estación.
- Obtención de Coordenadas con GPS.
- Radiación de la estación.

b. Equipo Empleado:

Para la realización del trabajo se contó con el siguiente equipo:

- Estación Total TOPCON GTS-246NW
- Trípode de madera
- Prismas
- Jalones.
- GPS
- Wincha de 50 metros.
- Brújula
- Altimetro
- Estacas de madera

4.2.3.3 TRABAJO DE GABINETE

Una de las principales ventajas de la Estación Total TOPCON, radica en la toma de datos de campo, debido a que el equipo una vez ingresada la cota y las coordenadas de la primera estación automáticamente calcula y procesa para cada punto los datos necesarios, como: distancia horizontal, ángulos horizontal y vertical, azimut, calcula las coordenadas y las almacena en su memoria, para luego ser vaciados a la computadora mediante el programa "Topcon Link v.7.5" el cual nos crea un archivo con formato scv compatible con Excel, en donde nos da una lista por columnas en donde nos indica de las coordenadas, cotas con su respectiva descripción de punto dada en campo.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

4.2.4 TIPO DE TOPOGRAFÍA

Una vez obtenido el plano a curvas de nivel se clasifica el tipo de topografía según la Tabla Nº 2 En el presente estudio nos encontramos con una topografía ondulada.

4.2.5 ELECCIÓN DE LA ESCALA DEL PLANO TOPOGRÁFICO

Para elegir la escala del plano, existen algunas consideraciones, tales como: según las Normas peruanas para el diseño de Carreteras, se recomienda hojas de 0.60 x 0.80 m. y una escala de 1:2000, si revisamos la tabla N° 03 no recomienda una escala menos a 1:1000.

También se considera escalas con la cual la representación de una medida arroje el mínimo error posible, recomendándose escalas generalmente grandes.

Considerando que la zona a levantar es pequeña, se tomó la escala de 1:1500.

4.2.6 ELECCIÓN DE LA EQUIDISTANCIA

Para elegir la equidistancia de las curvas de nivel, se tomó como referencia la Tabla Nº 3, para la cual tenemos una topografía del terreno Ondulada y una escala de 1/500, optamos por elegir una equidistancia (E) de 0.50 m.

4.2.7 UBICACIÓN DE B.M.

Se ubicaron dos B.M. los cuales servirán para el replanteo de la obra, y sus referencias son:

B.M.-1: Ubicado sobre una roca fija existente en la margen izquierda del río, sobre la carretera a Caracmaca.

COTA	2842.22
ESTE	813129.18
NORTE	9135319.56

B.M.-2: Ubicado en la esquina inferior de la casa existente al margen derecho del rio.

COTA	2843.60
ESTE	813145.18
NORTE	9135405.62

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

ROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

4.3 ESTUDIO HIDROLÓGICO E HIDRÁULICA

En el presente proyecto se determinara el caudal máximo que transita por el río, el cual servirá para calcular el tirante máximo para proteger a la estructura en avenidas máximas.

4.3.3 CUENCA HIDROGRÁFICA

Esta cuenca está ubicada en el caserío de Caracmaca, distrito de Sanagorán, provincia de Sánchez Carrión, con alturas que oscilan entre 2832.00 y 3280 m.s.n.m., es de forma redondeada con una extensión que abarca los 243.79 Km2.

El estudio está destinado a recolectar información desde el extremo más alto de la cuenca hasta el punto donde se ubicará el puente sobre el río Quillish. El dren principal de esta cuenca lo constituye el mismo rio que tiene sus orígenes en la parte alta de Caracmaca, ubicada a 3280 m.s.n.m. los cuales discurren aguas abajo de este punto, donde desemboca el río Caracmaca, afluente de la margen izquierda y continua con el nombre de río Caracmaca en dirección Nor-Este, Sur-Este hasta su confluencia con el río Chuygual para formar el río Sanagorán.

Tomando en cuenta la tabla N° 4, de nominamos a nuestra área de estudio como una sub cuenca por tener un área promedio entre 100 y 700 km².

4.3.3.1 DELIMITACIÓN DE UNA CUENCA

La delimitación de una cuenca, se hace sobre un plano a curvas de nivel, siguiendo las líneas del divortium acuarum, la cual es una línea imaginaria, que divide a las cuencas adyacentes y distribuye el escurrimiento originado por la precipitación, que en cada sistema de corriente, fluye hacia el punto de salida de la cuenca. (Villo, 2011)

4.3.4 PRINCIPALES CARACTERÍSTICAS FISIOGRÁFICAS

Para definir las características fisiográficas de una de nuestra cuenca, se obtiene de la carta nacional con una escala 1/50000.

4.3.4.1 PARÁMETROS GEOMORFOLÓGICOS

Luego ha haber delimitado nuestra cuenca en la carta nacional obtenemos la forma y tamaño de la cuenca que tendrá influencia marcada en el efecto de los procesos dinámicos que en ella ocurren.

j. ÁREA DE LA CUENCA (A)

El valor del área se determinó utilizando el Programa AutoCAD Civil 3D 2013 - English Metric, en Km². (Ver Anexo N° 01 tabla N° A1-1)

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

k. PERÍMETRO DE LA CUENCA (P)

El valor del área se determinó utilizando el Programa AutoCAD Civil 3D 2013 - English Metric, en Km.

I. LONGITUD DEL CAUCE PRINCIPAL (L)

El valor del área se determinó utilizando el Programa AutoCAD Civil 3D 2013 - English Metric, en Km.

m. PENDIENTE DEL CAUCE PRINCIPAL (S)

Para la determinación de la pendiente del cauce principal utilizamos la Longitud del cauce principal (L) en la ecuación N° 1 de la Pagina N° 15, la tabulación de datos se muestra en Anexo N° 1, tabla N° A1-17.

n. TIEMPO DE CONCENTRACIÓN (Tc)

Para su determinación utilizaremos los valores de la Longitud del cauce principal y la correspondiente pendiente en la ecuación N° 2 de la Pagina N° 15, la tabulación de datos se muestra en Anexo N° 1, tabla N° A1-17.

o. ALTITUD MEDIA DE LA CUENCA (\overline{H})

Para determinar este parámetro se identifican las cotas, el área entre cotas y el área total de la cuenca, y luego se reemplaza en la ecuación N° 3 de la Pagina N° 16; la tabulación de datos se muestra en el Anexo N° 1, tabla N° A1-1.

4.3.5 CALCULO DE LA INTENSIDAD MAXIMA DE DISEÑO

4.3.5.1 MODELAMIENTO PARA TRANSFERENCIA DE INTENSIDADES MÁXIMAS

Para determinar el caudal de diseño y por no contar con datos de la zona se ha creído conveniente hacer una transposición de datos de la Estación Augusto Weberbauer, y teniendo la altitud media de la zona a transponer los datos, aplicando la ecuación N° 4 de la Pagina N° 16, como se muestra en el Anexo N° 1, tabla N° A1-4 y tabla N° A1-5.

g. RIESGO DE FALLA (J)

Usando la ecuación N° 5 de la Pagina N° 16, y considerando un riego de falla del 50%, la aplicación de este se hace en Anexo N° 1, tabla N° A1-14:

h. TIEMPO O PERIODO DE RETORNO (Tr)

Usando la ecuación N° 6 y 7 de la Pagina N° 17, y en función del riego de falla (J) se remplazan datos en dicha ecuación la aplicación de este se hace en Anexo N° 1, tabla N° A1-14:

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

ROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

i. VIDA UTIL (N)

Vida útil de que se considera es de 25 años, por tratarse de una de un puente de segunda clase.

PRUEBA DE BONDAD DE AJUSTE

➤ PROCEDIMIENTO:

- Ordenar los datos de menor a mayor tal como se muestras en la tabla A1-4.
- ❖ Ajustar estos datos a distribuciones de valores extremos, haciendo uso del modelo Gumbel (Ecuación 8, 9, 10, 11, 12, 13, 14, 15) de la Pagina N° 18 20. La tabulación de los resultados en muestran en el Anexo N° 1 en las Tablas A1-6 hasta la tabla A1-11, 3.06, se muestran los modelamientos de intensidades para 5, 10, 30, 60, 120, minutos de duración.
- ❖ Posteriormente se comparó las diferencias existentes entre la probabilidad empírica de los datos de la muestra y la probabilidad teórica, tomando el valor máximo del valor absoluto, de la diferencia entre el valor observado y el valor de la recta teórica del modelo, es decir: Δ máx= máx | F(X < X_m) P(X < X_m) |.

Dónde:

Δc = Es el estadístico de Smirnov Kolmogorov, cuyo valor es igual a la diferencia máxima existente entre la probabilidad ajustada y la probabilidad empírica.

 $F(X < X_m)$ = Probabilidad de la distribución de ajuste.

 $P(X \le X_m)$ = Probabilidad empírica de datos no agrupados, denominados también frecuencia acumulada.

La tabulación de los resultados en muestran en el Anexo N° 1 de las Tablas A1-07 al A1-12

- En la Tabla N° 5 de la pagina N° 19 se muestran los valores críticos estadísticos, del cual usaremos un nivel de significación del α = 5 % (nivel de significación recomendado para estudios hidrológicos), y para un tamaño de muestra igual a 35 (datos hidrológicos desde 1975 al 2009) Obteniendo un Δt = 0.225
- En el Anexo N° 01 Tabla A1-12, se muestra el criterio de decisión tomado, considerando que si el Δc =Máx |F(x<X)-P(x<X)| < Δt, entonces el ajuste es bueno al nivel de significación seleccionado.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMAC DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

- Luego calculamos las Intensidades máximas para diferentes periodos de retorno, vida útil y riesgo de falla, haciendo uso de la ecuación de predicción de las ecuación 12 y 13, la tabulación de los resultados se muestran en el anexo N° 01 Tabla A1-14.
- ❖ Para el cálculo de las Intensidad máxima se ha generado una curva modelada de intensidad duración frecuencia según los datos transpuestos para diferentes periodos de retorno, vida útil y riesgo de falla, la tabulación de los resultados se muestran en el anexo N° 01 Tabla A1-14.
- Con los datos de la tabla A1-14 se hace la gráfica A1-3 y con los datos de la Tabla A1- 16 que es del tiempo de concentración.

Con la ecuación obtenida en la gráfica el tiempo de concentración de la tabla A1-16 y el con el valor del coeficiente de escorrentía, obtenemos Intensidad de Diseño Máxima en mm/hr y el caudal de aporte de la sub cuenca. La tabulación de los resultados se muestran en el anexo N° 01 Tabla A1-18

4.3.5.2 CALCULO DEL CAUDAL LIQUIDO

Para el cálculo del caudal liquido se tiene que determinar lo siguiente:

Calculo del coeficiente de escorrentía

Con el uso de la Tabla N° 06 se encontró

Relieve del terreno (S=19.40%) = 30
 Permeabilidad del suelo Muy permeable = 10
 Vegetación Poca = 10
 Capacidad de almacenaje de agua Bastante = 20

Total (K) = 70

C = 0.52

El cálculo del coeficiente de escorrentía se muestra en la tabla N° 06 de la página N° 22

Coeficiente de uniformidad n

Se realiza el análisis comparativo de áreas y se obtiene el coeficiente según la clasificación descrita en la ecuación N° 22 de la Pagina N° 24, el valor se muestra en la tabla N° 7 de la página N° 24.

Calculo del caudal líquido

Con los siguientes valores y remplazando en la ecuación N° 16 de la Pagina N° 21. La tabulación de los resultados se muestran en el anexo N° 01 Tabla A1-19

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

4.3.5.3 CALCULO DEL CAUDAL SOLIDO

El caudal solido se calcula con las ecuaciones 17, 18,19, 20 de la Pagina N° 23. Previamente se calcula los parámetros necesarios:

Obtención del d40: Para la obtención del d40 se emplea el análisis granulométrico del lecho de rio presentado en el anexo N° 01

4.3.5.4 CALCULO DEL CAUDAL MAXIMO

La determinación del caudal máximo probable representa la suma del caudal líquido y el caudal sólido que se representa en la ecuación N° 21 de la Pagina N° 23.

4.3.6 CALCULO DEL TIRANTE

Para obtener el tirante del cauce, en el lugar donde se proyecta la ubicación del puente, se asume a la sección del cauce como rectangular, luego emplearemos la fórmula de Manning, ecuación N° 22 de la página N° 24.

DETERMINACION DEL BORDE LIBRE

El borde libre es el 30% del tirante máximo, 0.50m.

4.3.7 ESTIMACIÓN DE LA PROFUNDIDAD DE SOCAVACIÓN

4.3.7.1 SOCAVACIÓN GENERAL DEL CAUCE

La profundidad de socavación general del cauce será calculada según la ecuación N° 25 de la página N° 26, previamente se calcula los parámetros necesarios:

Suelo no cohesivo:

Obtención de β

β de la Tabla N° 8 de la página N° 26. Para tiempo de retorno= 50 años.

Obtención de dm:

Del análisis granulométrico del lecho presentado en el anexo N° 01 de sedimentos se tiene aplicando la ecuación N° 24 de la página N° 25:

Obtención de X y 1/1+X

Se obtiene de la Tabla 9 de la página N° 27, en función del diámetro medio de las partículas del material.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

ROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Calculo de la velocidad erosiva Ve

Se obtiene empleando y remplazando valores en la ecuación N° 23 de la página N° 25.

Obtención del coeficiente de contracción μ

Se obtiene con los valores de la velocidad erosiva, luz libre del puente y el empleo de la Tabla 10 de la página N° 27.

Calculo de α

Remplazando los valores de Qd, Hm, Be y μ en la de la sub ecuación de la ecuación N° 25 de la página N° 26.

Calculo de la profundidad de socavación general

Finalmente la profundidad de socavación general para suelos homogéneos no cohesivos se obtiene remplazando los valores hallados anteriormente en la ecuación N° 25 de la página N° 26.

**Los resultados se presentan en el Anexo N° 01 en hoja de cálculo de Socavación.

4.3.7.2 SOCAVACIÓN AL PIE DE ESTRIBOS

La profundidad de socavación al pie de los estribos será calculada según la ecuación N° 26 de la página N° 28, previamente se calcula los parámetros necesarios:

Qd. y, además:

Obtención del Pα:

-Del plano topográfico, se determina el ángulo α que forma el eje de los estribos con la corriente y de la Tabla N° 11 de la página N° 29, se obtiene $\mathbf{P}\alpha$.

Obtención del Pg:

Se calcula Q₁, Q₂, Q_d y utilizando la Tabla N° 12 de la página N° 29, se encuentra el valor de Pq.

Obtención del P_R:

Como el talud del estribo es 0° y utilizando la Tabla N° 13 de la página N° 29, se determina el valor de Pr.

Calculo de la profundidad de socavación al pie de los estribos:

Finalmente la profundidad de socavación al pie de los estribos se determina reemplazando los valores encontrados anteriormente en la ecuación N° 26 de la página N° 28.

**Los resultados se presentan en el Anexo N° 01 en hoja de cálculo de Socavación.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

4.4 SISTEMA DE DRENAJE

Tomando en cuenta toda la revisión literaria de sistema de drenaje se tendrá las siguientes consideraciones para infraestructura

- > En los estribos y aletas se colocara tubos PVC de 3" como lloraderas.
- El la losa se considera tubos PVC de 2" ubicados en forma vertical.

4.5 ESTUDIO GEOLOGICO, GEOTECNICO Y CANTERA

Por tratarse de una infraestructura muy importar se hace un estudio completo de concienzudo por la situación actual en que se encuentra de área en donde se va a ubicar el puente.

4.5.3 ESTUDIO GEOLÓGICO

El estudio consiste en los trabajos de campo, laboratorio y gabinete, para la construcción del puente sobre el rio Quillish, con el cual se solucionara el problema el de transporte y comunicación entre Las Comunidades de Sanagorán, Caracmaca, La calzada y otros sectores que al momento se encuentran incomunicados

La cimentación propuesto del Puente se ubica su estribo izquierdo en las coordenadas UTM E= 813154.93 y N= 9133532.54 y el estribo derecho se ubica E= 813100.50 E y N = 9135400.00, con una altitud de 2,838 m.s.n.m., distrito de Sanagorán, provincia Sánchez Carrión y Región La Libertad.

Geológicamente las márgenes donde se plantea construir el puente **pertenece a la era del Mesozoico**, sistema **Jurásico**, **Formación Chicama (Js-Chic)** que se caracteriza por presentar lutitas negras laminares desleznables, con delgas intercalaciones de areniscas. Contienen abundantes nódulos negros, piritosos y algunas veces con fósiles algo piritizados. Es común observar manchas blancas amarillentas, como una aflorescencia de alumbre.

Las rocas de la Formación Chicama son blandas debido a la cantidad de material limo arcilloso, que han favorecido el desarrollo de una topografía suave. Como en otras partes, en el lugar estudiado, no se ha visto la base de la formación, pero suponemos que descansa discordantemente sobre calizas del grupo Pucará u otras formaciones. Su contacto superior generalmente es de aparente conformidad con la formación Chimú, siendo más probable una discordancia paralela por el sector oriental, el intenso disturbamiento sufrido por estas rocas, dificulta la exacta estimación de sus grosores, sin embargo, en el sector occidental los estratos están deformados, excepto done se presentan algunas intrusiones pequeñas y medianas que distorsionan los estratos.

El lugar prospectado presenta un cauce recto, pero aguas abajo se presenta meandros y material de acarreo, este efecto hace que acumule bloques en el cauce y como consecuencia de ello, el flujo forme meandros aumentando significativamente su caudal, igualmente la carga de sólidos.

Los suelos son depósitos aluviales en ambas márgenes, pero a una profundidad de 4 metros se encuentra la roca madre que consiste en lutita negra muy compacta, cuyos estratos están

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PÜEÑTE CARROZABLÉ EL BÔSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

en posición casi horizontal. Desde el punto de vista fisiográfico, el lugar seleccionado corresponde a una terraza baja.

En el anexo nº 02 se presenta estudio geológico definitivo

4.5.4 ESTUDIO GEOTECNICO

4.5.4.1 ESTUDIO DE MECANICA DE SUELOS

e. CONTENIDO DE HUMEDAD

Para la realización de este ensayo se ha usado las normas: ASTM D2216 -92, MTCE 108 -1999.NTP 339-127 y se aplica la ecuación 27 de la página N° 32.

		C-1					C2			
	Derecha				Izquierda					
Muestra	M1	M2	М3	M4	М1	M2	М3	M4		
Contenido de Humedad %	10.21	8.24	11.34	roca	9.87	6.35	7.82	roca		

f. ANÁLISIS GRANULOMÉTRICO

> Análisis granulométrico por malla.

Teniendo en cuenta que en los estratos de las calicatas está compuesto de suelos gruesos y finos, se usa las siguientes normas para la realización del ensayo. ASTM D422. Luego se hace curva granulométrica y se obtiene.

			C-1		C2					
	Derecha					Izquierda				
Muestra	M1	M2	M3	M4	M1	M2	M3	M4		
Profundidad (m)	0.00- 2.00	2.00- 3.60	3.60- 3.80		0.00- 2.00	2.00- 3.60	3.60- 3.80			
% que pasa el tamiz N° 4	40.12	31.49	99.28	ROCA LUTITA	39.84	30.53	57.16	ROCA LUTITA		
% que pasa el tamiz N° 4	19.23	12.62	74.36		19.26	10.55	1.4			

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUÈNTE CARRÖZABLE ÉL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Coeficiente de uniformidad (Cu)

Una vez obtenida curva granulométrica se obtiene el D₆₀ y D₁₀ y se aplica la ecuación 28.

> Coeficiente de curvatura (Cc)

Una vez obtenida curva granulométrica se obtiene el D60 y D10 y se aplica la ecuación 29.

			C-1		C2 Izquierda				
		D	erecha						
Muestra	M1	M2	M3	M4	M1	M2	М3	M4	
Profundidad (m)	0.00- 2.00	2.00- 3.60	3.60- 3.80		0.00- 2.00	2.00- 3.60	3.60- 3.80		
Coeficiente de Uniformidad Cu		****		ROCA LUTITA			19.09	ROCA LUTITA	
Coeficiente de curvatura Cu						••••	0.69		

g. LÍMITES DE ATTERBERG

➤ Limite líquido (LL)

Es determinado por medio de la copa de Casagrande (designación de prueba ASTM D-4318, AASHTO T89, MTC E110-2000, NTP 339 -130. Y se aplican las ecuaciones 30 y 31

➤ Limite plástico (LP)

Para realizar este ensayo se ha tenido en cuenta las normas: ASTM D4318, AASHTO T90, MTC E111-2000.

> Índice de plasticidad (IP)

Como se sabe IP la diferencia del LL y LP y está basado en la norma D-427 de la ASTM)

			C-1		C2					
		De	erecha	cha Izquierda						
Muestra	M1	M2	М3	M4	M1	M2	М3	M4		
Profundidad (m)	0.00- 2.00	2.00- 3.60	3.60- 3.80		0.00- 2.00	2.00- 3.60	3.60- 3.80			
Limite liquido%	27.00	27.00	24.00	ROCA LUTITA	28.00	25.00	23.00	ROCA		
Limite Plastico%	20.00	19.00	17.00		22.00	17.00	16.00	LUTITA		
Índice Plástico %	7.00	8.00	7.00	·	6.00	8.00	7.00			

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

ROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

4.5.4.2 CLASIFICACIÓN DE SUELOS

Tomando en cuenta la indicación del ítem 2.6.2.7 de la página N ° 37 en adelante usamos la clasificación S.U.C.S. Y tomamos con referencia las Tablas 14 y 15, la figura N°4

· · · · · · · · · · · · · · · · · · ·	C-1					C2				
	Derecha				Izquierda					
Muestra	M1	M2	М3	M4	M1	M2	М3	M4		
Profundidad (m)	0.00- 2.00	2.00- 3.60	3.60- 3.80	ROCA LUTITA	0.00- 2.00	2.00- 3.60	3.60- 3.80	ROCA LUTITA		
Clasificación del suelo "SUCS"	GC	GC	CL		GC	GC	SC			

4.5.4.3 ENSAYOS DE RESISTENCIA

a. ENSAYO DE CORTE

Se realiza con muestras pequeñas y sólo proporciona la resistencia en un punto de la masa del suelo, y son de dos tipos:

 Prueba se hace con Corte Directo para el materia de relleno es los acceso y de tras de los estribos y aletas.

4.5.4.4 DETERMINACION DE LA CAPACIDAD PORTANTE DEL TERRENO

Según estudio realizado en campo y el estudio geológico la cimentación se realizar sobre una roca denominada LUTITA, para ello se hacen cubos 6 de la misma roca con dimensiones de 5x5 cm para ensayos de compresión simple. Luego se aplica la ecuación N° 34 de la página N° 42 y la ecuación N° 35 de la página N° 44

 $q_{ad} = 3.27 \text{ kg/cm}^2$

FACULTAD DE INGENIÈRIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

4.5.5 ESTUDIO DE CANTERAS.

La cantera de estudio es "CANTERA LA FORTUNA" se encuentra ubicado en la provincia de Trujillo distrito de Huanchaco, a 5 min de del control de la SUNAT de la carretera panamericana norte y a 10 min de cruce El Milagro, del distrito el Milagro.

4.5.5.1 CARACTERÍSTICAS FÍSICAS DEL AGREGADO GRUESO Y FINO PARA CONCRETO.

TABLA 4.1: NORMAS DE ENSAYOS

NTP 400.037- ASTM C136	Granulometría
NTP 400.021 -ASTM C127	Agregados. Método de ensayo normalizado para peso específico y absorción del agregado grueso.
NTP 400.022 - ASTM C128	Agregados. Método de ensayo normalizado para peso específico y absorción del agregado fino.
NTP 339.185 - ASTM C566	Contenido de Humedad
NTP 400.017- ASTM C29	Agregados. Método de ensayo para determinar el peso unitario del agregado.
NTP 400.018 - ASTM C117	Material más fino que pasan por el tamiz normalizado 75 μm (No. 200) por lavado en agregados.
NTP 400.019 - 400.020 ASTM C131	Resistencia a la Abrasión

j. PESOS ESPECÍFICO DE MASA

Para determinar el peso específico ver norma en la tabla N° 4.1. Y se aplica la ecuación N° 36 de la página N° 44.

k. PESOS ESPECÍFICO DE MASA SATURADA CON SUPERFICIE SECA

Para determinar el peso específico de masa saturada ver norma en la ver norma en la tabla N° 4.1. Y se aplica la ecuación N° 37 de la página N° 45.

I. PESOS ESPECÍFICO APARENTE

Para determinar el peso específico aparente ver norma en la tabla N° 4.1. Y se aplica la ecuación N° 38 de la página N° 45.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

m. PORCENTAJE DE ABSORCIÓN

Para determinar el porcentaje de absorción ver norma en la tabla N° 4.1. Y se aplica la ecuación N° 39 de la página N° 45

n. CONTENIDO DE HUMEDAD

Para determinar el porcentaje de absorción ver norma en la tabla N° 4.1. y se aplica la formula N° 40 de la página N° 46.

o. ANÁLISIS GRANULOMÉTRICO

Para verificar el análisis granulométrico ver norma en la tabla N° 4.1

Módulo de finura (mf):

Para calcular el módulo de finura se aplica la formula N° 41 de la página N° 47.

> Superficie específica (se):

Para calcular la superficie específica se aplica la formula N° 42 de la página N° 47, teniendo en consideración que:

p. PESO UNITARIO

Para determinar el porcentaje de absorción ver norma en la tabla N° 4.1. Y se aplica las ecuaciones N° 43 y 44 de las paginas N° 47 y 48

q. PARTICULAS FINAS QUE PASAN EL TAMIZ Nº 200

Se obtiene aplicando la ecuación N° 45 de la página N° 48.

r. ABRASIÓN

Para determinar la abrasión ver norma en la tabla N° 4.1. Y se aplica la ecuacione N° 46 de la página N° 48.

CARACTERISTICAD D	CARACTERISTICAD DE LOS AGREGADOS						
GREGADO FINO	ARENA DE CANTERA						
PESO ESPECIFICO APARENTE	2.60 gr/cm3						
PESO UNITARIO SUELTO Seco	1,580 kg/m3						
PESO UNITARIOS SECO COMPACTADO	1,692 kg/m2						
HUMEDAD NATURAL	0.40%						
ABSORCIÓN	1.78%						
MODULO DE FINURA	2.64						
MATERIA MAS FINO TAMIZ N° 200	7.00%						
·							
GREGADO GRUESO	PIEDRA CHANCADA						
PERFIL	ANGULAR Y SUB ANGULAR						
TAMAÑO NOMINAL MAXIMO	3/4"						

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA.

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

PESO ESPECIFICO APARENTE	2.62 gr/cm3
PESO UNITARIO SUELTO Seco	1,315 kg/m3
PESO UNITARIOS SECO COMPACTADO	1,455 kg/m2
HUMEDAD NATURAL	0.20%
ABSORCIÓN	0.95%
MODULO DE FINURA	7.4
MATERIA MAS FINO TAMIZ N° 200	0.20%
ABRASIÓN	28.78%

4.5.5.2 DISEÑO DE MEZCLAS.

- a) Método de experimentación
- Objetivo

Realizar el diseño de mezclas, para un fc de 210 kg/cm2 y 280 kg/cm2, este diseño de mezclas se realizó para los diferentes tipos de muestras (diferentes en el tipo de cemento, dosificación de mezclas).

4.6 ESTUDIO DE IMPACTO AMBIENTAL

4.6.3 ESTUDIO DE IMPACTO AMBIENTAL

4.6.3.1 DESCRIPCION DEL MEDIO

Los impactos ambientales que se prevean generados por la construcción del proyecto serán en las riveras del lecho del Rio Quillish en el caserío de Caracmaca distrito de Sanagorán específicamente, sin embargo existen algunos factores que podrían implicar impactos ambientales en zonas aledañas a ésta área.

4.6.3.2 MEDIO FISICO

MARCO GEOGRÁFICO

El Proyecto se encuentra ubicado en la Región Natural Quechua, el Puente se ubica entre las coordenadas UTM 813154.93 E y 91335325.40 vertiente izquierda y 813100.50 E y 9135400.00 vertiente derecha, a una altitud de 2,838 m.s.n.m.

CLIMATOLOGÍA

En el caserío Caracmaca donde se encuentra ubicado el Proyecto tiene un excelente clima templado típico de la sierra norte del país de tipo sub húmedo con temperaturas actuales que varían entre los 21° C y 7° C, con un promedio anual de 14° C; con precipitaciones pluviales variables durante el año. Las precipitaciones mínimas se presentan en los meses de Mayo a Setiembre y las máximas entre los meses de Enero a Marzo, con un promedio anual aproximado de 36.66 mm/h., presentando además una humedad relativa del 65 %.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

GEOLOGÍA

La zona en estudio pertenece al:

-Eón:

Fanerozoico

-Era:

Mesozoico

-Sistema:

Jurásico

-Formación: Chicama (Js-Chic)

o GEOMORFOLOGÍA

La zona en estudio está constituida por:

FORMACION SANTA (Ki-sa)

Consiste en la intercalación de lutitas y calizas margosas, y areniscas gris oscuras, con un grosor que oscila entre los 100 y 150 m. suprayace a la formación Chimú e infrayace a la formación Carhuaz, aparentemente con discordancia paralela en ambos casos.

o GEOTECNIA

La zona de estudio está conformada por terrazas fluviales integradas por arenas, gravas y material orgánico.

No se encuentra fracturas, fallas o pliegues que influyan en el funcionamiento del puente.

EDAFOLOGÍA

La combinación del factor climático con el topográfico ha devenido en la formación de suelos de diferentes orígenes y grado de fertilidad. Así se tiene que en los valles agrícolas los suelos son generalmente, de tipo aluvial y coluvial, de profundidad moderada, de textura moderadamente gruesa a moderadamente fina, salinidad de ligera a excesiva y grado de fertilidad natura de bajo a medio.

o HIDROLOGÍA

Sus principales tributarios del Rio Quillish son dos quebradas.

4.6.3.3 MEDIO INERTE

o AIRE

Debido el puente se ubica en una zona rural razón por la cual hay ausencia de fábricas, el bajo parque automotor y edificaciones de gran magnitud en el área de construcción del puente que emitan gases contaminantes, se puede decir que el aire se encuentra casi igual que años anteriores, es decir de buena calidad.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

o SUELO

Las comunidades a las cuales va a servir dicho puente presentan una topografía llana, su capacidad agrícola de estas comunidades es de nivel medio, la productividad de sus tierras se ve mejorada en épocas de lluvia las cuales se presentan en los meses de octubre — abril. Así mismo su productividad se mejorará con la ejecución del presente proyecto.

o AGUA

En cuanto al agua superficial la zona en donde se realizarán los trabajos de dicho proyecto, cuenta con varios puntos de agua dentro de los que podemos destacar, al Quillish.

4.6.3.4 MEDIO BIOTICO

o FLORA

La comunidad de Caracmaca así como las comunidades a servirse con la ejecución del presente proyecto cuenta con un 60% de plantaciones de eucaliptos y otras plantas, 20 % de cultivos de pan llevar y el porcentaje restante lo conforman cultivos como maíz grano, arveja, fríjol, entre otros.

o FAUNA

Con respecto a la fauna de la localidad donde se ejecuta el proyecto podemos mencionar que los pobladores de este caserío se dedican a la cría de animales domésticos entre los que podemos mencionar: Vacunos, ovinos, equinos, porcinos y aves como gallinas y patos. Así mismo se nota la existencia de aves silvestres como: palomas, huanchacos, jilgueros; aves de rapiña como: gavilanes, cernícalos, halcones, colibrí, etc., en tanto que entre los mamíferos tenemos: zorros, conejos, y otros.

4.6.3.5 MEDIO PERCEPTUAL

○ PAISAJE

La vista del paisaje de Caracmaca y anexos, se ve contrastado con la uniformidad de los diseño de las casas propios de la sierra así como de las demás construcciones de su campiña, él que se encuentra rodeado por montes y cerros, que a su vez contienen pastos y sembrios propios de la serranía de Cajamarca

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

ROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

4.6.3.6 MEDIO SOCIOECONOMICO

POBLACIÓN

Todos los pobladores del distrito de Sanagorán, tienen como idioma al castellano. Teniendo como base informaciones recabadas en el Instituto Nacional de Estadística e Informática (INEI) del Censo Nacional para 2007, de 13870 habitantes.

SECTORES DE ACTIVIDAD

Dentro del territorio de Caracmaca - Sanagorán y sus Anexos se realiza diversas actividades económicas destacando que gran porcentaje de la población de Caracmaca tiene como actividad principal la producción agropecuaria.

Dentro de la Agricultura se cultivan: Maíz, frejol, lechuga, zanahoria, betarraga, etc. y dentro de la ganadería predomina la crianza de ganado vacuno que en su mayor parte es criollo.

RECURSOS CULTURALES

a) INFRAESTRUCTURA.

El Caserio de Caracmaca cuenta con las siguientes Instituciones y/u Organismos:

- Comité de Rondas campesinas.
- Iglesia Evangélica
- Centro de Educación Primaria.
- Comité de Club de Madres.
- Comité de Riego, entre otras organizaciones.

b) SERVICIOS.

- Agua potable.
- Sistema de letrinas
- Energía Eléctrica.

4.6.4 DESCRIPCION DEL PROYECTO

4.6.4.1 DISEÑO, CONCEPCIÓN Y FORMA

El proyecto en estudio consiste en la Construcción del Puente Carrozable sobre el Rio Quillish – sector el bosque, caserío Caracmaca, distrito Sánchez Carrión, región la Libertad, con una luz libre de 36.00m y un ancho total de 3.60m.

El diseño se basa en el modelo puente Reticulado con acero W A36 y con losa de concreto armado de un solo tramo:

- 02 veredas peatonales cuyas dimensiones son: 0.60m de ancho a lo largo de todo el puente.
- 02 Barandas ancladas en la armadura.
- 02 armaduras de acero A36 con una altura de 3.80m.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Soportado por dos estribos en los extremos, cuyas base de cimentación serán zapatas, todo de concreto armado.

La concepción del diseño del puente se basa un tramo simplemente apoyado.

La forma del puente será horizontal, recto y baja altura.

4.6.4.2 JUSTIFICACIÓN Y SOLUCIÓN ADOPTADA.

El presente proyecto influirá en el desarrollo social y económico de los pobladores de los caseríos de Caracmaca, La Calzada y Sanagorán Ciudad.

La ejecución del proyecto justifica plenamente su ejecución ya que permitirá la seguridad y accesibilidad a todos los pobladores antes mencionados y transportistas, además será una variable impulsadora de desarrollo económico, agrícola, reduciendo costos de transporte, así como un fácil acceso en épocas de lluvia y permitiendo que los productores agrícolas y pecuarios lleguen a los mercados lleguen a los mercados a tiempo y en condiciones optimas

4.6.5 EVALUACION DE LOS IMPACTOS AMBIENTALES

4.6.5.1 METODOLOGÍA ESPECÍFICA

Para el Presente Proyecto, en la identificación y evaluación de los impactos ambientales, se ha optado por metodología basada en la comparación de escenarios es decir, se han tomado las previsiones de análisis para las etapas de planificación, construcción y funcionamiento del Puente. La metodología seguida bajo una concepción integral, nos permite identificar los impactos desde una perspectiva general a una perspectiva específica, para luego de identificar los impactos ambientales proponer medidas de mitigación en las distintas etapas que comprende el proyecto.

El estudio de impacto ambiental para el presente proyecto se resumirá con la elaboración de la matriz de Leopold, la cual abarcará la valoración cualitativa de los impactos. Para ello se empleará una calificación de magnitud e importancia del impacto ambiental la cual se muestra en las siguientes tablas:

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

IMPACTOS NEGATIVOS

	Magnitud			Importancia	·
Intensidad	Irreversibilidad	Calificación	Duración	Extensión	Calificación
Baja	Baja	-1	Temporal	Puntual	+ 1
Baja	Media	-2	Media	Puntual	+ 2
Baja	Alta	-3	Permanente	Puntual	+ 3
Media	Baja	-4	Temporal	Local	. + 4
Media	Media	-5	Media	Local	+ 5
Media	Alta	-6	Permanente	Local	+ 6
Alta	Baja	-7	Temporal	Regional	+ 7
Alta	Media	-8	Media	Regional	+ 8
Alta	Alta	-9	Permanente	Regional	+ 9
Muy alta	Alta	-10	Permanente	Nacional	+ 10

Fuente: Adaptado de Cemaprimes

IMPACTOS POSITIVOS

	Magnitud			Importancia	
Intensidad	Irreversibilidad	Calificación	Duración	Extensión	Calificación
Baja	Baja	+ 1	Temporal	Puntual	+ 1
Baja	Media	+ 2	Media	Puntual	+ 2
Baja	Alta	+ 3	Permanente	Puntual	+ 3
Media	Baja	+ 4	Temporal	Local	+ 4
Media	Media	+ 5	Media	Local	+ 5
Media	Alta	+ 6	Permanente	Local	+ 6
Alta	Baja	+ 7	Temporal	Regional	+ 7
Alta	Media	+ 8	Media	Regional	+ 8
Alta	Alta	+ 9	Permanente	Regional	+ 9
Muy alta	Alta	+ 10	Permanente	Nacional	+ 10

Fuente: Adaptado de Cemaprimes

4.6.5.2 IDENTIFICACIÓN DE LAS ACCIONES

ETAPA DE PREVIA

- Exploración de terreno

ETAPA DE EJECUCION DEL PROYECTO

- -Tráfico de vehículo
- -Limpieza y habilitación de terreno
- -Trabajos preliminares
- -Movimiento de tierras
- -Acopio de material
- -Trazo definitivo de vías de acceso
- -Estructuras metálicas.
- -Obras de concreto armado y simple
- -Abandono de obra

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

FUNCIONAMIENTO

- -Tráfico Vehicular
- -Tráfico peatonal
- -Ocupación espacial
- -Mantenimiento

4.6.5.3 IDENTIFICACIÓN DE LOS FACTORES

o MEDIO INERTE

- -Aire
- -tierra
- -Suelos
- -Aqua
- -Procesos

MEDIO BIÓTICO

- -Flora
- -Fauna
- -Procesos

MEDIO PERCEPTUAL

- -Paisaje Intrinseco
- -Paisaje Intervisibilidad

MEDIO SOCIOECONÓMICO

- -Uso del territorio
- -Infraestructura vial
- -Cultura
- -Aspecto Humano
- -Economía y población

4.6.5.4 ANÁLISIS DE EFECTOS AMBIENTALES

Se presenta las siguientes matrices:

- Matriz de identificación a nivel cualitativo.
- Matriz de causa efecto a nivel cualitativo.
- Matriz de importancia extensión.
- Matriz de importancia intensidad.
- Matriz de importancia momento.
- Matriz de importancia persistencia.
- Matriz de importancia reversibilidad.
- Matriz de importancia sinergia.
- Matriz de importancia acumulación.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

- Matriz de importancia efecto.
- Matriz de importancia periodicidad.
- Matriz de importancia recuperabilidad.
- Importancia del impacto.
- Matriz cromática.

4.6.5.5 ANALISIS O CARATERIZACION DEL IMPACTO

Factores ambientales más impactados

El factor del medio más *impactado negativamente* es el aire y suelo perteneciente al subsistema inerte, medio físico.

El factor del medio más *impactado positivamente* es el empleo perteneciente al subsistema población, sistema población, medio socioeconómico; ya que la calidad de vida que tendría el poblador al ejecutarse el proyecto, puesto que el mejoramiento de la carretera les permitirá que exista un considerable progreso socioeconómico, aumentando el turismo y a su vez el trabajo, lo cual generará desarrollo y bienestar de la población.

Acciones más impactantes

Las acciones más impactantes son la excavación de zapatas y la eliminación de material excedente que se dan durante la etapa de construcción

4.6.5.6 Conclusión:

Como los factores potencialmente impactados durante la ejecución del proyecto, la magnitud e importancia de los impactos negativos es un poco mayor que la de los positivos, sin embargo, la magnitud e importancia de los impactos positivos durante el funcionamiento del proyecto es mayor que la de los negativos, así mismo con respecto a las sumatorias totales podemos observar que la magnitud e importancia de los impactos positivos son mayores que los impactos negativos, con ello podemos decir que con la ejecución del presente proyecto estas comunidades tendrán mayor potencial en sus actividades socioeconómicas, mejorando así su calidad de vida por lo tanto la construcción del puente es factible ambientalmente.

4.6.6 PLAN DE MANEJO AMBIENTAL

4.6.6.1 GENERALIDADES

La ejecución de las diversas obras con sus respectivas partidas a lo largo de la Construcción del Puente generará impactos ambientales directos e indirectos en el ámbito de su influencia: por lo que se propone un Plan de Manejo Ambiental, el cual establecerá un sistema de control que garantice el cumplimiento de las acciones y medidas preventivas y correctivas, enmarcadas dentro del manejo y conservación del medio ambiente en armonía con el desarrollo integral y sostenido de las áreas involucradas al puente, a este aspecto se considera de especial importancia la coordinación intersectorial y local.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

4.6.6.2 OBJETIVOS

- Alcanzar la conservación del medio ambiente durante la construcción del puente.
- Establecer un conjunto de medidas ambientales para mejorar y/o mantener la calidad ambiental del área de influencia del Proyecto, de tal forma que se eviten y/o mitiguen los impactos ambientales negativos y logren en el caso de los impactos ambientales positivos, generar un mayor efecto ambiental.

4.6.6.3 COMPONENTES DEL PLAN DE MANEJO AMBIENTAL

- Programa de Medidas Preventivas, Correctivas y/o Mitigación Ambiental.
- Programa de Seguimiento y Monitoreo Ambiental.
- Programa de Educación y Capacitación Ambiental.
- Programa de Contingencias

A. Programa de medidas preventivas, correctivas y/o mitigación ambiental

Las medidas preventivas, correctivas y/o mitigación ambiental se orientan principalmente a evitar que se originen impactos negativos y que a su vez causen otras alteraciones, las que en conjunto podrían afectar al medio ambiente de la zona en estudio. En este sentido, las medidas establecidas se complementan con los principios y prácticas de la ingeniería.

a. Etapa de Planificación

- Expectativa de generación de empleo.

Para evitar el inicio de la inmigración hacia la comunidad de Caracmaca y alrededores, y todos los caseríos del área de influencia del proyecto, debido a la expectativa de generación de empleo, con el consiguiente incremento de la población local por la llegada de personas foráneas para ocupar puestos de trabajo, se recomienda que la empresa Contratista debe dar prioridad en la ocupación de la mano de obra no calificada (peones), principalmente a los habitantes de los comunidades antes mencionadas.

Asimismo, la empresa Contratista debe comunicar a los pobladores involucrados en el área de influencia del proyecto, sobre las políticas de contratación de la mano de obra, número de trabajadores y requisitos mínimos para su contratación, divulgando de esta manera la verdadera capacidad de empleo que requiere la obra.

b. Etapa de Construcción

- Para evitar Posible ocurrencia de Conflictos con la Propiedad Privada, se recomienda restringir el ancho de limpieza y trabajo durante el desarrollo de las actividades constructivas.
- Para la Posible afectación de la calidad del aire, agua y suelo. Se prevé que durante la ejecución del Proyecto, se realizará riegos continuos en los lugares donde se emitan partículas de polvo y todo material que se va a transportar debe ser humedecido en

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

su superficie y cubierto con un toldo húmedo, a fin de minimizar la emisión de polvo y la cantidad de material que cargara el vehículo, lo excederá la capacidad de carga del mismo. Se exigirá el uso de protectores de las vías respiratorias a los trabajadores que están mayormente expuestos al polvo.

Para evitar la disminución de la calidad del agua superficial el Contratista debe tomar las medidas necesarias, para que no ocurran vertidos accidentales de sustancias contaminantes en los cursos de aguas superficiales. Se prohibirá arrojar residuos sólidos domésticos generados en el campamento de obra, hacia las aguas del Rio Quillish.

Por ningún motivo, se permitirá el vertimiento directo de aguas servidas del campamento, residuos de lubricantes, grasas, combustibles, etc., a los cursos de agua superficiales.

- Protección de la salud del personal de obra:

De instalarse el campamento de obra en las zonas alejadas de los sectores habitados, el agua utilizada deberá ser apta para el consumo humano; al respecto se recomienda utilizar técnicas de tratamiento como la cloración mediante pastillas.

En el campamento de obra, para la disposición de excretas se dispondrán de servicios higiénicos portátiles y podrá excavarse silos en lugares que no afecten especialmente zonas de cultivo, en el proceso constructivo de estos se debe impermeabilizar las paredes y fondos de los silos.

- Accidentes:

Para evitar la ocurrencia de accidentes, se recomienda instalar mallas o cercos de protección a la zona de trabajo prohibiendo el paso de personas ajenas a la obra; además se dejarán zonas para el paso peatonal y del ganado.

Durante las actividades constructivas se prevé que el personal de obra podría sufrir accidentes, de no tomar las medidas adecuadas de protección para lo cual se recomienda que todo personal de obra deba contar con la indumentaria de protección adecuada.

- Pérdida y alteración de la cobertura vegetal por desbroce:

Las zonas adyacentes al área donde se construirá el puente presentan escasa vegetación silvestre debido al cual los efectos serán mínimos, el Contratista no debe generar mayores afectaciones que aquellas previstas en el proyecto, así como por la

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

utilización de los depósitos de materiales excedente de obra, e instalación de campamento de obra.

- Para la posible alteración ambiental en el entorno de los depósitos de materiales excedentes de obra, se recomienda la eliminación de los materiales excedentes de obra producto de todo tipo de excavación, estos materiales deben ser depositados en los botaderos y colocados según el diseño que se haga al respecto, que debe estar relacionado con el paisaje fisiográfico que lo rodea.
- Para la posible alteración ambiental en el entorno de las Fuentes y/o Puntos de Agua para Construcción, se recomienda utilizar como fuentes y/o fuentes de agua para la construcción, el agua de los cursos superficiales que cumplan con los siguientes límites máximos permisibles: Cloruros en 300 ppm; Sulfatos en 300 ppm; Sales de Magnesio en 150 ppm; Sales solubles totales en 1500 ppm; pH mayor de 7; Sólidos en suspensión en 1500 ppm; Materia orgánica expresada en oxigeno de 10 ppm. Posible alteración ambiental en el entorno del Campamento de Obra.

c. Etapa de Funcionamiento

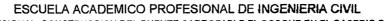
Durante esta etapa se deberá coordinar con los usuarios y demás autoridades las actividades a realizarse para un adecuado mantenimiento del puente en su operación.

B. Programa de seguimiento y Monitoreo ambiental

Este Programa permitirá la evaluación periódica y permanente de la dinámica de las variables ambientales, tanto de orden biofísico como socioeconómico y cultural, con el fin de suministrar información precisa y actualizada a la toma de decisiones orientadas a la conservación del medio ambiente durante la construcción y funcionamiento del puente.

C. Programa de educación y capacitación ambiental

Este programa contiene los lineamientos generales de educación y capacitación ambiental, cuyo objetivo es sensibilizar y concienciar al personal de obra, técnicos y profesionales sobre la importancia de conservar el ambiente.


D. Programa de contingencia

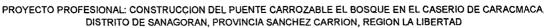
Se refiere a las acciones que se deben de tener en consideración para prevenir los riesgos de posibles accidentes durante las etapas de construcción y operación.

Equipo de Contingencia:

- El equipo deberá estar constituido por el personal de obra a los cuales se les capacitará respecto a procedimientos adecuados para afrontar en cualquier momento, los diversos riesgos identificados.

FACULTAD DE INGENIERIA

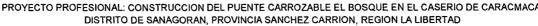
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD


- Implementación de primeros auxilios y de socorro: la disponibilidad de los implementos de primeros auxilios y socorro es de obligatoriedad para el Contratista y deberá contar como mínimo de medicamentos para tratamiento de primeros auxilios (botiquines), cuerdas, cables, camillas, equipo de radio, megáfonos, vendajes, apósitos y tablillas.
- Implementos y medios de protección personal: el personal de obra deberá disponer de implementos de protección para prevenir accidentes, de acuerdo a las actividades que realizan, por lo cual, el Contratista está obligado a suministrarles los implementos y medios de protección personal. El equipo de protección personal, deberá reunir condiciones mínimas de calidad, resistencia, durabilidad y comodidad, de tal forma, que contribuyan a mantener y proteger la buena salud de los trabajadores.
- Implementos contra incendios: se contará con implementos contra incendios en el campamento de obra, como son extintores para incendios, recomendándose extintores de polvo químico seco (ABC) de 11 a 15 Kg. su localización debe encontrarse libre para ser tomada y usada y no debe estar bloqueada o interferida, por objetos o equipos.
- Implementos para los derrames de sustancias químicas: cada almacén donde se guarde el combustible aceite y/o lubricantes y otros productos peligrosos, tendrá un equipo para controlar los derrames suscitados. Los componentes de dicho equipo, se detallan a continuación:
 - Absorbentes como: almohadas, paños y estopa par la contención y recolección de los líquidos derramados.
 - Herramientas manuales y/o equipos para la excavación de materiales contaminados. Contenedores, tambores y bolsas de almacenamiento temporal para limpiar y transportar los materiales contaminados.
- Unidad móvil de desplazamiento rápido: Durante la construcción de las obras, se contará con unidades móviles de desplazamientos rápido. Los vehículos que integrarán el equipo de contingencias, además de cumplir sus actividades normales, acudirán inmediatamente al llamado de auxilio de los grupos de trabajo.
- Lineamientos generales en caso de incendios: Todo personal administrativo y/u operativo, de acuerdo al tipo de instalaciones en las que se encuentran, deberá conocer los procedimientos para el control de incendios, bajo los dispositivos de alarmas y acciones, distribución de equipo y accesorios para casos de emergencias serán ubicados en el campamento de obra y almacén, los que serán de conocimiento de todo el personal que labora en el lugar.

Para apagar un incendio de material común, se debe rociar con agua o usando extintores de tal forma, que se sofoque de inmediato el fuego.

FACULTAD DE INGENIERIA

Para apagar un incendio de líquidos o gases inflamables, se debe cortar el suministro del producto y sofocar el fuego utilizando extintores de polvo químico seco, espuma o dióxido de carbono, o bien, emplear arena seca o tierra y proceder a enfriar el tanque con agua. En las instalaciones del campamento, se deberá disponer como reserva, una buena cantidad de arena seca.


4.6.6.4 MEDIDAS GENERALES PARA LA MITIGACIÓN DE IMPACTOS NEGATIVOS

Todas las medidas que se dan a continuación tienen como finalidad prevenir, paliar o corregir en cierto grado los impactos ambientales negativos que se pueden dar en el proyecto.

- a) En la partida de eliminación de desechos a botadero, se dispondrá de un botadero que se ubicará en un lugar que no conlleve a una expansión de impactos negativos como pueden ser escurrimientos con materias dañinas que puedan afectar a las quebradas y suelos, recomendándose que posterior a la eliminación de desechos estos sean conformado de forma que permita la colocación de una capa tierra, la cual atenuará emisión de gases tóxicos.
- b) Se implementará con cilindros o cajas metálicas pintadas para la disposición de desechos de construcción, en tanto que las áreas habilitadas para el almacenamiento temporal de los desperdicios de construcción deberán ser señalizadas.
- c) Los desperdicios de fierros de construcción que sean mayores a 20 cm de longitud serán dispuestos en forma ordenada en las áreas de almacenamiento temporal, luego atarlos firmemente para su traslado.
- d) Los filtros de aceites ya empleados en los equipos para los trabajos de obra, serán dispuestos en bolsas de basura, para luego ser eliminados.
- e) Para los desechos de madera se habilitará pequeñas áreas en donde serán acumulados; la madera en general deberá estar libre de contaminantes, hidrocarburos o químicos, en lo posible no debe tener clavos.
- f) Se ubicarán estratégicamente servicios higiénicos portátiles para el personal que labore en la ejecución de la obra, así mismo se verificará su correcta instalación así como su limpieza y desinfección.
- g) Se preverá que la basura tenga un lugar especial de almacenamiento para luego ser eliminado, verificándose en todo momento que la basura no sea colocada con el material a ser eliminado al botadero.
- h) Se verificará que los aditivos empleados en el concreto así como los sellos de juntas y otros sean utilizados adecuadamente y de acuerdo a las especificaciones del Expediente

Técnico así como del fabricante; así mismo los envases vacíos serán colocados en basureros por separado al resto de basureros que se empleen.

- i) Se tendrá asesoramiento en el control y limpieza de posibles derrames de aditivos y otras sustancias químicas utilizadas en la ejecución de la obra.
- j) Se verificará que el personal cuente el EPP necesario para cada una de las labores que se realicen durante la ejecución del Proyecto.
- k) Se verificará que se manejen adecuadamente los materiales residuales y otros producto usados en los trabajos de la obra.

4.7 ESTUDIO DE VOLUMEN DE TRANSITO

Para el mencionado estudio haremos uso de la técnica de observación directa y conteo manual.

4.7.3 VOLUMEN DEL TRANSITO VEHICULAR

Para determinar el volumen del tránsito vehicular se usa el FORMATO N° 01 del MTC; el volumen de tránsito vehicular sirve para determinar el ancho de la vía.

Se realizó el conteo por observación de los vehículos que transitan por el lugar los días lunes 13/02/12 hasta el domingo 19/12/12 que además debemos considerar que el día Jueves el de mayor flujo vehicular en la zona, para las diferentes actividades comerciales, culturales, recreacionales que se dan en el lugar. Estos registros se tomaron de 8.00 am hasta las 6.30 pm, con la finalidad de obtener un IMD. (La tabulación de datos se muestra en el cuadro 4.03)

4.7.4 ESTUDIO DE TRAZO Y DISEÑO VIAL DE LOS ACCESOS

4.7.4.1 VELOCIDAD DIRECTRIZ (V):

La carretera a diseñar es del Tipo local vecinal y por presentar una topografía accidentada; la velocidad directriz considerada para el presente proyecto es de 20 Km / hora. Teniendo en cuenta la Tabla: N° 23 de la página N° 48.

4.7.4.2 RADIOS DE DISEÑO.

De acuerdo a la velocidad directriz y al peralte máximo (10%), el Radio Mínimo Normal es de 10 m, pero se ha considerado un radio de 20 m. para la mayoría de curvas de volteo usando la Ecuación N° 57.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

4.7.4.3 ANCHO DE CALZADA:

El ancho de faja de rodadura, considerada de acuerdo a la topografía presentada en la zona del proyecto es de 3.60 m ya que está considerada para carreteras con menos de 15 vehículos diarios.

4.7.4.4 ANCHO DE BERMAS.

Según el Manual para el Diseño de Carreteras no Pavimentadas de Bajo Volumen de Tránsito considera un ancho mínimo de berma de 0.50 m. a cada lado de la calzada, lo cual se ha considerado en el diseño.

4.7.4.5 PLAZOLETAS DE CRUCE.

Se han considerado plazoletas de cruce de 3.00 x 30.00 m cada 500.00 m aproximadamente.

4.7.4.6 PENDIENTES.

El presente proyecto de construcción de carretera, se ha adaptado de la mejor manera posible a la topografía del lugar y a un camino de herradura existente, obteniendo las pendientes.

- Pendiente Mínima

: 1.62%.

- Pendiente Máxima

: 7.93%

Las cuales están dentro de los parámetros que indica la norma. (Tabla N° 27)

4.7.4.7 BOMBEO.

El bombeo en los tramos en tangente se ha elegido de 3%, y en los tramos en curva serán sustituidos por el peralte, teniendo en cuenta el radio de cada curva.

4.7.4.8 PERALTES.

El peralte para las diferentes curvas en el presente proyecto, así como la longitud de transición para cada peralte se obtiene teniendo en cuenta la (Tabla N°24).

4.7.4.9 DISEÑO DE EJE DE VÍA.

Se tendrá en cuenta los parámetros siguientes para el diseño del eje de la vía.

4.7.4.10 CURVAS HORIZONTALES.

Los elementos de las curvas horizontales, fueron calculados haciendo uso de las fórmulas mostradas en el Cuadro N° 22. Los elementos de cada curva se presentan en los planos correspondientes.

4.7.4.11 CURVAS VERTICALES:

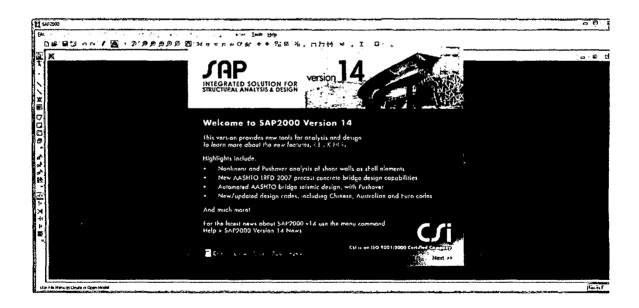
Una vez determinada la necesidad del diseño de una curva vertical, convexa o cóncava, según corresponda, se calculó la longitud de dichas curvas verticales teniendo en cuenta las ecuaciones N° 50, Ver planos Planta y Perfil de accesos.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

4.8 DISEÑO DE LA SUPERESTRUCTURA DEL PUENTE

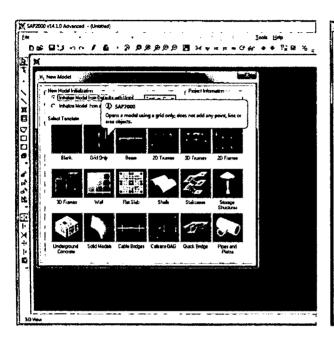

4.8.3.1 DISEÑO DE LOSA, TRAMO EN VOLADIZO Y VEREDA

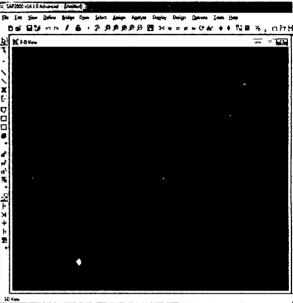
Teniendo en cuenta todas las consideraciones generales de la Filosofía de diseño que se indica en el marco teórico de las paginas N° 69 a 77, y para el pre dimensionamiento se usa la ecuación N° 54 de la página N° 77

......Ver resultados en anexo N° 05

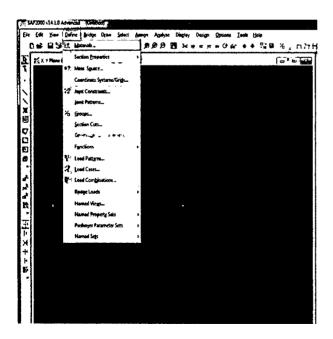
4.8.3.2 DISEÑO DE ESTRUCTURAS METÁLICAS

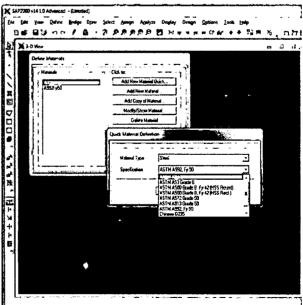
Teniendo en cuenta todas las consideraciones generales de la Filosofía de diseño que se indica en el marco teórico de las paginas N° 69 a 77, usando el programa SAP 2000 V-14.2.1 para el pre dimensionamiento de los elementos estructurales de la Armadura reticulada del puente



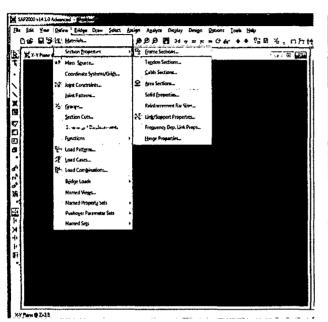

FACULTAD DE INGENIERIA

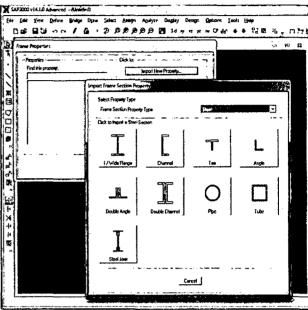
ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

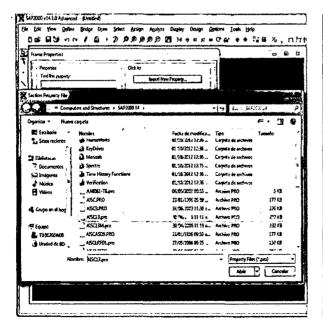

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

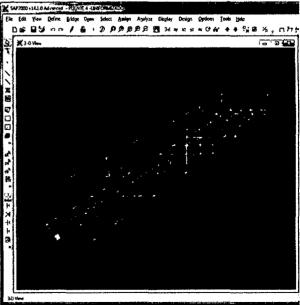

Se define la estructura de la armadura en 3D de acuerdo a lo necesario y el requerimiento del diseno

> Se define las propiedades del los elementos a usar, este caso una acero ASTM A36

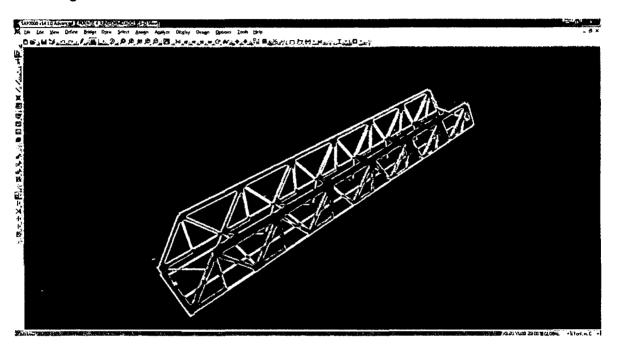



FACULTAD DE INGENIERIA

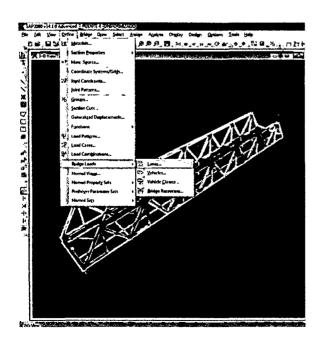

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

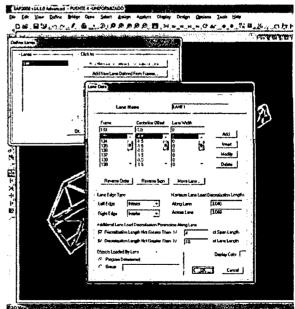

Una ves definido el material a usar, se define la seccion de que usa para cada uno de los elementos a usar en el estructura.

➤ Importamos datos desde el programas que ente caso con son Acero ASTM A36 – W, y a la ves graficamos todos los elementos necesarios de la estructura, teniendo en cuenta de la altura de la armadura es L/10



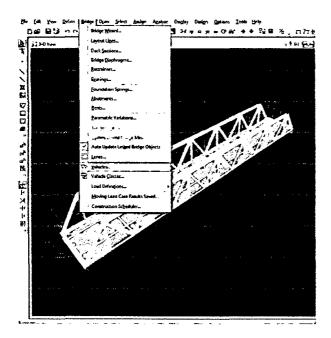
FACULTAD DE INGENIERIA

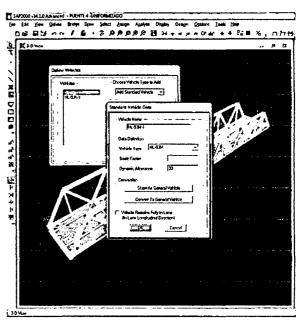

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL


PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

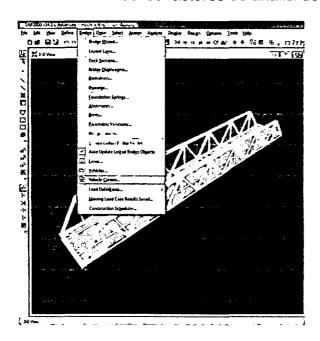
➤ En la figura se muestra la estructura definitiva para el analisis incluyendo el una losa de concreto con el espesor de 25 cm y con un concreto de 280 kg/cm².

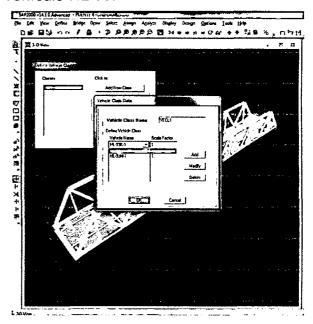
➤ Luego definimos las cargas moviles, empezamos la definicion de numero lineas o carriles de la estructura.



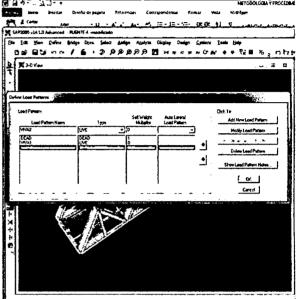

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

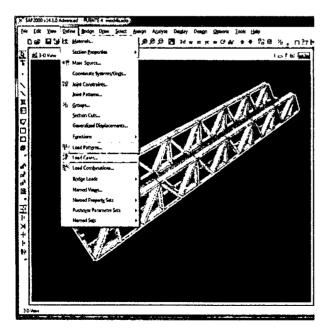

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

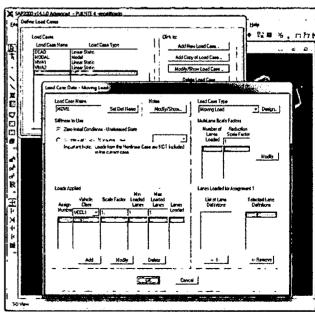

Definimos el tipo de vehículo a usar en funcion del manual de diseño de puentes que en este caso es el HL 93 con un factor de impacto del 33%.

Definimos los factores de analisi del vehículo HL 93.

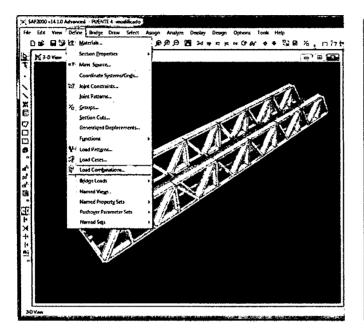

FACULTAD DE INGENIERIA

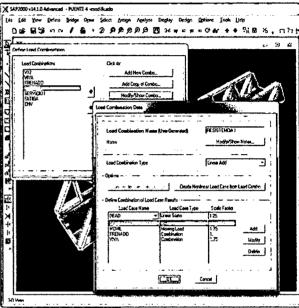
ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL


PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

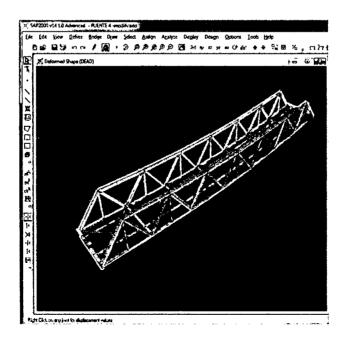

Definimos definimos las cargas permanentes que se van a usar en el analisis.

Definimos los casos de cargas y definismos el factos de carril para las cargas moviles en funcion de la Tabla 2.36.



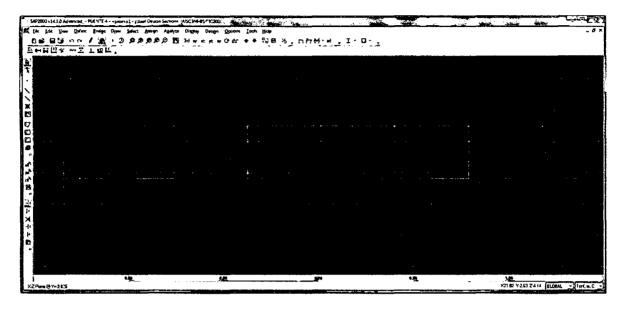

FACULTAD DE INGENIERIA

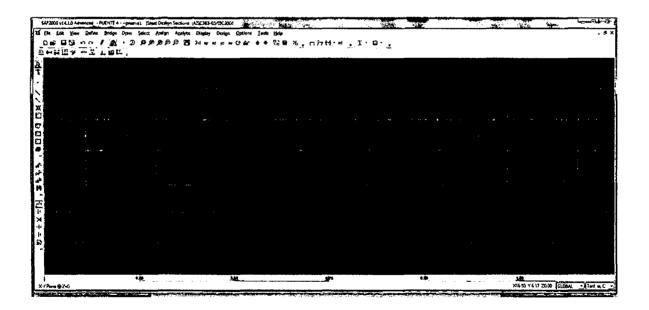
ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL


PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

➤ Definimos las combinaciones de cargas en funcion de la Ecuacion N° 62 y de las tablas 38 y 39.

> Definimos procesamos el programa quedando de la siguiente manera.

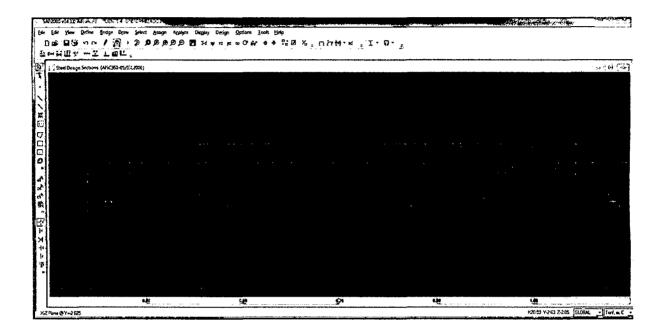


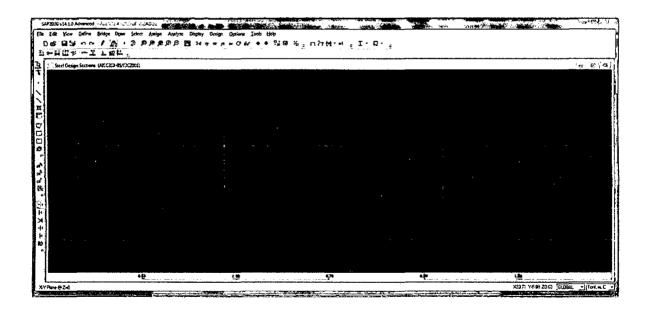

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

➤ En las figuras siguientes de muestras la secciones de el programa no da por defecto, tanto en la vista lateral y en la vista en planta respectivamente.

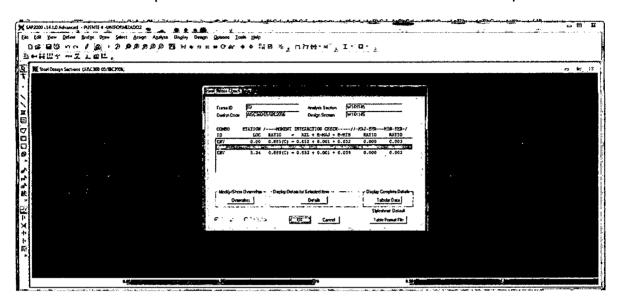



FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

➤ En una ves obteniedos los datos por defecto del programa uniformizamos todos los elementos de estructura, para este caso se uniformiza de la siguiente manera.



FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

➤ En para verificar que si nuestras decciones asumidas son correctas, verificamos que sus ratio en la seccion mas critica sea menor que 1.

Luego se hace la comprobación de cada elemento ya sea por tracción, compresión, flexión, corte que se menciona en el marco teórico de la Paginas N° 81 a la 94; para luego hacer el cálculos de las conexiones que se usaran según sea el tipo que se mencionan en el marco teórico las Paginas N° 95 a la 110.

......Ver resultados en anexo N° 06

4.9 DISEÑO DE LA SUB ESTRUCTURA DEL PUENTE

4.9.3.1 DISEÑO DE ESTRIBOS

Usando la figura N° 09 para el pre dimensionamiento, calculamos las fuerzas actuantes en el estribo con la aplicación de las ecuaciones desde la 101 hasta 110. Luego verificamos la estabilidad del estribo con la aplicación de las ecuaciones desde la 111 hasta la 115

......Ver resultados en anexo N° 07

4.9.3.2 DISEÑO DE ALETAS

Usando la figura N° 09 para el pre dimensionamiento, calculamos las fuerzas actuantes en la aleta con la aplicación de las ecuaciones desde la 111 hasta 120. Luego verificamos la estabilidad del estribo con la aplicación de las ecuaciones desde la 121 hasta la 125

......Ver resultados en anexo N° 07

4.9.3.3 DISEÑO DE APOYO

......Ver resultados en anexo N° 07

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CAPITULO V

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN. PROVINCIA SANCHEZ CARRION. REGION LA LIBERTAD

5 PRESENTACIÓN DE RESULTADOS

5.1 ESTUDIO TOPOGRÁFICO

- El terreno presenta una topografía ondulada
- Los planos topográficos se presentan en 1/2000
- Las curvas a nivel tienen una equidistancia de 0.50 m.
- Se tiene los siguientes B.M.

B.M.-1: Ubicado sobre una roca fija existente en la margen izquierda del río, sobre la carretera a Caracmaca.

COTA	2842.22
ESTE	813129.18
NORTE	9135319.56

B.M.-2: Ubicado en la esquina inferior de la casa existente al margen derecho del rio.

COTA	2843.60
ESTE	813145.18
NORTE	9135405.62

5.2 ESTUDIO HIDROLÓGICO E HIDRÁULICA

- Se tiene una área de cuenca geográfica de 243.79 Km².
- Las alturas que oscilan entre 2832.00 y 3280 m.s.n.m.
- La cuenca tiene un número de orden de 4.
- Longitud de cauce principal de 2.05 km.
- Pendiente de cauce principal de 19%.
- Tiempo de concentración de 41.89 min.
- Altitud media de cueca de 3040.00 m.s.n.m.
- Se hace el análisis con un riesgo de falla de 40%
- Tiene un periodo de retorno de 100 años.
- Para una vida útil de 50 años.
- Se tiene un caudal de líquidos de 14.55 m³/s.
- Se tiene un caudal de solidos de 15.10
- Para el diseño de analiza con un caudal de 36.00 m³/s.
- Se tiene una profundidad de socavación de 2.00 m

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

5.3 ESTUDIO GEOLOGICO, GEOTECNICO Y CANTERA

Por tratarse de una infraestructura muy importante se hace un estudio completo de concienzudo por la situación actual en que se encuentra de área en donde se va a ubicar el puente.

5.3.3 ESTUDIO GEOLÓGICO

Pertenece a:

Era:

Mesozoico,

Sistema:

Jurásico,

Formación:

Chicama (Js-Chic)

Caracteriza por presentar lutitas negras laminares desleznables, con delgas intercalaciones de areniscas. Contienen abundantes nódulos negros, piritosos y algunas veces con fósiles algo piritizados.

5.3.4 ESTUDIO GEOTECNICO

		C-1			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	C2		
		Derec	ha		······································	Izquier	da	
Muestra	M1	M2	M2	M4	M1	M2	M2	M4
Profundidad (m)	0.00-2.00	2.00-3.60	3.60-3.80		0.00-2.00	2.00-3.60	3.60-3.80	
% que pasa el tamiz N° 4	40.12	31.49	99.28		39.84	30.53	57.16	7
% que pasa el tamiz N° 4	19.23	12.62	74.36	1 1	19.26	10.55	1.40	1
Limite liquido%	27.00	27.00	24.00		28.00	25.00	23.00	1
Índice Plástico %	7.00	8.00	7.00	ROCA	6.00	8.00	7.00	ROCA
Coeficiente de Uniformidad Cu		,,,,,		LUTIT A	****		19.09	LUTITA
Coeficiente de curvatura Cu		*****	*****] [*****	*****	0.69	1
Diámetro efectivo (D ₁₀)		*****			*****	*****	0.33	
Contenido de Humedad %	10.21	8.24	11.34	1	9.87	6.35	7.82	1
Clasificación del suelo "SUCS"	GC	GC	CL		GC	GC	SC	1

CONDICIONES DE CIMENTACIÓN

T	IPO DE CIMENTACION
	ZAPATA DE CONCRETO ARMADO
E	STRATO DE APOYO PARA LA CIMENTACION
	ROCA LUTITA CEDIMENTARIA
P	ROFUNDIDAD DE CIMENTACION
	3.50 M CON RESPECTO AL LECHO DEL RIO ACTUAL
P	PRESION ADMISIBLE
	3.27 Kg/cm2
F	ACTOR DE SEGURIDAD
Γ	3

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

5.3.5 ESTUDIO DE CANTERAS.

CARACTERÍSTICAS I	DE LOS AGREGADOS
AGREGADO FINO	ARENA DE CANTERA
PESO ESPECIFICO APARENTE	2.60 gr/cm3
PESO UNITARIO SUELTO Seco	1,580 kg/m3
PESO UNITARIOS SECO COMPACTADO	1,692 kg/m2
HUMEDAD NATURAL	0.40%
ABSORCIÓN	1.78%
MODULO DE FINURA	2.64
MATERIA MAS FINO TAMIZ N° 200	7.00%
AGREGADO GRUESO	PIEDRA CHANCADA
PERFIL	ANGULAR Y SUB ANGULAR
TAMAÑO NOMINAL MÁXIMO	3/4"
PESO ESPECIFICO APARENTE	2.62 gr/cm3
PESO UNITARIO SUELTO Seco	1,315 kg/m3
PESO UNITARIOS SECO COMPACTADO	1,455 kg/m2
HUMEDAD NATURAL	0.20%
ABSORCIÓN	0.95%
MODULO DE FINURA	7.4
MATERIA MAS FINO TAMIZ N° 200	0.20%
ABRASIÓN	28.78%

5.3.6 DISEÑO DE MEZCLAS.

Con un concreto de fc de 210 kg/cm2 para zapatas, estribos y aletas.

PROPORCIONAMIENTO EN PESO

1: 2.09: 2.41/25.80 Lt/blosa

PROPORCIONAMIENTO EN VOLUMEN

1: 2.00: 2.75/25.80 Lt/blosa

Con un concreto de fc de 280 kg/cm2 para losa y veredas de superestructura.

PROPORCIONAMIENTO EN PESO

1: 1.86: 2.19/23.00 Lt/blosa

PROPORCIONAMIENTO EN VOLUMEN

1: 1.75: 2.50/23.00 Lt/blosa

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA.

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

5.4 ESTUDIO DE IMPACTO AMBIENTAL

5.4.3 PLAN DE MANEJO AMBIENTAL

5.4.3.1 GENERALIDADES

La ejecución de las diversas obras con sus respectivas partidas a lo largo de la Construcción del Puente generará impactos ambientales directos e indirectos en el ámbito de su influencia: por lo que se propone un Plan de Manejo Ambiental, el cual establecerá un sistema de control que garantice el cumplimiento de las acciones y medidas preventivas y correctivas, enmarcadas dentro del manejo y conservación del medio ambiente en armonía con el desarrollo integral y sostenido de las áreas involucradas al puente, a este aspecto se considera de especial importancia la coordinación intersectorial y local.

5.4.3.2 OBJETIVOS

- Alcanzar la conservación del medio ambiente durante la construcción del puente.
- Establecer un conjunto de medidas ambientales para mejorar y/o mantener la calidad ambiental del área de influencia del Proyecto, de tal forma que se eviten y/o mitiguen los impactos ambientales negativos y logren en el caso de los impactos ambientales positivos, generar un mayor efecto ambiental.

5.4.3.3 COMPONENTES DEL PLAN DE MANEJO AMBIENTAL

- Programa de Medidas Preventivas, Correctivas y/o Mitigación Ambiental.
- Programa de Seguimiento y Monitoreo Ambiental.
- Programa de Educación y Capacitación Ambiental.
- Programa de Contingencias

A. Programa de medidas preventivas, correctivas y/o mitigación ambiental

Las medidas preventivas, correctivas y/o mitigación ambiental se orientan principalmente a evitar que se originen impactos negativos y que a su vez causen otras alteraciones, las que en conjunto podrían afectar al medio ambiente de la zona en estudio. En este sentido, las medidas establecidas se complementan con los principios y prácticas de la ingeniería.

a. Etapa de Planificación

- Expectativa de generación de empleo.

Para evitar el inicio de la inmigración hacia la comunidad de Caracmaca y alrededores, y todos los caseríos del área de influencia del proyecto, debido a la expectativa de generación de empleo, con el consiguiente incremento de la población local por la llegada de personas foráneas para ocupar puestos de trabajo, se recomienda que la empresa Contratista debe dar prioridad en la ocupación de la mano de obra no calificada (peones), principalmente a los habitantes de los comunidades antes mencionadas.

Asimismo, la empresa Contratista debe comunicar a los pobladores involucrados en el área de influencia del proyecto, sobre las políticas de contratación de la mano de

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

obra, número de trabajadores y requisitos mínimos para su contratación, divulgando de esta manera la verdadera capacidad de empleo que requiere la obra.

b. Etapa de Construcción

- Para evitar Posible ocurrencia de Conflictos con la Propiedad Privada, se recomienda restringir el ancho de limpieza y trabajo durante el desarrollo de las actividades constructivas.
- Para la Posible afectación de la calidad del aire, agua y suelo. Se prevé que durante la ejecución del Proyecto, se realizará riegos continuos en los lugares donde se emitan partículas de polvo y todo material que se va a transportar debe ser humedecido en su superficie y cubierto con un toldo húmedo, a fin de minimizar la emisión de polvo y la cantidad de material que cargara el vehículo, lo excederá la capacidad de carga del mismo. Se exigirá el uso de protectores de las vías respiratorias a los trabajadores que están mayormente expuestos al polvo.

Para evitar la disminución de la calidad del agua superficial el Contratista debe tomar las medidas necesarias, para que no ocurran vertidos accidentales de sustancias contaminantes en los cursos de aguas superficiales. Se prohibirá arrojar residuos sólidos domésticos generados en el campamento de obra, hacia las aguas del Rio Quillish.

Por ningún motivo, se permitirá el vertimiento directo de aguas servidas del campamento, residuos de lubricantes, grasas, combustibles, etc., a los cursos de agua superficiales.

- Protección de la salud del personal de obra:

De instalarse el campamento de obra en las zonas alejadas de los sectores habitados, el agua utilizada deberá ser apta para el consumo humano; al respecto se recomienda utilizar técnicas de tratamiento como la cloración mediante pastillas.

En el campamento de obra, para la disposición de excretas se dispondrán de servicios higiénicos portátiles y podrá excavarse silos en lugares que no afecten especialmente zonas de cultivo, en el proceso constructivo de estos se debe impermeabilizar las paredes y fondos de los silos.

- Accidentes:

Para evitar la ocurrencia de accidentes, se recomienda instalar mallas o cercos de protección a la zona de trabajo prohibiendo el paso de personas ajenas a la obra; además se dejarán zonas para el paso peatonal y del ganado.

Durante las actividades constructivas se prevé que el personal de obra podría sufrir accidentes, de no tomar las medidas adecuadas de protección para lo cual se

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

recomienda que todo personal de obra deba contar con la indumentaria de protección adecuada.

- Pérdida y alteración de la cobertura vegetal por desbroce:

Las zonas adyacentes al área donde se construirá el puente presentan escasa vegetación silvestre debido al cual los efectos serán mínimos, el Contratista no debe generar mayores afectaciones que aquellas previstas en el proyecto, así como por la utilización de los depósitos de materiales excedente de obra, e instalación de campamento de obra.

- Para la posible alteración ambiental en el entorno de los depósitos de materiales excedentes de obra, se recomienda la eliminación de los materiales excedentes de obra producto de todo tipo de excavación, estos materiales deben ser depositados en los botaderos y colocados según el diseño que se haga al respecto, que debe estar relacionado con el paisaje fisiográfico que lo rodea.
- Para la posible alteración ambiental en el entorno de las Fuentes y/o Puntos de Agua para Construcción, se recomienda utilizar como fuentes y/o fuentes de agua para la construcción, el agua de los cursos superficiales que cumplan con los siguientes límites máximos permisibles: Cloruros en 300 ppm; Sulfatos en 300 ppm; Sales de Magnesio en 150 ppm; Sales solubles totales en 1500 ppm; pH mayor de 7; Sólidos en suspensión en 1500 ppm; Materia orgánica expresada en oxigeno de 10 ppm. Posible alteración ambiental en el entorno del Campamento de Obra.

c. Etapa de Funcionamiento

Durante esta etapa se deberá coordinar con los usuarios y demás autoridades las actividades a realizarse para un adecuado mantenimiento del puente en su operación.

B. Programa de seguimiento y Monitoreo ambiental

Este Programa permitirá la evaluación periódica y permanente de la dinámica de las variables ambientales, tanto de orden biofísico como socioeconómico y cultural, con el fin de suministrar información precisa y actualizada a la toma de decisiones orientadas a la conservación del medio ambiente durante la construcción y funcionamiento del puente.

C. Programa de educación y capacitación ambiental

Este programa contiene los lineamientos generales de educación y capacitación ambiental, cuyo objetivo es sensibilizar y concienciar al personal de obra, técnicos y profesionales sobre la importancia de conservar el ambiente.

D. Programa de contingencia

Se refiere a las acciones que se deben de tener en consideración para prevenir los riesgos de posibles accidentes durante las etapas de construcción y operación.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Equipo de Contingencia:

- El equipo deberá estar constituido por el personal de obra a los cuales se les capacitará respecto a procedimientos adecuados para afrontar en cualquier momento, los diversos riesgos identificados.
- Implementación de primeros auxilios y de socorro: la disponibilidad de los implementos de primeros auxilios y socorro es de obligatoriedad para el Contratista y deberá contar como mínimo de medicamentos para tratamiento de primeros auxilios (botiquines), cuerdas, cables, camillas, equipo de radio, megáfonos, vendajes, apósitos y tablillas.
- Implementos y medios de protección personal: el personal de obra deberá disponer de implementos de protección para prevenir accidentes, de acuerdo a las actividades que realizan, por lo cual, el Contratista está obligado a suministrarles los implementos y medios de protección personal. El equipo de protección personal, deberá reunir condiciones mínimas de calidad, resistencia, durabilidad y comodidad, de tal forma, que contribuyan a mantener y proteger la buena salud de los trabajadores.
- Implementos contra incendios: se contará con implementos contra incendios en el campamento de obra, como son extintores para incendios, recomendándose extintores de polvo químico seco (ABC) de 11 a 15 Kg. su localización debe encontrarse libre para ser tomada y usada y no debe estar bloqueada o interferida, por objetos o equipos.
- Implementos para los derrames de sustancias químicas: cada almacén donde se guarde el combustible aceite y/o lubricantes y otros productos peligrosos, tendrá un equipo para controlar los derrames suscitados. Los componentes de dicho equipo, se detallan a continuación:
 - Absorbentes como: almohadas, paños y estopa par la contención y recolección de los líquidos derramados.
 - Herramientas manuales y/o equipos para la excavación de materiales contaminados. Contenedores, tambores y bolsas de almacenamiento temporal para limpiar y transportar los materiales contaminados.
- Unidad móvil de desplazamiento rápido: Durante la construcción de las obras, se contará con unidades móviles de desplazamientos rápido. Los vehículos que integrarán el equipo de contingencias, además de cumplir sus actividades normales, acudirán inmediatamente al llamado de auxilio de los grupos de trabajo.
- Lineamientos generales en caso de incendios: Todo personal administrativo y/u operativo, de acuerdo al tipo de instalaciones en las que se encuentran, deberá conocer los procedimientos para el control de incendios, bajo los dispositivos de alarmas y acciones, distribución de equipo y accesorios para casos de emergencias serán ubicados

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION. REGION LA LIBERTAD

en el campamento de obra y almacén, los que serán de conocimiento de todo el personal que labora en el lugar.

Para apagar un incendio de material común, se debe rociar con agua o usando extintores de tal forma, que se sofoque de inmediato el fuego.

Para apagar un incendio de líquidos o gases inflamables, se debe cortar el suministro del producto y sofocar el fuego utilizando extintores de polvo químico seco, espuma o dióxido de carbono, o bien, emplear arena seca o tierra y proceder a enfriar el tanque con agua. En las instalaciones del campamento, se deberá disponer como reserva, una buena cantidad de arena seca.

5.4.3.4 MEDIDAS GENERALES PARA LA MITIGACIÓN DE IMPACTOS NEGATIVOS

Todas las medidas que se dan a continuación tienen como finalidad prevenir, paliar o corregir en cierto grado los impactos ambientales negativos que se pueden dar en el proyecto.

- I) En la partida de eliminación de desechos a botadero, se dispondrá de un botadero que se ubicará en un lugar que no conlleve a una expansión de impactos negativos como pueden ser escurrimientos con materias dañinas que puedan afectar a las quebradas y suelos, recomendándose que posterior a la eliminación de desechos estos sean conformado de forma que permita la colocación de una capa tierra, la cual atenuará emisión de gases tóxicos.
- m) Se implementará con cilindros o cajas metálicas pintadas para la disposición de desechos de construcción, en tanto que las áreas habilitadas para el almacenamiento temporal de los desperdicios de construcción deberán ser señalizadas.
- n) Los desperdicios de fierros de construcción que sean mayores a 20 cm de longitud serán dispuestos en forma ordenada en las áreas de almacenamiento temporal, luego atarlos firmemente para su traslado.
- o) Los filtros de aceites ya empleados en los equipos para los trabajos de obra, serán dispuestos en bolsas de basura, para luego ser eliminados.
- p) Para los desechos de madera se habilitará pequeñas áreas en donde serán acumulados; la madera en general deberá estar libre de contaminantes, hidrocarburos o químicos, en lo posible no debe tener clavos.
- q) Se ubicarán estratégicamente servicios higiénicos portátiles para el personal que labore en la ejecución de la obra, así mismo se verificará su correcta instalación así como su limpieza y desinfección.

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

- r) Se preverá que la basura tenga un lugar especial de almacenamiento para luego ser eliminado, verificándose en todo momento que la basura no sea colocada con el material a ser eliminado al botadero.
- s) Se verificará que los aditivos empleados en el concreto así como los sellos de juntas y otros sean utilizados adecuadamente y de acuerdo a las especificaciones del Expediente Técnico así como del fabricante; así mismo los envases vacíos serán colocados en basureros por separado al resto de basureros que se empleen.
- t) Se tendrá asesoramiento en el control y limpieza de posibles derrames de aditivos y otras sustancias químicas utilizadas en la ejecución de la obra.
- u) Se verificará que el personal cuente el EPP necesario para cada una de las labores que se realicen durante la ejecución del Proyecto.
- v) Se verificará que se manejen adecuadamente los materiales residuales y otros producto usados en los trabajos de la obra.

5.5 ESTUDIO DE VOLUMEN DE TRANSITO

Según el estudio de trafico de tiene un IMD de 12 vehículos por día.

5.6 ESTUDIO DE TRAZO Y DISEÑO VIAL DE LOS ACCESOS

Se traza el acceso con pendientes máximos del 12% con radios de curvas mayores a 20 m

5.7 DISEÑO DE LA SUPERESTRUCTURA DEL PUENTE

5.7.3 LOSA

Acero en losa

Tenemos el Acero superior	Área Requerida	Ø Acero	área Acero	S
Perpendicular al Trafico =As+Ast=	13.31 cm2	3/4	2.84 cm2	20.00 cm
Paralelo al Trafico Ast=	3.53 cm2	3/8	0.71 cm2	20.00 cm

Tenemos el Acero Inferior			Ø	Acero	Area Acero	S
Perpendicular al Trafico	=As+Ast=	13.31 cm2	1	3/4	2.84 cm2	20.00 cm
Paralelo al Trafico	Asr=	4.89 cm2		1/2	1.29 cm2	25.00 cm

Acero en tramo en voladizo.

Tenemos el Acero superior	área Requerida	Ø Acero	área Acero	S
Perpendicular al Trafico =As+Ast=	12.05 cm2	3/4	2.84 cm2	20.00 cm
Paralelo al Trafico Ast=	3.53 cm2	3/8	0.71 cm2	20.00 cm

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Tenemos el Acero Inferior			Ø Acero	Area Acero	S
Perpendicular al Trafico =As	s+Ast=	12.05 cm2	3/4	2.84 cm2	20.00 cm
Paralelo al Trafico	Asr=	4.26 cm2	1/2	1.29 cm2	30.00 cm

Acero en vereda:

Tenemos el Acero superior

		Area Requerida	Ø Acero	Area Acero	S
Perpendicular al Trafico	As=	5.70 cm2	1/2	1.29 cm2	20.00 cm
Paralelo al Trafico	Ast=	2.65 cm2	3/8	0.71 cm2	25.00 cm

Tenemos el Acero Inferior			Ø Acero	Area Acero	S
Perpendicular al Trafico	As=	5.70 cm2	1/2	1.29 cm2	20.00 cm
Paralelo al Trafico	Asr=	3.82 cm2	3/8	0.71 cm2	15.00 cm

5.7.4 ESTRUCTURAS METÁLICAS

Después de hacer los siguientes análisis a cada elemento de la estructura metálica tales como:

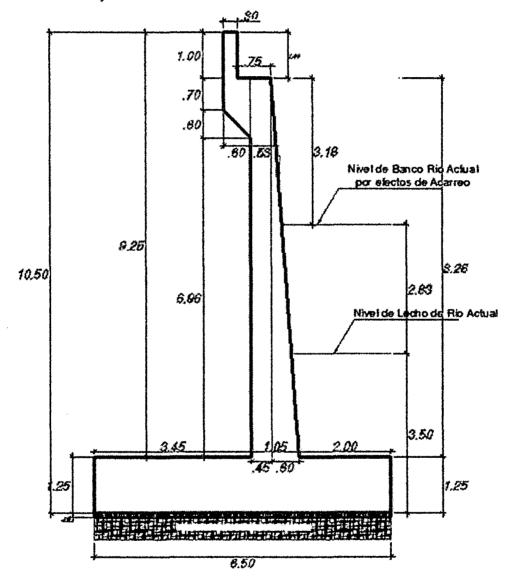
- Diseño de miembros en tracción
- Diseño de miembros en compresión
- Diseño de miembros en flexión
- Diseño de miembros en corte
- Diseño de conexiones

Tenemos los siguientes resultados

ELEMENTO	SECCIÓN	
DIAGONALES	W 14x68	
MONTANTES	W 14x22	
VIGAS SUPERIOR	W 14x145	
VIGA INFERIOR	W 14x68	
VIGAS DE PISO TRANSVERSALES	W 27x114	
VIGAS DE PISO LONGITUDINALES	W 21x73	
ATIEZADORES	WT 4x24	

Se usaran penos de alta resistencia A-36, con cartelas metálicas.

FACULTAD DE INGENIERIA

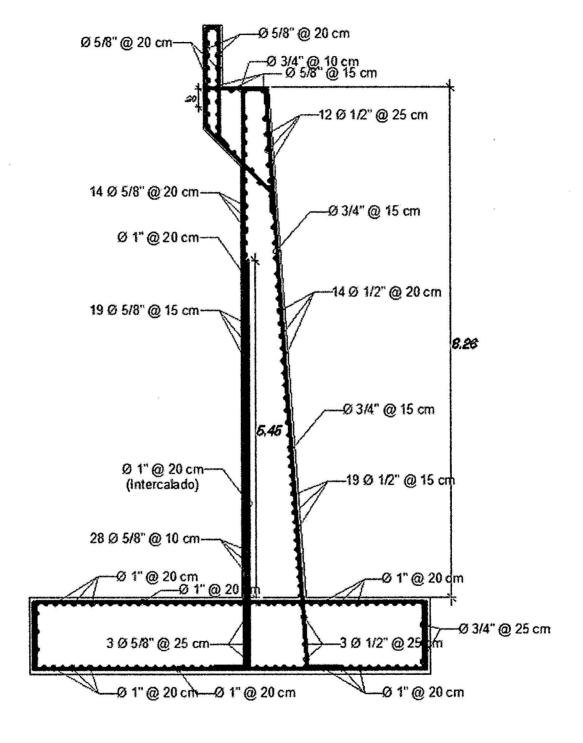

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

5.8 DISEÑO DE LA SUBESTRUCTURA DEL PUENTE

5.8.3 DISEÑO DE ESTRIBOS Y ALETAS:

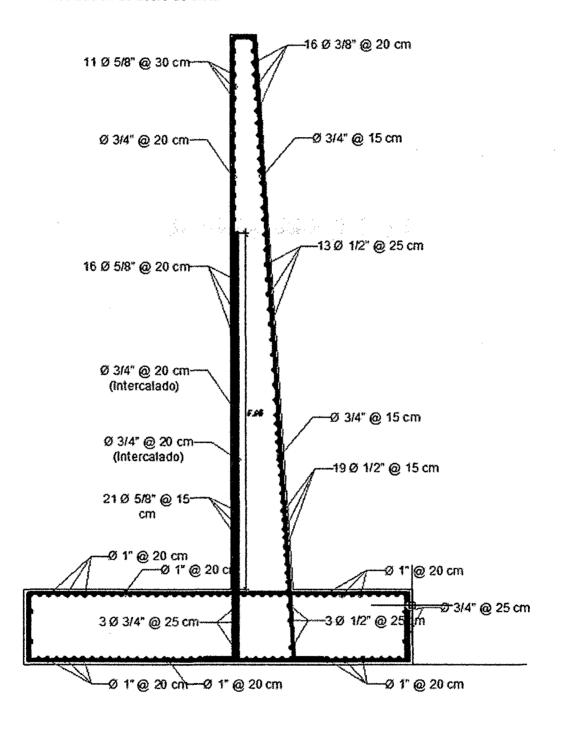
Dimensiones y distribución de acero de estribo



FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD



FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Distribución de acero de aleta

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CAPITULO VI

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

6 CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES

- o El área de estudio presenta una topografía llana, la equidistancia de las curvas de nivel es 2.00 m, la escala del plano topográfico es 1/2000.
- o De acuerdo al estudio del volumen de tránsito vehicular se determinó que el diseño sea de una sola vía y de acuerdo al estudio del tránsito peatonal se determinó 2 veredas de 0.60m de ancho.
- oEl caudal de diseño Qd = 15.10 m³/s.
- o El suelo de fundación de estribos será en una roca lutita, la presión admisible hallada para el terreno de fundación es de σt= 3.27 Kg/cm².
- El puente será de 1 tramo simplemente apoyado, de un solo carril de circulación vial de 3.60 m. de ancho, con veredas a ambos lados de la calzada, sobre armaduras en ambos lados que transmiten las cargas a estribos de concreto armado de concreto armado, con esto se pretende cubrir la demanda del tráfico vehicular y peatonal de la zona (caseríos Cararacma, la calzada y Sanagorán capital de distrito); quienes necesitan de la ejecución del Proyecto.
 - o El proyecto es viable según el estudio de impacto ambiental, se propuso medidas de mitigación, control y seguimiento del proyecto en sus etapas de construcción, operación y cierre de proyecto.
 - o El presupuesto ha sido procesado considerando los costos de alquiler de equipo, los costos de materiales y los costos de mano de obra, que paga la Municipalidad Distrital de Sanagorán.

6.2 RECOMENDACIONES

- La construcción del puente, debe hacerse con personal calificado, materiales de buena calidad y equipos en buenas condiciones de operatividad.
- o Realizar limpieza del cauce, en forma periódica para evitar la colmatación de sedimentos.
- La construcción del puente debe efectuarse en tiempo de estiaje.
- o La construcción de las obras provisionales debe realizarse en la margen derecha del rio aguas abajo.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ANEXOS

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA. DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ANEXOS Nº 1 HIDROLOGÍA E HIDRÁULICA

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

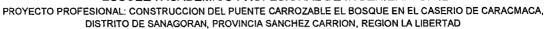
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ABLA N° A1-1 CÁLCULO DE LA ALTITUD MEDIA

Equidistancia de curvas

20

m


MICROCUENCA	CO	ΓAS	COTA	ÁREA	ÁREA	Hi*Ai	ALTITUD
	(m. s.	n. m.)	PROMEDIO	PARCIAL	PARCIAL		MEDIA
Cn	Но	Hf	Hi (m)	Ai (m2)	Ai (Ha)	(m*Ha)	H (m)
	2832.00	2840.00	2836.00	3510.00	0.351	995.436	
	2840.00	2860.00	2850.00	32838.53	3.284	9358.980	
	2860.00	2880.00	2870.00	53005.94	5.301	15212.705	
	2880.00	2900.00	2890.00	70067.54	7.007	20249.519	
	2900.00	2920.00	2910.00	90025.07	9.003	26197.294	
	2920.00	2940.00	2930.00	92559.78	9.256	27120.016	
	2940.00	2960.00	2950.00	105203.06	10.520	31034.904	
•	2960.00	2980.00	2970.00	105510.08	10.551	31336.494	
	2980.00	3000.00	2990.00	106981.47	10.698	31987.458	
	3000.00	3020.00	3010.00	114151.26	11.415	34359.529	
	3020.00	3040.00	3030.00	130085.62	13.009	39415.944	
q-01	3040.00	3060.00	3050.00	145039.56	14.504	44237.067	3073.30
	3060.00	3080.00	3070.00	148458.18	14.846	45576.661	
	3080.00	3100.00	3090.00	156999.33	15.700	48512.793	
	3100.00	3120.00	3110.00	165451.82	16.545	51455.516	
· .	3120.00	3140.00	3130.00	159574.08	15.957	49946.687	
	3140.00	3160.00	3150.00	149643.02	14.964	47137.551	
	3160.00	3180.00	3170.00	147791.76	14.779	46849.988	
	3180.00	3200.00	3190.00	137779.18	13.778	43951.559	
	3200.00	3220.00	3210.00	159906.01	15.991	51329.828	
	3220.00	3240.00	3230.00	76191.15	7.619	24609.740]
	3240.00	3260.00	3250.00	63733.64	6.373	20713.432	
•	3260.00	3280.00	3270.00	23395.58	2.340	7650.355	

Fuente:

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

INFORMACIÓN METEOROLÓGICA

ESTACIÓN: AUGUSTO WEBERBAUER

Dpto: Cajamarca

Prov:

Cajamarca

CUENCA : MARAÑON

TABLA N° A1-2 DATOS GENERALES

Precip. Máxima e AÑO									
1975	37.70								
1976	26.50								
1977	40.50								
1978	18.10								
1979	28.00								
1980	28.80								
1981	39.30								
1982	30.50								
1983	29.80								
1984	27.60								
1985	19.80								
1986	27.40								
1987	24.30								
1988	18.20								
1989	30.00								
1990	25.40								
1991	29.70								
1992	17.70								
1993	22.50								
1994	28.50								
1995	20.60								
1996	35.10								
1997	27.60								
1998	31.70								
1999	38.80								
2000	36.10								
2001	28.20								
2002	22.30								
2003	20.80								
2004	28.10								
2005	20.20								
2006	20.60								
2007	25.40								
2008	27.00								
2009	22.20								
2010	36.40								
2011	27.70								
2012	27.90								

Tesis UNC

Fuente: 2013

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° A1-3 LLUVIAS MÁXIMAS (mm): ESTACIÓN WEBERBAUER

$$I = P_{max} * \left(\sqrt[4]{\frac{t}{1440}}\right)$$

AÑO	D Máy 24h	DURACIÓN EN MINUTOS							
ANU	P.Máx.24h.	5	10	15	30	60	120		
1975	37.70	9.15	10.88	12.04	14.32	17.03	20.26		
1976	26.50	6.43	7.65	8.47	10.07	11.97	14.24		
1977	40.50	9.83	11.69	12.94	15.39	18.30	21.76		
1978	18.10	4.39	5.23	5.78	6.88	8.18	9.72		
1979	28.00	6.80	8.08	8.95	10.64	12.65	15.04		
1980	28.80	6.99	8.31	9.20	10.94	13.01	15.47		
1981	39.30	9.54	11.34	12.56	14.93	17.76	21.12		
1982	30.50	7.40	8.80	9.74	11.59	13.78	16.39		
1983	29.80	7.23	8.60	9.52	11.32	13.46	16.01		
1984	27.60	6.70	7.97	8.82	10.49	12.47	14.83		
1985	19.80	4.81	5.72	6.33	7.52	8.95	10.64		
1986	27.40	6.65	7.91	8.75	10.41	12.38	14.72		
1987	24.30	5.90	7.01	7.76	9.23	10.98	13.06		
1988	18.20	4.42	5.25	5.81	6.91	8.22	9.78		
1989	30.00	7.28	8.66	9.58	11.40	13.55	16.12		
1990	25.40	6.17	7.33	8.11	9.65	11.48	13.65		
1991	29.70	7.21	8.57	9.49	11.28	13.42	15.96		
1992	17.70	4.30	5.11	5.65	6.72	8.00	9.51		
1993	22.50	5.46	6.50	7.19	8.55	10.17	12.09		
1994	28.50	6.92	8.23	9.10	10.83	12.88	15.31		
1995	20.60	5.00	5.95	6.58	7.83	9.31	11.07		
1996	35.10	8.52	10.13	11.21	13.34	15.86	18.86		
1997	27.60	6.70	7.97	8.82	10.49	12.47	14.83		
1998	31.70	7.70	9.15	10.13	12.04	14.32	17.03		
1999	38.80	9.42	11.20	12.40	14.74	17.53	20.85		
2000	36.10	8.76	10.42	11.53	13.72	16.31	19.40		
2001	28.20	6.85	8.14	9.01	10.71	12.74	15.15		
2002	22.30	5.41	6.44	7.12	8.47	10.08	11.98		
2003	20.80	5.05	6.00	6.65	7.90	9.40	11.18		
2004	28.10	6.82	8.11	8.98	10.68	12.70	15.10		
2005	20.20	4.90	5.83	6.45	7.67	9.13	10.85		
2006	20.60	5.00	5.95	6.58	7.83	9.31	11.07		
2007	25.40	6.17	7.33	8.11	9.65	11.48	13.65		
2008	27.00	6.55	7.79	8.63	10.26	12.20	14.51		
2009	22.20	5.39	6.41	7.09	8.43	10.03	11.93		
2010	36.40	8.84	10.51	11.63	13.83	16.45	19.56		
2011	27.70	6.72	8.00	8.85	10.52	12.51	14.88		
2012	27.90	6.77	8.05	8.91	10.60	12.61	14.99		

Fuente: Elaboración Propia

FACULTAD DE INGENIERIA

TABLA N° A1-4 INTENSIDADES MÁXIMAS (mm/h): ESTACIÓN WEBERBAUER

I(mm/h)=60*I/t

AÑO	D #4 046	1	D	URACIÓN EN	MINUTOS		
AÑO	P.Máx.24h.	5	10	15	30	60	120
1975	37.70	109.82	65.30	48.18	28.65	17.03	10.13
1976	26.50	77.19	45.90	33.86	20.14	11.97	7.12
1977	40.50	117.97	70.15	51.75	30.77	18.30	10.88
1978	18.10	52.72	31.35	23.13	13.75	8.18	4.86
1979	28.00	81.56	48.50	35.78	21.28	12.65	7.52
1980	28.80	83.89	49.88	36.80	21.88	13.01	7.74
1981	39.30	114.48	68.07	50.22	29.86	17.76	10.56
1982	30.50	88.84	52.83	38.98	23.17	13.78	8.19
1983	29.80	86.81	51.62	38.08	22.64	13.46	8.01
1984	27.60	80.40	47.80	35.27	20.97	12.47	7.41
1985	19.80	57.68	34.29	25.30	15.04	8.95	5.32
1986	27.40	79.81	47.46	35.01	20.82	12.38	7.36
1987	24.30	70.78	42.09	31.05	18.46	10.98	6.53
1988	18.20	53.02	31.52	23.26	13.83	8.22	4.89
1989	30.00	87.39	51.96	38.34	22.80	13.55	8.06
1990	25.40	73.99	43.99	32.46	19.30	11.48	6.82
1991	29.70	86.51	51.44	37.95	22.57	13.42	7.98
1992	17.70	51.56	30.66	22.62	13.45	8.00	4.75
1993	22.50	65.54	38.97	28.75	17.10	10.17	6.04
1994	28.50	83.02	49.36	36.42	21.66	12.88	7.66
1995	20.60	60.01	35.68	26.32	15.65	9.31	5.53
1996	35.10	102.24	60.79	44.85	26.67	15.86	9.43
1997	27.60	80.40	47.80	35.27	20.97	12.47	7.41
1998	31.70	92.34	54.91	40.51	24.09	14.32	8.52
1999	38.80	113.02	67.20	49.58	29.48	17.53	10.42
2000	36.10	105.16	62.53	46.13	27.43	16.31	9.70
2001	28.20	82.15	48.84	36.04	21.43	12.74	7.58
2002	22.30	64.96	38.62	28.50	16.94	10.08	5.99
2003	20.80	60.59	36.03	26.58	15.80	9.40	5.59
2004	28.10	81.85	48.67	35.91	21.35	12.70	7.55
2005	20.20	58.84	34.99	25.81	15.35	9.13	5.43
2006	20.60	60.01	35.68	26.32	15.65	9.31	5.53
2007	25.40	73.99	43.99	32.46	19.30	11.48	6.82
2008	27.00	78.65	46.77	34.50	20.52	12.20	7.25
2009	22.20	64.67	38.45	28.37	16.87	10.03	5.96
2010	36.40	106.03	63.05	46.52	27.66	16.45	9.78
2011	27.70	80.69	47.98	35.40	21.05	12.51	7.44
2012	27.90	81.27	48.32	35.65	21.20	12.61	7.50

Fuente: Elaboración Propia

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

INTENSIDADES MÁXIMAS ORDENADAS (mm/h): ESTACIÓN WEBERBAUER

LATITUD :

07°10'

DEP.

CAJAM.

LONGITUD:

28°30'

PROV.

CAJAM.

ALTITUD :

2536

m.s.n.m.

DIST. : CAJAM.

TABLA N° A1-5

INT	ENSIDADES MÁXII		IADAS (r		STACIÓN V	VEBERBAUER	
AÑO	D M6+ 24h			DURAC	ÓN EN MIN	UTOS	
AÑO	P.Máx.24h.	5	10	15	30	60	120
1	40.50	117.97	70.15	51.75	30.77	18.30	10.88
2	39.30	114.48	68.07	50.22	29.86	17.76	10.56
3	38.80	113.02	67.20	49.58	29.48	17.53	10.42
4	37.70	109.82	65.30	48.18	28.65	17.03	10.13
5	36.40	106.03	63.05	46.52	27.66	16.45	9.78
6	36.10	105.16	62.53	46.13	27.43	16.31	9.70
7	35.10	102.24	60.79	44.85	26.67	15.86	9.43
8	31.70	92.34	54.91	40.51	24.09	14.32	8.52
9	30.50	88.84	52.83	38.98	23.17	13.78	8.19
10	30.00	87.39	51.96	38.34	22.80	13.55	8.06
11	29.80	86.81	51.62	38.08	22.64	13.46	8.01
12	29.70	86.51	51.44	37.95	22.57	13.42	7.98
13	28.80	83.89	49.88	36.80	21.88	13.01	7.74
.14	28.50	83.02	49.36	36.42	21.66	12.88	7.66
15	28.20	82.15	48.84	36.04	21.43	12.74	7.58
16	28.10	81.85	48.67	35.91	21.35	12.70	7.55
17	28.00	81.56	48.50	35.78	21.28	12.65	7.52
18	27.90	81.27	48.32	35.65	21.20	12.61	7.50
19	27.70	80.69	47.98	35.40	21.05	12.51	7.44
20	27.60	80.40	47.80	35.27	20.97	12.47	7.41
21	27.60	80.40	47.80	35.27	20.97	12.47	7.41
22	27.40	79.81	47.46	35.01	20.82	12.38	7.36
23	27.00	78.65	46.77	34.50	20.52	12.20	7.25
24	26.50	77.19	45.90	33.86	20.14	11.97	7.12
25	25.40	73.99	43.99	32.46	19.30	11.48	6.82
26	25.40	73.99	43.99	32.46	19.30	11.48	6.82
27	24.30	70.78	42.09	31.05	18.46	10.98	6.53
28	22.50	65.54	38.97	28.75	17.10	10.17	6.04
29	22.30	64.96	38.62	28.50	16.94	10.08	5.99
30	22.20	64.67	38.45	28.37	16.87	10.03	5.96
31	20.80	60.59	36.03	26.58	15.80	9.40	5.59
32	20.60	60.01	35.68	26.32	15.65	9.31	5.53
33	20.60	60.01	35.68	26.32	15.65	9.31	5.53
34	20.20	58.84	34.99	25.81	15.35	9.13	5.43
35	19.80	57.68	34.29	25.30	15.04	8.95	5.32
36	18.20	53.02	31.52	23.26	13.83	8.22	4.89
37	18.10	52.72	31.35	23.13	13.75	8.18	4.86
38	17.70	51.56	30.66	22.62	13.45	8.00	4.75
					Fuente:	Flahoració	n Dronio

Fuente:

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° A1-6

DATOS TRANSPUESTOS A LA ZONA DE ESTUDIO DE PUENTE CARROZABLE CON UNA ALTITUD MEDIA :

H = 3073.30 m

H=	3073.30						·····
	INTEN	SIDADES MÁX				· · · · · · · · · · · · · · · · · · ·	
AÑO	P.Máx.24h.			,,	EN MINUTOS		
7110		5	10	15	30	60	120
1	40.50	142.97	85.01	62.72	37.29	22.17	13.19
2	39.30	138.73	82.49	60.86	36.19	21.52	12.79
3	38.80	136.97	81.44	60.09	35.73	21.24	12.63
4	37.70	133.09	79.13	58.38	34.71	20.64	12.27
5	36.40	128.50	76.40	56.37	33.52	19.93	11.85
6	36.10	127.44	75.77	55.91	33.24	19.77	11.75
7	35.10	123.91	73.68	54.36	32.32	19.22	11.43
8	31.70	111.90	66.54	49.09	29.19	17.36	10.32
9	30.50	107.67	64.02	47.23	28.09	16.70	9.93
10	30.00	105.90	62.97	46.46	27.62	16.43	9.77
11	29.80	105.20	62.55	46.15	27.44	16.32	9.70
12	29.70	104.84	62.34	45.99	27.35	16.26	9.67
13	28.80	101.67	60.45	44.60	26.52	15.77	9.38
14	28.50	100.61	59.82	44.14	26.24	15.60	9.28
15	28.20	99.55	59.19	43.67	25.97	15.44	9.18
16	28.10	99.20	58.98	43.52	25.88	15.39	9.15
17	28.00	98.84	58.77	43.36	25.78	15.33	9.12
18	27.90	98.49	58.56	43.21	25.69	15.28	9.08
19	27.70	97.78	58.14	42.90	25.51	15.17	9.02
20	27.60	97.43	57.93	42.74	25.41	15.11	8.99
21	27.60	97.43	57.93	42.74	25.41	15.11	8.99
22	27.40	96.73	57.51	42.43	25.23	15.00	8.92
23	27.00	95.31	56.67	41.81	24.86	14.78	8.79
24	26.50	- 93.55	55.62	41.04	24.40	14.51	8.63
25	25.40	89.66	53.32	39.34	23.39	13.91	8.27
26	25.40	89.66	53.32	39.34	23.39	13.91	8.27
27	24.30	85.78	51.01	37.63	22.38	13.30	7.91
28	22.50	79.43	47.23	34.84	20.72	12.32	7.33
29	22.30	78.72	46.81	34.53	20.53	12.21	7.26
30	22.20	78.37	46.60	34.38	20.44	12.16	7.23
31	20.80	73.43	43.66	32.21	19.15	11.39	6.77
32	20.60	72.72	43.24	31.90	18.97	11.28	6.71
33	20.60	72.72	43.24	31.90	18.97	11.28	6.71
34	20.20	71.31	42.40	31.28	18.60	11.06	6.58
35	19.80	69.90	41.56	30.66	18.23	10.84	6.45
36	18.20	64.25	38.20	28.19	16.76	9.96	5.93
37	18.10	63.90	37.99	28.03	16.67	9.91	5.89
38	17.70	62.48	37.15	27.41	16.30	9.69	5.76

Fuente: Elaboración Propia

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° A1-7

MODELO GUMBEL PARA 5 MINUTOS

m	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th>F(x<x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<></th></x)<>	P(x <x)< th=""><th>F(x<x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	F(x <x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>	P(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
	Ord. Desc.	m/(N+1)	1-P(x>X)		F(x <x) < th=""><th>1/P(x)</th></x) <>	1/P(x)
1	142.97	0.0256	0.9744	0.9622	0.0122	39.00
2	138.73	0.0513	0.9487	0.9518	0.0031	19.50
3	136.97	0.0769	0.9231	0.9467	0.0236	13.00
4	133.09	0.1026	0.8974	0.9335	0.0361	9.75
5	128.50	0.1282	0.8718	0.9139	0.0421	7.80
6	127.44	0.1538	0.8462	0.9086	0.0625	6.50
7	123.91	0.1795	0.8205	0.8889	0.0683	5.57
8	111.90	0.2051	0.7949	0.7881	0.0067	4.88
9	107.67	0.2308	0.7692	0.7370	0.0322	4.33
10	105.90	0.2564	0.7436	0.7129	0.0307	3.90
11	105.20	0.2821	0.7179	0.7028	0.0152	3.55
12	104.84	0.3077	0.6923	0.6976	0.0053	3.25
13	101.67	0.3333	0.6667	0.6480	0.0186	3.00
14	100.61	0.3590	0.6410	0.6303	0.0107	2.79
15	99.55	0.3846	0.6154	0.6119	0.0034	2.60
16	99.20	0.4103	0.5897	0.6057	0.0159	2.44
17	98.84	0.4359	0.5641	0.5994	0.0353	2.29
18	98.49	0.4615	0.5385	0.5930	0.0545	2.17
19	97.78	0.4872	0.5128	0.5800	0.0672	2.05
20	97.43	0.5128	0.4872	0.5735	0.0863	1.95
21	97.43	0.5385	0.4615	0.5735	0.1119	1.86
22	96.73	0.5641	0.4359	0.5602	0.1243	1.77
23	95.31	0.5897	0.4103	0.5328	0.1226	1.70
24	93.55	0.6154	0.3846	0.4975	0.1129	1.63
25	89.66	0.6410	0.3590	0.4162	0.0572	1.56
26	89.66	0.6667	0.3333	0.4162	0.0829	1.50
27	85.78	0.6923	0.3077	0.3327	0.0250	1.44
28	79.43	0.7179	0.2821	0.2025	0.0796	1.39
29	78.72	0.7436	0.2564	0.1893	0.0671	1.34
30	78.37	0.7692	0.2308	0.1828	0.0480	1.30
31	73.43	0.7949	0.2051	0.1033	0.1018	1.26
32	72.72	0.8205	0.1795	0.0938	0.0856	1.22
33	72.72	0.8462	0.1538	0.0938	0.0600	1.18
34	71.31	0.8718	0.1282	0.0765	0.0517	1.15
35	69.90	0.8974	0.1026	0.0613	0.0413	1.11
36	64.25	0.9231	0.0769	0.0205	0.0564	1.08
37	63.90	0.9487	0.0513	0.0189	0.0324	1.05
38	62.48	0.9744	0.0256	0.0134	0.0122	1.03
			MaxIP(x	<x)-f(x<x)!< td=""><td>0.1243</td><td></td></x)-f(x<x)!<>	0.1243	

 Promedio
 97.2638

 Desv. Est.
 21.8834

 a
 0.0586

 b
 87.4163

Fuente:

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA Nº A1-8

MODELO GUMBEL PARA 10 MINUTOS

m	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th>E/v_V\</th><th>]P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	P(x <x)< th=""><th>E/v_V\</th><th>]P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>	E/v_V\]P(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
m	Ord. Desc.	m/(N+1)	1-P(x>X)	F(x <x)< th=""><th>F(x<x)]< th=""><th>1/P(x)</th></x)]<></th></x)<>	F(x <x)]< th=""><th>1/P(x)</th></x)]<>	1/P(x)
1	85.01	0.0256	0.9744	0.9622	0.0122	39.00
2	82.49	0.0513	0.9487	0.9518	0.0031	19.50
3	81.44	0.0769	0.9231	0.9467	0.0236	13.00
4	79.13	0.1026	0.8974	0.9335	0.0361	9.75
5	76.40	0.1282	0.8718	0.9139	0.0421	7.80
6	75.77	0.1538	0.8462	0.9086	0.0625	6.50
7	73.68	0.1795	0.8205	0.8889	0.0683	5.57
8	66.54	0.2051	0.7949	0.7881	0.0067	4.88
9	64.02	0.2308	0.7692	0.7370	0.0322	4.33
10	62.97	0.2564	0.7436	0.7129	0.0307	3.90
11	62.55	0.2821	0.7179	0.7028	0.0152	3.55
12	62.34	0.3077	0.6923	0.6976	0.0053	3.25
13	60.45	0.3333	0.6667	0.6480	0.0186	3.00
14	59.82	0.3590	0.6410	0.6303	0.0107	2.79
15	59.19	0.3846	0.6154	0.6119	0.0034	2.60
16	58.98	0.4103	0.5897	0.6057	0.0159	2.44
17	58.77	0.4359	0.5641	0.5994	0.0353	2.29
18	58.56	0.4615	0.5385	0.5930	0.0545	2.17
19	58.14	0.4872	0.5128	0.5800	0.0672	2.05
20	57.93	0.5128	0.4872	0.5735	0.0863	1.95
21	57.93	0.5385	0.4615	0.5735	0.1119	1.86
22	57.51	0.5641	0.4359	0.5602	0.1243	1.77
23	56.67	0.5897	0.4103	0.5328	0.1226	1.70
24	55.62	0.6154	0.3846	0.4975	0.1129	1.63
25	53.32	0.6410	0.3590	0.4162	0.0572	1.56
26	53.32	0.6667	0.3333	0.4162	0.0829	1.50
27	51.01	0.6923	0.3077	0.3327	0.0250	1.44
28	47.23	0.7179	0.2821	0.2025	0.0796	1.39
29	46.81	0.7436	0.2564	0.1893	0.0671	1.34
30	46.60	0.7692	0.2308	0.1828	0.0480	1.30
31	43.66	0.7949	0.2051	0.1033	0.1018	1.26
32	43.24	0.8205	0.1795	0.0938	0.0856	1.22
33	43.24	0.8462	0.1538	0.0938	0.0600	1.18
34	42.40	0.8718	0.1282	0.0765	0.0517	1.15
35	41.56	0.8974	0.1026	0.0613	0.0413.	1.11
36	38.20	0.9231	0.0769	0.0205	0.0564	1.08
37	37.99	0.9487	0.0513	0.0189	0.0324	1.05
38	37.15	0.9744	0.0256	0.0134	0.0122	1.03
			MaxiP(x	<x)-f(x<x) < td=""><td>0.1243</td><td></td></x)-f(x<x) <>	0.1243	

 Promedio
 57.8334

 Desv. Est.
 13.0120

 a
 0.0986

 b
 51.9780

Fuente:

Elaboración Propia

189

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° A1-9

MODELO GUMBEL PARA 15 MINUTOS

	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th></th><th>]P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	P(x <x)< th=""><th></th><th>]P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>]P(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
m	Ord. Desc.	m/(N+1)	1-P(x>X)		F(x <x) < th=""><th>1/P(x)</th></x) <>	1/P(x)
1	62.72	0.0256	0.9744	0.9622	0.0122	39.00
2	60.86	0.0513	0.9487	0.9518	0.0031	19.50
3	60.09	0.0769	0.9231	0.9467	0.0236	13.00
4	58.38	0.1026	0.8974	0.9335	0.0361	9.75
5	56.37	0.1282	0.8718	0.9139	0.0421	7.80
6	55.91	0.1538	0.8462	0.9086	0.0625	6.50
7	54.36	0.1795	0.8205	0.8889	0.0683	5.57
8	49.09	0.2051	0.7949	0.7881	0.0067	4.88
9	47.23	0.2308	0.7692	0.7370	0.0322	4.33
10	46.46	0.2564	0.7436	0.7129	0.0307	3.90
11	46.15	0.2821	0.7179	0.7028	0.0152	3.55
12	45.99	0.3077	0.6923	0.6976	0.0053	3.25
13	44.60	0.3333	0.6667	0.6480	0.0186	3.00
14	44.14	0.3590	0.6410	0.6303	0.0107	2.79
15	43.67	0.3846	0.6154	0.6119	0.0034	2.60
16	43.52	0.4103	0.5897	0.6057	0.0159	2.44
17	43.36	0.4359	0.5641	0.5994	0.0353	2.29
18	43.21	0.4615	0.5385	0.5930	0.0545	2.17
19	42.90	0.4872	0.5128	0.5800	0.0672	2.05
20	42.74	0.5128	0.4872	0.5735	0.0863	1.95
21	42.74	0.5385	0.4615	0.5735	0.1119	1.86
22	42.43	0.5641	0.4359	0.5602	0.1243	1.77
23	41.81	0.5897	0.4103	0.5328	0.1226	1.70
24	41.04	0.6154	0.3846	0.4975	0.1129	1.63
25	39.34	0.6410	0.3590	0.4162	0.0572	1.56
26	39.34	0.6667	0.3333	0.4162	0.0829	1.50
27	37.63	0.6923	0.3077	0.3327	0.0250	1.44
28	34.84	0.7179	0.2821	0.2025	0.0796	1.39
29	34.53	0.7436	0.2564	0.1893	. 0.0671	1.34
30	34.38	0.7692	0.2308	0.1828	0.0480	1.30
31	32.21	0.7949	0.2051	0.1033	0.1018	1.26
32	31.90	0.8205	0.1795	0.0938	0.0856	1.22
33	31.90	0.8462	0.1538	0.0938	0.0600	1.18
34	31.28	0.8718	0.1282	0.0765	0.0517	1.15
35	30.66	0.8974	0.1026	0.0613	0.0413	1.11
36	28.19	0.9231	0.0769	0.0205	0.0564	1.08
37	28.03	0.9487	0.0513	0.0189	0.0324	1.05
38	27.41	0.9744	0.0256	0.0134	0.0122	1.03
	•			<x)-f(x<x) < td=""><td>0.1243</td><td></td></x)-f(x<x) <>	0.1243	
Dromodio	12 6600	٦		Euchto	Elaboraci	án Dronio

 Promedio
 42.6688

 Desv. Est.
 9.6001

 a
 0.1336

 b
 38.3488

Fuente:

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° A1-10

MODELO GUMBEL PARA 30 MINUTOS

	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th></th><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	P(x <x)< th=""><th></th><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>		P(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
m	Ord. Desc.	m/(N+1)	1-P(x>X)	F(x <x)< th=""><th>F(x<x)< th=""><th>1/P(x)</th></x)<></th></x)<>	F(x <x)< th=""><th>1/P(x)</th></x)<>	1/P(x)
1	37.29	0.0256	0.9744	0.9622	0.0122	39.00
2	36.19	0.0513	0.9487	0.9518	0.0031	19.50
3	35.73	0.0769	0.9231	0.9467	0.0236	13.00
4	34.71	0.1026	0.8974	0.9335	0.0361	9.75
5	33.52	0.1282	0.8718	0.9139	0.0421	7.80
6	33.24	0.1538	0.8462	0.9086	0.0625	6.50
7	32.32	0.1795	0.8205	0.8889	0.0683	5.57
8	29.19	0.2051	0.7949	0.7881	0.0067	4.88
9	28.09	0.2308	0.7692	0.7370	0.0322	4.33
10	27.62	0.2564	0.7436	0.7129	0.0307	3.90
11	27.44	0.2821	0.7179	0.7028	0.0152	3.55
12	27.35	0.3077	0.6923	0.6976	0.0053	3.25
13	26.52	0.3333	0.6667	0.6480	0.0186	3.00
14	26.24	0.3590	0.6410	0.6303	0.0107	2.79
15	25.97	0.3846	0.6154	0.6119	0.0034	2.60
. 16	25.88	0.4103	0.5897	0.6057	0.0159	2.44
17	25.78	0.4359	0.5641	0.5994	0.0353	2.29
18	25.69	0.4615	0.5385	0.5930	0.0545	2.17
19	25.51	0.4872	0.5128	0.5800	0.0672	2.05
20	25.41	0.5128	0.4872	0.5735	0.0863	1.95
21	25.41	0.5385	0.4615	0.5735	0.1119	1.86
22	25.23	0.5641	0.4359	0.5602	0.1243	1.77
23	24.86	0.5897	0.4103	0.5328	0.1226	1.70
24	24.40	0.6154	0.3846	0.4975	0.1129	1.63
25	23.39	0.6410	0.3590	0.4162	0.0572	1.56
26	23.39	0.6667	0.3333	0.4162	0.0829	1.50
27	22.38	0.6923	0.3077	0.3327	0.0250	1.44
28	20.72	0.7179	0.2821	0.2025	0.0796	1.39
29	20.53	0.7436	0.2564	0.1893	0.0671	1.34
30	20.44	0.7692	0.2308	0.1828	0.0480	1.30
31	19.15	0.7949	0.2051	0.1033	0.1018	1.26
32	18.97	0.8205	0.1795	0.0938	0.0856	1.22
33	18.97	0.8462	0.1538	0.0938	0.0600	1.18
34	18.60	0.8718	0.1282	0.0765	0.0517	1.15
35	18.23	0.8974	0.1026	0.0613	0.0413	1.11
36	16.76	0.9231	0.0769	0.0205	0.0564	1.08
37	16.67	0.9487	0.0513	0.0189	0.0324	1.05
38	16.30	0.9744	0.0256	0.0134	0.0122	1.03
			Max P(x	<x)-f(x<x) < td=""><td>0.1243</td><td>1</td></x)-f(x<x) <>	0.1243	1

 Promedio
 25.3710

 Desv. Est.
 5.7082

 a
 0.2247

 b
 22.8023

Fuente:

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° A1-11

	MOD	ELO GUM	BEL PARA	60 MINUTOS		
m	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th>F(x<x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<></th></x)<>	P(x <x)< th=""><th>F(x<x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<></th></x)<>	F(x <x)< th=""><th> P(x<x)-< th=""><th>Tr años</th></x)-<></th></x)<>	P(x <x)-< th=""><th>Tr años</th></x)-<>	Tr años
m	Ord. Desc.	m/(N+1)	1-P(x>X)	1 (^^/)	F(x <x) < th=""><th>1/P(x)</th></x) <>	1/P(x)
1	22.17	0.0256	0.9744	0.9622	0.0122	39.00
2	21.52	0.0513	0.9487	0.9518	0.0031	19.50
3	21.24	0.0769	0.9231	0.9467	0.0236	13.00
4	20.64	0.1026	0.8974	0.9335	0.0361	9.75
5	19.93	0.1282	0.8718	0.9139	0.0421	7.80
6	19.77	0.1538	0.8462	0.9086	0.0625	6.50
7	19.22	0.1795	0.8205	0.8889	0.0683	5.57
8	17.36	0.2051	0.7949	0.7881	0.0067	4.88
9	16.70	0.2308	0.7692	0.7370	0.0322	4.33
10	16.43	0.2564	0.7436	0.7129	0.0307	3.90
11	16.32	0.2821	0.7179	0.7028	0.0152	3.55
12	16.26	0.3077	0.6923	0.6976	0.0053	3.25
13	15.77	0.3333	0.6667	0.6480	0.0186	3.00
14	15.60	0.3590	0.6410	0.6303	0.0107	2.79
15	15.44	0.3846	0.6154	0.6119	0.0034	2.60
16	15.39	0.4103	0.5897	0.6057	0.0159	2.44
17	15.33	0.4359	0.5641	0.5994	0.0353	2.29
18	15.28	0.4615	0.5385	0.5930	0.0545	2.17
19	15.17	0.4872	0.5128	0.5800	0.0672	2.05
20	15.11	0.5128	0.4872	0.5735	0.0863	1.95
21	15.11	0.5385	0.4615	0.5735	0.1119	1.86
22	15.00	0.5641	0.4359	0.5602	0.1243	1.77
23	14.78	0.5897	0.4103	0.5328	0.1226	1.70
24	14.51	0.6154	0.3846	0.4975	0.1129	1.63
25	13.91	0.6410	0.3590	0.4162	0.0572	1.56
26	13.91	0.6667	0.3333	0.4162	0.0829	1.50
27	13.30	0.6923	0.3077	0.3327	0.0250	1.44
28	12.32	0.7179	0.2821	0.2025	0.0796	1.39
29	12.21	0.7436	0.2564	0.1893	0.0671	1.34
30	12.16	0.7692	0.2308	0.1828	0.0480	1.30
31	11.39	0.7949	0.2051	0.1033	0.1018	1.26
32	11.28	0.8205	0.1795	0.0938	0.0856	1.22
33	11.28	0.8462	0.1538	0.0938	0.0600	1.18
34	11.06	0.8718	0.1282	0.0765	0.0517	1.15
35	10.84	0.8974	0.1026	0.0613	0.0413	1.11
36	9.96	0.9231	0.0769	0.0205	0.0564	1.08
37	9.91	0.9487	0.0513	0.0189	0.0324	1.05
38	9.69	0.9744	0.0256	0.0134	0.0122	1.03
			MaxIP(x	<x)-f(x<x) < td=""><td>0.1243</td><td></td></x)-f(x<x) <>	0.1243	

Promedio 15.0857

Desv. Est. 3.3941

a 0.3779

b 13.5583

Fuente:

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° A1-12

	Intensidades	P(x <x)< th=""><th>P(x<x)< th=""><th>20 MINUTOS</th><th></th><th>Tr años</th></x)<></th></x)<>	P(x <x)< th=""><th>20 MINUTOS</th><th></th><th>Tr años</th></x)<>	20 MINUTOS		Tr años
m	Ord. Desc.	m/(N+1)	1-P(x>X)	F(x <x)< th=""><th> P(x<x)- F(x<x) < th=""><th>1/P(x)</th></x) <></x)- </th></x)<>	P(x <x)- F(x<x) < th=""><th>1/P(x)</th></x) <></x)- 	1/P(x)
1	13.19			0.9622		
2		0.0256	0.9744		0.0122	39.00
3	12.79	0.0513	0.9487	0.9518	0.0031	19.50
	12.63	0.0769	0.9231	0.9467	0.0236	13.00
4	12.27	0.1026	0.8974	0.9335	0.0361	9.75
5	11.85	0.1282	0.8718	0.9139	0.0421	7.80
6	11.75	0.1538	0.8462	0.9086	0.0625	6.50
7	11.43	0.1795	0.8205	0.8889	0.0683	5.57
8	10.32	0.2051	0.7949	0.7881	0.0067	4.88
9	9.93	0.2308	0.7692	0.7370	0.0322	4.33
10	9.77	0.2564	0.7436	0.7129	0.0307	3.90
11	9.70	0.2821	0.7179	0.7028	0.0152	3.55
12	9.67	0.3077	0.6923	0.6976	0.0053	3.25
13	9.38	0.3333	0.6667	0.6480	0.0186	3.00
14	9.28	0.3590	0.6410	0.6303	0.0107	2.79
15	9.18	0.3846	0.6154	0.6119	0.0034	2.60
16	9.15	0.4103	0.5897	0.6057	0.0159	2.44
17	9.12	0.4359	0.5641	0.5994	0.0353	2.29
18	9.08	0.4615	0.5385	0.5930	0.0545	2.17
19	9.02	0.4872	0.5128	0.5800	0.0672	2.05
20	8.99	0.5128	0.4872	0.5735	0.0863	1.95
21	8.99	0.5385	0.4615	0.5735	0.1119	1.86
22	8.92	0.5641	0.4359	0.5602	0.1243	1.77
23	8.79	0.5897	0.4103	0.5328	0.1226	1.70
24	8.63	0.6154	0.3846	0.4975	0.1129	1.63
25	8.27	0.6410	0.3590	0.4162	0.0572	1.56
26	8.27	0.6667	0.3333	0.4162	0.0829	1.50
27	7.91	0.6923	0.3077	0.3327	0.0250	1.44
28	7.33	0.7179	0.2821	0.2025	0.0796	1.39
29	7.26	0.7436	0.2564	0.1893	0.0671	1.34
30	7.23	0.7692	0.2308	0.1828	0.0480	1.30
31	6.77	0.7949	0.2051	0.1033	0.1018	1.26
32	6.71	0.8205	0.1795	0.0938	0.0856	1.22
33	6.71	0.8462	0.1538	0.0938	0.0600	1.18
34	6.58	0.8718	0.1382	0.0765	0.0517	1.15
35	6.45	0.8974	0.1202	0.0613	0.0413	1.13
36	5.93	0.9231	0.1020	0.0205	0.0564	1.08
37	5.89	0.9231	0.0703	0.0203	0.0304	1.05
38	5.76	0.9744	0.0313	0.0189	0.0324	1.03
30	3.70	1 0.3/44		<x)-f(x<x) < td=""><td>0.0122</td><td>1.03</td></x)-f(x<x) <>	0.0122	1.03

Promedio 8.9700

Desv. Est. 2.0182

a 0.6355

b 8.0618

Fuente:

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Tomando como referencia la Tabla N° 5 Valores críticos de Do del estadístico Smirnov - Kolmogorov, para varios valores de N y valores de significación

TAMAÑO MUESTRAL	NIVEL DE SIGNIFICACIÓN						
N	0.20	0.10	0.05	0.01			
5	0.45	0.51	0.56	0.67			
10	0.32	0.37	0.41	0.49			
15	0.27	0.3	0.34	0.4			
20	0.23	0.26	0.29	0.36			
25	0.21	0.24	0.27	0.32			
30	0.19	0.22	0.24	0.29			
35	0.18	0.2	0.23	0.27			
40	0.17	0.19	0.21	0.25			
45	0.16	0.18	0.2	0.24			
50	0.15	0.17	0.19	0.23			
N > 50	$\frac{1.07}{\sqrt{N}}$	1.22 -√N	$\frac{1.36}{\sqrt{N}}$	$\frac{1.63}{\sqrt{N}}$			

FUENTE: Hidrología Estadística, Máximo Villón B.

TABLA N° A1-13 PRUEBA DE BONDAD DE AJUSTE PARA 5,10,15,30,60 y 120 MINUTOS

Si:	N = 38		
Periodo de Duración (min)	Estadístico Smirnov-Kolmogorov	Valor Crítico Do Para a = 0,05	Criterio de Decisión
5	0.1243	0.2180	OK
- 10	0.1243	0.2180	OK
15	0.1243	0.2180	OK
30	0.1243	0.2180	OK
60	0.1243	0.2180	OK

0.1243

Fuente:

Elaboración Propia

OK

0.2180

120

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° A1-14 MODELAMIENTO DE INTENSIDADES EN FUNCIÓN DE "N" y "J"

	110001111101								
	ESTACIÓN ZONA DE ESTUDIO								
PARÁMETROS	5 MIN	10 MIN	15 MIN	30 MIN	60 MIN	120 MIN			
Promedio	97.26	57.83	42.67	25.37	15.09	8.97			
Desv. Est.	21.88	13.01	9.60	5.71	3.39	1.63			
a	0.0586	0.10	0.13	0.22	0.38	0.79			
b	87.42	51.98	38.35	22.80	13.56	8.24			

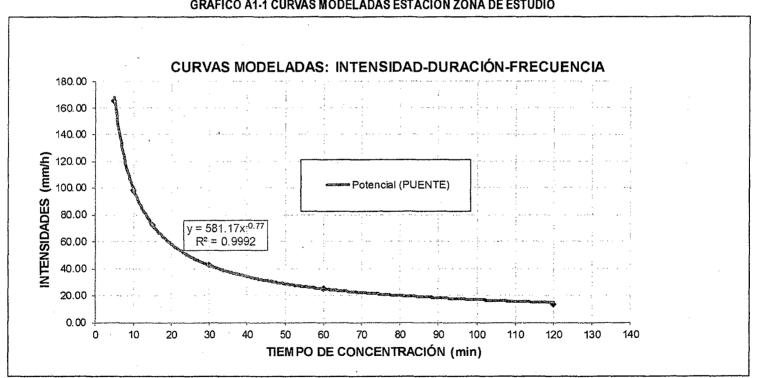
Fuente:

le: Propia

Elaboración

TABLA N° A1-15 CALCULO DE INTENSIDADES EN FUNCION DE LA VIDA UTIL Y TIEMPO DE RETORNO

Tomando en cuenta las ecuaciones N° 6, 7, 12 y 13 , desarrollamos la siguiente tabla


VIDA ÚTIL AÑOS	RIESGO DE FALLA J(%)	TIEMPO DE RETORNO	INTENS	IDADES	$X = \beta - \frac{1}{\alpha}$	$\frac{1}{4} \times \text{Ln} \times \left[\frac{1}{4} \right]$	$-Ln\times (1$	$-\frac{1}{\mathrm{Tr}}$
"N"	J(%)	Tr(AÑOS)	5 MIN	10 MIN	15 MIN	30 MIN	60 MIN	120 MIN
	10	47.96	153.28	91.14	67.24	39.98	23.77	13.13
	20	22.91	140.47	83.53	61.62	36.64	21.79	12.18
5	30	14.52	132.47	78.77	58.11	34.55	20.55	11.59
o	40	10.30	126.34	75.12	55.42	32.96	19.60	11.13
	50	7.73	121.13	72.03	53.14	31.60	18.79	10.74
	60	5.97	116.37	69.19	51.05	30.35	18.05	10.39
	10	95.41	165.10	98.17	72.43	43.07	25.61	14.01
	20	45.32	152.30	90.56	66.81	39.73	23.62	13.06
40	30	28.54	144.30	85.80	63.30	37.64	22.38	12.47
10	40	20.08	138.17	82.15	60.61	36.04	21.43	12.01
	50	14.93	132.96	79.06	58.33	34.68	20.62	11.62
	60	11.42	128.20	76.23	56.24	33.44	19.88	11.27
	10	190.32	176.93	105.20	77.62	46.15	27.44	14.89
	20	90.13	164.13	97.59	72.00	42.81	25.46	13.94
20	30	56.57	156.12	92.83	68.49	40.72	24.21	13.35
20	40	39.65	149.99	89.19	65.80	39.13	23.26	12.89
	50	29.36	144.79	86.09	63.52	37.77	22.46	12.50
	60	22.33	140.02	83.26	61.43	36.53	21.72	12.15
	10	237.78	180.74	107.47	79.29	47.15	28.03	15.18
	20	112.54	167.93	99.85	73.67	43.81	26.05	14.22
OE.	30	70.59	159.93	95.10	70.16	41.72	24.81	13.63
25	40	49.44	153.80	91.45	67.47	40.12	23.85	13.17
	50	36.57	148.59	88.35	65.19	38.76	23.05	12.79
	60	27.79	143.83	85.52	63.10	37.52	22.31	12.43
	10	475.06	192.57	114.50	84.48	50.23	29.87	16.06
	20	224.57	179.76	106.89	78.86	46.89	27.88	15.10
EΛ	30	140.68	171.76	102.13	75.35	44.80	26.64	14.51
50	40	98.38	165.63	98.48	72.66	43.20	25.69	14.05
	50	72.64	160.42	95.39	70.38	41.85	24.88	13.67
	60	55.07	155.66	92.56	68.29	40.60	24.14	13.31

Fuente:

TABLA Nº A1-16 **MODELAMIENTO DE INTENSIDADES**

VIDA ÚTIL (años)	VIDA ÚTIL (años)	TIEMPO DE RETORNO (años)	5 MIN	10 MIN	15 MIN	30 MIN	60 MIN	120 Min
Cunetas	50.00	98.38	165.63	98.48	72.66	43.20	25.69	14.05

GRAFICO A1-1 CURVAS MODELADAS ESTACIÓN ZONA DE ESTUDIO

ESCUELA ACADEMICO PROFESIONAL PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZAB DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ C UNIVERSIDAD NACIONAL DE DE INGENIERIA CIVIL LE EL BOSQUE EN EL CASERIO DE ARRION, REGION LA LIBERTAD CAJAMARCA

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA.

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° A1-17

TIEMPO DE CONCENTRACIÓN PARA LA SUB CUENCA

	COTAS	(m. s. n.				***************************************		
MICROCUENCA	m	.)	Li	Li	Si	(Li ² /Si) ^{1/2}	S	Tc
Cn	Но	Hf	(m)	(Km)		(Km)		(min)
	2832.00	2840.00	60.49	0.060	0.132	0.166		
	2840.00	2860.00	150.89	0.151	0.133	0.414		
	2860.00	2880.00	112.83	0.113	0.177	0.268		
	2880.00	2900.00	116.32	0.116	0.172	0.281		
	2900.00	2920.00	101.32	0.101	0.197	0.228		
	2920.00	2940.00	97.40	0.097	0.205	0.215		
	2940.00	2960.00	86.00	0.086	0.233	0.178		
	2960.00	2980.00	75.33	0.075	0.265	0.146		
	2980.00	3000.00	78.99	0.079	0.253	0.157		
	3000.00	3020.00	84.53	0.085	0.237	0.174	0.194	
q-01	3020.00	3040.00	94.29	0.094	0.212	0.205		41.891
·	3040.00	3060.00	96.02	0.096	0.208	0.210		
	3060.00	3080.00	121.87	0.122	0.164	0.301		
	3080.00	3100.00	141.06	0.141	0.142	0.375	j	
	3100.00	3120.00	109.03	0.109	0.183	0.255		÷
·	3120.00	3140.00	98.60	0.099	0.203	0.219		
	3140.00	3160.00	89.55	0.090	0.223	0.189		
	3160.00	3180.00	84.91	0.085	0.236	0.175		
	3180.00	3200.00	72.82	0.073	0.275	0.139		
	3200.00	3220.00	90.05	0.090	0.222	0.191		
	3220.00	3240.00	55.00	0.055	0.364	0.091		

qn = Área de la Sub cuenca correspondiente al puente "n"

Fuente:

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° A1-18 COEFICIENTES DE ESCORRENTÍA PARA SER USADOS EN EL MÉTODO RACIONAL

Características de la cunanticia		Pe	eriodo	de ret	orno (ai	ños)			
Características de la superficie	2	5	10	25	36.57	50	100	500	
Áreas desarrolladas									
Asfáltico	0.73	0.77	0.81	0.86	0.88	0.90	0.95	1.00	
Concreto / techo	0.75	0.80	0.83	0.88	0.90	0.92	0.97	1.00	
Zonas verdes (jardine	es, parque	s, etc.))					
Condición pobre (Cubierta de pasto menor del 50% del área)									
Plano, 0 - 2%	0.32	0.34	0.37	0.40	0.42	0.44	0.47	0.58	
Promedio, 2 - 7%	0.37	0.40	0.43	0.46	0.47	0.49	0.53	0.61	
Pendiente superior a 7%	0.40	0.43	0.45	0.49	0.50	0.52	0.55	0.62	
Condición promedio (Cubier	ta de p	asto del 50	% al 7	5% de	área)				
Plano, 0 - 2%	0.25	0.28	0.30	0.34	0.35	0.37	0.41	0.53	
Promedio, 2 - 7%	0.33	0.36	0.38	0.42	0.43	0.45	0.49	0.58	
Pendiente superior a 7%	0.37	0.40	0.42	0.46	0.47	0.49	0.53	0.60	
Condición buena (Cubierta	a de pa	sto mayor	del 759	% del á	rea)	-	,		
Plano, 0 - 2%	0.21	0.23	0.25	0.29	0.30	0.32	0.36	0.49	
Promedio, 2 - 7%	0.29	0.32	0.35	0.39	0.40	0.42	0.46	0.56	
Pendiente superior a 7%	0.34	0.37	0.40	0.44	0.45	0.47	0.51	0.58	
Áreas no desarrolladas									
Áre	a de c	ultivo	т			· · · · · · · · · · · · · · · · · · ·		·	
Plano, 0 - 2%	0.31	0.34	0.36	0.40	0.41	0.43	0.47	0.57	
Promedio, 2 - 7%	0.35	0.38	0.41	0.44	0.46	0.48	0.51	0.60	
Pendiente superior a 7%	0.39	0.42	0.44	0.48	0.49	0.51	0.54	0.61	
	Pastiza	les	т	г	Т		τ	r	
Plano, 0 - 2%	0.25	0.28	 	0.34	0.35	0.37		0.53	
Promedio, 2 - 7%	0.33	0.36	0.38	0.42	0.43		0.49	0.58	
Pendiente superior a 7%	0.37	0.40	0.42	0.46	0.47	0.49	0.53	0.60	
	Bosqu	T	Т	1	т	T		1	
Plano, 0 - 2%	0.22	0.25	0.28	0.31	0.33	0.35	0.39	0.48	
Promedio, 2 - 7%	0.31	0.34	0.36	0.40	0.41	0.43	0.47	0.56	
Pendiente superior a 7%	0.35	0.39	0.41	0.45	0.46	0.48	0.52	0.58	

Fuente: Tabla N° 06 Capitulo II

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

TABLA N° A1-19

CÁLCULO DE CAUDALES DE APORTE DE LA SUB CUENCAS

Sub Cuenca	AREA TRIB.	Тс	Imáx	Coef. Uniformidad	Coef. Escor.	Qn
q-n	(km2)	(min)	(mm/h)	K	С	(m³/s)
q-01	2.438	41.891	39.57	1.044	0.52	14.552

Fuente: Elaboración Propia

JOSÉ LEZAMA LEIVA INGENIERO CIVIL CONSULTOR DE OBRAS DE INGENIERÍA

REG. C.L.P. Nº 14061 - RUC 10266787711

Jr. Huánuco № 442
Telf. 365096 CEL 976625363 - 976666525
RPC Claro 993551722 - 993551713
Caiamarca

REGISTRO NACIONAL DE CONSULTORES Nº CO 112 CAJ.
ESTUDIOS GEOTÉCNICOS, LABORATORIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

ENSAYOS ESTANDAR DE CLASIFICACION DE SUELOS

PROYECTO:

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE -CASERIO CARACMACA — DISTRITO DE SANAGORAN -PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD"

SOLICITANTE: BACH. ING. JORGE LUIS CARRANZA ARAUJO

JOSE LEZAMA LEIVA INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REGISTRO NACIONAL DE CONSULTORES Nº CO 112

REG CLP, Nº 14061 - RUG 10266787711

ir Husinaco № 442 Tetal 365096 - Cel. 976525363 - 976666525 RPC Clara 983551722 - 993551713

> RPM #147663 - #466525 Cajamarca

ANALISIS GRANULOMETRICO A.S.T.M. D 422

PROYECTO:

*CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO CARACMACA - DISTRITO DE

ESTUDIOS GEOTECNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

RESPONSABLE:

INGº JOSE LEZAMA L.

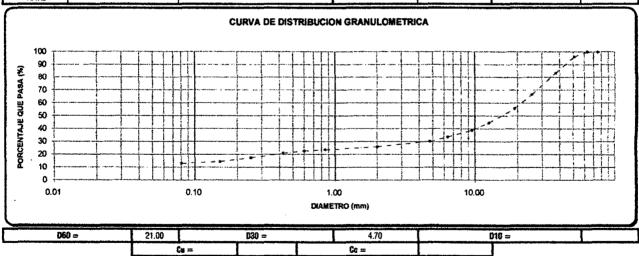
UBICACIÓN:

SANAGORAN - PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD

OPERADOR: C.L.M.

FECHA :

30 DE NOVIEMBRE DEL 2012


CASERIO: CARACMACA. DISTRITO: SANAGORAN.

PROVINCIA: SANCHEZ CARRIÓN. REGIÓN: LA LIBERTAD.

MUESTRA: LECHO DEL RÍO

SOLICITANTE: BACH, ING. JORGE LUIS CARRANZA ARALIJO

	AN	LLISIS FRACCI	ON GRUESA			MUESTRA TOTAL				
	TAMIZ	P.RET	PORCENTAJE	PORCENTAJE	% QUE	TEMPERATURA	AMBIENTE	60° C	110° C	
N°	ABERTURA (mm)	PARCIAL	RET. PARCIAL	RET. ACUM	PASA	DE SECADO	- ANDIETTIC	30 0	110 0	
3*	76.20	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HUMEDA	(ar)	6348.40		
2 1/4"	53.50	0.00	9.00	0.00	100.00					
2*	50.80	240.00	3.85	3.85	96.15	PESO TOTAL MUESTRA HUMEDA	< Nº 4 (or)	1975.80		
1 1/5"	38.10	781.00	12.54	16.40	83.60					
1*	25.40	1045.00	16.78	33.18	66.82	PESO TOTAL MUESTRA HUMEDA	> NP 4 (tr)	4372.60		
3/4"	19.05	680.00	10.92	44.10	55.90					
1/2*	12.70	700.00	11.24	55.34	44.66	PESO TOTAL MUESTRA SECA <	#P 4 (cr)	1896.00		
3/8"	9.52	356.00	5.72	61.06	38.94					
1/4*	6.35	331.00	5.32	66.37	33.63	PESO TOYAL MUESTRA SECA >	Nº 4 (or)	4331.00		
Nº4	4.75	198.00	3.18	69.55	30.45					
TOTAL	WG≃	4331.00				PESO TOTAL MUESTRA SECA (01)		6227.00	6227.00	
	A	nalisis frac	CION FINA			TOO TO THE MOESTING GEAR (G	,	0.227.00		
CORRECCION MUI PESO ENSAYO POF	estra cuarteada : Rción seca :			0.060896 500.00		CONTENIDO DI A.S.T.M.		LIMITES DE CONSI A.S.T.M. D 4	LIMITES DE CONSISTENCIA	
N 10	2.00	73.70	4.49	74.04	25.96	A.O. 1. Ma.		1.2.1.11. 0 7		
N 20	0.85	37.80	2.30	76.34	23.66	Tara nº	1	LIMITE LIQUIDO :	21.00%	
N 30	0.60	15.80	0.96	77.30	22.70	PESO HUMEDO + TARA (gr)	2044.00	CIMPL ENGUIDY.	11.00.5	
N 40	0.43	30.60	1.86	79.17	20.83	PESO SECO + TARA (gr)	2015.00	LIMITE PLASTICO:	17.00%	
N 60	0.25	55.30	3.37	82.53	17.47	PESO TARA (gr)	524.00	LIMITE I DAGINGO .	77.00%	
N 100	0.15	49.10	2.99	85.52	14.48	PESO DEL AGUA (gr)	29.00	INDICE PLASTICO :	4.00%	
N 200	0.08	21.80	1.33	86.85	13.15	PESO SECO (gr)	1491.00	HENDE (ENOTION .	1.000	
CAZOLETA	-,-		1			C. HUMEDAD (%)	1.95	CLASIFICACION S.U.C.S. :	GM.	
TOTAL			ľ			C. HOMEDAD (A)	1.50	CLACHTWICHT S.U.C.S.	CIAII.	

OBSERVACIONES:

LA MUESTRA EN ESTUDIO HA SIDO CLASIFICADA UTILIZANDO EL METODO S.U.C.S. Y CORRESPONDE A UNA GRAVA LIMOSA, POBREMENTE GRADADA, DE TAMAÑO MÁXIMO DE 2 1/2", MEZCLADA CON 17.30% DE ARENA GRUESA A FINA Y 13.15% DE PARTÍCULAS FINAS MENORES QUE 0.075 mm., DE BAJA PLASTICIDAD.

EL ESTRATO DE SUELO EN ESTUDIO HA SIDO MUESTREADO, IDENTIFICADO Y ALCANZADO AL CONSULTOR POR EL BACH. ING/JORGE LUIS

CARRANZA ARAUJO.

INGENIERO DIVIL REG. CIP. 19061

Prohibide su Reproducción Total o Percel (INDECOP) Decembro Reservados JLL.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CALCULO DEL CAUDAL DE SOLIDOS

Para el cálculo del caudal de solidos usamos la ecuación N° 17 mediante la ecuación de Schoklitsch Tenemos:

$$Q_s = \left[\frac{T_s}{P_e}\right] x B$$

[66.53 / 1720] * Qs= 14.17

 $Q_{S} = 0.55$

m³/s

Donde:

a)

Qs= Caudal sólido

Ts= Gasto sólido específico

Pe= Peso específico del material de arrastre

B= Ancho del cauce

a-1) Calculamos el gasto específico del río aplicando la ecuación N° 19

$$q = \frac{Q}{B}$$

q= (14.552 / 14.17)

 $q = 1.03 \text{ m}^3/\text{s}$

Para ello necesitamos los siguientes datos

- Ancho del cauce

B= 14.17

m Dato de topografía

Dato de estudio

- Caudal Liquido

Q_{lia}= 14.552

m³/s Hidrológico

a-2) Calculamos gasto crítico de fondo aplicando la ecuación N° 20

$$q_0 = 0.26 \left(\frac{\gamma_s - \gamma}{\gamma}\right)^{5/3} x \frac{d^{3/2}}{S^{7/6}}$$

0.06 m³/s

Para ello necesitamos los siguientes datos

Peso específico del agua

X=

qo=

1000 kg/cm³

Datos de estudio de

Peso específico del material de arrastre

Ys=

1720 kg/cm³

Suelo

reso especifico del material de arrastite

Malla donde pasa el

Diámetro prom. de las partículas en el fondo

d=

0.1 m

40%

Pendiente del cauce del rio

u-S=

0.1168 m/m

Dato de topografia

a-3) Calculamos gasto líquido específico que hace en función de la ecuación N° 18

$$T_s = 2500 \times S^{3/2} (q - q_0)$$

 $T_{s} = 66.53$

Para ello necesitamos los siguientes datos

Pe= 1720

Datos de estudio de

Peso específico del material de arrastre

S= 0.1168

kg/cm³ Suelo

Pendiente del cauce del rio

m/m

Dato de topografía

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

<u>Para el cálculo del caudal de diseño usamos la ecuación N° 21 que viene a ser suma de los caudales líquido y solido</u>

 $Q_{Diseño} = Q_{liquido} + Q_{solido}$

Remplazando datos en la Ecuación N° 21 Tenemos:

b)

 $Q_{DISENO} = 14.552 + 0.55$

Q = 15.10 m3/s

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CALCULO HIDROLOGICO DE PUENTE EL BOSQUE

CALCULO DEL TIRANTE MAXIMO EN FUNCION AL CAUDAL DE MAXIMA AVENIDA

Debido a la falta de información hidrometereológica en determinadas zonas que justifiquen el diseño hidráulico de las estructuras proyectadas, se plantean métodos de cálculo empíricos en base a de acuerdo a las características geomorfológicas y de cobertura vegetal de la zona donde se ubica el proyecto. Observaciones y parámetros determinados

Con la finalidad de obtener la altura máxima que tendrá el puente se calcularan los caudales instantáneos, por medio de diferentes métodos empíricos; de esta forma determinaremos el máximo caudal, luego con este caudal calculado utilizando la fórmula de Maning obtendremos una nueva altura de agua, que será mayor a la marca de la huella dejada por el agua en una máxima avenida.

A.- METODO DE LA SECCION Y LA PENDIENTE

Para aplicar el siguiente método debe realizarse los siguientes trabajos de campo:

- 1.- Selección de varios tramos del río.
- 2.- Levantamiento topográfico de las secciones transversales seleccionadas (3 secciones mínimas).
- Determinación de la pendiente de la superficie de agua con las marcas o huellas dejadas por las aguas de máximas avenidas.
- 4.- Elegir un valor de coeficiente de rugosidad (n) el más óptimo.
- 5.- Aplicar cálculos en la fórmula de Manning.

$$Q_{\text{max}} = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$$

A:área de la sección húmeda (m2) R:área de la sección húmeda/ perímetro mojado S:pendiente de la superficie del fondo de cauce

n: rugosidad del cauce del río.

La siguiente tabla nos muestra los distinto valores de "n" que se adoptaran:

A-1) SEGUN COWAN: Primer metodo de aplicación

Condiciones del río:				
Material del Cauce:	A	terroso		•
	В	rocoso		
	. C	gravoso fino		
	D	gravoso grueso		
	Materi	al del cauce adoptado:	X	C 0.024
Grado de Irregularidad:	A	ninguna		
	В	leve		
	С	regular		

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA.

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

	D	severo		
	Grado de	e irregularidad	у	B = 0.005
	adoptado	o:		
Secciones Variables	A	leve		
	В	regular		
	С	severo		
	Variación adoptada	n de la sección a:	Z	B = 0.005
Efecto de las obstrucciones:	Α	despreciables		
	В	menor		
	С	apreciable		
	D	severo		
	Efecto de adoptado	e las obstrucciones o:	k	A = 0.000
Vegetación:	Α	ninguna		
	В	росо		
	С	regular		
	D	alta		
	Vegetac	ión adoptada:	h	A = 0.000
Grado de sinuosidad:	A	A Insignificante		
	В	regular		
	С	considerable		
	Grado d	e sinuosidad adoptado:	у	A = 1.000

Para calcular el Valor de " n ", adoptado según COWAM es la sumatoria de cada valor adoptado en el cuadro anterior.

A-2) SEGUN SCOBEY: Segundo método de aplicación

Condiciones del río:

n = 0.025

Cauce de tierra natural limpios con buen alineamiento con o sin algo de vegetación en los taludes y gravillas dispersas en los taludes

n = 0.030

Cauce de piedra fragmentada y erosionada de sección variable con algo de vegetación en los bordes y considerable pendiente (típico de los ríos de entrada de ceja de selva)

n = 0.035

Cauce de grava y gravilla con variación considerable de la sección transversal con algo de vegetación en los taludes y baja pendiente. (típico de los ríos de entrada de ceja de selva)

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

n = 0.040 - 0.050

Cauce con gran cantidad de canto rodado suelto y limpio, de sección transversal variable con o sin vegetación en los taludes (típicos de los ríos de la sierra y ceja de selva)

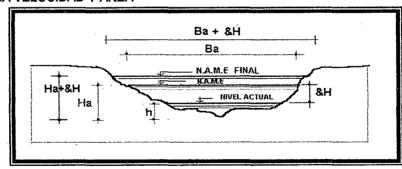
n = 0.060 - 0.075

Cauce con gran crecimiento de maleza, de sección obstruida por la vegetación externa y acuática de lineamiento y sección irregular. (típico de los ríos de la selva)

n = 0.040

Luego de analizar los métodos de cálculo del coeficiente de maining usamos el menor de los dos

n = 0.034


Luego para calcular el caudal maximo tenemos que aplicar la siguiente formula

$Q_{\text{max}} = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	Qmax.	= 36.460	m3/s
--	-------	----------	------

Como datos tenemos:

Como datos tenemos.		
Cota de N.A.M.E dejada por las huellas:	= 2836.430	m.s.n.m
Aa : Area de la sección del río en la avenida:	= 5.320 m2	
P : perimetro mojado de la avenida:	= 9.450 m	
S : pendiente de la superficie del fondo de cauce :	= 0.117	
n : rugosidad del cauce del río:	= 0.034	•
	i i	

B.- METODO DE LA VELOCIDAD Y AREA

Para aplicar el siguiente método debe realizarse los siguientes trabajos de campo:

- 1.- Selección de 2 tramos del río.
- 2.- Medir la profundidad actual en el centro del río (h).
- 3.- Levantamiento topográfico de las secciones transversales seleccionadas indicando marcas o huellas dejadas por las aguas de máximas avenidas.
- 4.- Medir la velocidad superficial del agua (Vs) que discurre tomando en cuenta el tiempo que demora un objeto flotante en llegar de un punto a otro en una sección regularmente uniforme, habiéndose ambos puntos. Previamente definido la distancia entre

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

- 5.- Calcular el área de la sección transversal del río durante la avenida dejadas por las huellas (Aa). El área se puede calcular usando la regla de Simpson o dibujando la sección en papel milimetrado.
- 6.- Aplicar cálculos en las siguientes formulas:

B-1) Altura máxima de agua en la avenida

	Ha =(coef.)* Aa / Ba	Ha: = 0.696	m
*	Area de la sección del río en la avenida	Aa: = 5.320	m2
*	Ancho máximo del espejo de agua en la avenida.	Ba: = 8.790	m
*	Coeficiente de amplificación adoptado	coef.: = 1.150	

B-2) Velocidad de agua durante la avenida

•	Va = Vs * Ha / h	Va:	3.245 m/s
*	Velocidad superficial del agua actual	Vs: = 1.026	m/s
*	Altura máxima de agua en la avenida	Ha: $= 0.696$	m
*	Profundidad actual en el centro del río	h: = 0.220	m

B-3) Finalmente se calcula el caudal de máximas avenidas

Caudal de avenida: Qmax=Va * Aa =

Qmax =

17.26

m3/s

C.- METODO DE LA FORMULA RACIONAL MODIFICADO

Para aplicar el siguiente método empírico debe realizarse el siguiente trabajo de gabinete:

- 1.- Determinar el área de influencia de la cuenca en hectáreas.
- 2.- Estimar una intensidad de lluvia máxima (mm/h)
- 3.- Aplicar cálculos con la fórmula racional

 $Q = 0.278 \times C \times I \times A \times K$

DONDE:

- Q: Caudal máximo de escorrentía que provocara una máxima avenida (m3/s).
- C: Coeficiente de escorrentía.
- A: Área de influencia de la cuenca (Km2).
- I: Intensidad máxima de lluvia, para una duración igual al tiempo de concentración y para un periodo de retorno dado (mm/h).
- K Coeficiente de uniformidad

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

C-1) Tiempo de concentración

$$t_c = 0.0195 \left(\frac{L^3}{H}\right)^{0.385}$$

Longitud del cauce Principal

Altura a lo largo del cauce

437 42 H=

Remplazando datos:

tc = 5.19**Minutos** tc = 0.087Horas

C-2) Coeficiente de uniformidad

$$K = 1 + \frac{T_C^{1.25}}{T_C^{1.25} + 14}$$

K = 1.003

C-3) Para el cálculo del caudal máximo consideramos lo siguientes datos

Coeficiente escorrentía adoptado (C):

C 0.520

Coeficiente Escorrentía (C):

Tipo de superficie	С
Techos	0.70 - 0.95
Pavimento de concreto y asfalto	0.85 - 0.90
Pavimento de piedra y ladrillo (malas y buenas condiciones)	0.40 - 0.85
Calles y aceras de grava	0.15 - 0.30
Calles sin pavimento, lotes desocupados	0.10 - 0.30
Parques, canchas, jardines, prados, etc.	0.05 - 0.25
Bosques y tierra cultivada	0.01 - 0.20

Fuente: Bartolomé Torres Bernades. Estudio de los principales métodos para predeterminar crecidas

*	Área	de	la	cuenca	estin	ıada	en	camp	o (A)	=
			_				_			

2.438 39.57

Km2

mm/h

Intensidad máxima de Iluvia adoptada (i) = Coeficiente de Uniformidad (K)

1.003

Caudal máximo:

Ouddu maximo.		
	Qmax=0.278xCx i x AxK	
	=	13.99 m3/s

De los tres caudales máximos calculados se adoptaran lo siguiente:

1 .- el máximo de los caudales

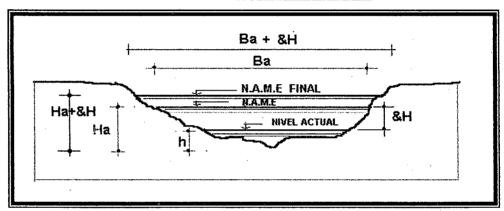
2 .- el promedio de los caudales

3 .- la media ponderada

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD


Caudal Máximo Seleccionado Qmax=

22.57 m3/s

NOTA: Luego con el caudal máximo adoptado se ingresara nuevamente en la fórmula de Manning y se hallara el nuevo valor de la altura de agua de máximas avenidas.

Qmax.=
$$A^{(5/3)} * S^{(1/2)}$$

$$P^{(2/3)} * n$$

Qmax= $(Aa+&A)^{(5/3)} * S^{(1/2)}$ $(1.1P)^{(2/3)} * n$

&A = [Qmax * n * (1.1P)^(2/3) / S^(1/2)]^(3/5) - Aa &A = -1.175 m2 &A= (Ba+&H)*&H = -1.175 m2

INCREMENTE EL N.A.M.E EN &H = -0.14 m NUEVA COTA DE N.A.M.E. = 2836.29 m.s.n.m

CAUDAL MAXIMO Qmax = 22.57 m3/s

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CALCULO DE SOCAVACION

La socavación que se produce en un río no puede ser calculada con exactitud, solo estimada, muchos factores intervienen en la ocurrencia de este fenómeno, tales como:

- El caudal
- -Tamaño y conformación del material del cauce
- Cantidad de transporte de sólidos

Las ecuaciones que se presentan a continuación son una guía para estimar la geometría hidráulica del cauce de un río. Las mismas están en función del material del cauce.

SOCAVACION GENERAL DEL CAUCE:

Es aquella que se produce a todo lo ancho del cauce cuando ocurre una crecida debido al efecto hidráulico de un estrechamiento de la sección; la degradación del fondo de cauce se detiene cuando se alcanzan nuevas condiciones de equilibrio por disminución de la velocidad, a causa del aumento de la sección transversal debido al proceso de erosión.

Para la determinación de la socavación general se empleara el criterio de Lischtvan - Lebediev:

Velocidad erosiva que es la velocidad media que se requiere para degradar el fondo esta dado por las siguientes expresiones:

Ve = 0.60 γs ^{1.18} β H _s ^x	; m/seg	suelos cohesivos	Ec. 23
Vc = $0.68 \text{ g d}_{\text{m}}^{0.28} \text{H}_{\text{s}}^{\times}$; m/seg	suelos no cohesivos	

DONDE:

Ve = velocidad media suficiente para degradar el cauce en m/seg.

- ys = peso volumétrico del material seco que se encuentra a una profundidad Hs, medida desde la superficie del agua (Ton/m3)
- β = coeficiente que depende de la frecuencia con que se repite la avenida que se estudia. Ver tabla N° 10
- x = es un exponente variable que esta en función del peso volumétrico gs del material seco (Ton/m3)
- H_s = tirante considerado, a cuya profundidad se desea conocer que valor de Ve se requiere para arrastrar y levantar al material (m)
- d_m= es el diámetro medio (en mm) de los granos del fondo obtenido según la expresión.

 d_m= 0.01 S di pi

En el cual

- di = diámetro medio, en mm, de una fracción en la curva granulométrica de la muestra total que se analiza
- pi = peso de esa misma porción, comparada respecto al peso total de la muestra. Las fracciones escogidas no deben ser iguales entre si.
 - (1) Perfil antes de la erosión.
 - (2) Perfil después de la erosión

Cálculo de la profundidad de la socavación en suelos homogéneos:

Suelos no cohesivos:
$$Hs = \begin{bmatrix} a H_0^{-5/3} & 1 \\ 0.68b \ d_m^{-0.28} \end{bmatrix} (1+x)$$
 Ec.25

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Donde: $\alpha = Qd/(H_m^{5/3}B_e m)$

Q_d = caudal de diseño (m3/seg)

B_e = ancho efectivo de la superficie del liquido en la sección transversal

 μ = coeficiente de contracción. Ver tabla N° 12

Hm = profundidad media de la sección = Area / Be x = exponente variable que depende del diámetro del material y se encuentra en la tabla N° 2

d_m = diámetro medio (mm)

TABLA Nº 10 COFFICIENTE DE CONTRACCION III

COEFICIENTE DE CONTRACCION, µ													
VELOCIDAD MEDIA		LONGITUD LIBRE ENTRE DOS PILAS LUZ, EN METROS											
EN LA SECCIÓN, EN	10	13	16	18	21	25	30	42	52	63	106	124	200
MENOR DE 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	0.96	0.97	0.98	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.50	0.94	0.96	0.97	0.97	0.97	0.98	0.99	0.99	0.99	0.99	1.00	1.00	1.00
2.00	0.93	0.94	0.95	0.96	0.97	0.97	0.98	0.98	0.99	0.99	0.99	0.99	1.00
2.50	0.90	0.93	0.94	0.95	0.96	0.96	0.97	0.98	0.98	0.99	0.99	0.99	1.00
3.00	0.89	0.91	0.93	0.94	0.95	0.96	0.96	0.97	0.98	0.98	0.99	0.99	0.99
3.50	0.87	0.90	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.98	0.99	0.99	0.99
4.00 o mayor	0.85	0.89	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	0.99	0.99

TABLA Nº 09

ALORES DE X PARA SUELOS COHESIVOS Y NO COHESIVOS

SUELOS COHESIVOS SUELO			COHESIVOS
γs(tn/m 3)	x	dm (mm)	x
0.80	0.52	0.05	0.43
0.83	0.51	0.15	0.42
0.86	0.50	0.50	0.41
0.88	0.49	1.00	0.40
0.90	0.48	1.50	0.39
0.93	0.47	2.50	0.38
0.96	0.46	4.00	0.37
0.98	0.45	6.00	0.36
1.00	0.44	8.00	0.35
1.04	0.43	10.00	0.34
1.08	0.42	15.00	0.33
1.12	0.41	20.00	0.32
1.16	0.40	25.00	0.31
1.20	0.39	40.00	0.30
1.24	0.38	60.00	0.29
1.28	0.37	90.00	0.28
1.34	0.36	140.00	0.27
1.40	0.35	190.00	0.26
1.46	0.34	250.00	0.25
1.52	0.33	310.00	0.24
1.58	0.32	370.00	0.23
1.64	0.31	450.00	0.22
1.71	0.30	570.00	0.21
1.80	0.29	750.00	0.20
1.89	0.28	1000.00	0.19
2.00	0.27		

TABLA N° 08 Coeficiente β

Posibilidad anual en (%) de que se presente el gasto de	Coeficient e β
100	0.77
50	0.82
20	0.86
10	0.90
5	0.94
2	0.97
1	1.00
0.3	1.03
0.2	1.05
0.1	1.07

SOCAVACION AL PIE DE LOS ESTRIBOS:

El método que será expuesto se debe a K. F. Artamonov y permite estimar no solo la profundidad de socavación al pie de estribos, sino además al pie de espigones. Esta erosión depende del gasto que teóricamente es interceptado por el espigón, relacionando con el gasto total que escurre por el rio, del talud que tienen los lados del estribo y del ángulo que el eje longitudinal de la obra forma con la corriente. El tirante incrementado al pie de un estribo medido desde la superficie libre de la corriente, esta dada por:

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

St = Pa Pa PR Ho

Ec. 26

en que

- Pa = coeficiente que depende del ángulo a que forma el eje del puente con la corriente, como se indica en la figura siguiente; su valor se puede encontrar en la tabla N° 13
- Pq = coeficiente que depende de la relación Q₁/Q, en que Q₁ es el gasto que teóricamente pasaria por el lugar ocupado por el estribo si éste no existiera y Q, es el gasto total que escurre por el río. El valor de Pq puede encontrarse en la tabla N° 14
- PR = coeficiente que depende del talud que tienen los lados del estribo, su valor puede obtenerse en la tabla N° 15
- Ho = tirante que se tene en la zona cercana al estribo antes de la erosión

TABLA Nº 11

	VALORES DEL COEFICIENTE CORRECTIVO P₃ EN FUNCION DE α							
α	30°	60°	90°	120°	150°			
Pa	0.84	0.94	1.00	1.07	1.19			

TABLA N° 12

	VALC	RES DE	COEFIC	IENTE C	ORRECTI	VO Pq EN	FUNCIO	N DE Q ₁ /Q	
Q ₁ /Q	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	
Pq	2.00	2.65	3.22	3.45	3.67	3.87	4.06	4.20	

TABLA N° 13

VALORES DEL COEFICIENTE CORRECTIVO PR EN FUNCION DE R								
TALUD R	0	0.50	1.00	1.50	2.00	3.00		
PR	1.00	0.91	0.85	0.83	0.61	0.50		

DETERMINACION DE LA PROFUNDIDAD DE SOCAVACION

TIPO DE CAUCE

2

(ver cuadro adjunto)

CAUCE	TIPO
SUELO COHESIVO	1
SUELO NO COHESIVO	2

A.- Cálculo de la socavación general en el cauce:

Hs = Profundidad de socavación (m)	?	
Qd = Caudal de diseño	14.55	m3/seg
Be = Ancho efectivo de la superficie de agua	8.80	m
Ho = Tirante antes de la erosión	0.70	m
Vm = Velocidad media en la sección	1.02	m/seg
μ = Coheficiente de contraccion. Ver tabla N°	1.00	
γs = Peso especifico del suelo del cauce	1.72	Tn/m3
dm = Diámetro medio	21.00	mm
x = Exponente variable. Ver tabla Nº 2.14	0.315	
Tr = Periodo de retorno del gasto de diseño	100.00	años
β = Coeficiente que depende de la	0.77	
frecuencia del caudal de diseño. Ver tabla	U.77	
A = Área de la sección hidráulica	5.37	m2
Hm = Profundidad media de la sección	0.410	m
a =	7.307	

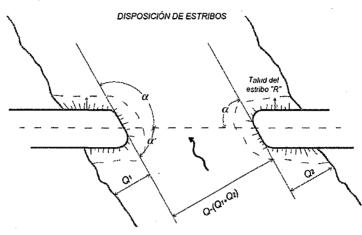
Entonces,

Asumimos

4.47 10

ds = profundidad de socavación respecto al fondo del cauce

ds =	1.77 m	
ds =	2.00 m	



FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

1.- Pantalla margen izquierda aguas abajo

St = Tirante incrementado al pie del estribo debido a la socavación en m.	?	Unidades
Ho = Tirante que se fiene en la zona cercana al estribo antes de la erosion	0.63	m
Q = Caudal de diseño	14.55	m3/seg
b1= Largo de voladizo de estribo	2.00	m
Q1 = Caudal que teóricamente pasaría por el lugar ocupado por la pantalla de la margen izquierda	7.28	m3/seg
Q1/Q =	0.50	
Pq = Coeficiente que depende de la relación Q1/Q. Ver tabla Nº 17	3.670	
a = Ángulo que forma el eje del estribo con la corriente	98.00	0
Pa = Coeficiente que depende del ángulo a . Ver tabla N° 11	1.019	
R = Talud que tiene el estribo	0.07	
P _R = Coeficiente que depende del talud que tiene el estribo. Ver tabla N° 13	0.987	

Entonces,

Asumimos

St = 2.33 m

So = profundidad de socavación respecto al fondo del cauce

So=

So = 1.70 m

2.00 m

2.- Pantalla margen derecha aguas abajo

St = Tirante incrementado al pie del estribo debido a la socavación en m.	?	Unidades
Ho = Tirante que se tiene en la zona cercana al estribo antes de la erosion	0,65	m
Q = Caudal de diseño	14.55	m3/seg
b1=Largo de voladizo de estribo	2.00	m
Q1 = Caudal que teóricamente pasaria por el lugar ocupado por la pantalla de la margen izquierda	7.28	m3/seg
Q1/Q =	0.50	
Pq = Coeficiente que depende de la relación Q1/Q. Ver tabla N° 17	3.670	
a = Angulo que forma el eje del estribo con la corriente	82.00	0
Pa = Coeficiente que depende del ángulo a . Ver tabla N° 11	0.984	
R = Talud que tiene el estribo	0.07	
P _R = Coeficiente que depende del tatud que tiene el estribo. Ver tabla N° 13	0.987	

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Entonces,

St = 2.32 m

So = profundidad de socavación respecto al fondo del cauce

So = 1.67 m

Asumimos

So = 2.00 m

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRIÓN, REGION LA LIBERTAD

ANEXOS N° 2 GEOLOGICO, GEOTECNICO Y ESTUDIO DE CANTERA

FACULTAD DE INGENIERIA

ANEXO 2.1: ESTUDIO DE MECANICA DE SUELOS

Universidad Nacional de Cajamarca FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Teléfono Nº 365976, Anexo 217 - Edificio 1C-106 Cajamarca - Perú

"AÑO DE LA INTEGRACIÓN NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD" "UNIVERSIDAD NACIONAL DE CAJAMARCA, 50 AÑOS AL SERVICIO DEL PUEBLO CAJAMARQUINO".

Cajamarca, 13 de agosto de 2012.

OFICIO Nº 150-2012-FI-EAPIC-UNC.

Señor Bachiller
JORGE LUIS CARRANZA ARAUJO.

PRESENTE

Referencia

Carta Nº 009-2012-JLCA.

Asunto

Autorización.

De mi consideración:

Es grato dirigirme a usted, para manifestarle que esta Dirección le AUTORIZA realizar ensayo de mecánica de suclos para su tesis denominada: "CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE CASERÍO DE CARACMACA DISTRITO DE SANAGORAN - PROVINCIA SÁNCHEZ CARRIÓN - REGIÓN LA LIBERTAD", en un laboratorio externo, siempre y cuando los ensayos realizados sean constatados por el asesor, emitiendo informe de conformidad.

Es propicia la ocasión para expresarle los sentimientos de mi mayor consideración.

Atentamente.

DAD NACION PRECCION DIRECCION DIRECCION CAJAMARCA

UNIVERSIDAD NACIONAL DE CAJAMARCA
FACULTAD DU INGENIERIA
FACULTAD DU INGENIERIA
FACULTAD DU INGENIERIA GIVIL

M.Cs. Ing. Mauro Algebric Centuriba Vorga

Con copia.
- Archivo
MACV/mhs.

JOSÉ LEZAMA LEIVA INGENIERO CIVIL CONSULTOR DE OBRAS DE INGENIERÍA

REG. C.I.P. Nº 14061 - RUC 10266787711

Jr. Huánuco № 442
Telf. 365096 CEL 976625363 - 976666525
RPC Claro 993551722 - 993551713
Caiamarca

REGISTRO NACIONAL DE CONSULTORES Nº CO 112 CAJ ESTUDIOS GEOTÉCNICOS, LABORATORIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

ESTUDIOS DE MECÁNICA DE SUELOS CON FINES DE CIMENTACIÓN

PROYECTO:

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE -CASERIO CARACMACA - DISTRITO DE SANAGORAN -PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD"

SOLICITANTE: BACH. ING. JORGE LUIS CARRANZA ARAUJO

CAJAMARCA, NOVIEMBRE 2012

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

ESTUDIOS GEOTÉCNICOS, LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

INDICE

			Pagina
1.	GEN	ERALIDADES	
	1.1 1.2 1.3 1.4	Objetivo del Estudio	01 01
2.	INVE	ESTIGACIONES DE CAMPO	
	2.1	Trabajos de Campo. 2.1.1 Calicatas	. 02
3 .	CAR	ACTERÍSTICAS DEL PROYECTO	. 02
4.	ENS	AYOS DE LABORATORIO	
	4.1 4.2 4.3	Ensayos Estándar Ensayos Especiales Clasificación de Suelos	03
5.	PER	FILES ESTRATIGRÁFICOS	
	5.1 5.2	Descripción de los Perfiles Estratigráficos	
6.	ANÁ	LISIS DE LA CIMENTACIÓN PARA LA ESTRUCTURA VIAL	
	6.1 6.2 6.3	Tipo y Profundidad de la Cimentación	04-05
7.	CON	ITENIDO DE SALES AGRESIVAS A LAS ESTRUCTURAS	06
8.	RES	UMEN DE LAS CONDICIONES DE CIMENTACIÓN	. 06
9.	CON	CLUSIONES Y RECOMENDACIONES	07-09

ANEXO I

Resultado de los ensayos de Laboratorio.

ANEXO II

Perfiles Estratigráficos

ANEXO III

Análisis de pH, Sulfatos y Cloruros

ANEXO IV

Croquis de Detalle de Cimentación

ANEXO V

Plano de ubicación de Calicatas

ANEXO VI

Mapa de Zonificación Sísmica del Perú

ANEXO VII

Material Fotográfico

José L. Lexama Leiva INGENIERO CIVIL REG. CIP 14061

~j0

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

INFORME TÉCNICO

1. GENERALIDADES

1.1 **Obietivo del Estudio**

El presente informe Técnico, tiene por finalidad dar a conocer al Bachiller en ingeniería Jorge Luis Carranza Araujo, los resultados de las investigaciones del suelo del terreno de fundación donde se ejecutará el Proyecto: "CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO CARACMACA - DISTRITO DE SANAGORAN - PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD"; por medio de trabajos de campo a través de dos pozos de exploración a cielo abierto o Calicatas, ensayos de laboratorio estándar y especiales a fin de obtener las principales características físicas y mecánicas del subsuelo, sus propiedades de resistencia y labores de gabinete en base a los cuales se define el perfil estratigráfico, tipo y profundidad de cimentación, Capacidad de Carga Admisible y las conclusiones y recomendaciones generales para la cimentación.

El programa de trabajo realizado con este propósito ha consistido en:

- Reconocimiento del terreno.
- Excavación de pozos de exploración.
- Toma de Muestras de campo.
- Elecución de Ensavos de Laboratorio.
- Evaluación de los Trabajos de Campo y Laboratorio.
- Perfiles Estratigráficos.
- Análisis de la Capacidad de Carga Admisible.
- Conclusiones y Recomendaciones.

1.2 Ubicación y Descripción del Área en Estudio

El terreno destinado para la ejecución del Provecto: "CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO CARACMACA - DISTRITO DE SANAGORAN - PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD", geográficamente se ubica a: 813107.50 E. 9135355.78 N v a una altitud promedio de 2841.20 m.s.n.m.

Políticamente, se encuentra ubicado en el Caserío de Caracmaca, Distrito de Sanagorán, Provincia de Sánchez Carrión, Departamento y Región La Libertad.

1.3 Acceso al Área de Estudio

El acceso se realiza por medio de transporte terrestre; desde la ciudad de Huamachuco, el cual se detalla a continuación:

Desde	Hacia	Distancia (Km)	Tipo de Vía	Tiempo (minutos)	Frecuencia transporte
Huamachuco	Sanagorán ciudad	28	Afirmada	30	Diario
Sanagorán ciudad	Caracmaca	10	Trocha	20	Inter diario

CIVIL REG. CIP.

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P № 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES № CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

1.4 Condición Climática

El Caserío de Caracmaca, donde se encuentra ubicado el Proyecto, tiene un excelente clima templado, típico de la sierra norte del país, de tipo sub húmedo con temperaturas actuales que varían entre los 21° C y 7° C, con un promedio anual de 15° C; con precipitaciones pluviales variables durante el año. Las precipitaciones mínimas se presentan en los meses de Mayo a Setiembre y las máximas entre los meses de Enero a Marzo, con un promedio anual aproximado de 600 mm., presentando además una humedad relativa del 60 %.

2.0 INVESTIGACIONES DE CAMPO

2.1.- Trabajos de Campo

Fue realizado por el Bachiller en Ingeniería Jorge Luis Carranza Araujo y consistió en las siguientes actividades:

2.1.1. Calicatas

Con la finalidad de determinar el Perfil Estratigráfico del área en estudio, se han realizado dos excavaciones a cielo abierto o Calicatas, localizadas convenientemente a la siguiente profundidad:

CUADRO DE CALICATAS

CALICATA No	UBICACIÓN	PROFUNDIDAD	Coordenadas UTM		
CALICATA N°	UBICACION	(m.)	Norte	Este	
C – 1	Margen derecha	5.20	9135355.78	813101.50	
C-2	Margen izquierda	4.80	9135400.00	813100.50	

2.1.2. Muestreo Disturbado

Se tomaron muestras disturbadas de cada uno de los tipos de suelos encontrados (Mab), en cantidad suficiente como para realizar los ensayos de clasificación e identificación de suelos, las cuales fueron acondicionadas para su posterior traslado al Laboratorio.

2.1.3. Registro de Excavación

Paralelamente al muestreo se realizó el registro de las Calicatas, bajo la Norma A.S.T.M. D 2488 (Procedimiento Visual-Manual, Descripción e Identificación de Suelos), anotándose las principales características de los tipos de suelos encontrados, tales como: espesor, humedad, compacidad, dilatancia, plasticidad, tenacidad y otros.

3. CARACTERÍSTICAS DEL PROYECTO

El Proyecto: "CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO CARACMACA - DISTRITO DE SANAGORAN - PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD", consistirá en la edificación de un puente de Estructuras Metálicas Reticulado, de una longitud de 45.00 m. de luz total, de 3.60 m. de ancho de calzada, con veredas laterales de 0.60 m. de ancho.

4. ENSAYOS DE LABORATORIO

Los ensayos Estándar y Especiales de laboratorio se realizaron en el Laboratorio de Mecánica de Suelos del Ingeniero José Lezama Leiva y el análisis químico de sales agresivas al concreto se realizó en el Laboratorio del Ing. Hugo Mosqueira Estraver, bajo las Normas A.S.T.M. (American Society For Testing and Materials).

é D. Lexama Le INGENIERO CIVIL REG. CIP. 14061

3

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P № 14061 - RUC 10266787711
REGISTRO NACIONAL DE CONSULTORES № CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

4.1 Ensayos Estándar

Se realizarán los siguientes ensayos:

- 06 Ensayos de Análisis Granulométrico.

ASTM D-422.

- 06 Ensayos de Límite Líquido, Límite Plástico

ASTM D-4318.

e Índice de Plasticidad de Suelos.

- 06 Ensayos de Contenido de humedad.

ASTM D-2216.

4.2 Ensayos Especiales

Fueron realizados los siguientes ensayos:

- Con las muestras representativas de las Calicatas C-1 y C-2 se realizó el análisis de sales agresivas al concreto.
- Con la muestra M-2 de la calicata C-2, se realizó el ensayo de Corte Directo (A.S.T.M. D 3080).

4.3 Clasificación de Suelos

Las muestras ensayadas en el laboratorio se clasificaron de acuerdo al Sistema Unificado de Clasificación de Suelos (S.U.C.S.), bajo la Norma A.S.T.M. D 2487.

CUADRO DE CLASIFICACIÓN

CALICATA		C.	-1			C	-2			
Margen		Der	echa		Izquierda					
Muestra	M-1	M - 2	M - 3	M 4	M – 1	M - 2	M - 3	M - 4		
Profundidad (m)	0.00-2.00	2.00-3.60	3.60-3.80		0.00-0.80	0.80-3.40	3.40-3.80			
% Pasa Tamiz Nº 4	40.12	31.49	99.28		39.84	30.53	57.16			
% Pasa Tamiz Nº 200	19.23	12.62	74.36	Roca	19.26	10.55	1.40	Roca lutita,		
Límite Líquido (%)	27.00	27.00	24.00	lutita,	28.00	25.00	23.00	sedimentari		
Índice Plástico (%)	7.00	8.00	7.00	sedimentar	6.00	8.00	7.00	a, detrítica		
Coeficiente de Uniformidad (Cu)	••			ia, detrítica o clástica,			19.09	o clástica,		
Coeficiente de Curvatura (Cc)	••			de textura			0.69	de textura		
Diámetro Efectivo(D ₁₀)				pelitica.	••	••	0.33	pelitica.		
Contenido de Humedad (%)	10.21	8.24	11.34		9.87	6.35	7.82			
Clasificación de Suelos "SUCS"	GC	GC	CL		GC	GC	SC			

5.0 PERFILES ESTRATIGRÁFICOS

5.1 Descripción de los Perfiles Estratigráficos

En base a los trabajos de campo y ensayos de laboratorio se deduce la siguiente conformación:

La Calicata C-1 (Margen Derecha), presenta un estrato hasta 2.00 m. de espesor, conformado por grava arcillosa, pobremente gradada, de tamaño máximo de 2", de color marrón claro, mezclada con 20.89% de arena gruesa a fina y 19.23% de partículas finas menores que 0.075 mm., de baja plasticidad. Es un material semipermeable, presenta una resistencia a la tubificación: alta y una resistencia al cortante: alta; se encuentra con bajo grado de compacidad, alto contenido de humedad y presenta bajo contenido de sales sulfatadas. De 2.00 m. a 3.60 m. de profundidad, existe un estrato constituido por grava arcillosa, pobremente gradada, de tamaño máximo de 2", de color amarillento, mezclada con 18.87% de arena gruesa a fina y 12.62% de partículas finas menores que 0.075 mm., de baja plasticidad. Es un material semipermeable, presenta una resistencia a la tubificación: alta y una resistencia al cortante: alta; se encuentra con bajo grado de compacidad, alto contenido de humedad y presenta bajo contenido de sales sulfatadas. De 3.60 m. a 3.80 m. de profundidad, existe un estrato conformado por arcilla inorgánica, de baja plasticidad, de color negro, mezclada con 24.92% de arena gruesa a fina y 0.72% de fragmentos rocosos de tamaño máximo de ¼". Es un

Jr. Huánuco Nº 442, Telef. 365096 – Cel. 976625363, Cajamarca Prohíbida su Reproducción Total o Parcial (INDECOPI). Derechos Reservados JLL.

3

JOSAM OS Fosé E. Lexania Leiva INGENIERO CIVIL

INGENIERO CIVIL CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

material impermeable, presenta una resistencia a la tubificación: alta y una resistencia al cortante: media; se encuentra con bajo grado de compacidad, alto contenido de humedad y bajo contenido de sales sulfatadas. De 3.80 m. a 5.20 m. de profundidad, existe un estrato constituido por Roca Lutita sedimentaria detrítica o clástica, de textura pelítica, está integrada por detritus clásticos donde las partículas son de los tamaños de la arcilla y limo. En las lutitas negras el color se debe a existencia de materia organica, lo que le confiere caracteres adversos para la construcción y soportar cargas. Al examen mediante la lupa se observa que son porosas, pero poco permeables, esto se debe a que los poros no se encuentran conectados entre ellos, su diagénesis corresponde a procesos de compactación y deshidratación. Presenta una densidad de 2.62 gr/cm3 y una resistencia a compresión uniaxial de 230 kg/cm2.

La Calicata C-2 (Margen Izquierda), presenta un estrato hasta 0.80 m. de espesor, conformado por grava arcillosa. pobremente gradada, de tamaño máximo de 2", de color marrón claro, mezclada con 20.58% de arena gruesa a fina y 19.26% de partículas tinas menores que 0.075 mm., de baja plasticidad. Es un material semipermeable, presenta una resistencia a la tubificación: alta y una resistencia al cortante: alta; se encuentra con bajo grado de compacidad, alto contenido de humedad y presenta bajo contenido de sales sulfatadas. De 0.80 m. a 3.40 m. de profundidad, existe un estrato constituido por grava arcillosa, pobremente gradada, de tamaño máximo de 2", de color amarillento, mezclada con 19.98% de arena gruesa a fina y 10.55% de partículas finas menores que 0.075 mm., de baja plasticidad. Es un material semipermeable, presenta una resistencia a la tubificación: alta y una resistencia al cortante; alta; se encuentra con bajo grado de compacidad, alto contenido de humedad y presenta bajo contenido de sales sulfatadas. De 3.40 m. a 3.80 m. de profundidad, existe un estrato conformado por arena arcillosa, pobremente gradada, de color marrón oscuro, mezclada con 1.40% de partículas finas menores que 0.075 mm., de baja plasticidad y 42.84% de fragmentos rocosos de tamaño máximo de 1 1/2". Es un material impermeable, presenta una resistencia a la tubificación: alta y una resistencia al cortante: alta a media; se encuentra con bajo grado de compacidad, alto contenido de humedad y bajo contenido de sales sulfatadas. De 3.80 m. a 4.80 m. de profundidad, existe un estrato constituido por Roca Lutita sedimentaria detrítica o clástica, de textura pelitica, está integrada por detritus clásticos donde las partículas son de los tamaños de la arcilla y limo. En las lutitas negras el color se debe a existencia de materia organica, lo que le confiere caracteres adversos para la construcción y soportar cargas. Al examen mediante la lupa se observa que son porosas, pero poco permeables, esto se debe a que los poros no se encuentran conectados entre ellos, su diagénesis corresponde a procesos de compactación y deshidratación. Presenta una densidad de 2.62 gr/cm3 y una resistencia a compresión uniaxial de 230 kg/cm2.

5.2 Aspectos Relacionados con la Napa Freática

Se debe señalar que no se encontró el nivel freático en las calicatas estudiadas, pero se observaron filtraciones de agua, en la calicata C-1, a partir de 3.60 m. de profundidad,

6.0 ANÁLISIS DE LA CIMENTACIÓN PARA LA ESTRUCTURA VIAL.

6.1 Tipo y Profundidad de la Cimentación

De acuerdo a las características del subsuelo descrito anteriormente, se recomienda cimentar a una profundidad no menor de 3.80 m., con respecto al nivel del lecho del río, apoyado directamente sobre el estrato conformado por Roca Lutita Sedimentaria, por medio de zapatas de concreto armado, para lo cual se recomienda realizar un mejoramiento del terreno de fundación, antes de construir la cimentación, con el objeto de preveer los posibles asentamientos diferenciales.

6.2 Cálculo de la Capacidad de Carga Admisible

Para la determinación de la Capacidad Admisible de carga, se ha considerado el ángulo de fricción interna de 56.04° y el valor de la cohesión de 4.00 Kg/cm², obtenidos del ensayo a compresión uniaxial de especímenes de Roca, aplicando las Formulas de Call (1992). En este caso los bloques de roca pueden Hendirse por presiones, por lo que la capacidad admisible de carga puede calcularse:

 $\mathbf{Q}_{ij} = \operatorname{Jc} \operatorname{Ncr} / (2,2 + 0.18 \, \text{L/B}) \dots Zapata \operatorname{Rectangular}$

GENIERO CIVI

60

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

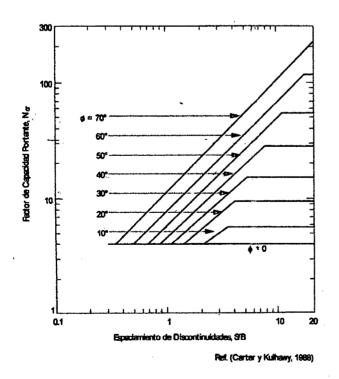
donde:

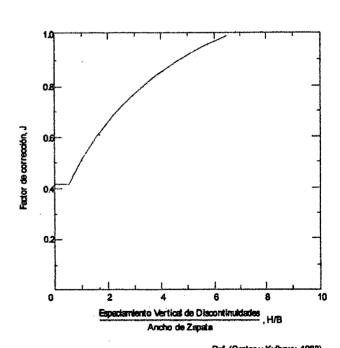
$\mathbf{q}_{\mathbf{u}}$	=	capacidad de carga última
J	=	factor de corrección
С	=	cohesión de la roca
Φ	=	ángulo de fricción de la roca
Nor	=	factor de canacidad de caros

Н Espaciamiento vertical de discontinuidades \$ Espaciamiento horizontal de discontinuidades

В Ancho de la zapata

 Q_{u} 32.68 kg/cm2


q_a / F.S. **Q**ad


Factor de Seguridad = 10

Luego, la Capacidad de Carga Admisible será de:

$$q_{ad} = 3.27 \text{ kg/cm}^2$$

Graficos factor de corrección (J) - factor de capacidad de carga (Ncr)

CIVIL GENIER

REG. CIR

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

7.0.-CONTENIDO DE SALES AGRESIVAS A LAS ESTRUCTURAS

El resultado del Análisis Físico Químico efectuado con muestras representativas de los estratos que conforma el subsuelo del terreno de fundación, presenta los siguientes valores:

CALICATA	MUESTRA	PROFUNDIDAD	pH	\$0 ₄ ² - (%)	CI ^{1.} (%)
		(m)	NTP 339.176	NTP 339.178	NTP 339.177
	M – 1	0.00 - 2.00	7.20	0.042	0.013
	M – 2	2.00 - 3.60	7.40	0.052	0.017
C-1	M – 3	3.60 - 3.80	7.10	0.055	0.018
	M – 4	3.80 - 5.20	6.70	0.031	0.012
	M – 1	0.00 - 0.80	7.10	0.040	0.018
C-2	M – 2	0.80 - 3.40	7.30	0.038	0.012
0-2	M – 3	3.40 - 3.80	7.20	0.051	0.014
	M – 4	3.80 - 4.80	6.80	0.029	0.011

Este caso se consideraría como exposición despreciable los sulfatos (No Aplicable), Categoría S Clase SO (proporción de sulfatos: $SO_4^2 < 0.10\%$), según el Código ACI 318S-11 y el capitulo 4 de la Norma E.060 del Reglamento Nacional de Edificaciones; por consiguiente, se puede utilizar. Cemento Pórtland Tipo I (A.S.T.M. C 150), sin restricción, en el concreto de la cimentación.

RESUMEN DE LAS CONDICIONES DE CIMENTACIÓN 8.0

TIPO DE CIMENTACIÓN: ZAPATAS DE CONCRETO ARMADO.

ESTRATO DE APOYO DE LA CIMENTACIÓN: ROCA LUTITA SEDIMENTARIA.

PARÁMETROS DE DISEÑO DE LA CIMENTACIÓN

PROFUNDIDAD DE CIMENTACIÓN:

3.50 m. CON RESPECTO AL NIVEL DEL LECHO DEL RÍO

PRESIÓN ADMISIBLE: 3.27 Kg/cm²

FACTOR DE SEGURIDAD: 3.00

TIPO DE SUELO DESDE EL PUNTO DE VISTA SISMICO:

TIPO DE SUELO: S₂, FACTOR DE ZONA Z = 0.4, FACTOR DE SUELO S = 1.2 y PERIODO PREDOMINANTE TS = 0.6 seq.

EXPOSICIÓN DEL CONCRETO A LOS SULFATOS: DESPRECIABLE (NO APLICABLE)

(PROPORCIÓN DE SULFATOS: SO,2 < 0.10%) SEGÚN EL CÓDIGO ACI 318S-11 Y EL CAPITULO 4 DE LA NORMA E.060 DEL REGLAMENTO NACIONAL DE EDIFICACIONES.

RECOMENDACIONES ADICIONALES: NO DEBE CIMENTARSE SOBRE TURBA, SUELO ORGANICO, TIERRA VEGETAL, DESMONTE O RELLENO SANITARIO Y QUE ESTOS MATERIALES INADECUADOS DEBERAN SER REMOVIDOS EN SU TOTALIDAD, ANTES DE CONSTRUIR LA CIMENTACIÓN Y SER REEMPLAZADOS CON MATERIALES SELECCIONADOS

GENIERO

REG. CIP. 14061

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P № 14061 - RUC 10266787711

REGISTRO NACIONAL DE CONSULTORES № CO 112

APORATÓRIO DE MACRÂNICA DE CUEL OS. CONCRETO ASSA

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

CONCLUSIONES Y RECOMENDACIONES

José H. Lexama Leiva INGENIERO/CIVIL REG. CIP. 14061

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P № 14061 - RUC 10266787711
REGISTRO NACIONAL DE CONSULTORES № CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

9.00 CONCLUSIONES Y RECOMENDACIONES

Correlacionando la investigación de campo realizada con los resultados de los ensayos de laboratorio y según el análisis efectuado en el transcurso del informe, establecemos las siguientes conclusiones y recomendaciones:

- El terreno destinado para la construcción del Puente Carrozable El Bosque, se encuentra ubicado en el Caserío de Caracmaca, Distrito de Sanagorán, Provincia de Sanchez Carrión y Región La Libertad.
- El suelo de fundación del terreno donde se construirá el Puente Carrozable El Bosque, presenta un primer estrato de grava arcillosa, pobremente gradada, de tamaño máximo de 2", mezclada con apreciable porcentaje de arena gruesa a fina y escaso porcentaje de partículas finas menores que 0.075 mm., de baja plasticidad. Seguidamente, encontramos un segundo estrato conformado por arcilla inorgánica, de baja plasticidad, mezclada con apreciable porcentaje de fragmentos rocosos de tamaño máximo de ¼" y arena arcillosa, de baja plasticidad, mezclada con apreciable porcentaje de fragmentos rocosos de tamaño máximo de 1 ½" y mínimo porcentaje de partículas finas menores que 0.075 mm., de baja plasticidad. Finalmente, existe un estrato de Roca Lutita sedimentaria detrítica o clástica, de textura pelítica, está integrada por detritus clásticos, donde las partículas son de los tamaños de la arcilla y limo. En las lutitas negras el color se debe a existencia de materia orgánica, lo que le confiere caracteres adversos para la construcción y soportar cargas. Al examen mediante la lupa se observa que son porosas, pero poco permeables, esto se debe a que los poros no se encuentran conectados entre ellos, su diagénesis corresponde a procesos de compactación y deshidratación. Presenta una densidad de 2.62 gr/cm3 y una resistencia a compresión uniaxial de 230 kg/cm2.
- Se recomienda que el nivel de cimentación, sea a una profundidad mínima de 3.80 m., con respecto al nivel del lecho del río.
- Se cimentará por medio de zapatas de concreto armado, para una capacidad de carga admisible:

$q_{ad} = 3.27 \text{ Kg/cm}^2$

- Con la finalidad de brindarle mayor seguridad a la cimentación, se recomienda que a partir del nivel de cimentación propuesto (profundidad: 3.50 m.), se realice la colocación de un mortero sin contracción para aplicaciones bajo agua; de un espesor de 0.10 m., que cumpla con los requisitos de la Norma Técnica CRD-C-621, A.S.T.M. C 1090 y que cumpla con los requisitos de comportamiento de A.S.T.M. C 1107, grados A & B y grado C (profundidad: 3.60 m.). Ver anexo IV Croquis de detalle de cimentación.
- El ingeniero estructurista estará a cargo de determinar las dimensiones de las zapatas, acorde a la capacidad de carga admisible del terreno de fundación, compatible con las cargas transmitidas y la Norma Técnica E 060.
- El concreto a utilizar en la cimentación debe ser diseñado por un especialista en Tecnología del Concreto, empleando
 agregados que deben cumplir con la Norma A.S.T.M. C 33-99a. Además, el agua a ser utilizada para las mezclas de
 concreto, debe cumplir con los requisitos de la Norma N.T.P. 339.088. Asimismo, utilizar agregados lavados, por cuanto,
 estos pueden contener sustancias deletéreas que influyen negativamente en las propiedades del concreto endurecido.
- En lo que respecta al Análisis Químico del Suelo de Fundación, realizado por el Ingº Hugo Mosqueira Estraver, en lo que respecta a sulfatos, cuyos resultados nos indican, que este caso, se consideraría como exposición despreciable (No aplicable), Categoría S, Clase SO (proporción de sulfatos: SO₄²⁻ < 0.10%). Por lo tanto, se puede utilizar Cemento Pórtland Tipo I (A.S.T.M. C 150) sin restricción, en el concreto de la cimentación. Sin embargo, se recomienda utilizar en el concreto de la cimentación, un aditivo impermeabilizante, con la finalidad de reducir la permeabilidad del concreto y evitar la corrosión de elementos metálicos embebidos, debido a la filtración de aguas del río Quillish.</p>
- Se recomienda que para la construcción del Puente Carrozable El Bosque, se deberá realizar muestreo de especímenes de las mezclas de concreto a elaborar, acorde a la Norma A.S.T.M C 172. Asimismo, se debe utilizar un método de curado adecuado para el concreto acorde a la Norma A.S.T.M. C 31 M-10, con la finalidad de alcanzar el grado de hidratación y por ende la resistencia mecánica requerida en obra y los especímenes de concreto deberán ensayarse de acuerdo a la Norma A.S.T.M. C 39, con la finalidad de evaluar el control de calidad del concreto en concordancia con el Reglamento ACI 318S-11.

osé/L. Lexama Le

REG. CUP. 14061

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P № 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES № CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

- Se recomienda utilizar un aditivo para aplicaciones de concreto bajo agua (anti washout), el cual aporta resistencia al
 deslave de partículas finas y de cemento, menor segregación aun en mezclas de concreto de baja viscosidad, acción
 tixotrópica que permite el endurecimiento del concreto después de su colocación, reduce o elimina el sangrado e impide la
 penetración del agua exterior en el concreto en estado plástico, permitiendo una mejor manejabilidad y reduciendo el
 impacto ambiental.
- Para la aplicación de las Normas de Diseño Sismo resistente del R.N.E. debe considerarse: Factor de Zona Z = 0.4, Factor de Suelo S = 1.2 y Periodo predominante Ts = 0.6 seg.
- Finalmente, podemos concluir, que para el diseño de la cimentación del Proyecto: "CONSTRUCCIÓN PUENTE CARROZABLE
 EL BOSQUE CASERIO CARACMACA DISTRITO DE SANAGORAN PROVINCIA SANCHEZ CARRION REGION LA
 LIBERTAD", se deberá tener en cuenta todas las conclusiones y recomendaciones antes descritas, dada la importancia de la
 obra, de tal suerte, que se asegure mayor estabilidad y durabilidad de la estructura a construir.

JOSÉ FL. Lexapa Leiva INGENIERO CIVIL REG. CIP/14081

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P № 14061 - RUC 10266787711

REGISTRO NACIONAL DE CONSULTORES № CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

ANEXO I

RESULTADO DE LOS ENSAYOS DE LABORATORIO

José L. Lexama Leiva NGENIERO CIVIL REG. CIP. 14061

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P. Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

Jr. Huánico Nº 442 Telef. 365096 - Cel. 976625363 - 976666525 RPC Clara 993551722 - 993551713

> RPM #147663 - #466525 Gajamarca

ESTUDIOS GEOTECNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

ANALISIS GRANULOMETRICO A.S.T.M. D 422

PROYECTO:

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO CARACMACA - DISTRITO DE

RESPONSABLE:

INGº JOSE LEZAMA L.

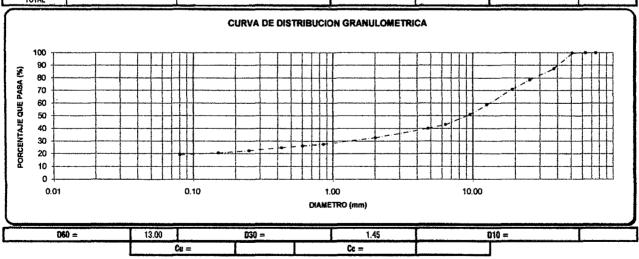
SANAGORAN - PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD CASERIO: CARACMACA. DISTRITO: SANAGORAN.

OPERADOR:

C.L.M.

UBICACIÓN: PROVINCIA: SANCHEZ CARRIÓN. REGIÓN: LA LIBERTAD. FECHA : PROFUNDIDAD: 30 DE NOVIEMBRE DEL 2012 0.00 m. A 2.00 m.

CALICATA: MUESTRA: MARGEN:


C - 1 M - 1

DERECHA

SOLICITANTE :

BACH, ING. JORGE LUIS CARRANZA ARAUJO

	AN	ALISIS FRACCI	ON GRUESA				MUESTRA	TOTAL	
	TAMIZ	P.RET	PORCENTAJE	PORCENTAJE	% QUE	TEMPERATURA	AMBIENTE	60° C	110° C
N°	ABERTURA (mm)	PARCIAL	RET. PARCIAL	RET. ACUM	PASA	DE SECADO	AMDIENTE	80°0	110-0
3"	76.20	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HUMEDA	(ar)	6521.10	
2 1/2"	63.50	0.00	0.00	0.00	100.00	TESS TOTTE INSCORDANCE OF	(8)	OCE 1.10	
2*	50.80	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HUMEDA	~ Nº 4 ion	2839.20	
1 1/2"	38.10	748.00	12.64	12.64	87.36	COO TOWNE INDECTION TRAINEDA	- 11 T/B/	2000.20	
1"	25.40	522.00	8.82	21.46	78.54	PESO TOTAL MUESTRA HUMEDA	> NP 4 (m)	3681.90	
3/4"	19.05	449.00	7.59	29.05	70.95	LOO TOTAL MIDEOTOR TOTALDA	Z (1 4 (gr)	3001.50	
1/2"	12.70	721.00	12.19	41.24	58.76	PESO TOTAL MUESTRA SECA <	MP & (mA	2374.00	
3/8"	9.52	456.00	7.71	48.94	51.06	TOO TOTAL MOCOME CON	(4)	2014.00	
1/4"	6.35	471.00	7.96	56.90	43.10	PESO TOTAL MUESTRA SECA >	MP A (nr)	3543.00	
№ 4	4.75	176.00	2.97	59.88	40.12	LOO TOTAL INCESTINGUES	(19)	5040.00	
TOTAL	W G =	3543.00						5047.00	
	A	NALISIS FRAC	CION FINA			PESO TOTAL MUESTRA SECA (gr)	5917.00	
ORRECCION MUE	STRA CUARTEADA :			0.080243		CONTENIDO DE	WINERAD	LIMITES DE CONSI	OTEMOIA
ESO ENSAYO POR	CION SECA :			500.00		A.S.T.M.		A.S.T.M. D 4	
N 10	2.00	92.10	7.39	67.27	32.73	7.0.1,M. 1	, 44.10		
N 20	0.85	65.40	5.25	72.52	27.48	TARA №	1	LIMITE LIQUIDO :	27.00%
N 30	0.60	15.80	1.27	73.78	26.22	PESO HUMEDO + TARA (gr)	6695.00	LIMITE CIQUIDO.	27.0070
N 40	0.43	18.50	1.48	75.27	24.73	PESO SECO + TARA (gr)	6123.00	LIMITE PLASTICO:	20.00%
N 60	0.25	28.70	2.30	77.57	22.43	PESO TARA (gr)	523.00	CIMITE F CASHOO.	20.00%
N 100	0.15	23.10	1.85	79.43	20.57	PESO DEL AGUA (gr)	572.00	INDICE PLASTICO :	7.00%
N 200	0.08	16.70	1.34	80.77	19.23	PESO SECO (gr)	5600.00	INDIOL FLASIOU.	7.00%
CAZOLETA	+				<u></u>	C. HUMEDAD (%)	10.21	CLASIFICACION S.U.C.S. :	60
TOTAL						6. NUMEUAU (76)	10.21	OLMOITTUROTUR 3.U.U.S.	ac

OBSERVACIONES:

LA MUESTRA EN ESTUDIO HA SIDO CLASIFICADA UTILIZANDO EL METODO S.U.C.S. Y CORRESPONDE A UNA GRAVA ARCILLOSA, POBREMENTE GRADADA, DE TAMAÑO MÁXIMO DE 2", MEZCLADA CON 20.89% DE ARENA GRUESA A FINA Y 19.23% DE PARTÍCULAS FINAS MENORES QUE 0.075 mm., DE BAJA PLASTICIDAD.

EL ESTRATO DE SUELO EN ESTUDIO HA SIDO MUESTREADO, IDENTIFICADO Y ALCANZADO AL CONSULTOR POR EL BACH. ING. JORGE LUIS

CARRANZA ARAUJO.

Prohibida su Reproducción Total o Parcial (INDECOPI). Derechos Reservados JLL.

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P. Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

Jr. Huánuco Nº 442 Telef, 365096 - Cel. 976625363 - 976666525 RPC Claro 993551722 - 993551713

RPM #147663 - #466525 Cajamarca

ESTUDIOS GEOTECNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

ANALISIS GRANULOMETRICO A.S.T.M. D 422

PROYECTO:

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO CARACMACA - DISTRITO DE

RESPONSARI E ·

INGº JOSE LEZAMA L.

SANAGORAN - PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD

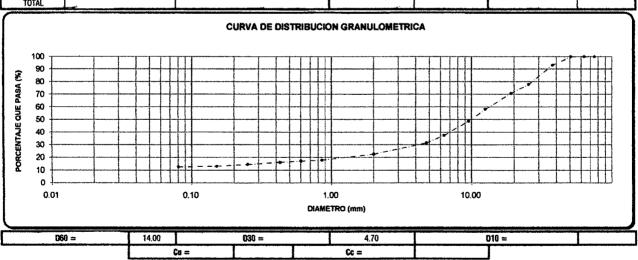
OPERADOR:

C.L.M. 30 DE NOVEMBRE DEL 2012

UBICACIÓN: PROVINCIA: SANCHEZ CARRIÓN, REGIÓN: LA LIBERTAD.

CASERIO: CARACMACA. DISTRITO: SANAGORAN.

FECHA : PROFUNDIDAD :


2.00 m, A 3.60 m.

CALICATA: MUESTRA: C-1 M - 2 DERECHA

MARGEN: SOLICITANTE:

BACH, ING. JORGE LUIS CARRANZA ARAUJO

	AN	alisis fracci	on gruesa				MUESTRA	TOTAL	
	TAMIZ	P.RET	PORCENTAJE	PORCENTAJE	% QUE	TEMPERATURA	AMBIENTE	60° C	110° C
N°	ABERTURA (mm)	PARCIAL	RET. PARCIAL	RET. ACUM	PASA	DE SECADO	AMDIENTE	00-0	110-0
3.	76.20	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HUMEDA	(cr)	6875.40	
2 1/2"	63.50	0.00	0.00	0.00	100.00	, coo tatte moconto maneon	197	9315,40	
2*	50.80	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HUMEDA	< NO A (m)	2298.80	
1 1/2*	38.10	432.00	6.80	6.80	93.20	PEGO TOTAL MOLSTAN NOMEDA		2230.00	
1*	25.40	972.00	15.30	22.10	77.90	PESO TOTAL MUESTRA HUMEDA	- NO 4 /ml	4576.60	
3/4"	19.05	456.00	7.18	29.28	70.72	PESO TOTAL INDESTRATIONEDA	> N - 1 (94)	4570,00	
1/2"	12.70	801.00	12.61	41.89	58.11	PESO TOTAL MUESTRA SECA <	NP 4 (ar)	2000.00	
3/8"	9.52	596.00	9.38	51.28	48.72	PEGO TOTAL MOESTA SECA		2000.00	
1/4"	6.35	715.00	11.26	62.53	37.47	PESO TOTAL MUESTRA SECA >	ND 4 (m)	4352.00	
№ 4	4.75	380.00	5.98	68.51	31.49	reso total mars for secar s	H (GF)	4032.00	
TOTAL	W G =	4352.00						6352.00	
	A	nalisis frac	CION FINA			PESO TOTAL MUESTRA SECA (gr)	0352.00	
ORRECCION MU	estra cuarteada :			0.062972		CONTENIDO DI	LUMEDAD	LIMITES DE CONSI	CTENCIA
ESO ENSAYO PO	RCION SECA :			500.00		A.S.T.M.		A.S.T.M. D 4	
N 10	2.00	141.30	8.90	77.41	22.59	A.V. 1,111.	J 62.10	A.O. (A.M. O 4)	,,,
N 20	0.85	74.50	4.69	82.10	17.90	TARA Nº	1	LIMITE LIQUIDO:	27.00%
N 30	0.60	12.60	0.79	82.90	17.10	PESO HUMEDO + TARA (gr)	7688.00	LIMITE EIGOIDO.	27.00%
N 40	0.43	16.20	1.02	83.92	16.08	PESO SEGO + TARA (gr)	7142.00	LIMITE PLASTICO:	19.00%
N 60	0.25	24.70	1.56	85.47	14.53	PESO TARA (gr)	517.00	EMPTE PERSTION.	19.00/0
N 100	0.15	20.80	1.31	86.78	13.22	PESO DEL AGUA (gr)	546.00	INDICE PLASTICO:	8.00%
N 200	0.08	9.50	0.60	87.38	12.62	PESO SECO (gr)	6625.00	REDIOL 1 LAGINO .	3.00%
CAZOLETA	-,-				L	C. HRUMEDAD (%)	8.24	CLASIFICACION S.U.C.S. :	GĆ
TOTAL						6. DUMEUNU (76)	0.24	CLASIFICACION 5.U.C.S.	QU.

OBSERVACIONES:

LA MUESTRA EN ESTUDIO HA SIDO CLASIFICADA UTILIZANDO EL METODO S.U.C.S. Y CORRESPONDE A UNA GRAVA ARCILLOSA, POBREMENTE GRADADA, DE TAMAÑO MÁXIMO DE 2°, MEZCLADA CON 18.87% DE ARENA GRUESA A FINA Y 12.62% DE PARTÍCULAS FINAS MENORES QUE

0.075 mm., DE BAJA PLASTICIDAD.

EL ESTRATO DE SUELO EN ESTUDIO HA SIDO MUESTREADO, IDENTIFICADO Y ALCANZADO AL CONSULTOR POR EL BACH. ING. JORGE LÚIS

CARRANZA ARAUJO.

Tezama Leiva INGENIERO/CIVIL REG. CIP./14061

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P. Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

Jr. Huánuco Nº 442 Tetef. 365096 - Cel. 976625363 - 976666525 RPC Claro 993551722 - 993551713

> RPM #147663 - #466525 Cajamarca

ESTUDIOS GEOTECNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

ANALISIS GRANULOMETRICO A.S.T.M. D 422

PROYECTO:

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO CARACMACA - DISTRITO DE

RESPONSABLE:

INGº JOSE LEZAMA L.

SANAGORAN - PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD

OPERADOR:

C.L.M.

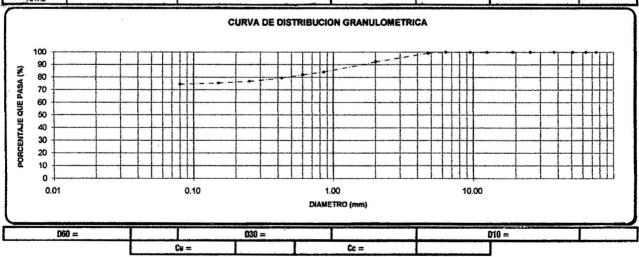
UBICACIÓN:

CASERIO: CARACMACA. DISTRITO: SANAGORAN. PROVINCIA: SANCHEZ CARRIÓN. REGIÓN: LA LIBERTAD. FECHA : PROFUNDIDAD:

30 DE NOVIEMBRE DEL 2012 3.60 m. A 3.80 m.

CALICATA:

C-1 M - 3


MUESTRA: MARGEN:

DERECHA

SOLICITANTE :

BACH, ING. JORGE LUIS CARRANZA ARAUJO

	ANJ	LISIS FRACCI	ON GRUESA				MUESTRA	TOTAL	
	TAMIZ	P.RET	PORCENTAJE	PORCENTAJE	% QUE	TEMPERATURA	AMBIENTE	60° C	110° C
N _o	ABERTURA (mm)	PARCIAL	RET. PARCIAL	RET. ACUM	PASA	DE SECADO	AMDIENTE	00°C	110-0
3*	76.20	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HUMEDA	(ar)	556,70	
21/2"	63.50	0.00	0.00	0.00	100.00		. (2)		
2"	50.80	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HUMEDA	~ NP A (m)	552.90	
1 1/2"	38.10	0.00	0.00	0.00	100.00	7 EGG TOTAL MIGLEST PATIENTES	-11 7 (97)	002.30	
1*	25.40	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HUMEDA	~ NO 4 (m)	3.80	
3/4"	19.05	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HOMEDA	· > #- 4 (9)	3.00	
1/2*	12.70	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA SECA <	MO A (mr)	496,40	
3/8*	9.52	0.00	0.00	0.00	100.00	FEOD TOTAL INCLUSION SECON	14 4 (94)	450.40	
1/4*	6.35	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA SECA >	NG A (ne)	3.60	
№ 4	4.75	3.60	0.72	0.72	99.28	PEGO TOTAL MOESTING SECK >	N-4 (9)	3.00	
TOTAL	W G =	3.60						F00.00	
	A	NALISIS FRAC	CION FINA			PESO TOTAL MUESTRA SECA (gr	7	500.00	
CORRECCION MUE	ESTRA CUARTEADA:			0.200000		CONTENIDO DE	E HIIMEDAD	LIMITES DE CONSI	PTENCIA
PESO ENSAYO POF	RCION SECA :			496.40		A.S.T.M.		AS.T.M. D 4	
N 10	2.00	35.60	7.12	7.84	92.16	A.O. I.M.	D 22.10	K3.1.m. 0 4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
N 20	0.85	39.60	7.92	15.76	84.24	TARA Nº	1	LIMITE LIQUIDO:	24.00%
N 30	0.60	10.90	2.18	17.94	82.06	PESO HUMEDO + TARA (gr)	2494.00	CIMITE LIZOIDO.	24.00%
N 40	0.43	13.20	2.64	20.58	79.42	PESO SECO + TARA (gr)	2294.00	LIMITE PLASTICO:	17,00%
N 60	0.25	13.00	2.60	23.18	76.82	PESO TARA (gr)	531.00	LIMITE FLASTICO.	17.00%
N 100	0.15	7.10	1.42	24.60	75.40	PESO DEL AGUA (gr)	200.00	INDICE PLASTICO :	7.00%
N 200	0.08	5.20	1.04	25.64	74.36	PESO SECO (gr)	1763.00	MOIDE FEASIOU.	1.00%
CAZOLETA	-,-		l		L	C. HUMEDAD (%)	11.34	CLASIFICACION S.U.C.S. :	CL
TOTAL						G. HUMEUAU (%)	11.04	CLASIFICALIUM S.U.C.S.	u

OBSERVACIONES:

LA MUESTRA EN ESTUDIO HA SIDO CLASIFICADA UTILIZANDO EL METODO S.U.C.S. Y CORRESPONDE A UNA ARCILLA (NORGÁNICA, DE BAJA PLASTICIDAD, MEZCLADA CON 24.92% DE ARENA GRUESA A FINA Y 0.72% DE FRAGMENTOS ROCOSOS DE TAMAÑO MÁXIMO DE 1/4". EL ESTRATO DE SUELO EN ESTUDIO HA SIDO MUESTREADO, IDENTIFICADO Y ALCANZADO AL CONSULTOR POR EL BACH, ING. JORGE LUIS

CARRANZA ARAUJO.

INGENIERO/CIVIL

REG. CIP, 14081

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P. Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

Jr. Huánuco Nº 442 Telef, 365096 - Cel. 976625363 - 976666525 RPC Claro 993551722 - 993551713

> RPM #147663 - #466525 Cajamarca

ANALISIS GRANULOMETRICO A.S.T.M. D 422

PROYECTO:

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO CARACMACA - DISTRITO DE

ESTUDIOS GEOTECNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

RESPONSABLE:

INGº JOSE LEZAMA L.

UBICACIÓN:

SANAGORAN - PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD*

OPERADOR:

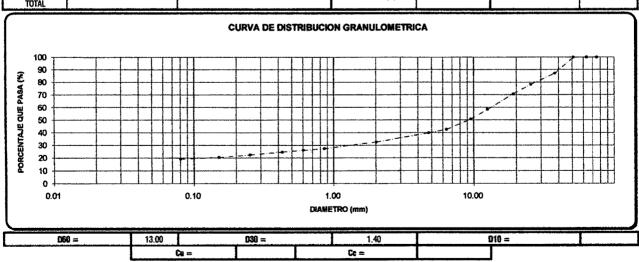
C.L.M.

PROVINCIA: SANCHEZ CARRIÓN. REGIÓN: LA LIBERTAD.

CASERIO: CARACMACA. DISTRITO: SANAGORAN.

FECHA : PROFUNDIDAD: 30 DE NOVIEMBRE DEL 2012 0.00 m. A 0.80 m.

CALICATA: C-2


MUESTRA: M - 1

MARGEN: IZOURERDA

SOLICITANTE:

BACH, ING. JORGE LUIS CARRANZA ARAUJO

	AN	ALISIS FRACCI	ON GRUESA				MUESTRA	TOTAL	
	TAMIZ	P.RET	PORCENTAJE	PORCENTAJE	% QUE	TEMPERATURA	AMBIENTE	60° C	110° C
N°	ABERTURA (mm)	PARCIAL.	RET. PARCIAL	RET. ACUM	PASA	DE SECADO	AMBILITIE		110 0
3"	76.20	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HUMEDA	(ar)	6286.00	
2 1/4"	63.50	0.00	0.00	0.00	100.00				
2*	50.80	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HUMEDA	< NP 4 (or)	2618.40	
1 1/2"	38.10	759.00	12.93	12.93	87.07			2010:10	
1•	25.40	506.00	8.62	21.55	78.45	PESO TOTAL MUESTRA HUMEDA	> MP & (ret)	3667.60	
3/4"	19.05	454.00	7.74	29.29	70.71	TOO TOTAL MOLOTOTICANED	(4)		
1/2"	12.70	716.00	12.20	41.49	58.51	PESO TOTAL MUESTRA SECA <	NP 4 (or)	2338.00	
3/8"	9.52	451.00	7.68	49.17	50.83	7 EGG TOTAL MOLD THE GEGAT	· · · · · · · · · · · · · · · · · · ·	200.00	
1/4*	6.35	483.00	8.23	57.40	42.60	PESO TOTAL MUESTRA SECA >	NP A (m)	3531,00	
N°4	4.75	162.00	2.76	60.16	39.84	LOC TOTAL IMACOTO COLORS	10-7	5501,550	
TOTAL	WG≖	3531.00				PESO TOTAL MUESTRA SECA (D		5869.00	
	A	NALISIS FRAC	CION FINA			PESO TOTAL MOESTAN SECA (D	, 	3009.00	
ORRECCION MU	estra cuarteada :			0.079673		CONTENEDO D	EMPMEDAD	LIMITES OF CONSU	PTENCIA
ESO ENSAYO PO	RCION SECA :			500.00		A.S.T.M.		A.S.T.M. D 4	
N 10	2.00	91.40	7.28	67.45	32.55	A.O.1.81.	D 2210	7.0.1.10. 5 4	
N 20	0.85	64.30	5.12	72.57	27.43	Tara nº	1	LIMITE LIQUIDO :	28.00%
N 30	0.60	16.10	1.28	73.85	26.15	PESO HUMEDO + TARA (gr)	7216.00	LINATE ENGOIDO.	20.00%
N 40	0.43	19.40	1.55	75.40	24.60	PESO SECO + TARA (gr)	6615.00	LIMITE PLASTICO:	22.00%
N 60	0.25	27.40	2.18	77.58	22.42	PESO TARA (gr)	527.00	Emile i Entition.	#E.00%
N 100	0.15	24.20	1.93	79.51	20.49	PESO DEL AGUA (gr)	601.00	INDICE PLASTICO :	6.00%
N 200	0.08	15.50	1.23	80.74	19.26	PESO SECO (gr)	6088.00	indice : Otolloo ;	3.00%
CAZOLETA	-,-		<u> </u>	1	<u> </u>	C. HUMMEDAD (%)	9,87	CLASIFICACION S.U.C.S. :	GC
TOTAL						e. routing (20)	3.07	OLDER FORWARD G.U.V.O	Gru

OBSERVACIONES:

LA MUESTRA EN ESTUDIO HA SIDO CLASIFICADA UTILIZANDO EL METODO S.U.C.S. Y CORRESPONDE A UNA GRAVA ARCILLOSA, POBREMENTE GRADADA, DE TAMAÑO MÁXIMO DE 2°, MEZCLADA CON 20.58% DE ARENA GRUESA A FINA Y 19.26% DE PARTÍCULAS FINAS MENORES QUE

0.075 mm., DE BAJA PLASTICIDAD.

EL ESTRATO DE SUELO EN ESTUDIO HA SIDO MUESTREADO, IDENTIFICADO Y ALCANZADO AL CONSULTOR POR EL BACH. ING. JORGE LUIS

CARRANZA ARAUJO.

Lexamo INGENIERO

REG. CIP. 14061

INGENIERO CIVIL CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P. Nº 14061 - RUC 10266787711

REGISTRO NACIONAL DE CONSULTORES № CO 112

Jr. Huánuco Nº 442 Telef. 365096 - Cel. 976625363 - 976666525 RPC Claro 993551722 - 993551713

RPM #147663 - #466525 Cajamarca

ANALISIS GRANULOMETRICO A.S.T.M. D 422

PROYECTO:

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO CARACMACA - DISTRITO DE

ESTUDIOS GEOTECNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

RESPONSABLE :

INGº JOSE LEZAMA L.

SANAGORAN - PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD

OPERADOR:

C.L.M.

HRICACIÓN:

CASERIO: CARACMACA. DISTRITO: SANAGORAN.

FECHA :

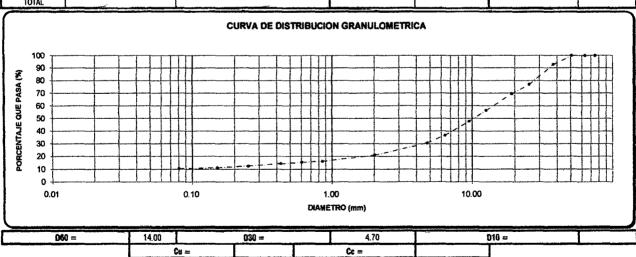
30 DE NOVIEMBRE DEL 2012

CALICATA:

PROVINCIA: SANCHEZ CARRIÓN. REGIÓN: LA LIBERTAD. C-2

PROFUNDIDAD:

0.80 m, A 3.40 m.


MUESTRA:

M - 2 IZQUIERDA

MARGEN: SOLICITANTE:

BACH, ING. JORGE LUIS CARRANZA ARAUJO

	AN	LISIS FRACCI	ON GRUESA				MUESTRA	TOTAL	
	TAMIZ	P.RET	PORCENTAJE	PORCENTAJE	% QUE	TEMPERATURA	AMBIENTE	60° C	110° C
N°	ABERTURA (mm)	PARCIAL	RET. PARCIAL	RET, ACUM	PASA	DE SECADO	AMOSENTE	00 0	110 0
3*	76.20	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HUMEDA	(or)	6687.30	
2 1/5"	63.50	0.00	0.00	0.00	100.00		151		
2*	50.80	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HUMEDA	< Nº 4 (nr)	2150.30	
1 1/4"	38.10	445.00	7.08	7.08	92.92	TOO TOTAL MOLETINOSILES		2100.00	
1*	25.40	995,00	15.82	22.90	77.10	PESO TOTAL MUESTRA HUMEDA	> Nº 4 (m)	4537.00	
3/4"	19.05	474.00	7.54	30.44	69.56	T COO TOTAL MIDEOTISTICALON	- N - (9)	4007.00	
1/2*	12.70	822.00	13.07	43.51	56.49	PESO TOTAL MUESTRA SECA <	MP A fort	1920.00	
3/8*	9.52	550.00	8.75	52.26	47.74	COO (CIAE IIIACE) IIA GCOA <	14 4 (B)	1020.00	
1/4"	6.35	685,00	10.89	63.15	36.85	PESO TOTAL MUESTRA SECA >	MD A (mr)	4368.00	
Nº4	4.75	397.00	6.31	69.47	30.53	PESO TOTAL MOESTINA SEUA	(g)	4000.00	
TOTAL	W G ≠	4368.00				PECO TOTAL ABJECTOR CECA CO		6288.00	
	A	NALISIS FRAC	CION FINA			PESO TOTAL MUESTRA SECA (gr)	0200.00	
ORRECCION MUE	STRA CUARTEADA :			0.061069		CONTENIDO DI	LUIMEDAD	LIMITES DE CONSI	TENCIA
ESO ENSAYO POR	ICION SECA :			500.00		A.S.T.M.		AS.T.M. D 43	
N 10	2.00	158.50	9.68	79.15	20.85	7,0,1,111.	J 22.10	7.0.1,m. D 4	
N 20	0.85	75.50	4.61	83.76	16.24	TARA Nº	1	LIMITE LIQUIDO:	25.00%
N 30	0.60	14.20	0.87	84.62	15.38	PESO HUMEDO + TARA (gr)	7517.00	LINNIE LIGORO.	a 00.03
N 40	0.43	17.10	1.04	85,67	14.33	PESO SECO + TARA (gr)	7110.00	LIMITE PLASTICO:	17.00%
N 60	0.25	26.50	1.62	87.29	12.71	PESO TARA (gr)	698.00	GIWITE PERSONOU.	17.00.0
N 100	0.15	24.90	1.52	88.81	11.19	PESO DEL AGUA (gr)	407.00	INDICE PLASTICO:	8.00%
N 200	0.08	10,60	0.65	89.45	10.55	PESO SECO (gr)	6412.00	HUIOLI LAGIIGO.	3.00 /6
CAZOLETA	-,-				L	C. HUMEDAD (%)	6.35	CLASIFICACION S.U.C.S. :	6C
TOTAL						6. NUMERIAN (76)	0.39	CEMBIFICACION S.U.C.S.	au

OBSERVACIONES:

LA MUESTRA EN ESTUDIO HA SIDO CLASIFICADA UTILIZANDO EL METODO S.U.C.S. Y CORRESPONDE A UNA GRAVA ARCILLOSA, POBREMENTE GRADADA, DE TAMAÑO MÁXIMO DE 2", MEZCLADA CON 19.98% DE ARENA GRUESA A FINA Y 10.55% DE PARTÍCULAS FINAS MENORES QUE 0.075 mm., DE BAJA PLASTICIDAD.

EL ESTRATO DE SUELO EN ESTUDIO HA SIDO MUESTREADO, IDENTIFICADO Y ALCANZADO AL CONSULTOR POR EL BACH. ING. JORGE LUIS

CARRANZA ARAUJO.

INGENIERO/ CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P. Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

Jr. Huánuco Nº 442 Telef, 365096 - Cel. 976625363 - 976666525 RPC Claro 993551722 - 993551713

RPM #147663 - #466525

Caiamarca

ANALISIS GRANULOMETRICO A.S.T.M. D 422

PROYECTO:

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO CARACMACA - DISTRITO DE

ESTUDIOS GEOTECHICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

RESPONSABLE:

INGº JOSE LEZAMA L.

SANAGORAN - PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD

PROVINCIA: SANCHEZ CARRIÓN. REGIÓN: LA LIBERTAD.

OPERADOR:

C.L.M.

UBICACIÓN:

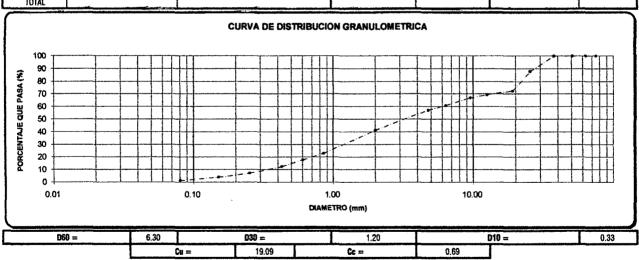
CASERIO: CARACMACA. DISTRITO: SANAGORAN.

FECHA :

30 DE NOVIEMBRE DEL 2012

CALICATA: C-2 PROFUNDIDAD:

3.40 m, A 3.80 m.


MUESTRA:

M - 3

MARGEN: IZQUIERDA. SOLICITANTE :

BACH, ING. JORGE LUIS CARRANZA ARAUJO

	AN	ALISIS FRACCI	ON GRUESA				MUESTRA	A TOTAL	
	TAMIZ	P.RET	PORCENTAJE	PORCENTAJE	% QUE	TEMPERATURA	AMBIENTE	60° C	110° C
N°	ABERTURA (mm)	PARCIAL	RET. PARCIAL	RET, ACUM	PASA	DE SECADO	PORIDICIVIC	00-0	110°V
3*	76.20	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HUMEDA	J(or)	1078.20	
2 1/2*	63.50	0.00	0.00	0.00	100.00			.0,0.20	_
2"	50.80	0.00	0.00	0.00	100.00	PESO TOTAL MUESTRA HUMEDA	< NP & (or)	631.60	
1 1/2"	38.10	0.00	0.00	0.00	100.00	LOG TOTAL MIDEOTOCIONACO		651.00	
1*	25.40	120.00	12.00	12.00	88.00	PESO TOTAL MUESTRA HUMEDA	~ NO A (m)	446.60	
3/4*	19.05	155.40	15.54	27.54	72.46	TESO TOTAL MOESTAN HOMEON	· / 1 1 (9)	110.00	
1/2"	12.70	29.80	2.98	30.52	69.48	PESO TOTAL MUESTRA SECA <	NO A fort	571.60	
3/8"	9.52	24.00	2.40	32.92	67.08	TEST TOTAL MOESTING SCOR C	14 4 (M)	311.00	
1/4"	6.35	62.20	6.22	39.14	60.86	PESO TOTAL MUESTRA SECA >	ND 4 (mi)	428,40	
№ 4	4.75	37.00	3.70	42.84	57.16	PESO IDIAL MOCSINA SEVA >	17 4 (91)	420.40	
TOTAL	WG=	428.40						4000.00	
	A	NALISIS FRAC	CION FINA			PESO TOTAL MUESTRA SECA (g	9	1000.00	
ORRECCION MU	STRA CUARTEADA:			0.100000		CONTENIDO D		LIMITES DE CONSI	
ESO ENSAYO PO	RCION SECA :			571.60		AS.T.M.		A.S.T.M. B 4	
N 10	2.00	158.60	15.86	58.70	41.30	A.O.1.M.	D 2210	A.J.1.M. U 4	710
N 20	0.85	183.40	18.34	77.04	22.96	TARA Nº	1	LIMITE LIQUIDO :	23.00%
N 30	0.60	51.40	5.14	82.18	17.82	PESO HUMEDO + TARA (gr)	3778.00	LIMITE LIVEDIDO.	23.00%
N 40	0.43	54.20	5.42	87.60	12.40	PESO SECO + TARA (gr)	3542.00	LIMITE PLASTICO :	16.00%
N 60	0.25	52.00	5.20	92.80	7.20	PESO TARA (gr)	524.00	LIMITE FLASTICO:	10.00%
N 100	0.15	32.80	3.28	96.08	3.92	PESO DEL AGUA (pr)	236.00	INDICE PLASTICO :	7.00%
N 200	0.08	25.20	2.52	98.60	1.48	PESO SECO (gr)	3018.00	INDICE FLASIOU.	1.00%
CAZOLETA						C. HUMEDAD (%)	7.82	CLASIFICACION S.U.C.S. :	SC
TOTAL						G. HUMEDAD (%)	1.02	CLASIFICACION S.U.C.S. :	36

OBSERVACIONES:

LA MUESTRA EN ESTUDIO HA SIDO CLASIFICADA UTILIZANDO EL METODO S.U.C.S. Y CORRESPONDE A UNA ARENA ARCILLOSA, POBREMENTE GRADADA, MEZCLADA CON 1.40% DE PARTÍCULAS FINAS MENORES QUE 0.075 mm., DE BAJA PLASTICIDAD Y 42.84% DE FRAGMENTOS ROCOSOS

DE TAMAÑO MÁXIMO DE 1 1/2".

EL ESTRATO DE SUELO EN ESTUDIO HA SIDO MUESTREADO, IDENTIFICADO Y ALCANZADO AL CONSULTOR POR EL BACH. ING. JORGE LUIS

CARRANZA ARAUJO.

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P № 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES № CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

ANEXO II PERFILES ESTRATIGRÁFICOS

José L. Lexama Leiva INGENIERO CIVIL REG. CIP/ 14061

INGENIERO CIVIL

CONSULTOR EN OBRAS DE INGENIERIA

REG. C.I.P. Nº 14061 - RUC 10266787711

REGISTRO NACIONAL DE CONSULTORES N° CO 112

ABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

EXPLORACION GEOTECNICA

CALICATA N° C - 1

NIVEL FREATICO:

N/A C.L.M.

REGISTRO POR : REVISADO POR :

INGº JOSE LEZAMA LETVA.

FECHA:

NOVIEMBRE DEL 2012

PROYECTO:

DISTRITO DE SANAGORAN - PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO CARACMACA -

JBICACIÓN: CASERIO: CARACMACA. DISTRITO: SANAGORAN.
PROVINCIA: SANCHEZ CARRIÓN. REGIÓN: LA LIBERTAD.

SOLICITANTE:

BACH, ING. JORGE LUIS CARRANZA ARAUJO

SONDAJE: MARGEN: CALICATA.

PROFUNDIDAD :

DERECHA.
De 0.00 m. a 5.20 m.

	CLASI	FICACION			W	LIMI	TES
PROF. (m.)	SIMBOLO	SIMBOLO	DESCRIPCION DEL MATERIAL	MUESTRAS	(%)	ш	IP .
	(S.U.C.S.)	GRAFICO				(%)	(%)
1.00	GC	POROS OR	Grava arciliosa, pobremente gradada, de tamaño máximo de 2°, de color marrón claro, meziclada con 20.89% de arena gruesa a fina y 19.23% de particutas finas menores que 0.075 mm., de baja plasticidad. Se encuentra con bajo grado de compacidad y alto contenido de hurnedad.	M-1	10.21	27.00	7.00
3.00	GC Nivel de filtración	50000000000000000000000000000000000000	Grava arcillosa, pobremente gradada, de tamaño máximo de 2°, de color amarillento, mezclada con 18.87% de arena gruesa a fina y 12.62% de partículas finas menores que 0.075 mm., de baja plasticidad. Se encuentra con bajo grado de compacidad y alto contenido de humedad.	M - 2	8.24	27.00	8.00
3.80	CL		Arcilla inorgánica, de baja plasticidad, de color negro, mezclada con 24.92% de arena gruesa a fina y 0.72% de fragmentos rocosos	M - 3	11.34	24.00	7.00
4.00 — 4.50 — 5.00 — 5.20 —			Roca Lutita sedimentaria detrítica o clástica, de textura pelitica, está integrada por detritus clásticos donde las partículas son de los tamaños de la arcilia y fimo. En las lutitas negras el color se debe a existencia de materia organica, lo que le confiere caracteres adversos para la construcción y soportar cargas. Al examen mediante la lupa se observa que son porosas, pero poco permeables, esto se debe a que los poros no se encuentran conectados entre ellos, su diagénesis corresponde a procesos de compactación y deshidratación. Presenta una densidad de 2.62 gr/cm3 y una resistencia a compresion uniaxial de 230 kg/cm2.	M - 4	-		-
1 7							
							<u></u>

José H. Lexama Leiva

Prohibida su Reproducción Total o Parcial (INDECOPI). Derechos Reservados JLL.

EG. CIP. 1406

INGENIERO CIVIL

CONSULTOR EN OBRAS DE INGENIERIA

REG. C.I.P. Nº 14061 - RUC 10266787711

REGISTRO NACIONAL DE CONSULTORES Nº CO 112

LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

EXPLORACION GEOTECNICA

CALICATA N° C - 2

PROYECTO:

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO CARACMACA -

DISTRITO DE SANAGORAN - PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD

NIVEL FREATICO : REGISTRO POR : N/A C.L.M.

UBICACIÓN :

CASERIO: CARACMACA. DISTRITO: SANAGORAN.

REVISADO POR :

INGº JOSE LEZAMA LEIVA.

SOLICITANTE :

PROVINCIA: SANCHEZ CARRIÓN, REGIÓN: LA LIBERTAD.

FECHA:

NOVIEMBRE DEL 2012

SONDAJE:

BACH. ING. JORGE LUIS CARRANZA ARAUJO CALICATA.

SONDAJE: CALICATA.

MARGEN: IZQUIERDA.

PROFUNDIDAD: De 0.00 m. a 4.80 m.

	CLA	SIFICACION			W	LIM	ITES
PROF. (m.)	SIMBOLO (S.U.C.S.)	SIMBOLO GRAFICO	DESCRIPCION DEL MATERIAL	MUESTRAS	(%)	(%) TT	IP (%)
0.50	GC GC	000000000000000000000000000000000000000	Grava arcillosa, pobremente gradada, de tamaño máximo de 2*, de color marrón ctaro, mezclada con 20.58% de arena gruesa a fina y 19.26% de partículas finas menores que 0.075 mm., de baja plasticidad. Se encuentra con bajo grado de compacidad y afto contenido de hurnedad.	M-1	9.87	28.00	6.00
1.00 ———————————————————————————————————	GC	90909090909090909090909090909090909090	Grava arcillosa, pobremente gradada, de tamaño máximo de 2º, de color amarillento, mezclada con 19.98% de arena gruesa a fina y 10.55% de partículas finas menores que 0.075 mm., de baja plasticidad. Se encuentra con bajo grado de compacidad y alto contenido de humedad.	M-2	6.35	25.00	8.00
3.50	sc		Arena arcillosa, pobremente gradada, de color marron oscuro, mezclada con 1.40% de particulas finas menores que 0.075 mm., de baja plasticidad y 42.84% de fragmentos rocosos de tamaño máximo de 1 1/2".	M-3	11.34	24.00	7.00
4.50		100 100	Roca Lutita sedimentaria detritica o clástica, de textura pelitica, está integrada por detritus clásticos donde las particulas son de los tamaños de la arcilla y limo. En las futitas negras el color se debe a existencia de materia organica, lo que le confiere caracteres adversos para la construcción y soportar cargas. Al examen mediante la lupa se observa que son porosas, pero poco permeables, esto se debe a que los poros no se encuentran conectados entre ellos, su diagénesis corresponde a procesos de compactación y deshidratación. Presenta una densidad de 2.62 gr/cm3 y una resistencia a compresion uniaxial de 230 kg/cm2.	M - 4		-	
5.00							

Josam of Joseph Leine

JOSE LEZAMA LEIVA INGENIERO CIVIL ONSULTOR DE ORRAS DE INGENIERO

REG. C.I.P № 14061 - RUC 10266787711

REGISTRO NACIONAL DE CONSULTORES № CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

ANEXO III

ANALISIS DE pH, SULFATOS Y CLORUROS

José H. Lexama Lewa NGENIERO CIVIL REG. CIP. 14081

LABORATORIO ANÁLISIS FÍSICO QUÍMICO

Ing: Augusto Hugo Mosqueira Estraver

Análisis Físico Químico de Agua Bacteriológico, Sulfato, Cloruro y pH de Arena, Piedra, Minerales, Metálicos, Inalterabilidad de Agregados, Impurezas Orgánicas.

Psie: Los Zafiros Mz. B Lote 7 Urb. Villa Universitaria - Cajamarca.

ANALISIS DE pH, SULFATOS Y CLORUROS DE MUESTRAS DE SUELO

(NTP 339.176, NTP 339.178, NTP 339.177)

PROYECTO

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE

CASERIO CARACMACA - DISTRITO DE SANAGORAN

PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD"

UBICACION

CASERÍO: CARACMACA

DISTRITO: SANAGORAN.

PROVINCIA: SANCHEZ CARRIÓN.

REGION: LA LIBERTAD.

SOLICITA

BACH. ING. JORGE LUIS CARRANZA ARAUJO

FECHA

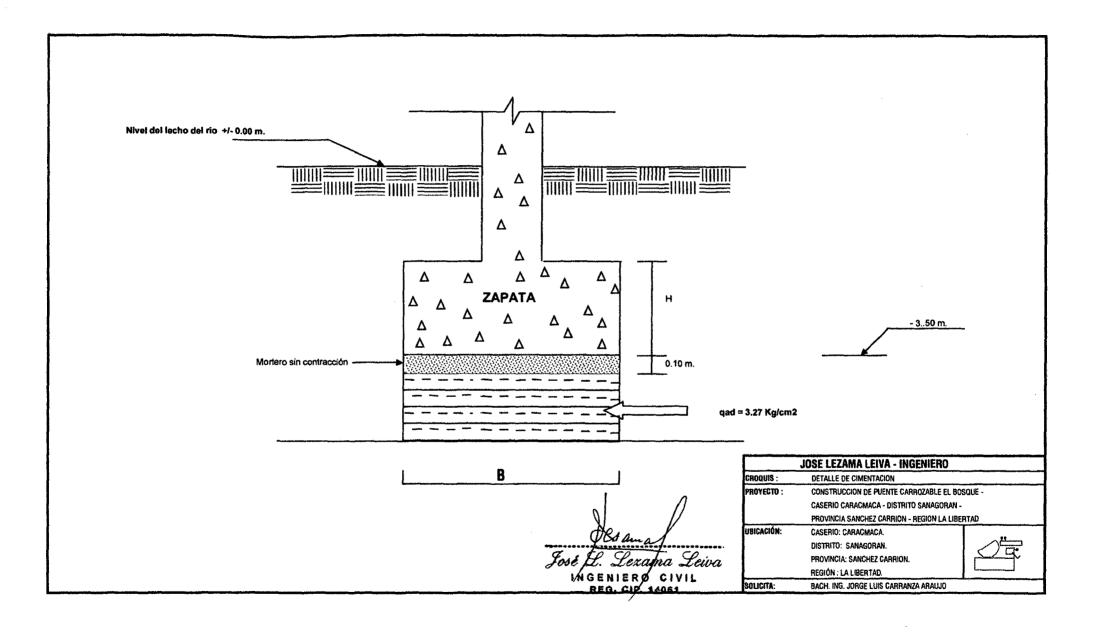
07 DE DICIEMBRE DEL 2012

RESULTADOS

CALICATA	MUESTRA	PROFUNDIDAD	pH	SO ₄ ²⁻ (%)	Cl ¹⁻ (%)
CALICATA	MOLOTRA	(m)	NTP 339.176	NTP 339.178	NTP 339.177
	M – 1	0.00 - 2.00	7.20	0.042	0.013
0 1	M – 2	2.00 - 3.60	7.40	0.052	0.017
C-1	M – 3	3.60 - 3.80	7.10	0.055	0.018
	M – 4	3.80 - 5.20	6.70	0.031	0.012
	M – 1	0.00 - 0.80	7.10	0.040	0.018
0 0	M - 2	0.80 - 3.40	7.30	0.038	0.012
C-2	M – 3	3.40 - 3.80	7.20	0.051	0.014
	M 4	3.80 - 4.80	6.80	0.029	0.011

M. The Magnetic Servers Servers Servers

CONSULTOR DE OBRAS DE INGENIERIA


REG. C.I.P Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

ANEXO IV

CROQUIS DE DETALLE DE CIMENTACIÓN

José L. Lezaria Leiva INGENIERO CIVIL REG. CIP. 14061

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA REG. C.I.P № 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES № CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

ANEXO V

PLANO DE UBICACIÓN DE CALICATAS

José J. Lezapa Leiva VNGENIERO CIVIL REG. CIV. 14061

250

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P № 14061 - RUC 10266787711

REGISTRO NACIONAL DE CONSULTORES № CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

ANEXO VI

MAPA DE ZONIFICACIÓN SÍSMICA DEL PERÚ

José L. Lexama Leiva

1 Seniero CIVIL
REG. CIP, 14061

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P № 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES № CO 112

ESTUDIOS GEOTÉCNICOS, LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

ZONIFICACIÓN SÍSMICA

Jr. Huanuco Nº 422 - Cajamarca. Telf. 365096 - Cel. 976625363 Prohibida su Reproducción Total o Parcial (INDECOPI). Derechos Reservados J.L.L.

27

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

ESTUDIOS GEOTÉCNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

FOTOG. N° 1 Vista del terreno donde se construirá el Puente Carrozable El Bosque

OSÉ II. Lexana Leiva
IRGENIERO/CIVIL
REG. CIP. 10001

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P Nº 14061 - RUC 10266787711

REGISTRO NACIONAL DE CONSULTORES Nº CO 112

ESTUDIOS GEOTÉCNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

FOTOG. N° 2 Vista superior de Calicata C-1, ubicada en la margen derecha del Río Quillish

ma Leiva CIVIL REG. CIP/ 14061

INGENIERO CIVIL

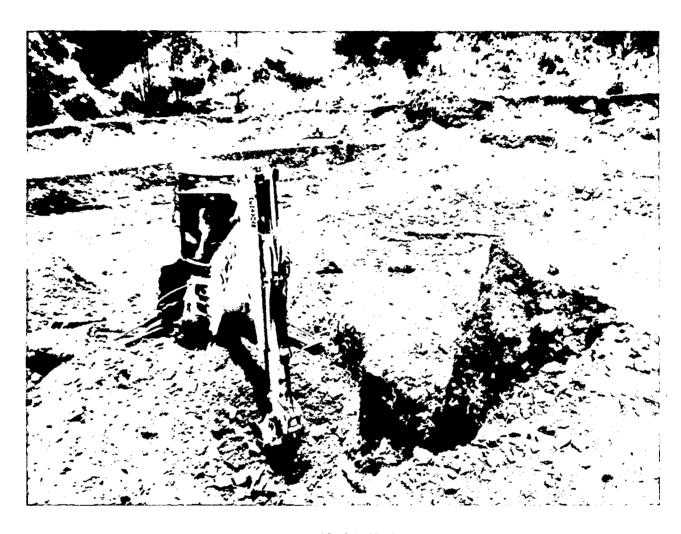
CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

ESTUDIOS GEOTÉCNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

FOTOG. N° 3Vista de Perfil estratigráfico de Calicata C – 1

José L. Lexama Leiva
INGENIERO CIVIL
REG. CIP. 15081



INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

ESTUDIOS GEOTÉCNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

FOTOG. N° 4
Vista superior de Calicata C – 2, ubicada en la margen izquierda del Río Quillish

José H. Lexama Leiva INGENIERO CIVIL REG. CIP./14061

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA
REG. C.I.P Nº 14051 - RUC 10266787711
REGISTRO NACIONAL DE CONSULTORES Nº CO 112

ESTUDIOS GEOTÉCNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

FOTOG. N° 5 Vista del Perfil Estratigráfico de la Calicata C - 2

CIVIL REG. CIP. 14061

JOSE LEZAMA LEIVA INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P Nº 14991 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

ESTUDIOS GEOTÉCNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

FOTOG. Nº 6 Vista del nivel que alcanza el agua de filtración en la Calicata C-1

José H. Lexama Leiva
José H. Lexama Leiva
18 GENIER O'CIVIL
18 GENIER O'CIVIL
18 GEN. CIP./10001

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ANEXO 2.2: ESTUDIO GEOLÓGICO

ESTUDIO GEOLÓGICO DEL PUENTE SOBRE EL RIO QUILLISH, PROVINCIA SÁNCHEZ CARRIÓN, DISTRITO DE SANAGORAN, REGIÓN LA LIBERTAD

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ESTUDIO GEOLOGICO DEL PUENTE SOBRE EL RIO QUILISH, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION REGION LA LIBERTAD

RESUMEN.

El estudio consiste el reporte de campo que se ha hecho con la finalidad de facilitar el acceso al distrito de Sanagorán a través de la Construcción de un puente sobre el rio Quillish para solucionar el problema de transporte y comunicación entre Las Comunidades de Sanagorán, Caracmaca, La calzada y otros sectores que al momento se encuentran incomunicados

El lugar de cimentación propuesto del Puente se ubica entre las coordenadas UTM 813154.93 E y 91335325.40 vertiente izquierda y 813100.50 E y 9135400.00 vertiente derecha, a una altitud de 2,838 m.s.n.m., distrito de Sanagorán, provincia Sánchez Carrión y Región La Libertad

Geológicamente las vertientes donde se plantea construir el puente **pertenece a la era del Mesozoico**, sistema **Jurásico**, **Formación Chicama (Js-Chic) que** se caracteriza por presentar lutitas negras laminares desleznables, con delgas intercalaciones de areniscas. Contienen abundantes nódulos negros, piritosos y algunas veces con fósiles algo piritizados. Es común observar manchas blancas amarillentas, como una aflorescencia de alumbre.

Las rocas de la Formación Chicama son blandas debido a la cantidad de material limo arcilloso, que han favorecido el desarrollo de una topografía suave. Como en otras partes, en el lugar estudiado, no se ha visto la base de la formación, pero suponemos que descansa discordantemente sobre calizas del grupo Pucará u otras formaciones. Su contacto superior generalmente es de aparente conformidad con la formación Chimú, siendo más probable una discordancia paralela por el sector oriental, el intenso disturbamiento sufrido por estas rocas, dificulta la exacta estimación de sus grosores, sin embargo, en el sector occidental los estratos están deformados, excepto done se presentan algunas intrusiones pequeñas y medianas que distorsionan los estratos.

En el lugar prospectado presenta un cauce recto, pero aguas abajo es meandriforme, presenta abundante pecios y despojos, este efecto hace que acumule bloques rocosos en pleno cauce y como consecuencia de ello, el flujo busque en varios tramos del cauce para formar interfluvios de 8 a 15 metros cuadrados aproximadamente, esto hace pensar que el rio en épocas de crecida o en tiempo de lluvias aumenta significativamene su caudal, igualmente la carga de sólidos.

Los suelos son azonales en ambas márgenes, pero a una profundidad de 4 metros se encuentra la roca madre que consiste en lutita negra muy compacta, cuyos estratos están en posición casi horizontal. Desde el punto de vista fisiográfico, el lugar seleccionado corresponde a una terraza baja, presentan estratos poco ordenados de bloques rocosos de diverso tamaño,

I. INTRODUCCION.

La cordillera de los andes y por ende las zonas montañosas de la Región La Libertad, en su mayor extensión presentan una diversidad litológica, geomorfológica, climatológica etc. De tal manera que, cuando se desea realizar proyectos de ingeniería; es necesario conocer sus características de cada uno de estos parámetros, de tal manera que permitan asegurar la durabilidad de las obras.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

II. PLANTEAMIENTO DEL PROBLEMA.

DESCRIPCION DEL PROBLEMA.

Los fenómenos geodinámicos como socavamiento de vertientes, deslizamientos, derrumbes, desplomes, reptación de suelos, flujo de lodos.etc; en la sierra, la costa y en la selva, han causado mucho daño a las obras de ingeniería, especialmente en puentes, carreteras, presas, hidroeléctricas y otras obras ingenieriles.

Cuando ocurren estos fenómenos, los efectos que se producen son importantes sobre todo cuando permiten el colapso y pérdida total de obras de infraestructura que demandan un alto costo , en tal sentido los estudios geológicos vienen a ser parte primordial y decisivo de un proyecto ingenieril, para prevenir pérdida de varios miles de soles que por lo general ocurren cuando no se toman en consideración el aspecto geológico y geotécnico del lugar del desplante o cimentación de una obra de ingeniería civil.

III. JUSTIFICACIÓN DEL ESTUDIO GEOLOGICO

Los problemas derivados de la interacción natural / hombre hacen necesario el planteamiento de actuaciones adecuadas para conseguir un equilibrio entre las condiciones naturales y la ocupación del territorio, incorporando los método de prevención y mitigación de riesgos a la planificación. Estas actuaciones deben partir del conocimiento de los procesos geológicos y del comportamiento del terreno, frente a una obra ingenieril si deseamos tener obras bien construidas y durables a través del tiempo.

La caracterización del relieve del lugar en estudio, constituye un elemento básico en trabajos de carácter geológico cuyo fin es dar una respuesta ante ésta incógnita que supone el comportamiento de medio físico tras los cambios que se producen al emplazar una obra de ingeniería como lo es el puente en mención.

Los fenómenos geodinámicos en cualquier parte del mundo han ido en aumento durante los 10 últimos años y sigue la misma tendencia al futuro inmediato. Las causas de éste hecho van atadas tanto a la severidad de los fenómenos físicos como la vulnerabilidad del territorio y de sus elementos, donde el hombre sin considerar aspectos geológicos construyen sus obras para lograr un mejor estándar de vida.

La sub. Cuenca del río Qullish, desde el punto de vista geológico se enmarca dentro del dominio tecto-volcánicos-sedimentarios antiguos y recientes, con un leve deterioro ambiental debido a la actividad antrópica y a la erosión hídrica, provocando movimientos de gran cantidad de bloques rocosos de diversa naturaleza y pero poco de suelos que tributan al cauce y consecuentemente crean un leve peligro de erosión de los estribos y en la base de la luz del puente.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

IV. OBJETIVOS

Los objetivos que se pretenden lograr con el presente informe son:

- Conocer la geología regional y local donde se desplantará el puente.
- ldentificar, evaluar e interpretar los procesos geodinámicas de la ubicación del /puente.
- Realizar un análisis de estabilización de taludes e interpretar los perfiles estratigráficos de cada una de las calicatas.

V. MARCO REFERENCIAL HISTORICO DISTRITO DE SANAGORAN

5.1 ANTECEDENTES

El distrito de Sanagorán es uno de los ocho distritos que tiene la Provincia Sánchez Carrión, pertenece a la Región La Libertad, tiene una vía Carrozable que une con la provincia, tiene una superficie de 320.38 Km², una altitud de 2,670 m.s.n.m. Actualmente este distrito tiene una población de 13,870 habitantes y se encuentra a 15 Km. de Huamachuco.

El nombre de Sanagorán cuentan los antiguos que el nombre de SANA viene que en este pueblo saben curar y sanar a los enfermos, hay personas muy entendidas que viajan a otros pueblos y curan s los enfermos con hierbas naturales y GORAN viene que cierto tiempo una persona que lo llamaban el haragán se enfermó y nadie lo hacía caso, entonces nuestras antiguos lo mandaban a una persona d ese tiempo que era entendida en curar enfermos y le decían pro favor SANA al HARAGAN, por estas razón el distrito de denomina SANGORAN.

Este distrito es muy rico por sus minerales, oro, plata, cobre, pero también hay bastante fruta por ser un pueblo con clima cálido de allí la importancia de construir sus visa de acceso.

5.2 HIDROLOGIA FLUVIAL PROSPECTADA PARA EL EMPLAZAMIENTO DEL PUENTE.

Las condiciones del emplazamiento del futuro Puente, **es un lugar de tramo recto** donde la corriente de agua y de la movilidad de los sedimentos dentro del cauce es torrentosa, siendo el resultado de esto la presencia de bloques rocosos y bastante sedimento fino. El lugar corresponde al curso medio del rio, donde la erosión en profundidad y lateral es moderada y el cambio del eje del río no es muy dinámico sin embargo debido a la presencia de bloques rocosos que se presentan en el cauce, hacen que el agua fluya hacia la orilla izquierda, lo que indica que existe posibilidad de un cambio leve del eje del río debido a las características del curso, sin embargo no peligra la estabilidad de los estribos ni tampoco las aletas del puente.

Al hacer el corte fisiográfico del lugar seleccionado, vemos que corresponde a un valle ligeramente simétrico, esto nos indica que ambas vertientes no difieren en su posición estratigráfica porque tienen la misma conformación litológica.

La influencia de la geología local es sorprendente, pues ambas vertientes presentan bancos de lutitas negras, con un ángulo de buzamiento casi horizontal ello nos indica que el lugar es

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

estable para soportar las cargas, tanto de la carga viva como la carga muerta; estas características son iguales para ambas vertientes, no hay evidencias de erosión severa en el banco rocoso.

Al hacer la toma de muestra mediante percusión, se ha constatado que los minerales constituyentes de las rocas en la fractura se presentan de color natural, hay alteración en la superficie, mas no en la parte interna de la roca, esto se debe que el rio tiene poco caudal en épocas de estiaje, sólo tiene recarga durante la estación de lluviosa.

Según Paz M. 1999, sustenta que los procesos geodinámicos sobre las vertientes, están gobernados por diversos factores, tales como: formaciones geológicas, geomorfología, características estructurales, clima del lugar y eventualmente la ocurrencia de aceleraciones producidas por sismos, sobresaturación de suelos, que pueden ser factores determinantes para la ubicación de un puente; en este sentido, el lugar ha seleccionado e investigado, se considera como idóneo para la construcción del puente.

VI. METODOLOGÍA DE ESTUDIO PARA LA UBICACION DEL PUENTE.

6.1 Prospección de campo

La prospección se hizo el 21 octubre del año 2012, el cual ha sido para estudiar y analizar el lugar seleccionado por el tesista. El principal objetivo de la visita fue conocer la zona donde se emplazará el puente e igualmente la geología local, evaluar la estabilidad de vertientes, conocer las características de los suelos de fundación, correlacionar las vertientes y evaluar las relación que existen entre cantidad de carga del río, turbulencia de las aguas, efectos erosivo lateral y en profundidad de empotramiento de los estribos, lo cual se sustenta mediante la observación, análisis y comparación de la profundidad de las calicatas

La secuencia metodología que se ha adoptado para el trabajo es la siguiente:

a) Etapa preliminar.

Elaboración del plan de trabajo

Recolección de datos y revisión cartográfica y bibliográfica.

Consulta cartográfica del lugar estudiado.

b) Reconocimiento de campo.

- Reconocimiento de campo y comparación con la base cartográfica.
- Recorrido de la zona y el área de influencia del proyecto.
- Determinación de los lugares de excavación y lectura de las calicatas, asimismo determinación los procesos hidrodinámicos del río a fin de estimar la profundidad de excavación de las calicatas.
 - Características de las vertientes.
 - Toma de fotos inherentes al trabajo.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

c) Etapa final, procesamiento y análisis de datos.

- Interpretación estratigráfica de las calicatas.
- Elaboración de los perfiles estratigráficos análisis, correlación e interpretación.
- Elaboración del informe y selección de fotos para el informe.

En efecto, la metodología que se adoptó para la ejecución del trabajo ha sido el directo y el indirecto.

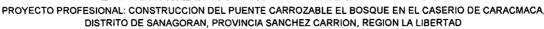
Para el método directo se ha realizado una visita al campo con la finalidad de evaluar la parte geológica, tanto a nivel de superficie como en el subsuelo, donde se excavó DOS CALICATAS de forma rectangular y de 4.80 metros de profundidad; una en la vertiente derecha y otra en la vertiente izquierda, las cuales nos permitió evaluar geológicamente los suelos y conocer la estratigrafía lugar de emplazamiento de los estribos. La calificación de campo se ha hecho en época del inicio de lluvias estacionales; y para ello se hizo en primer lugar el reconocimiento aguas arriba y aguas abajo del sitio seleccionado para la cimentación de los estribos del puente.

Para evaluar los cambios que ha tenido el río a través de la historia y evaluar la hidrodinámica, se tomó en consideración la fisiografía a fin de determinar los procesos de erosión y la estabilidad de vertientes, cuyo resultado es que no hay evidencias recientes de procesos de remoción de masas de suelos o de rocas ni de erosión severa en los taludes.

Una vez excavada cada calicata, se ha identificado el número de estratos y se ha evaluado geológicamente las características físicas de cada uno, luego se procedió al dibujo de cada perfil para realizar el análisis morfológico y su interpretación para poder recomendar el proceso constructivo del puente, así como la toma fotografías respectivas para acompañar al informe.

Para el caso se tomó todas las precauciones de ubicación de calicata para realizar una lectura correcta y poder evaluar los procesos geodinámicos y la ubicación dentro del plano respectivo.

6.2. Materiales


Los componentes de prospección fueron:

- Wincha para medir potencia de estratos.
- Una máquina excavadora
- Agua para determinar las propiedades físicas in sito.
- Material cartográfico básico: Se tomó a la carta geológica del Instituto Geológico de Minas y Metalurgia INGEMMET, escala 1:100,000, con código 16 - h que involucra al lugar.

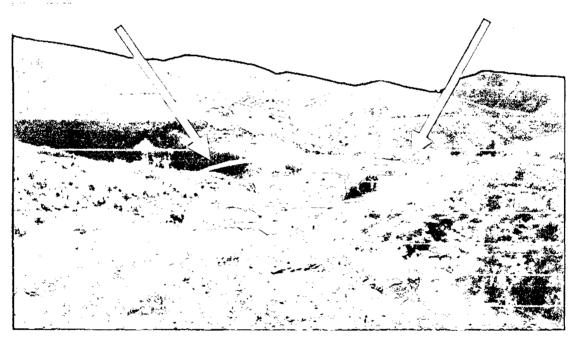
FACULTAD DE INGENIERIA

VII. DESCRIPCIÓN DE LA ZONA.

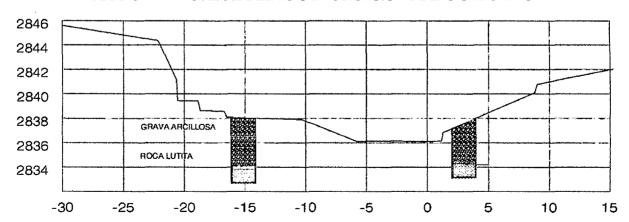
7.1 UBICACIÓN DE LUGAR SELECCIONADO

La zona materia del presente estudio se encuentra ubicada en el curso medio del río Quillish, donde el tramo escogido es recto pero tiene características de un río anastomosado, sin embargo esta característica no es frecuente en todo el curso. Sus coordenadas UTM son las siguientes:

Vertiente derecha


: 813101.50 E y 9135355.78 N

Vertiente izquierda


: 813100.50 E y 9135400.00, a una altitud de 2,838 m.s.n.m.:

Políticamente se encuentra ubicado en la sub cuenca del río Quillish en la distrito de la Sanagorán,

provincia Sánchez Carrión región La Libertad.

SECCION TRANSVERAL DELRIO CON UBICACIÓN DE LAS CALICATAS

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

7.2 CONDICIONES CLIMATICAS

En vista que Sanagorán comprende un amplio territorio con partes altas y bajas, las características climáticas también son muy variables, pero el lugar prospectado es seco templado y agradable; con regulares lluvias de diciembre hasta abril, el cielo despejado la mayor parte del año.

La fisiografía circundante juega un papel importante en el comportamiento climático, lo cual hace que el lugar se encuentre encajonado por varios afloramientos de altitud considerable; por lo que de acuerdo con los criterios de clasificación de Leslie Holdridge, pertenece a la formación Bosque Seco Montano Bajo (OEA). Los meses sin precipitación son mayo, junio, julio y agosto, existen marcadas diferencias de temperatura entre las distintas zonas altitudes y grandes variaciones entre el día y la noche.

En los Caserío Caracmaca, donde se encuentra ubicado el Proyecto tiene un excelente clima templado típico de la sierra norte del país de tipo sub húmedo con temperaturas actuales que varían entre los 21° C y 7° C, con un promedio anual de 15° C; con precipitaciones pluviales variables durante el año. Las precipitaciones mínimas se presentan en los meses de mayo a setiembre y las máximas entre los meses de enero a marzo, con un promedio anual aproximado de 600 mm., presentando además una humedad relativa del 60 %(SANAMHI, Huamachuco, 2,011)

Las lluvias se inician normalmente en setiembre y son de carácter torrencial, lo que ocasiona la pérdida de obras cuando se encuentran mal ubicado o la erosión excesiva de los suelos cuando se encuentran desprotegidos, los vientos soplan de Oeste a Este y son considerados como brisa fuerte. En concordancia con Pulgar Vidal pertenece a la región natural Quechua. La mayor parte del año tiene un buen sol, hay restricciones en el abastecimiento de agua en ausencia de lluvias que últimamente es muy frecuente, por lo que se debe optar de implementar de infraestructuras de regulación de caudales.

7.3 ACCESIBILIDAD.

El lugar estudiado se puede visitar a través de la carretera afirmada que va desde Huamachuco hasta el Distrito de Sanagorán para luego pasar una tocha que va desde Sanagorán y Caracmaca.

7.4 GEOLOGIA REGIONAL

Las formaciones geológicas que ejercerían alguna acción indirecta o directa sobre el puente, está representada básicamente por formaciones sedimentarias antíguas y modernas, cuyas características son las siguientes:

FORMACION SANTA (Ki-sa)

Consiste en la intercalación de lutitas y calizas margosas, y areniscas gris oscuras, con un grosor que oscila entre los 100 y 150 m. suprayace a la formación Chimú e infrayace a la formación Carhuaz, aparentemente con discordancia paralela en ambos casos.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

FORMACION CARHUAZ (Ki - ca)

Consiste en la intercalación de areniscas con lutitas grises. Hacia la parte superior contiene bancos de areniscas cuarzosas blancas que se intercalan con lutitas y areniscas.

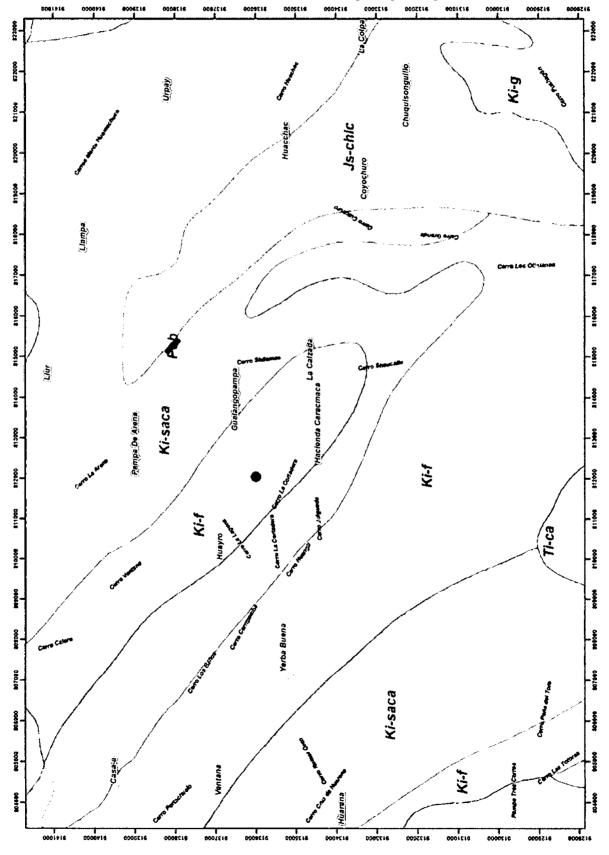
La formación Carhuaz yace con suave discordancia sobre la formación Santa e infrayace concordante a la formación Farrat. Tiene un grosor aproximado de 500 m.

FORMACION FARRAT (Ki-f)

Esta formación aflora al noreste de San Miguel, al noreste- suroeste de San Pablo, al sur de Hualgayoc, al oeste de Celendín, al norte y al sur de San Marcos, al este y oeste de Cajabamba, en Cajamarca en casi toda la provincia, al norte y al sur de Contumazá.

Esta formación consiste de areniscas blancas de grano medio a grueso, tiene un grosor promedio de 500 m. en algunos lugares se observa estratificación cruzada y marcas de oleaje.

La formación Farrat suprayace con aparente concordancia a la formación Carhuaz e infrayace con la misma relación, a la formación lnca, dando dando la impresión en muchos lugares de tratarse de un paso gradual.



FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Carta del área de influencia geológica regional

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

GEOLOGIA LOCAL DE UBICACIÓN DEL PUENTE

Para definir la geología local y de influencia del puente, se ha recurrido como material de consulta a la carta geológica del **INGEMMET hoja 16-H, a escala 1:100 000**, donde se han diferenciado unidades lito estratigráficas definidas y comparando con lo prospectado en campo se han encontrado la siguiente formación geológica:

Formación Chicama (Js-Chic): Consiste de lutitas negras laminares, deleznables, con delgadas intercalaciones de areniscas grises. Contienen abundantes nódulos negros, con pirita y algunas veces con fósiles. Las rocas de la formación Chicama dan suelos negruzcos y blandos, debido a la cantidad de material limo- arcilloso, favoreciendo el desarrollo de una topografía

Las rocas de la Formación Chicama son blandas debido a la cantidad de material limo arcilloso, que han favorecido el desarrollo de una topografía suave. Como en otras partes, en el lugar estudiado, no se ha visto la base de la formación, pero suponemos que descansa discordantemente sobre calizas del grupo Pucará u otras formaciones. Su contacto superior generalmente es de aparente conformidad con la formación Chimú, siendo más probable una discordancia paralela por el sector oriental, el intenso disturbamiento sufrido por estas rocas, dificulta la exacta estimación de sus grosores, sin embargo, en el sector occidental los estratos están deformados, excepto done se presentan algunas intrusiones pequeñas y medianas que distorsionan los estratos.

La situación ambiental durante la construcción obra de esta naturaleza, se encuentra vinculado fundamentalmente a las alteraciones del sistema de drenaje natural, el grado de estabilidad de laderas y/o taludes ,donde podemos evaluar que las rocas no son totalmente macizas y no tienen buena potencia, pero el buzamiento respecto a la dirección del flujo es favorable.

7.5 FISIOGRAFIA.

La fisiografía circundante es accidentada y corresponde mayormente a laderas empinadas con una pendiente 26 a 50 %; debido la litología de la zona se ha observado procesos de remoción de masas de rocas y de suelos en las laderas aguas arriba del lugar seleccionado, esto procesos se han acelerado por la presencia de <u>Eucaliptus glóbulos</u>, que acelera el proceso por las características de su sistema radicular que contribuye a desestabilización de las laderas

Adyacente al rio existe una pequeña terraza baja o de inundación de área reducida, y es este lugar donde se desea emplazar el puente.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

7.6 HIDROLOGÍA DE SUPERFICIE

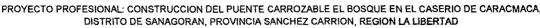
La hidrología aguas arriba, está representada por una serie de tributarios de 1° y 4° orden que son importantes para formar la rio Quillish, todos ellos tienen un sistema de drenaje dendrítico y el lugar de desplante del futuro puente tiene orden 4°.

El sitio seleccionado para construir el puente tiene un tramo recto, a partir del cual discurre el agua en una pendiente de 8%, con una velocidad de flujo de 1.03 m/seg.

7.7. Geomorfología

La Geomorfología predominante del lugar prospectado corresponde a una Llanura aluvio coluvial antigua del Cuaternario que se caracteriza por presentar superficies planas ligeramente inclinadas, se trata de lechos fluviales holocénicos, que han quedado abandonados en posición superior a los lechos actuales.

7.8 GEODINÁMICA INTERNA Y EXTERNA


GEODINÁMICA INTERNA SISMOTECTONICA

El principal objetivo de un análisis de peligrosidad sísmica es para determinar cuál será el movimiento sísmico que puede afectar al puente durante su vida operativa.

De acuerdo con la teoría de placas el Perú está ubicado cerca de la zona de convergencia de las placas litosféricas denominadas "Continental Sudamericana" y "Oceánica de Nazca", la que se considera como un margen sismológicamente activo.

FACULTAD DE INGENIERIA

La referida convergencia determina la colisión de ambas placas y consecuentemente la inflexión del borde oriental de la placa de Nazca bajo la placa Continental según la dirección NE; asimismo, la placa Continental resulta en un cabalgamiento sobre la capa de Nazca.

A la referida zona de "inflexión" y "cabalgamiento" se denomina "Zona de Subducción", de otro lado esta zona morfológica configura un relieve submarino que por su posición y alineamiento se le denomina "Fosa de Milne-Edwards" o "Fosa de Lima". Dicha fosa supera los sismólogos tiene profundidades de 5,000 m.s.n.m., en cambio en el continente y coincidiendo con el alineamiento de la fosa, ocurren elevaciones montañosas que superan a su vez 5,000 m.s.n.m.

Los esfuerzos que se generan entre las dos placas en la zona de subducción originan una intensa actividad sísmica. El sector que se extiende entre la fosa de Lima y la costa (corresponde a la zona de contacto convectivos entre placas) por lo que es una zona de sismicidad superficial pero intensa y asociada con el sistema de subducción. Esta área es uno de los lugares donde se generan sismos de gran magnitud en el mundo; en el continente la profundidad focal de los sismos va creciendo de Oeste a Este.

La sismicidad superficial en la placa Continental está limitada a la zona que abarca la costa, la Cordillera Occidental y parte de las altiplanicies; luego aumenta nuevamente en la zona de la Cordillera Oriental con focos muy superficiales y mecanismos que demuestran la existencia de esfuerzos de compresión.

La Región Este se caracteriza por tener una expresión tectónica más joven que la Cordillera Occidental, con procesos geotectónicos que se reconocen por la deformación de terrazas cuaternarias y reactivación de fallas.

Esta actividad superficial en la placa Continental hace que algunos casos presente fallas en la cordillera que involucra al departamento de Cajamarca y por ende la zona en estudio, sin embargo a través del tiempo en Cajamarca, no se ha registrado movimientos sísmicos severos que afecten a los puentes, este caso probablemente se debe a que tanto en la cordillera oriental como en la occidental haya un sistema de graben y sirva como un elemento de amortiguamiento de los movimientos sísmicos, de tal forma que tanto en el Valle de Cajamarca como a sus alrededores no haya problemas de geodinámica interna que comprometa a las obras ingenieriles.

En lo que respecta al lugar estudiado del proyecto predominan depósitos cuaternarios aluviales, donde haciendo un examen cuidadoso del relieve, nos permite indicar que no existen movimientos recientes de fallas asociados a eventos generadores de sismos, ni afectación a los depósitos sedimentarios que podrían implicar fallamiento a la futura obra ingenieril.

En concordancia con datos del Ministerio de Transportes y Comunicaciones diciembre 2011, afirman que la magnitud de los movimientos sísmicos en un registros de 20 años, la magnitud de los movimientos sísmicos para la zona de trabajo tiene un valor de 4 **magnitud**, la cual es una medida de la energía producida por un sismo que valorando en la escala de Richter, es ligero y corresponde a un sismo significativo, pero con daños poco probables.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

GEODINÁMICA EXTERNA.

En vista que Sanagorán y sus caseríos tiene dos estaciones bien marcadas, afecta a la superficie del suelo y por ende de las rocas que la componen, descomponiéndolo y desintegrándolo por medio de la meteorización mecánica, química y biológica, esta acción es acelerada por la energía cinética del agua del río que al fluir por el cauce afecta al material sedimentario que ha sido removido desde las partes altas hacia la parte media, donde podemos apreciar bloques rocosos, piedras, gravas, gravillas pero poca arena porque el desplazamiento desde la línea divisoria de aguas es corto

Los factores dinámicos que operan preponderadamente en el lugar son: el agua de lluvia, la pendiente, el sol y la gravedad, permitiendo así el proceso de meteorización, arranque de grandes bloques rocosos desde la parte más alta y pasa por el lugar de ubicación de futuro puente, pero como el tramo es recto no hay riesgos de erosión a la futura obra, sin embargo se deberá tener mucho cuidado la calcular la altura del tablero y tener el estudio hidrológico muy bien calculado.

ZONA DE ANASTOMOSAMINETO DEL RIO AGUAS ABAJO DEL LUGAR SELECCIONADO PARA UBICAR ELPUENTE

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

7.9 SUELOS

Geológicamente los suelos son de naturaleza azonal y pertenece al grupo de los aluviales recientes.

Para conocer la morfología interna de los suelos se han excavado dos calicatas, cuyas características son las siguientes:

La calicata N°1 se hizo una excavación a una profundidad de 3.80m.a mayor profundidad encontramos material arcilloso arenoso gravoso pedregoso, estas mismas características las encontramos en la calicata Nº 2

Al examinar morfológicamente cada una de los perfiles o calicatas, vemos que el que el factor de formación del suelo es el clima del lugar, donde lluvia al fluir por el cauce del río y al erosionar al material madre, los despojos son depositados en el cauce

Las dos calicatas excavadas presentan las siguientes características geológicas.

CALICATA Nº 01 MARGEN DERECHA

ESTRATO N° 1 Potencia 0.0 a 2.00

Tipo:

Suelo Gravoso arcilloso.

Estructura:

Bloques angulares.

Plasticidad:

Media.

Contracción:

Media.

Color:

Marron.

Reacción al HCI:

Leve.

Minerales:

Limonita.

Permeabilidad:

Lenta.

Drenaje:

Pobre.

ESTRATO No. 3

Potencia: 3.60 - 4.80m

La lutita es una roca sedimentaria detrítica o clástica, de textura pelitica, está integrada por detritus clástico donde las partículas son de los tamaños de la arcilla y limo. En las lutitas negras el color se debe a existencia de materia organica, lo que le confiere caracteres adversos para la construcción y soportar cargas. Al examen mediante la lupa se observa que son porosas, pero poco permeables, esto se debe a que los poros no se encuentran conectados entre ellos, su diagénesis corresponde a procesos de compactación y deshidratación.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CALICATA N° 02 MARGEN IZQUIERDA

ESTRATO No. 1

Potencia: 0 - 3.40 m.

Tipo:

Suelo Gravoso arcilloso.

Estructura:

Bloques angulares.

Plasticidad:

Media.

Contracción:

Media.

Color:

Marron claro.

Reacción al HCI:

Leve.

Minerales:

Limonita.

Permeabilidad:

Lenta.

Drenaje:

Pobre.

ESTRATO No. 2

Potencia: 3.40 - 4.80 m.

Tipo:

Areno arcillosa.

Estructura:

Bloques sub angulares con poca estabilidad.

Plasticidad:

Media.

Contracción:

Media.

Color:

Marrón oscuro.

Reacción al HCI:

Leve.

Minerales:

Cuarzo.

Permeabilidad:

Moderadamente lenta.

Drenaie interno:

Malo.

ESTRATO No. 3

Potencia: 3.80 - 4.80

La lutita es una roca sedimentaria detrítica o clástica, de textura pelitica, está integrada por detritus clástico donde las partículas son de los tamaños de la arcilla y limo. En las lutitas negras el color se debe a existencia de materia organica, lo que le confiere caracteres adversos para la construcción y soportar cargas. Al examen mediante la lupa se observa que son porosas, pero poco permeables, esto se debe a que los poros no se encuentran conectados entre ellos, su diagénesis corresponde a procesos de compactación y deshidratación.

VIII. RIESGO GEOLÓGICO

El riesgo geológico es de índole externo, pues existen estaciones lluviosas y anomalías climáticas que aumentan significativamente el caudal del río, esto puede provocar riadas y como consecuencia de ello podrí afectar a la estructura, pero para evitar este riesgo el desplante de los deben estar cimentados fuera del alcance del cauce del río, para ello se está estimando 36 metros

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ-CARRION, REGION LA LIBERTAD

de luz libre con una altura de 10.50 incluyendo la zapata, en concordancia con el informe hidrológico.

Es necesario siempre recomendar un **Manejo Integral de Cuencas**, esto nos permitiría reducir el riesgo por erosión y disminuir la cantidad de pecios y despojos estacionales que el río acarrea; además nos permitirá proteger los taludes naturales y controlar los movimientos de masas de rocas y de suelos.

IX. CONCLUSIONES Y RECOMENDACIONES

- a. El lugar de emplazamiento del puente, pertenece a la era del Cenozoico, período Cuaternario, serie de depósitos aluvio coluviales antiguos y recientes y está conformado por arenas, gravas, gravilla y bloques rocosos de forma subangulosas con compactación y cementación nula, dentro de los perfiles de control.
- b. Del lugar seleccionado aguas arriba, la microcuenca está conformada por una gran variedad rocas de origen ígneo intrusivo y sedimentario, las cuales por efecto de la meteorización son desprendida de su lecho y son arrastradas hacia las torrentes que al encontrarse con el cauce del rio toman parte de los despojos y acumulándose en gran cantidad de sedimento en el cauce. Las lutitas parecen muy fragmentadas porque son rocas frágiles que al ponerse en contacto con corrientes torrentosas, se desintegran inmediatamente.
 - c. El sitio de desplante del puente se encuentra en un tramo recto, esto garantiza la estabilidad del puente.
 - d. El río se manifiesta como muy competente debido a la gran cantidad desperdicios y despojos que tiene a ese nivel (curso medio).
 - e. Los suelos son azonales y en términos generales corresponden a suelos de tipo gravoso arcillos, con estructura en bloques, lo cual debe tomarse en cuenta para el desplante de los estribos.
 - f. Del examen practicado en dichas calicatas y debido a la pendiente del río, se ha podido determinar que el proceso erosivo en profundidad es mínimo, la acumulación de material mayormente ocurre encima de la superficie; por lo que al construir los estribos, se deberá tomar en cuenta estos aspectos
 - g. La propuesta del lugar de emplazamiento del puente se encuentra en el curso medio del río y se está considerando una luz libre de 36 m.

SECULIAR RECUIRED

UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRIÓN, REGION LA LIBERTAD

- h. Los procesos erosivos se producen ligeramente en las márgenes y en el fondo, pero no hay evidencias de erosión excesivas en épocas pasadas, como medidas de prevención es necesario que las aletas del puente deberán ser achaflanadas.
- i. Plantear un manejo de cuencas en la parte alta o cuenca de recepción, para evitar la acumulación de despojos en el cauce, esto aliviaría enormemente a la protección de la estructura frente a los procesos erosivos.
- j. Para asegurar la estabilidad de la estructura, es necesario proteger los estribos mediante aletas achaflanadas.
- La profundidad del empotramiento de los estribos debe estar muy lejos de la acción erosiva de las avenidas.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ANEXO 2.3: ESTUDIO DE CANTERAS Y DISEÑO DE MEZCLAS

JOSÉ LEZAMA LEIVA INGENIERO CIVIL CONSULTOR DE OBRAS DE INGENIERÍA

REG. C.I.P. Nº 14061 -- RUC 10266787711

Jr. Huánuco № 442 Telf. 365096 CEL 976625363 - 976666525 RPC Claro 993551722 - 993551713 Cajamarca

REGISTRO NACIONAL DE CONSULTORES Nº CO 112 CAJ STUDIOS GEOTÉCNICOS, LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

DISEÑOS DE MEZCLA DE CONCRETO

PROYECTO:

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE -CASERIO CARACMACA — DISTRITO DE SANAGORAN -PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD"

SOLICITANTE: BACH. ING. JORGE LUIS CARRANZA ARAUJO

CAJAMARCA, ABRIL 2013

JOSE LEZAMA LEIVA INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES № CO 112 LABORATÓRIO DE MECÁNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

 $f'c = 210 \text{ Kg/cm}^2$

JOSÉ LEZAMA LEIVA INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERÍA

REG. C.I.P Nº 14061 - RUC 10266787711

REGISTRO NACIONAL DE CONSULTORES Nº CO 112

STUDIOS GEOTÉCNICOS. LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

INFORME TÉCNICO

ODIGO

LEM-049/2013

OLICITANTE

BACH, ING. JORGE LUIS CARRANZA ARAUJO

BRA

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE -

CASERIO

CARACMACA - DISTRITO DE SANAGORAN - PROVINCIA SANCHEZ CARRION

- REGION LA LIBERTAD"

BICACIÓN

CASERIO: CARACMACA. DISTRITO: SANAGORAN.

PROVINCIA: SANCHEZ CARRIÓN. REGIÓN: LA LIBERTAD.

ANTERA DE AGREGADO FINO

LA FORTUNA (HUANCHACO - TRUJILLO)

ANTERA DE AGREGADO GRUESO

LA FORTUNA (HUANCHACO - TRUJILLO)

DISEÑO DE MEZCLA DE CONCRETO

CARACTERÍSTICAS DE LOS MATERIALES

AGREGADO FINO .1.

ARENA DE CANTERA

PESO ESPECIFICO APARENTE

2.60 gr/cm³

PESO UNITARIO SUELTO SECO

1.580 Ka/m3

PESO UNITARIO SECO COMPACTADO

1,692 Kg/m3

HUMEDAD NATURAL

0.40 %

ABSORCIÓN

1.78 %

MODULO DE FINURA

2.64

MATERIAL MAS FINO TAMIZ N° 200

7.0 %

1.2. **AGREGADO GRUESO** PIEDRA CHANCADA

PERFIL

ANGULAR Y SUB ANGULAR

TAMAÑO MÁXIMO NOMINAL

3/4"

PESO ESPECIFICO APARENTE

2.62 gr/cm³

PESO UNITARIO SUELTO SECO

1,315 Kg/m³

PESO UNITARIO SECO COMPACTADO

1,455 Kg/m³

HUMEDAD NATURAL

0.20 %

ABSORCIÓN

0.95 %

MODULO DE FINURA

7.40

MATERIAL MAS FINO TAMIZ N° 200

0.20 %

ABRASIÓN

28.70 %

CONSULTOR DE OBRAS DE INGENIERÍA

REG. C.I.P Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

STUDIOS GEOTÉCNICOS, LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

.3. **CEMENTO**

- CEMENTO PÓRTLAND TIPO MS PACASMAYO (A.S.T.M. C-1157)
- PESO ESPECIFICO: 3.00 gr/cm³

CARACTERÍSTICAS ESTRUCTURALES

- ELEMENTO CONSTRUCTIVO : ZAPATAS, ESTRIBOS Y ALETAS DE PUENTE.

- RESISTENCIA A COMPRESIÓN DE DISEÑO : $f'c = 210 \text{ Kg/cm}^2$ (28 Días)

- RESISTENCIA A COMPRESIÓN PROMEDIO : $f'cr = 85 + f'c = 295 \text{ Kg/cm}^2$ (28 Días)

- ASENTAMIENTO : 3" a 4"

CANTIDAD DE MATERIAL POR M3 DE CONCRETO

MATERIALES DE DISEÑO POR M3 .1

CEMENTO 375 Kg. **AGREGADO FINO SECO** 781 Kg. AGREGADO GRUESO SECO 902 Kg. AGUA DE MEZCLA 210 Lt.

CONTENIDO DE AIRE ATRAPADO $\pm 2.0 \%$

1.2 MATERIALES CORREGIDOS POR HUMEDAD POR M³

CEMENTO 375 Kg. AGREGADO FINO HÚMEDO 784 Kg. AGREGADO GRUESO HÚMEDO 904 Kg. **AGUA EFECTIVA** 227.5 Lt. **CONTENIDO DE AIRE ATRAPADO** ± 2.0 %

1. **PROPORCIONAMIENTO DE MATERIALES**

PROPORCIONAMIENTO EN PESO

1: 2.09: 2.41 / 25.80 Lt/bolsa.

PROPORCIONAMIENTO EN VOLUMEN

1:2.00:2.75/25.80 Lt/bolsa.

CONSULTOR DE OBRAS DE INGENIERÍA

REG. C.I.P № 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES № CO 112

STUDIOS GEOTÉCNICOS, LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

CONCLUSIONES Y RECOMENDACIONES

- El coeficiente considerado para la determinación de la Resistencia promedio (f'cr) está acorde con lo estipulado en el Código del American Concrete Institute (ACI 318S-11).
- En la mezcla de prueba realizada en el laboratorio, se ha obtenido un contenido de humedad del agregado fino de 0.40% y una absorción de 1.78%; asimismo, el contenido de humedad del agregado grueso de 0.20% y una absorción de 0.95%. Por consiguiente, cuando se prepare la tanda de concreto en obra, se recomienda tener en cuenta estos parámetros, con la finalidad de corregir periódicamente el contenido de aqua efectiva, en el proporcionamiento de los materiales.
- Se recomienda, que el agregado grueso antes de ser utilizado, deberá tamizarse por el tamiz de 1" y el agregado fino antes de utilizarse, debe tamizarse por el tamiz de 3/8" y lavarse hasta alcanzar un valor máximo de 5% de partículas finas menores que el tamiz N° 200, acorde a lo estipulado en las Normas Técnicas vigentes.
- El material más fino que el tamiz Nº 200, contenido en los agregados, se ha determinado utilizando el procedimiento de ensayo acorde a la norma A.S.T.M. C-117 (N.T.P. 400.018).
- Al preparar la tanda de concreto en obra, se deberá corregir periódicamente el contenido de agua efectiva, en el proporcionamiento de los materiales, debido a la variación permanente en el contenido de humedad de los agregados.
- Se recomienda que al realizar la dosificación correcta en volumen de obra se debe utilizar recipientes adecuados, a fin de evitar variación volumétrica de los componentes de la mezcla, teniendo como base el volumen de una bolsa de cemento, considerado como un pie cúbico.
- La curva granulométrica del agregado fino cumple con el huso granulométrico "M" de la Norma N.T.P. 400.037 y la curva granulométrica del agregado grueso, está cerca del límite inferior del huso granulométrico Nº 67 de la Norma A.S.T.M. C 33M-11 (Requerimiento de granulometría de los agregados gruesos).
- Se recomienda ajustar periódicamente el proporcionamiento en volumen de obra, por variaciones de granulometría del agregado que suele darse en la Cantera, a fin de mantener la homogeneidad del concreto. En tal sentido, si existe variación en el módulo de finura de los agregados en ±0.2, se recomienda ajustar la proporción de diseño de la mezcla de concreto.
- Asimismo, se recomienda que cada vez que se prepare las tandas de concreto en obra, se deberá realizar en forma regular pruebas de revenimiento, acorde a la Norma N.T.P. 339.035 1999, a fin de mantener uniforme la consistencia del concreto y por ende la resistencia mecánica.
- El agua a utilizarse en la mezcla de concreto, debe cumplir con la Norma NTP 339.088 y el curado de los especímenes de concreto elaborados en obra, deberá realizarse de acuerdo a la Norma A.S.T.M. C 31M-10 (NTP 339.035).
- El ensayo a compresión de los especímenes de la mezcla de prueba realizado en Laboratorio a los 7 días, alcanzó un valor de 179 kg/cm², lo que corresponde al 85% de la resistencia a compresión de diseño.
- Se recomienda, realizar un ensayo de reactividad álcali agregado (álcali-sílice: ASTM C 289, C-227 y C-295; y álcali-carbonatos ASTM C-586), con la finalidad de determinar la reacción química entre los constituyentes de sílice y carbonato del agregado con el álcali en el cemento.
- Los agregados han sido muestreados, identificados y alcanzados al Consultor por el Bach. Ing. Jorge Luis Carranza Araujo.

Cajamarca, 22 de Abril del 2013

José J. Lexama Leiva INGENIERO CIVIL REG. CIP. 14061

Jr. Huánuco № 442, Telef. 365096 – Cel. 976625363, Cajamarca Prohibida su Reproducción Total o Parcial (INDECOPI). Derechos Reservados JLL.

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.LP № 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES № CO 112

LABORATÓRIO DE MECÂNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

 $f'c = 280 \text{ Kg/cm}^2$

CONSULTOR DE OBRAS DE INGENIERÍA

REG. C.I.P № 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES № CO 112

STUDIOS GEOTÉCNICOS. LABORATORIO DE MECÁNICA DE SUELOS. CONCRETO. ASFALTO Y DISEÑO DE PAVIMENTOS

INFORME TÉCNICO

ODIGO : LEM-050/2013

OLICITANTE: BACH. ING. JORGE LUIS CARRANZA ARAUJO

BRA : "CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO

CARACMACA - DISTRITO DE SANAGORAN - PROVINCIA SANCHEZ CARRION

- REGION LA LIBERTAD"

IBICACIÓN : CASERIO: CARACMACA. DISTRITO: SANAGORAN.

PROVINCIA: SANCHEZ CARRIÓN. REGIÓN: LA LIBERTAD.

ANTERA DE AGREGADO FINO : LA FORTUNA (HUANCHACO - TRUJILLO)

ANTERA DE AGREGADO GRUESO : LA FORTUNA (HUANCHACO - TRUJILLO)

DISEÑO DE MEZCLA DE CONCRETO

CARACTERÍSTICAS DE LOS MATERIALES

.1. <u>AGREGADO FINO</u> : ARENA DE CANTERA

PESO ESPECIFICO APARENTE : 2.60 gr/cm³

PESO UNITARIO SUELTO SECO : 1,580 Kg/m³

PESO UNITARIO SECO COMPACTADO : 1.692 Kg/m³

HUMEDAD NATURAL : 0.40 %

ABSORCIÓN : 1.78 %

MODULO DE FINURA : 2.64

MATERIAL MAS FINO TAMIZ N° 200 : 7.0 %

1.2. <u>AGREGADO GRUESO</u> : PIEDRA CHANCADA

PERFIL : ANGULAR Y SUB ANGULAR

TAMAÑO MÁXIMO NOMINAL : 3/4"

PESO ESPECIFICO APARENTE : 2.62 gr/cm³

PESO UNITARIO SUELTO SECO : 1,315 Kg/m³

PESO UNITARIO SECO COMPACTADO : 1,455 Kg/m³

HUMEDAD NATURAL : 0.20 %

ABSORCIÓN : 0.95 %

MODULO DE FINURA : 7.40

MATERIAL MAS FINO TAMIZ N° 200 : 0.20 %

ABRASIÓN : 28.70 %

José H. Lexamp Leiva INGENIERO KIVIL

Jr. Huánuco Nº 442, Telef. 365096 – Cel. 976625363, Cajamarca
Probibida su Reproducción Total o Parcial (INDECOPI), Derechos Reservados M.

JOSÉ LEZAMA LEIVA INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERÍA

REG. C.I.P № 14061 ~ RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES № CO 112

ITUDIOS GEOTÉCNICOS. LABORATORIO DE MECÁNICA DE SUELOS. CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

3. CEMENTO

- CEMENTO PÓRTLAND TIPO I PACASMAYO (A.S.T.M. C-150)

- PESO ESPECIFICO: 3.11 gr/cm³

CARACTERÍSTICAS ESTRUCTURALES

- ELEMENTO CONSTRUCTIVO : LOSA Y VEREDAS DE LA SUPERESTRUCTURA DEL PUENTE.

- RESISTENCIA A COMPRESIÓN DE DISEÑO : f'c = 280 Kg/cm² (28 Días)

- RESISTENCIA A COMPRESIÓN PROMEDIO : f'cr = 85 + f'c = 365 Kg/cm² (28 Días)

- ASENTAMIENTO : 3" a 4"

CANTIDAD DE MATERIAL POR M³ DE CONCRETO

1 MATERIALES DE DISEÑO POR M³

- CEMENTO : 414 Kg.
- AGREGADO FINO SECO : 765 Kg.
- AGREGADO GRUESO SECO : 905 Kg.
- AGUA DE MEZCLA : 207 Lt.
- CONTENIDO DE AIRE ATRAPADO : ± 2.0 %

.2 MATERIALES CORREGIDOS POR HUMEDAD POR M³

- CEMENTO : 414 Kg.
- AGREGADO FINO HÚMEDO : 768 Kg.
- AGREGADO GRUESO HÚMEDO : 907 Kg.
- AGUA EFECTIVA : 224.3 Lt.
- CONTENIDO DE AIRE ATRAPADO : ± 2.0 %

PROPORCIONAMIENTO DE MATERIALES

PROPORCIONAMIENTO EN PESO

1:1.86:2.19/23.0 Lt/bolsa.

PROPORCIONAMIENTO EN VOLUMEN

1:1.75:2.50/23.0 Lt/bolsa.

José L. Lexand Leiva Indeniero divil REG. CIP. 14961

CONSULTOR DE OBRAS DE INGENIERÍA

REG. C.I.P № 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES № CO 112

STUDIOS GEOTÉCNICOS. LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

CONCLUSIONES Y RECOMENDACIONES

- El coeficiente considerado para la determinación de la Resistencia promedio (f'cr) está acorde con lo estipulado en el Código del American Concrete Institute (ACI 318S-11).
- En la mezcla de prueba realizada en el laboratorio, se ha obtenido un contenido de humedad del agregado fino de 0.40% y una absorción de 1.78%; asimismo, el contenido de humedad del agregado grueso de 0.20% y una absorción de 0.95%. Por consiguiente, cuando se prepare la tanda de concreto en obra, se recomienda tener en cuenta estos parámetros, con la finalidad de corregir periódicamente el contenido de agua efectiva, en el proporcionamiento de los materiales.
- Se recomienda, que el agregado grueso antes de ser utilizado, deberá tamizarse por el tamiz de 1" y el agregado fino antes de utilizarse, debe tamizarse por el tamiz de 3/8" y lavarse hasta alcanzar un valor máximo de 5% de partículas finas menores que el tamiz N° 200, acorde a lo estipulado en las Normas Técnicas vigentes.
- El material más fino que el tamiz Nº 200, contenido en los agregados, se ha determinado utilizando el procedimiento de ensayo acorde a la norma A.S.T.M. C-117 (N.T.P. 400.018).
- Al preparar la tanda de concreto en obra, se deberá corregir periódicamente el contenido de agua efectiva, en el proporcionamiento de los materiales, debido a la variación permanente en el contenido de humedad de los agregados.
- Se recomienda que al realizar la dosificación correcta en volumen de obra se debe utilizar recipientes adecuados, a fin de evitar variación volumétrica de los componentes de la mezcla, teniendo como base el volumen de una bolsa de cemento, considerado como un pie cúbico.
- La curva granulométrica del agregado fino cumple con el huso granulométrico "M" de la Norma N.T.P. 400.037 y la curva granulométrica del agregado grueso, está cerca del límite inferior del huso granulométrico Nº 67 de la Norma A.S.T.M. C 33M-11 (Requerimiento de granulometría de los agregados gruesos).
- Se recomienda ajustar periódicamente el proporcionamiento en volumen de obra, por variaciones de granulometría del agregado que suele darse en la Cantera, a fin de mantener la homogeneidad del concreto. En tal sentido, si existe variación en el módulo de finura de los agregados en ±0.2, se recomienda ajustar la proporción de diseño de la mezcla de concreto.
- Asimismo, se recomienda que cada vez que se prepare las tandas de concreto en obra, se deberá realizar en forma regular pruebas de revenimiento, acorde a la Norma N.T.P. 339.035 – 1999, a fin de mantener uniforme la consistencia del concreto y por ende la resistencia mecánica.
- El agua a utilizarse en la mezcla de concreto, debe cumplir con la Norma NTP 339.088 y el curado de los especímenes de concreto elaborados en obra, deberá realizarse de acuerdo a la Norma A.S.T.M. C 31M-10 (NTP 339.035).
- El ensayo a compresión de los especímenes de la mezcla de prueba realizado en Laboratorio a los 7 días, alcanzó un valor de 210 kg/cm², lo que corresponde al 75% de la resistencia a compresión de diseño.
- Se recomienda, realizar un ensayo de reactividad álcali agregado (álcali-sílice: ASTM C 289, C-227 y C-295; y álcali-carbonatos ASTM C-586), con la finalidad de determinar la reacción química entre los constituyentes de sílice y carbonato del agregado con el álcali en el cemento.
- Los agregados han sido muestreados, identificados y alcanzados al Consultor por el Bach. Ing. Jorge Luis Carranza Araujo.

Cajamarca, 22 de Abril del 2013

José L. Lexand Lewer REG. CIP. 14081

Jr. Huánuco № 442, Telef. 365096 – Cel. 976625363, Cajamarca Prohibida su Reproducción Total o Parcial (INDECOPI). Derechos Reservados JLL.

1

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P. Nº 14061 - BUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112 Telef, 365096 - Cel. 976625363 - 976666525 RPC Claro 993551722 - 993551713

Cajamarca

ESTUDIOS GEOTECNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

ANALISIS GRANULOMETRICO DE AGREGADOS FINOS Y GRUESOS

A.S.T.M. C 136 / NTP 400.012

PROYECTO:

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO CARACMACA - DISTRITO AGREGADO GRUESO:

PIEDRA CHANCADA

DE SANAGORAN - PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD*

OPERADOR:

INGº JOSE LEZAMA L.

UBICACIÓN :

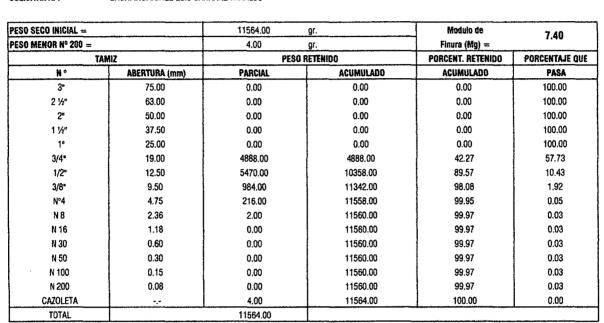
CASERIO: CARACMACA. DISTRITO: SANAGORAN.

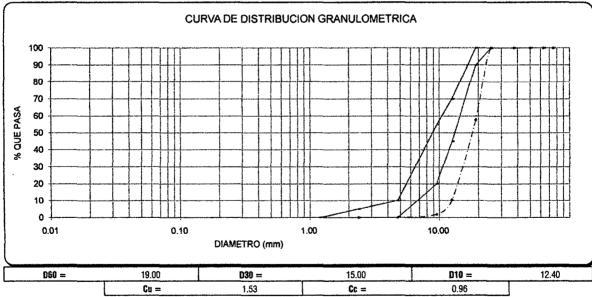
NORMA : FECHA:

A.S.T.M. C 136 / NTP 400.012

CANTERA:

PROVINCIA: SANCHEZ CARRIÓN. REGIÓN: LA LIBERTAD. LA FORTUNA (HUANCHACO - TRUJILLO)


22-04-2013


SOLICITANTE:

BACH, ING. JORGE LUIS CARRANZA ARAUJO

CODIGO:

LEM-048/2013

OBSERVACIONES:

LA CURVA GRANULOMETRICA DEL AGREGADO GRUESO ESTÁ CERCA DEL LIMITE INFERIOR DEL HUSO GRANULOMÉTRICO

Nº 67 DE LA NORMA A.S.T.M. C 33M-11 Y TIENE UN MODULO DE FINURA DE 7.40.

EL MATERIAL EN ESTUDIO HA SIDO MUESTREADO, IDENTIFICADO Y ALCANZADO AL CONSULTOR POR EL BACH, ING. JORGE

LUIS CARRANZA ARAUJO.

exama GENIERO CIVIL

#EG. CIP. 14061

INGENIERO CIVIL

Jr. Huánuco Nº 442

Telef. 365096 - Cel. 976625363 - 976666525

RPC Claro 993551722 - 993551713

Cajamarca

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.J.P. Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES № CO 112

ESTUDIOS GEOTECNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

ANALISIS GRANULOMETRICO DE AGREGADOS FINOS Y GRUESOS

A.S.T.M. C 136 / NTP 400.012

PROYECTO:

"CONSTRUCCIÓN PUENTE CARROZABLE EL BOSQUE - CASERIO CARACMACA - DISTRITO

AGREGADO FINO :

ARENA DE CANTERA

DE SANAGORAN - PROVINCIA SANCHEZ CARRION - REGION LA LIBERTAD"

OPERADOR :

INGº JOSE LEZAMA L.

UBICACIÓN :

CASERIO: CARACMACA. DISTRITO: SANAGORAN.

HORMA :

A.S.T.M. C 136 / NTP 400.012

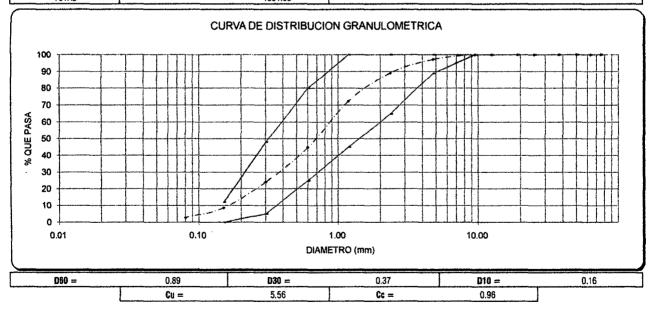
PROVINCIA: SANCHEZ CARRIÓN. REGIÓN: LA LIBERTAD.

FECHA:

22-04-2013

CANTERA:

LA FORTUNA (HUANCHACO - TRUJILLO)


CODIGO :

LEM-048/2013

SOLICITANTE:

BACH, ING. JORGE LUIS CARRANZA ARAUJO

PESO SECO (NICIAL = PESO MENOR Nº 200 =		1301.00 gr. 36.00 gr. PESO RETENIDO		Modulo de	2.64
				Finura (Mf) =	PORCENTAJE QUE
TAMIZ				PORCENT. RETENIDO	
N o	ABERTURA (mm)	PARCIAL	ACUMULADO	ACUMULADO	PASA
3"	75.00	0.00	0.00	0.00	100.00
2 1/2"	63.00	0.00	0.00	0.00	100.00
2*	50.00	0.00	0.00	0.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00
1*	25.00	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
1/2"	12.50	0.00	0.00	0.00	100.00
3/8"	9.50	0.00	0.00	0.00	100.00
N°4	4.75	35.00	35.00	2.69	97.31
N 8	2.36	105.00	140.00	10.76	89.24
N 16	1.18	220.00	360.00	27.67	72.33
N 30	0.60	359.00	719.00	55.27	44.73
N 50	0.30	268.00	987.00	75.86	24.14
N 100	0.15	202.00	1189.00	91.39	8.61
N 200	0.08	76.00	1265.00	97.23	2.77
CAZOLETA	-,-	36.00	1301.00	100.00	0.00
TOTAL		1301.00			

OBSERVACIONES:

LA CURVA GRANULOMETRICA DEL AGREGADO FINO CUMPLE CON EL HUSO GRANULOMETRICO "M" DE LA NORMA

N.T.P. 400.037 Y TIENE UN MODULO DE FINURA DE 2.64.

EL MATERIAL EN ESTUDIO HA SIDO MUESTREADO, IDENTIFICADO Y ALCANZADO AL CONSULTOR POR EL BACH. ING. JORGE

LUIS CARRANZA ARAUJO.

CIVIL

REG. CIP.

JUSE LEZAMA LEIVA INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.LP № 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES № CO 112

ABORATORIO DE MECÁNICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

PANEL FOTOGRAFICO

JOSE LEZAMA LEIVA INGENIERO CIVIL

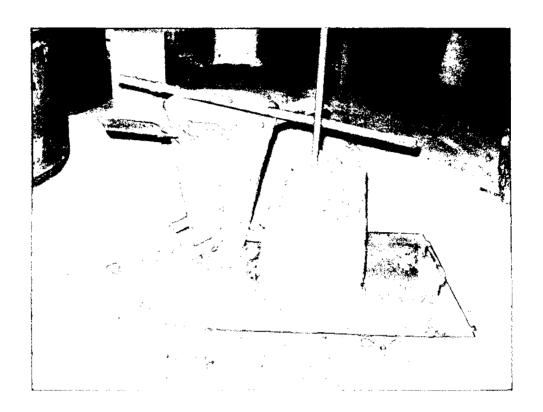
CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P Nº 14061 - RUC 10266787711
REGISTRO NACIONAL DE CONSULTORES Nº CO 112

ESTUDIOS GEOTÉCNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

Vista de preparación de mezcla de prueba, realizado en laboratorio.

José J. Lexama Leiva INGENIERO CIVIL REG. CIP. 19061



JOSE LEZAMA LEIVA INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P № 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES № CO 112

ESTUDIOS GEOTÉCNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

Vista de ensayo de asentamiento para determinar la consistencia de la mezcla de concreto (A.S.T.M. C 143M-10a)

José A. Lexama Leiva INGENIERO CIVIL REG. CIP. 19061

JOSE LEZAMA LEIVA

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA

REG. C.I.P Nº 14061 - RUC 10266787711 REGISTRO NACIONAL DE CONSULTORES Nº CO 112

ESTUDIOS GEOTÉCNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

Vista de elaboración de especímenes de mezcla de prueba de concreto, realizado acorde a la Norma **ASTM C 192M-12**

JOSE LEZAMA LEIVA

INGENIERO CIVIL

CONSULTOR DE OBRAS DE INGENIERIA
REG. C.I.P Nº 14061 - RUC 10266787711
REGISTRO NACIONAL DE CONSULTORES Nº CO 112

ESTUDIOS GEOTÉCNICOS, LABORATORIO DE MECANICA DE SUELOS, CONCRETO, ASFALTO Y DISEÑO DE PAVIMENTOS

Vista del ensayo a compresión del espécimen de la mezcla de prueba, realizado acorde a la Norma ASTM C 39M - 11

REG. CIP. 14061

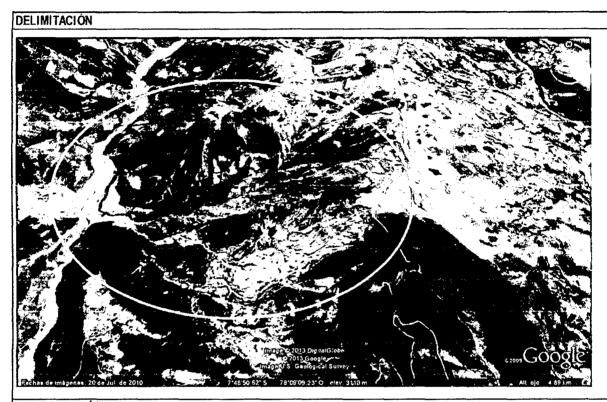
FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ANEXOS N° 3 ESTUDIO DE IMPACTO AMBIENTAL

FACULTAD DE INGENIERIA


ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

FIGHERODE EVALUACION AMBIENTAL

DENOMINACIÓN: CONSTRUCCION DE PUENTE CARROZABLE EL BOSQUE CASERIO DE CARACMACA

EMPLAZAMIENTO					
Superficie:	244 Ha	Alitud minima :	3273.3	Alflud máxima:	3280
Comunidad:	Caserio Carac	maca			

RESUMEN GRÁFICO

RESUMEN DE CARACTERÍSTICAS AMBIENTALES

SITUACIÓN AMBIENTAL:

Resumen:

La zona donde se va a realizar la construcción del puente es una zona que en mayor parte está designado para actividades agrícolas y ganaderas.

Tipo de Pendiente:

Entornos con altas.

Calidad visual:

Mediana

Tipo agrológico:

Suelo de arrastre producto se la eroción en lecho de rio.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

	S DE ESPECIAL INTERÉS	
Agrológico		
Geológico		
Geomorfológico		
Botánico		
Paisaje		
Faunisti∞		
RESUMEN DE CARACT	ERÍSTICAS AMBIENTALES	
PRESIÓN POBLACION	L	
Población residente	200 Hab	
Densidad	33.8 Hab/ km2	
Usos predominantes	Agricola	
Elementos relevantes	Paso del Rio Quillish	
Puntos de congestión	No presenta	
Intensidad de uso	Bajo	
Nivel de ruido	minimo	
PATRIMONIO HISTÓRI	CO	
Bien de Interés cultural	No presenta	
Arqueológi∞	No presenta	
Etnográfico	No presenta	
Arquitectónico	No presenta	
DIAGNÓSTICO AMBIEN	TAL	
PROBLEMÁTICA AMBII	NTAL PREEXISTENTE	
Tipo de entorno	Presecia de bosque de eucalipto	
Tipo sit ambiental	Area rural	
Conflictos	Ninguno	

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CAMBIO CLIMÁTICO	Y RIESGOS NATURALES
Intensidad accistica	Ваја
Zona acústica	Uso agrícola
Área de riesgo	Áreas de riesgo alto con limitación u ordenación equilibrada de nuevos crecimientos por presencia de entornos de laderas asociadas a procesos erosivos y escorrentía, deslizamientos e inundaciones.
Fuente principal	Procesos asociados a derrumbes de ladera, inundaciones
Potencial de riesgo	Moderado
Efecto previsible	Alteración de la calidad de vida y del bienestar humano, así mismo alteración de la calidad paisajistica

INTERÉS A	MBIENTAL			
Relieve	Medio	Biodiversidad	Baja	Global Medio

INCIDENCIA AMBIENTAL DEL PLAN GENERAL

CAPACIDAD AMBIENTAL	DE ACOGIDA	2		
Tipo de capacidad				
	Unidades con una capacida	ad de carga baja y una lir	nitación de usos baja	- W. W.
Nivel de capacidad	Conservación y regenerac	ión natural		
	Usos agropecuarios			
	Rehabilitación del paisaje			
Tipo de escenario ambienta	1			
previsible				
ORDENACIÓN DEL PGO				
Determinaciones				
	Suelo rural no Consolidado).		
Elementos afectados	· Bienestar humano de la p	oblación asociada a la fun	ción Transporte.	
	· Interés asociado la constr	uccion de obras de tranap	oorte	
Efecto positivo	Mejora de la calidad del tra	nsporte rural.	Mejora de	la calidad de la
	vias de comunicación			
Efecto negativo	Modificación del medio amb	piente (todos los impactos o	que desencadenan)	
Grado de alteración	Formas de relieve	Medio	Paisaje	alto
	Biodiversidad	Baja	Patrimonio histórico	bajo
	Capacidad agrológica	alto	Entorno urbano	bajo
	Carácter acumulativo	No acumulativo		
	Duracion	A mediano plazo	Reversibilidad	Corto plazo
Indicadores de impacto	Probabilidad	Impacto probable	Carácter transfronterizo	Local
	Frecuencia	Discontinua	Magnitud	Emplazamien
	Riesgos ambientales	Minima	Signo	Positivo
	Vulnerabilidad del área	Moderada	Valor del impacto	Nada signif.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

INCIDENCIA AMBIENTAL DEL PLAN GENERAL

CARACTERIZACIÓN DEL IMPACTO AMBIENTAL

Justificación impacto

La ordenación urbanística de esta área se entiende integradora de una infraestructura vial, y con alguna parte de sus elementos en funcionamiento. En cualquier caso, se potencia esa ocupación mediante actuaciones de mayor cualificación ambiental y de desarrollo de equipamientos que propicien una mayor cohesión y calidad de vida en el espacio rural.

Las medidas ambientales definidas se justifican en su carácter de determinaciones de control de incidencias inducidas por la común de la construccion de un puente, en general, así como en la cualificación del espacio vialmediante la adecuación de la vias de transporte que mejoren el paisaje rurala nivel de la zona.

Medidas ambientales

- . Adecuación paisajistica de la cosntruccion del puente.
- · Promoción del potencial paisajístico de la zona.
- · Adecuación paisajística del conjunto edificado de la zona..
- · Tratamiento específico de minimización de situaciones potencialmente generadoras de riesgos naturales asociados a los deslizamientos, inundaciones y sismo.
- · Cualificación del entorno urbano en materia acústica y de calidad del aire.
- · Adecuación viaria, vinculándolo al Proyecto de la construccion del puente.
- · Gestión municipal de licencias y obras.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACO
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

MATRIE DE IDENTIFICACIÓN DE LA CONSTRUCCION DE PUENTE EL BOSQUE - CARACAMAÇA FASE PREVIA EJECUCIÓN DEL PROYECTO **OPERACIÓN** 는 로

	Proyect	MATRIZ ID NIVEL C ista: Bach. ing.	PACTO AMBIENTAL DENTIFICACIÓN CUALITATIVO Carranza Araujo, Jorge Luis ENTALES AFECTADOS	Ĉ,	a) Exploración de Terreno (Suelos, Geotecnia y Topografia-Caficabas, Sond	b) Tráfico de Vehiculos (Movitzacion de Maquinaria)	c) Limpieza y habilitación de Terreno (Abración de cubieta terestre y vegetación)	d) Trabajos Preliminares (trazo, nivelación y replanteo)	e) Movimiento de Tierras (Esxcav. De taludes, zapatas.)	f) Acopio de Material (Acopio de restruos sólidos, desmante y material cantera)	g) Trazo definitivo de accesos (Definitacion de terrencs y viss)	i) Estructuras metalicas (Construccion,tenzamiento y phtura)	J) Obras de Concreto Simple y Armado (Gementacion, estribos, aleias, tosa de catzada	k) Abandono de Obra (Limpiza genral de obra, pirkado final)	I) Tráfico Vehicular (Enisón de gases y potvo)	m) Tráfico Peatonal (Calles, parqueo)	p) Ocupación espacial	q) Mantenimiento
		J. OKEO AMDI	a) Calidad del aire			•			•				•	•	•			
		1 Aire	b) Nivel de Ruido		-	•	•	•	•	-	•			-	•	•		ļ <u>-</u>
			a) Geomorfología	\dashv	•	•	•			-		•					-	ļ
	1	2 Tierra	b) Contaminación Superficial (fis., qui., microbio.			-	•		-						•	•	•	•
М	N		a) Calidad del suelo para usos agrícolas	<u>''</u>		-	•		-					-				-
141	E	3 Suelos					•	•		 -		•	•	 	 			-
=	R		b) Contaminación (física, química, microbioló	(Bica)		-	•		•	 	· · · · · · · · · · · · · · · · · · ·	•	•	ļ	•	ļ. 	•	
D	T		a) Aguas Superficiales b) Aguas Subterraneas		•	-	-		-	 		•	•	 			•	
	E	4 Agua	c) Calidad de Agua		-	•	•		-	 			•	 				•
0			a) Escorrentía - Drenaje Superficial							 								
	1	5 Procesos			•	•	•		•				•	ļ				•
F	-		b) Erosión				•		•	•								
ĺ	В	1,- Flora	a) Cultivos		•	•	•	•	•	ļ				ļ				
S	I		b) Diversidad		•	•	•			•	•	•	•	•	•	•	•	•
1	00	2 Fauna	a) Vertebrados	_	•	•	•		•		<u> </u>	•	•	•	•	•	•	•
C	1		b) Invertebrados		•	•	•		•		•	•	•	•	•	•	•	•
0	C	3 Procesos	a) Cadena Trófica			•			•									
	-		b) Estabilidad de Ecosistemas		•	•	•	•	•					•				
	PE EP	1 Paisaje 4 intrinseco	a) Calidad Paisajística			•	•		•	•		•	•	•			•	
1	RTI	2,- Intervisibilidad	a) Potencial de vistas						•			•	•	•	•	•	•	•
	C U	Z Intervaliantad	b) Vistas Panorámicas	T					•			•	•	•	•	•	•	
8		1 Uso del	a) Cambio de uso agricola-ganadera, regadio	Ī		•	•		•								•	
0		Territorio	b) Zonas verdes			•	•		•	•			•	•	•	•	•	•
C	P	2	d) Servicios Comunitarios														•	•
6	0	Infraestructura	f) Equipamiento									•	•	•			•	•
M =	В		a) Educación									•		•				
EC	L	3 Cultura	b) Estilos de Vida								*,*,	•			•	•	•	•
.0	A		a) Calidad de vida				•		•	1		•	•	•	•	•	•	•
O N	C	4 Aspecto	b) Salud y seguridad				•		·	•					•	•		•
10	0	Humano	c) Estructura de la propiedad				•		•	 	•	•	•					
M	N		a) Empleo Temporal	-+	•	•		•	•		-	•		•				
c	"	5 Economía y	b) Empleo Permanente	-+						├─ॅ─ ┤								•
0	1	Población	e) Estructura de la población activa	-+	•	•	•	•	•	•		•	•					•
			In) manager and in bandraini denistr					•										

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CARACMAC

-11

+0

TOTAL

-358

ESTUDIO DE IMPACTO AMBIENTAL MATRIE DE CAUSA - EFECTO NIVEL CUALITATIVO Proyectota: Bach, Ing. Carren za Araujo, Jorge Luis profiles profiles		CAUSA - EFECTO C A C C C C C C C C C C A A A A	a) Explorazón de Terreso tos, Geolecnie y Topografia-Cali Sondajes)	b) Triffico de Veticuies (Noviltración de Esquineria)	c) i bupleza y habilitación de Torr Antón de cableria terrante y wage	d) Trabajos Prežiminarus (Buzo, ravelación y replantao)	e) Movimiento de Derras (Esrcas. De Maldes, zapalas,)	O Acapia de Mental de residuos sólidos, demonto y de cartera)	g) Traco definitivo de accesos (Dalinitación de lemense y vies	() Extractors motifices combaccion jerzamiento y pink	Obras de Cancreto Simple y Ara néscios, estibos, efeta, toss de	t) Abundono de Obra replica georal de obra, pintanto lla	I) Triffico Vebicular (Embeln de games y patho)	m) Triffico Postones (Calles, perques)	p) Ocupación espacial	4) Mandanda lenda		SUMA	ITORIA	
F	ACTORES AM	BIENTALES AFECTADOS	2		(See a			(Accepto		Q.	ě	1						+		-
T	1Aire	e) Celidad del sire		3,	17/6			3/2			11/14	13/4	• •			3	•5	+29	-31 +27	-258
	7-214	b) Nivel de Ruido	3/3	.4	3,5	4 ,5	3	4 3	1,1	3,4	1,4	1,4	3 46	3 +6	3 46	1	+0 +0]	-44 +53	
	2Tleme	a) Geomorfologie	1/12	4,7	4 4		4 4										+0 +0		-19	
١.	- Helle	b) Contemineción Superficial (fie., quí., microbio.)	9/10	3	4 4		9 19	3,				3/1	3/1	5/3	; · •	101	+0	_	-27 +39	
1		e) Celidad del sueto para u sos egricoles	4 ,3		7 4		3 1										**	1	-22	
Į ž		b) Conteminación (fisce, químice, microbiológice)	3 +3	4,	1	3 4	4 13		1 11	3 4	3,3						+0 +0	1	-25 +26	
1		a) Aguas Superficiales		3 4	3 6	T	13 12				12 1		3		13 45	45 45	+14 +12	1	-14 +17	1
"	4 Agua	b) Aguss Subterraneas	3/3	9,3	1	Ι	2			4.	1		3 3		**		+5	1	-17	1
		o) Calidad de Agua	14.3		9 6	1	3 15		3.		12.		<u> </u>		·	5 4	+5	7	24 421	1
ı		a) Escorrentis - Draneja Superficial	3.3	3 3	3 4	1	1				4					- 13	+0	1	-19	1
	5 Procesos	b) Erodón	1 3	r	7		3	4 ,									+0 +0	+23	46	+374
	1	a) Cuitivos	3	3	9	3 .	17/										+0 -0	+81	-24	-150
	1 Flore	b) Diverskad	1	7.	3 3	1	_	-5 +3	2 12	***	-3	+7 +6	15 16	5 13	1/16	3 4	+12 +12	1	-34 +41	
10		a) Vertebrados	13.7	12 7	3 3		4.5	10	3 3		3	15	1.3	3	4		46 .4	1	-93	
2	2 Feune	b) Invertebrados	3 4	3	4 7		3 3		3 3	4	13.7	15	-	3 3		?	4 4	1	-\$2	1
6	,	a) Cadena Trofica		4.3	_ *		4 5					- **	- "	- +8		**	+0	1	-6-18	
"	3,- Procesoe	b) Establicaci de Eccelstamas	13.	4.7	5 5	3	4.					**					+7	1	-19	
P	1,- Peterje	a) Calidad Palsalistica		1.5	4	13	3 3	3		2 1	1.	+5			3		+5	+20	-31	-66 -66
R	v .	n) Potencial de vistas	+	-3	+6	 	3	+5		2	12	+3 10	3	1	3 46	18	+10	1	-18	
C B		b) Vistee Penciemics	1		 	 	3 5	 		1,2	1,3	15	5	4,16	3 -6	- +6	+5	1	-17	
ť	4 11- 4-1	a) Cambio de uso egrícole-ganadera regadio	-	4	1.7	 	3	 			**		- 46				+6	+241	+30 -16	+95
	1 Uso del Territorio	b) Zonas verdes		6	1, 10	 	4 3	6			14	+7	3	3	4	+	+16	1	-36	
		d) Servicke Comunitarios	+	16	47	 	13	+6			+6	- 15	+6		+5 +6	+6	+19	1	+0 +37	
1	2	5 Equipamiento	+			 	 	-		4/	14				45 16	+5	+18	1	+0 +0	
8		a) Educeo do	+	 	 	 	 	ļ		14 15	-18	+4			49 46		+22	-	+0 +0	

+27

+24

-52

-25

+148

-92

-30

-3

+29

-26 -34 OPERACIÓN

mavrie de inveracción caura - efecto de la consprudción de pubbye el zonque - caracamaca

EJECUCIÓN DEL PROYECTO

FASE PREVIA

b) Estilos de Vide a) Calidad de vida

) Galud y seguridad o) Estructura de la propiedad s) Empleo Temporal

b) Empleo Permanente

e) Estructure de la pobleción activa

POSITIVAS

NEGATIVAS

+173

-16

-112

-12

-85

-32

-11

3.- Cuiture

4.- Aspecto Humano

5.- Economia y

Posteción

ACCIONES IMPACTANTE

M : Magnitud

M E D

ò

8

CO

800

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

OPERACIÓN

matrie de importancia por ev	BETHE	OW DE	DA CONF	TRUCC	ION D	2		35 BC	ST PR	i -
	FASE	PREVIA			EJECTICA	N DEL P	ROYECTO	ı		
	A P	reno fia- Calicatas,	inaria) de Terreno y vegetación)	ares lanteo)	arras patas,)	ial , desmonte y a)	ccesos s y vías)	icas y pintura)	e y Armado tas, losa de	
ESTUDIO DE IMPACTO AMBIENTAL	C A	de Ter	Vehíca Maqu sción restre	elimin	66. Tit	Mater Ólidos Canter	o de a	metal	Simpt os, ale	

Proyect	MATRIZ P	DIO DE IMPACTO DE IMPORTANCIA LEVENDA - EXTENSIÓN untual Parcial Exterso 1 2 4 h. Ing. Carranza Araujo, Joi ORES AMBIENTALES	A - EXTENSIÓN I TO A N N E T S E S	a) Exploración de Terreno (Suelos, Geotecnia y Topografía- Calkafas, Sondajes)	b) Tráfico de Vericulos (Movilización de Maquinaria)	c) Limpieza y habilitación de Terreno (Alberación de cubierta terrestre y vegetación	d) Trabajos Pretiminares (trazo, nivelación y replanteo)	e) Mevimiento de Tierras (Esxcav. De taludes, zapatos,)	f) Acopio de Material (Acopio de residuos sólidos, desmonte y material de cantera)	g) Trzzo definitivo de accesos (Delinitacion de terrenos y vías)	i) Estructuras metalicas (Construccion, larzamiento y pintura)	j) Obras de Concreto Simple y Armado (Ciementacion, estribos, aletas, losa do calzada)	k) Abandono de Obra (Limpiza genval de obra, pintado final)	f) Tráfico Vehicular (Emisón de gases y polvo)	m) Tráfico Peatonai (Calles, parqueo)	p) Ocupación espacial	q} Mantenimiento
		1 Aire	a) Calidad del aire		8	8		8	4			4	4	4			4
		I Aire	b) Nivel de Ruido	2	2	8	- 8	8	4	1	2	4	2	8	4	2	1
	_		a) Geomorfología	2	4	4		-8									
	I N		b) Contaminación Superficial (fís., quí., microbio		2	4		В	4				1	2	4	2	1
M	E		a) Calidad del suelo para usos agrícolas	1	2	4		8									
1 - 1	R R		b) Contaminación (física, química, microbiológica) 2	4	2	4	8	<u> </u>	1	1	4					
P	T		a) Aguas Superficiales		4	4	!	8				4		1		1	1
	E		b) Aguas Subterraneas	2	4			4		ļ	1	4		1		1	
0			c) Calidad de Agua	2	8	4	<u> </u>	8		1		4		ļ	L		2
_			a) Escorrentía - Drenaje Superficial	1	4	4		8				8		ļ			└
F			b) Erosión		 	2		8	4								igwdown
1	В	11 - Cimra I	a) Cultivos	1	2	8	2	8	ļ								لسبسا
S	I		b) Diversidad	2	2	8			4	2	2	4	4	4	4	2	1
	00	12.+ PBUNZ)	a) Vertebrados	4	4	8		- 8		2	2	4	4	4	4	2	1
C	$\frac{r}{I}$		b) Invertebrados	4	4	8		8		2	2	4	4	4	4	2	1_1_
0	c		a) Cadena Trófica		4			4	ļ								ļ
!			b) Establiidad de Ecosistemas	2	4	8	4	4	2		4		4			4	
!!!	PCT BEUL		a) Calidad Palsajistica		8	8	ļ	8	2		2	8	4	4	4	4	2
	RPA	IZ Intervisionicac F	a) Potencial de vistas	 	 	ļ	 	8			2	4	4	4	4	4	
- s			b) Vistas Panorámicas		2 -	8		8						4	-		 -
0			a) Cambio da uso agrícola-ganadera, regadio	-}	2	8		8	2			4	- 8	4	4	2	2
Č	P		b) Zonas verdes			 ° -	 	- °					-			4	
	o	i 1	d) Servicios Comunitarios		 			 	 		4	4				4	4
M º	В		f) Equipamiento a) Educación	+	 			 -			4	-	1			4	
E C O	L		b) Estilos de Vida	 	├	 			-		8			4	4	4	4
Po	A		a) Calidad de vida	┼	 	8		8			8	8	8	4	4	4	4
l in l	C	· .	b) Salud y seguridad	 	 	4		8	8		<u> </u>	<u> </u>		4	4		
~ 0	ľ		c) Estructura de la propiedad	+	 	8	 		<u>-</u> -	2	4	4					
M	N N		a) Empleo Temporal	4	4	1 4	-4-	4	4	2	2	4	2 1				
				+	 		 	 	-			 					2
6	5 Economía y Población b) Empleo Permanente				4	4	4		4		4	4				4	2

FACULTAD DE INGENIERIA

VIERIA CIVIL

JE EN EL CASERIO DE CARACMACA,

SION LA LIBERTAD

	PROYECTO PRO		
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGIO!	PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE E	ESCUELA ACADEMICO PROFESIONAL DE INGENIE	

	3	ea trie	de importancia por su inte			PV COI	INTR'					3080	V - 1	CARA			
		-	FAS	PREVIA	<u> </u>			EJECUCI	ON DEL PR	ROYECTO					OPER	ACIÓN	
	MAIT ectista	Baja 1 Bach. In	DE IMPACTO AMBIENTAL IMPORTANCIA - INTENSIDAD LEYENDA - INTENSIDAD Media Alta Vay alta Total 2 4 8 12 g. Cerranze Araujo, Jorge Luis	a) Exploración de Terreno s, Geotecnia y Topografía. C Sondajes)	b) Tráfico de Vehículos (Novilización de Maquinaria)	c) Limpleza y habilifación de Terreno (Alteración de cubierta terrestre y vegetación)	d) Trabajos Preliminares (trazo, nivelación y replanteo)	e) Movimiento de Tierras (Esxcav. De taludes, zapatas,)	f) Acopio de Material (Acopio de residuos sólidos, desmonte y material do cantera)	g) Trazo definitivo de accesos (Delimitacion de terrenos y vías)	l) Estructuras metalicas (Construccion, larzamiento y pintura)	j) Obras de Concreto Simple y Amado (Ciementacion, estribos, aletas, losa de caizada)	k) Abandono de Obra (Limpiza genral de obra, pintado final)	i) Tráfico Vehicular (Emisón de gases y polvo)	m) Tráfico Peatonal (Calles, parqueo)	p) Ocupación espacial	q) Mantenimiento
	F	ACTORES	S AMBIENTALES AFECTADOS	- E				<u> </u>				ļ <u>.</u> ļ		ļ			<u> </u>
. 1		1 Aíre	a) Calidad del aire		8	е		12	12			4	8	4			2
. 1			b) Nivel de Ruido	2	4	ξ	2	12	12	1	2	4	4	8	4	8	2
.	1	2,- Tlerra	a) Geomorfología	1	4	4		12	ļ			ļ					ļ <u>.</u>
	N		b) Contaminación Superficial (fís., quí., microbio.)	1 1	4	4		12	4				2	2	4	2	2
M	B	3 Suelos	a) Calidad del suelo para usos agrícolas		2	12		12	ļ								
E	R		b) Contaminación (física, química, microbiológica)	1 1	2	4	2	12		1	1	4					
D	T		a) Aguas Superficiales	<u> </u>	2	4		12				4		1		2	2
	B	4 Agua	b) Aguas Subterraneas	1 1	1	<u> </u>		12	ļ		1	4		1		1	
0			c) Calidad de Agua	1 1	4	4		12		1		4					<u> </u>
.		5 Procesos	a) Escorrentía - Drenaje Superficial	1	8	4		12	<u> </u>			8					
F			b) Erosión			4		12	12								
1	В	1 Flora	a) Cultivos	. 1	4	12	2	12	Į					<u> </u>			L
S	I	11010	b) Diversidad	1	12	12			4	2	2	8	8	4	2	2	4
i	00	2 Fauna	a) Vertebrados	1	12	12		12		2	2	8	4	4	2	2	4
	T		b) invertebrados	1 1	8	12		12		2	2	8	4	4	2	2	4
	I	3 Procesos	a) Cadena Trófica		12			8	1			L					
	c		b) Estabilidad de Ecosistemas	2	12	12	2	8	<u> </u>				8				
	P E E P A	1 Paisaje Intrinseco	a) Calidad Palsajística		8	12		12	4		2	12	8			4	
. [/	RTL	2 Intervisibil	a) Potencial de vistas					12			2	8	8	4	4	4	2
	CU	Z IIIOI VISIDI	b) Vistas Panorámicas					12			2	4	4	4	4	4	
3			a) Cambio de uso agrícola-ganadera, regadio		2	12		12									
0		Territorio	b) Zonas verdes		- 8	12		12	4			4	12	4	4	4	2
C		2	d) Servicios Comunitarios													8	
0	0	Infraestruct	f) Equipamiento								2	2				4	8
M _ !	В	3 Cultura	a) Educación								2		2			4	
E C C	- 1	J Cultura	b) Estilos de Vida						T		8			4	4	4	е
0 0 0	A C	4 Aspests	a) Calidad de vida			4		4	1		8	8	12	4	4	4	8
o N		4 Aspecto Humano	b) Salud y seguridad			4		4	4					4	4		8
M	ò	i istilatio	c) Estructura de la propiedad	1		ε		8		1	4	8					
1		5	a) Empleo Temporal	2	8	E	8	8	8	1	2	4	4				
c			b) Empleo Permanente	1													8
		Población	e) Estructura de la población activa														

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMAC,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

1	38.	ATRIE I	E IMPORTANCIA POR SU M	OMEHO	TO DI	DA G	PARO	RVOO	ton D	n Pui	NTN:	E BO	BOUT	- CAR	ACAR	<u>taga</u>	
		4	FASE	PREVIA				EJECUCI	ON DEL PI	ROYECTO					OPER	ACIÓN	
ESTUDIO DE IMPACTO AMBIENTAL MATRIZ DE IMPORTANCIA - MOMENTO LEPENDA - MOMENTO LARGO PUZZO MEDIANO PUZZO INMEDIATO 2 Proyectista: Bach. Ing. Carranza Araujo, Jorge Luis			PORTANCIA - MOMENTO LEYENDA - MOMENTO MEDIANO PLAZO INMEDIATO 2 4 E	a) Exploración de Terreno (Suelos, Geolecnía y Topografía- Calicatas, Sondajes)	b) Trafico de Vehiculos (Movilización de Maguinaria)	c) Limpieza y habilitación de Terreno (Alteración de cubierta terrestre y vegetación)	d) Trabejos Preiminares (trazo, rivelación y replanteo)	e) Movimiento de Tierras (Esxcav. De taludes, zapatas,)	f) Acopio de Material (Acopio de residuos sólidos, desmonte y material de centera)	g) Trazo definitivo de accesos (Delimítacion de terrenos y vias)	i) Estructuras metalicas (Construccion, lanzamiento y pintura)	j) Obras de Concreto Simple y Armado (Ciementacion, estribos, aletas, losa de catzada)	lt) Abandono de Obra (Limpiza genral de obra, pinibado final)	l) Tráfico Vehicular (Emisón de gases y polvo)	m) Tráfico Peatonal (Calles, parqueo)	p) Ocupación especial	q) Mantenimiento
<u> </u>	FAC	T" -"	a) Calidad del aire	+ -	7	1		4	1			4	- 1	4		 	4
		1 Aire	b) Nivel de Ruido	1 1	 :	1	 	4	1	4	4	4	4	4	4	À	4
		ļ	a) Geomorfología	1	 	 	 	4	<u> </u>			-	<u> </u>				
	I	2 Tierra	b) Contaminación Superficial (fís., quí., microbio.	i i		1	 	4	1		i		4	4	4	2	2
M	N		a) Calidad del suelo para usos agrícolas	1		1	 	4	<u> </u>			 		<u> </u>			
	E	3 Suelos	b) Contaminación (física, química, microbiológica		 ;	1	1	4		4	4	4					
E D I O	R		a) Aguas Superficiales	4		1	 	4				4		2		2	2
	T	4 . 4	b) Aguas Subterraneas	1 1		 		4			4	4		1		2	
	E	4 Agua b) c)	c) Calidad de Agua	 		1	 	4		4	- -	4		<u>'</u>			2
		4 Agua b	a) Escorrentía - Drenaje Superficial	+;		 		4				4					
		5 Procesos		 	ļ		<u> </u>		1			-					
F			b) Erosión	1-1-		1	1	4				-					
ſ	В	1 Flora	a) Cultivos	1 1	 	1		 "		- 2	4	ļ.,	2	4	4	2	4
S	I		b) Diversidad				 	4	<u> </u>			4					
l	00	2 Fauna	a) Vertebrados	1		1		4		2	4	4	2	4	4	4 2	4
C	T 1		b) Invertebrados	1		1				2	4	4	2	4	4		4
۵	C	3 Procesos	a) Cadena Trófica	 		ļ	-	4									
		4 6 5	b) Estabilidad de Ecosistemas	1		1	1	4					1				
	PE EPA	1 Palsaje intrinseco	a) Calidad Paisajística	<u> </u>		1		4	1		4	4	2			4	
	RTL	2 Intervisibil	a) Potencial de vistas	ļ				4			4	4	2	4	4	4	4
	0		b) Vistas Panorámicas					4			4	4	2	4	4	4	
8		1 Uso del	a) Cambio de uso agrícola-ganadera, regadio			1		4									
00		Territorio	b) Zonas verdes			1		4	1			1	2	4	2	2	4
Ĭ	P	2	d) Servicios Comunitarios													2	
	0	Infraestruct	f) Equipamiento								1	2				2	4
M E	В	3 Cultura	a) Educación								2		2			2	
MECO.	L A	S Cultura	b) Estilos de Vida			Ì					2			2	2	2	4
	C	4 400000	a) Calidad de vida			1		4			2	2	2	2	2	2	4
I 🕳 NI I	I	4 Aspecto Humano	b) Salud y seguridad			1		4	1					2	2		4
Ó	ó	r iumano	c) Estructura de la propiedad	1		1		4		1	1	2					
m	N	5	a) Empleo Temporal	1	,	1	1	4	1	4	4	4	4				
c		Economia y	b) Empleo Permanente	1			<u> </u>	Ī									4
o		Población	e) Estructura de la población activa	1		1	1	4	1		4	4				4	4
·					ــــــ	·											

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA.

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

25-		A	FASE	PREVIA EJECUCIÓN DEL PROYECTO										OPERACIÓN				
MA2	RIZ	DE IMPOI LEY Fugaz 1 Ta: Bach. In	IMPACTO AMBIENTAL RATANCIA - PERSISTENCIA Temporal Permanente 2	a) Exploración de Terreno (Suelos, Geofecnía y Topografia- Calicatas, Sondajes)	b) Trafico de Vehiculos (Movilización de Maquinaria)	c) Limpleza y habilifación de Terreno (Alteración de cubierta terrestre y vegelación)	d) Trabajos Preliminares (trazo, nivelación y replanteo)	e) Movimiento de Tierras (Esxcav. De tatudes, zapatas,)	f) Acopio de Material (Acopio de residuos sólidos, desmonte y material de cantera)	g) Trazo definitivo de accesos (Delimitacion de ferrenos y vías)	i) Estructuras metalicas (Construccion,larizamiento y pintura)	j) Obras de Concreto Simple y Armado (Ciemenlacion, estribos, aletas, iosa de catzada)	lt) Abandono de Obra (Limpiza genral de obra, pinlado final)	l) Trafico Vehicular (Emisón de gases y polvo)	m) Tráfico Peatonal (Calles, parqueo)	p) Ocupación espacial	q) Mantenimiento	
	FAC	1	a) Calidad del aire	 "	 	1		4	1 1			2	4	4			4	
		1 Aire	b) Nivel de Ruido	1 1	 	1 1	1	 	 	2	2	2	1	4	4	4 ==	4	
M	I	[a) Geomorfología	2	1	4	·	4	 				-			·		
	N	2 Herra	b) Contaminación Superficial (fís., quí., microbio.) 2	1	4		4	2				1	4	4	4	4	
E		3 5	a) Calidad del suelo para usos agrícolas b) Contaminación (física, química, microbiológica	1	4	4		4										
D	E R	3 Suelos	b) Contaminación (física, química, microbiológica) 1	2	4	2	4		1	1	2						
1			a) Aguas Superficiales b) Aguas Subterraneas		4	4		4				2		4		4	4	
0	T	4 Agua	b) Aguas Subterraneas	1	2			4			1	2		4		4		
- 0	E		c) Calidad de Agua	1	2	2		2		1		2					4	
		5 Processe	a) Escorrentía - Drenaje Superficial	1	4	4		4				2						
F		J F 100 8303	b) Erosión			4		4	4									
1 1	В	1 Flora	a) Cultivos	1	4	4	2	4										
	7	1 ribia	b) Diversidad	1	2	4			2	2	2	4	4	4	4	4	4	
S	200		a) Vertebrados	1	2	4		2		2	2	4	4	4	4	4	4	
	TO	1 1	b) Invertebrados	1	2	4		2		2	2	4	4	4	4	4	4	
C	i	3 - Procesos	a) Cadena Trófica		2			2										
0	1		D) Estabilidad de Ecosistemas	1	4	4	2	4					4					
1	CT	1 Palsaje	a) Calidad Palsajística	<u> </u>	4	4		4	4		4	4	4			4		
	E U .	12 intervisibil	a) Potencial de vistas b) Vistas Panorámicas					4	 		4	2	4	4	4	4	4	
	PA	1 122 441	b) Vistas Panorámicas			ļ,		4	 		4	2	4	4	4	4		
8		1 Uso del	a) Cambio de uso agrícola-ganadera, regadio	 	4	4		4	 									
0	P		b) Zonas verdes		4	4		4	4			2	4	4	4	4	4	
C	0	; 1	d) Servicios Comunitarios	 				<u> </u>			ļ,	<u> </u>				4		
MI	В		f) Equipamiento	 		 			├──┤		4	1				4 4	4	
EOI	L		a) Educación b) Estilos de Vida	 		 			 		4		2			4	4	
DEC			a) Calidad de vida	 		4		4	├──┤		4	4		4	4	4	4 4	
	C	14'- Mahaara L	a) Calidad de vida b) Salud y seguridad	 		2		2	 2 		- 4	-4	4	4	4		4	
00	I	Humano	o) Sarud y seguridad c) Estructura de la propiedad	 		4		4			2	4						
N	0	5	a) Empleo Temporal	1		 	1	1-4-	 		2	1 1	2 -				——	
Ó	N	Economía y	b) Empleo Temporal b) Empleo Permanente	 		 			├──			 					- 4	
M	l "		e) Estructura de la población activa	1 1	1		4	1	\vdash \downarrow		2	2						
		I. ANIGOIO!	e / Laci de ra la boniscion senas		<u> </u>	1	· · · · · ·	<u> </u>										

matrie de importancia por su persistencia de la construcción de puente el bosque - caracamaga

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMAC.
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ESTUDIO DE IMPACTO AMBIENTAL MATRIE DE IMPORTANCIA - REVERSIBILIDAD LEYENDA- REVERSIBILIDAD Corto Plazo Mediano Plazo Noncipi de Pesidinos Solidos, desimones por pesidinos de Referencion, leitaras metalicas Bach. Ing. Carranza Aranjo, Jorge Initias de Coección, designos de Servicios de Madunaria) Proyectista: Bach. Ing. Carranza Aranjo, Jorge Initias de Conceto Simple y Armado Sondajes) Proyectista: Bach. Ing. Carranza Aranjo, Jorge Initias de Conceto Simple y Armado Operas de Conceto Simple y Armado Operativo y Armado Operas de Conceto Simple y Armado Operas de Conceto Simple y Armado Operativo y Armado Operati	l) Tráfico Vehkular (Emisón de gases y polvo)	m) Tráfico Peatonal (Calles, parqueo)	p) Ocupación espacial	q) Mantenimiento
M I 2Tierra a) Geomorfología b) Contaminación Superficial (fís., quí., microbiológica) 2 2 4 2 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ĺ	1	1	
M I 2Tierra a) Geomorfología 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_	
M	4 4	4	+4	2 2
N E N E D E		- 		
B 3Suelos a) Calidad del suelo para usos agrícolas 2 2 4 4 1 1 1 1	1	1	2	2
D 2 5 Suelos b) Contaminación (física, química, microbiológica) 2 2 4 2 4 1 1 1				
	1		2	2
T 4 Agua b) Aguas Subterraneas 1 2 4 1 2	1		2	
C) Calidad de Agua				2
5. Procesos a) Escorrentía - Drenaje Superficial 1 4 4 4 2				
F b Erosión 4 4 4				
1 B 1 Flora a) Cultivos 1 4 4 2 4				
p j D Diversidad 2 4 2 2 2 2	4	4	4	4
1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4	4	4	4
b) invertebrados 1 2 2 2 2 2	4	4	4	4
i A i la nallo Capena frotica				
D) Establidad de Ecosistenias	- 		 	
the production of the producti	4	4	4	1 2
E E U L R P A 2 Intervel bl bl Vistas Penorámicas 4 1 2 2 2 B) Vistas Penorámicas 4 1 2 2 2	+ 4	4 4	+ 4	+
i in a constant provistas panoramicas i i i i i i i i i i i i i i i i i i i				+
S 1 Uso del a) Cambio de uso agrícola-ganadera, regadio 4 4 4 O P Territorio b) Zonas verdes 4 4 4 4 4 2 2	- 4	+	- 	2
		-+	+	
			1 à	2
			1 4	+
2 3 Cultura by Settles do Vide	4	4	1 4	4
A la Califed de vida	4	4	4	4
b) Salud v seguridad	4	4	1	1 4
I Humano Ic) Estructura de la propiedad 4 4 1 1 1 1		1	1	1
0 5 la) Empleo Temporal 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1	1
O N Economia v h) Empleo Permanente			T	2
M Población e) Estructura de la población activa 1 1 1 1 1 1 1 1			1 4	4

Hatrie de importancia de la construcción de puente el bosque - caracamaca

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

				FASE	PREVIA	A EJECUCIÓN DEL PROYECTO									OPERACIÓN				
3.6	ATRIZ	LE Sinergismo 1	MPACTO AMBIENTAL ORTANCIA - SINERGIA IVENDA - SINERGIA Sinérgico Muy Sinérgico 2 4 arranza Araujo, Jorge Luis	- MPACTANTES	a) Exploración de Terreno (Suelos, Geofecnía y Topografía- Calicatas, Sondajes)	b) Tráfico do Vehiculos (Movilización do Maquinaria)	c) Limpieza y habilitación de Terreno (Alteración de cubierta terrestre y vegetación)	d) Trabajos Preliminares (tazo, nivelación y replanteo)	e) Movimiento de Tienas (Esxcav. De taludes, zapatas,)	f) Acopio de Material (Acopio de residuos sólidos, desmonte y material de cantera)	g) Trazo definitivo de accesos (Delimítacion de terrenos y vías)	i) Estructuras metalicas (Construccion, lanzamiento y pintura)	j) Obras de Concreto Simple y Armado (Giementacion, estribos, aletas, losa de catzada)	k) Abandono de Obra (Limpiza genral de obra, pirtado final)	l) Tráfico Vehicular (Emisón de gases y polvo)	m) Tráfico Peatonal (Calles, parqueo)	p) Ocupación espacial	q) Wantenimiento	
 	PACI		BIENTALES AFECTADOS a) Calidad del aire		- 5	1	1		- 1				1	1	2			2	
1		1 Aire	b) Nivel de Ruido		1			1			1	1		1	4	4	4	4	
	,		a) Geomorfología		1	1	2		2	<u>:</u>					<u> </u>		· · · · · ·		
М	N	2 Tierra	b) Contaminación Superficial (fís., quí., micr	robio.)	1	1	2		2	2				1	4	4	4	4	
·	B		a) Calidad del suelo para usos agrícolas		2	1	2		2										
_		3 Suelos	b) Contaminación (física, química, microbio	iógica)	2	2	2	1	2		1	1	1						
ם	R		a) Aguas Superficiales			2	2		2				2		2		2	2	
	T	4 Agua	b) Aguas Subterraneas		2	2			1			1	2		. 2		2		
0	E		c) Calidad de Agua		1	1	2		2		1 1		2					1	
•		5 Procesos	a) Escorrentía - Drenaje Superficial		1	2	2		1				1						
_		1., ,	ibi Erosión						4	2									
F	В	1 Flora	a) Cultivos		1	2	2	1	2										
1 1	1	2. 1.0.0	b) Diversidad		1	2	2			2		1	2	2	4	4	4	4	
s	00	2 Fauna	a) Vertebrados			2	2		2				2	2	4	4	4	4	
1 7	TO		b) Invertebrados		7	2	2		2		1		2	2	4	4	4	4	
	I	3 Procesos	a) Cadena Trófica		-,	2	2-		2 2					2					
C			b) Estabilidad de Ecosistemas																
0	P E E P A	1 Paisaje Intrinseco	a) Calidad Palsajística			2	2		4	2	1	1	1	1			2		
i	RTL	2 Intervisibil	a) Potencial de vistas						2		1	1	1	1	4	4	4	4	
	C V	2 11106: VISION	b) Vistas Panorámicas						2		1	1	1	1	4	4	4		
8		1 Uso del	a) Cambio de uso agrícola-ganadera, regadio	0		1	2		2										
0	P	Territorio	b) Zonas verdes			1	2		2	2			2	2	4	4	4	4	
C	0	2	d) Servicios Comunitarios														1		
MI	В	Infraestruct	f) Equipamiento]							1	1				2	2	
EOI	L	3 Cultura	a) Educación									1		11			2		
DEC	Α		b) Estilos de Vida									1 1			4	4	4	4	
I CO	 C	4 Aspecto	a) Calidad de vida				2		4			2	2	2	4	4	4	4 2	
00	ĭ	Humano	b) Salud y seguridad				1		2	2					<u> </u>	2			
N	ó	5	c) Estructura de la propiedad				2		2		1 1	1	1						
اۃا	_		a) Empleo Temporal		1	1		1		11		1	1	1					
M			b) Empleo Permanente			1						- 4					1		
	L	Población	a) Estructura de la población activa				<u>'</u> l				1	,							

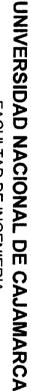
Matrix de importancia por su sinercia de la construcción de publica el bosque - caracamaca

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

		~ *****	FA	FASE PREVIA EJECUCIÓN DEL PROYECTO								OPERACIÓN					
MA	ESTUDIO DE IMPACTO AMBIENTAL MATRIZ DE IMPORTANCIA - ACUMULACIÓN LEYENDA - ACUMULACIÓN SImple Acumulativo 1 4 Proyectista: Bach. Ing. Carranza Araujo, Jorge Luis FACTORES AMBIENTALES AFECTADOS			S H - I X Y - I O Y U K - I S	Sondajes) b) Tráfico de Vehiculos (Movilización de Maquinaria)	c) Limpieza y habilitación de Terreno (Alteración de cubierta terrestre y vegetación)	d) Trabajos Preliminares (trazo, nivelación y replanteo)	e) Movimiento de Tierras (Esxcav. De taludes, zapatas,)	f) Acopio de Matenial (Acopio de residuos sólidos, desmonts y material de cantera)	g) Trazo definitivo de accesos (Delimitacion de terrenos y vías)	i) Estructuras metalicas (Construccion, larzamiento y pintura)	j) Obras de Concreto Simplo y Armado (Ciementacion, estribos, aletas, losa de calzada)	t) Abandono de Obra (Limpiza genral de obra, pintado final)	i) Tráfico Vehicular (Emisón de gases y polvo)	m) Tráfico Peatonal (Calles, parqueo)	p) Ocupación espacial	q) Manten îmiento
	1	T	a) Calidad del aire	 				 	 1 		<u> </u>	4	7	4			4
	l		b) Nivel de Ruido	1	 	 	1	1	1	1	1	1	 	4	4	4	4
М	1		a) Geomorfología	1	1	1	 	4									
,	N	2 Herra	b) Contaminación Superficial (fís., quí., microb	0.) 1	1	4		4	1				4	1	1	1	4
E	E	2 5	a) Caildad del suelo para usos agricolas	1 1	1	4		4									
D	R	3 Suelos	b) Contaminación (física, química, microbiológ	ca) 1	1	4	1	4		1	1	4					
			a) Aguas Superficiales		1	4		4				4		4		4	4
0	T		b) Aguas Subterraneas	1	1			1			1	4		4		1	
0	B		c) Calidad de Agua	1	1	1		4		1		4					4
1	İ		a) Escorrentía - Drenaje Superficial	1	1	1		1				1 :					
F			b) Erosión			1		4	1								
1 1	В	1 Flora	a) Cultivos	1	1	- 4	1	4									
يٰ ا	1		b) Diversidad	1	11	1			1	1	1	1	1	4	4	4	4
S	l o c	2 Fauna	a) Vertebrados	1	1	1 1		4		1	1	11	1	4	4	4	4
1	TO		b) invertebrados	1	1	2		4		1	1	1	11	4	4	4	4
С	i	3 Procesos	a) Cade na Trófica					4									
0	1		b) Estabilidad de Ecosistemas	1	1	1 1	1	4.	Ļ				4				
	PCT	1 Paisaje	a) Calidad Palsajística			4	ļ	4	1	1	1	1	1			4	
	EEUI	2 Intervisibil	a) Potencial de vistas b) Vistas Panorámicas				<u> </u>	4		1	1	1	1	4	4	4	4
	KFA	12 16- 20	b) Vistas Panorámicas					4	ļ	7	11	1	1	4	4	4	
8	P .	1 Uso del Territorio	a) Cambio de uso agrícola-ganadera, regadio			4		4	 			 	ļ <u>.</u>	4	4	4	
0	6	Z	b) Zonas verdes								·····			4		1 1	
C		1	d) Servicios Comunitarios				 		<u></u>		1	1				1	1
MI	В	1	f) Equipamiento a) Educación				 	ļ	 			 	1	<u> </u>		1 1	
EOI	L	3 Cultura	b) Estilos de Vida			+	 	-	 		 		 	4	4	4	4
DEC	A		a) Calidad de vida			4		1			1	4	1 21	4		4	4
100	C	1- ASSECTO	b) Salud y seguridad		_		 	 	-				' -	4	4		4
00	7		c) Estructura de la propiedad			4		1-	 ' 	1				-			
N	Ó	5	a) Empleo Temporal		+	7	1	1	1		1		1				
6	N		b) Empleo Permanente	<u>-</u> -		 	 		 		'	 					
M			e) Estructura de la población activa	11		1 1	1	1	1 1		1	1-1				1	1
		T ANIMAIAIT	INT BASI APPAIG ME IG NAMICHASI GPSIAG				<u> </u>					• • •					

matrie de importancia por su acumulación de la construcción de puente el bosque - caracamaca


FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA.

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

1	-	TAM	RIE DE IMPORTANCIA POR SU	Bract	ro DI	LA GC	HPTR	TGOIC	W DE	PUENT	re el	Boset	72 - QA	RACA	MAGA		
	FASE PREVIA EJECUCIÓN DEL PROYECTO												OPERACIÓN				
	MATR	i ledire	I A P C A A P C A A C C C A A C C C C C C	a) Exploración de Terreno (Suelos, Geotecnia y Topografía- Calicatas, Sondajes)	b) Tráfico de Vehículos (Novilización de Maquinaria)	c) Umpieza y habilitación de Terreno (Alteración de cubierta terrestre y vegetación)	d) Trabajos Preliminares (frazo, nivelación y replanteo)	e) Movimiento de Tierras (Escav. De taludes, zapatas,)	f) Acopio de Meteriel (Acopio de residuos sólidos, desmonte y material de cantera)	g) Trazo definitivo de accesos (Delinitacion de terrenos y vias)	i) Estructuras metalicas (Construccion, lanzamiento y pintura)	j) Obras de Concreto Simple y Armado (Ciementacion, estribos, aletas, tosa de calzada)	t) Abandono de Obra (Limpiza genral de obra, pintado final)	l) Tráfico Vehleular (Emisón de gases y polvo)	m) Traffico Peatonai (Calles, parqueo)	p} Ocupación espacial	q) Wantenimiento
	FAC		BIENTALES AFECTADOS	€													
	Ĭ		a) Calidad del aire		1	1 1	l	1	1			4	4	4			4
1 I			b) Nivel de Ruido	1	1	1 1	1	1	11	1	4	4	4	4	4	4	4
M	I	2 Tierra	a) Geomorfología	4	4	4		4				L		L			<u> </u>
E	N		b) Contaminación Superficial (fís., quí., microbio.	4	4	4		4	4			ļ	11	4	4	4	4
D	E	3 Suelos	a) Calidad del suelo para usos agrícolas	4	4	4		4				<u> </u>					
ט וו	R		b) Contaminación (física, química, microbiológica	4	4	4	4	4		1	1	4					
	T	1	a) Aguas Superficiales		4	4		4				4		1		1	1 1
0	E	4 Agua	b) Aguas Subterraneas	4	4	<u> </u>		4			1	4		11		1	
	E		c) Calidad de Agua	4	4	4		4		11		4					1
	1	5 Procesos	a) Escorrentía - Drenaje Superficial	4	4	4		4				4					
F			b) Erosión			4		4	4								
I	B		a) Cultivos	4	4	4	4	4									
l s	I _		b) Diversidad	4	4	4			4	11	4	4	4	4	4	4	4
3	20		a) Vertebrados	1 1	1	1		1		1	4	4	4	4	4	4	4
	TO	Li	b) invertebrados	4	4	2		4		1	4	4	4	4	4	4	4
C	i	3 Procesos	a) Cadena Trófica		4			4				<u> </u>					
0			b) Estabilidad de Ecosistemas	4	4	4	4	4					4				
	CT	1. Palsale	a) Calidad Paisajistica		4	4		4	4	1	4	4	4			4	
	RPA	2 Intervisibil	a) Potencial de vistas	-		ļ		4		1	4	4	4	4	4	4	4
	FA		D) Vistas Panoramicas	-		ļ		4		. 1	4	4	4	4	4	4	<u> </u>
8	P	1 Uso del	a) Cambio de uso agrícola-ganadera, regadio	 	4	4		4	4				4	4	4	4	4
0		Territorio Z-	b) Zonas verdes d) Servicios Comunitarios	+	4			4				ļ <u>-</u> '	4			4	4
C	0	1	f) Equipamiento	·		-			 		4					7-	4
M I	В		a) Educación	 									1			4	
EOI	L		b) Estilos de Vida	 		 			 			 	 	4	4	- -	4
DEC			a) Calidad de vida	 		4 :	\vdash	4	 		4	-4	4	4	4	4	1 - 2
	C	Landabeero I	b) Salud y seguridad	 		4		4	-4-1			 		4	4		1 7
00	I	Humano	c) Estructura de la propiedad	+		4		4	 	1		 				-	
N	0	5	a) Empleo Temporal	1 1	1	1 1	1	1	 1 	<u> </u>	1		7				
Ó	N	Economia v	b) Empleo Permanente	 	 -	†	·		 			├─					4
M	"	Población	e) Estructura de la población activa	1 1		1	1	1	 		1	1 1				4	4
		1MANIAL	et estimetal dat in handriatiatidenta					<u> </u>					أحسسيسا				

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Committee Comm	200					PREVIA	VIA EJECUCIÓN DEL PROYECTO									OPERACIÓN				
Name	MAZ	RIZ	IMPOR LEY Irregular 1 Bach, Ing. C	ENDA - PERIODICIDAD ENDA - PERIODICIDAD Penòdico Continuo 2 4 Farranza Araujo, Jorge Luis	PACTANTE	a) Exploración de Terren Geotecnia y Topografía- Sondajes)	b) Tráfico de Vehículos (Movilización de Maquinaria)	c) Limpieza y habilitación de Terreno (Alteración de cubierta terrestre y vegetación)	d) Trabajos Preliminares (trazo, nivelación y replanteo)	iento de taludes,	1) Acopio de Material (Acopio de residuos sólidos, desmonte y material de cantera)	g) Trazo definitivo de accesos (Delimitacion de terrenos y vías)	i) Estructuras metalicas (Construccion, lanzamiento y pintura)	Obras de Concreto Simple y Armado (Ciementacion, estribos, aletas, tosa de caizada)	no de obra,	I) Tráfico Vehicular (Emisón de gases y polvo)	m) Tráfico Peatonai (Calles, parqueo)	p) Ocupación espacial	q) Mantenimiento	
M		FACT				85														
N																				
F				b) Nivel de Ruido					2	2	2	1	2	4	2	4	4	4	2	
F	M	I	2. Tierra	a) Geomorfología						4										
D B Callidad del sucio para usos agricolas 2 2 2 4 1 2 2 1 1 1 1 1 1 1	l F	N	1	 b) Contaminación Superficial (ffs., quí., mic 	crobio.)						2			I	2	2	2	44		
No. State Contaminación (física, química, microbiológica) 2 2 2 4 1 2 2 1 1 1 1 1 1 1		B	2 0	a) Calidad del suelo para usos agrícolas																
T	ן ט			 b) Contaminación (física, química, microbio 	oiógica)	2			2			1	2							
Nation Capability Capabil				a) Aguas Superficiales				2										1		
F F	0	ł .	4 Agua	b) Aguas Subterraneas		1							2			1		1		
F S S I C S I C S I C S I C S I I S I I I I I I		۵		c) Calidad de Agua		1						1							1	
S	_		5 Procesos	a) Escorrentía - Drenaje Superficial		2	2				اللبيا			2						
1	F		ļ <u>. </u>	b) Erosión							2									
S I	1 1	В					1		2	4										
C	9	I ~	1			2	<u>_</u>				1 2			· · · · · · · · · · · · · · · · · · ·		4	4			
C	1 ,										<u> </u>									
C	1 1	T												4		-4	4	4		
P C T 1. Palsaje a Calidad Palsajistica 1 2 4 2 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	C		3 Procesos	a) Cadena Trofica											- , -					
February A C C C C C C C C C	0		1 . Dalasia	a) Calidad Palasistias			- 1						,	 					 	
S 1 Usc del 3 Cambio de uso agrícola-ganadera, regadio 1 1 1 1 1 1 1 1 1			/ [a) Catingad Paisajistica											· · ·	- 4				
S			2 Intervisibil	b) Vietes Denevireless																
C C C C C C C C C C					10		1	1												
C		p	Territorio	h) Zonas verdes	10									4	- 4		- 7	Δ.	<u> </u>	
M B Infraestruct Equipamiento														 						
E O I L A 3 Culture b) Estilos de Vida		-	Infraestruct	f) Fauinamiento									2~	2				4	4	
D E C				a) Educación											1					
C O O O O O O O O O O O O O O O O O O			3 Cultura	b) Estilos de Vida		-					 					4	4	4	4	
Column C			4 Agreete	a) Calidad de vida				2		4		i	4	4	4	4	4	4	4	
N			14's Wabecro	b) Salud v seguridad		-		2		4	2					4	4		4_	
N 0 5 a) Empleo Temporal 2 2 2 2 2 2 2 2 O N Economía y b) Empleo Permanente 2 2 2 2 2 2 2		-	numano	c) Estructura de la propiedad						4										
N Economía y b) Empleo Permanente		-	5	a) Empleo Temporal		2	2	2	2	2	2	11	2	2	2					
M Población e) Estructura de la población activa 2 2 2 2 2 1 1 1 4 4		N	Economia y	b) Empleo Permanente															2	
	M		Población	e) Estructura de la población activa		2	2	2	2	2	2		1	1 1				4	4	

matrie de importancia por su periodicidad. De la dei la construcción de puente el bosque - caracamaca

CAJAMARCA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD EJECUCION DEL PROYECTO **OPERACIÓN** j) Obras de Concreto Simple y Armado (Ciementacion, estribos, aletas, losa de k) Abandono de Obra (Limpiza genral de obra, pintado final) (Construccion, lanzamiento y pintura) g) Trizo definitivo de accesos (Delimitacion de terrenos y vías) e) Movimiento de Tierras (Esxcav. De taludes, zapatas, (Emisón de gases y polvo) i) Estructuras metalicas f) Acopio de Material Acopio de residuos sólidos, d p) Ocupación espacial material de cantera) m) Tráffico Peatonal (Calles, parqueo) I) Tráfico Vehicula 귬 ō 4 4 4 4 4 2 2 2 4 2 2 2 2 2 4 1 4 4 4 4 4 1 4 4 4 4 4 A j 4 4 4 4 4 1 4 4 4 4 4 2 2 1 2 4 4 4 d 8 d 2 4 4 CARACMACA 4 4 4 1 4 4 4 4 4 4

Matrie de importancia por su re	CUPERAS	ibidad de la comperucción de publice il bosqui	- Caracamaca
			ويبرون فالتفاقي فالتفاق فالمناف والمراج والمناف والمراجع والمناف والمناف والمناف والمناف والمناف والمناف والمناف
F/	ASE PREVIA	EJECUCIÓN DEL PROYECTO	OPERACIÓN

d) Trabajos Pretiminares (trazo, nivelación y replanteo)

c) Limpleza y habilitación de Terreno (Alteración de cubierta terrestre y ,

2

Ė

4

Б

7

4

2

2

2

8

8

٤

£,

4

4

Ł

4

2

2

2

2

4

vegetación)

b) Tráfico de Vehiculos (Movilización de Mequinaria)

4

à

4

2

2

ゔ

4

4

4

4

4

4

4

4

a) Exploración de Terreno Suelos, Geotecnia y Topografía- Calica

A C C PACT

0 A N E S NTE

S

		٠ <u>٠</u> ٠٠, ٢٠٠٠) ">4· (a)
		- E S		
ESTUDIO	DE IMPA	CTO AM	BIENTAL	
MATRIZ DE IN	<i>Portanci</i>	A - REC	UPERABILI	DAD
	LEYENDA - RECL	JPERABILIDAD		
Recup. inmediata	Rec. Med. plazo	Mit gable	I morner e e	l i
1	2	4		
Proyectista:	ach ing Comon	n Amula Ian	Lule	

Bach. ing. Carranza Araujo, Jorge Luis

a) Calidad Palsajística

a) Potencial de vistas

b) Zonas verdes

f) Equipamiento

b) Estilos de Vida

a) Calidad de vida

b) Salud y seguridad

a) Educación

b) Vistas Panorámicas

d) Servicios Comunitarios

c) Estructura de la propledad

a) Empleo Temporal b) Empleo Permanente e) Estructura de la población activa

a) Cadena Trófica b) Estabilidad de Ecosistemas

b) Contaminación Superficial (fís., quí., microbio

b) Contaminacion Supericiai (ris., qui., microbio.)
a) Calidad del suelo para usos agrícolas
b) Contaminación (física, química, microbiológica)
a) Aguas Superficiales
b) Aguas Subterraneas
c) Calidad de Agua
a) Escorrentía - Orenaje Superficial
b) Erosión

a) Cambio de uso agrícola-ganadera, regadio

			Such ang.	carranta Araujo, torge turs
		FACT	ORES AME	BIENTALES AFECTADOS
			1 Aire	a) Calidad del alre b) Nivel de Ruido
	M	I N	2 Tlerra	a) Geomorfología b) Contaminación Superficial (f
	E	E	3 Suelos	a) Calidad del suelo para usos a b) Contaminación (física, quími
	10	R T	4 Agua	a) Aguas Superficiales b) Aguas Subterraneas
		E	5 Procesos	c) Calidad de Agua a) Escorrentía - Orenaje Superfi
	F	В	J F1006803	b) Erosión a) Cultivos
	s	I C	1 Flora	b) Diversidad a) Vertebrados
		TO	2 Fauna	b) invertebrados
- 1	C	7	3 Procesos	a) Cadena Trófica

0

8

0

C

M 1

E O

00

DEC

100

N

Ó

M

PCT

RPA

P

0

В

L

A

С

Ó

N

EBUL

1.- Palsaje

1.- Uso del

Infraestruct

3.- Cultura

4.- Aspecto

Economia y

Población

Humano

Territorio

П	2
•	3
\leq	-
\mathbf{C}	•
CUL	_
_	4
\pm	
ъ.	
<u>_</u>	C
TAD DE II	
유	_
	Ž
=	
$\stackrel{\leftarrow}{\sim}$	4
留	
Ш	_
\overline{z}	ב
=	ñ
Ш	
\mathbf{x}	
~	•
➣	7
	~

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
ESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

PROYECTO PROFESIONAL: CONSTRUCCION		2000 2000	*
FESIONA	ES		VIND
L: CONST	CUELA		/ERS
ESIONAL: CONSTRUCCION	ESCUELA ACADE	FAC	RSIDAD

		المهند المراب	FA	BE PRE	VIA			_	EJECUCI	ÓN DEL PR	ROYECTO					OPER	ACIÓN	
E	Compa <2 oyecti	LÉYENG Bach.	IMPACTO AMBIENTAL CCIA DEL IMPACTO DA - MATRIZ DEIMPORTANCIA Jarados Severos S-50 59-75 Ing. Carranza Araujo, Jorge Luis	Surface A C V L C V U W L		b) Tráfico de Vehículos (Movilización de Nequinaria)	c) Limpieza y habilitación de Terreno (Alteración de cubierta terrestre y vegetación)	d) Trabajos Preliminares (trazo, nivelación y replanteo)	e) Movimiento de Tierras (Esxcav. De taludes, zapates,)	f) Acopio de Material (Acopio de residuos sólidos, desmonte y material de cantera)	g) Trazo definitivo de accesos (Delimitacion de terrenos y vías)	i) Estucturas metalicas (Construccion,ianzamiento y pintura)	Obras de Concreto Simple y Armado (Ciementacion, estribos, aletas, losa de catzada)	k) Abandono de Obra (Limpiza genral de obra, pintado final)	i) Tráfico Vehicul≖ (Emisôn de gases y polvo)	m) Tráfico Peatona! (Calles, parqueo)	p) Ocupación espacial	q) Martenimiento
<u> </u>	FAC		MBIENTALES AFECTADOS	<u>&</u>	\perp													
l I		1 Aire	a) Calidad del aire			49	49		64	53			41	47	54		ACTION AND ADMINISTRATION AND	37
			b) Nivel de Ruido	20		26	50	32	65	54	17	26	38	31		52	60	33
M	I	2 Tlerra	a) Geomorfología	27		39	44		Lamere									
E	N	L	b) Contaminación Superficial (fís., quí., microb	io.) 21		32	43			38				24	32	42	33	30
	E	3 Suelos	a) Calidad del suelo para usos agrícolas	20		33	73		 									
D	R	(b) Contaminación (física, guimica, micro		(ca) 22		32	41	31			16	18	40					
	T		a) Aguas Superficiales			34	45						42		22		26	26
0	Ē	4 Agua	b) Aguas Subterraneas	20		27	ļ		70			18	42		21		20	L
	E		c) Calidad de Agua	19		43	36			ļ	16		42 (21
		5 Procesos	a) Escorrentía - Drenaje Superficial	18		52	40		عارض الرافيق				57					
F		L	b) Erosión				35			66								
	В		a) Cultivos	18		37		27										
	7		b) Diversidad	20		57				38	20	30	57	53	52	46	40	44
8	20		a) Vertebrados	19		58	72				20	30	57	41	56	46	42	44
	TO	L	b) invertebrados	24		49	75				20	30	57	41	_56	46	40	44
C	ī	3 Procesos	a) Cadena Trófica			61			62									
o	_		b) Estabilidad de Ecosistemas	23		65	72	29	62					53				
~	CT	1 Palsaje	a) Calidad Palsajística		\Box	61				36	6	38		51			50	
	E U	2 Intervisibil	a) Potencial de vistas								6	32	52	51	52	52	52	40
	PA		b) Vistas Panorámicas								6	31	46	39	52	52	52	
9		1 Uso del	a) Cambio de uso agrícola-ganadera, regadio			27			73									
0	P		b) Zonas verdes			49				36			35	72	50	48	46	40
C	0	14.	d) Servicios Comunitarios														60	
h 1	B	Infraestruct	f) Equipamiento		\perp							30	25				49	57
e o il	L	3 Cultura	a) Educación									29		18			49	
OEG	Ā		b) Estilos de Vida		[56			50	50	50	64
cd	c		a) Calidad de vida		$-\Gamma$		51		57			59	62	71	50	50	50	64
607	I	Humano	b) Salud y seguridad		\Box		34		51	44					48	48		59
N		11	c) Estructura de la propiedad				63		59		13	25	40					
ő	Ó	5,-	a) Empleo Temporal	24		42	42	42	45	42	25	26	35	32				
	N	Economía y	b) Empleo Permanente		\Box													47
M		Población	e) Estructura de la población activa	24		42	42	42	45	42		29	35				62	58

MATRIE DE IMPORTANCIA DE LA CONSTRUCCION DE PUENTE EL BOSQUE - CARACAMACA

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

MATRIZ DE IDENTIFICACIÓN DE LA DE LA CONSTRUCCION DE PUENTE EL BOSQUE - CARACAMACA

Pı	royectista	MATRIZ IDB NIVEL CU : Bach. Ing. Carranza Arauj	ACTO AMBIENTAL ENTIFICACIÓN VALITATIVO so, Jorge Luis ENTALES AFECTADOS	UIP FACTOR AMBIENTAL	UIP COMPONENTE AMBIENTAL	UIP SUB-SISTEMA AMBIENTAL	UIP SUB-SISTEMA AMBIENTAL
		1 Aire	a) Calidad del aire	30	60		
			b) Nivel de Ruido	30			
	1	2 Tierra	a) Geomorfología	30	60		
M	N		b) Contaminación Superficial (fís., quí., microbio.)	30			
E	E	3 Suelos	a) Calidad del suelo para usos agrícolas	30	60	0	
D	R		b) Contaminación (física, química, microbiológica)	30		300	
ı	T		a) Aguas Superficiales	25			
_	E	4 Agua	b) Aguas Subterraneas	25	75		
0			c) Calidad de Agua	25		4	
_		5 Procesos	a) Escorrentía - Drenaje Superficial	25	45		009
F	ļ		b) Erosión	20			•
Í	В	1 Flora	a) Cultivos	35	70		
S	I		b) Diversidad	35		-	
1	O	2 Fauna	a) Vertebrados	35	70	200	
С	I		b) Invertebrados	35		1 7	
0	c	3 Procesos	a) Cadena Trófica	30	60		
	ļ	1 Deineis butsess	b) Estabilidad de Ecosistemas	30			
	PCT EEUL	1 Paisaje Intrínseco	a) Calidad Paisajística	50	50	9	
	RPA	2 Intervisibilidad	a) Potencial de vistas	30	50	100	
S	 		b) Vistas Panorámicas	20		 	
ő		1 Uso del Territorio	a) Cambio de uso agrícola-ganadera, regadio b) Zonas verdes	25 25	50		
C	P		d) Servicios Comunitarios	35		1	
ı	0	2- Infraestructura	f) Equipamiento	<u> 35</u> 25		-	
M C	В		a) Educación	25		1]
E C	L	3 Cultura	b) Estilos de Vida		50		
Do	A		a) Calidad de vida	20		400	60
O N	C	4 Aspecto Humano	b) Salud y seguridad	15	50		
0 6	Ó		c) Estructura de la propiedad	15			
M	N		a) Empleo Temporal	20		1	
C	1	5 Economía y Población	b) Empleo Permanente	10	40		
o		,	e) Estructura de la población activa	10			
		1	TOTAL	850			

UNIVERSIDAD NACIONAL DE

FACULTAD DE INGENIERIA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

-			TRIB DE LEPURTABULA		PREVIA	41 11/4/4	RUUM	<u> </u>		ON DEL PI				V-11.00	<u> </u>		ACIÓN		TO	
Pr	Compa	LEVENU ALIDIES Mode 25 25 Ista: Bach.	DE IMPACTO AMBIENTAL PLZ DE IMPORTANCIA DA - MATRIZ DE IMPORTANCIA PERMOS Severos 1-50 50-75 Ing. Carranza Araujo, Jorge Luis S AMBIENTALES AFECTADOS	U I P	a) Exploraction de Terreno (Suelos, Geotornia y Topografia-Calicatas, n Sondajes)	b) Tráfico de Vehículos (Movilización de Maquinaria)	o) Umpteza y habilitación de Terreno (Alteración de cublerta terrestre y vegetación)	d) Trabajos Preliminares (trazo, nivolación y replanteo)	ie Tierras s, zapates, }	(Acopio de Material (Acopio de residuos sólidos, desmonte y material de cantera)	g) Trazo definitivo de accesos (Delimitacion de terrenos y vias)	i) Estructuras metalicas (Construccion,lanzamiento y pintura)	j) Obras de Concreto Simple y Armado (Clementacion, estribos, aletas, losa de catzada)	k) Abandono de Obra (Umptza genral de obra, pirtado final)	I) Tráfico Velticular (Emisón de gases y polvo)	m) Trático Peatonal (Cales, parqueo)	p) Ocupación espacial	q) Mantentro tento	Importancia Absoluta	Importancia Relativa
					 "	49	49		64	53		 	41	47	54			37	704	14.83
1 .			a) Calidad del aire b) Nivel de Ruido	30 30	20	26	50	32	65	54	- 17	26	38	31	34	52	60	33	394 580	11.82 17.40
1 1	,		a) Geomorfología	30	27	39	44		- W									 - ~ -	580 196	5.88
M	I.	2 Tierra	a) Geomorrologia b) Contaminación Superficial (fís., quí., microbio.)	30	21	32	43			38			 	- 24	32	42	33	30	377	11,31
E	N		a) Calidad del suelo para usos agricolas	30	20	33	73		: .	— —			 	 -	, continue				212	6.36
D	B		b) Contaminación (física, química, microbiológica)	30	22	32	41	31		l	16	18	40						282	8,46
17	R		a) Aguas Superficiales	25	 	34	45		1 - E				42		22		26	26	277	6.93
	T		b) Aguas Subterraneas	25	20	27			70			18	42		21		20		218	5,45
0	В	" "	c) Calidad de Agua	25	19	43	36				16		42					21	255	6.38
()		5 - Procesos	a) Escorrentía - Drenaje Superficial	25	18	52	40						57						249	6.23
F		O Procesos	b) Erosión	20			35			56									189	3,78
1 1	В		a) Cultivos	35	18	37		27											249	8.72
الما	1		b) Diversidad	35	20	57				38	20	30	57	53	52	46	40	- 44	535	18.73
8	00		a) Vertebrados	35	19	58	72			ļ	20	30	57	41	56	46	42	44	561	19,64
1	70		b) invertebrados	35	24	49	75		- A		20	30	57	41	58	46	40	44	564	19.74
C	, i		a) Cadena Trófica	30	- 00	61 65	-	- ~	62							L		ļ	123	3,69
0	 _ _		b) Estabilidad de Ecosistemas	30	23	65	72	29	62	36	6	38		53 51		<u></u>	50	 	304	9,12
1	CT		a) Calidad Palsajística	50	 -	1 61			/ s 22	36	6	32	52	51	62	52	52	40	483 419	24.15
Į i	PA	2 Intervisibil	a) Potencial de vistas b) Vistas Panorámicas	30 20	 		 				6	31	46	39	52	52	52		360	12,57 7,20
			a) Cambio de uso agrícola-ganadera, regadio	25	┼	27	-		73	·					- 54		- Je	 	360 177	4,43
8 0	P		b) Zonas verdes	25	┼──	49	,2007		1	36		 	35	72	50	48	46	40	535	13,38
	o		d) Servicios Comunitarios	35	+	 							 			- "	60		60	2.10
C	B		f) Equipamiento	25	 	 	1		 			30	25				49	57	151	4.03
M			a) Educación	25	 	 				<u> </u>		29		18			49		96	2,40
POI			b) Estilos de Vida	25	 	 			 			56			50	50	50	84	270	6.75
	A		a) Calidad de vida	20	T	t —	51		57			59	62	71	50	50	50	64	514	10.28
Co	C		b) Salud y seguridad	_15			34		51	44					48	48		59	284	10.28 4.26
PO	I		c) Estructura de la propiedad	15	1		63		50		13	25	40						200	3,00
Ņ	-	6 8 a) Empleo Temporal		20	24	42	42	42	45	42	25	26	35	32					355	7.10
0	N	Economia y	b) Empleo Permanente	10														47	47	0.47
M	L	Población	e) Estructura de la población activa	10	24	42	42	42	45	42		29	35				62	58	421	4.21
TO	TA1		importancia Absoluta		319	915	1297	203	1893	449	165	507	883	624	671	532	781	708	9947	

8.97

27.26

Importancia Relativa

37.03

52.09

4.97

11.62

4.79

13.64

25.00

18.55

18.50

14,42

21.88

17.24

275.93

MATRIE DE IMPORTANCIA DE LA CONSTRUCCION DE PUESTE EL ECSQUE - CARACAMACA

TOTAL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

BE

CARACMAC

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

FACULTAD DE INGENIERIA

UNIVERSIDAD

NACIONAL

DE

MATRIE CROMATICA DE LA CONSTRUCCION DE PUESTE EL BOSQUE - CARACAMACA EJECUCIÓN DEL PROYECTO FASE PREVIA **OPERACIÓN**

ESTUDIO DE IMPACTO AMBIENTAL MATRIZ CROMATICA

	LEYEN DA - MATRIZ	DE IMPORTANCIA	
Compatibles	Moderados	Severos	Criticos
< 25	25 - 50	50.75	> 75

FACTORES AMBIENTALES AFECTADOS

d) Servicios Comunitarios

c) Estructura de la propiedad

e) Estructura de la población activa

b) Zonas verdes

a) Educación

b) Estilos de Vida

a) Calidad de vida

b) Salud y seguridad

a) Empleo Temporal

b) Empleo Permanente

infraestruct f) Equipamiento

Provectista:

1

V

E

R

T

E

В

0

CT

E U

P

0

В

L

 \boldsymbol{A}

C

Ó

N

C

M

Ε

D

0

8

C

0

8

0

C

E O I

00

Ń

M

1.- Alre

2.- Tierra

3.- Suelos

4.- Agua

1.- Flora

5.- Procesos

3. - Procesos

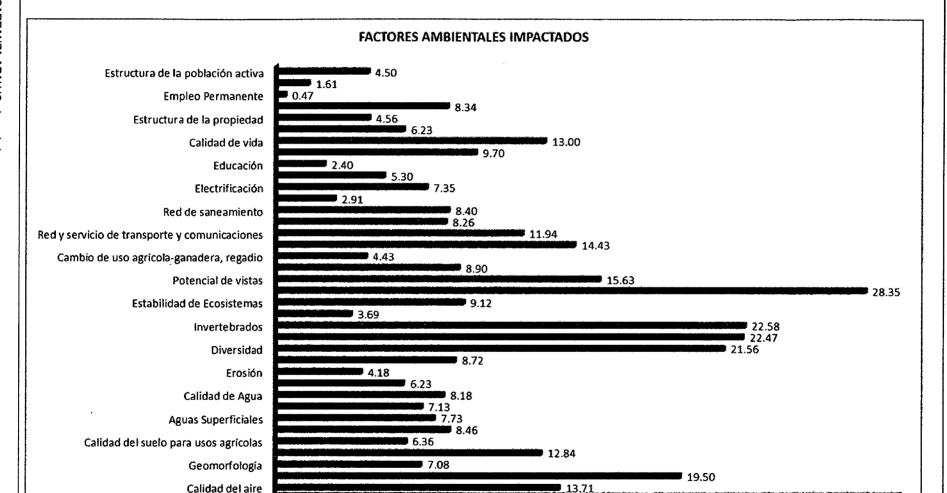
· Intervisibl

1.- Palsale

I.- Uso del

Territorio

3. - Cultura


4.-Aspecto

Economía y

Humano

Bach, Ing. Carranza Araujo, Jorge Luis

R	ng. Carranza Araujo, Jorge Luis	I M P A C T A N T E S	a) Exploración de Terreno (Suelos, Geotecnía y Topografia- Calicatas Sondajes)	b) Trafico de Vehiculos (Novilización de Naquinaria)	c) Umpleza y habilitación de Terreno (Afteración de cubierta terrestre y vegetación)	d) Trabajos Preliminares (trazo, nivelación y replanteo)	e) Movimiento de Tierras (Esxcav. De taludes, zapates,)	f) Acopio de Material (Acopio de residuos sólidos, desmonte) material de cantera)	g) Trazo definitivo de accesos (Delimitacion de terrenos y vlas)	i) Estucturas metalicas (Construccion,lanzamiento y pintura)	Obras de Concreto Simple y Armado (Ciernenfacion, estribos, aletas, losa de calzada)	k) Abandono de Obra (Umpiza genral de obra, pintado final)	l) Tráfico Vehicular (Emisón de gases y polvo)	m) Tráfico Peatonal (Celles, parqueo)	p) Ocupación espacial	q) Mantenimiento
	BIENTALES AFECTADOS		#													
	a) Calidad del aire		*****					ļ								
_	b) Nivel de Ruido															
	a) Geomorfología b) Contaminación Superficial (fís., quí., mi															
_	b) Contaminación Superficial (fís., quí., mi	<u>crobio.)</u>														
ı	a) Calidad del suelo para usos agrícolas															
_	b) Contaminación (física, química, microbi	ológica)														
	a) Aguas Superficiales							L								
i	b) Aguas Subterraneas				 			L								
_	c) Calidad de Agua		ļ		ļl											
s	a) Escorrentía - Drenaje Superficial				 						L					
_	b) Erosión				ļl											
	a) Cultivos				ļ											
	b) Diversidad				 											
	a) Vertebrados			·												
	b) Invertebrados				 											
8	a) Cadena Trófica				<u> </u>			L								
	b) Estabilidad de Ecosistemas				ļl											
	a) Calidad Palsajística															
	a) Potendal de vistas															
_	b) Vistas Panorámicas		ļ													
1	a) Cambio de uso agrícola-ganadera, regad	io														

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ANEXOS N° 4 ESTUDIO DE TRAFICO

PARCIAL:

FORMATO DE CLASIFICACION VEHICULAR ESTUDIO DE TRAFICO

PROYEC	то	CONSTRUCCION E	DEL PUENTE CA	ARROZABLE EL BOSQ	IUE EN EL CASERIO I	DE CARACMACA				
SENTIDO)	ENTRADA	E ←	SALIDA	s →					
UBICACIO	NĊ	CASERIO CARACI	MACA, DISTRITO	O SANAGORAN, PROV	INCIA SANCHEZ CARF	RION, LA LIBERTAD				
DIA 1 LUNES HOJA; MINISTERIO DE TRANSPORTES Y COMUNICACIONES										

	SENTI		STATION	C	AMIONETAS			Bl	US		CAMION		SE	MI TRAYL	.ER		TRA	YLER	
HORA	Ю	AUIO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2 E	>=3 E	2 E	3 E	4 E	2S1/2S2		>= 383	2T2	2T3	3T2	>=3T3
DIA C	BRA. BH			3		65	SP IF	şei eşd		~ ^	****	·	}		~~ ••	,	50 6 5 A		55 B 55
06-07	E S	0	1 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	
07-08	E S	0	0 1	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	
08-09	E S	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
09-10	E	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	
10-11	S E S	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
11-12		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12-13		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3-14	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
14-15		0	0	1	0	0	0	0	0	0	0	0	0 0 0	0	0	0	0	0	1
15-16		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6-17	E S	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	
17-18		0	0	0	0	0	0	0	0	0	0	0	0	o O	0	0	0	0	

UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD FACULTAD DE INGENIERIA

FORMATO DE CLASIFICACION VEHICULAR **ESTUDIO DE TRAFICO**

PROYECTO	CONSTRUCCION DEL PUENT	E CARROZABLE EL BOSQ	UE EN EL CASERIO	DE CARACMACA
SENTIDO	ENTRADA E ←	SALIDA	s →	
UBICACIÓN	CASERIO CARACMACA, DIST	RITO SANAGORAN, PROVI	NCIA SANCHEZ CARI	RION, LA LIBERTAD
DIA 2 MARTES	HOJA: MINISTERIO DE TR	ANSPORTES Y COMUNICA	CIONES	

	SENTI		STATION	3	AMIONETAS		1	BL	8	<u> </u>	CAMION		L	SEMILI	RAYLER			TRAY	LER	
HORA	00	AUTO	WAGON	PICK UP	PANEL.	RURAL Combi	MICRO	2 E	>≈3 E	2 E	3 E	4 E	281/282		381/382	>= 383	2T2	2T3	372	>=313
DIA	GRA. EH									, 	-	- A	4	000 B		~~ },	, , , , ,	,,, ,,,,	· · · · ·	00 00
06-07	E S	0	1 0	0	0	0	0	0	0	0	1 -	0 0	0	,	0	0	0	0	CC	1
07-08	E S	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0)
08-09	E S	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
09-10	E S	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	C	
10-11	E S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
11-12	E S	0	1 0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0 0	0	0 0	
12-13	E S	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
13-14	E S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
14-15	 	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
15-16	E S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0)
16-17	E S	0	0	0	0	1 0	0	0	0	_	0 0	0	0	0	0 0	0	0 0	0 0	0	
17-18	E S	0	0 0	0	0	0 0	0	0	0 0	000	0	0	0	0	0	0	0	0 0	0	

UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

314

FORMATO DE CLASIFICACION VEHICULAR **ESTUDIO DE TRAFICO**

PROYECTO	CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
SENTIDO	ENTRADA E ← SALIDA S →
UBICACIÓN	CASERIO CARACMACA, DISTRITO SANAGORAN, PROVINCIA SANCHEZ CARRION, LA LIBERTAD
DIA 3 MIERCOLES	HOJA: MINISTERIO DE TRANSPORTES Y COMUNICACIONES

	SENTI		STATION	C	CAMIONETAS			BU	s		CAMION		I	SEMIT	RAYLER]	TRAY	LER	
HORA	DO	AUIU	WAGON		PANEL	Combi		2 E	>=3 E	2 E	3 E	4 E	281/282	į	3\$1/3\$2]	2T2	2Т3	312	>=3T3
DIAG				9		CA tom	- FE BAS	THE RES		-	***	- A				~~ }	^	A	, , ,	
06-07	E S	C	1 0	C		0	0	0	0	0	0	0	0	0	0	0	_	0	0	0
07-08	E S	C	0	C	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
08-09		0	0	1		0	0	0	0	0	0	0	0	0	0	0	_	0	0	0
09-10	E	C	0	C	C	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10-11	E S	C	0	0	0	0	0	0	0	0	1	0	0	0	0	0		0	0	0
11-12		. 0	1	C		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12-13		0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0
13-14	_	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14-15	S E S	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15-16		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16-17		0	0	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17-18	E S	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
PARC	CIAL:	0	4	2	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0

FACULTAD DE INGENIERIA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD **UNIVERSIDAD NACIONAL DE CAJAMARCA**

CARACMAC.

FORMATO DE CLASIFICACION VEHICULAR **ESTUDIO DE TRAFICO**

PROYECTO	CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
SENTIDO	ENTRADA E ← SALIDA S →
UBICACIÓN	CASERIO CARACMACA, DISTRITO SANAGORAN, PROVINCIA SANCHEZ CARRION, LA LIBERTAD
DIA 4 JUEVES	HOJA: MINISTERIO DE TRANSPORTES Y COMUNICACIONES

FORMATO Nº 1

	SENTI		STATION	C,	AMIONETAS			BL	IS .		CAMION			SEMIT	RAYLER		TRAYLER			
	DO	AUTO	WAGON	PICK UP	PANEL	RURAL. Combi	MICRO	2 E	>=3 E	2 E	3 E	4 E	281/282		351/352		2T2	2T3	3T2	>=3T3
DIAGE			3	٩		60 m	CHENT CHENT			* \bar{\bar{\bar{\bar{\bar{\bar{\bar{	~		4,	208 8 \$	**************************************		,	11- 1- A		1
06-07	E S	0	1 0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0) (
07-08	E S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
08-09	E S	0	0	1	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	, (
09-10	E	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	
10-11	E S	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
11-12	E S	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12-13	E S	0	0	0	0	0	0	0	0	1 0	1 0	0	0	0	0	0	0	0	0	
13-14	E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
14-15	E E	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
15-16	S E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
16-17	S E S	0	0	0	0	1	0	0	0	0	_	0	0	0 0	0	0 0	0 0	0	0	
17-18	E 5	0		0	0		0	0	0	0		0	0	0	0	0	0	0	0	

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD **UNIVERSIDAD NACIONAL DE CAJAMARCA**

CARACMACA

PARCIAL:

316

FORMATO DE CLASIFICACION VEHICULAR **ESTUDIO DE TRAFICO**

PROYECTO	CONSTRUCCION D	EL PUENTE CAI	RROZABLE EL BOSQI	UE EN EL CASEF	RIO DE CARACMACA					
SENTIDO	ENTRADA	E ←	SALIDA	s →						
UBICACIÓN	CASERIO CARACM	ACA, DISTRITO	SANAGORAN, PROVI	NCIA SANCHEZ C	ARRION, LA LIBERTAD					
DIA 5 VIERNES HOJA: MINISTERIO DE TRANSPORTES Y COMUNICACIONES										

FORMATO Nº 1

	000	T	OTATION.	C	AMIONETAS	<u> </u>	T	BL	JS		CAMION	······································	T	SEMIT	RAYLER		TRAYLER			
HORA	SENTI DO	AUTO	STATION	PICK UP	PANEL	RURAL Combi	MICRO	2 E	>=3 E	2 E	3 E	4 E	281/282	283	381/382	>= 3\$3	2T2	2T3	3T2	>=3T3
DIAG	RA. H			S						, 		~~ ^}		 •	4	*** ****	, ,, ,	.		**************************************
06-07	E S	0	1 0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0	0	0 0	0	0	
07-08	E S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08-09	E S	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09-10	E S	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
10-11	E S	0	0	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0
11-12	E S	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12-13	E S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13-14	E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14-15	S E S	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0
15-16	E S	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0	0	0	0 0
16-17	E S	0	0	0	0	1 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0
17-18	E S	0	0	0	0	0	0	0	0	0	0	0	0	0	00	0	0	0	0	0
PARC	IAL:	0	4	2	0	2	0	0	0	2	2	0	0	0	0	0	0	0	0	0

UNIVERSIDAD NACIONAL DE CAJAMARCA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD FACULTAD DE INGENIERIA

FORMATO DE CLASIFICACION VEHICULAR **ESTUDIO DE TRAFICO**

PROYECTO	CONSTRUCCION D	CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA									
SENTIDO	ENTRADA	E ← -	SALIDA	s →							
UBICACIÓN	CASERIO CARACA	MACA, DISTRITO	SANAGORAN, PROV	INCIA SANCHEZ C	ARRION, LA LIBERTAD						
DIA 6 SABADO	HOJA: MINISTE	RIO DE TRANS	PORTES Y COMUNICA	ACIONES							

	SENTI		STATION	C	AMIONETAS			BL	JS		CAMION			SEMIT	RAYLER			TRAY	LER .	
HORA	DO	AUIO	WAGON	PICK UP	PANEL.	RURAL Combi	MICRO	2 E	>=3 E	2 E	3 E	4 E	251/252	283	3S1/3S2		2T2	2Т3	312	>=3T3
DIAG							- H	782 E70		,_A	~		****** *****	*** * *		000 30 0		~	0 00 0	50 6 10 A
06-07	E S	C	1 0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
07-08	E S	O O	0	o o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8-09	E S	C		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9-10	E	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	
0-11	S E S	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11-12	E S	0	1	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	
12-13	E S	0	1 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
13-14	E	o	0	C	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	
14-15	<u>S</u> E	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
15-16	<u>S</u> 	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6-17	S E S	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
17-18	E S	0	0	0	0	000	0	0	0	0	0	0	0	0	0	0	0	0	0	
PARC		0		2	<u> </u>					2	0	0			0		0	0	0	

UNIVERSIDAD NACIONAL DE FACULTAD DE INGENIERIA CAJAMARCA

SENT

DO

E

Ε

E

E

AUTO

HORA

06-07

07-08

08-09

09-10

10-11 Ε

11-12 Ε

12-13 Ε

13-14 E

14-15 Ε

15-16

16-17 Ε

17-18

PARCIAL:

Ε

S

S

E S

DIAGRA

VBH.

FORMATO DE CLASIFICACION VEHICULAR **ESTUDIO DE TRAFICO**

2 E

CAMION

3 E

4 E

2S1/2S2

ol

ol

o

BUS

0

Ō

0

>=3 E

2 E

PROYECTO	CONSTRUCCION D	CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA									
SENTIDO	ENTRADA	E ←	SALIDA	s →							
UBICACIÓN	CASERIO CARACM	IACA, DISTRIT	O SANAGORAN, PROVI	INCIA SANCHEZ	CARRION, LA LIBERTAD						
DIA 7 DOMINGO	HOJA: MINISTE	RIO DE TRANS	SPORTES Y COMUNICA	CIONES							

MICRO

RURAL

Combi

CAMIONETAS

PANEL

ol

ol

ol

0

PICK UP

STATION

WAGON

		Minist	rio de Tr	ansporte	y Comu	dicacione	1
S	EMI TI	RAYLER			TRAY	/LER	
2	S 3	351/352	>= 3S3	2T2	2T3	3 T 2	>=3T3
o.a.			~~ 7• ♣	4		, ,, ,	
	0	0	0 0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0 0	0	0 0 0	0
-	0	0	0	0	0	0	0

0

0

0

UNIVERSIDAD NACIONAL

FACULTAD DE INGENIERIA DE CAJAMARCA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CARACMAC.

o

CALCULO DE ESTUDIO DE TRAFICO

1.GENERALIDADES

Nombre del Proyecto: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA

Departamento:

LA LIBERTAD

Distrito:

SANAGORAN

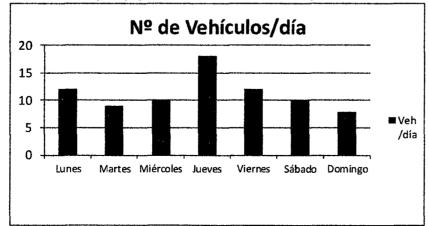
Provincia:

SANCHEZ CARRION

Zona Geográfica: Sierra

2. DETERMINACIÓN DEL TRÁNSITO ACTUAL

i) Resumir los conteos de tránsito a nivel del día y tipo de vehículo


Resultados de los conteo de tráfico:

Mes:

NOVIEMBRE 2012

Tipo de Vehículo	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
Automovil	4	3	4	6	4	4	4
Camioneta	2	2	2	2	2	2	0
Combi	2	2	2	2	2	2	2
Micro	0	0	0	0	0	0	0
Bus Grande	0	0	0	0	0	0	0
Camión 2E	2	2	0	4	2	2	0
Camión 3E	2	0	2	4	2	0	2
TOTAL	12	9	10	18	12	10	8

Nota: Conteo de 7 días de 12 horas para poyectos de inversión a nivel de perfil.

ii) Determinar los factores de corrección promedio de una estación de peaje cercano al camino

F.C.E. Vehículos ligeros:	1.07213334
F.C.E. Vehículos pesados:	0.99972424

Nota: Utilizar los datos del Ministerio de Transportes, ver ANEXO 3

iii) Aplicar la siguiente fórmula, para un conteo de 7 días

$$IMD_a = IMD_S * FC$$

$$IMD_s = \sum \frac{Vi}{7}$$

IMD_s = Indice Medio Diario Semanal de la Muestra Vehícular Tomada Donde:

> Indice Medio Anual IMDa =

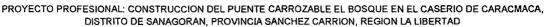
Vi = Volumen Vehícular diario de cada uno de los días de conteo

FC = Factores de Corrección Estacional

Tipo de Vehículo		Tráfic	o Vehícular e	en dos Sei	ntidos por	Día		TOTAL	IMDs	FC	IMD _a
lipo de Veniculo	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo	SEMANA	SOLINI		IIVIDa
Automovil	4	3	4	6	4	4	4	29	4	1.07213334	4
Camioneta	2	2	2	2	2	2	0	12	2	1.07213334	2
C.R.	2	2	2	2	2	2	2	14	2	1.07213334	2
Micro	0	0	0	0	0	0	0	0	0	1.07213334	0
Bus Grande	0	0	0	0	0	0	0	0	0	1.07213334	0
Camión 2E	2	2	0	4	2	2	0	12	2	0.99972424	2
Camión 3E	2	0	2	4	2	0	2	12	2	0.99972424	2
TOTAL	12	9	10	18	12	10	8	79	11		12

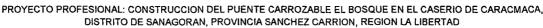
FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL


PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ANEXOS N° 5: DISEÑO DE SÚPER ESTRUCTURA

FACULTAD DE INGENIERIA



ANEXOS N° 5.1: DISEÑO LOSA

FACULTAD DE INGENIERIA

DISEÑO DE LOSA

A GEOMETRIA DEL PUENTE

1)	Datos	generales	dela	geometria	del	puente
----	-------	-----------	------	-----------	-----	--------

٠,٠	batos gonotatos as la geometina acr	paonico	
•	Ancho de la Calzada	Ac =	3:60 m
٠	Luz del puente Entre ejes de Apoyo	Le =	36.75 m.
•	Longitud de Cajuela	Lc =	0.75 m
•	Longitud del puente	L _T =Le+Lc=	37.50 m
•	Ancho total del Puente	$A=Ac+2B_1+2B_2$	4.90 m
•	Ancho de Vereda	B ₁ =	0.60 m
•	Ancho de declinación	B ₂ =	0.05 m
	Ancho de Influencia de la Viga Exterior	B ₃ =	2.60 m
•	Ancho de Volado de Vereda	B ₄ =	0.60 m
•	Separación de Vigas entre ejes	S=B ₅ =	2.75 m
	Peralte en extremo de Vereda	H ₁ =	0.20 m
•	Peralte en apoyo de Vereda		0.25 m

2).- Datos generales de las cargar a considerar para el dis

- Sobrecarga Peatonal	WI=	360.00 kg/m
- Resistencia del Concreto a Usar	fc=	280.00 kg/cm ²
- Resistencia del Acero a Usar	f'y=	4200.00 kg/cm ²
- Sobrecarga Vehicular	P=	800.00 kg/m
- Peso especifico del concreto a Usar	g=	2400.00 kg/m ³

DISEÑO DE LOSA

Predimensionamiento de losa

Para el predimensionamiento de losa se hace la aplicación de la Ecuacion N° 54

$$H_{I(min)} = \left(\frac{1.2}{30} * (S + 3000)\right) H_{min} = 1.2/30 \times (2.75 + 3000)$$

$$H_{min} = 0.230 \text{ m}$$

Nota:

Debido a que la porción de la losa en voladizo debe diseñarse para la colisión de una carga sobre la barra, entonces aumentaremos su espesor en 1"(2.54cn

Htmin=

0.25 m Es considerado como el espesor de losa

Momentos generas por las cargas Muerta:

1) Metrado de carga Muerta(WD)

Las cargas que se obtienen se considera po un metro line

Peso propio en 01 metro de ancho= $(1m^*H_L^*g)= 1 \times 0.25 \times 2400 \text{ kg/m}$ = 600.00 kg/m

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA.

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ:CARRION, REGION LA LIBERTAD

Peso propio por bombeo (2%)

 $= (0.025 \times 3.6 \times 2400)/4$

-ka/m

Calculando el total de carga Muerta (WD)

1MD-

54.00 kg/m 600 +54 kg/m

WD=

654.00 kg/m

2) Momento por peso propio (MD)

Teniendo en cuenta que es una estructrutura simplemente apoyada se usará siguiente formula

Datos

 $M_{D} = \frac{W_{D} * S^{2}}{8}$

Carga muerta Longitud de losa **ND=** 654.00 kg/m

S: 2.75 m

Remplazando en la formula Tenemos:

 $MD = \frac{654 \times 2.75^{2}}{8}$

MD= 618.23 kg-m MD= 0.618Tn-m

3) Modificación por numero de Vías Cargadas

Cuando está un Carril Cargado

NOTA: Considerando que no hayfórmula especifica para puente viga - losa, se considerará las formulas para puente losa en este paso.

Aplicamos la siguiente fórmula:

La solicitación extrema correspondiente a sobrecargas se determinará considerando las posibles combinaciones de carriles cargados, multiplicando por un factor de presencia múltiple. No es aplicable al estado limite de fatiga

El ancho equivalente de las fajas longitudinales tanto para corte como para momento con un carril cargado, es decir dos lineas de ruedas, incluyendo el efecto de presencia múltiple,

L1: Luz modificada mínima

L'+C= 4.90 m 18.00 m S= 16.08pies 60.00pies

Por lol tanto la long L1=

16.1pies

W1: Ancho total modificado min

S= 4.90 m 9.00 m S= 16.08pies 30.00pies

Por loi tanto la long W1= Aplicando la fórmula tenemos: 16.1pies

 $E = L + 5.0\sqrt{L_1W_1}$

F≖

96.46pulg

E= 2.45 m

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Considerando que el "E" no puede ser mayor que 4.30m entonces tomamos el E máx permisible E= 2.45 m

Ahora de acuerdo con la geometria del puente y usando la tabla Nº 32:

Numero de vias cargadas	Factor
1	1.2
2	1
3	0.85
4 o mas	0.65

Ancho de puente:

3.60 m

Nº de Vias consideradas:

1.00 Unid.

Se incrementa la carga por este factor:

1.20

1.20

Peso del neumático mas pesado HL-93:

Pr= 145 Kn=

14.78 Tn

Peso del neumático mas pesado:

Pr=

7.39 Tn

Carga viva Modificada:

Pr=

7.39 x 1.2

Pr≖

8.87

4) Momento por sobrecarga (ML)

Aplicando la siguiente fórmula:

$$M_{LL} = \frac{(S+2')}{32'} * P_r$$

Y como datos para la aplicación de formula anterior tenemos los siguientes datos

S=

2.75 m

Pr=

8.87 Tn

Reemplazando los datos en la formula

$$M_{LL} = \frac{(2.75 + 2 \times 0.3048) \times 8.868}{32 \times 0.3048}$$

$$M_{11} = 3.05 \, \text{Tn-m/m}$$

Hallando los momentos tanto positivo y negativo

Momento Positivo = $(0.8*M_{H})$ =

(+) ML=

(0.80 x 3.05) Tn-m/m

(+) ML=

2.44 Tn-m/m

Momento Negativo = (0.9*MLL) =

(-) ML=

 $(0.90 \times 3.05) \text{Tn-m/m}$

(-) ML=

2.75 Tn-m/m

5) Momento por impacto(IM)

Considerando factor de incremento por Impacto de acuerdo con la tabla Nº 33

Factor de Impacto

|=

0.33 m

Momento Positivo = (+) Mi=0.33*ML(+)

(+) Mi=

(0.33 x 2.44) Tn-m/m

(+) Mi=

0.81 Tn-m/m

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Momento Negativo =(-) Mi=0.33*ML(-)

(-) Mi=

(0.33 x 2.745) Tn-m/m

(-) Mi=

0.91 Tn-m/m

6) Momento por sobrecarga Peatonal (PL)

Considerando factor de incremento por Impacto

Sobre carga peatonal =

S/C= 360:00 kg/m

0.36 Tn

Para calcular el momento por sobrecarga peatonal se tiene que aplicar la siguiente formula

 $M_{PL} = Wsc*S^2/8$

 $M_{PL} = 0.36 \times 2.75^{2}$

8

 $M_{Pl} = 0.34 \, \text{Tn-m/m}$

Seleccción de modificadores de carga

Condiciones de diseño

- Considerando elementos no redundantes.
- Puentes de poca importancia
- Considerando elementos estructurales
- Se va a considerar operación normal del puente.
- Considerar el control de fisuras
- Uso vehicular normal del puente.

Resumen de los datos considerados.

		Resistencia	Servicio	Fatiga
Ductilidad (nD)		1.00	1.00	1.00
Redundancia (nR)		1.05	1.00	1.00
Importancia (nL)		0.95	1.00	1.00
	Producto	1.00	1.00	1.00

n= nD*nR*nLEc. N° 52

= 1.00

Formando las ecuaciones en cada caso tenemos y teniendo en cuenta las Tablas Nº 34 y 35.

Servicio I

DC=	1.00
DW=	1.00
LL=	1.00
IM=	1.00
PL=	1.00

Se tiene como formula general:

$$M_s = 1.00 * [1.00 * (Dc + Dw) + 1.00 * (LL + IM) + 1.00 * PL]$$

Resistencia l

DC=	1.25
DW=	1.25
LL=	1.75
IM=	1.75
PL=	1.75

Se tiene como formula general:

$$M_r = 1.00 * [1.25 * (Dc + Dw) + 1.75 * (LL + IM) + 1.75 * PL]$$

STATE OF THE STATE

UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Fatiga

1	LL=	0.75	
-	IM=	0.75	-

Se tiene como formula general:

$$M_r = 1.00 * [0.75 * (LL + IM)]$$

DISEÑO POR SERVICIO

Calculamos cada uno de los momentos que se producen.

De acuerdo con los resultados obtenidos tenemos.

$$\begin{array}{lll} \mathbf{M_{DC}\text{+}M_{DW}\text{=}} & 0.62\text{T n-m} \\ \mathbf{M_{LL}\text{=}} & 2.44\text{ T n-m/m} \\ \mathbf{M_{IM}\text{=}} & 0.81\text{ T n-m/m} \\ \mathbf{M_{PL}\text{=}} & 0.34\text{ T n-m/m} \end{array}$$

$$M_s = 1.00 * [1.00 * (Dc + Dw) + 1.00 * (LL + IM) + 1.00 * PL]$$

Tenemos:
$$Ms= 1.00 \times [1.00 \times (0.62) + 1.00 \times (2.44 + 0.81) + 1.00 \times 0.34]$$

Nota

Considerando que la vereda tendrá su propio Análisis ya no consideramos su carga

a) Verificación del peralte

El peralte mínimo esta en funcion de la aplicación de las siguientes ecuaciones :

* Calculamos el valor de "n"

Es =
$$2038700 \text{ kg/cm}^2$$

Ec = $1800 \times \sqrt{f'c}$
Ec = $1800 \times \sqrt{280} \text{ kg/cm}^2$
Ec = $255392.95 \text{ kg/cm}^2$

$$n = \frac{E_s}{E_c}$$
 $n = \frac{2038700}{255392.95}$ kg/cm^2
 $n = 7.98$

* Calculamos el valor de "k"

$$\begin{array}{cccc} fc = & 280.00 \text{ kg/cm}^2 \\ fcr = & 0.45 * fc \\ fcr = & 126.00 \text{ kg/cm}^2 \\ fy(adm) = & 1700.00 \text{ kg/cm}^2 \end{array}$$

$$\begin{bmatrix} k = \frac{n * f_{c(adm)}}{n * f_{c(adm)} + f_{y(adm)}} & \text{k} = \frac{7.98 \times 126}{7.98 \times 126 + 1700} \\ \text{k} = & \textbf{0.370} \end{bmatrix}$$

en and a second

UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

* Calculamos el valor de "j"

$$j = 1 - \frac{k}{3}$$
 j= 1 + 0.37/3

i= 0.880

* Calculamos el valor de peralte minimo "d"

$$d = \sqrt{\frac{2^* M_{serv}}{f_{cr}'^* j^* k^* b}} \quad dreq = 14.33 \text{ cm}$$

NOTA:

Se considerará un recubrimiento de 2" y varillas de 3/8"

* Verificamos que el peralte requerido es menor que el peralte calculado

b) Diseño del Acero Principal

* Calculo de acero principal

$$A_{s} = \frac{M_{s}}{f_{s} * j * d} As = \frac{4.21}{2520 \times 0.88 \times 19.445}$$

$$As = 9.76 \text{ cm}^{2}$$

* Calculo de acero minimo

$$A_{\text{smin}} = \frac{14*bd}{f_y} \text{ As(mim)} = \frac{14 \times 100 \times 19.445}{4200.00}$$

$$As(\text{mim}) = 6.48 \text{ cm}^2$$

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

*Una ves calculado ambos tipos de acero usaremos el mayor de los dos:

As=

9.76 cm²

As(mim)=

6.48 cm²

Usaremos el mayor acero As =

9.76 cm²

- Armadura de repartición

* Calculando el acero por repartición

As= S= 9.76 cm²

---<u>-</u>1

2.75 m

$$A_{sr} = 0.55 * \frac{A_s}{\sqrt{S}} \text{Asr}$$

3.24 cm²

* O tambien se puede determinar:

$$A_{sr1} = 0.5 * A_s$$

_Asr1=

4.88 cm²

* Entonces se toma el mayor de los dos:

Asr=

3.24 cm²

Asr1=

4.88 cm²

Usaremos el mayor Asr=

4.88 cm²

Armadura por Temperatura

El calculo de hace en finción de la apliacacion de la siguiente ecuación

 $A_{st} \ge \left(\frac{1pu \lg^2}{6}\right)/1pie$

Entonce para este caso de hace con la siguiente ecuación

$$A_{st} = \left(\frac{1 pu \lg^2}{8}\right) / 1 pie$$

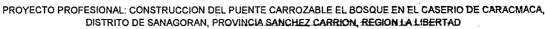
Ast= 3.53 cm2

(por metro lineal)

c) Distribución de la Armadura

* En funcion al area del acero considera se calcula la sepacion de cada elemento de acero con la aplicación de la siguiente ecuacion:

 $S = \frac{a_{\text{varilla}} * 100}{A_s}$


Tenemos el Acero superior		Area Requerida	Ø Acero	Area Acero	S
Perpendicular al Trafico	=As+Ast=	13.29 cm2	3/4	2.84 cm2	20.00 cm
Paralelo al Trafico	Ast=	3.53 cm2	3/8	0.71 cm2	20.00 cm

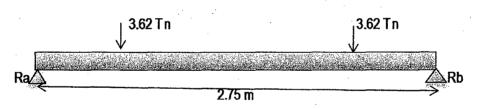
Tenemos el Acero Inferior		Ø Acero	Area Acero	S
Perpendicular al Trafico	=As+Ast= 13.29 cm2	3/4	2.84 cm2	20.00 cm
Paralelo al Trafico	Asr= 4.88 cm2	1/2	1.29 cm2	25.00 cm

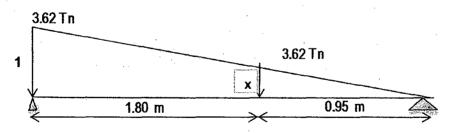
FACULTAD DE INGENIERIA

d) Verificación del Cortante


d-1) Cortante por peso Propio

El cortante esta en funcion de la carga y la longitud y se tiene la siguiente formula:


$$V = \frac{w^*L}{2}$$
 $V_{DC} = \frac{0.654 \times 2.75}{2}$ tn/m $V_{DC} = 0.90$ tn/m


d-2] Cortante por Sobrecarga

Ancho efectivo E: Acero perpendicular al trafico obtenido en los pasos anteriores

Aplicando lineas de influencia tenemos:

Relación: x 2.75 0.95 m

x = 0.35 m

$$V_{LL}$$
= 1 x 3.62 + 3.62 x 0.35
 V_{LL} = 4.89 Tn

d-3 Cortante por Impacto.

$$V_{IM}=0.33^{*}V_{LL}$$
 $V_{IM}=0.33 \times 4.89$ $V_{IM}=1.61 \text{ Tn}$

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

d-4) Cortante por Carga peatonal.

$$V_{PL} = (W_{PL} * L)/2$$

$$V_{PL} = 0.34 \times 2.75$$

* Calculando el cortante total.

$$V_{U} = V_{DC} + V_{LL} + V_{M} + V_{PL}$$
 Vu = 0.9 + 4.89 + 1.61 + 0.47

Vu= 7.87 Tn

* Calculo del cortante maximo

$$Vc=0.53*(fc)^{0.5*}b*d= \frac{0.53 \times \sqrt{280 \times 100 \times 19.445}}{1000}$$

/c= 17.24 Tn

* Calculo del cortante maximo con un factor de reduccion

Ø= 0.85

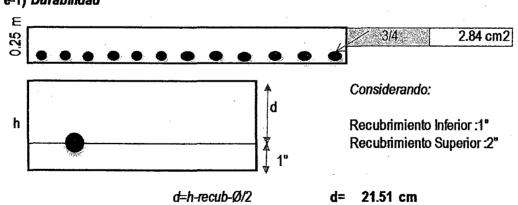
ØVc= 0.85 x 17.24

ØVc= 14.65

* Comparando el cortante por servicio y el cortante maximo

Se debe de cumplir

ØVc > Vs ØVc 14.65


Vs

7.87

OK

como se verifica que el cortante calculado es menor que el corte maximo se da por aceptado la sección propuesta en la losa del puente

e) Investigar el estado limite de Servicio e-1) Durabilidad

e-2] Momento en la Losa

$$M_s = n*(Dc + Dw)+(LL + IM)+PL$$

Tenemos: $Ms = 1.00 \times [1.00 \times (0.62) + 1.00 \times (2.44 + 0.81) + 1.00 \times 0.34]$

Ms = 4.21Tn-m

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

* Calculamos el area del acero requerida

$$fs = 2520.00 \text{ kg/cm}^2$$

$$A_s = \frac{M}{f_s * j * d}$$
 As= $\frac{4.21}{2520 \times 0.88 \times 21.51}$

As= 8.83 cm²

Calculo de la separación

Area de acero calculado As=
$$8.83 \text{ cm}^2$$

Area del acero a usar Af= 2.84 cm^2

$$S = Af^*100/As$$
 $S = 32.18 \text{ cm}$

3/4 @ 30.00 cm

Area de acero calculado inicialmente 3/4 @ 20.00 cm

30 ≥ 20.00 Es mayor que el Calculado, Ok

e-3) Control de fisuras.

* Control de refuerzo en tracción

$$\int_{e} = \frac{M}{I_{ef}} = \frac{M}{(1/6)^{*}bh^{2}}$$
 fc= 40.42 kg/cm²

* Calculo de fr

fc=
$$280.00 \text{ kg/cm}^2$$

fc= 3.98 KSI

$$f_r = 0.24 \sqrt{f'c}$$
 fr= 0.48 KSI fr= 33.68 kg/cm²

* Multiplicando con en factor

* Verificando de que la condicion cumpla fc > Ø fr

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

e-4) Sección elastica Fisurada con:

Ø3/4"@20cm de cada lado

* Aplicando la fórmula:

Af =	2.84 cm ³
@=	20.00 cm
3/4	20.00 cm^2
As = Af*100/S =	14.20 cm^2
n=	7.98
Calculo de As*n=	113.32 cm^2

- Ubicación del eje Neutro

Aplicando la fórmula:

b=	100.00 cm
As*n=	113.32 cm ²
d=	21.51 cm
χ=	6.57 cm

- Momento de Inercia de la Sección fisurada

Aplicando la fórmula:

- Esfuerzo en las Varillas

Aplicando la fórmula:

Comparando con fs del acero:

$$f_{\text{scalculado}}$$
 < f_{sacero}
1444.3kg/cm2 < 2520.kg/cm2

Podemos ver que: La sección escogida es la Correcta

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

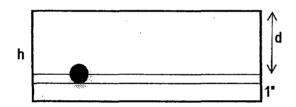
DISEÑO POR RESITENCIA

Teniendo los datos correspondientes:

$$M_{LL} = 2.44 \text{ Tn-m/m}$$

 $M_{LM} = 0.81 \text{ Tn-m/m}$

 $M_{DC} + M_{DW} = 0.62 \text{ Tn-m/m}$


 $M_{\rm Pl} = 0.34 \, \text{Tn-m/m}$

 $M_{\mu} = 1.00*(1.25Dc + 1.25Dw) + 1.75(LL + IM + PL)$

 $M_{\rm p} = 7.055 {\rm Tn-m}$

1) Acero positivo y negativo

Diseño por rotura- Calculo de Acero principal.

Datos		
h=	25.00	cm
recub=	2.54	cm
3/4	2.84	cm
d=	21.04	cm
Mu=	7.06	Tn-m
fy=	4200.00	kg/cm ²
fc=	280.00	kg/cm ³
ф=	0.90	
b=	100.00	cm

Para calcular el area del acero se aplican las ecuaciones de concreto que acontinuacion se indican

$$A_s = \frac{M_s}{\left(\phi^* f_s \left(d - \frac{a}{2}\right)\right)}$$

$$a = \frac{As * f' y}{o.85 * f' c * b}$$

Y como se ve que las formulas complementarias y que una esta en funcion de la otra se tiene que calcular datos mediante iteraciones los cuales se tiene que empesar dando valores "a", donce el primer valor que asume es igual a d/5, para el cual se tiene el siguiente cuadro con los valores calculados

Iteracion de Acero

а	As
4.208	9.86
1.739	9.25
1.633	9.23
1.629	9.23
1.629	9.23
1.629	9.23
1.629	9.23
1.629	9.23

Despues de los valores iterados se coge el ultimo valor del cuadro anterior como la cantidad de acero rec

As=

9.23 cm2

Area del acero que se va a trabajar

Af=

2.84 cm²

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Separacion del acero S = Af*100/Av =

S=

30.78 cm

3/4

@ 30.00 cm

Calculamos el valor del acero mínimo:

$$A_{\min} = \frac{14*b*d}{f'y}$$

Asmin=

7.01 cm²

Comparamamos entre el area de acero minimo y el area de acero requerido y escogemos el mayor

As=

9.23 cm2

Asmin=

7.01 cm2

Acero escogido:

Asp=

9.23 cm²

2) Acero por Distribución

Se determina con la aplicación de la siguiente ecuacion

S= 2.75 m S= 2750.00mm

$$\alpha = \frac{3480}{\sqrt{S}} \le 67\%$$

66.36% 66.36%

67%

Se considera el Acero principal es perpendicular al tránsito, con lo cual pa el calculo de acero se hace uso de la siguiente ecuacion

$$A_{sd} = \alpha * A_{sp}$$

Asd=

66.36 x 9.23 cm²

Asd=

6.13 cm²

3) Acero de Temperatura y Contracción

Se calcula con la siguiente fórmula

$$A_{st} \ge \left(\frac{1pu \lg^2}{8}\right) / 1pie$$

Para lo cual consideramos que el valor del acera será:

$$A_{st} = \left(\frac{1pu \lg^2}{8}\right) / 1pie$$

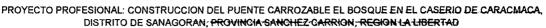
Ast=

2.65 cm2 (por metro lineal)

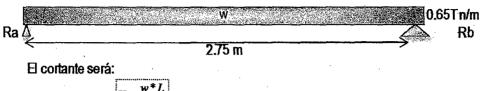
4) Distribución de la Armadura

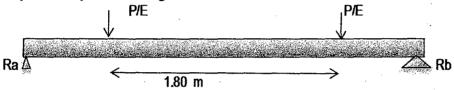
$$S = \frac{a_{\text{var};ll,a} * 100}{A_s}$$

Tenemos el Acero superior

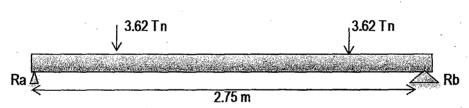

	Α	rea Requerida	Ø Acero	Area Acero	S
Perpendicular al Trafico	As=	9.23 cm2	= 3/4	2.84 cm2	30.00 cm
Paralelo al Trafico	Ast=	2.65 cm2	3/8-	0.71 cm2	25.00 cm

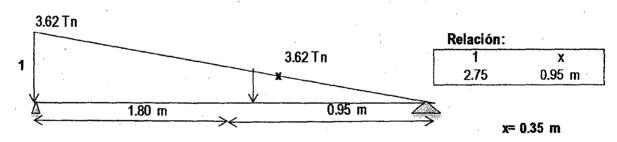
Tenemos el Acero Inferior			Ø Acero	Area Acero	S
Perpendicular al Trafico	As=	9.23 cm2	3/4	2.84 cm2	30.00 cm
Paralelo al Trafico	Asr=	6.13 cm2	1/2	1.29 cm2	20.00 cm


FACULTAD DE INGENIERIA


5) Verificación del Cortante

5-1) Cortante por peso Propio


 $V = \frac{w + L}{2}$ $V_{DC} = 0.90 \text{Tn/m}$


5-2) Cortante por Sobrecarga

Ancho efectivo E: Acero perpendicular al trafico obtenido en los pasos anteriores

Aplicando lineas de influencia tenemos:

V_{LL}= 4.87 Tn

5-3] Cortante por Impacto.

 $V_{IM} = 0.33 * V_{II}$

V_{IM}= 1.61 Tn

5-4) Cortante por Carga peatonal.

 $V_{PL} = (W_{PL} * L)/2$

 $V_{PL} = 0.47 \text{ Tn}$

Calculando el cortante total.

$$Vu = 1.25*V_{DC} + 1.75(V_{IL} + V_{IM} + V_{PL})$$

$$Vu = 1.2 \times 0.9 + 1.75 \times (4.87 + 1.61 + 0.47)$$

$$Vu = 13.29 \text{ Tn}$$

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

5.5) Verificación del Cortante

Vu= 13.29 Tn

 $Vc=0.53*(fc)^{A^{0.5}*b*d} = Vc= 17.24 \text{ Tn}$

Ø= 0.85

ØVc= 14.66 Tn

Verificando que cumpla la condicion ØVc > Vs

ØVc > Vs

14.66 > 13.29 OK

Se que la relacion cumple

DISEÑO DE ACERO FINAL

Se considera el acero por SERVICIO I por se el mas conservador

Tenemos el Acero superior	Area Requerida	Ø Acero	Area Acero	S
Perpendicular al Trafico =As+Ast=	13.29 cm2	3/4	2.84 cm2	20.00 cm
Paralelo al Trafico Ast=	3.53 cm2	3/8	0.71 cm2	20.00 cm

Tenemos el Acero Inferior		Ø Acero	Area Acero	S
Perpendicular al Trafico	=As+Ast= 13.29 cm2	3/4	2.84 cm2	20.00 cm
Paralelo al Trafico	Asr= 4.88 cm2	1/2	1.29 cm2	25.00 cm

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ANEXOS N° 5.2: DISEÑO DE TRAMO EN VOLADIZO

FACULTAD DE INGENIERIA

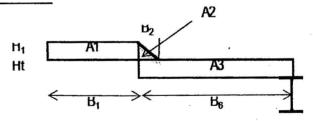
ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

A5.2 DISENO DE TRAMO EN VOLADIZO

A GEOMETRIA DEL PUENTE

•	Ancho de la Calzada	Ac=	.3.60 m
•	Ancho de Vereda	B ₁ =	0.60 m
•	Ancho de declinación	B ₂ =	0.05 m
	Ancho de Volado de Vereda	B ₄ =	0.60 m
•	Separación de Vigas entre ejes	S=B ₅ =	2. / 5 m
	Ancho de voladizo	B ₆ =	0.625 m
•	Peralte en extremo de Vereda	H ₁ =	0.20
•	Peralte en apoyo de Vereda		0.25 m
·	Epesor de losa		
	$H_{l(min)} = \left(\frac{1.2}{30} * (S + 3000)\right)$	Htmin=	0.23 m
	$\frac{1}{30} \frac{1}{30} \frac$	Htmin=	0.25 m


Nota:

Debido a que la porción de la losa en voladizo debe diseñarse para la colisión de una carga sobre la barra, entonces aumentaremos su Espesor en 1"(2.54cm)

Consideraciones:

-	Sobrecarga Peatonal	W=	360.00	kg/m
_	Resistencia del Concreto a Usa	f=	280.00	kg/cm2
-	Resistencia del Acero a Usar	fy=	4200.00	kg/cm2
_	Sobrecarga Vehicular	P=	800.00	kg/m
-	Peso especifico del concreto	g=	2400.00	kg/m3

B DISENO DE TRAMO EN VOLADIZO

B-1 Metrado de Cargas

1) Carga Muerta(WD)

Las cargas que se obtienen se considera por un metro lineal

		W _{DC} =	0.675	M _{DC} =	0.39
A3=	A3=B ₆ *Ht		0.375	0.313	0.12
AZ=	A2=1/2*B ₂ *H ₁		0.012	0.608	0.01
A1=	A1=B ₁ *H ₁		0.288	0.925	0.27
Sec	Medidas		Carga (Tn)	Distancia (m)	Mom. (Tn-m

Wo=

0.68 kg/m

2) Momento por peso propio (MD)

Teniendo en cuenta la siguiente fórmula:

 $M_D = 0.391Tn-m$

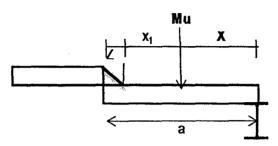
FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

3) Momento por sobrecarga M 11

Aplicando la fórmula tenemos:

$$M_{U_{i}} = \Pr^{*} \frac{x}{E}$$


E= X=

 $\chi_1 =$

Ancho efectivo

dist. Rueda a empotramiento

dist. Rueda a sardinel

$$= \alpha - z - x_1$$

$$E = 0.833 * X + 1.14$$

4) Momento por sobrecarga (ML)

Aplicando la siguiente fórmula:

S=

2.75 m

Pr=

8.87 Tn

Pr= pero propio de la rueda amplificado po factor de via

Hallando los momentos

$$M_{LL} = \Pr^{\pm} \frac{x}{E}$$

2.29 I n-m/m

5) Momento por Impacto(IM)

Considerando factor de incremento por Impacto

Factor de Impacto

|=

0.33 m

(+) Mi=0.33*ML(+)

(+) Mi=

0.76 Tn-m/m

6) Momento por sobrecarga Peatonal (PL)

Sobre carga peatonal

360.00 kg/m

0.36 Tn

M_{PL}=

 $\frac{0.36 \times (0.6 + 0.625)}{2.00}$

•

0.22 Tn-m/m

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

B-2 Seleccción de modificadores de carga

Condiciones de diseño

- Considerando elementos no redundantes.
- Puentes de poca importancia
- Considerando elementos estructurales
- Se va a considerar operación normal del puente.
- Considerar el control de fisuras
- Uso vehicular normal del puente.

Resumen de los datos considerados.

	Resistencia	Servicio	Fatiga
Ductilidad (nD)	1.00	1.00	1.00
Redundancia (nR)	1.05	1.00	1.00
Importancia (nL)	0.95	1.00	1.00
Producto	1.00	1.00	1.00

n= nD*nR*nL

= 1.00

Formando las ecuaciones en cada caso tenemos y teniendo en cuenta las Tablas Nº 34 y 35.

Servicio I

DC=	1
DW=	<u> </u>
1	1.00
IM=	1.00
PL=	1.00

Se tiene como formula general:

$$M_s = 1.00 * [1.00 * (Dc + Dw) + 1.00 * (LL + IM) + 1.00 * PL]$$

Resistencia I

DC=	
DW=	1
ŧ	1.75
1	1.75
PL=	1.75

Se tiene como formula general:

$$M_r = 1.00 * [1.25 * (Dc + Dw) + 1.75 * (LL + IM) + 1.75 * PL]$$

B-3 DISENO POR SERVICIO

Calculamos cada uno de los momentos que se producen.

De acuerdo con los resultados obtenidos tenemos.

 $M_{DC}+M_{DW}=0.391$ n-m

 $M_{11} = 2.29 \text{ l n-m/m}$

 $M_{IM} = 0.76 \text{ l n-m/m}$

 $M_{PL} = 0.22 \text{ I n-m/m}$

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

$$M_s = 1.00 * [1.00 * (Dc + Dw) + 1.00 * (LL + IM) + 1.00 * PL]$$

Tenemos: $Ms = 1 \times [1.00 \times (0.39) + 1.00 \times (2.29 + 0.76) + 1.00 \times 0.22]$

Tenemos: Ms= 3.66 Tn-m/m

a) Verificación del peralte

El peralte mínimo esta en funcion de la aplicación de las siguientes ecuaciones :

* Calculamos el valor de "n"

Es = 2038700 kg/cm^2

 $Ec = 1820*(fc)^{1/2}$

Ec= 1800 x v280 kg/cm² Ec= 255392.9495 kg/cm²

 $n = \frac{E_s}{E_c}$ = n = $\frac{2038700}{255392.95}$ kg/cm² n = 7.98

* Calculamos el valor de "k"

fc:
$$280.00 \text{ kg/cm}^2$$

fcr= 0.45 fc
fcr= 126.00 kg/cm^2 (esf perm)
fy(adm)= 1700 kg/cm^2

$$k = \frac{n \text{ f}_{c(adm)}}{n \text{ f}_{c(adm)} + f_{y(adm)}}$$

$$k = \frac{7.98 \times 126}{7.98 \times 126 + 1700}$$

$$k = 0.370$$

* Calculamos el valor de "j"

$$\begin{bmatrix} j = 1 - \frac{k}{3} \end{bmatrix} \qquad \begin{matrix} j = & 1 + 0.37/3 \\ j = & 0.877 \end{bmatrix}$$

* Calculamos el valor de peralte minimo "d"

Mserv. 3.66Tn-m

b = 100.00 cm(1m)

 $d = \sqrt{\frac{2*M_{serv}}{f_{c}'*f_{*}*k*b}}$ dreq= 13.38 cm

NOTA: Se considerará un recubrimiento de 2" y varillas de 3/8"

recubrimiento: 2" rec= 5.08 cm

Diametro del Estribo superior= 3/8 0.95 cm

HL=0.25 cm

THE REPORT OF THE PARTY OF THE

UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

dcal=HL-rec-(est)/2

dcal = 0.25 - 5.08 - 0.953 / 2

dcal= 19.44 cm

* Verificamos que el peralte requerido es menor que el peralte calculado

SI: drec 13.38 dcal

19.44

Correcto

b) Diseño del Acero Principal

* Calculo de acero principal

* Calculo de acero minimo

$$A_{\rm smin} = \frac{14*bd}{f_{\rm y}}$$

*Una ves calculado ambos tipos de acero usaremos el mayor de los dos:

As=

8.52 cm²

As=

 6.48 cm^2

Usaremos el mayor acero As =

8.52 cm²

Armadura de repartición

* Calculando el acero por repartición

As=

 8.52 cm^2

S=

2.75 cm

$$A_{sr} = 0.55 * \frac{A_s}{\sqrt{S}}$$

Asr=

2.83 cm²

* O tambien se puede determinar:

 $A_{sr1} = 0.5 * A_s$

Asr1=

4.26 cm²

* Entonces se toma el mayor de los dos:

Asr=

2.83 cm²

Asr1=

4.26 cm²

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Usaremos el mayor Asr=

4.26 cm²

Armadura por Temperatura

El calculo de hace en finción de la apliacacion de la siguiente ecuación

$$A_{si} \ge \left(\frac{1pu \lg^2}{6}\right)/1pie$$

Entonces para este caso de hace con la siguiente ecuación

$$A_{st} = \left(\frac{1pu \lg^2}{8}\right) / 1pie$$

Ast=

3.53 cm²

(por metro lineal)

c) Distribución de la Armadura

* En funcion al area del acero considera se calcula la sepacion de cada elemento de acero con la aplicación de la siguiente ecuacion:

 $S = \frac{a_{\text{var}illa} * 100}{A_{\bullet}}$

Tenemos el Acero su	perior	Area Requerida	Ø Acero	Area Acero	S
Perpendicular al Trafico :	=As+Ast=	12.05 cm2	3/4	I · .	_1
Paralelo al Trafico	Ast=	3.53 cm2	3/8	0.71 cm2	20.00 cm

Γ	Tenemos el Acero Inferior			Area Acero	_
Γ	Perpendicular al Trafico =As+Ast=	12.05 cm2	3/4		1
Γ	Paralelo al Trafico Asr=	4.26 cm2	1/2	1.29 cm2	30.00 cm

d) Verificación del Cortante

d-1) Cortante por peso Propio

 $V_{DC} = W_{DC}$

 $V_{DC} = 0.681 \, \text{n/m}$

d-2) Cortante por Sobrecarga

V., = Pr/2

 $V_{11} = 4.431 \, \text{n/m}$

d-3) Cortante por Impacto.

 $V_{IM}=0.33*V_{i,1}$

/w= 1.46 In

d-4) Cortante por Carga peatonal.

 $V_{PL}=(W_{PL}*L)/2$

V_{PL}= 0.13 in

Calculando el cortante total.

$$Vu = V_{DC} + V_{LL} + V_{IM} + V_{PL}$$

Vu= 6.70 Tn

Vn= 6.70 Tn

Vc=0.53*(fc)^v~*b*d

Vc= 17.24 Tn

Ø= 0.85

VØ= 14.65

ØVc > Vs

14.65

6.70

OK

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

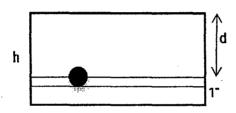
B-4 DISENO POR RESITENCIA (POR ROTURA)

Teniendo los datos correspondientes:

 $M_{11} = 2.29 \, l \, n - m/m$

 $M_{\text{BM}} = 0.76 \text{ l n-m/m}$

 $M_{DC}+M_{DW} = 0.39 \text{ l n-m/m}$


 $M_{Pl} = 0.22 \text{ I n-m/m}$

$$M_{u} = 1.00*(1.25Dc + 1.25Dw) + 1.75(LL + IM + PL)$$

$$M_R = 6.211Tn-m$$

1) Acero positivo y negativo

Diseño por rotura- Calculo de Acero principal.

Datos		·.
h=	25.00	cm
recub=	2.54	cm
5/8	1.99	cm
d=	21.47	cm
Mu=	6.21	1 n-m
fy=	4200.00	kg/cm ²
fc=	280.00	kg/cm [*]
ф=	0.90	
b=	100.00	cm

Para calcular el area del acero se aplican las ecuaciones de concreto que acontinuacion se

indican

$$A_{x} = \frac{M_{x}}{\left(\phi^{+} f_{y} \left(d - \frac{a}{2}\right)\right)}$$

$$a = \frac{As * f'y}{o.85 * f'c*b}$$

Y como se ve que las formulas complementarias y que una esta en funcion de la otra se tiene que calcular datos mediante iteraciones los cuales se tiene que empesar dando valores "a", donce el primer valor que asume es igual a d/5, para el cual se tiene el siguiente cuadro con los valores calculados

Tabulacion de Acero

a	As
4.293	8.51
1.501	7.93
1.400	7.91
1.396	7.91
1.396	7.91
1.396	7.91
1.396	7.91
1.396	7.91
1.396	7.91
1.396	7.91

Despues de los valores iterados se coge el ultimo valor del cuadro anterior como la cantidad de acero requerido

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

7.91°cm2

Area del acero que se va a trabajar

1:99 cm²

Separacion del acero S = Af*100/Av=

S=

25.15 cm

5/8

@ 25.00 cm

Calculamos el valor del acero mínimo:

Asmin=

7.2 cm2

Comparamamos entre el area de acero mínimo y el area de acero requerido y escogemos el mayor

7.91 cm²

Asmin=

 7.16 cm^2

Acero escogido:

Asp=

7.91 cm⁴

2) Acero por Distribución

Se determina con la aplicación de la siguiente ecuacion

S = 1.23 m

S= 1225.00mm

$$\alpha = \frac{3480}{\sqrt{2}} \le 67\%$$

99.43

99.43%

67%

Se considera el Acero principal es perpendicular al tránsito, con lo cual pa el calculo de acero se hace uso de la siguiente ecuacion

$$A'_{sd} = \alpha * A_{sp}$$

67.00% 5.30 cm2

3) Acero de Temperatura y Contracción

Se calcula con la siguiente fórmula

Para lo cual consideramos que el valor del acera será:

Ast=

2.65 cm2 (por metro lineal)

4) Distribución de la Armadura

Tenemos el Acero superior	,	Area Requerida	Ø Acero	Area Acero	S
Perpendicular al Trafico	As=	7.91 cm2	5/8	1.99 cm2	25.00 cm
Paralelo al Trafico	Ast=	2.65 cm2	3/8	0.71 cm2	25.00 cm

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Tenemos el Acero Infe	rior		Ø Acero	Area Acero	S
Perpendicular al Trafico	As=	7.91 cm2	5/8	1.99 cm2	25.00 cm
Paralelo al Trafico	Asr=	5.30 cm2	1,12	1.29 cm2	20.00 cm

5) Verificación del Cortante

5-1) Cortante por peso Propio

 $V_{DC} = 0.68 \text{ I n}$

5-2) Cortante por Sobrecarga

V_{LL}= 4.43 l n

5-3) Cortante por Impacto.

V_{IM}=0.33*V_{I I}

V_{IM}= 1.46 In

5-4) Cortante por Carga peatonal.

V_{PL}= 0.13 l n

Calculando el cortante total.

 $Vu = V_{DC} + V_{LL} + V_{IM} + V_{PL}$

Vu= 11.40 Tn

5.5) Verificación del Cortante

Vn= 11.40 Tn

Vc= 17.24 Tn

Ø= 0.85

VØ= 14.65

ØVc > Vs

14.65

11.40 OK

B-5 DISENO DE ACERO FINAL

Tenemos el Acero sur	perior	Area Requerida	Ø Acero	Area Acero	S
Perpendicular al Trafico	=As+Ast=	12.05 cm2	3/4	2.84 cm2	20.00 cm
Paralelo al Trafico	Ast=	3.53 cm2	3/8	0.71 cm2	20.00 cm

Tenemos el Acero Inferior	T	Ø Acero	Area Acero	S
Perpendicular al Trafico =As+Ast=	12.05 cm2	3/4	2.84 cm2	20.00 cm
Paralelo al Trafico Asr=	4.26 cm2	1/2	1.29 cm2	30.00 cm

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN. PROVINCIA SANCHEZ CARRION: REGION LA LIBERTAD

ANEXOS N° 5.2: DISEÑO DE VEREDA

FACULTAD DE INGENIERIA

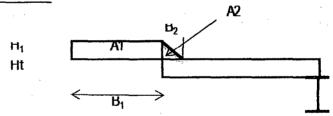
ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

A5-3 DISENO DE VEREDA

A GEOMETRIA DEL PUENTE

	$H_{I(\min)} = \left(\frac{1.2}{30} * (S + 3000)\right)$	Htmin= Htmin=	0.23 m 0.25 m
	Epesor de losa		
•	Peralle en apoyo de Vereda		0.25 m
•	Peralte en extremo de Vereda	H ₁ =	0.20
	Ancho de voladizo	B ₆ =	0.625 m
•	Separación de Vigas entre ejes	S=B ₅ =	2.//5 m
•	Ancho de Volado de Vereda	B ₄ =	0.60 m
•	Ancho de declinación	B ₂ =	U.05 m
•	Ancho de Vereda	B ₁ =	. 0.60 m
•	Ancho de la Calzada	Ac =	3.60 m


Nota:

Debido a que la porción de la losa en voladizo debe diseñarse para la colisión de una carga sobre la barra, entonces aumentaremos su spesor en 1"(2.54cm)

Consideraciones:

-	Sobrecarga Peatonal	WI≡	360.00	kg/m
-	Resistencia del Concreto a Usar	r <u>'</u> =	280.00	kg/cm2
-	Resistencia del Acero a Usar	fy=	4200.00	kg/cm2
	Sobrecarga Vehicular	P=	800.00	kg/m
-	Peso especifico del concreto a Usa	g=	2400.00	kg/m3

B DISENO DE TRAMO EN VOLADIZO

B-1 Metrado de Cargas

1) Carga Muerta(WD)

Las cargas que se obtienen se considera por un metro lineal

	W _{DC} =	0.300	M _{DC} =	0.19
A2= A2=1/2*B ₂ *H ₁		0.012	0.608	0.01
A1= A1=B ₁ *H ₁		0.288	0.625	0.18
Sec Medidas		Carga (Tn)	Distancia (m)	Mom. (T n-m)

WD= 0.30 kg/m

2) Momento por peso propio (MD)

Teniendo en cuenta la siguiente fórmula:

 $M_{\rm p} = 0.187 {\rm Tn} - {\rm m}$

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

3) Momento por sobrecarga Peatonal (PL)

Considerando factor de incremento por Impacto

Sobre carga peatonal

S/C= 360.00 kg/m

0.36 Tn

 $M_{PL} = 0.22 \, \text{Tn-m/m}$

B-2 Seleccción de modificadores de carga

Condiciones de diseño

- Considerando elementos no redundantes.
- Puentes de poca importancia
- Considerando elementos estructurales
- Se va a considerar operación normal del puente.
- Considerar el control de fisuras
- Uso vehicular normal del puente.

Resumen de los datos considerados.

	Resistencia	Servicio	Fatiga
Ductilidad (nD)	1.00	1.00	1.00
Redundancia (nR)	1.05	1.00	1.00
Importancia (nL)	0.95	1.00	1.00
Producto	1.00	1.00	1.00

n = nD*nR*nI

n= 1.00

Formando las ecuaciones en cada caso tenemos y teniendo en cuenta las Tablas Nº 34 y 35.

Servicio I

$$M_s = n * (Dc + Dw) + (II + IM) + PL$$

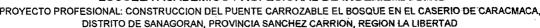
DC=	1.00
DW≡	1.00
LL=	1.00
IM=	1.00
PL=	1.00

Se tiene como formula general:

$$M_s = 1.00 * [1.00 * (Dc + Dw) + 1.00 * (LL + IM) + 1.00 * PL]$$

Resistencia I

DC=	1.25
DW=	1.25
L[=	1.75
IM=	1.75
PL=	1.75


Se tiene como formula general:

$$M_r = 1.00 * [1.25 * (Dc + Dw) + 1.75 * (LL + IM) + 1.75 * PL]$$

FACULTAD DE INGENIERIA

B-3 DISENO POR SERVICIO

Calculamos cada uno de los momentos que se producen.

De acuerdo con los resultados obtenidos tenemos.

$$M_{DC}+M_{DW}= 0.191 \text{ n-m}$$

 $M_{Pl}= 0.221 \text{ n-m/m}$

Tenemos: Ms= 0.41 Tn-m/m

a) Verificación del peralte

El peralte mínimo esta en funcion de la aplicación de las siguientes ecuaciones :

* Calculamos el valor de "n"

Es =
$$2038700 \text{ kg/cm}^2$$

Ec = $1820*(\text{fc})^41/2$

* Calculamos el valor de "k"

* Calculamos el valor de "j"

$$j = 1 - \frac{k}{3}$$
 $j = 1 + 0.37/3$
 $j = 0.877$

* Calculamos el valor de peralte mínimo "d"

$$d = \sqrt{\frac{2^* M_{serv}}{f_{cr}'^* j^* k^* b}} \qquad dreq = 4.47 cm$$

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

NOTA: Se considerará un recubrimiento de 2" y variltas de 3/8"

recubrimiento: 2"	rec= 5.08 cm		
Ø estribo 3/8"	0.95 cm		
	HL= 0.25 cm		
dcal=HL-rec-(est)/2	dcal= 14.44 cm		

* Verificamos que el peralte requerido es menor que el peralte calculado

SI: drec < dcal 4.47 < 14.44 **Correcto**

b) Diseño del Acero Principal

* Calculo de acero principal

 $A_s = \frac{M_s}{f_s * j * d}$

Calculo de acero minimo

$$A_{smin} = \frac{14*bd}{f_y}$$

As(mim)=
$$\frac{14 \times 100 \times 14.44}{4200.00}$$

 $As(mim)= 4.81 cm^2$

*Una ves calculado ambos tipos de acero usaremos el mayor de los dos:

As= 1.278 cm^2 As= 4.81 cm^2

Usaremos el mayor acero As = 4.81 cm²

- Armadura de repartición

* Calculando el acero por repartición

As= 4.81 cm^2 S= 2.75 cm

 $A_{rr} = 0.55* \frac{A_{r}}{\sqrt{S}}$ Asr= 0.42 cm²

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRÍON, REGION LA LIBERTAD

* O tambien se puede determinar:

 $A_{sr1} = 0.5 * A_s$

Asr1=

0.64 cm²

* Entonces se toma el mayor de los dos:

Asr=

 0.42 cm^2

Asr1=

 0.64 cm^2

Usaremos el mayor Asr=

0.64 cm²

Armadura por Temperatura

El calculo de hace en finción de la apliacacion de la siguiente ecuación

$$A_{st} \ge \left(\frac{1pu\lg^2}{6}\right)/1pie$$

Entonces para este caso de hace con la siguiente ecuación

$$A_{st} = \left(\frac{1pu \lg^2}{8}\right) / 1pie$$

Ast= 3.53 cm2

(por metro lineal)

c) Distribución de la Armadura

* En funcion al area del acero considera se calcula la sepacion de cada elemento de acero con la aplicación de la siguiente ecuacion:

			Ĺ.	Α,
Tenemos el Acero superior	Area Requerida	Ø Acero	Area Acero	S
Perpendicular al Trafico =As+Ast=	4.81 cm2	1/2	1.29 cm2	25.00 cm
Paralelo al Trafico Ast	3.53 cm2	3/8	0.71 cm2	20.00 cm

Tenemos el Acero Inferior	Ø Acero	Area Acero	S
Perpendicular al Trafico =As+Ast= 4.81 cm2	1/2	1.29 cm2	25.00 cm
Paralelo al Trafico Asr= 3.53 cm2	3/8	0.71 cm2	20.00 cm

d) Verificación del Cortante

d-1) Cortante por peso Propio

VDC=MDC

 $V_{DC} = 0.301 \, n/m$

d-4) Cortante por Carga peatonal.

 $V_{PL}=(W_{PL}*L)/2$

 $V_{pi} = 0.13 ln$

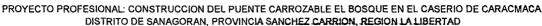
Calculando el cortante total.

ØVc > Vs

10.89

>

0.43 O

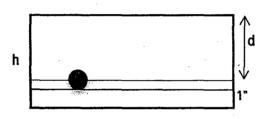

OK

 $_{\rm C}$ _ $a_{\rm varilla}$ *100

FACULTAD DE INGENIERIA

B-4 DISENO POR RESITENCIA (POR ROTURA)

Teniendo los datos correspondientes:


$$M_{DC} = 0.19 \text{ l.n-m/m}$$

 $M_{Pl} = 0.22 \text{ l.n-m/m}$

$$M_u = 1.00*(1.25Dc + 1.25Dw) + 1.75(LL + IM + PL)$$

M_R= 0.620 i n-m

1) Acero positivo y negativo

Diseño por rotura-Calculo de Acero principal.

Datos	
h=	20.00 cm
recub=	2.54 cm
3/8	0.71 cm
d=	17.11 cm
Mu=	0.62 l n-m
fy=	4200.00 kg/cm ²
fc=	280.00 kg/cm ²
ф=	0.90
b=	100.00 cm

Para calcular el area del acero se aplican las ecuaciones de concreto que acontinuacion se

indican

$$A_{y} = \frac{M_{y}}{\left(\phi * f_{y}\left(d - \frac{a}{2}\right)\right)}$$

$$a = \frac{As * f'y}{o.85 * f'c*b}$$

Y como se ve que las formulas complementarias y que una esta en funcion de la otra se tiene que calcular datos mediante iteraciones los cuales se tiene que empesar dando valores "a", donce el primer valor que asume es igual a d/5, para el cual se tiene el siguiente cuadro con los valores calculados

Tabulacion de Acero

a	As
3.421	1.07
0.188	0.96
0.170	0.96
0.170	0.96
0.170	0.96
0.170	0.96
0.170	0.96
0.170	0.96
0.170	0.96
0.170	0.96

Despues de los valores iterados se coge el ultimo valor del cuadro anterior como la cantidad de acero requerido

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Tenemos el Acero Inferior			Ø Acero	Area Acero	S
Perpendicular al Trafico	As=	5.70 cm2	1/2	1.29 cm2	20.00 cm
Paralelo al Trafico	Asr=	3.82 cm2	1/2	1.29 cm2	30.00 cm

5) Verificación del Cortante

5-1) Cortante por peso Propio

 $V_{DC} = 0.30 \text{ I n}$

5-4) Cortante por Carga peatonal.

 $V_{PL} = 0.13 ln$

Calculando el cortante total.

1.25*0.3+1.75*(0.1323)

Vu= 0.61 Tn

5.5) Verificación del Cortante

 $V_{c}=0.53*(f_{c})^{AV-V}*b*d$ $V_{c}=0.53*(f_{c})^{AV-V}*b*d$ $V_{c}=0.61 \text{ Tn}$ $V_{c}=0.85 \text{ V} \emptyset = 0.85$

ØVc > Vs 10.89 > 0.61 OK

B-5 DISENO DE ACERO FINAL

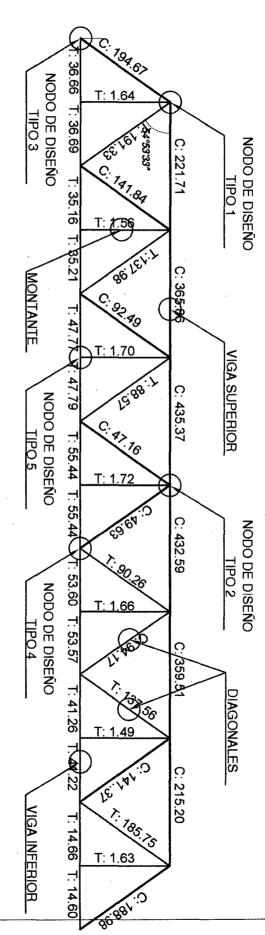
Tenemos el Acero superior

	Α	rea Requerida	Ø Acero	Area Acero	S
Perpendicular al Trafico	As=	5.70 cm2	1/2	1.29 cm2	20.00 cm
Paralelo al Trafico	Ast=	2.65 cm2	3/8	0.71 cm2	25.00 cm

Tenemos el Acero Inferior			Ø Acero	Area Acero	S
Perpendicular al Trafico	As=	5.70 cm2	1/2	1.29 cm2	20.00 cm
Paralelo al Trafico	Asr=	3.82 cm2	3/8	0.71 cm2	15.00 cm

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

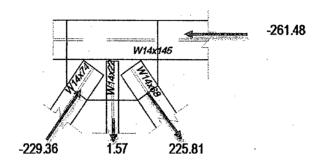
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD


ANEXOS N° 6: DISEÑO DE ARMADURA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

FACULTAD DE INGENIERIA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

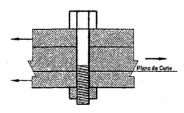
C: ELEMENTO QUE ESTA FUNCIONANDO A COMPRESION T: ELEMENTO QUE ESTA FUNCIONANDO A TENSION


FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

6.A1 DISEÑO DE CONEXIONES DE NUDO 01

1.- Para realizar los calculos identificamos todos las cargas actuante en el nodo de diseño, teniedo como fuente el calculo hecho el programa SAP 2000, donde se identifican a todo los nodos del mismo tipo y se calcula con la cargas maximas que actuan en el nodo (nodo mas critico).


a-1) Datos de elementos a analizar

N°	Elemento	Fuerza Axial	Und.
1	Compresión	229.36	Ton-f
2	Tensión	225.81	Ton-f
3	Compresión	261.48	Ton-f
4	Tensión	1.57	Ton-f

a-2) A este nodo se hace un diseño de traccion y corte lo cual revisamos la tabla N° 43 del marco teorico y en especificaciones AISC 2005 en la tabla J 3.2 para lo cual se tienes los siguientes datos

-	Tracción	Fnv= 6320	kgf/cm²
_	Corte	Fnt= 3360	kat/cm ²

2.- DISENO A TRACCION DE PERNOS CON PARTE ENROSCADA

La resistencia de diseño de tracción y de corte esta dada por la siguiente

$$R_u = \Phi^* R_n$$

Donde:

Ademas tambien se conoce según el marco teorico y con la ecuación N° 86 y de acuerdo a especificaciones AISC 2005 con la ecuación J3-1 que:

$$R_n = F_{nv} * A_h$$

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Para el calculo del área bruta del perno o parte roscada se deduce la siguiente ecuacion

$$A_b = \frac{R_u}{\Phi * F_{uu}}$$

Elemento N°01= <u>229.36 *1000</u> = 48.39

cm²

0.75 * 6320

225.81 *1000 = 47.64

 cm^2

Elemento N°02= <u>225.81 *1000</u> 0.75 * 6320

•

Elemento N°4= 261.48 *1000

261.48 *1000 = 55.16 0.75 * 6320 cm²

Elemento N°4=

1.57 *1000 0.75 * 6320

= 0.33

cm²

	A _{bmin}	Ø Perno	A perno	Nb	Ab
1	48.39	7/8	3.88	20	77.58976
2	47.64	7/8	3.88	20	77.58976
3	55.16	7/8	3.88	20	77.58976
4	0.33	5/8	1.98	12	23.75197

4. PERNOS DE ALTA RESISTENCIA EN CONEXION DE DESLIZAMIENTO CRITICO

 La resistencia de deslizamiento disponible, ΦRn y seran serán determinadas para el estado límite de deslizamiento aplicando la ecuacion N° 89 del marco teorico y J3-4 de AISC -2005 de la siguiente forma:

$$R_n = uD_u h_{sc} T_b N_s$$

Donde:

$$R_u = \Phi^* R_n$$

Para las conexiones en que la prevención del deslizamiento es un estado límite de servicio

Φ= 1 Para diseños por el método LRFD

* La tensión de pandeo por flexión Fcr, se determina como sigue:

u= 0.35 para superfies de clase A

0.50 para superfies de clase B

Du= 1.13

hsc= 1.00 para perforaciones de tamaño estandar

0.85 para preforaciones sobremedidas y de ranura corta

0.70 para preforaciones de ranura larga

Ns=

Numero de planos de deslizamiento

Tb=

Traccion minima del conector Tabla N° 42 del marco teorico y tabla J3.1 de AISC - 2005

Perno	Perno A325	
1/2	12	kips
5/8	19	kips
3/4	28	kips
7/8	39	kips
1	51	kips

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Para el calculo del área bruta del perno o parte roscada se deduce la siguiente ecuacion

$$A_b = \frac{R_u}{\Phi * F_{max}}$$

= 0.18 cm²

.

<u>0.625 *1000</u> = 0.13

cm²

<u>*1000</u> 0.75 * 6320

0.75 * 6320

= 0.00

cm²

Elemento N°4=

<u>*1000</u> 0.75 * 6320 = 0.00

cm²

							D
		Abmin	Ø Perno	A perno	Nb	Ab, =	Pu
I	1	0.18	7/8	3.88	20	77.58976	ф * <i>R</i>
	2	0.13	7/8	3.88	20	77.58976	
	3	0.00	7/8	3.88	20	77.58976	
	4	0.00	5/8	1.98	12	23.75197	

4.- PERNOS DE ALTA RESISTENCIA EN CONEXION DE DESLIZAMIENTO CRITICO

 La resistencia de destizamiento disponible, ΦRn y seran serán determinadas para el estado límite de destizamiento aplicando la ecuación N° 89 del marco teorico y J3-4 de AISC -2005 de la siguiente forma:

$$R_n = uD_u h_{sc} T_b N_s$$

Donde:

$$R_u = \Phi^* R_n$$

Para las conexiones en que la prevención del deslizamiento es un estado límite de servicio

Φ= 1 Para diseños por el método LRFD

* La tensión de pandeo por flexión Fcr, se determina como sigue:

u= 0.35 para superfies de clase A

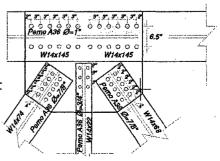
0.50 para superfies de clase B

Du= 1.13

hsc= 1.00 para perforaciones de tamaño estandar

0.85 para preforaciones sobremedidas y de ranura corta

0.70 para preforaciones de ranura larga

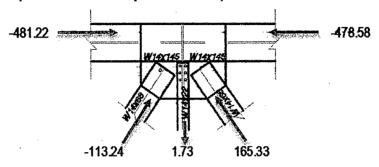

Ns=

Numero de planos de deslizamiento

Tb=

Traccion minima del conector Tabla N° 42 del marc

Perno	Per	no A325
1/2	12	kips
5/8	19	kips
3/4	28	kips
7/8	39	kips
1	51	kips

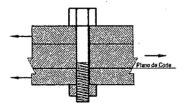

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

6.A2 DISEÑO DE CONEXIONES DE NUDO 02

1.- Para realizar los calculos identificamos todos las cargas actuante en el nodo de diseño, teniedo como fuente el calculo hecho el programa SAP 2000, donde se identifican a todo los nodos del mismo tipo y se calcula con la cargas maximas que actuan en el nodo (nodo mas critico).


a-1) Datos de elementos a analizar

N°	Elemento	Fuerza Axial	Und.
1	Compresión	113.24	Ton-f
2	Tensión	165.33	Ton-f
3	Compresión	481.22	Ton-f
4	Compresión	478.58	Ton-f
5	Tensión	1.73	Ton-f

a-2) A este nodo se hace un diseño de traccion y corte lo cual revisamos la tabla N° 43 del marco teorico y en especificaciones AISC 2005 en la tabla J 3.2 para lo cual se tienes los siguientes datos

Tracción Fnv= 6320 kgf/cm²
 Corte Fnt= 3360 kgf/cm²

2.- DISENO A TRACCION DE PERNOS CON PARTE ENROSCADA

La resistencia de diseño de tracción y de corte esta dada por la siguiente

$$R_u = \Phi^* R_n$$

Donde:

 $\Phi = 0.75$

Para diseños por el método LRFD

Ademas tambien se conoce según el marco teorico y con la ecuacion N° 86 y de acuerdo a especificaciones AISC 2005 con la ecuacion J3-1 que:

$$R_n = F_{nv} * A_b$$

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Para el calculo del área bruta del perno o parte roscada se deduce la siguiente ecuacion

$$A_b = \frac{R_u}{\Phi * F_{nu}}$$

Elemento N°01= <u>113.24 *1000</u> = 23.89 cm² 0.75 * 6320

Elemento N°02= 165.33 *1000 = 34.88 cm² 0.75 *6320

Elemento N°03= $\frac{481.22*1000}{0.75*6320}$ = 101.52 cm²

Elemento N°4= $\frac{478.58 *1000}{0.75 *6320}$ = 100.97 cm²

Elemento N°4= $\frac{1.73 *1000}{0.75 *6320} = 0.36$ cm²

	A _{bmin}	Ø Perno	A perno	Nb	Ab
1	23.89	7/8	3.88	16	62.07
2	34.88	7/8	3.88	16	62.07
3	101.52	1	5.07	28	141.88
4	100.97	1	5.07	28	141.88
5	0.36	5/8	1.98	12	23.75

3. PERNOS DE ALTA RESISTENCIA EN CONEXION DE DESLIZAMIENTO CRITICO

 La resistencia de deslizamiento disponible, ΦRn y seran serán determinadas para el estado límite de deslizamiento aplicando la ecuación N° 89 del marco teorico y J3-4 de AISC -2005 de la siguiente forma:

$$R_n = uD_u h_{sc} T_b N_s$$

Donde:

$$R_u = \Phi^* R_n$$

Para las conexiones en que la prevención del deslizamiento es un estado límite de servicio

Φ= 1 Para diseños por el método LRFD

La tensión de pandeo por flexión Fcr, se determina como sigue:

u= 0.35 para superfies de clase A

0.50 para superfies de clase B

Du= 1.13

hsc= 1.00 para perforaciones de tamaño estandar

0.85 para preforaciones sobremedidas y de ranura corta

0.70 para preforaciones de ranura larga

Ns= Numero de planos de deslizamiento

Tb= Traccion minima del conector Tabla N° 42 del marco teorico y tabla J3.1 de AISC - 2005

Perno	Perno A325	
1/2	12	kips
5/8	19	kips

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

3/4	28	kips	
7/8	39	kips	
1	51	kips	

* Luego de revisar la consideraciones anteriores tenemos como resumen para el diseño los siguientes datos:

u= 0.35

Du= 1.13

hsc= 1.00

Ns= 2

b= 1

Remplazando valores tenemos

Elemento N°01=

R_{n1}=

0.35 * 1.13 * 1 * 39 * 2 =

30.85

Elemento N°02=

 $R_{n2}=$

0.35 * 1.13 * 1 * 39 * 2 =

30.85

Elemento N°03=

R_{n3}=

0.35 * 1.13 * 1 * 51 * 2 =

40.34

Elemento N°04=

R.,=

0.35 * 1.13 * 1 * 51 * 2 =

40.34 15.03

Elemento N°04=

 $R_{n5}=$

0.35 * 1.13 * 1 * 19 * 2 =

 $n_b = \frac{P_u}{\Phi * R_n}$

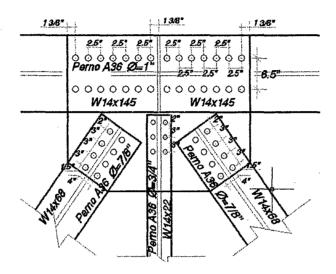
		Ø Perno	Tb	Rn	фRn	Pu	Nb	Nb
_		D i Cilio	(kips/blot)	(Kips)	calcula	asumid		
	1	7/8	39	30.85	30.85	249.58	8.09	16
	2	7/8	39	30.85	30.85	364.39	11.81	16
	3	1	51	40.34	40.34	1060.61	26.29	28
	4	1	51	40.34	40.34	1054.79	26.15	28
	5	5/8	19	15.03	15.03	3.81	0.25	12

* Luego de naber carculado la camidad de pernos a usar se nace la distribución de dichos pernos temendo en cuenta que se tiene 02 planos de trabajos, esto quiere decir que se tienes que dividir en dos partes dichos pernos

La distancia entre centros de perforaciones estándar no debe ser menor que 2 - 2/3 veces el diámetro nominal, se prefiere una distancia de 3d (AISC - 2005)

	Ø Perno	Separ	Separacion calcula		Separacion calculada		Separacion	
	& Fellio	2/3d	2d	3d	mm	pulg		
1	7/8	14.82 mm	44.45 mm	66.68 mm	66.68 mm	3.00		
2	7/8	14.82 mm	44.45 mm	66.68 mm	66.68 mm	3.00		
3	1	16.93 mm	50.80 mm	76.20 mm	76.20 mm	2.50		
4	1	16.93 mm	50.80 mm	76.20 mm	76.20 mm	2.50		
5	5/8	10.58 mm	31.75 mm	47.63 mm	47.63 mm	3.00		

La distancia desde el centro de una perforación estándar hasta el borde de una parte conectada en cualquier dirección no debe ser menor que el valor aplicable de la Tabla N° 45 de marco teorico de la tabla J3-4 del AISC-2005

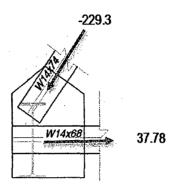


FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

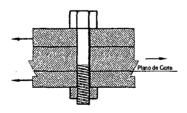
	Ø Perno	Distanci	a al Borde	Asumido	
	DI GINO	pulg mm		pulg	
1	7/8	1	23.81 mm	2.00	
2	· 7/8	1	23.81 mm	2.00	
3	1	1	26.99 mm	2.00	
5	5/8	1 1/8	28.58 mm	2.00	


FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

6.A3 DISEÑO DE CONEXIONES DE NUDO 03

1.- Para realizar los calculos identificamos todos las cargas actuante en el nodo de diseño, teniedo como fuente el calculo hecho el programa SAP 2000, donde se identifican a todo los nodos del mismo tipo y se calcula con la cargas maximas que actuan en el nodo (nodo mas critico).


a-1) Datos de elementos a analizar

No	Elemento	Fuerza Axial	Und.
1	Compresión	229.3	Ton-f
2	Tensión	37.78	Ton-f

a-2) Aeste nodo se hace un diseño de traccion y corte lo cual revisamos la tabla N° 43 del marco teorico y en especificaciones AISC 2005 en la tabla J 3.2 para lo cual se tienes los siguientes datos

Tracción Fnv= 6320 kgf/cm²
 Corte Fnt= 3360 kgf/cm²

2.- DISEÑO A TRACCIÓN DE PERNOS CON PARTE ENROSCADA

La resistencia de diseño de tracción y de corte esta dada por la siguiente

$$R_u = \Phi^* R_n$$
 Donde:

0.75

Ademas tambien se conoce según el marco teorico y con la ecuacion N° 86 y de acuerdo a especificaciones AISC 2005 con la ecuacion J3-1 que:

$$R_n = F_{nv} * A_b$$

Para diseños por el método LRFD

Para el calculo del área bruta del perno o parte roscada se deduce la siguiente ecuacion

$$A_b = \frac{R_u}{\Phi * F_{nv}}$$

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACN DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Elemento N°01=

229.3 *1000

cm2

0.75 * 6320

Elemento N°02=

37.78 *1000

cm²

0.75 * 6320

	A _{bmin}	Ø Perno	A perno	Nb	Ab
1	48.38	7/8	3.88	20	77.59
2	7.97	5/8	1.98	20	39.59

3. PERNOS DE ALTA RESITENCIA EN CONEXIÓN DE DELIZAMIENTO CRITICO

= 48.38

= 7.97

La resistencia de deslizamiento disponible, PRn y seran serán determinadas para el estado límite de deslizamiento aplicando la ecuación N° 89 del marco teorico y J3-4 de AISC -2005 de la siguiente forma:

$$R_n = uD_u h_{sc} T_h N_s$$

Donde:

$$R_u = \Phi^* R_n$$

Para las conexiones en que la prevención del deslizamiento es un estado límite de servicio

Para diseños por el método LRFD

La tensión de pandeo por flexión Fcr, se determina como sigue:

u= 0.35 para superfies de clase A

0.50 para superfies de clase B

Du= 1.13

hsc= 1.00 para perforaciones de tamaño estandar

0.85 para preforaciones sobremedidas y de ranura corta

0.70 para preforaciones de ranura larga

Ns=

Numero de planos de deslizamiento

Tb=

Traccion minima del conector Tabla N° 42 del marco teorico y tabla J3.1 de AISC - 2005

Perno	Perno A325	
1/2	12	kips
5/8	19	kips
3/4	18	kips
7/8	39	kips
1	51	kips

Luego de revisar la consideraciones anteriores tenemos como resumen para el diseño los siguientes datos:

$$u = 0.35$$

Remplazando valores tenemos

$$R_{n1}=$$

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Elemento N°01=

229.3 *1000 = 48.38

cm²

0.75 * 6320

Elemento N°02=

37.78 *1000

cm²

0.75 * 6320

	A _{bmin}	Ø Perno	Aperno	Nb	Ab
1	48.38	7/8	3.88	20	77.59
2	7.97	5/8 ⁻	1.98	20	39.59

3.- PERNOS DE ALTA RESITENCIA EN CONEXIÓN DE DELIZAMIENTO CRITICO

= 7.97

 La resistencia de deslizamiento disponible, ΦRn y seran serán determinadas para el estado límite de deslizamiento aplicando la ecuación N° 89 del marco teorico y J3-4 de AISC -2005 de la siguiente forma:

$$R_n = uD_u h_{sc} T_b N_s$$

Donde:

$$R_u = \Phi^* R_n$$

Para las conexiones en que la prevención del deslizamiento es un estado límite de servicio

φ= 1 Para diseños por el método LRFD

* La tensión de pandeo por flexión Fcr, se determina como sigue:

u= 0.35 para superfies de clase A

0.50 para superfies de clase B

Du= 1.13

hsc= 1.00 para perforaciones de tamaño estandar

0.85 para preforaciones sobremedidas y de ranura corta

0.70 para preforaciones de ranura larga

Ns=

Numero de planos de deslizamiento

Tb=

Traccion minima del conector Tabla N° 42 del marco teorico y tabla J3.1 de AISC - 2005

Perno	Perno A325	
1/2	12	kips
5/8	19	kips
3/4	18	kips
7/8	39	kips
1	51	kips

* Luego de revisar la consideraciones anteriores tenemos como resumen para el diseño los siguientes datos:

u = 0.35

Du= 1.13

hsc= 1.00

Ns=2

ф= 1

Remplazando valores tenemos

Elemento N°01=

 $R_{n1}=$

0.35 * 1.13 * 1 * 39 * 2 =

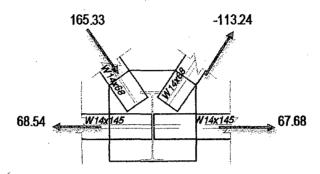
30.85

Elemento N°02=

'R₂=

0.35 * 1.13 * 1 * 19 * 2 =

15.03

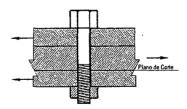

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

6.A4 DISEÑO DE CONEXIONES DE NUDO 04

1.- Para realizar los calculos identificamos todos las cargas actuante en el nodo de diseño, teniedo como fuente el calculo hecho el programa SAP 2000, donde se identifican a todo los nodos del mismo tipo y se calcula con la cargas maximas que actuan en el nodo (nodo mas critico).


a-1) Datos de elementos a analizar

Elemento	Fuerza Axial	Und.
Tensión	68.54	Ton-f
Tensión	67.68	Ton-f
Tensión	165.33	Ton-f
Compresión	113.24	Ton-f
	Tensión Tensión Tensión	Tensión 68.54 Tensión 67.68 Tensión 165.33

a-2) A este nodo se hace un diseño de traccion y corte lo cual revisamos la tabla N° 43 del marco teorico y en especificaciones AISC 2005 en la tabla J 3.2 para lo cual se tienes los siguientes datos

Tracción Fnv= 6320 kgf/cm²
Corte Fnt= 3360 kgf/cm²

2. DISEÑO A TRACCIÓN DE PERNOS CON PARTE ENROSCADA

La resistencia de diseño de tracción y de corte esta dada por la siguiente

$$R_{\nu} = \Phi^* R_n$$

Donde:

Φ= 0.75 Para diseños por el método LRFD

Ademas tambien se conoce según el marco teorico y con la ecuacion N° 86 y de acuerdo a especificaciones AISC 2005 con la ecuacion J3-1 que:

$$R_n = F_{nn} * A_h$$

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Para el calculo del área bruta del perno o parte roscada se deduce la siguiente ecuacion

$$A_b = \frac{R_u}{\Phi * F_{nu}}$$

Elemento N°01=

Elemento N°02=

cm²

$$\frac{67.68 *1000}{0.75 *6320} = 14.28$$

Elemento N°03=

Elemento N°03=

cm²

0.75 * 6320

= 23.89

cm²

	A _{bmin}	Ø Perno	A perno	Nb	Ab
1	14.46	5/8	1.98	16	31.67
2	14.28	5/8	1.98	16	31.67
3	34.88	7/8	3.88	16	62.07
4	23.89	7/8	3.88	16	62.07

PERNOS DE ALTA RESITENCIA EN CONEXIÓN DE DELIZAMIENTO CRITICO

La resistencia de deslizamiento disponible, PRn y seran serán determinadas para el estado límite de deslizamiento aplicando la ecuacion N° 89 del marco teorico y J3-4 de AISC -2005 de la siguiente forma:

$$R_n = uD_u h_{sc} T_b N_s$$

Donde:

$$R_n = \Phi^* R_n$$

Para las conexiones en que la prevención del deslizamiento es un estado límite de servicio

Para diseños por el método LRFD

La tensión de pandeo por flexión Fcr., se determina como sigue:

u= 0.35 para superfies de clase A

0.50 para superfies de clase B

Du= 1.13

hsc=

1.00 para perforaciones de tamaño estandar

0.85 para preforaciones sobremedidas y de ranura corta

0.70 para preforaciones de ranura larga

Ns=

Numero de planos de deslizamiento

Tb=

Traccion minima del conector Tabla N° 42 del marco teorico y tabla J3.1 de AISC - 2005

Perno	Perno A325	
1/2	12	kips
5/8	19	kips
3/4	18	kips
7/8	39	kips
1	51	kips

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

* Luego de revisar la consideraciones anteriores tenemos como resumen para el diseño los siguientes datos:

$$u = 0.35$$

Du= 1.13

hsc= 1.00

Ns= 2

ф= 1

Remplazando valores tenemos

Elemento N°01=
$$R_{n1}$$
= 0.35 * 1.13 * 1 * 19 * 2 = 15.03

Elemento N°02=
$$R_{n2}$$
= 0.35 * 1.13 * 1 * 19 * 2 = 15.03

Elemento N°04=
$$R_{n4}$$
= 0.35 * 1.13 * 1 * 39 * 2 = 30.85 P_{u}

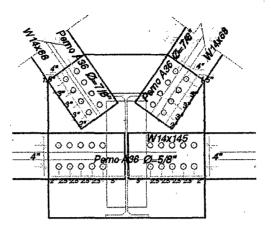
	$n_b - \frac{1}{\phi * R_n}$						
	Ø Perno	Tb	Rn	фRn	Pu	Nb	Nb
	Dreino	עו	(kips/blot)	φινιι	(Kips)	calcula	asumid
1	5/8	19	15.03	15.03	151.06	10.05	16
2	5/8	19	15.03	15.03	149.17	9.93	16
3	7/8	39	30.85	30.85	364.39	11.81	16
4	7/8	39	30.85	30.85	249.58	8.09	16

Luego de haber calculado la cantidad de pernos a usar se hace la distribución de dichos pernos teniendo en cuenta que se tiene 02 planos de trabajos, esto quiere decir que se tienes que dividir en dos partes dichos pernos

La distancia entre centros de perforaciones estándar no debe ser menor que 2-2/3 veces el diámetro nominal, se prefiere una distancia de 3d (AISC - 2005)

	Ø Perno	Separ	Separacion calculada			acion
	DI CINO	2/3d	2d	3d	mm	pulg
1	5/8	10.58 mm	31.75 mm	47.63 mm	47.63 mm	3.00
2	5/8	10.58 mm	31.75 mm	47.63 mm	47.63 mm	3.00
3	7/8	14.82 mm	44.45 mm	66.68 mm	66,68 mm	3.00
4	7/8	14.82 mm	44.45 mm	66.68 mm	66.68 mm	3.00

La distancia desde el centro de una perforación estándar hasta el borde de una parte conectada en cualquier dirección no debe ser menor que el valor aplicable de la Tabla N° 45 de marco teorico de la tabla J3-4 del AISC-2005

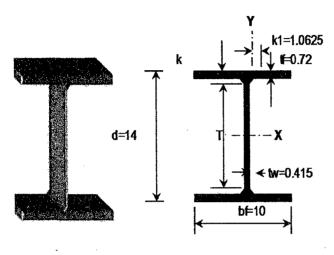

	Ø Perno	Distanci	a al Borde	Asumido pulg	
	DI GIIIO	pulg	mm		
1	5/8	1 1/8	28.58 mm	2.00	
2	5/8	1 1/8	28.58 mm	2.00	
3	7/8	1 .	23.81 mm	2.00	
4	7/8	1	23.81 mm	2.00	

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

FACULTAD DE INGENIERIA


PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

6.B1 DISEÑO DE ELEMENTOS DIAGONALES A TENSIÓN

1.- SELECCIONAR PERFIL

Identificamos las caracteristicas principales de cada elementos que se va usar según especificaciones tecnica de los elemento que usa la norma LRFD

* Identificamos elementos que se analizará según los calculos hechos en SAP - 2000 =

W14X68		
A=	20.00 in. ²	
d =	14.00 in.	
tw≡	0.42 in.	
bf =	10.00 in.	
े tf =	0.72 in.	
k(des) =	1.31 in.	
k(det) =	1.56 in.	
k1 =	1.06 in.	
Τ=	10.88 in.	
wt./ft. =	68.00 plf.	

Fy=	2531.16	kg/cm ²
Fu=	4077.98	kg/cm ²

2.- DISEÑO A TENSIÓN CON MIEMBROS CONECTADOS POR PASADORES

8987949

Para rotura en tracción en el área neta efectiva esta en funcion de la ecuación N° 59 de marco teórico y de la ecuación D5-1 de AISC - 2005, que acontinuación se detalla

$$P_n = 2tb_{eff} f_u$$

* En el cuadro siguiente se muestra todas las fuerzas actuantes en la armadura que estan trabajando a tension, datos obtenidos en el analisis realizados en el SAP - 2000

N° elemento	Elemento	FUERZA AXIAL			
N Elemento	Elemento	Fuerza	Und.	Fuerza	Und.
1	compresion	191.38	Ton-f	191380.00	kg - f
2	compresion	137.98	Ton-f	137980.00	kg - f
3	compresion	88.57	Ton-f	88570.00	kg - f
4	compresion	90.26	Ton-f	90260.00	kg - f
5	compresion	137.56	Ton-f	137560.00	kg - f
6	compresion	185.75	Ton-f	185750.00	kg - f

* Para la aplicación de la ecuacion N° 59 de marco teórico o de la ecuacion D5-1 de AISC - 2005, se calculan los datos necesarios para la aplicación de dicha formula

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

*Calculamos en valor de beff

⊨ 1.85 cm

ber=2*t+1.6=

3.04 cm

*Calculamos el valor de "a"

a=3/4*b_{eff}=

2.28 cm

*Remplazando datos en la ecuacion N° 59 de marco teórico o de la ecuacion D5-1 de AISC - 2005

$$P_n = 2tb_{eff} f_u$$

Pn=

104604.20 kg-f

* Escogemos axial maxima del cuadro de fuerza actuante para el analisis de los elementos

Pu=

191380.00 kg-f

*Una ves calculado "Pn" y "Pu" debemos verificar que la relacion entre ellos sea menor que 1

si Pu/Pn < 1

0.55 < 1

OK La seccion escogida es la correcta

Verificando la condicion de areas donde AelAg ≥ 0.75

Calculamos el factor de arrastre por cortante, U, como el mayor de los valores de Tabla N° 36 caso 2 y el caso 7 o AISC Especificación D3 sección,

$$U = \frac{2 * t_f * b_f}{A_g}$$

t= 1.8288 cm b= 25.4 cm

 $A_{cr} = 129.0 \text{ cm}$

U= 0.72

USANDO EL CASO 2 DE LA TABLA

$$U = 1 - \frac{X}{I}$$

X= 2.14 cm

l= 9.00 cm

J= 0.76

USANDO EL CASO 7 DE LA TABLA

Condiciones

Si bf $\geq 2/3d=$

U=

bf < 2/3d =

U=

0.9

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

bf= 25.4 cm d= 35.56 cm 2/3d= 23.71 cm

entonces:

U=

0.90

Escogemos el maximo de los tres valores de U

Calculo del area neta en funcion de los pernos

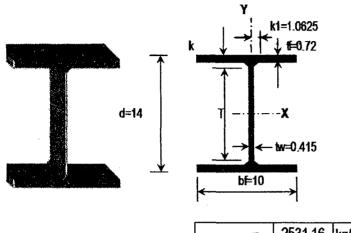
$$\boxed{ \begin{aligned} A_e &= A_g - 4*(d_h + \frac{1}{16})*t_f \\ &= & 129.03 \text{ cm}^2 \\ &= & 2.22 \text{ cm} \\ &= & 2.29 \text{ cm} \\ &= & 1.27 \text{ cm} \end{aligned} }$$
 espesor de la cartela
$$\text{Ae=} \quad 117.42 \text{ cm}^2$$

$$\text{Ae/Ag=} \quad 0.91 \quad \geq \quad 0.75$$

Se verifica que los valores de diseño por rotura son validos

* La verificacion a la resistencia a la tracción disponible ruptura es

OK el diseño es correcto


FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

6.B2 DISEÑO DE ELEMENTOS DIAGONALES A COMPRESIÓN

1.- SELECCIONAR PERFIL

W14X68		
Α=	20.00	n. ²
d =	14.00	in.
tw≕	0.42	in.
bf =	10.00	in.
tf =	0.72	in.
k(des) =	1.31	
k(det) =	1.56	
k1 =	1.06	
Ţ=	10.88	in.
wt./ft. =	68.00	pl£
ry =	2.46	in.

Fy≕	2531.16	kg/cm ²
-----	---------	--------------------

2.- DISEÑO POR COMPRESIÓN

* La resistencia de compresión nominal, Pn, debe ser determinada basándose en el estado límite de pandeo por flexión con la aplicación de la ecuación N° 65 o E3-1 de AISC - 2005

$$P_n = F_{\sigma} A_g$$

En el cuadro siguiente se muestra todas las fuerzas actuantes en la armadura que estan trabajando a compresión, datos obtenidos en el analisis realizados en el SAP - 2000

N° elemento	Elemento	FUERZA AXIAL			
	Ciciliciilo	Fuerza	Und.	Fuerza	Und.
1	compresion	194.67	Ton-f	194670.00	kg-f
2	compresion	141.84	Ton-f	141840.00	kg-f
3	compresion	92.49	Ton-f	92490.00	kg-f
4	compresion	47.16	Ton-f	47160.00	kg-f
5	compresion	49.63	Ton-f	49630.00	kg-f
6	compresion	94.17	Ton-f	94170.00	kg-f
7	compresion	141.37	Ton-f	141370.00	kg-f
8	compresion	188.98	Ton-f	188980.00	kg-f

La tensión de pandeo por flexión Fcr, se determina como sigue:

Si
$$\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{F_y}} (oF_a \ge 0.44F_y)$$

Entonces
$$F_{\sigma} = [0.658^{\frac{F_{\sigma}}{F_{\sigma}}}] * F_{y}$$

= 0.877F

$$\dot{O} \qquad \frac{\mathrm{KL}}{\mathrm{r}} > 4.71 \sqrt{\frac{E}{F_y}} (oF_e < 0.44F_y)$$

Entonces F_a

Area de la seccion

 $Ag = 129.032 \text{ cm}^2$

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Longitud de elemento

L= 4.02 m

402.00 cm.

Modulo de elasficidas

∴E= ∴2038990 kg/cm²

 $\left[\frac{KL}{r} = \right]$

163.41 Se recomienda que no sea mayor que 200

 $4.71\sqrt{\frac{E}{F_y}} =$

133.68

<u>KL</u>

 $4.71\sqrt{\frac{E}{E}}$

133.68

163.41 >

Usar Ec. a3

* Determinamos la tension crítica de pandeo elástico (Fe)

$$F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$

Fe= 753.59 kg/cm²

* Remplazando en el Ec a3 tenemos

Fcr= 660.90 kg/cm^2

* Remplazando valores en la Ec a1 tenemos

Pn =

85276.62 kg/cm²

ሐ :

0.75 Valor AISC

φPn=

63957.46 kg/cm²

* Obtenemos dato de Fuerza Axial del analisis estructura en SAP 2000

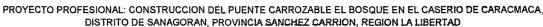
Du-

194670.00 kg/cm²

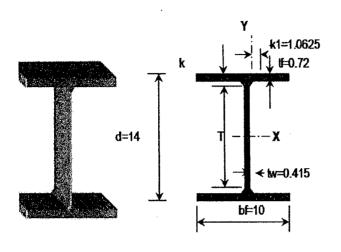
Calculamos el valor permitido

Pn/Pu =

}


1.00

OK la seccion escogida es correcta


FACULTAD DE INGENIERIA

6.B3 DISEÑO DE VIGAS INFERIORES A TENSIÓN Y FLEXIÓN EN SU EJE MENOR

1.- SELECCIONAR PERFIL

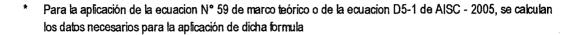
W14X68		
ΑŦ	20.00	in. ²
d ≥	14.00	in.
tw=	0.42	in.
bf =	10.00	in.
tf=	0.72	în.
k(des) =	1.31	in.
k(det) =	1.56	'n.
k1 =	1.06	
T =	10.88	in.
wt./ft. =	68.00	plf
Zy =	36.90	in. ³
Sy=	24.20	in. ³
		•

Fy=	2531.16	kg/cm ²
Fu≃	4077.98	kg/cm ²

2.- DISEÑO A TENSIÓN CON MIEMBROS CONECTADOS POR PASADORES

Para rotura en tracción en el área neta efectiva esta en funcion de la ecuacion N° 59 de marco teórico y de la ecuacion D5-1 de AISC - 2005, que acontinuacion se detalla

$$P_n = 2tb_{eff} f_u$$


* En el cuadro siguiente se muestra todas las fuerzas actuantes en la armadura que estan trabajando a tension, datos obtenidos en el analisis realizados en el SAP - 2000

ļ	FUEZA AXIAL			MOMENTO	
 Nº elemento	Elemento	Fuerza	Und.	Momento	Und.
1	Tensión	36660.00	kg-f	1090	hf-m
2	Tensión	36690.00	kg-f	930	inf-m
3	Tensión	35160.00	kg-f	920	inf-m
4	Tensión	35210.00	kg-f	1120	Inf-m
5	Tensión	47770.00	kg-f	1130	inf-m
6	Tensión	47790.00	kg-f	1220	inf-m
7	Tensión	55440.00	kg⊦f	1210	tnf-m
8	Tensión	55440.00	kg-f	1210	inf-m
9	Tensión	53600.00	kg-f	1090	inf-m
10	Tensión	53570.00	kg-f	1080	Inf-m
11	Tensión	41260.00	kg-f	860	Inf-m
12	Tensión	41220.00	kg-f	850	inf-m
13	Tensión	14660.00	kg-f	930	inf-m
14	Tensión	14600.00	kg-f	1099	inf-m

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA. DISTRITO DE SANAGORAN, PROVINCIA SANCHÈZ CARRION, REGION LA LIBERTAD

*Calculamos en valor de beff

beff=2*t+1.6=

5.26 cm

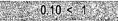
2.0699 in

*Calculamos el valor de "a"

a=3/4*beff=

7.01 cm

2.7599 in


*Remplazando datos en la ecuacion N° 59 de marco teórico o de la ecuacion D5-1 de AISC - 2005

$$P_n = 2tb_{eff} f_u$$

549737.19 kg-f

* Escogemos axial maxima del cuadro de fuerza actuante para el analisis de los elementos

si Pn/Pu<1=

0.10 < 1 OK La seccion escogida es la correcta

Verificando la condicion de areas donde Ae/Ag ≥ 0.75

Calculamos el factor de arrastre por cortante, U, como el mayor de los valores de Tabla Nº 36 caso 2 y el caso 7 o AISC Especificación D3 sección,

$$U = \frac{2 * t_f * b_f}{A_a}$$

1.83 cm

25.40 cm

129.03 cm² 0.72

USANDO EL CASO 2 DE LA TABLA

$$U = 1 - \frac{X}{I}$$

χ= .

2.14 cm

|= 9.00 0.76

USANDO EL CASO 7 DE LA TABLA

Condiciones

U≔ 0.9

bf= 25.4 cm d= 35.56 cm

2/3d =23.71 cm

entonces:

U=

0.90

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA.

DISTRITO DE SANAGORAÑ, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Escogemos el maximo de los tres valores de U

Calculo del area neta en funcion de los pernos

$$A_e = A_g - 4*(d_h + \frac{1}{16})*t_f$$

Ag= 129.03 cm²
dh= 1.59 cm
dh+1/16= 1.65 cm
t= 1.27 cm espesor de la cartela
Ae= 120.65 cm²
Ae/Ag= 0.94 ≥ 0.75

Se verifica que el diseño por rotura son validos

* La resistencia a la tracción disponible ruptura es

P_n=F_u*A_e

Fu= 4077.98 kg/cm²

Ae= 120.65 cm²

Pn= 492008.29 kg-f

 $\phi_{t=}$ 0.75 Valor AISC

φ Pn= 369006.22 > 55440.00

OK el diseño es correcto

2.- DISEÑO POR FLEXIÓN EN SU EJE MENOR

$$M_n = M_p = F_y Z_y \le 1.60 F_y S_y$$

Fy= 2531.16 kg/cm²

 $Zy = 604.68 \text{ cm}^3$

Sy= 396.57 cm³

Fy*Zy= 1530548.57 kg-cm 1.60*Fy*Sy= 1606039.037 kg-cm

Si: Fy*Zy < 1.60*Fy*Sy.....OK

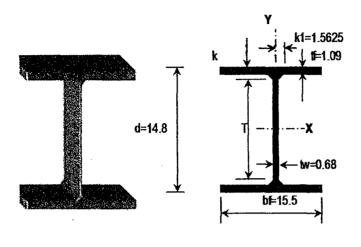
Mn= 1530548.57 kg-cm

 ϕ = 0.9 Valor AISC

ф Mn= 1377493.709 kg-cm

Mu= 122000.00 kg-cm Datos obtenido del analisis estructural

Como: Mu < Mn.....El diseño es correcto


FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

6.B4 DISEÑO DE VIGAS SUPERIORES A COMPRESIÓN Y FLEXIÓN EN SU EJE MENOR

1.- SELECCIONAR PERFIL

W14X145		
A=	42.70	in. ²
- d =	14.80	in.
tw=	0.68	in.
bf =	15.50	in.
,tf=	1.09	in.
k(des) =	1.69	in.
k(det) =	2.38	in.
k1 =	1.56	l .
T=	10.00	in.
wt./ft.=	145.00	plf
Zy =	133.00	in. ³
Sy=	87.30	in. ³
ry =	3.98	in.

 Fy=	2531.16	kg/cm ²

2.- DISEÑO POR COMPRESIÓN

* La resistencia de compresión nominal, Pn, debe ser determinada basándose en el estado límite de pandeo por flexión con la aplicación de la ecuacion N° 65 o E3-1 de AISC - 2005

$$P_n = \overline{F_{cr} A_g}$$

 En el cuadro siguiente se muestra todas las fuerzas actuantes en la armadura que estan trabajando a compresión, datos obtenidos en el analisis realizados en el SAP - 2000

		FUERZA AXIAL		MOMENTO	
N° elemento	Elemento	Fuerza	Und	Momento	Und.
1	compresion	221710	kg-f	1780	tnf-m
2	compresion	365860	kg-f	2460	tnf-m
3	compresion	435370	kg-f	2640	tnf-m
4	compresion	432590	kg-f	2640	tnf-m
5	compresion	359510	kg-f	2440	tnf-m
6	compresion	215200	kg-f	1740	tnf-m

* La tensión de pandeo por flexión Fcr, se determina como sigue:

Si
$$\frac{\text{KL}}{\text{r}} \le 4.71 \sqrt{\frac{E}{F_y}} (oF_e \ge 0.44F_y) \qquad \text{Enhonces} \qquad F_{\sigma} = [0.658^{\frac{F_y}{F_e}}] * F_{\sigma}$$

$$\delta \qquad \frac{\text{KL}}{r} > 4.71 \sqrt{\frac{E}{F_y}} (oF_e < 0.44F_y) \qquad \text{Enhonces} \qquad F_{\sigma} = 0.877F_e$$

Area de la seccion

 $Ag = 275.48 \text{ cm}^2$

Longitud de elemento

L=) 5.34 n

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

534.00 cm

Modulo de elasficidas

134.17 Se recomienda que no sea mayor que 200

133.68

134.17

133.68

Determinamos la tension crítica de pandeo elástico (Fe)

$$F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$

Fe= 1117.89 kg/cm²

Remplazando en el Ec a3 tenemos

Far= 980.39 kg/cm²

Remplazando valores en la Ec a1 tenemos

270080.59 kg-f

0.75 Valor AISC

Φ Pn= 202560.44 kg-f

Obtenemos dato de Fuerza Axial del analisis estructura en SAP 2000

Pu= 435370.00 kg-f

Calculamos el valor permitido

1.00

OK la seccion escogida es correcta

DISEÑO POR FLEXIÓN EN SU EJE MENOR

$$M_n = M_p = F_y Z_y \le 1.60 F_y S_y$$

Fy=

2531.16 kg/cm²

Zy=

2179.48 cm³

Sy=

1430.59 cm³

Fy*Zy=

5516611.36 kg-cm

1.60*Fy*Sy=

5793686.278 kg-cm

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Si: Fy*Zy < 1.60*Fy*Sy.....OK

Mn=

5516611.36 kg-cm

φ=

0.9 Valor AISC

Φ Mn=

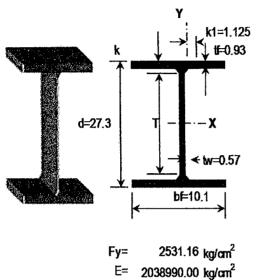
4964950.225 kg-cm

Mu=

264000.00 kg-cm

Datos obtenido del analisis estructural

Como: Mu < Mn.....El diseño es correcto


FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

6.C1 DISEÑO DE VIGAS DE PISO TRANSVERSALES A FLEXION

1.- SELECCIONAR PERFIL

Longitud de elemento

5.00 m

L=

33.5	in. ²
27.3	in.
0.57	in.
10.1	in.
0.93	in.
1.53	in.
1.8125	in.
1.125	in.
23.625	in.
114	plf
299	in. ³
159	in. ⁴
7.33	in. ⁴
343	in.3
2.18	in.
	27.3 0.57 10.1 0.93 1.53 1.8125 1.125 23.625 114 299 159 7.33 343

2.- DISEÑO POR FLEXIÓN EN X

Identificamos todos los momentos actuantes en las vigas de piso tranversales (perpendicalular al trafico), que nos da como resultado en el diseño en el SAP-2000

,	i° element	Elemento	Momento	Und.
	1	VIGA	67.61	Tonf-m
1	2	VIGA	61.94	Tonf-m
	3	VIGA	56:58	Tonf-m
	4	VIGA	56.05	Tonf-m
	5	VIGA	Section 1 Section 2 to 1 Section 1	Tonf-m
	6	VIGA	69.35	Tonf-m

Luego de identificar todas la fuerzas actuantantes, escogemos la fuerza actuante maxima de todos lo elementos identificados

Mu =

69.35 Tnf-m

Mu =

6935000.00 kgf-cm

- Calculamos el pandeo Lateral Torcional para lo cual se requiere los siguientes datos:
 - Longitud entre puntos arriostrados (longitud del elemento a analizar)

Lb=

500.00 cm

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

b) Las longitudes límites L_p y L_f se determinan a continuación

Con la aplicación de la ecuacion N° 70 del marco teorico o la ecuacion F2-5 de AISC 2005 tenemos:

Con la aplicación de la ecuacion N° 71 del marco teorico o la ecuacion F2-6 de AISC 2005 tenemos:

$$L_r = 1.95 r_s \frac{E}{0.7 F_y} \sqrt{\frac{J^* c}{S_x h_o}} \sqrt{1 + \sqrt{1 + 6.76 \left(\frac{0.7 F_y S_x h_o}{E^* J^* c}\right)^2}}$$

Entonces:

$$c = \frac{h_o}{2} \sqrt{\frac{I_y}{C_w}}$$
 c = 1.00 Se recomienda1 para secciones tipo H (AISC-2005)

$$C_w = \frac{I_y h^2_o}{4}$$
 ly= 6618.08 cm⁴
h_o= 66.98 cm
Cw = 178330.17

$$r_{ts}^{2} = \frac{\sqrt{I_{y}C_{w}}}{S_{x}}$$
 $S_{x}^{2} = \frac{2605.54 \text{ cm}^{3}}{3.63}$

Remplazando los valores anteriones en la ecuacion N° 71 tenemos

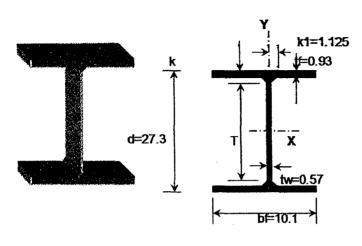
Cumple la siguiente condición que Lp < Lb ≤ Lr

$$\boxed{ M_p = F_y Z_x } \quad \text{Mp} = \quad 14227050.35$$

$$\boxed{ M_n = C_b \bigg[M_p - (M_p - 0.7F_y S_x) \bigg(\frac{L_b - L_p}{L_r - L_p} \bigg) \bigg] }$$

C_b= Se toma 1 conservadoramente

Como:


FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

6.C2 DISEÑO DE VIGAS DE PISO TRANSVERSALES A COMPRESIÓN

1.- SELECCIONAR PERFIL

W27X114
A =
d =
tw =
bf =
tf =
k(des) =
k(det) =
k1 =
Τ=
wt./ft. =
ry <i>=</i>
A =

Fv=	2531.16	kg/cm ²
' y <u> </u>		1.9.0

2.- DISEÑO POR COMPRESIÓN

La resistencia de compresión nominal, Pn, debe ser determinada basándose en el estado límite de pandeo por flexión con la aplicación de la ecuacion N° 65 o E3-1 de AISC - 2005

$$P_n = F_{cr} A_g$$

 En el cuadro siguiente se muestra todas las fuerzas actuantes en la armadura que estan trabajando a compresión, datos obtenidos en el analisis realizados en el SAP - 2000

N°	Flamouto		FUERZA AXIAL			
elemento	lemento Elemento		Und.	Fuerza	Und.	
1	compresion	5.56	Ton-f	5560.00	kg-f	
2	compresion	8.62	Ton-f	8620.00	kg-f	
3	compresion	12.5	Ton-f	12500.00	kg-f	
4	compresion	12.75	Ton-f	12750.00	kg-f	
5	compresion	11.46	Ton-f	11460.00	kg-f	
6	compresion	7.08	Ton-f	7080.00	kg-f	

* La tensión de pandeo por flexión Fcr, se determina como sigue:

Si
$$\frac{\text{KL}}{\text{r}} \le 4.71 \sqrt{\frac{E}{F_y}} (oF_e \ge 0.44F_y) \qquad \text{Entonces} \qquad F_{\sigma} = [0.658^{\frac{F_y}{F_z}}] * F_y$$

$$\acute{\text{O}} \qquad \frac{\text{KL}}{\text{r}} > 4.71 \sqrt{\frac{E}{F_y}} (oF_e < 0.44F_y) \qquad \text{Entonce} \qquad \frac{F_{\sigma} = 0.877F_e}{\text{Entonce}}$$

Area de la seccion

 $Ag = 216.1286 \text{ cm}^2$

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Longitud de elemento

L= 15 m

...500.00 cm.

Modulo de elasticidas

E= 2038990 kg/cm²

 $\frac{KL}{r} =$

229.36 Se recomienda que no sea mayor que 200

 $4.71\sqrt{\frac{E}{F_y}} =$

133.68

 $\frac{KL}{r}$

 \rightarrow 4.71 $\sqrt{\frac{E}{F_{\nu}}}$

229.36

133.68

* Determinamos la tension crítica de pandeo elástico (Fe)

 $F_{e} = \frac{\pi^{2} E}{\left(\frac{KL}{r}\right)^{2}}$

Fe= 382.55 kg/cm²

* Remplazando en el Ec a3 tenemos

Fcr= 335.50 kg/cm²

Remplazando valores en la Ec a1 tenemos

Pn =

72510.29 kg/cm²

ф =

0.75 Valor AISC

ծ Pn=

54382.72 kg/cm²

* Obtenemos dato de Fuerza Axial del analisis estructura en SAP 2000

Pu=

12750.00 kg/cm²

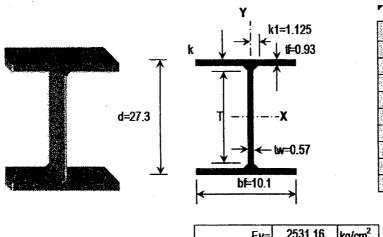
Calculamos el valor permitido

Pn/Pu =

0.23

1.00

OK la seccion escogida es correcta


FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

6.C3 DISEÑO DE VIGAS DE PISO TRANSVERSALES A CORTE

SELECCIONAR PERFIL

W27X114		
A=	33.50	in. ²
d =	27.30	in.
tw=	0.57	
bf=	10.10	in.
tf=	0.93	in.
k(des) =	1.53	in.
k(det) =	1.81	'n.
k1 =	1.13	in.
T=	23.63	ı
wt./ft.=	114.00	pl£
		•

Fy=	2531.16	kg/cm ²

DISEÑO A CORTE 2.-

Resistencia al corte nominal esta dada en funcion de la ecuacion Nº 80 del marco teorico y de la ecuación G2-1 de AISC-2005

$$V_n = 0.6F_y A_w C_v$$

En el cuadro siguiente se muestra todas las fuerzas actuantes en la armadura que estan trabajando a compresión, datos obtenidos en el analisis realizados en el SAP - 2000

	Nº elemento	Elemento	Fuerza Axial	Und.
	1		92.2	Ton-f
	2	·	90.65	Ton-f
}	3		91.24	Ton-f
	4		92.22	Ton-f
	5		93.44	Ton-f
	6		96.39	Ton-f

Calculo de Aw

Remplazando los valores calculados en la Ecuacion Nº 80 tenemos

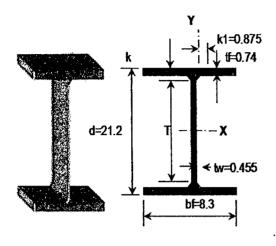
Vn= 152466.98 kgf

1.00 Valor AISC

152466.98 kgf 'Vn=

> Vu= 96390.00 kgf

Como Vu < фv*Vn.....OK la sección es correcta


FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

6.C1 DISEÑO DE VIGAS DE PISO TRANSVERSALES A FLEXION

1.- SELECCIONAR PERFIL

Fy= 2531.16 kg/cm²
E= 2038990.00 kg/cm²

Longitud de eleme

L=

4.82 m

WZIX/3		
. A=	21.5	in. ²
d =	21.2	in.
tw=	0.455	in.
bf =	8.3	in.
tf=	0.74	in.
k(des) =	1.24	in.
k(det) =	1.4375	in.
k1 =	0.875	in.
××∴(T =	18.375	in.
wt./ft. =	73	plf
Sx =	151	in. ³
// ly=	70.6	in. ⁴
J=	3.02	in. ⁴
Zx=	172	m.3

1.81

W24Y72

2.- DISEÑO POR FLEXIÓN EN X

* Identificamos todos los momentos actuantes en las vigas de piso tranversales (perpendicalular al trafico), que nos da como resultado en el diseño en el SAP-2000

N	l° element	Elemento	Fuerza Axial	Und.
	1	VIGA	52.25	Tonf-m
[2	VIGA	48.23	Tonf-m
	3	VIGA	47.88	Tonf-m
] [4	VIGA	47.32	Tonf-m
	5	VIGA	46.80	Tonfm
	6	VIGA	46.43	Tonfm
	7	VIGA	48.21	Tonfm
	8	VIGA	50.45	Tonfm
	9	VIGA	48.98	Tonfm
	10	VIGA	50.03	Tonfm
	11	VIGA	50.48	Tonf-m
	12	VIGA	51.11	Tonfm
	13	VIGA	50.67	Tonf-m
	14	VIGA	52.54	Tonf-m

* Luego de identificar todas la fuerzas actuantantes, escogemos la fuerza actuante maxima de todos lo elementos identificados

Mu =

52.54 Tnf-m

Mu =

5254000.00 kgf-cm

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

- Calculamos el pandeo Lateral Torcional para lo cual se requiere los siguientes datos:
 - a) Longitud entre puntos arriostrados (longitud del elemento a analizar)

Lb = 482.00 cm

b) Las longitudes límites L_p y L_f se determinan a continuación

Con la aplicación de la ecuacion N° 70 del marco teorico o la ecuacion F2-5 de AISC 2005 tenemos:

Con la aplicación de la ecuacion N° 71 del marco teorico o la ecuacion F2-6 de AISC 2005 tenemos:

$$L_r = 1.95 r_{ts} \frac{E}{0.7 F_y} \sqrt{\frac{J^* c}{S_x h_o}} \sqrt{1 + \sqrt{1 + 6.76 \left(\frac{0.7 F_y S_x h_o}{E^* J^* c}\right)^2}}$$

Entonces:

$$c = \frac{h_o}{2} \sqrt{\frac{I_y}{C_{uv}}}$$

1.00 Se recomienda1 para secciones tipo H (AISC-2005)

$$C_w = \frac{I_y h^2_o}{4}$$
 ly= 2938.59 cm⁴
h_o= 51.97 cm
Cw = 47667.61

$$r_{ts}^2 = \frac{\sqrt{I_y C_w}}{S_x}$$
 S_x= 1156.93 cm³
 $r_{ts} =$ 3.20

Remplazando los valores anteriones en la ecuacion N° 71 tenemos

Cumple la siguiente condición que Lp < Lb ≤ Lr

$$\boxed{ M_p = F_y Z_x } \qquad \text{Mp} = \qquad 7134264.32$$

$$\boxed{ M_n = C_b \Bigg[M_p - (M_p - 0.7F_y S_x) \bigg(\frac{L_b - L_p}{L_r - L_p} \bigg) \bigg] }$$

C_b= Se toma 1 conservadoramente

Como:

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Como:

La seccion escogida es correcta

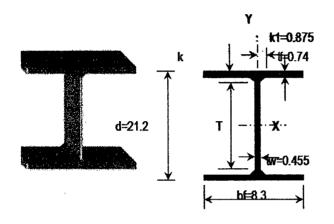
0.90 AISC

6420837.89 kg-m .5254000.00 kg-m Mu=

ф*Мр=

0.818 < 1 Mux/Mpx =El elemento es correcto

FACULTAD DE INGENIERIA


PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

6.C5 DISEÑO DE VIGAS DE PISO LONGITUDINALES A TENSIÓN

1.- SELECCIONAR PERFIL

Identificamos las características principales de cada elementos que se va usar según especificaciones tecnica de los elemento que usa la norma LRFD

* Identificamos elementos que se analizará según los calcutos hechos en SAP - 2000 =

W21X73		
A =	21.50 in	2
d =	21.20 in	
tw≖	0.46 in	
bf =	8.30 in	
tf =	0.74 in	
k(des) =	1.24 in	
k(det) =	1.44 in	
k1 =	0.88 in	
T 🗐	18.38 in	
wt./ft. =	73.00 pl	E

Fy=	2531.16	kg/cm ²
Fu=	4077,98	kg/cm ²

2. DISEÑO A TENSIÓN CON MIEMBROS CONECTADOS POR PASADORES

Para rotura en tracción en el área neta efectiva esta en funcion de la ecuacion N° 59 de marco teórico y de la ecuacion D5-1 de AISC - 2005, que acontinuacion se detalla

$$P_n = 2tb_{eff} f_u$$

* En el cuadro siguiente se muestra todas las fuerzas actuantes en la armadura que estan trabajando a tension, datos obtenidos en el analisis realizados en el SAP - 2000

N° elemento	Elemento	FUERZA AXIAL			
		Fuerza	Und.	Fuerza	Und.
1	compresion	12.19	Ton-f	12190.00	kg - f
2	compresion	27,85	Ton-f	27850.00	kg - f
3	compresion	38.19	Ton-f	38190.00	kg - f
4	compresion	42.14	Ton-f	42140.00	kg - f
5	compresion	39.13	Ton-f	39130.00	kg - f
6	compresion	29.29	Ton-f	29290.00	kg - f
7	compresion	11.19	Ton-f	11190.00	kg - f
8	compresion	11.07	Ton-f	11070.00	kg - f
9	compresion	26.37	Ton-f	26370.00	kg - f
10	compresion	40.12	Ton-f	40120.00	kg - f
11	compresion	45.12	Ton-f	45120.00	kg - f
12	compresion	43.19	Ton-f	43190.00	kg - f
13	compresion	32.71	Ton-f	32710.00	kg - f
14	compresion	12.64	Ton-f	12640.00	kg - f

Para la aplicación de la ecuacion N° 59 de marco teórico o de la ecuacion D5-1 de AISC - 2005, se calcular los datos necesarios para la aplicación de dicha formula.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

*Calculamos en valor de bef

Ħ

1.90 cm

beff=2*t+1.6=

3.08 cm

*Calculamos el valor de "a"

a=3/4*beff=

2.31 cm

*Remplazando datos en la ecuacion N° 59 de marco teórico o de la ecuacion D5-1 de AISC - 2005

Pn=

110357.70 kg-f

* Escogemos axial maxima del cuadro de fuerza actuante para el analisis de los elementos

Pu=

45120.00 kg-f

*Una ves calculado "Pn" y "Pu" debemos verificar que la relacion entre ellos sea menor que 1

si Pu/Pn < 1

0.41 < 1

OK La seccion escogida es la correcta

Verificando la condicion de areas donde Ae/Ag ≥ 0.75

Calculamos el factor de arrastre por cortante, U, como el mayor de los valores de Tabla Nº 36 caso 2 y el caso 7 o AISC Especificación D3 sección,

$$U = \frac{2 * t_f * b_f}{A_g}$$

t= 1.8796 cm b*=* 21.082 cm

A_g= 138.7 cm

U= 0.57

USANDO EL CASO 2 DE LA TABLA

$$U = 1 - \frac{X}{I}$$
 X= 1.71 cm
|= 9.00 cm
|U= 0.81

USANDO EL CASO 7 DE LA TABLA

Condiciones

bf < 2/3d= U= 0.85

b= 21.082 cm d= 53.848 cm

0.9

2/3d= 35.90 cm

entonces: U= 0.85

Escogemos el maximo de los tres valores de U

U≒ 0.8500

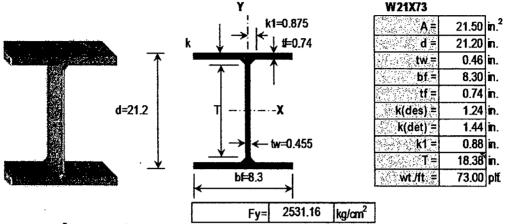
FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Calculo del area neta en funcion de los pernos

Se verifica que los valores de diseño por rotura son validos

* La verificacion a la resistencia a la tracción disponible ruptura es


FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

6.C6 DISEÑO DE VIGAS DE PISO LONGITUDINALES A CORTE

1.- SELECCIONAR PERFIL

2.- DISEÑO A CORTE

Resistencia al corte nominal esta dada en funcion de la ecuación N° 80 del marco teorico y de la ecuación G2-1 de AISC-2005

$$V_n = 0.6F_y A_w C_v$$

* En el cuadro siguiente se muestra todas las fuerzas actuantes en la armadura que estan trabajando a compresión, datos obtenidos en el analisis realizados en el SAP - 2000

· ·	N° elemento	Elemento	Fuerza Axial	Und.
	1		66.05	Ton-f
	2		66.88	Ton-f
· ·	3		68 27	Ton-f
	4		69.68	Ton-f
	5		69.97	Ton-f
	6		70.03	Ton-f
}	7	-	67.02	Ton-f
	8		.35,25	Ton-f
•	9		66.07	Ton-f
	10		63.35	Ton-f
	11		62.09	Ton-f
1	12		61.95	Ton-f
	13		-61.99	Ton-f
	14		े, 62.09	Ton-f

* Calculo de Aw

$$bw = 1.16 \text{ cm}$$
 $d = 53.85 \text{ cm}$
 $A_w = dt_w$
 $Aw = 62.23 \text{ cm}^2$

Remplazando los valores calculados en la Ecuación Nº 80 tenemos

Cv= 1.00 Valor AISC

Vn= 94511.69 kgf

φv = 1.00 Valor AISC

φv*Vn= 94511.69 kgf

Vu= 70030.00 kgf

Como Vu < φv*Vn......OK la sección es correcta

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

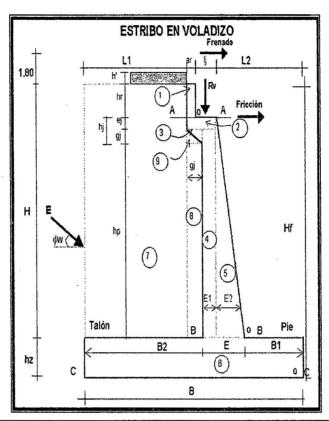
ANEXOS N° 7: DISEÑO DE SUB ESTRUCTURA

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ANEXOS N° 7.1: DISEÑO DE ESTRIBO


FACULTAD DE INGENIERIA

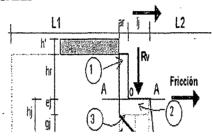
ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

7.A1 DISENO DE ESTRIBO

1.0 DATOS

DESCRIPCION	SIMBOLOS	VAL	ORES		
Resist del terreno:	s=	3.26	3.26	Kg/cm2	Dato de Suelos
Angulo de fricción	f=	34.00	34.00°		Dato de Suelos
Coef de fricción	fi=	0.675	0.675		Calculado
Concreto parapeto y cajuela	fc=	210.00	210	Kg/cm2	Dato Asumido
Concreto pantalla, zapatas,alas	fc=	210.00	210	Kg/cm2	Dato Asumido
Fierro p/armadura	fy =	4,200.00	4200	Kg/cm2	Dato del Acero
Peso especifico del concreto	gc=	2,400.00	2400	Kg/cm3	Dato
Peso especifico del terreno	g _r =	1,700.00	1700	Kg/cm3	Dato
Largo de cajuela	j =	0.75	0.75	m	Asumido>0.70
Ancho de cajuela :	aj=	5.60	5.6	m	Dato de Puente
Espesor del parapeto	ar =	0.30	0.3	m	Asumido
Profundidad del Estribo	Hf=	10.50	10.5	m	Dato de Puente
Espesor inferior placa - pantalla:	E =0.1Hf	1.05	1.25	m	Criterio
Espesor parcial placa - Elemento 4	E1 =	0.45	0.45	m	Asumido>0.30
Espesor parcial placa - Elemento 5	E2 =	0.60	0.6	m	Calculado
Acartelamiento - cajuela : gj = lj + ar - E1	gj=	0.60	0.6	m	Calculado
Espesor - cajuela	ej=	0.70	0.7	m	Asumido
Espesor de Apoyos	e≃	0.050	0.05	m	Dato de Puente
Espesor de losa	elosa=	0.25	0.25	m	Dato de Puente
Altura de Viga	hviga=	0.70	0.7	m	Dato de Puente
Altura - parapeto : hr = e+elosa+viga	hr =	1.000	1	m	Calculado
Altura total - cajuela : hj = ej + gi	hj=	1.300	1.3	m	Calculado
Altura de zapata	hz =0.1*Hf	1.05	1.25	m	Criterio
Altura placa - pantalla	hp=		6.95	m	Calculado
Ancho de zapata	A =	1.00	1.00	m	Asume 1m de ancho


FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORÁN, PROVINCIA SANCHEZ CARRÍON, REGION LA LIBERTAD

Largo de zapata	B = 0.6*Hf	6.30	6.5	m	Criterio	
Pie de zapata	B1 =	2.10	2	m	Criterio	
Talón de zapata	B2 =	3.25	3.25	m	Criterio	
Altura adic. por S/C	h'=		0.56	m		
Coef. de fricción : albañ./albañ.	falb/alb =		0.700			
Coef. de fricción : albañ./arcilla seca	falb/arc=		0.600			
	fw = f/2 =		17.00°			
Factor de Seguridad De volteo	FSV=		2.000		Asumido	
Factor de seguridad de Deslizamiento	FSD=		1.500		Asumido	

- 2.0 CONTROL DE ESTABILIDAD
- 2.1 CHEQUEO DEL ESTRIBO SIN PUENTE
- 2.1.1 CHEQUEO EN LA SECCION A- A'
- 2.1.1. FUERZAS HORIZONTALES Y VERTICALES

	C C	(Cos (Cos² Cos²f) ^{0,5})	b=	0	No existe Inclinacion en el Talud
-	C L	$(Cos \square \square (Cos^2 \square \square Cos^2 f)^{0.5})$	C=	0.28	

EMPUJE DE TIERRAS

E=(1/2)* g,*h,*(h,+2*h)*C			
Dato	hr=	1.00	m
Dato	h' =	0.56	m
$C = (Tan(45^{\circ} - \frac{1}{2}))^2$	C=	0.28	
d = (h,/3)*((h,+3*h)/(h,+2*h))	d =	0.42	m
E=(1/2)* g,*h,*(h,+2*h*)*C	E=	511.71	Kg/m
E _H = E*Cos(fw)	E _H =	489.35	Kg/m
M _v = E _H *d	M _V =	206.38	Kg-m/m

E _V = E*Sen(fw)	Ev≃	149.61	Kg/m
Mr = EV*ar	Mr≕	44.88	Kg-m/m

DESCRIPCION	FV	Xi	Mr	FH	Yi	Mv
	(Kg)	(m)	(Kg-m)	(Kg)	(m)	(Kg-m)
E : Emp. Tierras	149.61	0.30	44.88	489.35	0.42	206.38
(1) Parapeto Pppt = ar*hr*gc	720.00	0.15	108.00			
SUB-TOTAL	869.61		152.88	489.35		206.38

2.1.1. EXCENTRICIDAD (e):

	ar=	0.300	m
Xo=(Mr-Mv)/SFV	Xo=	-0.062	
e = ar/2 - [(Mr-Mv)/(SFV)]			
e = ar/2 - Xo	e =	0.212	m

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.1.1. CHEQUEO DE TRACCIONES Y COMPRESIONES (p) :

 $p = 0.290 \text{ Kg/cm}^2$

$p = \frac{SFV}{a_r * L} * (1 + 6 * \frac{e}{a_r})$	p1 =	1.52	Kg/cm ²
$p = \frac{SFV}{a_r * L} * (1-6*\frac{e}{a_r})$	p2 =	-0.94	Kg/cm ²
	fc=	210.00	Kg/cm ²
p _{adm} = 0,40*fc	padm =	84.00	Kg/cm*
tracción adm. conc. = 0,03*fc =	tadm =	6.30	Kg/cm ²

SI .

-6.300 < 1.516 <= 84.000 **BIEN** -6.300 < -0.936 <= 84.000 **BIEN**

2.1.1. CHEQUEO AL VOLTEO (Cv):

Cv = Mr/Mv	Cv =	0.741
Factor de seguridad de Volteo	FSV=	2.000

SI

0.741 > 2.000

FALSO

Se controlará con la armadura

2.1.1. CHEQUEO AL DESLIZAMIENTO (Cd):

Coef. De fricción:	fi =	0.700
Cd = SFV*fSFH	Cd =	1.244
	FSD=	1.500

SI

1.244 > 1.500

FALSO

Se controlará con la armadura

2.1.2 CHEQUEO EN LA SECCION B - B'

2.1.2. FUERZAS HORIZONTALES Y VERTICALES

EMPUJE DE TIERRAS

$E=(\frac{1}{2})*g_r*H*(H+2*h')*C$			
Dato	H =	9.25	m ·
Dato	h' =	0.56	m
$C = (Tan(45^{\circ} - \frac{f}{2}))^2$	C =	0.28	
d = (H/3)*((H+3*h')/(H+2*h'))	d =	3.25	m
$E=(\frac{1}{2})*g_r*H*(H+2*h')*C$	E=	23,071.83	Kg/m
E _H = E*Cos(fw)	E _H =	22,063.71	Kg/m
$M_{\nu} = E_{H}^{*}d$	M _V =	71,731.01	Kg-m/m

Ev = E*Sen(fw)	Ev=	6,745.55	Kg/m
Mr = Ev*ar	Mr=	12,479.27	Kg-m/m

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

DESCRIPCION	FV	Χi	Xi Mr	FH	Yi	Mv
	(Kg)	(m)	(Kg-m)	(Kg)	(m)	(Kg-m)
E: Emp. Tierras	6,745.55	1.85	12,479.27	22,063.71	3.25	71,731.01
(1) Parapeto Pppt = ar*hr*gc	720.00	1.70	1,224.00			
(2) (ar+ij)*ej*gc	1,764.00	1.13	1,984.50			
(3) (1/2)*gj*gj*gc	432.00	1.45	626.40			
(4) E1*(hp+gj)*gc	8,154.00	0.83	6,727.05			"
(5) (1/2)*E2*(hp+gj)*g _C	5,436.00	0.40	2,174.40		_	
SUB-TOTAL	23,251.55		25,215.62	22,063.71		71,731.01

2.1.2. EXCENTRICIDAD (e):

Espesor inferior placa - pantalla :	E=	1.250	m
Espesor del parapeto	ar=	0.300	m
Хо=(Mr-Mv)/SFV	Xo=	-2.001	
e = ar/2 - [(Mr-Mv)/(SFV)]			
e = ar/2 - Xo	e=	2.626	m
	ABS (e) =	2.626	

SI 2.626

0.208

FALSO

Se controlará con la armadura

2.1.2. CHEQUEO DE TRACCIONES Y COMPRESIONES (p):

	p=	1.86	Kg/cm ²
p = SFV/(E*L)*(1+6*e/E)	p1 =	25.30	Kg/cm ²
p = SFV/(E*L)*(1-6*e/E)	p2 =	-21.58	Kg/cm ²
	fc=	210.00	Kg/cm ²
padm = 0,40*fc	padm=	84.00	Kg/cm ²
tracción adm. conc. = 0,03*fc =	tadm =	6.30	Kg/cm ²

SI

-6.300 < 25.302 <= -6.300 <= -21.582 <=

84.000 BIEN

.84.000 FALSO, EXISTE TRACCION, control con Armadura

2.1.2. CHEQUEO AL VOLTEO (Cv):

Cv = Mr/Mv	Cv =	0.352	
OT - WILLIAM		0.002	

SI

0.352 > 2.000

FALSO

Se controlará con la armadura

2.1.2. CHEQUEO AL DESLIZAMIENTO (Cd):

Coef. de fricción : albañ./albañ.	f=	0.700	
Cd = SFV*f/SFH	Cd =	0.738	

SI

0.738 >

1.500

FALSO.

Se controlará con la armadura

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.1.3 CHEQUEO EN LA SECCION C - C'

2.1.3.1 FUERZAS HORIZONTALES Y VERTICALES

EMPUJE DE TIERRAS

E =(1/2)* g _r *Hf*(Hf+2*h')*C	Hf=	10.50	m
Altura adic. por S/C	h' =	0.56	m
	C =	0.28	
d = (Hf/3)*((Hf+3*h')/(Hf+2*h'))	d =	3.67	m
E =(1/2)* g _r *Hf*(Hf+2*h')*C	E=	29,343.69	Kg
EH = E*Cos(fw)	E _H =	28,061.51	Kg/m
Mv = EH*d	Mv =	102,984.46	Kg-m/m
E _V = E*Sen(fw) =	Ev=	8,579.26	Kg/m
Mr = EV*B =	Mr=	55,765.22	Kg-m/m

DESCRIPCION	FV	Xi	Mr	FH	Yi	Mv
	(Kg)	(m)	(Kg-m)	(Kg)	(m)	(Kg-m)
E : Emp. Tierras	8,579.26	4.68	40,108.06	28,061.51	3.67	102,984.46
(1) Parapeto Pppt = ar*hr*gc	720.00	3.70	2,664.00			
(2) (ar+lj)*ej*gc	1,764.00	3.13	5,512.50			
(3) (1/2)*gj*gj*gc	432.00	3.45	1,490.40			
(4) E1*(hp+gj)*gc	8,154.00	2.83	23,035.05			· -
(5) (1/2)*E2*(hp+gj)*gc	5,436.00	2.40	13,046.40			
(6) Zapata : B*hz*gc	19,500.00	3.25	63,375.00			
(7) (B2-gj)*H*g _r	41,671.25	5.18	215,648.72			
(8) gj*hp*g _r	7,089.00	3.55	25,165.95			
(9) (1/2)*gj*gj*g _r	306.00	3.65	1,116.90			
SUB-TOTAL	93,651.51		391,162.98	28,061.51		102,984.46

2.1.3.2 EXCENTRICIDAD (e):

Largo de zapata	B =	6.5	m
e = B/2 - [(Mr-Mv)/S(FV)]			
e = B/2 - Xo	e =	0.173	m
<u>-</u>	ABS (e) =	0.173	m
Xo=(Mr-Mv)/SFV	Xo=	3.077	

SI

e = ≤ B/6

0.173

1.083 VERDADERO Bien

2.1.3.3 CHEQUEO DE TRACCIONES Y COMPRESIONES (p):

	p =	1.441	Kg/cm ²
p1 = SFV/(B*L)*(1+6*e/B)	p1 =	1.671	Kg/cm³
p2 = SFV/(B*L)*(1-6*e/B)	p2 =	1.211	Kg/cm ^⁴

> 000.0

1.671 1.211

<u>></u>

<u>≤</u> <u>≤</u> 3.260 BIEN

3.260 BIEN

2.1.3.4 CHEQUEO AL VOLTEO (Cv):

SI

3.798

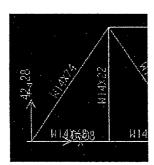
2.000 VERDADERO Bien

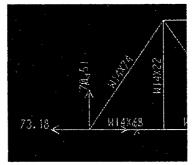
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

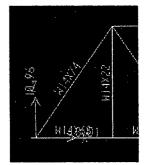
2.1.3.5 CHEQUEO AL DESLIZAMIENTO (Cd):

Coef. de fricción :	f=	0.600	
Cd = SFV*fSFH	Cd =	2.002	

SI


2.002


1.500


VERDADERO Bien

************ NOTA: El estribo si es eficiente sin carga de la superestructura ********************************

- 2.2 CHEQUEO DEL ESTRIBO CON PUENTE Y CON SOBRECARGA
- 2.2.1 CHEQUEO EN LA SECCION B B'
- 2.2.1.1 FUERZAS HORIZONTALES Y VERTICALES

Ancho de Cajuela : Ac	Acc=		
Fuerza por Carga muerta: R ₀₀	R ₀₀ =	42,280.00	Kg/m
Fuerza por carga Movil: R _{IL}	R _{LL} =	70,510.00	Kg/m
Fuerza por carga peatonal : R _{PL}	R _{PL} =	10,960.00	Kg/m
Peso Total del Puente sobre estribo	R=	123,750.00	Kg/m
Peso por metro lineal de estribo	R =	41,949.15	Kg/m
Fuerza de Frenado : F _{BR} = 0,30*R _{LL}	F _{BR} =	3,585.25	Kg/m
Fuerza de Fricción : F _{FR} = 0,05*RD	F _{FR} =	358.31	Kg/m
Fuerza de Sismo : F _{EQ} = 0,10*RD	F _{EQ} =	716.61	Kg/m

DESCRIPCION	FV	Χi	Мr	FH	Yi	Mv
	(Kg)	(m)	(Kg-m)	(Kg)	(m)	(Kg-m)
E : Emp. Tierras	6,745.55	1.85	12,479.27	22,063.71	3.25	71,731.01
(1) - (9) : Fuerzas verticales	16,506.00	0.77	12,736.35			
R _{DD} : Reacción Carga Muerta	7,166.10	0.98	6,986.95			
R _{LL} : Reacción carga Movil	11,950.85	0.98	11,652.08			
R _{PL} : Reacción carga Peatonal	1,857.63	0.98	1,811.19			
F _{BR} : Fza. por Frenado				3,585.25	11.05	39,617.06
F _{FR} : Fza. por Fricción				358.31	8.25	2,956.02
F _{EQ} : Fza. por Sismo				716.61	8.25	5,912.03
SUB-TOTAL	44,226.13		45,665.83	26,723.87		120,216.12

2.2.1.2 EXCENTRICIDAD (e):

Espesor inferior placa - pantalla :	E=	1.250	m
Xo=(Mr-Mv)/SFV	Xo=	-1.686	
e = E/2 - [(Mr-Mv)/S(FV)]			,
e = E/2 - Xo	e =	2.311	m
	ABS (e) =	2.311	

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

e < E/6 2.311 < 0.208

FALSO

Se controlará con la armadura

2.2.1.3 CHEQUEO DE TRACCIONES Y COMPRESIONES (p):

	p =	3.54	Kg/cm ²
p = SFV/(E*L)*(1+6*e/E)	p1 =	42.78	Kg/cm ²
p = SFV/(E*L)*(1-6*e/E)	p2 =	-35.70	Kg/cm ²
	fc=	210.00	Kg/cm ²
padm = 0,40*fc	padm=	84.00	Kg/cm ²
tracción adm. conc. = 0,03*fc =	tadm =	6.30	Kg/cm ²

SI

-6.300 ≤ 42.780 ≤ -6.300 < -35.703 <

84,000 BIEN

84.000 FALSO, EXISTE

2.2.1.4 CHEQUEO AL VOLTEO (Cv):

0.380 >

FALSO

2,000

Se controlará con la armadura

2.2.1.5 CHEQUEO AL DESLIZAMIENTO (Cd):

S

 Coef. De fricción :
 f =
 0.700

 Cd = SFV*f/SFH
 Cd =
 1.158

SI

1.158

1.500 FALSO

Se controlará con la armadura

2.2.2 CHEQUEO EN LA SECCION C - C'

2.2.2.1 FUERZAS HORIZONTALES Y VERTICALES

DESCRIPCION	FV	Χi	Mr	FH	Yi	Mv
	(Kg)	(m)	(Kg-m)	(Kg)	(m)	(Kg-m)
E : Emp. Tierras	8,579.26	4.68	40,108.06	28,061.51	3.67	102,984.46
(1) - (9) : Fuerzas verticales	85,072.25	4.13	351,054.92			
R _{DC} : Reacción Carga Muerta	7,166.10	2.98	21,319.15			
R _{LL} : Reacción carga Movil	11,950.85	2.98	35,553.77			
R _{PL} : Reacción carga Peatonal	1,857.63	2.98	5,526.44			
F _{BR} : Fza. por Frenado				3,585.25	12.30	44,098.63
F _{FR} : Fza. por Fricción				358.31	9.50	3,403.90
F _{EQ} : Fza. por Sismo				0.00	9.50	0.00
SUB-TOTAL	114,626.09		453,562.34	32,005.07		150,486.98

2.2.2.2 EXCENTRICIDAD (e):

	B =	6.500	m
Xo=(Mr-Mv)/SFV	Xo=	2.644	
e = B/2 - [(Mr-Mv)/S(FV)]			
e = B/2 - Xo	e =	0.606	m
	ABS (e) =	0.606	M

SI

e < B/6

0.606 < 1.083

VERDADERO Bien

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.2.2.3 CHEQUEO DE TRACCIONES Y COMPRESIONES (p):

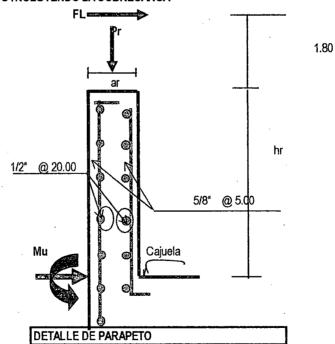
	p =	1.76	Kg/cm²
p1 = SFV/(B*L)*(1+6*e/B)	p1 =	2.75	Kg/cm ²
p2 = SFV/(B*L)*(1-6*e/B)	7 p2=	-0.78	Kg/cm ²

0.000 ≤ 2.750 < 3.260 BIEN 0.000 < 0.777 < 3.260 BIEN

2.2.2.4 CHEQUEO AL VOLTEO (Cv):

Cv = Mr/Mv	Cv =	3.014

SI 3.014 > 2.000 VERDADERO Bien


2.2.2.5 CHEQUEO AL DESLIZAMIENTO (Cd):

Coef. De fricción :	 f=	0.600
Cd = SFV*#SFH	Cd =	2.149

NOTA: El estribo si es eficiente con carga de la superestructura

Si 2.149 > 1.500 **VERDADERO Bien**

- 3.0 CALCULO DEL ACERO
- 3.1 DISEÑO DEL PARAPETO
- 3.1.1 CHEQUEO POR APLASTAMIENTO INCLUYENDO LA SOBRECARGA

Peso parapeto	Pppt=	720.00	Kg/m	\neg
Peso S/C	Pr _{Total} =	145,000.00	Kg	F
Peso S/C /metro = Pr/aj	Pr =	25,892.86	Kg/m	
Fuerza de frenado FL = 0,25 S/C	FL=	3,585.25	Kg/m	
Peso Total en un metro de ancho de para	peto:	26,612.86	Kg/m	
Presión real sobre la sección A-A =		8.87	Kg/cm ²	
Presión relativa sobre la sección A-A =		1.52	Kg/cm ²	

Peso de Llanta de HL 93

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

fc = 0,40*fc

8.871

84.000 VERDADERO

3.1.2 CALCULO DEL ACERO POR ROTURA

$M_{DD} = Mv$	Moc =	206.38	Kg-m/m
MLL = (hr+1,80)*FL	Mu=	10,038.71	Kg-m/m
M _{IM} = 0,3*M _L	-Мім =	3,011.61	Kg-m/m

VERIFICACION DEL PERALTE

Hallando los momentos por servicio

$Ms = M_{DC} + M_{LL} + M_{IM}$	Ms=	13,256.70	Kg-m/m
	b =	100.00	om
	fc=	210.00	Kg/cm ²
Cuantia balanceada	pb=	0.02	
p=As/b*d	p=	0.00	
n=10 ⁵ /15000*fc	n=	9.20	
k=((n*p) ² +2np) ^{0.5} -pb	k=	0.23	
j=1-k/3	j=	0.92	
	fc*i*k =	43.93	

Datos de tabla para 210 kg/cm2

El peralte mínimo es:

$d = (2*Ms/(fc*j*k*b))^{(1/2)}$	d reg. =	24.566	om
(2 IVIS/(IC) K D))	a req. =	24.000	uii

	Resistencia	Servicio	Fatiga
Ductilidad (nD)	1.00	1.00	1.00
Redundancia (nR)	1.05	1.00	1.00
Importancia (nL)	0.95	1.00	1.00
Producto	1.00	1.00	1.00

n= nD*nR*nL

n= 1.00

CARGA		RESISTENC	SERVICIO	FATIGA
	M _{DC} =	1.25	1.00	
	M _{Dw} =	1.25	1.00	
	M _{LL} =	1.75	1.00	0.75
	M _{IM} =	1.75	1.00	0.75
	M _{PL} =	1.75	1.00	

$Mu = n*(1.25M_{DC} + 1,75*(M_{LL} + M_{IM}))$	Mu =	23,038.30	Kg-m/m	RESISTENCIA I
	Mu =	13,223.56	Kg-m/m	SERVICIO I
	Mu =	9,763.27	Kg-m/m	FATIGA
Momento de Diseño	Mu =	23,038.30	Kg-m/m	
	d' =	3.00	cm	}
d = ar-d'	d =	27.00	cm	•

SI

24.566

27.000

BIEN

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CALCULO DE ACERO (Metodo LRFD)

Acero Principal (Vertical)

Mu = ffc*b*d ² *w*(1+w/1,70)				
w1 = (1,7+((1,7 ² -4*(1,7*Mu/(f	fc*b*d ²))) ^{0,5})/2	w1 =	1.51	
w2 = (1,7-((1,7 ² -4*(1,7*Mu/(f*	fc*b*d ²))) ^{0,5})/2	w2 =	0.19	
w = r*fy/fc	r=w*fc/fy=	r1 =	0.08	
		г2 =	0.01	
r = As/(b*d)	As=r*b*d=	As 1 =	204.12 at	
		As ₂ =	25.38 cm	<u> </u>

Usamos:

As=

25.38 cm²

Asmin. = 14*b*d/fy	As min	= 9.00	am ²

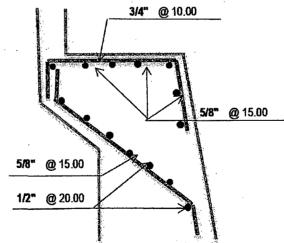
As min < As VERDADERO BIEN

Tomamos

Ae =

25.380 cm²/m

Cálculo del espaciamiento

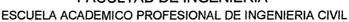

Si consideramos acero de Ø= 5/8"

@ = AFb/At	Af=	1.980	an ²
,	@=	7.801	am
	5/8"	5.00	cm

ACERO TRANSVERSAL

Acero Transversal = Ast = ,0018*b*t	Ast=	5.400	cm ²
	Af=	1.270	am²
	S=	23.519	cm
	1/2"	20.00	cm

3.2 DISEÑO DE LA CAJUELA


3.2.1 CALCULO DEL ACERO POR ROTURA

Fv*d =	Fv*d =	712.80 Kg-m/m
Actua RD ?: X = gj-(ar+t/2) > 0	X=	-0.07 m > 0
$M_D = Mv = Fv^*d + RD^*X$	M _D =	712.80 Kg-m/m
$M_L = RL^*X$	M _L =	0.00 Kg-m/m
$M_i = 0.3^{\pm}M_L$	M _i =	0.00 Kg-m/m
$Ms = M_D + M_L + M_I$	Ms=	712.80 Kg-m/m

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

$Mu = 1,3*(M_D + 1,67*(M_L + M_I))$	Mu =	926.64	Kg-m/m
	b =	100.00	cm
h = hj	hj =	100.00	cm
	d' =	5.00	cm
d = hj-d'	d =	95.00	cm
-	fc=	210.00	Kg/cm ²
$Mu = f^*fc^*b^*d^{2*}w^*(1+w/1,70)$			
w1 = $(1,7+((1,7^2-4*(1,7*Mu/(f*fc*b*d^2)))^{0.5})/2$ w2 = $(1,7-((1,7^2-4*(1,7*Mu/(f*fc*b*d^2)))^{0.5})/2$	w1 =	1.70	
w2 = (1,7-((1,7 ² -4*(1,7*Mu/(f*fc*b*d ²))) ^{0,5})/2	w2 =	0.00	
w = r*fy/fc	r1 =	0.08	
	г2 =	0.00	
r = As/(b*d)	As ₁ =	807.24	cm
	As 2 =	0.26	cm²

Usamos:

As=

0.258 cm²

Asmin. = 14*b*h/fy

Asmin =

33.333 cm²

FALSO USAR CUANTIA MINII

Tomamos

As = 33.333 cm²/m

As min < As

Cálculo del espaciamiento del Acero superior de caiuela

	As1=	21.667	
	Af=	2.850	cm ²
@ = Af*b/At	@=	13.154	cm .
	3/4"	10.00	cm

Capa Superior

Cálculo del espaciamiento del Acero inferior de cajuela

	Asz=	11.667		
	Af=	1.980	cm ²	
@ = Afb/At	@=	16.971	cm	
	5/8"	15.00	cm	

Capa Inferior

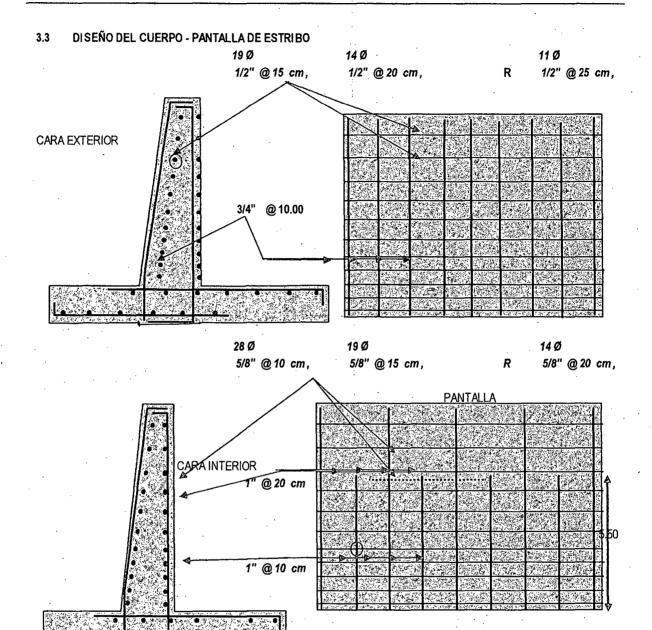
Acero Transversal = Ast = 0,0018*b*t

Ast =	18.000 cm ²	

	Ast ₁ =	11.700		
<i>'</i>	Af=	1.980	cm ²	
@ = Af*b/At	S =	16.923	cm	
	5/8"	@ 15.00	cm	

Capa Superior

Ast=	6.300	cm ²
Af=	1.270	cm ²
S =	20.159	cm
1/2"	@ 20.00	cm


Capa Inferior

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

$M_D = Mv = FH*d+FF*(hp+hr) + RD(ar+lj/2-gj)$	Mpc =	75,224.48	Kg-m/m
$M_L = RL*(ar+i/2-gj)+FL*(H+1,80)$	Мц=	40,513.37	Kg-m/m
$M_I = 0.3^*M_L$	M _{IM} =	12,154.01	Kg-m/m

VERIFICACION DEL PERALTE

Hallando los momentos por servicio

Ms = M _{DC} + M _{LL} + M _{IM}	. Ms =	127,891.87	Kg-m/m
	b=	100.00	cm
	fc=	210.00	Kg/cm ²
Cuantia balanœada	pb=	0.02	
p=As/b*d	p=	0.00	
n=10 ⁵ /15000Öf c	n=	9.20	
k=((n*p) ² +2np) ^{0.5} -pb	k=	0.27	
j=1-k/3	j=	0.91	
	fc*j*k =	51.63	

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

El peralte mínimo es:

$d = (2*Ms/(fc*j*k*b))^{(1/2)}$	d req. =	70.386	am
	ď =	10.000	cm ·
d = E - d'	d =	115.000	cm

SI

dreq < d

70.386 < 115.000

BIEN

DISEÑO DE ACERO METODO LRFD

	Resistencia	Servicio	Fatiga
Ductilidad (nD)	1.00	1.00	1.00
Redundancia (nR)	1.05	1.00	1.00
Importancia (nL)	0.95	1.00	1.00
Producto	1.00	1.00	1.00

n= nD*nR*nL

= 1.00

CARGA		RESISTENC	SERVICIO	FATIGA
	M _{DC} =	1.25	1.00	
	M _{Dw} =	1.25	1.00	
	M _{LL} =	1.75	1.00	0.75
	M _{IM} =	1.75	1.00	0.75

$Mu = n*(1.25M_{DC} + 1,75*(M_{LL} + M_{IM}))$	Mu =	185,733.03	Kg-m/m	RESISTENCIA I
$Mu = n*(1.00M_{DC} + 1,00*(M_{LL} + M_{IM}))$	Mu =	127,572.14	Kg-m/m	SERVICIO I
$Mu = n*(0.75*(M_{LL} + M_{IM}))$	Mu =	39,401.79	Kg-m/m	FATIGA
Momento de Diseño	Mu =	185,733.03	Kg-m/m] .
	d' =	3.00	am] .
d = ar-d'	d =	97.00	cm]
	Mu =	185,733.03	Kg-m/m	

** ACERO PRINCIPAL VERTICAL (Cara expuesta al talud)

Mu = f*fc*b*d ² *w*(1+w/1,70)			
w1 = $(1,7+((1,7^2-4*(1,7*Mu/(f*fc*b*d^2)))^{0,5})/2$	w1 =	1.622125	
$w2 = (1,7-((1,7^2-4*(1,7*Mu/(f*fc*b*d^2)))^{0,5})/2$	w2 =	0.077875	
w = r*fy/fc	r1 =	0.081106	
	r2 =	0.003894	
r = As/(b*d)	As 1 =	932.722	m
	As ₂ =	44.778	m

Usamos:

As=

44.778 cm²

Refuerzo principal mínimo:

Asmin = 0,0018*b*d =

20.700 cm²

As min < As

VERDADERO BIEN

Tomamos	As=	44.778	cm²/m

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ-CARRION, REGION LA LIBERTAD

Cálculo del espaciamiento hasta la altura de corte

Calculo de Altura de cortre

IC=

-75:50

	Af=	5.070	cm ²
@ = Afb/At	@ =	11.323	cm .
·	1"	@ 10.00	cm

Distribucion de Acero

hasta hc=

5.50

@ 10.00

cm

Cálculo del espaciamiento hasta la Altura Total

	Af=	5.070	cm ²
@ = Affb/At	@=	33.968	cm
	1"	@ 20.00	cm

Distribucion de Acero

hasta ht=

8 25 F

1"

@ 20.00

cm

ACERO DE MONTAGE VERTICAL (Cara exterior expuesta al rio)

ALTERNATIVA 01: considerando area de acero minima

	Tomamos	As=		20.700 cm ⁻ /
Cálculo del espaciamiento				
	Af=	2.850	am ²	
	@=	13.768	cm	
	3/4"	@ 10.00	cm	

ALTERNATIVA 2: considerando que el espesor es > 0.25 se considera como cuantia 0.0015

Asm = 0.0015*b*d/2 =

17.250 cm²

Af=[™]

2.850 cm²

@=

16.522 cm

3/4"

@15.00 cm

Considerando el mayor de ambas alternativas tenermos

		
3/4"	<i>ര</i> 10 00	cm
•	@ 10.00	G111

ACERO HORIZONTAL

** ACERO HORIZONTAL (ARRIBA):

Ash=0.0025*b*t=0.0025*b*E _P =	Ash=	13.750	cm ²
E _P =(2*E1+1/3*E2)/2	E _P =	0.55	m

* CARA EXTERIOR: As = Ash/3

As = Ash/3	As=	4.583	cm ²
	Af=	1.270	am²
	@=	27.71	cm
Si consideramos	1/2"	@ 25.00	cm

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ GARRION, REGION LA LIBERTAD

* CARA INTERIOR: As = (2/3)*Ash

As = (2/3)*Ash ~~	As=	9.167	cm ²
	Af=	1.980	cm ²
	@=	21.60	om
Si consideramos	.5/8°	.@ 20.00	cm

** ACERO HORIZONTAL (INTERMEDIO):

Ash=0.0025*b*t=0.0025*b*E _P =	Ash=	18.750	cm ⁻
Ep=(2*E1+E2)/2	E _P =	0.750	m

* CARA EXTERIOR : As = Ash/3

As = Ash/3	As=	6.250	cm ²
	Af=	1.270	cm ²
	@=	20.32	cm
Si consideramos	1/2"	@ 20.00	cm

* CARAINTERIOR: As = (2/3)*Ash

As = (2/3)*Ash	As=	12.500	cm ²
	Af=	1.980	cm ²
	@=	15.84	cm
Si consideramos	5/8"	@ 15.00	cm

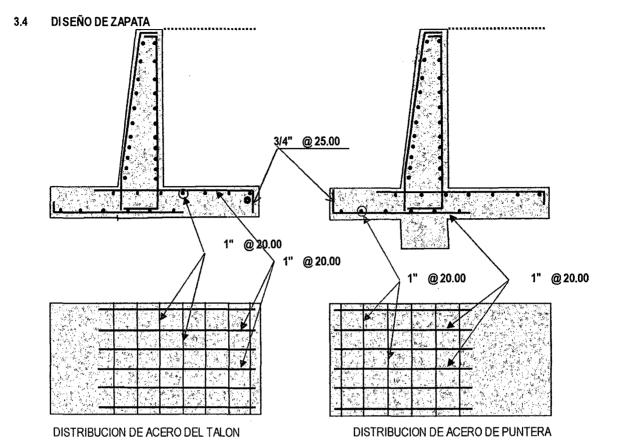
** ACERO HORIZONTAL (ABAJO):

Ash=0,002*b*t=0,002*b*E=	Ash=	25.000	cm ²
	E=	1.25	m

* CARA EXTERIOR: As = Ash/3

As = Ash/3	As=	8.333	cm ²
	Af=	1.270	cm ²
	@=	15.24	cm
Si consideramos	1/2"	@ 15.00	cm

* CARA INTERIOR : As = (2/3)*Ash


OPERATION (EIG) FROM			
As = (2/3)*Ash	As=	16.667	cm ²
·	Af=	1.980	cm ²
	@=	11.88	cm
Si consideramos	5/8"	@ 10.00	cm

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

3.4.1 CALCULO DEL ACERO POR ROTURA

	B=	6.50	m
q1 = p1*b	q1 =	27,498.85	Kg/m
q2 = p2*b	q2 =	7,770.72	Kg/m
Wss = g _r *(Hf - hz)*b	Wss =	15,725.00	Kg/m
Wpp = gc*hz*b	Wpp =	3,000.00	Kg/m

3.4.2 ZAPATA ANTERIOR (PIE)

	B1 =	2.000	m
q _{pie} =q1 - (B1/B)*(q1-q2)	q _{pie} =	21,428.653	Kg/m
$M_D = Mpp = Wpp*B1*(B1/2)$	M _D =	6,000.000	Kg-m/m
M _L =Mq=q _{pie} *B1*(B1/2)+(q1-qpie)*(B1/2)*(2*B1/3)	M _L =	50,950.895	Kg-m/m

VERIFICACION DEL PERALTE

Hallando los momentos por servicio

$Ms = M_D + M_L$	Ms=	44,950.895	Kg-m/m
	b=	100.000	om.
	fc=	210.0	Kg/cm ²
Cuantia balanœada	pb=	0.0216	
p=As/b*d	p=	0.0019	
n=10 ⁵ /15000Öf c	n=	9.20	
k=((n*p) ² +2np) ^{0.5} -pb	k=	0.166	
j=1-k/3	j=	0.945	
	fc*j*k =	32.890	

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

El peralte mínimo es:

$d = (2*Ms/(fc*j*k*b))^{(1/2)}$	d req. =	52.282	cm
	d' =	8.000	cm
d = hz-d'	d=	117.000	om .

d req.

BIEN

52.282

<

117.000

ACERO PRINCIPAL

	Resistencia	Servicio	Fatiga
Ductilidad (nD)	1.00	1.00	1.00
Redundancia (nR)	1.05	1.00	1.00
Importancia (nL)	0.95	1.00	1.00
Producto	1.00	1.00	1.00

n=nD*nR*nL

= 1.00

CARGA		RESISTENC	SERVICIO	FATIGA
	M _{DC} =	1.25	1.00	
	M _{Dw} =	1.25	1.00	
	M _{LL} =	1.75	1.00	0.75
	M _{IM} =	1.75	1.00	0.75

$Mu = n*(1.25M_{DC} + 1,75*(M_{LL} + M_{IM}))$	Mu =	96,422.407	Kg-m/m	T
$Mu = n*(1.00M_{DC} + 1,00*(M_{LL} + M_{IM}))$	Mu =	56,808.518	Kg-m/m	
$Mu = n*(0.75*(M_{LL} + M_{IM}))$	Mu =	38,117.639	Kg-m/m	F
Momento de Diseño	Mu =	96,422.407	Kg-m/m	
	d' =	8.000	cm	
d = ar-d'	d =	117.000	cm	
-	Mu =	96.422.407	Ka-m/m	\dashv

RESISTENCIA I SERVICIO I FATIGA

 $Mu = f*fc*b*d^{2}*w*(1+w/1,70)$ w1 = $(1,7+((1,7^2-4*(1,7*Mu/(f*fc*b*d^2)))^{0,5})/2$ w1 = 1.661876 $w2 = (1,7-((1,7^2-4*(1,7*Mu/(f*fc*b*d^2)))^{0,5})/2$ 0.038124 w2 = w = r*fy/fc0.083094 r1 = 0.001906 r2 = 972.198 cm² r = As/(b*d)As₁= 22,302 cm² As₂= 22.302 cm Usamos: As= Acero mínimo = Asmín. = ,0018*b*d 21.060 cm² As=

As min

As mín

22.302

21.060

VERDADERO BIEN

Tomamos

As=

22.302 cm²/m

Cálculo del espaciamiento

	As=	22.302	cm2/m
	Af=	5.070	cm ²
@ = Af*b/At	@=	22.73	cm
	1"	@ 20.00	cm

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ACERO TRANSVERSAL

Acero Transversal = Ast = 0,0018*b*hz	Ast=	22.500	cm ²
	Af=	5.070	cm ²
	@=	22.53	cm
	1"	@ 20.00	cm

VERIFICACION DEL CORTANTE

$Vq = q_{pie} *B1 + (q1-qpie)*(B1/2)$	Vq =	48,927.498	Kg
Vpp = Wpp*B1	Vpp =	6,000.000	Kg
Vumáx.= Vu =1,7*V _L - 0,9*V _D	Vu =	77,776.747	Kg

Fuerza cortante que absorbe el concreto:

Vc =0,53*(fc) ^{1/2} *b*d	Vc=	89.861	Tn/m
	fVc=	80.875	Tn/m

fVc ≥ Vu

80.875 >

77.777

VERDADERO

BIEN

3.4.3 ZAPATA POSTERIOR (TALON)

	B2 =	3.250	m
q _{talón} =q2 + (B2/B)*(q1-q2)	Qtalón =	17,634.783	Kg/m
Mss = Wss*B2*(B2/2)	Mss =	83,047.656	Kg-m/m
Mpp = Wpp*B2*(B2/2)	Mpp =	15,843.750	Kg-m/m
M _D = Mss + Mpp	M _D =	98,891.406	Kg-m/m
M _L =Mq=q2*B2*(B2/2)+(qtalón-q2)*(B2/2)*(B2/3)	M _L =	58,403.981	Kg-m/m

VERIFICACION DEL PERALTE

Hallando los momentos por servicio

Ms = Mo - ML	Ms =	40,487.426	Kg-m/m
	b=	100.000	cm
	fc=	210.0	Kg/cm ²
	fc*j*k =	32.890	

El peralte mínimo es:

$d = (2*Ms/(fc*j*k*b))^{(1/2)}$	d req. =	49.619	cm
	d'=	8.000	cm .
d = hz-d'	d =	117.000	am

d req.

(

SI

49.619

117.000 BIEN

ACERO PRINCIPAL METODO LRFD

	Resistencia	Servicio	Fatiga
Ductilidad (nD)	1.00	1.00	1.00
Redundancia (nR)	1.05	1.00	1.00
Importancia (nL)	0.95	1.00	1.00
Producto	1.00	1.00	1.00

n = nD*nR*nL

η=

1.00

CARGA	RESISTENC	SERVICIO	FATIGA
M _{DC} =	1.25	1.00	
M _{Dw} =	1.25	1.00	

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

M _{LL} =	1.75	1.00	0.75
M _{IM} =	1.75	1.00	0.75

$Mu = n*(-1.25M_{DC} + 1,75*(M_{LL} + M_{IM}))$	-Mu=	-21,353.77	Kg-m/m	RESISTENCIA I
Momento de Diseño	Mu =	-21,353.77	Kg-m/m	
	d' =	8.00	cm	
d = ar-d'	d =	117.00	cm]

Mu = -21,353.77 Kg-m/m

Mu = f*fc*b*d ² *w*(1+w/1,70)			
w1 = $(1,7+((1,7^2-4*(1,7*Mu/(f*fc*b*d^2)))^{0.5})/2$	w1 =	1.708214	
w2 = (1,7-((1,7 ² -4*(1,7*Mu/(f*fc*b*d ²))) ^{0,5})/2	w2 =	-0.008214	
w = r*fy/fc	r1 =	0.085411	
	r2 =	-0.000411	
r = As/(b*d)	As 1 =	999.305	cm ²
	As 2 =	-4.805	cm²
	As=	-4.805	cm ²
Acero mínimo = Asmín. = ,0018*b*d	As=	21.060	cm ²

As min < As

FALSO

Usar cuantian Minima

	Tomamos	As =	21.060 cm²/m
Cálculo del espaciamiento			
	As =	21.060	
	Af=	5.070 cm ²	
@ - APH/At	0-1	24.07 000	

	As =	21.060	
	Af=	5.070	cm ²
@ = Afb/At	@=	24.07	am
	1"	@ 20.00	cm

ACERO TRANSVERSAL

Acero transversal Ast = ,0018*b*hz	As=	22.500	cm ²
	Af=	5.070	cm ²
	@=	22.53	cm
	1"	@ 20.00	cm

ACERO DE MONTAJE

Acero de Montaje Asm = ,0018*b*d/2	As=	10.530	cm ²
. [Af=	2.850	cm ²
·	@=	27.07	cm
	3/4"	@ 25.00	cm

VERIFICACION DEL CORTANTE

$V_L = Vq = q_{talon} *B2 - (q_{talon} - q2)*(B2/2)$	V _L =	41,283.945	Kg
Vss = Wss*B2	Vss =	51,106.250	Kg
Vpp = Wpp*B2	Vpp =	9,750.000	Kg
V _D = Vss + Vpp	V _D =	60,856.250	Kg/m
Vumáx.= Vu =1,7*V _L - 0,9*V _D	Vu =	15,412.081	Kg/m

Fuerza cortante que absorbe el concreto:

T dollad och anta que aboorbe el concreto.			
Vc =0,53*(fc) ^{1/2} *b*d	Vc=	89.861	Tn
	fVc=	76.382	Tn

fVc ≥ Vu

76.382

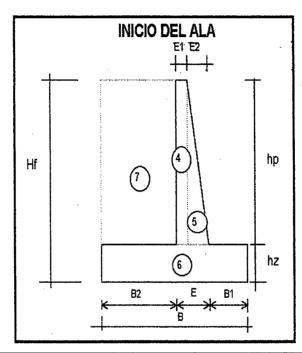
15.412

VERDADERO BIEN

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ANEXOS N° 7.2: DISEÑO DE ALETAS


FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

7.A2 DISEÑO DE ALA DE ESTRIBOS INICIO DE ALA DE ESTRIBO

1.0 DATOS

DESCRIPCION	SIMBOLOS	VALORES	
Resist del terreno :	s=	3.260	Kg/cm²
Angulo de fricción:	f=	34.00	0
Coef. de fricción	fi=	0.675	
Concreto pantalla	fc=	210.0	Kg/cm²
Concreto zapatas	fc=	210.0	Kg/cm²
Fierro p/armadura	fy =		
Peso especifico del concreto	gc=		Kg/m
Peso especifico del terreno	g _r =	1,700.0	Kg/m²
Espesor parcial placa - pantalla 1	E1 =	0.450	m
Espesor parcial placa - pantalla 2	E2 =	0.600	m
Espesor inferior placa - pantalla : E=E1+E2	E=	1.050	m
Profundidad del Estribo	Hf=	10.500	m
Altura de zapata	hz=	1.250	m
Altura placa - pantalla	hp =	9.250	m
Largo de zapata	B =	6.500	m
Pie de zapata	B1 =	2.200	m
Talón de zapata	B2 =	3.250	m
Coef. de fricción : albañ./albañ.	falb/alb=	0.700	
Coef. de fricción : albañ./arcilla seca	falb/arc=	0.600	
	fw = 62 =	17.00	0

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

- 2.0 CONTROL DE ESTABILIDAD
- 2.1 CHEQUEO EN LA SECCION B B'
- 2.1.1 FUERZAS HORIZONTALES Y VERTICALES

b=	0	No existe Inclinacion en el Talud
C=	0.28	

EMPUJE DE TIERRAS

$E = (1/2)^* g_r^* hp^2 C$	hp =	9.250	m
C = (Tan(45°-#2)) ²	C =	0.283	
d = hp/3	d =	3.083	m
$E = (1/2)^* g_r^* hp^2 C$	E=	20,561.326	Kg
EH = E*Cos(fw)	EH =	19,662.894	Kg/m
Mv = EH*d	Mv =	60,627.256	Kg-m/m

EV = E*Sen(fw) =	6,011.550 Kg/m
Mr = EV*E =	6,312.127 Kg-m/m

DESCRIPCION	FV	Xi	Mr	FH	Yi	Μv
	(Kg)	(m)	(Kg-m)	(Kg)	(m)	(Kg-m)
E : Emp. Tierras	6,011.55	1.05	6,312.13	19,662.894	3.083	60,627.256
(4) E1*hp*gc	9,990.00	0.83	8,241.75			
(5) (1/2)*E2*hp*gc	6,660.00	0.40	2,664.00			
(6) Zapata : B*hz*gc	0.00	0.00	0.00			
(7) B2*hp*g _r	0.00	2.68	0.00			
SUB-TOTAL	22,661.550		17,217.877	19,662.894		60,627.256

2.1.2 EXCENTRICIDAD (e):

ENOCITITION (C).			
E=	1.050	m	
Xo=(Mr-Mv)/SFV	Xo =	-1.916	
e = E/2 - [(Mr-Mv)/S(FV)]			
e = E/2 - Xo	e =	2.441	m
	ABS (e) =	2.4405521	

e < E/6

2.441

0.175

FALSO

Se controlará con la armadura

2.1.3 CHEQUEO DE TRACCIONES Y COMPRESIONES (p):

	p =		Kg/cm ²
p = SFV/(E*L)*(1+6*e/E)	p1 =	32.26	Kg/cm ²
p = SFV/(E*L)*(1-6*e/E)	p2 =	-27.94	Kg/cm ²
	fc=	210.00	Kg/cm ²
padm = 0,40*fc	padm=	84.00	Kg/cm ²
tracción adm. conc. = 0,03*fc =	tadm=	6.30	Kg/cm ²

-6.300 -6.300 32.257 -27.941

<

84.000 BIEN

84.000 TRACCION, control con Armadura

2.1.4 CHEQUEO AL VOLTEO (Cv):

Cv = Mr/Mv	Cv =	0.284

0.284 >

≤

2.000

FALSO

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.1.5 CHEQUEO AL DESLIZAMIENTO (Cd):

Coef. de fricción :	f=	0.70	
Cd = SFV*#SFH	.Cd =	0.81	
	0.807	>	1:500

FALSO

Se controlará con la armadura (Chequear corte del concreto)

2.2 CHEQUEO EN LA SECCION C - C'

2.2.1 FUERZAS HORIZONTALES Y VERTICALES

EMPUJE DE TIERRAS

EMILOSE DE LIEUVAS			
E =(1/2)* g _r *Hf*C	Hf=	10.50	m
	C =	0.28	
d = Hf/3	d =	3.50	
E =(1/2)* g _i *Hf*C	. E=	26,493.92	Kg
EH = E*Cos(fw)	EH=	25,336.26	Kg/m
Mv = EH*d	Mv =	88,676.92	Kg-m/m
EV = E*Sen(fw) =	7,746.073	Kg/m	
Mr = EV*B =	50,349.475	Kg-m/m	

DESCRIPCION	FV	Χi	Mr	FH	Yi	Mv
	(Kg)	(m)	(Kg-m)	(Kg)	(m)	(Kg-m)
E : Emp. Tierras	7,746.07	6.50	50,349.48	25,336.26	3.50	88,676.92
(4) E1*hp*gc	9,990.00	3.03	30,219.75			
(5) (1/2)*E2*hp*gc	6,660.00	2.60	17,316.00			
(6) Zapata : B*hz*gc	19,500.00	3.25	63,375.00			
(7) B2*hp*g _r	51,106.25	4.88	249,142.97			
SUB-TOTAL	95,002.32		410,403.19	25,336.26		88,676.92

2.2.2 EXCENTRICIDAD (e):

EXCENTRICIDAD (e).			
	B=	6.500	m
e = B/2 - [(Mr-Mv)/S(FV)]			
Xo=(Mr-Mv)/SFV	Xo =	3.387	
e = B/2 - Xo	e=	-0.137	m
	ABS (e) =	0.137	

e < B/6

0.137

1.083

VERDADERO Bien

2.2.3 CHEQUEO DE TRACCIONES Y COMPRESIONES (p):

	p =	1.462	Kg/cm ²
p1 = SFV/(B*L)*(1+6*e/B)	p1 =	1.277	Kg/cm ²
p2 = SFV/(B*L)*(1-6*e/B)	p2 =	1.646	Kg/cm ²

0.000 ≤ 1.277 ≤ 0.000 ≤ 1.646 ≤

3.260 BIEN 3.260 BIEN

2.2.4 CHEQUEO AL VOLTEO (Cv):

4.628 > 2.000

VERDADERO Bien

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.2.5 CHEQUEO AL DESLIZAMIENTO (Cd):

Coef. de fricción :	. f=	0.600
Cd = SFV*f/SFH	Cd =	2.250

2.250

1.500 VERDADERO Bien

****************** NOTA: El ala del estribo si es eficiente

- 3.0 CALCULO DEL ACERO
- 3.1 DISEÑO DEL CUERPO PANTALLA DE ESTRIBO INICIO DE ALA
- 3.1.1 CALCULO DEL ACERO POR ROTURA

$M_D = Mv = EH*d$	$M_D = 60,627.256 \text{ Kg-m/m}$

VERIFICACION DEL PERALTE

Hallando los momentos por servicio

Ms:	= Mo	+ M	+	М
1910	— IV11 :	, 141		IVI

$Ms = M_D + M_L + M_I$	Ms=	60,627.256	Kg-m/m
	b =	100.000	om
	fc=	210.0	Kg/cm ²
Cuantia balanceada	pb=	0.0216	
p=As/b*d	p=	0.0024	
n=10 ⁵ /15000Öf c	n=	9.20	
k=((n*p) ² +2np) ^{0.5} -pb	k=	0.188	
j=1-k/3	j=	0.937	
	fc*j*k =	36.943	

El peralte mínimo es:

$d = (2*Ms/(fc*j*k*b))^{(1/2)}$	d req. =	57.290	c m
$Mu = 1,3*(M_D + 1,67*(M_L + M_I))$	Mu =	78,815.433	Kg-m/m
	d' =	10.000	cm
d = E - d'	d =	95.000	am

57.290

95.000

BIEN

** ACERO PRINCIPAL

, 10 Lite 1011 1011 10				·	
$Mu = f^*fc^*b^*d^{2*}w^*(1+w/1,70)$					
w1 = (1,7+((1,7 ² -4*(1,7*Mu/(ffc*b*c	d ²))) ^{0,5})/	2	w1 =	1.652	
$w2 = (1,7-((1,7^2-4^*(1,7^*Mu/(f^*fc^*b^*d^2)))^{0.5})/2$		w2 =	0.048		
w = r*fy/fc			r1 =	0.083	
			r2 =	0.002	
r = As/(b*d)			As ₁ =	784.921	cm ²
	·		As 2 =	22.579	cm ^e
Usamos:			As=	22.579	cm ²
Refuerzo principal minimo : Asmin = 0,0		018*b*d =	17.100	cm ²	

As mín < As

VERDADERO BIEN

Cara posterior

Tomamos

As=

22.579 cm²/m

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ACERO CARA INTERIOR

VOTIO CAROLINIENION			
	As=	22.579	cm2/m
	Af=	2.850	cm ²
@ = Af*b/At	@=	12.62	cm
	3/4"	@ 10.00	cm

** ACERO DE MONTAJE VERTICAL (CARA ANTERIOR):

ALTERNATIVA 01: Con acero minimo

Cálculo del espaciamiento

	As=	17.100	cm²/m
	Af=	2.850	cm ²
@ = Af*b/At	@=	16.67	cm
	3/4"	@ 15.00	cm

ALTERNATIVA 02: Con cuantia

Asm = 0,0018*b*d/2 =	Asm=	8.550	cm
3/4"	Af=	2.850	cm ²
	@=	33.33	cm
3/4"	3/4"	@ 30.00	cm

15.000 30.000

Escogiendo el mayor de ambas alternatovas tenemos

- 1				
	2/411	CAE AN		
	3/4 1	<i>ര</i> 15 001	cm	

** ACERO HORIZONTAL (ARRIBA) ·

ACEITO HOILIZON INE (AILINDA).		
Ash= ,002*b*t= ,002*b*E1=	Ash=	9.000 cm ²

* CARA EXTERIOR: As = Ash/3

As = Ash/3	As=	3.000	cm ²
·	Af=	1.270	cm ²
	@=	42.33	am
	1/2"	@ 40.00	cm

* CARA POSTERIOR: As = (2/3)*Ash

As = (2/3)*Ash	As=	6.000	cm ²
	Af=	1.980	cm ²
	@=	33.00	am
	5/8"	@ 30.00	cm

** ACERO HORIZONTAL (INTERMEDIO):

	·		
A-L 0.000#L#/E4 EV0		45.000	121
Ash = 0.002*b*(E1+E)/2 =	l Ash≕	15000	lom* l
7.5 5,552 5 (22).2			

* CARA EXTERIOR: As = Ash/3

As = Ash/3	As=	5.000	cm ²
	Af=	1.270	cm ²
·	@=	25.40	cm
	1/2"	@ 25.00	cm

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

* CARA INTERIOR: As = (2/3)*Ash

As = Ash/3	As=	10.000	cm ²
	Af=	1.980	cm ²
	@=	19.80	am
	5/8"	@ 20.00	cm

** ACERO HORIZONTAL (ABAJO):

!	1 Anh-	! Ე 4 ᲘᲘᲘ	1 m²
Ash=0,002*b*t=0,002*b*E=	l Ash≕	21,000	GII I

* CARAINTERIOR : As = Ash/3

As = Ash/3	As=	7.000	cm ²
	Af=	1.270	am²
	@=	18.14	cm
	1/2"	@ 15.00	cm

* CARA POSTERIOR : As = (2/3)*Ash

As = (2/3)*Ash	As=	14.000	cm ²
	Af=	1.980	cm ²
	@=	14.14	om
	5/8"	@ 15.00	cm

3.2 DISEÑO DE ZAPATA

3.2.1 CALCULO DEL ACERO POR ROTURA

	B=	6.500	m
q1 = p1*b	q1 =	12,774.030	Kg/m
q2 = p2*b	q2 =	16,457.454	Kg/m
Wss = $g_r^*(Hf - hz)^*b$	Wss =	15,725.000	Kg/m
Wpp = gc*hz*b	Wpp =	3,000.000	Kg/m

3.2.2 ZAPATA ANTERIOR (PIE)

E-1 7(5) (Fitted Off (1 12)			
	B1 =	2.200	m
q _{pie} =q1 - (B1/B)*(q1-q2)	q _{pie} =	14,020.727	Kg/m
$M_D = Mpp = Wpp*B1*(B1/2)$	M _D =	7,260.000	Kg-m/m
M _L =Mq=q _{pie} *B1*(B1/2)+(q1-q _{pie})*(B1/2)*(2*B1/3)	M _L =	31,918.822	Kg-m/m

VERIFICACION DEL PERALTE

Hallando los momentos por servicio

Ms = M	o + Mւ	
--------	--------	--

$Ms = M_D + M_L$	Ms=	24,658.822	Kg-m/m
	b =	100.000	cm
	fc=	210.0	Kg/cm ²
Cuantia balanceada	pb=	0.0216	
p=As/b*d	p=	0.0018	
n=10 ⁵ /15000Öf c	n=	9.20	
$k=((n*p)^2+2np)^{0.5}-pb$	k=	0.160	
j=1-k/3	j=	0.947	
	fc*j*k =	31.898	

El peralte mínimo es:

$d = (2*Ms/(fc*j*k*b))^{(1/2)}$	d req. =	39.321	cm
	d' =	8.000	cm
d = hz-d'	d =	117.000	am

39.321

≤ 117.000

BIEN

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ACERO PRINCIPAL

Mumáx.= Mu =1,75*M _L - 1.25*M _D	Mu =	46,782.938	Kg-m/m
Mu = f*fc*b*d ² *w*(1+w/1,70)			
$w1 = (1,7 + ((1,7^2 - 4*(1,7*Mu/(f*fc*b*d^2)))^{0.5})/2$	w1 =	1.681721	
$w2 = (1,7-((1,7^2-4*(1,7*Mu/(f*fc*b*d^2)))^{0.5})/2$	w2 =	0.018279	
w = r*fy/fc	r1 =	0.084086	
	r2 =	0.000914	
r = As/(b*d)	As 1 =	983.807	
	As ₂ =	10.693	cm
	As=	10.693	cm ²
Acero mínimo = Asmín. = ,0018*b*d	As=	21.060	cm ²

As min < As

FALSO

USAR CUANTIA MINI!

Tomamos

Δe =

21.060 cm²/m

Cálculo del espaciamiento

	As=	21.060	cm2/m
	Af=	5.070	cm ²
@ = Af*b/At	@=	24.07	cm
	1"	@ 20.00	cm

ACERO TRANSVERSAL

Acero Transversal = Ast = 0,0018*b*hz	Ast=	22.500	cm ²
	Af=	5.070	cm ²
·	@=	22.53	cm
	1"	@ 20.00	cm

VERIFICACION DEL CORTANTE

$V_L = Vq = q_{pie} *B1 + (q1-q_{pie})*(B1/2)$	Vq = 29,474.233 Kg
$V_D = Vpp = Wpp*B1$	Vpp = 6,600.000 Kg
Vumáx.= Vu =1,7*V _L - 0,9*V _D	Vu = 44,166.196 Kg

Fuerza cortante que absorbe el concreto:

. doi 22 doi 12/12 que ascorso en contendas.				
Vc =0,53*(fc) ^{1/2} *b*d	Vc=	89.861	Tn/m	
	fVc =	76.382	Tn/m	

fVc ≥ Vu

76.382

≥

44.166 VERDADERO

BIEN

3.2.3 ZAPATA POSTERIOR (TALON)

	B2 =	3.250	m
q _{talón} =q2 + (B2/B)*(q1-q2)	Qtatón =	14,615.742	Kg/m
Mss = Wss*B2*(B2/2)	Mss =	83,047.656	Kg-m/m
Mpp = Wpp*B2*(B2/2)	Mpp =	15,843.750	Kg-m/m
$M_D = Mss + Mpp$	M _D =	98,891.406	Kg-m/m
M _L =Mq=q2*B2*(B2/2)+(q _{talón} -q2)*(B2/2)*(B2/3)	M _L =	83,673.748	Kg-m/m

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

VERIFICACION DEL PERALTE

Hallando los momentos por servicio

 $Ms = M_D - M_L$

Ms = M _D - M _L	Ms =	15,217.658	Kg-m/m
	fc=	210.0	Kg/cm ²
	b =	100,000	cm
Cuantia balanceada	pb=	0.0216	
p=As/b*d	p=	0.0017	
n=10 ⁵ /15000Öf c	n=	9 .20	
k=((n*p) ² +2np) ^{0.5} -pb	k=	0.156	
j=1-k/3	j=	0.948	
	fc*j*k =	31.025	

El peralte mínimo es:

$d = (2*Ms/(fc*j*k*b))^{(1/2)}$	d req. =	31.321	cm
	d' =	8.000	cm
d = hz-d'	d =	117.000	cm

31,321

. ≤

117.000 BIEN

ACERO PRINCIPAL

Mumáx.= Mu =1,75*M _L - 1.25*M _D	Mu =	22,814.802	Kg-m/m
Mu = f*fc*b*d ² *w*(1+w/1,70)			
w1 = $(1,7+((1,7^2-4*(1,7*Mu/(f*fc*b*d^2)))^{0.5})/2$	w1 =	1.691136	,
w2 = (1,7-((1,7 ² -4*(1,7*Mu/(f*fc*b*d ²))) ^{0,5})/2	w2 =	0.008864	
$W = r^*fy/fc$	r1 =	0.084557	
	r2 =	0.000443	
$r = As/(b^*d)$	As ₁ =	989.314	
	As 2 =	5.186	cmf
Usamos	As=	5.186	cm ²
Acero mínimo = Asmin. = ,0018*b*d	As=	21.060	cm ²

As min < As

FALSO

Usar cuantia Minima

Tomamos

Δe =

21.060 cm²/m

Cálculo del espaciamiento

	As=	21.06	cm2/m
	Af=	5.070	cm ^{2.}
@ = Affb/At	@=	24.07	cm
	1"	@ 20.00	cm

ACERO TRANSVERSAL

Acero transversal Ast = ,0018*b*hz	As=	22.5	cm ²
	Af=	5.070	cm ²
	@=	22.53	om
	1"	@ 20.00	cm

ACERO DE MONTAJE

Acero de Montaje Asm = ,0018*b*d/2	As=	10.53	cm ²
	Af=	2.850	cm ²
·	@=	27.07	cm
	3/4"	@ 25.00	cm

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

VERIFICACION DEL CORTANTE

$V_L = Vq = q_{talon} *B2 - (q_{talon} - q2)*(B2/2)$	V _L =	50,493.943	Kg
Vss = Wss*B2	Vss=	51,106.250	Kg .
Vpp = Wpp*B2	- ∀pp=	9,750.000	Kg
$V_D = V_{SS} + V_{PP}$	V _D =	60,856.250	Kg-m/m
Vumáx.= Vu =1,7*V _L - 0,9*V _D	Vu =	31,069.079	Kg

Fuerza cortante que absorbe el concreto:

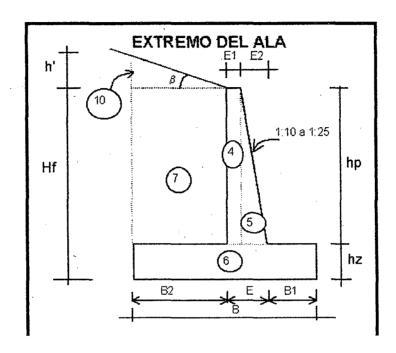
Vc =0,53*(fc) ^{1/2} *b*d	Vc=	89.861	Tn
	t∕c=	76,382	Tn

fVc≥Vu

76.382

31.069 VERDADERO BIEN

FACULTAD DE INGENIERIA


ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

7.A3 EXTREMO DE ALA DE ESTRIBO

(Se Uniformiza los aceros de el ala de inicio, pero calculamos como comprobación)

1.0 DATOS

DESCRIPCION	l
-------------	---

SIMBOLOS VALORES

Resist del terreno :		s=	3.26	3.26	Kg/cm ²
Angulo de fricción:		f=	34.00	34.00	0
Coef. de fricción		fi =	0.67	0.67	
Concreto pantalia, zapatas,alas		fc=	210.00	210.00	Kg/cm²
Fierro p/armadura		fy =	4,200.00	4,200.00	
Peso especifico del concreto		gc =	2,400.00	2,400.00	I .
Peso especifico del terreno		g _r =	1,700.00	1,700.00	Kg/m
Espesor parcial placa - pantalia 1		E1 =	0.40	0.40	m
Espesor parcial placa - pantalia 2	~1:10	E2 =	0.50	0.50	m '
Espesor inferior placa - pantalla : E=E1+	E2~0,3H	E=	0.90	0.90	m
Profundidad del Estribo		Hf=	9.00	9.00	m
Altura de zapata		hz=	1.25	1.25	m
Altura placa - pantalla		hp =	7.75	7.75	m
Largo de Ala		Li=	5.00	5.00	m
Largo de zapata		B =	5.40	6.20	m
Pie de zapata		B1 =	1.80	1.80	m
Talón de zapata		B2 =	2.70	3.50	m
Coef. de fricción : albañ./albañ.		falb/alb =	0.70	0.70	
Coef. de fricción : albañ./arcilla seca		falb/arc=	0.60	0.60	
Angulo de estabilidad del talud 1:	1.50	b=		20.00	0
		fw = f/2 =	_	17.00	0
Altura por inclinación del talud		h' =		1.27	m

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

- 2.0 **CONTROL DE ESTABILIDAD**
- 2.1 CHEQUEO EN LA SECCION B - B'
- **FUERZAS HORIZONTALES Y VERTICALES**

 $C = Cosb^*(Cosb-(Cos^2b-Cos^2f)^{0.5})/(Cosb+(Cos^2b-Cos^2f)^{0.5})$

EMPUJE DE TIERRAS

CIMI COL DE TIETATO			
$E = (1/2)^* g_r^* hp^2 * C$	hp =	7.750	m
C = (Tan(45°-#2)) ²	C =	0.338	
d = hp/3	d =	2.583	m
$E = (1/2)^* g_i^* h p^2 * C$	E=	17,261.616	Kg
EH = E*Cos(fw)	EH =	16,507.365	Kg/m
Mv = EH*d	Mv =	42,644.027	Kg-m/m

EV = E*Sen(fw) =	5,046.808	Kg/m
Mr = EV*E =	4,542.127	Kg-m/m

DESCRIPCION	FV	Xi	Mr	FH	Yi	Mv
ſ	(Kg)	(m)	(Kg-m)	(Kg)	(m)	(Kg-m)
E: Emp. Tierras	5,046.808	0.900	4,542.127	16,507.365	2.583	42,644.027
(4) E1*hp*gc	7,440.000	0.700	5,208.000			
(5) (1/2)*E2*hp*gc	4,650.000	0.333	1,550.000			
(6) Zapata : B*hz*gc	0.000	0.000	0.000			
(7) B2*hp*g _r	0.000	2.650	0.000			
(10) B2*h'/2*g _r	0.000	3.233	0.000			
SUB-TOTAL	17,136.808		11,300.127	16,507.365		42,644.027

2.1.2 EXCENTRICIDAD (e):

	E=	0.900	m
Xo=(Mr-Mv)/SFV	Xo=	-1.829	
e = E/2 - [(Mr-Mv)/S(FV)]			
e = E/2 - Xo	e=	2.279	m
	ABS (e) =	2.279	

e < E/6

2.279

FALSO

0.150

Se controlará con la armadura

2.1.3 CHEQUEO DE TRACCIONES Y COMPRESIONES (p):

			, .	
		p =	1.904	Kg/cm ²
p = SFV/(E*L)*(1+6*e/E)		p1 =	30.834	Kg/cm ²
p = SFV/(E*L)*(1-6*e/E)		p2 =	-27.026	Kg/cm ³
		fc=	210.0	Kg/cm ²
padm = 0,40*fc		padm=	84.000	Kg/cm2
tracción adm. conc. = 0,03*fc =		tadm =	6.300	Kg/cm ²
	-6.300	<u><</u>	30.834	<u> </u>

-6.300

-27.026

84.000 BIEN 84.000 TRACCION, control

con Armadura

CHEQUEO AL VOLTEO (Cv):

Cv = Mr/Mv 0.265 Cv =

> 0.265 2.000

FALSO

Se controlará con la armadura

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.1.5 CHEQUEO AL DESLIZAMIENTO (Cd):

Coef. de fricción :	f=	0.700
Cd = SFV*fSFH	Cd=	0.727

0.727

1,500 FALSO

Se controlará con la armadura

(Chequear corte del concreto)

2.2 CHEQUEO EN LA SECCION C - C'

2.2.1 FUERZAS HORIZONTALES Y VERTICALES

EMPUJE DE TIERRAS

LIVIT COL DE TIETATO			
	h' =	1.274	m
E =(1/2)* g _i *(Hf+h') ² *C	Hf=	9,000	m
	C =	0.338	
d = (Hf+h')/3	d =	3.425	m
E =(1/2)* g _r *(Hf+h') ² *C	E=	30,335.305	Kg
EH = E*Cos(fw)	EH =	29,009.796	Kg/m
Mv = EH*d	Mv =	99,347.874	Kg-m/m

EV = E*Sen(fw) =	8,869.185	Kg/m
Mr = EV*B =	54,988.945	Kg-m/m

DESCRIPCION	FV	Xi	Mr	FH	Yi	Mv
	(Kg)	(m)	(Kg-m)	(Kg)	(m)	(Kg-m)
E : Emp. Tierras	8,869.185	6.200	54,988.945	29,009.796	3.425	99,347.874
(4) E1*hp*gc	7,440.000	2.500	18,600.000			
(5) (1/2)*E2*hp*gc	4,650,000	2.133	9,920.000			
(6) Zapata : B*hz*gc	18,600.000	3.100	57,660.000			
(7) B2*hp*g _r	46,112.500	4.450	205,200.625			
(10) B2*h72*gr	3,789.840	5.033	19,075.528			
SUB-TOTAL	89,461.525		365,445.099	29,009.796		99,347.874

2.2.2 EXCENTRICIDAD (e):

	B=	6.200	m
Xo=(Mr-Mv)/SFV	Xo =	2.974	
e = B/2 - [(Mr-Mv)/S(FV)]			
e = B/2 - Xo	e =	0.126	m
	ABS (e) =	0.125568	

e < B/6

0.126

1.033 VERDADERO Bien

2.2.3 CHEQUEO DE TRACCIONES Y COMPRESIONES (p):

	p =	1.443	Kg/cm ²
p1 = SFV/(B*L)*(1+6*e/B)	p1 =	1.618	Kg/cm ²
p2 = SFV/(B*L)*(1-6*e/B)	p2 =	1.268	Kg/cm ³

0.000 \le 1.618 \le 0.000 \le 1.268 \le \le 1.268

3.260 BIEN 3.260 BIEN

2.2.4 CHEQUEO AL VOLTEO (Cv):

	(,	 	
Cv = Mr/Mv		Cv =	3.678

3.678 >

2.000 VERDADERO Bien

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.2.5 CHEQUEO AL DESLIZAMIENTO (Cd):

Coef. de fricción :	 f=:	0.500
Cd = SFV*fSFH	-Cd=	1,542

1.542

1.500 VERDADERO Bien

NOTA: El ala del estribo si es eficiente

3.0 CALCULO DEL ACERO

3.1 DISEÑO DEL CUERPO - PANTALLA DE ESTRIBO EXTREMO DE ALA

3.1.1 CALCULO DEL ACERO POR ROTURA

7, 20020 DZE / (02) (0 01/ 1/0 01//)	
$M_D = Mv = EH^*d$	M _D = 42,644.027 Kg-m/m

VERIFICACION DEL PERALTE

Hallando los momentos por servicio

$Ms = M_D + M_L + M_I$	Ms=	42,644.027	Kg-m/m
	b =	100.000	om
	fc=	210.0	Kg/cm ²
Cuantia balanceada	pb=	0.0216	
p=As/b*d	p=	0.0014	
n=10 ⁵ /15000Öfc	n=	13.33	
k=((n*p) ² +2np) ^{0.5} -pb	k=	0.173	
j=1-k/3	j=	0.942	
	fc*j*k =	24.889	

El peralte mínimo es:

d = (2*Ms/(fc*j*k*b)) ^(1/2)	d req. =	58.538	cm
$Mu = 1*(1.25M_D + 1.75*(M_L + M_I))$	Mu =	69,296.545	Kg-m/m
	d' =	10.000	cm
d = E - d'	d =	80.000	cm

58.538

d req. ≤

80.000 BIEN

** ACERO PRINCIPAL

AOLIO MITOLI AL				
Mu = f*fc*b*d ² *w*(1+w/1,70)				
$w1 = (1,7+((1,7^2-4*(1,7*Mu/(f*fc*b*d^2))$)) ^{0,5})/2	w1 =	1.640638	
w2 = (1,7-((1,7 ² -4*(1,7*Mu/(f*fc*b*d ²)))) ^{0,5})/2	w2 =	0.059362	
w = r*fy/fc		r1 =	0.082032	
		r2 =	0.002968	
r = As/(b*d)		As ₁ =	656,255	
		As ₂ =	23.745	cm [*]
Usamos:		As=	23.745	cm²
Refuerzo principal mínimo :	Asmin = 0,0	0018*b*d =	14.400	cm ²

As min < As

VERDADERO BIEN

Tomamos

As =

23.745 cm²/m

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ACERO CARA INTERIOR

	As=	23.745	am2/m
	Af=	.5.070	cm ²
@ = Af*b/At	@=	21.35	cm
	1"	@ 20.00	cm

** ACERO DE MONTAJE (CARA EXTERIOR):

Asm = 0,0018*b*d/2 =	- Asm=	7.200	cm ²
	Af=	2.850	cm ²
	@=	39.58	am
	3/4"	@ 35.00	cm

** ACERO HORIZONTAL (ARRIBA):

A-L- 000#L#L 000#L#E4	Ach-	0.000	2
Ash= ,002*b*t= ,002*b*E1=	ASn=	8.000	iom i

* CARA EXTERIOR: As = Ash/3

As = Ash/3	As=	2.667	cm ²
	Af=	0.710	cm ²
	@=	26.63	am
	3/8"	@ 25.00	cm

El area de acero es menor que el inicio de la aleta, se cosidera la distribucion de acero de la parte inicial para uniformizar

* CARA POSTERIOR : As = (2/3)*Ash

As = (2/3)*Ash	As=	5.333	cm ²
	Af=	1.270	
	@=	23.81	cm
	1/2"	@ 20.00	cm

La distribucion de acero es igual al inicio del aleta, esta uniformizado

** ACERO HORIZONTAL (INTERMEDIO):

7,02,10,110,110,110,110,110,110,110,110,1	<u> </u>		
Ash = 0,002*b*(E1+E)/2 =	Ash=	13.000	cm ²

* CARA EXTERIOR : As = Ash/3

CANALAILINION . AS - ASIII	J		
As = Ash/3	As=	4.333	cm ²
	. Af=	1.270	cm ²
	@=	29.31	cm
	1/2"	@ 25.00	cm

La distribucion de acero es igual al inicio del aleta, esta uniformizado

* CARA INTERIOR: As = (2/3)*Ash

As = (2/3)*Ash	As=	8.667	cm ²	
	Af=	2.850	cm ²	_
	@=	32.88	cm	
	3/4"	@ 30.00	cm	

El area de acero es menor que el inicio de la aleta, se cosidera la distribucion de acero de la parte inicial para uniformizar

** ACERO HORIZONTAL (ABAJO):

Ash=0,002*b*t=0,002*b*E=

Ash= 18.000 cm²

* CARA EXTERIOR: As = Ash/3

As = Ash/3	As=	6.000	cm ²	1
	Af=	1.270	cm²]E
	@=	21.17	cm	٦d
	1/2"	@ 20.00	cm	a

El area de acero es menor que el inicio de la aleta, se cosidera la distribucion de acero de la parte inicial para uniformizar

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

* CARA POSTERIOR: As = (2/3)*Ash

As = (2/3)*Ash	As=	12.000	cm ²	
	Af=	2.850	cm ²	
	@=	23.75	an	La distrit
	3/4"	@ 20.00	cm	inicio de

La distribución de acero es igual al inicio del aleta, esta uniformizado

3.2 DISEÑO DE ZAPATA

3.2.1 CALCULO DEL ACERO POR ROTURA

	B=	6.200	m
q1 = p1*b	q1 =	16,182.686	Kg/m
q2 = p2*b	q2 =	12,675.870	Kg/m
Wss = g _r *(Hf - hz)*b	Wss =	13,175.000	Kg/m
Wpp = gc*hz*b	Wpp =	3,000.000	Kg/m

3.2.2 ZAPATA ANTERIOR (PIE)

	B1 =	1.800	m
q _{pie} =q1 - (B1/B)*(q1-q2)	q _{pie} =	15,164.578	Kg/m
$M_D = Mpp = Wpp*B1*(B1/2)$	M _D =	4,860.000	Kg-m/m
M _L =Mq=q _{pie} *B1*(B1/2)+(q1-qpie)*(B1/2)*(2*B1/3)	M _L =	25,666.174	Kg-m/m

VERIFICACION DEL PERALTE

Hallando los momentos por servicio

Ms=	1 A_		NA.
MS =	Min	+	MI

Ms = M _D + M _L	Ms=	20,806.174	Kg-m/m
	b=	100.000	cm
	fc=	210.0	Kg/cm ²
Cuantia balanceada	pb=	0.0216	
p=As/b*d	p=	0.0009	
n=10 ⁵ /15000Öf c	n=	13,33	
k=((n*p) ² +2np) ^{0.5} -pb	k=	0.130	
j=1-k/3	j=	0.957	
	fc*j*k =	26.044	

El peralte mínimo es:

$d = (2*Ms/(fc*j*k*b))^{(1/2)}$	d req. =	39.972	cm
	d' =	8.000	cm
d = hz-d'	d =	117.000	cm

39.972

_ ≤

117.000 BIEN

ACERO PRINCIPAL

Mumáx.= Mu =1,75*M _L - 1.25*M _D	Mu =	38,840.804	Kg-m/m
$Mu = f^*fc^*b^*d^{2*}w^*(1+w/1,70)$			
$w1 = (1,7+((1,7^2-4*(1,7*Mu/(f*fc*b*d^2)))^{0.5})/2$	w1 =	1.684852	
$w2 = (1,7-((1,7^2-4*(1,7*Mu/(f*fc*b*d^2)))^{0.5})/2$	w2 =	0.015148	
w = r*fy/fc	г1 =	0.084243	
	r2 =	0.000757	
r = As/(b*d)	As 1 =	985.639	cm ⁻
	As 2 =	8.861	cm ^r
Usamos:	As=	8.861	cm ²
Acero mínimo = Asmín. = ,0018*b*d	As=	21.060	cm ²

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

As min < As

FALSO

USAR CUANTIA MINII

Tomamos

21.060 cm²/m

Cálculo del espaciamiento

	As =	21.06	cm2/m
	Af=	5.070	cm ²
@ = Affb/At	@=	24.07	cm
	1"	@ 20.00	cm

ACERO TRANSVERSAL

Acero Transv = Ast = 0,0018*b*hz	Ast =	22.5	cm ²
	Af=	5.070	cm ²
	@=	22.53	cm
	1"	@ 20.00	cm

VERIFICACION DEL CORTANTE

TENTI TO TOTO BEE CONTINUE	
$V_L = Vq = q_{pie} *B1 + (q1-q_{pie})*(B1/2)$	Vq = 28,212.538 Kg
V _D = Vpp = Wpp*B1	Vpp = 5,400.000 Kg
Vumáx.= Vu =1,7*V _L - 0,9*V _D	Vu = 43,101.315 Kg

Fuerza cortante que absorbe el concreto:

Vc =0,53*(fc) ^{1/2} *b*d	Vc=	89.861	Tn/m .
	fVc =	76.382	Tn/m

fVc≥Vu

76.382

43.101 VERDADERO BIEN

3.500 m. 14,655.524 Kg/m

80,696.875 Kg-m/m

18,375.000 Kg-m/m

99,071.875 Kg-m/m 81,681.498 Kg-m/m

3.2.3 ZAPATA POSTERIOR (TALON)

B2 = $q_{talon} = q2 + (B2/B)*(q1-q2)$ qtalón = Mss = Wss*B2*(B2/2) Mss = Mpp = Wpp*B2*(B2/2)Mpp = $M_D = Mss + Mpp$ $M_D =$ $M_L = Mq = q2*B2*(B2/2) + (q_{talon}-q2)*(B2/2)*(B2/3)$ $M_L =$

VERIFICACION DEL PERALTE

Hallando los momentos por servicio

Mac-	– M.	- Mi
INIO -	– (VII)	- 1041

≥

Ms = M _D - M _L	Ms=	17,390.377	Kg-m/m
	b =	100.000	cm
	fc=	210.0	Kg/cm ²
Cuantia balanceada	pb=	0.0216	
p=As/b*d	p=	0.0009	
n=10 ⁵ /15000Öf c	n=	13.33	
k=((n*p) ² +2np) ^{0.5} -pb	k=	0.130	
j=1-k/3	j=	0.957	
	fc*j*k =	26.044	

El peralte mínimo es:

$d = (2*Ms/(fc*)*k*b))^{(1/2)}$	d req. =	36.544	cm
	d' =	8.000	cm

d = hz-d'

d req. ≤

117.000 cm d =

BIEN

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ACERO PRINCIPAL

Mumáx.= Mu =1,75*M _L - 1.25*M _D	Mu =	19,102.777	Kg-m/m
$Mu = f^*fc^*b^*d^{2*}w^*(1+w/1,70)$			
w1 = $(1,7+((1,7^2-4*(1,7*Mu/(f*fc*b*d^2)))^{0,5})/2$	w1 =	1.692584	
$w2 = (1,7-((1,7^2-4*(1,7*Mu/(f*fc*b*d^2)))^{0.5})/2$	w2 =	0.007416	
w = r*fy/fc	r1 =	0.084629	
	г2 =	0.000371	
r = As/(b*d)	As ₁ =	990.162	cm ^c
	As 2 =	4.338	cmf
Usamos:	As=	4.338	cm ²
Acero mínimo = Asmín. = ,0018*b*d	As=	21.060	cm ²

As min < As FALSO USAR CUANTIA MINII

Tomamos

Δe =

21.060 cm²/m

Cálculo del espaciamiento

	As=	21.06	cm2/m
	Af≃	5.070	am²
@ = Afb/At	@ =	24.07	am
	1"	@ 20.00	cm

ACERO TRANSVERSAL

Acero transversal Ast = ,0018*b*hz	As=	22.5	cm ²
	Af=	5.070	cm ²
	@=	22.53	am
	1"	@ 20.00	cm

ACERO DE MONTAJE

Acero de Montaje Asm = ,0018*b*d/2	As=	10.53	cm ²
	Af=	2.850	cm ²
	@=	27.07	cm
·	3/4"	@ 25.00	cm

VERIFICACION DEL CORTANTE

TERM TO ACTOM BEE CONTINUE			
$V_L = Vq = q_{talón} *B2 - (q_{talón} - q2)*(B2/2)$	V _L =	47,829.940	Kg
Vss = Wss*B2	Vss =	46,112.500	Kg
Vpp = Wpp*B2	Vpp =	10,500.000	Kg
V _D = Vss + Vpp	V _D =	56,612.500	Kg-m/m
Vumáx.= Vu =1,7*V _L - 0,9*V _D	Vu =	30,359.648	Kg

Fuerza cortante que absorbe el concreto:

Vc =0,53*(fc) ^{1/2} *b*d	Vc =	89.861	Tn
	fVc=	76.382	Tn

fVc≥Vu

76,382

≥

30.360 VERDADERO BIEN

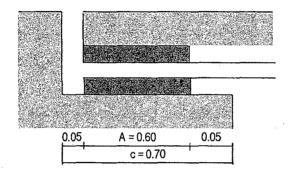
FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ANEXOS N° 7.3: DISEÑO DE APOYOS

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL


PROYECTO PROFESIONAL: CONSTRUCCIÓN DEL PÚENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

DISEÑO DE APOYOS

1 APOYO MOVIL

Las dimensiones de la sección son función de la fuerza máxima que la superestructura tenga que transmitir a la subestructura, la cual ya fue calculada en el acápite anterior

Debemos tener en cuenta que el esfuerzo unitario producido no supere al del trabajo admisible a la compresión de la subestructura y de la superestructura.

1.0" E = 1.5"

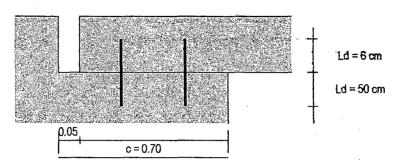
CARACTERISTICAS DEL APOYO

Utilizaremos apoyo de NEOPRENO, Dureza Shore A (ShA).

LONGITUD TOTAL DEL PUENTE	Lt = L' + 2.c	= [37.40	m
REACCION POR CARGA MUERTA	V _{DD}	=	42.28	Tn/viga
REACCION POR CARGA VIVA	V _{LL} + Vs/c	=	81.47	Tn/viga
LONGITUD DEL APOYO (Igual al ancho de viga)	В	=	60,00	cm
ANCHO DEL APOYO	Α	=	50.00	cm
ESPESOR DEL APOYO	E	=	3.81	cm
ESF. PERMISIBLE DE COMPRESION	sm	=	150.00	kg/cm ²
MODULO ELASTICIDAD TRANSVERSAL	G	= 1	8,00	kg/cm ²
COEF. EXPANSION TERMICA CONCRETO	C°	=	1.08E-05	/°C
GRADIENTE DE TEMPERATURA	D°	=	35,00	°C

VERIFICACIONES

PANDEO Y ESPESOR MINIMO	2· u ≤ E ≤ <i>A</i> /5			ок
ESFUERZO DE COMPRESION	sc = (VD + VL + Vs/c)/(A.B)	=	41.25	kg/cm ²
VERIFICACION COMPRESION	sc ≤ sm	=		OK
DESPLAZAMIENTO DE LA VIGA	u = C°.Lt.D°	=	1.414	cm
DEFORMACION TANGENCIAL PERMISIBLE	u ≤ 0.70.E			ок
COEFICIENTE	K1 = 0.804 + 1.422.(A/B)	=	1.99	
DEFLEXION VERTICAL	$et = k1 \frac{E^3}{A^2} \frac{\sigma_C - 3}{G}$	=	0.06	cm
VERIFICACION DE DEFLEXION VERTICAL	et ≤ 15% de E			ok


FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

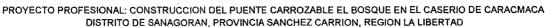
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARRÓZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

^F 2 APOYO FIJO

REACCION POR CARGA MUERTA	V _{DD}	=	42.28	Tn/viga
PESO TOTAL DEL CAMION		=	66.26	Tn
COEFICIENTE DE ACELERACION SISMICA	Α	=	0.32	g
VELOCIDAD DEL VIENTO	Vv	=	100.00	Km/h
PRESION BASICA PARA 100 km/h	Рв	=	150.00	kg/m²
PRESION DEL VIENTO	$Pv = P_B \left(\frac{Vv}{100}\right)^2$	11	150.00	kg/m²
AREA LATERAL DE LA SUPERESTRUCTURA		=	13.48	m ²
FUERZA VIENTO EN SUPERESTRUCTURA	Fvs = Pv.Alat	=	2022.53	kg
FUERZA VIENTO EN VEHICULOS	Fvv = 150.L'	=	0.00	kg
FUERZA POR SISMO	Fs = VD.A	=	13529.60	kg
FUERZA POR FRENADO	Ff=0.25 (18.P)/Nb	=	8282.50	kg
FUERZA RESULTANTE EN APOYO FIJO	$FR = [(Fvs + Fvv)^2 + (Fs + Ff)^2]^{1/2}$	=	21905.67	kg

CALCULO DEL ACERO

El diseño se hará por corte.				
ESFUERZO ADMISIBLE POR CORTE	fs = 0.4 fy	=	1680.00	kg/cm ²
AREA DE ACERO NECESARIA	As = FR / fs	=	13.04	cm ²
ACERO SELECCIONADO	Ø	=	3/4	pulg
DIAMETRO DE VARILLA	Dv	Ξ	1.91	cm
AREA DE VARILLA	Av	=	2.84	cm ²
NUMERO DE VARILLAS NECESARIO	Nv = As / Av	=	4.00	var/apoyo


LONGITUD DE DESARROLLO EN TRACCION

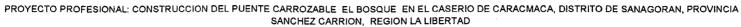
LONGITUD DE DESARROLLO 1	$Ld = 0.06Av.fy/(f'c)^{1/2}$	22	49.39	cm
LONGITUD DE DESARROLLO 2	Ld = 0.006Dv.fy	=	48.13	cm
LONGITUD DE DESARROLLO 3	Ld = 30 cm	=	30.00	cm
TOMANDO EL MAYOR DE LOS TRES	Ld	=	49.00	cm

FACULTAD DE INGENIERIA

ANEXOS N° 8: EXPEDIENTE TÉCNICO

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL


OYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA

MEMORIA DE CÁLCULO

FACULTAD DE INGENIERIA

COSTO DE HORA HOMBRE EN OBRAS DE EDIFICACION(SIERRA)

(VIGENTE DESDE: junio - 2013 a Mayo - 2014)

iTENA	CONCERTOR		CATEGORIA	,
ITEM	CONCEPTOS	OPERARIO	OFICIAL	PEON
		10.00	44.00	
1.00	REMUNERACION BASICA VIGENTE (RB) - Vig. 01-06-2011 al 31-05-2012	48.60	41.60	37.20
	Resolucion Ministerial N°256-2011- TR INCREMENTO SOBRE LA RB	2.70	2.00	1.70
	Negocioacion Colectiva 2012 - 2013	3.10	2.10	1.90
2.00	BONIFICACION UNIFICADA DE CONSTRUCCION (BUC)	15.56	12.48	11.16
3.00	LEYES Y BENEFICIOS SOCIALES SOBRE LA RB 113,59%	55.20	47.25	42.26
4.00	LEYES Y BENEFICIOS SOCIALES SOBRE EL BUC 12.00%	1.87	1.50	1.34
5.00	BONIFICACION POR MOVILIDAD ACUMULADA			
6.00	OVEROL (2 und anuales)	0.40	0.40	0.40
	COSTO DIA HOMBRE (DH) S/.	121.63	103.23	92.36
	COSTO HORA HOMBRE (HH) S/.	15.20	12.90	11.54

16.72

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CALCULO DEL FLETE

PROYECTO:

COSTRUCCION DEL PUENTE CARROZABLE. EL BOSQUE. EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA: SANCHEZ CARRION, REGION LA LIBERTAD

Subpresupuesto

A.- POR PESO

MATERIALES	UNIDAD	CANTIDAD	PESO UNIT.	PESO TOTAL
ALAMBRE, FIERRO, CLAVOS, ETC.	KG.			63,164.79
AGREGADOS (TODO COSTO)	M3			0.00
CEMENTO	BLS.			185,985.04
MADERA	P2			15,171.54
PINTURAS	GLN.			903.45
VIGAS	KG.	•		11,633.00
OTROS	KG.			7,500.00
PESO TOTAL				284,357.81

CAPACIDAD DEL CAMIÓN (TN)	20.00	
NÚMERO DE VIAJES	14.22	
REDONDEO	14.00	

1.- FLETE TERRESTRE

UNIDAD DE TRANSPORTE							
CAPACIDAD DEL CAMION (TN)	20.00						
COSTO POR VIAJE S/.	2,500.00						
CAPACIDAD DEL CAMION (KG)	20,000.00						
FLETE POR KG	0.125						

FLETE POR PESO	35,544.73	0.00
FLETE POR VOLUMEN		
COSTO TOTAL FLETE TERRESTRE	35,544.73	0.00

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

PRESUPUESTO

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS

Lugar

Página

Presupuesto

Presupuesto

0491015 CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITE DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Subpresupuesto Cliente

001 CONSTRUCCION DE PUENTE CARROZABLE EL BOSQUE

MUNICIPALIDAD DISTRITAL DE SANAGORAN LA LIBERTAD - SANCHEZ CARRION - SANAGORAN Costo al

24/06/2014

item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
01	OBRAS PROVISIONALES				14,853.47
01.01	CARTEL DE IDENTIFICACION DE LA OBRA DE 2.50X4.00M	und	1.00	974.87	974.87
01.02	CAMPAMENTO PROVISIONAL DE OBRA	m2	60.00	69.95	4,197.00
01.03	MOVILIZACION Y DESMOVILIZACION DE EQUIPO Y MAQUINARIA	GLB	1.00	4,640.00	4,640.00
31.04	HABILITACION DE ACCESOS PROVISIONALES	GLB	1.00	2,000.00	2,000.00
1.05	CONFORMACION DE CAUCE Y DESVIO DE AGUA DE RIO	m2	160.00	19.01	3,041.60
12	OBRAS PRELIMINARES				21,991.40
2.01	TRAZO Y REPLANTEO PRELIMINARES	m2	234.60	93.74	21,991.40
13	SUB ESTRUCTURA				735,736.39
3.01	EXCAVACION MASIVA CON MAQUINARIA				23,514.83
03.01.01	EXCAVACION MASIVA A MAQUINA EN TERRENO NORMAL"C"/RETRO	m3	2,555.96	9.20	23,514.83
03.02	MOVIMIENTO DE TIERRAS DE ESTRIBO Y ALETAS				148,555.42
03.02.01	EXCAVACION MANUAL DE TIERRAS EN ZAPATAS	m3	369.61	31.69	11,712.94
03.02.02	EXCAVACION C/I ROCOSO -PARA ZAPATAS	m3	369.61	131.39	48,563.06
03.02.03	RELLENO CON MATERIAL PROPIO EN ZAPATAS	m3	326.10	49.08	16,004.99
03.02.04	RELLENO CON MATERIAL PROPIO SELECCIONADO EN ACCESOS	m3	1,111.54	24.18	26,877.04
03.02,05	ELIMINACION DE EXCESO DE CORTE CON VOLQUETE - CARGADOR	m3	2,969.09	15.29	45,397.39
3.03	CONCRETO SIMPLE				125,770.96
03.03.01	MORTERO SIN CONTRACCION EN SOLADOS				12,983.38
03.03.01.01	CONCRETO SIN CONTRACCION (GROUT)	m3	20.53	632.41	12,983.3
03.03.02	MAMPOSTERIA DE PIEDRA				112,787.58
03.03.02.01	MAMPOSTERIA DE PIEDRA	m2	669.76	168.40	112,787.5
3.04	CONCRETO ARMADO				434,795.36
3.04.01	ZAPATA DE ESTRIBOS Y ALETAS				237,030.5
03.04.01.01	ENCOFRADO Y DESENCOFRADO NORMAL DE ZAPATAS	m2	111.10	60.98	6,774.8
03.04.01.02	CONCRETO F'C=210 KG/CM2 EN ZAPATAS	m3	256.68	462.89	118,814.6
03.04.01.03	ACERO FY= 4200 KG/CM2 EN ZAPATAS	kg	26,660.54	4.18	111,441.0
03.04.02	ESTRIBOS				76,544.2
03.04.02.01	ENCOFRADO Y DESENCOFRADO CARAVISTA CON PANELES Y BASTIDORES DE ESTRIBO	m2	283.00	119.88	33,926.0
03.04.02.02	CONCRETO F'C=210 KG/CM2 EN ESTRIBO	m3	16.28		7,535.8
03.04.02.03	ACERO FY= 4200 KG/CM2 EN ESTRIBO	kg	8,392.91	4.18	35,082.3
03.04.03	ALETAS				121,220.5
03.04.03.01	ENCOFRADO Y DESENCOFRADO CARAVISTA CON PANELES Y BASTIDORES DE ALETAS	m2	174.58	123.94	21,637.4
03.04.03.02	CONCRETO F'C=210 KG/CM2 EN ALETAS	m3	119.04	462.89	55,102.4
03.04.03.03	ACERO FY= 4200 KG/CM2 EN ALETAS	kg	10,641.31	4.18	44,480.6
03.05	SISTEMA DE DRENAJE DE ESTRIBOS				371.8
03.05.01	TUBERIA DE DRENAJE PVC SAL Ø 3"	m	39.60	9.39	371.8
03.06	APARATOS DE APOYO				1,770.8
03.06.01	APOYO MOVIL	und	2.00	589.13	1,178.2
03.06.02	APOYO FIJO	und	2.00	296.31	592.6
03.07	JUNTAS DE DILATACION DE ACERO EN ESTRIBO Y LOSA				957.1

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS Página

2

Presupuesto

Presupuesto

049101! CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO

DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Subpresupuesto

001 CONSTRUCCION DE PUENTE CARROZABLE EL BOSQUE

.

Costo al

24/06/2014

Chente	MUNICIPALIDAD DISTRITAL DE SANAGORAN
Lugar	LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

ltem	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
03.07.01	JUNTAS DE DILATACION DE ACERO	m	7.20	132.93	957.10
04	SUPER ESTRUCTURA				410,783.42
04.01	ARMADURA RETICULADA			•	111,020.00
04.01.01	VIGA METALICA PERFIL W14X74 - A36 (L=20')	und	4.00	1,775.00	7,100.00
04.01.02	VIGA METALICA PERFIL W14X68 - A36 (L=20')	und	38.00	1,630.00	61,940.00
04.01.03	VIGA METALICA PERFIL W14X22 - A36 (L=20')	und	14.00	530.00	7,420.00
04.01.04	VIGA METALICA PERFIL W14X145 - A36 (L=20')	und	12.00	2,880.00	34,560.00
04.02	VIGAS DE PISO EN ARMADURA RETICUALDA				56,140.00
04.02.01	VIGA METALICA PERFIL W21X73 - A36 (L=20')	und	14.00	1,760.00	24,640.00
04.02.02	VIGA METALICA PERFIL W27X114 - A36 (L=20')	und	8.00	2,800.00	22,400.00
04.02.03	ATIEZADORES WT4X24- A36 (L=20')	und	28.00	325.00	9,100.00
04.03	PERNOS DE ALTA RESISTENCIA A36				38,540.00
04.03.01	PERNOS ALTA RESISTENCIA 13/8"	und	560.00	12.25	6,860.00
04.03.02	PERNOS ALTA RESISTENCIA 1"	und	192.00	11.25	2,160.00
04.03.03	PERNOS ALTA RESISTENCIA 7/8"	und	1,024.00	9.75	9,984.00
04.03.04	PERNOS ALTA RESISTENCIA 3/4"	und	688,00	8.25	5,676.00
04.03.05	PERNOS ALTA RESISTENCIA 5/8"	und	1,680.00	8.25	13,860.00
04.04	SISTEMA DE SOLDADURA		.,		8,816.36
04.04.01	SOLDADURA DE FILETE	m	51.80	170.20	8,816.36
04.05	SISTEMA DE UNIONES				2,583.60
04.05.01	CARTELA METELICA DE ACERO A36 DE 1/2"	und	88.00	21.53	1,894.64
04.05.02	ANGULO SIMPLE A36 DE L8x8x5/8"	und	32.00	21.53	688.96
04.06	ARMADO Y LANZAMIENTO DE ESTRUCTURA RETICULADA				59,577.76
04.06.01	ARMADO Y LANZAMIENTO DE ESTRUCTURA	und	1.00	59,577.76	59,577.76
04.07	LOSA			·	68,732.30
04.07.01	ENCOFRADO DE LOSA	m2	128.27	74.40	9,543.29
04.07.02	ACERO FY= 4200 KG/CM2 EN LOSA	kg	9,011.52	4.18	37,668.15
04.07.03	CONCRETO EN LOSA F'C=280 KG/CM2 - FLOCTACHADO	m3	29.92	577.38	17,275.21
04.07.04	CURADO DE CONCRETO	m2	149.60	28.38	4,245.65
04.08	VERDA - SARDINELES				10,906.49
04.08.01	ENCOFRADO Y DESENCOFRADO DE VEREDA - SARDINELES	m2	41.51	78.18	3,245.25
04.08.02	CONCRETO EN VEREDA - SARDINELES F'C=210 KG/CM2	m3	. 4.71	462.89	2,180.21
04.08.03	ACERO FY= 4200 KG/CM2 EN VEREDA - SARDINELES	kg	1,027.48	4.18	4,294.87
04.08.04	TARRAJEO SARDINELES CEMENTO-ARENA = 1:4	m2	30.29	39.16	1,186.16
04.09	SISTEMA DE DRENAJE DE LOSA				371.84
04.09.01	TUBERIA DE DRENAJE PVC SAL Ø 3"	m	39.60	9.39	371.84
04.10	BARANDA METALICA				35,594.27
04.10.01	BARANDA DE L 21/2"x21/2"x5/16"	m	145.04	245.41	35,594.27
04.11	PINTURA		•		18,500.80
04.11.01	PINTADO DE SARDINELES Y LADOS LATERALES	m2	7.85	5.16	40.51
04.11.02	PINTURA EN ESTRUCTURAS METALICAS	m2	1,018.78		18,460.29
05	OBRAS COMPLEMENTARIAS		•	•	42,176.50
05.01	PLACA RECORDATORIA				682.47

Fecha: :4/06/2014 10:46:07p.m.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS

Cliente

Lugar

Página

3

Presupuesto

Presupuesto

049101: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO

DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Subpresupuesto

001 CONSTRUCCION DE PUENTE CARROZABLE EL BOSQUE

MUNICIPALIDAD DISTRITAL DE SANAGORAN

LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

Costo al 24/06/2014

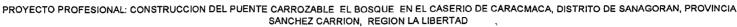
ltem	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
05.01.01	ACERO FY= 4200 KG/CM2	kg	13.16	3.95	51.98
05.01.02	CONCRETO EN PACA RECORDATORIA F'C=210 KG/CM2	m3	0.16	462.89	74.06
05.01.03	ENCOFRADO Y DESENCOFRADO PARA PLACA RECORDATORIA	m2	1.95	124.68	243.13
05.01.04	PLACA RECORDATORIA DE MARMOLINA 0.30X0.50 - TALLADA	und	1.00	284.79	284.79
05.01.05	PINTADO DE PLACA RECORDATORIA	m2	1.35	21.12	28.51
05.02	SEÑALIZACION				603.98
05.02.01	SEÑALES INFORMATIVAS	und -	1.00	603.98	603.98
05.03	HABILITACION DE ACCESOS DEFINITIVOS				38,354.05
05.03.01	TRAZO Y REPLANTEO	KM	0.34	310.25	105.49
05.03.02	CORTE DE MATERIAL SUELTO RENDIMIENTO=570 M3/DIA	m3	4,683.83	4.43	20,749.37
05.03.03	CONFORMACION DE TERRAPLENES CON MATERIAL PROPIO	m3	48.67	4.97	241.89
05.03.04	PERFILADO Y COMPACTADO DE SUB-RASANTE	m2	1,520.00	1.12	1,702.40
05.03.05	ELIMINACION DE MATERIAL EXCEDENTE	m3	525.00	16.82	8,830.50
05.03.06	AFIRMADO	m3	205.20	32.77	6,724.40
05.04	CUNETAS EN CAMINO PEATONAL				2,536.00
05.04.01	CONSTRUCCION DE CUNETAS EN MATERIAL SUELTO	m	200.00	12.68	2,536.00
06	MITIGACION DE IMPACTO AMBIENTAL				10,500.00
06.01	MITIGACION DE IMPACTO AMBIENTAL	GLB	1.00	10,500.00	10,500.00
07	FLETE			•	35,544.73
07.01	FLETE TERRESTRE	GLB	1.00	35,544.73	35,544.73
	COSTO DIRECTO				1,271,585.91
	UTILIDAD (5%)				63,579.30
	GASTOS GENERALES (10%)				127,158.59
	SUB TOTAL		•		1,462,323.80
	IGV (18%)		,		263,218.28
	VALOR REFERENCIAL			## ##	1,725,542.08
	SUPERVISION Y LIQUIDACION				34,510.84
	ESTUDIO DEFINITIVO				34,510.84
	PRESUPUESTO TOTAL			*dr =00 5	1,794,563.76

SON: UN MILLON SETECIENTOS NOVENTICUATRO MIL QUINIENTOS SESENTITRES Y 76/100 NUEVOS SOLES

Fecha: !4/06/2014 10:46:07p.m.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL


PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

DEDUCCIÓN DE GASTOS GENERAL

FACULTAD DE INGENIERIA

DEDUCION DE GASTOS GENERALES

PROYECTO:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

GASTOS GENERALES

COSTO DIRECTO DE LA OBRA

S/. 1,271,585,91

1.- GASTOS GENERALES FIJOS - NO RELACIONADOS CON EL TIEMPO DE EJECUCION DE OBRA

2.01 % C.D

1.1.- EQUIPO Y MOBILIARIO DE CAMPAMENTO

	Unidad	Personas	%Particip.	Tiempo	Sueldo/Jornal	Parcial	TOTAL
Equipo y Mobiliario de oficina y enseres	VEZ		1	1	800.00	800.00	
Otros	VEZ		1	1	200.00	200.00	
							1000,00

1.2.- GASTOS DE LICITACION Y CONTRATACION

	Unidad	Personas	%Particip.	Tiempo	Sueldo/Jornal	Parcial	TOTAL
Gastos de convocatoria de personal Tecnico	EST			1	200.00	200.00	
Gastos de adquisición de bases	EST			1	200.00	200.00	
Visita al lugar de obra(Incl.viaticos)	EST			2	200.00	400.0 0	,
Gatos notariales	EST			1	250.00	250.0 0	
Gastos en la elaboracion de la propuesta	EST			1	400.00	400.0 0	
Gastos de entrega de obra (replanteo, etc.)	EST			1	250.00	250.00	
					· · · · · · · · · · · · · · · · · · ·		1700.00

446

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

1.3.- GASTOS FINANCIEROS Y SEGUROS

	Unidad	Personas	%Particip.	Tiempo	Sueldo/Jornal	Parcial	TOTAL
Carta fianza por adelanto	EST		0.10	5	12,715.86	6,357.93	
Carta fianza por validez de oferta	EST		0.05	5	12,715.86	3,178.96	
Carta fianza por fiel cumplimiento	EST	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.10	5	12,715.86	6,357.93	
Seguros	EST		0.10	5	12,715.86	6,357.93	
							22252.75

1.4.- GASTOS DIVERSOS

	Unidad	Personas	%Particip.	Tiempo	Sueldo/Jornal	Parcial	TOTAL
Movilizacion de personal a obra	EST		1		350.00	350.00	Tar.
Otros	EST		1		200.00	200.00	W 20 MM
					I.		550.00

2.- GASTOS GENERALES VARIABLES · RELACIONADOS CON EL TIEMPO DE EJECUCION DE OBRA

7.99 % C.D

2.1.-PERSONAL TECNICO Y AUXILIAR

	Unidad	Personas	%Particip.	Tiempo	Sueldo/Jornal	Parcial	TOTAL
RESIDENTE DE OBRA	MES	1	1.00	6	3500.00	21000.00	
ASISTENTE DE ING. RESIDENTE	MES	1	1.00	6	2500.00	15000.00	
MAESTRO DE OBRA	MES	1	1.00	5	1500.00	7500.00	
ADMINISTRADOR	MES	1	0.25	5	1800.00	2250.00	
CONTADOR	MES	1	0.25	5	1800.00	2250.00	
TECNICO LABORATISTA	MES	1	1.00	5	1200.00	6000.00	
ALMACENERO	MES	1	1.00	5	800.00	4000.00	
GUARDIAN	MES	1	1.00	5	800.00	4000.00	
							62000.00

Bach. CARRANZA ARAUJO, JORGE LUIS

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.2.- ALIMENTACION DE PERSONAL

	Unidad	Personas	%Particip.	Tiempo	Sueldo/Jornal	Parcial	TOTAL
Personal profesional	MES		1	5	1000.00	5000.00	
Personal tecnico y administrativo	MES		1	5	700.00	3500.00	
Personal auxiliar y obrero capacitado	MES		1	5	600.00	3000.00	
						1	11500.00

2.3.- ALQUILER DE EQUIPOS NO INCLUIDOS EN LOS COSTOS DIRECTOS

	Unidad	Personas	%Particip.	Tiempo	Sueldo/Jornal	Parcial	TOTAL
Alquiler de SSHH portátiles	MES		1	5	250.00	1250.00	
Alquiler de Camioneta	MES		1	5	1400.00	7000.00	
Alquiler de Computadoras	MES		1 ,	5	300.00	1500.00	
Equipo basico para ensayos	GLB		1	5	370.00	1850.00	
-			•				11600.00

2.4.- ENSAYOS DE LABORATORIO

	Unidad	Personas	%Particip.	Tiempo	Sueldo/Jornal	Parcial	TOTAL
Ensayo de compactacion de suelos	UND.	1	1	6	200.00	1200.00	
Ensayo proctor	UND.	1	1	6	250.00	1500.00	
Diseño de mezclas	UND.	1	1	5	200.00	1000.00	
Rotura de probetas	UND.	1	1	10	250.00	2500.00	
En estructuras metalicas	UND.	1	1	10	200.00	2000.00	
Otros	UND.	1	1	5	180.00	900.00	
							9100.00

448

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

2.5.- GASTOS VARIOS

	Unidad	Personas	%Particip.	Tiempo	Sueldo/Jornal	Parcial	TOTAL
Utiles de oficina y dibujo	GLB	1	1	6	80.00	480.00	
Gastos administrativos	MES	1	1	6	180.00	1080.00	
Pago por servicios (agua, luz)	MES	1	1	6	100.00	600.00	
Mantenimiento de campamento	MES	1	1	6	80.00	480.00	
Caja chica oficina central	MES	1	. 1	6	350.00	2100.00	
Otros	GLB	1	1	6	200.00	1200.00	
							5940.00

2.6.- IMPLEMENTOS DE SEGURIDAD

	Unidad	Personas	%Particip.	Tiempo	Sueldo/Jornal	Parcial	TOTAL
Implementos de seguridad	GLB	1	1,	5	200.00	1000.00	
Botiquin	GLB	1	1	1	515.84	515. 84	
							1515.84

RESUMEN	PARCIAL	% INC
GASTOS GENERALES FIJOS	25502.75	2.01%
GASTOS GENERALES VARIABLES	101655.84	7.99%
TOTAL DE GASTOS GENERALES	127,158.59	10.000%

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

PRESUPUESTO ANALÍTICO

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA. DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

MDS

Página:

Hoja resumen

Obra	
Localización	

0491015

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Fecha Al

130906 24/06/2014 LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

Presupuesto base

001

Sto

CONSTRUCCION DE PUENTE CARROZABLE EL BOSQUE

1,271,585.91

(CD)

S/.

1,271,585.91

COSTO DIRECTO UTILIDAD (5%) **GASTOS GENERALES (10%)**

1,271,585.91 63,579.30 127,158.59

SUB TOTAL IGV (18%)

1,462,323.80 263,218.28

VALOR REFERENCIAL

1,725,542.08

SUPERVISION Y LIQUIDACION

34,510.84

ESTUDIO DEFINITIVO

34,510.84 =======

PRESUPUESTO TOTAL

1,794,563,76

Descompuesto del costo directo

*	MANO DE OBRA	S/.	268,199.45
3	MATERIALES	S/.	830,015.32
D	EQUIPOS	S/.	173,371.13
	SUBCONTRATC	S/.	940
Total descompue	sto costo directo	S/.	1,271,585.90

Nota: Los precios de los recursos no incluyen I.G.V. son vigentes a 24/06/2014

Fecha: 25/06/2014 07:02:26a.m.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRÍON, REGION LA LIBERTAD

COSTOS UNITARIOS

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORÁN, PROVINCIA SANCHEZ CÁRRÍON, REGION LA LIBERTAD

S10 MDS Página:

1

Subpresupuest	001		•	ICIA SANCHEZCA PUENTE CARROZ/	,			echa presupuesto	24/06/2014
Partida	01.01			NTIFICACION DE			· 		
Rendimiento	und/DI	MO. 1.0	0000	EQ. 1.0000		Cost	to unitario direc	cto por : unc	974.87
Código	Descripo	ión Recu			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERAF		ie Obra		hh	2.0000	16.0000	12.90	206.40
0147010002	PEON				hh	2.0000	16.0000	11.54	184.64
				-	••••	2.0000	10.0000	.,,,,,	391.04
		Mate	riales				÷		
0202010062			ADERA C/C PI	ROMEDIO "	kg		0.4200	3.81	1.60
0243010003		TORNIL			p2		54.0000	7.00	378.00
0244030028	GIGANT	OGRAFIA	1		m2		10.0000	19.25	192.50
		_	_						572.10
0337010001	HERRAN		I ipos Manuales		%MO		3.0000	391.04	11.73
000,010001	712100	WEI () / (O	W WYON LLO		701110		0.000	501.04	11.73
Partida	01.02	C	AMPAMENTO	PROVISIONAL DE	OBRA				
Rendimiento	m2/DIA	MO. 20	0.0000	EQ. 20.0000		Cos	sto unitario dire	ecto por : m2	69.95
Código	Descripe	ción Recu	ırs de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERAF	RIO	ue Obia		hh	1.0000	0.4000	12.90	5.16
0147010003	OFICIAL				hh	2,0000	0.8000	15.20	12.16
0147010004	PEON				hh	4.0000	1.6000	11.54	18.46
									35.78
			riales						
0202010005			ADERA C/C 3'	•	kg		0.2500	3.81	0.95
0243130092		A DE EUC		•	p2		3.0000	2.50	7.50
0244030021		/ DE 4'x8'	x 4 mm		pln		1.0000	20.33	20.33
0256010099	CALAMII	NA			pln		0.2400	18.00	4.32
		Ear	ipos			•			33.10
0337010001	HERRAN		MANUALES		%MO		3.0000	35.78	1.07
									1.07
Partida	01.03	M	OVILIZACION	Y DESMOVILIZAC	ION DE EQ	JIPO Y MAQI	JINARIA		
Rendimiento	GLB/DI	MO. 1.	.0000	EQ. 1.0000		Cost	o unitario direc	to por : GLE	4,640.00
Código	Descrip	ción Recu			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0348110007	VOLQU	ETE DE 1	ai pos 5 M3		hm	1.0000	8:0000	200.00	1,600.00
0348130006	CAMION	PLATAF	ORMA, 17 TN		hm	2.0000	16.0000	190.00	- 3,040.00
			•		•				4,640.00
Partida	01.04	н	ABILITACION	DE ACCESOS PR	OVISIONALE	S			***************************************
Rendimiento	GLB/DI	MO. 8.	.0000	EQ. 8.0000		Cost	to unitario dire	cto por : GLE	2,000.00
Código	Descrip	ción Reci			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0232000056	ACCES		e riales ISIONALES CO	ON MADERA	GLB	•	1.0000	2,000.00	2,000.00 2,000.0 0

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS Página:

2

Presupuest Subpresupuest	049101	CONSTRUCCION DE SANAGORAN, PROVICONSTRUCCIONDE	NCIA SANCHEZCARF	RION, REG	ION LA LIBEF	RTAD	E CARACMACA, E Fecha presupuesto	24/06/201
Partida	01.05		ON DE CAUCE Y DES					
Rendimiento	m2/DIA	MO. 20.0000	EQ. 20.0000		Cos	to unitario dire	ecto por : m2	19.0
Código	Descrip	ción Recurs Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010004	PEON	Malio de Obia		hh	4.0000	1.6000	11.54	18.40 18.4 0
0337010001	HERRA	Equipos MIENTAS MANUALES		%MO		3.0000	18.46	0.5 0.5
Partida	02.01	TRAZO Y REP	LANTEO PRELIMINAF	RES				
Rendimiento	m2/DIA	MO. 100.0000	EQ. 100.0000		Cos	sto unitario dire	ecto por : m2	93.7
Código	Descrip	ción Recurs Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147000032	TOPOG			hh	1,0000	0.0800	15.20	1.22
0147010004	PEON			hh	2.0000	0.1600	11.54	1.89
0111010004	. 2011	B8 -4: -1		1,11,1	2.0000	0.1000		3.0
0230550056	ESTACI	Materiales ON TOTAL		hm		1,0000	90.00	90.0
0244010039		A DE MADERA				1.0000	0.50	0.50
0254020042		A ESMALTE SINTETIC	^	pza				
0254020042	PINTUR			gln		0.0025	33.89	0.08 90.5 8
0337010001	HERRAI	Equipos MIENTAS MANUALES		%MO		3.0000	3.07	0.09 0.09
Partida	03.01.01	EXCAVACION	MASIVA A MAQUINA	EN TERRE	NO NORMAL	"C"/RETRO		: -
Rendimiento	m3/DIA	MO. 290.0000	EQ. 290.000 0		Cos	sto unitario dire	ecto por : m(9.20
Código	Descrip	ción Recurs Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147000023	OPERA	DOR DE EQUIPO PESA	ADO	hh	0.8000	0.0221	15.20	0.34
0147010003	OFICIAL	•		hh	0.8000	0.0221	15.20	0.34
0147010004	PEON			hh	1.6000	0.0441	11.54	0.5 ⁻
		Equipos				-10		1.19
0337010001	HERRA	MIENTAS MANUALES		%MO		1.0000	1.19	0.0
0349040023		EXCAVADOR S/ORUG	115_165HD 75_1 AV	hm	1,0000	0.0276	290.00	8.00
	·		113-103116 .73-1.41	13111	1,0000	0.0270	290.00	8.0
Partida	03.02.01	I EXCAVACION	MANUAL DE TIERRA	S EN ZAPA	ATAS			
Rendimiento	m3/DIA	MO. 3.0000	EQ. 3.0000		Co	sto unitario dire	ecto por : m:	31.6
Código	Descrip	ción Recurs Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010004	PEON	muno de Obia		hh	1.0000	2.6667	11.54	30.7
								30.7
		Fauince						
0337010001	HERRA	Equipos MIENTAS MANUALES		%MO		3.0000	30.77	0.92 0.9 2

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS Página :

3

Análisis de precios unitarios

Presupuest	049101 CONSTRUCCION DEL PUENTE CARROZ SANAGORAN, PROVINCIA SANCHEZ CAR				CARACMACA, I	DISTRITO DE
Subpresupues	•	•			echa presupuesto	24/06/2014
Partida	03.02.02 EXCAVACION C/I ROCOSO -PARA	ZAPATAS				
Rendimiento	m3/DIA MO. 10.0000 EQ. 10.0000		Cos	to unitario dire	ecto por : m(131.39
Código	Descripción Recurs Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147000023	OPERADOR DE EQUIPO PESADO	hh	0.5000	0.4000	15.20	6.08
0147010002	OPERARIO	hh	1.0000	0.8000	12.90	10.32
0147010003	OFICIAL	hh	1.0000	0.8000	15.20	12.16
0147010004	PEON	hh -	3.0000	2.4000	11.54	27.70
	•					56.26
	Equipos					
0337010001	HERRAMIENTAS MANUALES	%MO		2.0000	56.26	1.13
0349020008	COMPRESORA NEUMATICA 87 HP 250-330 PCM	hm	0.5000	0.4000	85.00	34.00
0349060006	MARTILLO NEUMATICO DE 29 Kg.	hm	1.0000	0.8000	25.00	20.00
0349060012	BARRENOS	hm	1.0000	0.8000	25.00	20.00
						75.13
Partida	03.02.03 RELLENO CON MATERIAL PROPIO	EN ZAPA	TAS			
Rendimiento	m3/DIA MO. 6.0000 . EQ. 6.0000		ecto por : m:	49.08		
Código	Descripción Recurs	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010004	Mano de Obra PEON	hh	1.0000	1.3333	11.54	15.39
0147010004	LON	1111	1.0000	1.0000	11.54	15.39
	Materiales					10.53
0239050000	AGUA	m3		0.0500	1.00	0.05
						0.05
	Equipos					
0337010001	HERRAMIENTAS MANUALES	%MO		2.0000	15.39	0.31
0349030001	COMPACTADOR VIBR. TIPO PLANCHA 4 HP	hm	1.0000	1.3333	25.00	33.33
						33.64
Partida	03.02.04 RELLENO CON MATERIAL PROPIO	SELECCI	ONADO EN A	CCESOS		
Rendimiento	m3/DIA MO. 24.0000 EQ. 24.0000		Cos	sto unitario dir	ecto por : m(24.18
Código	Descripción Recurs	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
	Mano de Obra					
0147010004	PEON	hh	4.0000	1.3333	11.54	15.39
						15.39
0337010001	Equipos HERRAMIENTAS MANUALES	%МО		3,0000	15.39	0.46
			1 0000	0.3333	25.00	8.33
0349030001	COMPACTADOR VIBR, TIPO PLANCHA 4 HP	hm	1.0000	0.3333	25.00	
					•	8.79

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHÉZ CARRIÓN, REGION LA LIBERTAD

S10 MDS Página:

4

Análisis de precios unitarios

Presupuest Subpresupuest	SANAC	GORAN, PROV	L PUENTE CARR INCIA SANCHEZO PUENTE CARRO	ARRION, REG	ION LA LIBEF	RTAD	Fecha presupuesto	24/06/2014 24/06/2014
Partida			DE EXCESO DE T			ARGADOR		
Rendimiento	m3/DIA MO.	500.0000	EQ. 500.0000)	Cos	ito unitario dire	ecto por : m:	15.29
Código	Descripción Re	curs o de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010004	PEON			hh	0.5000	0.0080	11.54	90.0 90.0
0337010001	E HERRAMIENTA	quipos	-	%MO		2.0000	0.09	
0348040037	CAMION VOLQU			hm	4.0000	0.0640	190.00	12.16
0349040031	CARGADOR S/L		195 HP 3 5 VD3	hm	1.0000	0.0160	190.00	3.04
0040040011				*****		0.5100	100.00	15.20
Partida	03.03.01.01	CONCRETO S	IN CONTRACCIO	N (GROUT)				
Rendimiento	m3/DIA MO.	9.0000	EQ. 9.0000		Cos	sto unitario dire	ecto por : m(632.41
Código	Descripción Re	curs o de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERARIO	o de Obia		hh	1.0000	0.8889	12.90	11.47
0147010004	PEON			hh	1.0000	0.8889	11.54	10.26
								21.73
0205000031	Ma - GRAVILLA 1/2"	iteriales - 3/4"		m3		0.5500	170.00	93.50
0205010004	ARENA GRUES			m3		0.5500	175.00	96.25
0221000095	GROUT (25 KG			BOL		12.0000	35.00	420.00
0239050000	AGUA			m3		0.2800	1.00	0.28
02000000	, co, c					0.2000	1.00	610.03
0007040004		quipos		0/140	·	0.0000	04.70	. 0.00
0337010001	HERRAMIENTA	S MANUALES		%MO		3.0000	21.73	0.65 0.6 5
Partida	03.03.02.01	MAMPOSTERI	A DE PIEDRA			· · · · · · · · · · · · · · · · · · ·		
Rendimiento	m2/DIA MO,	9.0000	EQ. 9.0000		Co	sto unitario dir	ecto nor : m'	168,40
				· Mariana				Parcial S
Código	Descripción Re Man	curs o de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010002	OPERARIO			hh	1.0000	0.8889	12.90	11.47
0147010004	PEON			hh	1.0000	0.8889	11.54	10.26
-	a R.	ntorioloc			-			21.73
0205010004	ARENA GRUES	ateriales A		m3		0.2700	175.00	47.25
0205020023	PIEDRA GRANI			m3		0.7000	95.00	66.50
0221000000	CEMENTO POF		(42.5KG)	BOL		1.7320	18.38	31.83
			(.)					145.58
0227040004		quipos		0/ 1/10		5 0000	21.73	1.09
0337010001	HERRAMIENTA	O MANUALES		%MO		5.0000	21.13	
*								1.09

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

\$10 **MDS** Página:

5

Análisis de precios unitarios

Presupuest	049101 CONSTRUCCION DEL PUENTE CAT SANAGORAN, PROVINCIA SANCHE				CARACMACA, E	DISTRITO DE
Subpresupuesi	001 CONSTRUCCIONDE PUENTE CARR				echa presupuesto	24/06/2014
Partida	03.04.01.01 ENCOFRADO Y DESENCOFR	ADD NORMAL D	EZAPATAS	<u> </u>		
Rendimiento	m2/DIA MO. 10.0000 EQ. 10.000	0	Cos	to unitario dire	cto por : m2	60.98
Código	Descripción Recurs Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERARIO	hh	1.0000	0.8000	12.90	10.32
0147010003	OFICIAL	hh	1.0000	0.8000	15.20	12.16
	•					22.48
	Materiales				Y	
0202000008	ALAMBRE NEGRO RECOCIDO # 8	kg	•	0.3000	3.81	1.14
0202010005	CLAVOS PARA MADERA C/C 3"	kg		0.3100	3.81	1.18
0245010001	MADERA TORNILLO INC.CORTE P/ENCOFRA	ADO p2		7.8900	4.50	35.51
						37.83
0337010001	Equipos HERRAMIENTAS MANUALES	%MO		3.0000	22.48	0.67
0337010001	HERRAIVIIEN I AS IVIANUALES	761010		3.0000	22.40	0.67 0.67
_						
Partida	03.04.01.02 CONCRETO F'C=210 KG/CM	2 EN ZAPATAS				,
Rendimiento	m3/DIA MO. 20.0000 EQ. 20.000)0	Cos	sto unitario dire	ecto por : m(462.89
Código	Descripción Recurs Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO	hh	2.0000	0.8000	12.90	10.32
0147010003	OFICIAL	hh	1.0000	0.4000	15.20	6.08
0147010004	PEON	hh	12.0000	4.8000	11.54	55.39
		* .				71.79
	Materiales					
0205000031	GRAVILLA 1/2" - 3/4"	m3		0.5500	170.00	93.50
0205010004	ARENA GRUESA	m3		0.5500	175.00	96.25
0221000000	CEMENTO PORTLAND TIPO I (42.5KG)	BOL		9.7400	18.38	179.02
0239050000	AGUA	m3		0.1840	1.00	0.18
	_	·			•	368.95
0337010001	Equipos HERRAMIENTAS MANUALES	%MO		3.0000	71.79	2.15
0349070004	VIBRADOR DE CONCRETO 4 HP 2.40"	%WO	1.0000	0.4000	20.00	2.13 8.00
0349100011	MEZCLADORA CONCRETO TROMPO 8 HP 9		1.0000	0.4000	30.00	12.00
0049100011	WILZULADURA GUNGRETO TROMPO O HP 8	TFJ IIIII	1.0000	0.4000	30.00	22.15
						44.10

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS Página:

Presupuest	049101								CARACMACA, E	ISTRITO DE
Subpresupuest	001				ANCHEZCAR E CARROZA!		ION LA LIBER QUE		echa presupuesto	24/06/2014
Partida	03.04.01	.03	ACERO FY	= 4200 KG/	CM2 EN ZAP	ATAS				
Rendimiento	kg/DIA	MO.	220.0000	EQ.	220.0000		Cos	sto unitario dire	ecto por : kç	4.18
Código	Descripción Recurs Mano de Obra					Unidad	Cuadrilia	Cantidad	Precio S/.	Parcial S
0147010002	OPERAF	RIO				hh	1.0000	0.0364	12.90	0.47
0147010003	OFICIAL					hh	1.0000	0.0364	15.20	0.55
		24	lateriales							1.02
0202000007	ALAMBR		GRO RECOC	IDO # 16		kg		0.0700	3.81	0.27
0203030088			200 K/CM2			ka		1.0500	2.72	2.86
									-	3.13
0007040004			Equipos			0/110				
0337010001	HERRAN	/IIEN I	AS MANUALI	5		%MO		3.0000	1.02	0.03 0.0 3
			•							
Partida	03.04.02	.01	ENCOFRAI	DO Y DESE	NCOFRADO	CARAVIST	A CON PANE	LES Y BASTII	OORES DE ESTE	
Partida Rendimiento	03.04.02 m2/DIA		ENCOFRAI . 16.0000		NCOFRADO	CARAVIST		LES Y BASTII		RIBO
		MO.	. 16.0000 ecurs			CARAVIST. Unidad				RIBO 119.88
Rendimiento	m2/DIA	MO ción R Mai	16.0000				Cos	to unitario dire	ecto por : mí	119.88 Parcial S
Rendimiento Código	m2/DIA	MO. ción R Mai	. 16.0000 ecurs			Unidad	Cos Cuadrilla	cto unitario dire Cantidad 0.5000	ecto por : m/. Precio S/.	RIBO 119.88 Parcial SA 6.45
Rendimiento Código 0147010002	m2/DIA Descripe OPERAF	MO. ción R Mai	16.0000 ecurs no de Obra			Unidad hh	Cos Cuadrilla 1.0000	cto unitario dire Cantidad 0.5000	ecto por : mí Precio S/. 12.90	119.88 Parcial S/ 6.45 7.60
Rendimiento Código 0147010002 0147010003	m2/DIA Descripe OPERAF OFICIAL	MO. ción R Mai	16.0000 ecurs no de Obra	EQ.		Unidad hh hh	Cos Cuadrilla 1.0000	Cantidad 0.5000 0.5000	Precio S/. 12.90 15.20	119.88 Parcial S 6.45 7.60
Rendimiento Código 0147010002 0147010003 0202000008	m2/DIA Descripe OPERAF OFICIAL ALAMBE	MO. ción R Mai	16.0000 ecurs no de Obra lateriales GRO RECOC	EQ.		Unidad hh hh kh	Cos Cuadrilla 1.0000	Cantidad 0.5000 0.5000 0.3000	Precio S/. 12.90 15.20	119.88 Parcial S/ 6.45 7.60 14.05
Rendimiento Código 0147010002 0147010003 0202000008 0202010005	m2/DIA Descripto OPERAF OFICIAL ALAMBR CLAVOS	MO. ción R Mai RIO N RE NEG	16.0000 ecurs no de Obra dateriales GRO RECOO	EQ.		Unidad hh hh kg kg	Cos Cuadrilla 1.0000	Cantidad 0.5000 0.5000 0.3000 0.3100	Precio S/. 12.90 15.20 3.81 3.81	Parcial S 6.45 7.60 14.09
Rendimiento Código 0147010002 0147010003 0202000008 0202010005 0229010064	m2/DIA Descripto OPERAF OFICIAL ALAMBR CLAVOS CHEMA	MO. ción R Mar RIO N RE NEC S PARA	16.0000 ecurs no de Obra lateriales GRO RECOO A MADERA C	EQ.		Unidad hh hh kg kg gln	Cos Cuadrilla 1.0000	Cantidad 0.5000 0.5000 0.3000 0.3100 0.0330	Precio S/. 12.90 15.20 3.81 3.81 127.12	119.88 Parcial S 6.45 7.60 14.05 1.14 4.18
Rendimiento Código 0147010002 0147010003 0202000008 0202010005 0229010064 0229050082	m2/DIA Descripto OPERAF OFICIAL ALAMBR CLAVOS CHEMA MASILLA	MO. ción R Mai RIO RE NEC S PARA LIQUII A (bols	decurs no de Obra lateriales GRO RECOC A MADERA C DO a de 30 KG)	EQ. SIDO # 8 S/C 3"		Unidad hh hh kg kg gln BOL	Cos Cuadrilla 1.0000	0.5000 0.5000 0.3000 0.3100 0.0330 0.0330	Precio S/. 12.90 15.20 3.81 3.81 127.12 42.37	119.88 Parcial S 6.45 7.60 14.05 1.14 1.18 4.19 1.40
Rendimiento Código 0147010002 0147010003 0202000008 0202010005 0229010064 0229050082 0243010033	m2/DIA Descript OPERAF OFICIAL ALAMBR CLAVOS CHEMA MASILLA MADERA	MO. ción R Mar RIO RE NEC S PARA LIQUII A (bols	dateriales GRO RECOC A MADERA C DO a de 30 KG) NILLO DE 2"	EQ. SIDO # 8 S/C 3" X 3" X 8'	16.0000	Unidad hh hh kg kg gln BOL pza	Cos Cuadrilla 1.0000	0.5000 0.5000 0.3000 0.3100 0.0330 0.0330 1.6800	Precio S/. 12.90 15.20 3.81 3.81 127.12 42.37 28.00	119.88 Parcial S/ 6.45 7.60 14.05 1.14 1.18 4.19 1.40 47.04
Rendimiento Código 0147010002 0147010003 0202000008 0202010005 0229010064 0229050082 0243010033 0245010001	m2/DIA Descript OPERAF OFICIAL ALAMBR CLAVOS CHEMA MASILLA MADERA MADERA	MO. ción R Mai RIO MRE NEC S PARA LIQUII A (bols A TOR	Idecurs Ino de Obra Idateriales GRO RECOC A MADERA C DO a de 30 KG) NILLO DE 2" NILLO INC.C	EQ. SIDO # 8 S/C 3" X 3" X 8'	16.0000	Unidad hh hh kg kg gln BOL pza p2	Cos Cuadrilla 1.0000	0.5000 0.5000 0.3000 0.3100 0.0330 0.0330 1.6800 5.0000	Precio S/. 12.90 15.20 3.81 3.81 127.12 42.37 28.00 4.50	119.88 Parcial S. 6.45 7.60 14.05 1.14 1.18 4.19 1.40 47.04
Rendimiento Código 0147010002 0147010003 0202000008 0202010005 0229010064 0229050082 0243010033	m2/DIA Descript OPERAF OFICIAL ALAMBR CLAVOS CHEMA MASILLA MADERA	MO. ción R Mai RIO MRE NEC S PARA LIQUII A (bols A TOR	Idecurs Ino de Obra Idateriales GRO RECOC A MADERA C DO a de 30 KG) NILLO DE 2" NILLO INC.C	EQ. SIDO # 8 S/C 3" X 3" X 8'	16.0000	Unidad hh hh kg kg gln BOL pza	Cos Cuadrilla 1.0000	0.5000 0.5000 0.3000 0.3100 0.0330 0.0330 1.6800	Precio S/. 12.90 15.20 3.81 3.81 127.12 42.37 28.00	Parcial S/ 6.45 7.60 14.05 1.14 1.18 4.19 1.40 47.04 22.50 27.96
Rendimiento Código 0147010002 0147010003 0202000008 0202010005 0229010064 0229050082 0243010033 0245010001 0245010002	M2/DIA Descript OPERAF OFICIAL ALAMBR CLAVOS CHEMA MASILLA MADERA TRIPLAY	MO. ción R Mai RIO NRE NEC S PARA LIQUII A (bols A TOR A TOR (DE 1	lateriales GRO RECOC A MADERA C DO a de 30 KG) NILLO DE 2" NILLO INC.C 9 MM.	EQ. # 8 # 2 3" X 8" # CORTE P/EI	16.0000	Unidad hh hh kg kg gln BOL pza p2 pln	Cos Cuadrilla 1.0000	0.5000 0.5000 0.5000 0.3000 0.3100 0.0330 0.0330 1.6800 5.0000 0.3300	Precio S/. 12.90 15.20 3.81 3.81 127.12 42.37 28.00 4.50 84.74	119.88 Parcial S/ 6.45 7.60 14.05 1.14 1.18 4.19 1.40 47.04 22.50 27.96 105.41
Rendimiento Código 0147010002 0147010003 0202000008 0202010005 0229010064 0229050082 0243010033 0245010001	M2/DIA Descript OPERAF OFICIAL ALAMBR CLAVOS CHEMA MASILLA MADERA TRIPLAY	MO. ción R Mai RIO NRE NEG S PARA LIQUII A (bols A TOR A TOR (DE 1	lateriales GRO RECOO A MADERA C DO a de 30 KG) NILLO DE 2" NILLO INC.C 9 MM.	EQ. # 8 # 2 3" X 8" # CORTE P/EI	16.0000	Unidad hh hh kg kg gln BOL pza p2	Cos Cuadrilla 1.0000	0.5000 0.5000 0.3000 0.3100 0.0330 0.0330 1.6800 5.0000	Precio S/. 12.90 15.20 3.81 3.81 127.12 42.37 28.00 4.50	Parcial S/ 6.45 7.60 14.05 1.14 1.18 4.19 1.40 47.04 22.50 27.96

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRIÓN, REGION LA LIBERTAD

S10 MDS Página:

7

Análisis de precios unitarios

Presupuest	049101 CONSTRUCCION DEL PUENTE CARRO SANAGORAN, PROVINCIA SANCHEZCA				CARACMACA, D	ISTRITO DE
Subpresupuest	001 CONSTRUCCIONDE PUENTE CARROZA				echa presupuesto	24/06/2014
Partida	03.04.02.02 CONCRETO F'C=210 KG/CM2 EM	I ESTRIBO				
Rendimiento	m3/DJA MO. 20.0000 EQ. 20.0000	•	Cos	sto unitario dire	cto por : m(462.89
Código	Descripción Recurs Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERARIO	hh	2.0000	0.8000	12.90	10.32
0147010003	OFICIAL	hh	1.0000	0.4000	15.20	6.08
0147010004	PEON	ħħ	12.0000	4.8000	11.54	55.39
		ž				71.79
0205000031	Materiales GRAVILLA 1/2" - 3/4"	m3	* 1	0.5500	170.00	93.50
0205010001	ARENA GRUESA	m3		0.5500	175.00	96.25
0221000000	CEMENTO PORTLAND TIPO I (42.5KG)	BOL		9.7400	18.38	179.02
0239050000	AGUA	m3		0.1840	1.00	0.18
	,	,,,,		0.1010	, 1.50	368.95
0227040004	Equipos	0/140		0.0000	74 70	0.45
0337010001	HERRAMIENTAS MANUALES	%MO	4 0000	3.0000	71.79	2.15
0349070004	VIBRADOR DE CONCRETO 4 HP 2.40"	hm	1.0000	0.4000	20.00	8.00
0349100011	MEZCLADORA CONCRETO TROMPO 8 HP 9 P3	hm	1.0000	0.4000	30.00	12.00 22.1 5
Partida	03.04.02.03 ACERO FY= 4200 KG/CM2 EN ES	TDIDO				
	03.04.02.03 ACENO F1 - 4200 NG/CM/2 EN ES	INIBO		(A)		
Rendimiento	kg/DIA MO. 220.0000 EQ. 220.0000		Co	sto unitario dir	ecto por : kç	4.18
Código	Descripción Recurs Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERARIO	hh	1.0000	0.0364	12.90	0.47
0147010003	OFICIAL	hh	1.0000	0.0364	15.20	0.55
		190				1.02
0202000007	Materiales ALAMBRE NEGRO RECOCIDO # 16	kg		0.0700	3.81	0.27
0203030088	FIERRO FY=4200 K/CM2	kg		1.0500	2.72	2.86
months and state of the		٠٠٠		,,,,,,,,		3.13
0227040004	Equipos	0/140		2 2000	4.00	0.00
0337010001	HERRAMIENTAS MANUALES	%MO		3.0000	1.02	0.03
						0.03

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS Página :

: ;

Análisis de precios unitarios

	SANAGORAN, PROVINCIA SANCHEZCAI					
Subpresupuesi					echa presupuesto	24/06/2014
Partida	03.04.03.01 ENCOFRADO Y DESENCOFRADO	CARAVISTA	A CON PANE	LES Y BASTII	DORES DE ALE	ras
Rendimiento	m2/DIA MO. 25.0000 EQ. 25.0000		Cos	to unitario dire	ecto por : mí	123.94
Código	Descripción Recurs	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	Mano de Obra OPERARIO	hh	2.0000	0.6400	12.90	8.26
0147010002	OFICIAL	hh	2.0000	0.6400	15.20	9.73
0147010003	OFICIAL	1111	2.0000	0.0400	13.20	17.99
	Materiales					17.55
0202000008	ALAMBRE NEGRO RECOCIDO # 8	kg		0.3000	3.81	1.14
0202010005	CLAVOS PARA MADERA C/C 3"	kg		0.3100	3.81	1.18
0229010064	CHEMA LIQUIDO	gln		0.0330	127.12	4.19
0229050082	MASILLA (bolsa de 30 KG)	BOL.	•	0.0330	42.37	1.40
0243010033	MADERA TORNILLO DE 2" X 3" X 8'	pza		1.6800	28.00	47.04
0245010033	MADERA TORNILLO INC.CORTE P/ENCOFRADO	p2a p2		5.0000	4.50	22.50
		•	•	0.3300	84.74	27.96
0245010002	TRIPLAY DE 19 MM.	pln		0.3300	04./4	
	Environ					105.41
0337010001	Equipos HERRAMIENTAS MANUALES	%MO		3.0000	17.99	0.54
0337010001	TENNAMIENTAS MANOALES	761410		3.0000	17.99	0.54
	· · · · · · · · · · · · · · · · · · ·					0.54
Partida	03.04.03.02 CONCRETO F'C=210 KG/CM2 EN	AI FTAS				
	•	7.22.77.0				
Rendimiento	m3/DIA MO 20.0000 EQ 20.0000		Cos	sto unitario dire	ecto por : m(462.89
Rendimiento Código	Descripción Recurs	Unidad		sto unitario dire	ecto por : m(462.89 Parcial S/
Código	Descripción Recurs Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
Código 0147010002	Descripción Recurs Mano de Obra OPERARIO	Unidad hh	Cuadrilla 2.0000	Cantidad 0.8000	Precio S/.	Parcial S/
Código 0147010002 0147010003	Descripción Recurs Mano de Obra OPERARIO OFICIAL	Unidad hh hh	Cuadrilla 2.0000 1.0000	Cantidad 0.8000 0.4000	Precio S/. 12.90 15.20	Parcial S/ 10.32 6.08
Código 0147010002	Descripción Recurs Mano de Obra OPERARIO	Unidad hh	Cuadrilla 2.0000	Cantidad 0.8000	Precio S/.	Parcial S/ 10.32 6.08 55.39
Código 0147010002 0147010003	Descripción Recurs Mano de Obra OPERARIO OFICIAL PEON	Unidad hh hh	Cuadrilla 2.0000 1.0000	Cantidad 0.8000 0.4000	Precio S/. 12.90 15.20	Parcial S/ 10.32 6.08
Código 0147010002 0147010003 0147010004	Descripción Recurs Mano de Obra OPERARIO OFICIAL PEON Materiales	Unidad hh hh hh	Cuadrilla 2.0000 1.0000	O.8000 0.4000 4.8000	Precio S/. 12.90 15.20 11.54	Parcial S/ 10.32 6.08 55.39 71.79
Código 0147010002 0147010003 0147010004	Descripción Recurs Mano de Obra OPERARIO OFICIAL PEON Materiales GRAVILLA 1/2" - 3/4"	Unidad hh hh hh m3	Cuadrilla 2.0000 1.0000	Cantidad 0.8000 0.4000 4.8000	Precio S/. 12.90 15.20 11.54	Parcial S/ 10.32 6.08 55.39 71.79
Código 0147010002 0147010003 0147010004 0205000031 0205010004	Descripción Recurs Mano de Obra OPERARIO OFICIAL PEON Materiales GRAVILLA 1/2" - 3/4" ARENA GRUESA	Unidad hh hh hh m3 m3	Cuadrilla 2.0000 1.0000	Cantidad 0.8000 0.4000 4.8000 0.5500 0.5500	Precio S/. 12.90 15.20 11.54 170.00 175.00	Parcial S/ 10.32 6.08 55.39 71.79
Código 0147010002 0147010003 0147010004	Descripción Recurs Mano de Obra OPERARIO OFICIAL PEON Materiales GRAVILLA 1/2" - 3/4" ARENA GRUESA CEMENTO PORTLAND TIPO I (42.5KG)	Unidad hh hh hh m3 m3 BOL	Cuadrilla 2.0000 1.0000	Cantidad 0.8000 0.4000 4.8000	Precio S/. 12.90 15.20 11.54	Parcial S/ 10.32 6.08 55.39 71.79 93.50 96.25
Código 0147010002 0147010003 0147010004 0205000031 0205010004 0221000000	Descripción Recurs Mano de Obra OPERARIO OFICIAL PEON Materiales GRAVILLA 1/2" - 3/4" ARENA GRUESA	Unidad hh hh hh m3 m3	Cuadrilla 2.0000 1.0000	0.8000 0.4000 4.8000 0.5500 0.5500 9.7400	Precio S/. 12.90 15.20 11.54 170.00 175.00 18.38	Parcial S/ 10.32 6.08 55.39 71.79 93.50 96.25
Código 0147010002 0147010003 0147010004 0205000031 0205010004 0221000000	Descripción Recurs Mano de Obra OPERARIO OFICIAL PEON Materiales GRAVILLA 1/2" - 3/4" ARENA GRUESA CEMENTO PORTLAND TIPO I (42.5KG)	Unidad hh hh hh m3 m3 BOL	Cuadrilla 2.0000 1.0000	0.8000 0.4000 4.8000 0.5500 0.5500 9.7400	Precio S/. 12.90 15.20 11.54 170.00 175.00 18.38	Parcial S/ 10.32 6.08 55.39 71.79 93.50 96.25 179.02 0.18
Código 0147010002 0147010003 0147010004 0205000031 0205010004 0221000000	Descripción Recurs Mano de Obra OPERARIO OFICIAL PEON Materiales GRAVILLA 1/2" - 3/4" ARENA GRUESA CEMENTO PORTLAND TIPO I (42.5KG) AGUA	Unidad hh hh hh m3 m3 BOL	Cuadrilla 2.0000 1.0000	0.8000 0.4000 4.8000 0.5500 0.5500 9.7400	Precio S/. 12.90 15.20 11.54 170.00 175.00 18.38	Parcial S/ 10.32 6.08 55.39 71.79 93.50 96.25 179.02 0.18
Código 0147010002 0147010003 0147010004 0205000031 0205010004 0221000000 0239050000	Descripción Recurs Mano de Obra OPERARIO OFICIAL PEON Materiales GRAVILLA 1/2" - 3/4" ARENA GRUESA CEMENTO PORTLAND TIPO I (42.5KG) AGUA Equipos	Unidad hh hh m3 m3 BOL m3	Cuadrilla 2.0000 1.0000	0.8000 0.4000 4.8000 0.5500 0.5500 9.7400 0.1840	12.90 15.20 11.54 170.00 175.00 18.38 1.00	Parcial S/ 10.32 6.08 55.39 71.79 93.50 96.25 179.02 0.18 368.95
Código 0147010002 0147010003 0147010004 0205000031 0205010004 0221000000 0239050000	Descripción Recurs Mano de Obra OPERARIO OFICIAL PEON Materiales GRAVILLA 1/2" - 3/4" ARENA GRUESA CEMENTO PORTLAND TIPO I (42.5KG) AGUA Equipos HERRAMIENTAS MANUALES	Unidad hh hh hh m3 m3 BOL m3	Cuadrilla 2.0000 1.0000 12.0000	0.8000 0.4000 4.8000 0.5500 0.5500 9.7400 0.1840	12.90 15.20 11.54 170.00 175.00 18.38 1.00	Parcial S/ 10.32 6.08 55.39 71.79 93.50 96.25 179.02 0.18 368.98

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS Página:

:

Análisis de precios unitarios

Presupuest Subpresupuest	049101	SANA	GORAN, PROVI	INCIA S	ANCHEZCAR	RION, REG	ION LA LÍBEF	CATS	CARACMACA, E Fecha presupuesto	24/06/2014
Partida	03.04.03		ACERO FY= 42							
Rendimiento	kg/DIA	MO.	220.0000	EQ.	220.0000		°Co	sto unitario dire	ecto por : kç	4.18
Código	Descrip		ecurs no de Obra			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010002	OPERAF		io de Obia			hh .	1.0000	0.0364	12.90	0.47
0147010003	OFICIAL			•		hh	1.0000	0.0364	15.20	0.5
					,				77.23	1.0
			ateriales							
0202000007			RO RECOCIDO) # 16		kg		0.0700	3.81	0.2
0203030088	FIERRO	FY=42	200 K/CM2			kg		1.0500	2.72	2.80
		_								3.13
0337010001	HERRA		Equipos AS MANUALES			%MO		3.0000	1.02	0.0
0337010001	11111111111111	VII _ V /	NANOALLO			, JOIVIO		3.0000	1.02	0.03
Partida	03.05.01	- 	TUBERIA DE I	DRENA.	JE PVC SAL 9	Ø 3"				
Rendimiento	m/DIA	MO.	20.0000	EQ.	20.0000		Co	osto unitario di	recto por : n	9.3
Código	Descrip					Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
04.170.10000			no de Obra							-
0147010002	OPERA	₹IO				hh	1.0000	0.4000	12.90	5.10
0147010004	PEON			-		hh	0.5000	0.2000	11.54	2.3 7.4
-		M	ateriales							7.4
0273010007	TUBO P		L 2" X 3M			pza		0.3400	5.00	1.70
										1.7
0337010001	HEDDA		Equipos			%MO		2.0000	7 47	0.00
0551010001	HERRAI	VIIE(VI)	AS MANUALES			70IVIO		3.0000	7.47	0.23 0.2 3
Partida	03.06.01		APOYO MOVIL	-		**************************************				·····
Rendimiento	und/DI	MO.	5.0000	EQ.	5.0000		Cos	to unitario dire	cto por : unc	589.1
Código	Descrip		ecurs 10 de Obra			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010002	OPERA		10 40 05/4			hh	1.0000	1.6000	12.90	20.6
0147010004	PEON					hh	2.0000	3.2000	11.54	36.9
										57.5
0000050050	DEDNO		lateriales	2004"	0.60			4.0000	25.00	400.0
0202050052			ICLAJE C/TUEF			pza		4.0000	25.00	100.0
0229120065			EFORZADO CO \S E=1" (24"X1;		1/0	und		1.0000	225.00	225.0
0229500091	SOLDA		(- /		kg		1.2500	11.86	14.8
0256020101	PLANCE	HA ACE	RO 1"x 0.60m x	0.52m		pln		2.0000	75.00	150.0
						•				489.8
0337010001	MEDOV		<mark>Equipos</mark> AS MANUALES			%MO		2 0000	57.57	1.7
0348210064			AS MANUALES DADORA				1 0000	3.0000 1.6000	25.00	40.0
V3402 10004	MMMOII	WY OUL	DADOKA			hm	1.0000	1.0000	25,00	
										41.7

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

s10 MDS Página:

10

Subprocupusei						ARRION, REGI		RTAD	Eache programments	2410612047
Subpresupuesi Partida	03.06.02	CON	APOYO FIJ		ECARROZ	ABLEEL BOS	QUE		Fecha presupuesto	24/06/2014
Rendimiento	und/Dl	MO.	5.0000	EQ.	5.0000		Cost	to unitario dire	ecto por : unc	296.31
Código	Descripc	ión R	ecurs			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
_	•		no de Obra		ė					
0147010002	OPERAR	10				hh	1.0000	1.6000	12.90	20.64
0147010003	OFICIAL					hh	1.0000	1.6000	15.20	24.32
		2.5	-4							44.96
0202050052	PERNO F		ateriales CLAJE C/TU	IERCA 1"v(1 60 m	pza		4.0000	25.00	100.00
0256020101			RO 1"x 0.60		J.00 III.	pln		2.0000	75.00	150.00
		.,,				P	•		70.00	250.00
٠			quipos							
0337010001	HERRAM	IENT	AS MANUALI	ES .	4	%MO		3.0000	44.96	1.35
										1.35
Partida	03.07.01		JUNTAS DI	E DILATAC	ION DE AC	ERO				
Rendimiento	m/DIA	MO.	40.0000	EQ.	40.0000		Co	osto unitario d	irecto por ; n	132.93
Código	Descripc		ecurs 10 de Obra			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERAR		io de Obra			ħh	1.0000	0.2000	12.90	2.58
0147010003	OFICIAL					hh	1.0000	0.2000	15.20	3.04
0147010004	PEON					hh	1.0000	0.2000	11.54	2,31
				*						7.93
0251200034	JUNTA D ANCLAJE	E DIL	l <mark>ateriales</mark> ATACION 2' 3/8" @.25	" X 4" X 1	/2" CON	m		1.0000	125.00	125.00
										125.00
Partida	04.01.01		VIGA META	ALICA PERI	FIL W14X7	4 - A36 (L=20'))			
Rendimiento	und/DI	MO.	2.0000	EQ.	2.0000		Cos	to unitario dire	ecto por : unc	1,775.00
Código	Descripc					Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0251060105	VIGA DE		lateriales RO W 14x74	(L=20')		pza		1.0000	1,775.00	1,775.00 1,775.0 0
Partida	04.01.02		VIGA META	LICA PERI	FIL W14X6	8 - A36 (L=20')) .			
Rendimiento	und/Di	MO.	2.0000	EQ.	2.0000		Cos	to unitario dire	ecto por ; una	1,630.00
Código	Descripo				··········	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0251060107	VIGA DE		lateriales RO W 14x68	(L=20')		pza		1.0000	1,630.00	1,630.00 1,630.0 0

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRÍON, REGION LA LIBERTAD

S10 MDS Página:

11

Presupuest	SA	NAGORAN, PRO	DEL PUENTE CARROZ DVINCIA SANCHEZCAF	RRION, REG	ION LA LÍBEF	RTAD	•	
Subpresupuest Partida	04.01.03		DE PUENTE CARROZA LICA PERFIL W14X22 -				echa presupuesto	24/06/201
Rendimiento	und/DI M	10. 2.0000	EQ. 2.0000		Cost	o unitario direc	eto por : unc	530.00
Código	Descripción				Cuadrilla	Cantidad	Precio S/.	Parcial S/
-		Materiales		Unidad	Cuaurine			-
0251060109	VIGA DE AC	ERO W 14x22 (L	.=20')	pza		1.0000	530.00	530.00 530.0 0
Partida	04.01.04	VIGA METAI	ICA PERFIL W14X145	- A36 (L=20)')			
Rendimiento	und/DI M	10. 2.0000	EQ. 2.0000		Cost	to unitario dire	cto por : unc	2,880.00
Código	Descripción			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0251060108	VIGA DE AC	Materiales ERO W 14x145	(L=20')	pza		1.0000	2,880.00	2,880.00 2,880.0 0
Partida	04.02.01	VIGA METAI	LICA PERFIL W21X73	- A36 (L=20')			
Rendimiento	und/DI M	10. 2.0000	EQ. 2.0000		Cos	to unitario dire	cto por : unc	1,760.00
Código	Descripción			Unidad	Cuadrille	Cantidad	Precio S/.	Parcial S
0251060110	VIGA DE AC	Materiales ERO W 21x73 (I	.=20')	pza		1.0000	1,760.00	1,760.00 1,760.0 0
Partida	04.02.02	VIGA META	LICA PERFIL W27X114	- A36 (L=20)')			
Rendimiento	und/Di M	10. 2.0000	EQ 2.0000		Cos	to unitario dire	cto por : unc	2,800.00
Código	Descripción			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0251060111	VIGA DE AC	Materiales ERO W 27x114	(L=20")	pza	÷	1.0000	2,800.00	2,800.00 2,800.0 0
Partida	04.02.03	ATIEZADOR	ES WT4X24- A36 (L=2	(0')				
Rendimiento	und/DI M	10. 2.0000	EQ. 2.0000		Cos	to unitario dire	cto por : unc	325.00
Código	Descripción			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0251060112	PERFIL DE	Materiales ACERO WT4X24	4- A36 (L=20')	pza		1.0000	325.00	325.00 325.0 0
Partida	04.03.01	PERNOS AL	TA RESISTENCIA 13/	3"				
Rendimiento	und/DI N	/O. 50.0000	EQ. 50.0000		Cos	to unitario dire	cto por : unc	12.2
Código	Descripción			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0202460099	PERNO C/T	Materiales UERCA-ARAND	ELA 13/8"X1 1/2"	und		1.0000	12.25	12.25 12.2 5

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS Página :

12

Presupuest	049101		AGORAN, PRO						CARACMACA, D	NO I KITO DE
Subpresupuest			STRUCCIONE			LEEL BOS	QUE		echa presupuesto	24/06/201
Partida	04.03.02		PERNOS AL	TA RESIST	ENCIA 17					,
Rendimiento	und/DI	MO.	50.0000	EQ.	50.0000		Cost	o unitario dire	cto por : unc	11.25
Código	Descripe		ecurs lateriales			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0202460096	PERNO		RCA-ARANDI	ELA 1"X1 1	/2"	und		1.0000	11.25	11.25 11.2 5
Partida	04.03.03	}	PERNOS AL	TA RESIS	TENCIA 7/8"					
Rendimiento	und/DI	МО	50.0000	EQ.	50.0000		Cos	to unitario dire	cto por : unc	9.75
Código	Descrip					Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0202460097	PERNO		lateriales ERCA-ARANDI	ELA 7/8"X1	1/2"	und		1.0000	9.75	9.75 9.7 5
Partida	04.03.04	ļ	PERNOS AL	TA RESIS	TENCIA 3/4"					
Rendimiento	und/Dl	МО	. 50.0000	EQ.	50.0000		Cos	to unitario dire	cto por : unc	8.25
Código	Descrip		lecurs Nateriales			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0202460100	PERNO		ERCA-ARAND	ELA 5/8"X1	1/2"	und		1.0000	8.25	8.25 8.2 5
Partida	04.03.05	5	PERNOS AL	TA RESIS	TENCIA 5/8"					
Rendimiento	und/DI	МО	. 50.0000	EQ.	50.0000		Cos	to unitario dire	ecto por : unc	8.25
Código	Descrip					Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0202460100	PERNO		Materiales ERCA-ARAND	ELA 5/8"X [,]	1/2"	und		1.0000	8.25	8.25 8.25
Partida	04.04.01	ı	SOLDADUR	A DE FILE	TE					
Rendimiento	m/DIA	МО	6.0000	EQ.	6.0000		C	osto unitario d	irecto por : n	170.20
Código	Descrip		Recurs no de Obra			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147000022 0147010004	OPERAI PEON		DE EQUIPO LIV	/IANO		hh hh	1.0000 4.0000	1.3333 5.3333	15.20 11.54	20.27 61.55 81.8 2
0229500091	SOLDA		Materiales	-		kg		0.5000	11.86	5.93 5.9 3
0337010001	HERRAI		Equipos AS MANUALE	:s		%MO		3.0000	81.82	2.45
0348210064			LDADORA	.~		hm	1.0000	1.3333	25.00	33.3
0348210066			DE ELECTRI	CIDAD		hm	1.0000	1.3333	35.00	46.67 82.4 5

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

s10 MDS Página:

13

Análisis de precios unitarios

Partida 04.05.01 CARTELA METELICA DE Rendimiento und/DI MO. 50.0000 EQ. 5 Código Descripción Recurs Mano de Obra Mano de Obra 0147010002 OPERARIO OPERARIO OPERARIO OPEON 0265910004 CARTELA METALICA DE 1/2" A-36 Equipos AMANUALES OBERADOR DE ELECTRICIDAD OBERADOR DE ELECTRICIDAD OBERADOR DE ELECTRICO 0348210066 GENERADOR DE ELECTRICIDAD OBERADOR DE ELECTRICIDAD TALADRO ELECTRICO Partida 04.06.01 ARMADO Y LANZAMIEN		BOSQUE		Fecha presupuesto	24/06/2014
Código Descripción Recurs Mano de Obra 0147010002 OPERARIO PEON Materiales 0265910004 CARTELA METALICA DE 1/2" A-36 Equipos 0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD 0349900013 TALADRO ELECTRICO Partida 04.05.02 ANGULO SIMPLE A36 D Rendimiento und/DI MO. 50.0000 EQ. 5 Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010004 PEON Materiales 0265910004 CARTELA METALICA DE 1/2" A-36 Equipos 0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD 0349900013 TALADRO ELECTRICO Partida 04.06.01 ARMADO Y LANZAMIEN Rendimiento und/DI MO. 0.0200 EQ. 0 Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL <th></th> <th></th> <th></th> <th></th> <th></th>					
Mano de Obra	50.0000	C	osto unitario dir	ecto por : unc	21.53
0147010002 OPERARIO PEON Materiales 0265910004 CARTELA METALICA DE 1/2" A-36 Equipos 0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD 0349900013 TALADRO ELECTRICO Partida 04.05.02 ANGULO SIMPLE A36 D Rendimiento und/DI MO. 50.0000 EQ. 5 Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010004 PEON Materiales 0265910004 CARTELA METALICA DE 1/2" A-36 Equipos 0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD 0349900013 TALADRO ELECTRICO Partida 04.06.01 ARMADO Y LANZAMIEN Rendimiento und/DI MO. 0.0200 EQ. 0 Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL	Unio	lad Cuadrilla	Cantidad	Precio S/.	Parcial S/
Materiales	hh	1.0000	0.1600	12.90	2.06
Equipos 0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD 0349900013 TALADRO ELECTRICO Partida 04.05.02 ANGULO SIMPLE A36 D Rendimiento und/DI MO. 50.0000 EQ. 5 Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010004 PEON Materiales 0265910004 CARTELA METALICA DE 1/2" A-36 Equipos 0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD 0349900013 TALADRO ELECTRICO Partida 04.06.01 ARMADO Y LANZAMIEN Rendimiento und/DI MO. 0.0200 EQ. 0 Código Descripción Recurs Mano de Obra Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL	hh	1.0000	0.1600	11.54	1.85 3.91
Equipos 0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD TALADRO ELECTRICO	und		1.0000	16.00	16.00
0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD 0349900013 TALADRO ELECTRICO Partida 04.05.02 ANGULO SIMPLE A36 D Rendimiento und/DI MO. 50.0000 EQ. 5 Código Descripción Recurs Mano de Obra OPERARIO 0147010004 PEON Materiales 0265910004 CARTELA METALICA DE 1/2" A-36 Equipos 0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD 0349900013 TALADRO ELECTRICO Partida 04.06.01 ARMADO Y LANZAMIEN Rendimiento und/DI MO. 0.0200 EQ. 0 Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL	una			10.00	16.00
Partida 04.05.02 ANGULO SIMPLE A36 D Rendimiento und/DI MO. 50.0000 EQ. 5 Código Descripción Recurs	%M	0	3.0000	3.91	0.12
Partida 04.05.02 ANGULO SIMPLE A36 D Rendimiento und/DI MO. 50.0000 EQ. 5 Código Descripción Recurs	hm	0.2000	0.0320	35.00	1.12
Rendimiento und/DI MO. 50.0000 EQ. 5	· hm	0.2000	0.0320	12.00	0.38 1.62
Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010004 PEON Materiales 0265910004 CARTELA METALICA DE 1/2" A-36 Equipos 0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD 0349900013 TALADRO ELECTRICO Partida 04.06.01 ARMADO Y LANZAMIEN Rendimiento und/DI MO. 0.0200 EQ. 0 Código Descripción Recurs Mano de Obra Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL	DE L8x8x5/8"				
Mano de Obra	50,0000	C	osto unitario di	ecto por : unc	21.53
0147010002 OPERARIO 0147010004 PEON Materiales 0265910004 CARTELA METALICA DE 1/2" A-36 Equipos 0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD 0349900013 TALADRO ELECTRICO Partida 04.06.01 ARMADO Y LANZAMIEN Rendimiento und/DI MO. 0.0200 EQ. 0 Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL	Unio	dad Cuadrilla	Cantidad	Precio S/.	Parcial S/
Materiales 0265910004 CARTELA METALICA DE 1/2" A-36 Equipos 0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD 0349900013 TALADRO ELECTRICO Partida 04.06.01 ARMADO Y LANZAMIEN Rendimiento und/DI MO. 0.0200 EQ. 0 Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL	hh	1.0000	0.1600	12.90	2.06
Materiales	hh	1.0000			1.85
Equipos 0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD 0349900013 TALADRO ELECTRICO Partida 04.06.01 ARMADO Y LANZAMIEN Rendimiento und/DI MO. 0.0200 EQ. 0 Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL	••••		5655		3.91
0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD 0349900013 TALADRO ELECTRICO Partida 04.06.01 ARMADO Y LANZAMIEN Rendimiento und/DI MO. 0.0200 EQ. 0 Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL	und		1.0000	16.00	16.00
0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD 0349900013 TALADRO ELECTRICO Partida 04.06.01 ARMADO Y LANZAMIEN Rendimiento und/DI MO. 0.0200 EQ. 0 Código Descripción Recurs 0147010002 OPERARIO 0147010003 OFICIAL					16.00
Partida 04.06.01 ARMADO Y LANZAMIEN Rendimiento und/Dl MO 0.0200 EQ. 0 Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL	%M	0	3.0000	3.91	0.12
Partida 04.06.01 ARMADO Y LANZAMIEN Rendimiento und/DI MO 0.0200 EQ 0 Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL	hm	0.2000	0.0320		1.12
Rendimiento und/DI MO 0.0200 EQ 0 Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL	hm	0.2000	0.0320	12.00	0.38
Rendimiento und/DI MO 0.0200 EQ 0 Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL					1.62
Código Descripción Recurs Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL	NTO DE ESTRUCT	URA			
Mano de Obra 0147010002 OPERARIO 0147010003 OFICIAL	0.0200	C	osto unitario di	recto por : unc	59,577.76
0147010002 OPERARIO 0147010003 OFICIAL	Uni	dad Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010003 OFICIAL	hh	4.0000	1,600.0000	12.90	20,640.00
0147010004 PEON	hh	4.0000			24,320.00
	hh	2.0000	-		9,232.00 54,192.0 0
Equipos	0/14		2 2000	E4 400 00	•
0337010001 HERRAMIENTAS MANUALES 0348210066 GENERADOR DE ELECTRICIDAD	%M		3.0000 80.0000	·	1,625.76
	hm	0.2000			2,800.00 960.00
0349900013 TALADRO ELECTRICO	hm	0.2000	80.0000	12.00	5,385.76

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

s10 MDS Página :

14

Análisis de precios unitarios

	SANAGORAN, PROVINCIA SANCHEZCAI	KKIUN, KEG	IUN LA LIBER	KIAD		
Subpresupuest	001 CONSTRUCCIONDE PUENTE CARROZA	BLEEL BOS	SQUE	F	echa presupuesto	24/06/2014
Partida	04.07.01 ENCOFRADO DE LOSA					
Rendimiento	m2/DIA MO. 8.0000 EQ. 8.0000		Cos	sto unitario dire	eto por : m2	74.40
Código	Descripción Recurs Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO	hh	1.0000	1.0000	12.90	12.90
0147010004	PEON	hh	2.0000	2.0000	11.54	23.08
÷	Materiales					35.98
0202000008	ALAMBRE NEGRO RECOCIDO # 8	kg		0.1000	3.81	0.38
0202020004	CLAVOS Fo No C/C 3"	kg		0.1400	3.91	0.55
0243580014	PARANTE DE MADERA DE EUCALIPTO DE 2.5"X L=2.5	und		3.0000	3.00	9.00
0245010001	MADERA TORNILLO INC.CORTE P/ENCOFRADO	p2		5.9300	4.50	26.69
•	Equipos	٠				36.62
0337010001	HERRAMIENTAS MANUALES	%MO		5.0000	35.98	1.80
						1.80
Partida	04.07.02 ACERO FY= 4200 KG/CM2 EN LO	SA				
Rendimiento	kg/DIA MO. 220.0000 EQ. 220.0000		Co	sto unitario dir	ecto por : kç	4.18
Código	Descripción Recurs	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	Mano de Obra OPERARIO	hh	1.0000	0.0364	12.90	0.47
0147010003	OFICIAL	hh	1.0000	0.0364	15.20	0.55
						1.02
0202000007	Materiales ALAMBRE NEGRO RECOCIDO # 16	kg	•	0.0700	3.81	0.27
0203030088	FIERRO FY=4200 K/CM2	kg .		1.0500	2.72	2.86
						3.13
0337010001	Equipos HERRAMIENTAS MANUALES	%MO		3.0000	1.02	0.03
		,,,,,	•	2.2200		0.03

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

s10 MDS Página :

15

Análisis de precios unitarios

Subpresupuesi			NCIA SANCHEZCARI PUENTE CARROZAB				echa presupuesto	24/06/201
Partida	04.07.03	CONCRETO E	NLOSA F'C=280 KG	CM2 - FLO	CTACHADO			
Rendimiento	m3/DIA MO. 1	12.0000	EQ. 12.0000		·Cos	to unitario dire	cto por : m(577.38
Código	Descripción Rec	urs de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010002	OPERARIO	de Obia		hh	2.0000	1.3333	12,90	17.20
0147010003	OFICIAL			hh	1.0000	0.6667	15.20	10.13
0147010004	PEON			hh	12.0000	8.0000	11.54	92.32
								119.65
	Mat	teriales						
0205000003	PIEDRA CHANC	ADA DE 1/2"		m3		0.5000	170.00	85.00
0205010004	ARENA GRUESA			m3		0.5000	175.00	87.50
0221000000	CEMENTO POR	TLAND TIPO I	(42.5KG)	BOL		13.5000	18.38	248.13
0239050000	AGUA			m3 .		0.1840	1.00	0.18
			÷					420.81
0337010001	Eq HERRAMIENTAS	uipos		%MO		3.0000	110.65	2.50
			ID 0 40"		4.0000		119.65	3.59
0349070004	VIBRADOR DE C			hm	1.0000 1.0000	0.6667	20.00	13.33
0349100011	MEZCLADORA (CONCRETO II	ROMPO 8 HP 9 P3	hm	1.0000	0.6667	30.00	20.00 36.9 2
								30.3
Partida	04.07.04	CURADO DE C	ONCRETO					
Rendimiento	m2/DIA MO.	100.0000	EQ. 100.0000		Cos	sto unitario dire	cto por : m2	28.38
Código	Descripción Red	curs o de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010004	PEON	. Ge Obia		hh	28.0000	2.2400	11.54	25.85
		•						25.8
0001010011		teriales	1.0				.=	
0204010011	ARENA GRUES	A LIMPIA DE R	10	m3		0.0100	175.00	1.75
	Ec	uipos						1.7
0337010001	HERRAMIENTAS			%MO		3.0000	25.85	0.78
	•							0.78
Partida	04.08.01	ENCOFRADO	Y DESENCOFRADO	DE VERED	A - SARDINE	LES		
Rendimiento	m2/DIA MO.	8.0000	EQ. 8.0000		Cos	sto unitario dire	ecto por : mí	- 78.1
Código	Descripción Re	curs		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147040000		de Obra		h .L.	4.0000	4 0000	40.00	40.0
0147010002	OPERARIO			hh	1.0000	1.0000	12.90	12.90
0147010003	OFICIAL			hh	1.0000	1.0000	15.20	15.20
0147010004	PEON			hh	2.0000	2.0000	11.54	23.08 51.1 8
	Ma	teriales	•					01.11
0202000008	ALAMBRE NEGI)#8	kg		0.3500	3.81	1.3
0202020004	CLAVOS Fo No	C/C 3"		kg		0.3500	3.91	1.3
0245010001	MADERA TORN	ILLO INC.COR	TE P/ENCOFRADO	p2		4.8300	4.50	21.7
								24.4
		quipos						
0000001001								
0337010001	HERRAMIENTA	S MANUALES		%MO		5.0000	51.18	2.50 2.5 0

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS Página:

16

Análisis de precios unitarios

Presupuest	049101 CONSTRUCCIONDEL PUENTE CARRO SANAGORAN, PROVINCIA SANCHEZCA				CARACMACA, E	ISTRITO DE
Subpresupuesi	001 CONSTRUCCIONDE PUENTE CARROZA				echa presupuesto	24/06/2014
Partida	04.08.02 CONCRETO EN VEREDA - SARDI	NELES F'C=	210 KG/CM2			
Rendimiento	m3/DIA MO. 20.0000 EQ. 20.0000		Cos	sto unitario dire	ecto por : m(462.89
Código	Descripción Recurs Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERARIO	hh	2.0000	0.8000	12.90	10.32
0147010003	OFICIAL	hh	1.0000	0.4000	15.20	6.08
0147010004	PEON	hh	12.0000	4.8000	11.54	55.39
	•					71.79
0205000003	Materiales PIEDRA CHANCADA DE 1/2"	m3		0.5500	170.00	93.50
0205010004	ARENA GRUESA	m3		0.5500	175.00	96.25
0221000000	CEMENTO PORTLAND TIPO I (42.5KG)	BOL		9.7400	18.38	179.02
0239050000	AGUA	m3	*	0.1840	1.00	0.18
						368.95
0337010001	Equipos HERRAMIENTAS MANUALES	%MO		3.0000	71.79	2.15
0349070004	VIBRADOR DE CONCRETO 4 HP 2.40"	hm	1.0000	0.4000	20.00	8.00
0349100011	MEZCLADORA CONCRETO TROMPO 8 HP 9 P3	hm	1.0000	0.4000	30.00	12.00
		0		0.1000	-	22.15
Partida	04.08.03 ACERO FY= 4200 KG/CM2 EN VE	REDA - SAR	DINELES			
Rendimiento	kg/DIA MO. 220.0000 EQ. 220.0000		Co	sto unitario dir	ecto por : kç	4.18
Código	Descripción Recurs Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERARIO	hh	1.0000	0.0364	12.90	0.47
0147010003	OFICIAL	hh	1.0000	0.0364	15.20	0.55
		••••			. 0,20	1.02
0202000007	Materiales ALAMBRE NEGRO RECOCIDO # 16	kg		0.0700	3.81	0.27
0203030088	FIERRO FY=4200 K/CM2	kg		1.0500	2.72	2.86
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3				3.13
0007040004	Equipos	0/110		0.000		
0337010001	HERRAMIENTAS MANUALES	%MO		3.0000	1.02	0.03
						0.03

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS Página :

17

Análisis de precios unitarios

Subpresupuest		N, PROVINCIA SANCHEZO CIONDE PUENTE CARRO				echa presupuesto	24/06/2014
Partida	04.08.04 TARR	AJEO SARDINELES CEM	ENTO-ARENA	= 1:4			
Rendimiento	m2/DIA MO. 5.000	0 EQ. 5.0000	•	· Cos	sto unitario dire	ecto por : m2	39.16
Código	Descripción Recurs		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	Mano de O OPERARIO	bra	hh	1.0000	1.6000	12,90	20.64
0147010002	OFICIAL		hh	0.5000	0.8000	15.20	12.16
0147010003	OFICIAL		1111	0.5000	0.0000	10.20	32.80
	Material	es					
0204000000	ARENA FINA		m3		0.0180	175.00	3.15
0221000000	CEMENTO PORTLAN	D TIPO I (42.5KG)	BOL		0.1200	18.38	2.21
0239050000	AGUA		m3		0.0150	1.00	0.02
							5.38
0337010001	Equipo: HERRAMIENTAS MAN		%MO		3.0000	32.80	0.98
		,	701112		0.550		0.98
Partida	04.09.01 TUBE	RIA DE DRENAJE PVC SA	LØ3"				
Rendimiento	m/DIA MO. 20.00	00 EQ. 20.0000	•	Co	osto unitario di	recto por : n	9.39
Cádina	Descripción Posses			Cup drille	Cantidad	Precio S/.	Parcial S/
Código	Descripción Recurs Mano de C)hra	Unidad	Cuadrilla	Cantidae	Precio Sr.	raiciai o/
0147010002	OPERARIO	,,,,,	hh	1.0000	0.4000	12.90	5.16
0147010004	PEON		hh	0.5000	0.2000	11.54	2.31
							7.47
0273010007	Material TUBO PVC SAL 2" X 3		pza		0.3400	5.00	1.70
02/30/000/	TODOT VO OALZ X	JIVI ,	pza		0.5400	3.00	1.70
	Equipo						
0337010001	HERRAMIENTAS MAI	NUALES	%MO		3.0000	7.47	0.22
							0.22
Partida	04.10.01 BARA	NDA DE L 21/2"x21/2"x5/	16"				
Rendimiento	m/DIA MO. 16.00	00 EQ. 16.0000		C	osto unitario di	recto por : n	245.41
Código	Descripción Recurs	Dh.u.	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010002	Mano de O OPERARIO	Jura	hh	1.0000	0.5000	12.90	6.45
0147010003	OFICIAL		hh	1.0000	0.5000	15.20	7.60
0147010004	PEON		hh .	1.0000	0.5000	11.54	5.77
					-		19.82
0220070007	Material		,		1 0000	225.00	225.00
0239970007	PERFIL A36 L 21/2"x2	C11/2 X3/10	m		1.0000	223,00	225.00 225.0 0
	Equipo	os .					
0337010001	HERRAMIENTAS MAI	NUALES	%MO		3.0000	19.82	0.59
							0.59

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS Página :

18

Análisis de precios unitarios

/DIA MO. 24.0000 scripción Recurs Mano de Obra ERARIO	E SARDINE	LES Y LADO 24.0000		LES	to unitario dire	echa presupuesto	24/06/2014
scripción Recurs Mano de Obra ERARIO	EQ.	24.0000		Cos	to unitario dire		·
Mano de Obra ERARIO						cto por : m.	5.16
ERARIO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
Materials -			hh	0.8000	0.2667	12.90	3.44 3.4 4
Materiales TURA ESMALTE SINTE	TICO		gln		0.0500	33.89	1.69
Equipos						·	1.69
RRAMIENTAS MANUALE	ES		%MO		1.0000	3.44	0.03 0.0 3
11.02 PINTURA E	N ESTRUC	TURAS MET	ALICAS				
/DIA MO. 25.0000	EQ.	25.0000		Cos	to unitario dire	cto por : m2	18.12
scripción Recurs			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
			hh	2.0900	0.6688	12.90	8.6
ON							2.3
					7		10.90
Materiales							
ITURA ANTIOXIDANTE			gln		0.1000	46.61	4.66
TICORROSIVO EPOXIC	0		gln		0.0800	23.14	1.8
INER ACRILICO			gln		0.0400	8.00	0.3
							6.8
Equipos			0/140		2 2000	40.00	0.0
RRAIVIICIN I AS IVIANUALI	25		%NO		3.0000	10.96	0.33 0.3 3
01 01 ACERO EV	- 4200 KCII	CM2				<u> </u>	0.3.
				0-	ata waltania dia		3.9
	EQ.	280.0000					
•			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
			hh .	1.0000	0.0286	12.90	0.3
							0.4
							0.8
Materiales	1DO # 40		· სო		0.0700	2 01	. 00
	סו # טעוני						0.2
KRO F1=4200 K/CM2			кg	,	1.ປວປປ	2.12	2.8
Equinoc							3.1
	ES		%MO		3,0000	0.80	0.02
							0.0
F -1 /- S EC 17 F - C 17 S 11 /:	Equipos RRAMIENTAS MANUALE 11.02 PINTURA E 11.02 PINTURA E 11.02 PINTURA E 101A MO. 25.0000 Scripción Recurs Mano de Obra ERARIO DN Materiales TURA ANTIOXIDANTE TICORROSIVO EPOXICE NER ACRILICO Equipos RRAMIENTAS MANUALI 01.01 ACERO FY DIA MO. 280.0000 Scripción Recurs Mano de Obra ERARIO ICIAL Materiales AMBRE NEGRO RECOC RRO FY=4200 K/CM2 Equipos	Equipos RRAMIENTAS MANUALES 11.02 PINTURA EN ESTRUC (DIA MO. 25.0000 EQ. Scripción Recurs Mano de Obra ERARIO DN Materiales TURA ANTIOXIDANTE TICORROSIVO EPOXICO NER ACRILICO Equipos RRAMIENTAS MANUALES 01.01 ACERO FY= 4200 KG// Scripción Recurs Mano de Obra ERARIO ILIAL Materiales AMBRE NEGRO RECOCIDO # 16 RRO FY=4200 K/CM2	Equipos RRAMIENTAS MANUALES 11.02 PINTURA EN ESTRUCTURAS MET. (DIA MO. 25.0000 EQ. 25.0000 Scripción Recurs Mano de Obra ERARIO DN Materiales TURA ANTIOXIDANTE TICORROSIVO EPOXICO NER ACRILICO Equipos RRAMIENTAS MANUALES 01.01 ACERO FY= 4200 KG/CM2 DIA MO. 280.0000 EQ. 280.0000 Scripción Recurs Mano de Obra ERARIO ICIAL Materiales AMBRE NEGRO RECOCIDO # 16 RRO FY=4200 K/CM2 Equipos	Equipos RRAMIENTAS MANUALES %MO 11.02 PINTURA EN ESTRUCTURAS METALICAS (DIA MO. 25.0000 EQ. 25.0000 Scripción Recurs Unidad Mano de Obra ERARIO hh NAteriales TURA ANTIOXIDANTE gln TICORROSIVO EPOXICO gln NER ACRILICO gln Equipos RRAMIENTAS MANUALES %MO 10.01 ACERO FY= 4200 KG/CM2 DIA MO. 280.0000 EQ. 280.0000 Scripción Recurs Unidad Mano de Obra ERARIO hh IMATERIALES MANUALES %MO MANO 280.0000 EQ. 280.0000 SCRIPCIÓN RECURS Unidad Mano de Obra ERARIO hh IMATERIALES AMBRE NEGRO RECOCIDO # 16 kg RRO FY=4200 K/CM2 kg Equipos	TURA ESMALTE SINTETICO gln Equipos RRAMIENTAS MANUALES %MO 11.02 PINTURA EN ESTRUCTURAS METALICAS (DIA MO. 25.0000 EQ. 25.0000 Cos Scripción Recurs	TURA ESMALTE SINTETICO gln 0.0500 Equipos RRAMIENTAS MANUALES %MO 1.0000	Equipos RRAMIENTAS MANUALES %MO

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS Página :

19

Análisis de precios unitarios

Subpresupuesi				VINCIA SANCHEZCAR E PUENTE CARROZAE				echa presupuesto	24/06/2014
Partida	05.01.02		CONCRETO	EN PACA RECORDAT	ORIA F'C=	210 KG/CM2			
Rendimiento	m3/DIA	MO.	20.0000	EQ. 20.0000		· Cos	to unitario dire	cto por : m(462.89
Código	Descripc	ión Re	ecurs		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERAR		o de Obra		hh	2.0000	0.8000	12.90	10.32
0147010002	OFICIAL				hh	1.0000	0.4000	15.20	6.08
0147010004	PEON				hh	12.0000	4.8000	11.54	55.39
					****	12.0000	4,0000	11.01	71.79
		M	ateriales						
0205000003	PIEDRA (CHAN	CADA DE 1/2"		m3		0.5500	170.00	93.50
0205010004	ARENA C	RUES	SA ·		m3		0.5500	175.00	96.25
0221000000	CEMENT	O POI	RTLAND TIPO	I (42.5KG)	BOL	•	9.7400	18.38	179.02
0239050000	AGUA				m3		0.1840	1.00	0.18
									368.95
0227040004	LIEDDAM		Equipos	•	0/140		2.0000	71.79	2.15
0337010001			AS MANUALES		%MO	4 0000	3.0000		
0349070004			CONCRETO		hm	1.0000	0.4000	20.00	8.00
0349100011	MEZCLAI	DOKA	CONCRETO	TROMPO 8 HP 9 P3	hm	1.0000	0.4000	30.00	12.00
						· · · · · · · · · · · · · · · · · · ·			22.15
Partida	05.01.03		ENCOFRADO	Y DESENCOFRADO	PARA PLAC	CA RECORD	ATORIA		
Rendimiento	m2/DIA	MO.	5.0000	EQ. 5.0000		Cos	to unitario dire	ecto por : m2	124.68
Código	Descripc		ecurs 10 de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010002	OPERAR		io de Obra		hh	1.0000	1.6000	12.90	20.64
0147010003	OFICIAL				hh	1.0000	1.6000	15.20	24.32
0147010004	PEON			•	hh	2.0000	3.2000	11.54	36.93
						2.0000			81.89
		М	ateriales	,					
0202000008	ALAMBR	E NEC	RO RECOCIE	0O#8	kg		0.3500	3.81	1.33
0202020004	CLAVOS	Fo No	C/C 3"		kg		0.3500	3.91	1.37
0245010001	MADERA	TOR	NILLO INC.CO	RTE P/ENCOFRADO	p2		8.0000	4.50	36.00
									38.70
0337010001	LIEDDAN		Equipos AS MANUALES	.	%MO		5.0000	81.89	4.09
0337010001	HERRAIN	31 ⊏1 717	NO MANUALE	•	701010		5.0000	01.09	4.09
Partida	05.01.04		PLACA REC	ORDATORIA DE MARI	OLINA 0.3	0X0.50 - TALI	_ADA		
Rendimiento	und/DI	MO.	10.0000	EQ. 10.0000		Cos	to unitario dire	cto por : unc	284.79
Código	Descripo	ión R	ecurs		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
04.4704.0000	ODEDAD		no de Obra		hh	4.0000	0.8000	10.00	40.04
0147010002	OPERAR	.10			hh bb	1.0000		12.90	10.32
0147010004	PEON				hh	1.0000	0.8000	11.54	9.23 19.5 5
	DEDNIC		lateriales	- 4/4" ·· 0 4/0"	n =-		4.0000	3.81	15.2
0000040004									
0202040001 0205020051			ZA DE COCHE	: 1/4	pza und		1.0000	250.00	250.00

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS Página:

20

Análisis de precios unitarios

Presupuest Subpresupuest	049101 CONSTRUCCION DEL SANAGORAN, PROVII 001 CONSTRUCCION DE I	NCIA SANCHEZCAF	RRION, REGI	ION LA LÍBEF	RTAD	CARACMACA, Decha presupuesto	24/06/2014
Partida	والمرابع والمساب والمستقل والمرابع والمتالة المسابق والمستقل والمستقل والمستقل والمستقل والمستقل والمستقل	ACA RECORDATO					
Rendimiento	m2/DIA MO. 20.0000	EQ. 20.0000		Cos	to unitario dire	cto por : m2	21.12
Código	Descripción Recurs	, ,	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	Mano de Obra OPERARIO		hh	0.8000	0.3200	12.90	4.13 4.13
0254020042	Materiales PINTURA ESMALTE SINTETICO)	gln		0.5000	33.89	16,95 16.9 5
0337010001	Equipos HERRAMIENTAS MANUALES		%MO		1.0000	4.13	0.04 0.0 4
Partida	05.02.01 SEÑALES INFO	RMATIVAS	,				
Rendimiento	und/DI MO. 2.0000	EQ. 2.0000		Cost	to unitario dire	cto por : unc	603.98
Código	Descripción Recurs Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010002	OPERARIO		hh	0.8000	3.2000	12,90	41.28
0147010004	PEON		hh	2.0000	8.0000	11.54	92.32
	,				3,333		133.60
	Materiales						
0202140001	PERNOS 1/4" X 2 1/2"		und		6.0000	0.37	2.22
0205020020	PIEDRA MEDIANA		m3		0.0200	40.00	0.80
0221000000	CEMENTO PORTLAND TIPO I	(42.5KG)	BOL		0.4000	18.38	7.35
0238000004	HORMIGON (PUESTO EN OBR	A)	m3		0.1000	60.00	6.00
0243400033	SEÑALES INFORMATIVA DE 90	X 200 CM	und		1.0000	450.00	450.00
							466.37
0007040004	Equipos		0/110		0.0000	400.00	4.04
0337010001	HERRAMIENTAS MANUALES		%MO		3.0000	133.60	4.01 4.01
Partida	05.03.01 TRAZO Y REPI	ANTEO	·	-			
Rendimiento	KM/DIA MO. 1.5000	EQ. 1.5000		Cos	sto unitario dire	ecto por : KN	310.2
Código	Descripción Recurs		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147000032	Mano de Obra TOPOGRAFO		hh	1.0000	5.3333	15.20	81.07
0147010004	PEON		hh	2.0000	10.6667	11.54	123.09
			•				204.10
0000550055	Materiales		•		4 0000	00.00	22.2
0230550056	ESTACION TOTAL		hm		1.0000	90.00	90.00
0244010039 0254020042	ESTACA DE MADERA PINTURA ESMALTE SINTETIC	^	pza		3.0000	0.50	1.50 8.4
0254020042	PINTURA ESMALTE SINTETIC		gln		0.2500	33.89	99.9
	Equipos						
0337010001	HERRAMIENTAS MANUALES		%MO		3.0000	204.16	6.12
							6.13

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 **MDS** Página :

21

Análisis de precios unitarios

Presupuest		CONSTRUCCION DEI SANAGORAN, PROVI					CARACMACA, E	STRITO DE
Subpresupuest	001	CONSTRUCCIONDE	PUENTE CARROZAE	BLEEL BOS	QUE	F	echa presupuesto	24/06/2014
Partida	05.03.02	CORTE DE MA	TERIAL SUELTO RE	NDIMIENTO	D=570 M3/DIA	\		
Rendimiento	m3/DIA	MO. 570.0000	EQ. 570.0000		Cos	to unitario dire	cto por : m:	4.43
Código	Descripc	ión Recurs		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010004	PEON	Mano de Obra		hh	2.0000	0.0281	11,54	0.32
0147010023		LADOR OFICIAL		hh	0.2000	0.0028	15.20	0.04
								0.36
0337010001	HEDDAM	Equipos IENTAS MANUALES		%MO		3,0000	0.36	0.01
0349040034		R DE ORUGAS DE 19	U-240 HB	hm	1.0000	0.0140	290.00	4.06
0070070007	1101010	NOL ONGONO DE 10	24011	*****	1.0000	0.0140	200.00	4.07
Partida	05.03.03	CONFORMACI	ON DE TERRAPLEN	ES CON MA	ATERIAL PRO)PIO	•	
Rendimiento	m3/DIA	MO. 900.0000	EQ. 900.0000		Cos	sto unitario dire	ecto por : m:	4.97
Código	Descripc	ión Recurs Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010004	PEON	Mano de Obra		hh	6.0000	0.0533	11.54	0.62
		•						0.62
0000050000	40414	Materiales		_		0.0000	4.00	
0239050000	AGUA			m3		0.0200	1.00	0.02 0.0 2
		Equipos						
0337010001		IENTAS MANUALES		%MO		3.0000	0.62	0.02
0349030007		LISO VIBR AUTOP 1		hm	1.0000	0.0089	125.00	1.11
0349040011		OR S/LLANTAS 160-1		hm	1.0000	0.0089	190.00	1.69
0349090013	MOTON	VELADORA DE 145-10	60 HP	hm	1.0000	0.0089	170.00	1.5 ² 4.3
Partida	05.03.04	PERFILADO Y	COMPACTADO DE S	SUB-RASAI	NTE	· · · · · · · · · · · · · · · · · · ·		
Rendimiento	m2/DIA	MO. 2,860.0000	EQ. 2,860.0000		Cos	sto unitario dire	ecto por : mí	1.13
Código	Descripc	ión Recurs		Unidad	Cuadrille	Cantidad	Precio S/.	Parcial S
0147010003	OFICIAL	Mano de Obra		hh	0.5000	0.0014	15.20	0.02
0147010004	PEON			hh	3.0000	0.0084	11.54	0.10
								0.13
0337010001	HEDDAN	Equipos MENTAS MANUALES		%MO		3.0000	0.12	••
0348080000		OMBA 10 HP 4"	•	%NO hm	0.5000	0.0014	20.00	0.0
0348080000		CISTERNA 4X2 (AGU	IA) 2 000 GAI	hm	0.5000	0.0014	100.00	0.0
0349030007		LISO VIBR AUTOP 1	•	hm	1.0000	0.0014	125.00	0.14
0349030007		VELADORA DE 145-1		hm	1.0000	0.0028	170.00	0.3
0042030013		V L LADUKA DE 140-11	UN CIC	(1111				0.40

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS Página:

22

Análisis de precios unitarios

Presupuest Subpresupuest	049101	CONSTRUCCIONDE SANAGORAN, PROV CONSTRUCCIONDE	INCIA SANCHEZCAR	RION, REG	ION LA LIBEF	RTAD	CARACMACA, I echa presupuesto	DISTRITO DE 24/06/2014
Partida	05.03.05		DE MATERIAL EXCE		· · · · · · · · · · · · · · · · · · ·			
Rendimiento	m3/DIA	MO. 480.0000	EQ. 480.0000		Cos	sto unitario dire	cto por : m:	16.82
Código	Descripo	ción Recurs Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010004	PEON	. Mailo de Obia		hh	5.0000	0.0833	11.54	0.96 0.9 6
		Equipos						
0337010001		MENTAS MANUALES		%MO		2.0000	0.96	0.02
0348040037		VOLQUETE 15 M3.		hm	4.0000	0.0667	190.00	12.67
0349040011	CARGAE	OOR S/LLANTAS 160-	195 HP 3.5 YD3.	hm	1.0000	0.0167	190.00	3.17 15.8 6
Partida	05.03.06	AFIRMADO						
Rendimiento	m3/DIA	MO. 480.0000	EQ. 480.0000		Cos	sto unitario dire	ecto por : m:	32.77
Código	Descripo	ción Recurs Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010003	OFICIAL	mano ac obja		hh	0.2000	0.0033	15.20	0.05
0147010004	PEON			hh	4.0000	0.0667	11.54	0.77
		Matarialan						0.82
0205030076	MATERIA	Materiales AL GRANULAR DE CA	ANTERA	m3	.5	1.0000	25.00	25.00 25.0 0
0337010001	LEDDAL	Equipos MENTAS MANUALES		%MO		3,0000	. 0.80	
0348080000		OMBA 10 HP 4"		hm	1.0000	0.0167	0.82 20.00	0.02 0.33
0348120002		CISTERNA 4X2 (AGL	1V/ 3 000 CVI	hm	1.0000	0.0167	100.00	1.67
0349030013		D LISO VIBR AUTOP 7		hm	1.0000	0.0167	125.00	2.09
0349090000		VELADORA DE 125 H		hm	1.0000	0.0167	170.00	2.84
		VELABOTA DE 1201	•	11116	1,0000	0.0101	170.00	6.95
Partida	05.04.01	CONSTRUCC	ION DE CUNETAS E	N MATERIA	L SUELTO			
Rendimiento	m/DIA	MO. 15.0000	EQ 15.0000		Ci	osto unitario di	recto por : n	12.68
Código	Descrip	ción Recurs Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010004	PEON	mano de Obiq		hh	2.0000	1.0667	11.54	12.31 12.31
0337010001	HERRAN	Equipos MENTAS MANUALES		%МО		3.0000	12.31	0.37 0.3 7
Partida	06.01	MITIGACION I	DE IMPACTO AMBIEI	NTAL				
Rendimiento	GLB/DI	MO. 1.0000	EQ. 1.0000		Cost	to unitario dired	cto por : GLE	10,500.00
Código	Descrip	ción Recurs		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0239050100	MITIGAC	Materiales CION DE IMPACTO AN	BIENTAL	GLB		1.0000	10,500.00	10,500.00 10,500.0 0

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10 MDS Página :

23

Análisis de precios unitarios

								•
Presupuest	049101		DEL PUENTE CARRO		•		E CARACMACA, [DISTRITO DE
Subpresupues	001	•	E PUENTE CARROZ				Fecha presupuesto	24/06/2014
Partida	07.01	FLETE TER	RESTRE			•		
Rendimiento	GLB/DI	MO. 8.0000	EQ. 8.0000		Cost	o unitario dire	cto por : GLE	35,544.73
Código	Descrip	ción Recurs Materiales		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0232000054	FLETE 7	TERRESTRE		GLB		1,0000	35,544.73	35,544.73 35,544.73

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

METRADOS

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRIÓN, REGION LA LIBERTAD

RESUMEN DE PLANILLA DE METRADOS

Proyecto:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Cliente Lugar MUNICIPALIDAD DISTRITAL DE SANAGORAN LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

	DESCRIPCION	METR.	UNIDAD
01	OBRAS PROVISIONALES		
01.01	CARTEL DE IDENTIFICACION DE LA OBRA DE 2.50X4.00M	1.00	und
01.02	CAMPAMENTO PROVISIONAL DE OBRA	60.00	m2
01.03	HABILITACION DE ACCESOS PROVISIONALES	1.00	GLB
01.04	CONFORMACION DE CAUCE Y DESVIO DE AGUA DE RIO	160.00	m2
02	OBRAS PRELIMINARES		
02.01	TRAZO Y REPLANTEO PRELIMINARES	234.60	m2
03	SUB ESTRUCTURA	•	
03.01	EXCAVACION MASIVA CON MAQUINARIA		
03.01.01	EXCAVACION MASIVA A MAQUINA EN TERRENO NORMAL"C"/RETRO	2555.96	m3
03.02	MOVIMIENTO DE TIERRAS DE ESTRIBO Y ALETAS		
03.02.01	EXCAVACION MANUAL DE TIERRAS EN ZAPATAS	369.61	m3
03.02.02	EXCAVACION C/I ROCOSO -PARA ZAPATAS	369.61	m
03.02.03	RELLENO CON MATERIAL PROPIO EN ZAPATAS	326.10	m3
03.02.04	RELLENO CON MATERIAL PROPIO SELECCIONADO EN ACCESOS	1111.54	m3
03.02.05	ELIMINACION DE EXCESO DE CORTE CON VOLQUETE - CARGADOR	2969.09	m3
03.03	CONCRETO SIMPLE		
03.03.01	MORTERO SIN CONTRACCION		
03.03.01.01	CONCRETO SIN CONTRACCION (GROUT)	20.53	m3
03.03.02	MAMPOSTERIA DE PIEDRA		
03.03.02.01	MANPOSTERIA DE PIEDRA	669.76	m2
03.04	CONCRETO ARMADO		
03.04.01	ZAPATA DE ESTRIBOS Y ALETAS		· v
03.04.01.01	ENCOFRADO Y DESENCOFRADO NORMAL DE ZAPATAS	111.10	
03.04.01.02	CONCRETO F'C=210 KG/CM2 EN ZAPATAS	256.68	
03.04.01.03	ACERO FY= 4200 KG/CM2 EN ZAPATAS	26660.54	kg
03.04.02	ESTRIBOS		
03.04.02.01	ENCOFRADO Y DESENCOFRADO CARAVISTA CON PANELES Y BASTIDORES DE ESTI	283.00	
03.04.02.02	CONCRETO F'C=210 KG/CM2 EN ESTRIBO	16.28	m3
03.04.02.03	ACERO FY= 4200 KG/CM2 EN ESTRIBO	8392.91	kg
03.04.03	ALETAS		
03.04.03.01	ENCOFRADO Y DESENCOFRADO CARAVISTA CON PANELES Y BASTIDORES DE ALEI	174.58	
03.04.03.02	CONCRETO F'C=210 KG/CM2 EN ALETAS	119.04	m3
03.04.03.03	ACERO FY= 4200 KG/CM2 EN ALETAS	10641.31	kg
03.05	SISTEMA DE DRENAJE DE ESTRIBOS		
03.05.01	TUBERIA DE DRENAJE PVC SAL Ø 3"	39.60	m
03.06	APARATOS DE APOYO		
03.06.01	APOYO MOVIL	2.00	
03.06.02	APOYO FIJO	2.00	und

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORÁN, PROVINCIA SANCHEZ CARRIÓN, REGION LA LIBERTAD

RESUMEN DE PLANILLA DE METRADOS

Proyecto:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Cliente

MUNICIPALIDAD DISTRITAL DE SANAGORAN

Lugar LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

	DESCRIPCION	METR.	UNIDAD
03.07	JUNTAS DE DILATACION DE ACERO EN ESTRIBO Y LOSA		
03.07.01	JUNTAS DE DILATACION DE ACERO	7.20	m
04	SUPER ESTRUCTURA		
04.01	ARMADURA RETICULADA		
04.01.01	VIGA METALICA PERFIL W14X74 - A36 (L=20')	4.00	und
04.01.02	VIGA METALICA PERFIL W14X68 - A36 (L=20')	38.00	und
04.01.03	VIGA METALICA PERFIL W14X22 - A36 (L=20')	14.00	und
04.01.04	VIGA METALICA PERFIL W14X145 - A36 (L=20')	12.00	und
04.02	VIGAS DE PISO EN ARMADURA RETICULADA		
04.02.01	VIGA METALICA PERFIL W21X73 - A36 (L=20')	14.00	und
04.02.02	VIGA METALICA PERFIL W27X114 - A36 (L=20')	8.00	und
04.02.03	ATIEZADORES WT4X24- A36 (L=20')	28.00	und
04.03	PERNOS DE ALTA RESISTENCIA A36		
04.03.01	PERNOS ALTA RESISTENCIA 1"	192.00	und
04.03.02	PERNOS ALTA RESISTENCIA 7/8"	1024.00	
04.03.03	PERNOS ALTA RESISTENCIA 3/4"	688.00	
04.04	SISTEMA DE SOLDADURA		
04.04.01	SOLDADURA DE FILETE	51.80	m
04.05	SISTEMA DE UNIONES		
04.05.01	CARTELA METELICA DE ACERO A36 DE 1/2"	88.00	und
04.05.02	ANGULO SIMPLE A36 DE L8x8x5/8"	32.00	
04.06	ARMADO Y LANZAMIENTO DE ESTRUCTURA RETICULADA		
04.06.01	ARMADO Y LANZAMIENTO DE ESTRUCTURA	1.00	und
04.07	LOSA		
04.07.01	ENCOFRADO DE LOSA	128.27	m2
04.07.02	ACERO FY= 4200 KG/CM2 EN LOSA	9011.52	
04.07.03	CONCRETO EN LOSA F'C=280 KG/CM2 - FLOCTACHADO	29.92	-
04.07.04	CURADO DE CONCRETO	149.60	m2
04.08	VEREDA - SARDINEL		
04.08.01	ENCOFRADO Y DESENCOFRADO DE VEREDA- SARDINELES	41.51	m2
04.08.02	CONCRETO EN VEREDA -SARDINELES F'C=210 KG/CM2	4.71	m3
04.08.03	ACERO FY= 4200 KG/CM2 EN VEREDA - SARDINELES	1027.48	
04.08.04	TARRAJEO SARDINELES CEMENTO-ARENA = 1:4	30.29	
04.09	SISTEMA DE DRENAJE DE LOSA		
04.09.01	TUBERIA DE DRENAJE PVC SAL Ø 3"	39.60	m
04.10	BARANDA METALICA		
04.10.01	BARANDA DE L 21/2"x21/2"x5/16"	145.04	m
04.11	PINTURA	, ,5.01	•••
04.11.01	PINTADO DE SARDINELES Y LADOS LATERALES	7.85	m2
04.11.02	PINTURA EN ESTRUCTURAS METALICAS	1018.78	
	The second secon		

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

RESUMEN DE PLANILLA DE METRADOS

Proyecto:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Cliente Lugar MUNICIPALIDAD DISTRITAL DE SANAGORAN

LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

	DESCRIPCION	METR.	UNIDAD
05	OBRAS COMPLEMENTARIAS		L
05.01	PLACA RECORDATORIA		
05.01.01	ACERO FY= 4200 KG/CM2	13.00	kg
05.01.02	CONCRETO EN PACA RECORDATORIA F'C=175 KG/CM2	0.16	m3
05.01.03	ENCOFRADO Y DESENCOFRADO PARA PLACA RECORDATORIA	1.95	m2
05.01.04	PLACA RECORDATORIA DE MARMOLINA 0.30X0.50 - TALLADA	1.00	und
05.01.05	PINTADO DE PLACA RECORDATORIA	1.35	m2
05.02	SEÑALIZACION		
05.02.01	SEÑALES INFORMATIVAS	1.00	und
05.03	HABILITACION DE ACCESOS DEFINITIVOS		
05.03.01	TRAZO Y REPLANTEO	0.34	KM
05.03.02	CORTE DE MATERIAL SUELTO	4683.63	m3
05.03.03	CONFORMACION DE TERRAPLENES CON MATERIAL PROPIO	12.00	m3
05.03.04	PERFILADO Y COMPACTADO DE SUB RASANTE	1520.00	m2
05.03.05	ELIMINACION DE MATERIAL EXCEDENTE	4634.95	m3
05.03.06	AFIRMADO	205.20	m3
05.04	CUNETAS EN CAMINO PEATONAL	•	
05.04.01	CONSTRUCCION DE CUNETAS EN MATERIAL SUELTO	342.00	m
06	MITIGACION DE IMPACTO AMBIENTAL		+
06.01	MITIGACION DE IMPACTO AMBIENTAL	1.00	GLB
07	FLETE		
07.01	FLETE TERRESTRE	1.00	GLB

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

PLANILLA DE METRADOS

Provecto:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Cliente Lugar

MUNICIPALIDAD DISTRITAL DE SANAGORAN

LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

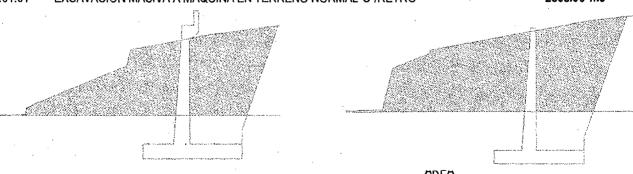
	DESCRIPCION	N° VECES		MEDIDAS	3	PARCIAL	TOTAL	UNIDAD
	DESCRIPCION	N VECES	LARGO	ANCHO	ALTO	PARCIAL .	IUIAL	GILLOAD
01	OBRAS PROVISIONALES							
01.01	CARTEL DE IDENTIFICACION DE LA C	OBRA DE 2.5	0X4.00M				1.00	und
	Cartel de Obra	1.00	4.00		2.50	1.00	1.00	
01.02	CAMPAMENTO PROVISIONAL DE OB	RA					60.00	m2
	Campamento de obra	1.00	10.00	6.00		60.00	60.00	
01.03	HABILITACION DE ACCESOS PROVIS	IONALES					1.00	GLB
	Cartel de Obra	1.00	4.00		2.50	1.00	1.00	
01.04	CONFORMACION DE CAUCE Y DESV	IO DE AGUA	DE RIO				160.00	m2
	Margen derecho	1.00	20.00	4.00		80.00	80.00	
	Megen izquierdo	1.00	20.00	4.00		80.00	80.00	
							160.00	m2
02	OBRAS PRELIMINARES							

02.01 TRAZO Y REPLANTEO PRELIMINARES

234.60 m2 117.30 1.00 17.00 6.90 117.30 Margen derecho Megen izquierdo 1.00 17.00 6.90 117.30 117.30 234.60 m2

03

SUB ESTRUCTURA


03.01

EXCAVACION MASIVA CON MAQUINARIA

03.01.01

EXCAVACION MASIVA A MAQUINA EN TERRENO NORMAL"C"/RETRO

2555.96 m3

			WUEW			
Aleta izquierdo superior	1.00	4.85	79.33	384.75	384.75	
Aleta derecha superior	1.00	4.85	90.00	436.50	436.50	
Estribo Derecho	1.00	6.90	92.50	638.25	638.25	
Estribo Izquierdo	1.00	6.90	60.98	420.76	420.76	
Aleta izquierdo inferior	1.00	4.85	44.49	215.78	215.78	

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

PLANILLA DE METRADOS

Proyecto:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Cliente Lugar MUNICIPALIDAD DISTRITAL DE SANAGORAN
LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

Γ	DESCRIPCION	N° VECES	MEDIDAS		PARCIAL	TOTAL	UNIDAD	
	DESCRIPCION	N AECES	LARGO	LARGO ANCHO ALTO		PARGIAL	<u> </u>	UNIUAU
	Aleta derecha inferior	1.00	4.85		94.83	459.93	459.93	
							2555.96	m3

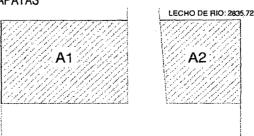
03.02 MOVIMIENTO DE TIERRAS DE ESTRIBO Y ALETAS

03.02.01 EXCAVACION MANUAL DE TIERRAS EN ZAPATAS

369.61 m3

A D C A

		ハハレハ			
Aleta izquierdo superior	1.00	29.42	1.80	52.96	52.96
Estribo Izquierdo	1.00	44.85	1.80	80.73	80.73
Aleta izquierdo inferior	1.00	28.74	1.80	51.73	51.73
Aleta derecho superior	1.00	28.74	1.80	51.73	51.73
Estribo derecho	1.00	44.85	1.80	80.73	80.73
Aleta derecha inferior	1.00	28.74	1.80	51.73	51.73
					369.61 m3


03.02.02 EXCAVACION C/I ROCOSO -PARA ZAPATAS

369.61 m

					369.61 m3
Aleta derecha inferior	1.00	28.74	1.80	51.73	51.73
Estribo derecho	1.00	44.85	1.80	80.73	80.73
Aleta derecho superior	1.00	28.74	1.80	51.73	51.73
Aleta izquierdo inferior	1.00	28.74	1.80	51.73	51.73
Estribo Izquierdo	1.00	44,85	1.80	80.73	80.73
Aleta izquierdo superior	1.00	29.42	1.80	52.96	52.96
		AKEA			

03.02.03 RELLENO CON MATERIAL PROPIO EN ZAPATAS

326.10 m3

101-1 (0.4)		620	1 1	1 1
- IAletas - (A1)			 	
prices (m)	1	1 0.20 1	1	

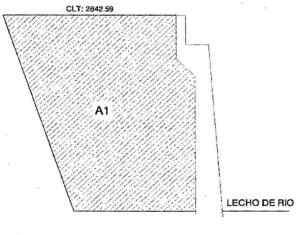
FACULTAD DE INGENIERIA

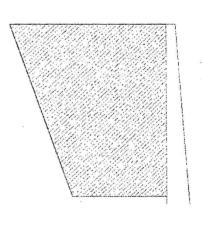
PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

PLANILLA DE METRADOS

Proyecto:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD


Cliente Lugar MUNICIPALIDAD DISTRITAL DE SANAGORAN


LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

	DESCRIPCION	N° VECES		MEDIDAS	3	PARCIAL	TOTAL	UNIDAD
	DESCRIPCION	IN VECES	LARGO	ANCHO	ALTO	PARCIAL	TOTAL	UNIDAD
				5.29				
		4.00	5.06	5.75		29.07	116.28	
	Aletas (A2)			3.71				
				3.64				
		4.00	4.97	3.68		18.26	73.06	
	Estribos (A1)	2.00	6.90	6.20		42.78	85.56	
41	Estribos (A2)	2.00	6.90	3.71		25.60	51.20	

03.02.04 RELLENO CON MATERIAL PROPIO SELECCIONADO EN ACCESOS

1111.54 m3

			A Incial	A Final			
Aletas (A1)	4.00	4.95	37.72	27.33	161.00	644.00	
Estribos (A2)	2.00	6.90		33.88	233.77	467.54	

03.02.05

ELIMINACION DE EXCESO DE CORTE CON VOLQUETE - CARGADOR							
Excavacion masiva	1.00	2555.96	2555.96	2555.9645			
Material rocoso	1.00	369.61	369.61	369.612			
material suelto	1.00	369.61	369.61	369.612			
Material de relleno	1.00	-326.10	-326.10	-326.0958			

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRIÔN, REGION LA LIBERTAD

PLANILLA DE METRADOS

Proyecto:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Cliente Lugar MUNICIPALIDAD DISTRITAL DE SANAGORAN

LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

DESCRIPCION	N° VECES		EDIDAS		PARCIAL	TOTAL	UNIDAD
		LARGO A	NCHO	ALTO			

03.03

CONCRETO SIMPLE

03.03.01

MORTERO SIN CONTRACCION

03.03.01.01 CONCRETO SIN CONTRACCION (GROUT)

20.53 m3

AREA DE ALETA	AREA DE ESTRIBO	AREA DE ALETA

AKEA

Aleta izquierdo superior	1.00	29.42	0.10	2.94	2.94	
Estribo Izquierdo	1.00	44.85	0.10	4.49	4.49	
Aleta izquierdo inferior	1.00	28.74	0.10	2.87	2.87	
Aleta derecho superior	1.00	28.74	0.10	2.87	2.87	
Estribo derecho	1.00	44.85	0.10	4.49	4.49	
Aleta derecha inferior	1.00	28.74	0.10	2.87	2.87	
					20.53	m3

03.03.02

MAMPOSTERIA DE PIEDRA

03.03.02.01 MANPOSTERIA DE PIEDRA

669.76 m3

Area de manposteria	1.00	669.76	669.76	669.76	
				669.76	m3

03.04

CONCRETO ARMADO

03.04.01

ZAPATA DE ESTRIBOS Y ALETAS

03.04.01.01 ENCOFRADO Y DESENCOFRADO NORMAL DE ZAPATAS

111.10 m2

Aleta izquierdo superior	1.00	15.38	1.25	19.23	19.23	
Estribo Izquierdo	2.00	6.90	1.25	8.63	17.25	
Aleta izquierdo inferior	1.00	15.30	1.25	19.13	19.13	
Aleta derecho superior	1.00	15.30	1.25	19.13	19.13	
Estribo derecho	2.00	6.90	1.25	8.63	17.25	
Aleta derecha inferior	1.00	15.30	1.25	19.13	19.13	

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

PLANILLA DE METRADOS

Proyecto:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Cliente

MUNICIPALIDAD DISTRITAL DE SANAGORAN

	DESCRIPCION	N° VECES	·	MEDIDAS		PARCIAL	TOTAL	UN
2040400			LARGO	ANCHO	ALTO			
3.04.01.02	CONCRETO F'C=210 KG/CM2 EN ZAF	PATAS					256.68	m3
	·							
-	AREA D	E ALETA			AREA DE	ALETA		
		A	REA DE EST	RIBO				
						-		
				AREA				
	Aleta izquierdo superior	1.00		29.42	1.25	36.78	36.78	
	Estribo Izquierdo	1.00		44.85	1.25	56.06	56.06	 _
	Aleta izquierdo inferior	1.00		28.74	1.25	35.93	35.93	ļ
	Aleta derecho superior	1.00		28.74	1.25	35.93	35.93	┼
•	Estribo derecho Aleta derecha inferior	1.00	_	44.85 28.74	1.25 1.25	56.06 35.93	56.06 35.93	┼
	Aleta derectia illierioi	1.00	ــــــــــــــــــــــــــــــــــــــ	20.74	1.20	30.93	30.83	<u>. </u>
3.04.01.03	ACERO FY= 4200 KG/CM2 EN ZAPAT/	AS					26660.54	L ka
	, included the state of the sta	1.00			l	26660.54	26660.54	
					· · · · · · · · · · · · · · · · · · ·	1 2000000	20000.0	_
3.04.02	ESTRIBOS	·		<u> </u>		1 20000	2000.0	
3.04.02					· · · · · · · · · · · · · · · · · · ·			
	ENCOFRADO Y DESENCOFRADO CA					DE ESTRIE	283.00	
	ENCOFRADO Y DESENCOFRADO CA Cara posterios de estribo	2.00	6.90	· ·	9.30	DE ESTRIE 64.17	283.00 128.34	
	ENCOFRADO Y DESENCOFRADO CA Cara posterios de estribo Cara anterior de estribo	2.00 2.00	6.90 6.90	· ·	9.30 8.08	DE ESTRIE 64.17 55.752	283.00 128.34 111.50	
	ENCOFRADO Y DESENCOFRADO CA Cara posterios de estribo Cara anterior de estribo Cajuela	2.00 2.00 2.00	6.90	· ·	9.30	DE ESTRIE 64.17 55.752 7.40	283.00 128.34 111.50 14.80	
3.04.02 3.04.02.01	ENCOFRADO Y DESENCOFRADO CA Cara posterios de estribo Cara anterior de estribo	2.00 2.00	6.90 6.90	· ·	9.30 8.08	DE ESTRIE 64.17 55.752	283.00 128.34 111.50	
3.04.02.01	ENCOFRADO Y DESENCOFRADO CA Cara posterios de estribo Cara anterior de estribo Cajuela Seccion transversal de estribo	2.00 2.00 2.00 4.00	6.90 6.90	· ·	9.30 8.08	DE ESTRIE 64.17 55.752 7.40	283.00 128.34 111.50 14.80 28.36	
3.04.02.01	ENCOFRADO Y DESENCOFRADO CA Cara posterios de estribo Cara anterior de estribo Cajuela Seccion transversal de estribo CONCRETO F'C=210 KG/CM2 EN ES	2.00 2.00 2.00 4.00	6.90 6.90	· ·	9.30 8.08	DE ESTRIE 64.17 55.752 7.40 7.09	283.00 128.34 111.50 14.80 28.36	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.04.02.01	ENCOFRADO Y DESENCOFRADO CA Cara posterios de estribo Cara anterior de estribo Cajuela Seccion transversal de estribo	2.00 2.00 2.00 4.00	6.90 6.90	`	9.30 8.08 1.00	DE ESTRIE 64.17 55.752 7.40 7.09	283.00 128.34 111.50 14.80 28.36	3 m3
.04.02.01	ENCOFRADO Y DESENCOFRADO CA Cara posterios de estribo Cara anterior de estribo Cajuela Seccion transversal de estribo CONCRETO F'C=210 KG/CM2 EN ES Seccion transversal de estribo hasta inc	2.00 2.00 2.00 4.00 TRIBO	6.90 6.90 7.40		9.30 8.08 1.00	DE ESTRIE 64.17 55.752 7.40 7.09	283.00 128.34 111.50 14.80 28.36 16.28	3 m3
3.04.02.01 3.04.02.02	ENCOFRADO Y DESENCOFRADO CA Cara posterios de estribo Cara anterior de estribo Cajuela Seccion transversal de estribo CONCRETO F'C=210 KG/CM2 EN ES Seccion transversal de estribo hasta inc	2.00 2.00 2.00 4.00 TRIBO 2.2.00 4.00	6.90 6.90 7.40		9.30 8.08 1.00	DE ESTRIE 64.17 55.752 7.40 7.09	283.00 128.34 111.50 14.80 28.36 16.28	3 m3

03.04.03.01 ENCOFRADO Y DESENCOFRADO CARAVISTA CON PANELES Y BASTIDORES DE ALETAS

2.00

2.00

4.97

5.00

Cara interior Hmax

Cara interior Hmin

Cara interior Hmax

Cara interior Hmin

174.58 m2

86.98

87.60

9.25 8.25

8.75

9.26 8.26

8.76

43.49

43.80

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

PLANILLA DE METRADOS

Proyecto:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Cliente Lugar MUNICIPALIDAD DISTRITAL DE SANAGORAN
LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

	DECCRIPCION	NOVECEC		MEDIDAS		DADCIAL	TOTAL	UNIE
	DESCRIPCION	N° VECES	LARGO	ANCHO	ALTO.	PARCIAL	TOTAL	OMI
2 04 02 00	CONODETO EIO 040 VOIONA EN NIE	T40				•	440.04	0
3.04.03.02	CONCRETO F'C=210 KG/CM2 EN ALE	IAS	T	т	6.57	гт	119.04	mរ l
	Seccion trasversal Max (m2)		 		5.37			ĺ
	Seccion trasversal Min (m2)	4.00	4.99		5.97	29.76	119.04	1
	<u> </u>	4.00	4.55	<u>'</u>	3.91	25.10	113.04	i
3.04.03.03	ACERO FY= 4200 KG/CM2 EN ALETAS						10641.31	ka
0.0 1.00.00	NOLITO I TEO NOTONIE LIVILETINO	1.00	1	Ţ		10641.31	10641.31	
3.05	SISTEMA DE DRENAJE DE ESTRIBOS	L	<u>t — </u>	. !	 			S
3.05.01	TUBERIA DE DRENAJE PVC SAL Ø 3"						39.60	m
	Estribos	30.00	0.60			0.60	18.00	
	Estribos	36.00	0.60			0.60	21.60]
03.06	APARATOS DE APOYO							
3.06.01	APOYO MOVIL						2.00	und
	Estribos	2.00				2.00	2.00]
3.06.02	APOYO FIJO Estribos	2.00	Т	T		2.00	2.00	und
3.07	JUNTAS DE DILATACION DE ACERO	EN ESTRIB	O Y LOSA	\		<u> </u>		J
3.07.01	JUNTAS DE DILATACION DE ACERO						7.20	m
	Estribos	2.00	3.60	T		3.60	7.20	•
)4)4.01	SUPER ESTRUCTURA ARMADURA RETICULADA				,			-
04.01.01	VIGA METALICA PERFIL W14X74 - A3							und
	Viga metalica W14X74 - Lado izquierdo					2.00	2.00	-
	Viga metalica W14X74 - Lado derecho	1.00	1	<u></u>	L	2.00	2.00	j
	VIGA METALICA PERFIL W14X68 - A3					T	38.00	***
4.01.02	10 (11 1414 41400)) ; ;			ī	1	19.00	19.00	11
)4.01.02	Viga metalica W14X68 - Lado izquierdo		 	 	 			4
4.01.02	Viga metalica W14X68 - Lado izquierdo Viga metalica W14X68 - Lado derecho	1.00				19.00	19.00	4
14.01.02 14.01.03		1.00						

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

PLANILLA DE METRADOS

Proyecto:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Cliente Lugar MUNICIPALIDAD DISTRITAL DE SANAGORAN LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

	DESCRIPCION	N° VECES		MEDIDAS	3	PARCIAL	TOTAL	UNIDAD
	DESCRIPCION	N VECES	LARGO	Largo ancho a		PANCIAL	IOIAL	CINIDAD
	Viga metalica W14X22 - Lado derecho	1.00				7.00	7.00	
04.01.04	VIGA METALICA PERFIL W14X145 - A3 Viga metalica W14X145 - Lado izquierdo			1		6.00	12.00 6.00	•
	Viga metalica W14X145 - Lado derecho		 	 	 	6.00	6.00	ł

04.02 VIGAS DE PISO EN ARMADURA RE	RETICULADA
------------------------------------	------------

04.02.01	VIGA METALICA PERFIL W21X73 - A36	6 (L=20')	·	 		14.00	und
	Viga metalica W21X73 - Lado izquierdo	1.00			7.00	7.00	İ
	Viga metalica W21X73 - Lado derecho	1.00			7.00	7.00	ĺ

04.02.02	VIGA METALICA PERFIL W27X114 - A36 (L=20')							und
	Viga metalica W27X114	1.00				8.00	8.00	

04.02.03	ATIEZADORES WT4X24- A36 (L=20')							und
	Atiezador WT 4X24	1.00				28.00	28.00	
	·							

04.03 PERNOS DE ALTA RESISTENCIA A36

	N° Lados	Cant.	1"	7/8"	3/4"	5/8"	1 3/8"
Nodo tipo 1	2.00	4.00	24.00	20.00	6.00		
Nodo tipo 2	2.00	10.00		20.00	6.00	28.00	28.00
Nodo tipo 3	2.00	4.00		10.00		10.00	
Nodo tipo 3 con viga	1.00	4.00			12.00		
Nodo tipo 4	2.00	12.00		16.00		20.00	
Nodo tipo 4 con viga	1.00	12.00			12.00		
Nodo tipo 5	2.00	14.00			6.00	20.00	
Nodo tipo 6	1.00	16.00			10.00		

192.00	160.00	. 48	. 0	0
0.00	400.00	120	560	560
0.00	. 80.00	0	80	0
0.00	0.00	48	0	0
0.00	384.00	0	480	. 0
0.00	0.00	144	0	0
0.00	0.00	168	560	0
0.00	0.00	160	0	0
192.00	1024.00	688.00	1680.00	560.00

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

PLANILLA DE METRADOS

Proyecto:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Cliente Lugar MUNICIPALIDAD DISTRITAL DE SANAGORAN

LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

	DESCRIPCION	N° VECES		MEDIDAS		PARCIAL	TOTAL	UNIDA
	DESCRIPCION	N. VECES	LARGO	ANCHO	ALTO	PARCIAL	IUIAL	UNIDA
04.03.01	PERNOS ALTA RESISTENCIA 1 3/	8"					560	und
	Pernos de alta resitencia 13/8"	1		ļ <u></u>		560.00	560	
04.03.02	PERNOS ALTA RESISTENCIA 1"						102	und
04.03.02	Pernos de alta resitencia 1"	1		<u> </u>	Γ	192.00	192	-
	T CITIOS de dita resignota 1			L	L	102.00	102	i
04.03.03	PERNOS ALTA RESISTENCIA 7/8"	I					1024	-
	Pernos de alta resitencia 7/8"	11		<u> </u>	l	1024.00	1024]
04.03.04	PERNOS ALTA RESISTENCIA 3/4"						622	und
34.03.04	Pernos de alta resitencia 3/4"	1		<u> </u>	T	688.00	688	-
	T CITIOS de dita resitencia 5/4		<u> </u>	L	1	1 000.001	- 000	i
04.03.05	PERNOS ALTA RESISTENCIA 5/8"						1680	und
	Pernos de alta resitencia 5/8"	1]	1680.00	1680	
04.04	SISTEMA DE SOLDADURA							
04.04	SIGTEMA DE GOLDADORA							
04.04.01	SOLDADURA DE FILETE						51.8	m ·
	Nodo tipo 5	28				0.65	18.2	3
	Nodo tipo 3	4	1.2			1.20	4.8	4
	Nodo tipo 3	24	1.2	<u> </u>	<u> </u>	1.20	28.8	
04.05	SISTEMA DE UNIONES							
V 1.00	0.0, 0_ 0 0 20							
04.05.01	CARTELA METELICA DE ACERO	A36 DE 1/2"					88.00	und
		N° Lados	Cant.]				_
	Nodo tipo 1	2.00	4.00			4.00	8.00	
	Nodo tipo 2	2.00	10.00	<u> </u>		10.00	20.00	
	Nodo tipo 3	2.00	4.00			4.00	8.00	
	Nodo tipo 4	2.00	12.00	<u> </u>		12.00	24.00	
	Nodo tipo 5	2.00	14.00			14.00	28.00	<u> </u>
]
04.05.02	ANGULO SIMPLE A36 DE L8x8x5/	'8"					32.00	und
J 11.00.0E	Nodo tipo 3	4.00		<u> </u>	1	4.00	4.00	_
	Nodo tipo 4	28.00	 	 	1	28.00	28.00	-4
			L		-1			
04.06	ARMADO Y LANZAMIENTO DE E	STRUCTURA RE	TICULAD	A				
						_		_
04.06.01	ARMADO Y LANZAMIENTO DE ES	STRUCTURA				<u>-</u>	1.00	und

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORÁN, PROVINCIA SANCHEZ CARRIÓN, REGION LA LIBERTAD

PLANILLA DE METRADOS

Proyecto:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

MUNICIPALIDAD DISTRITAL DE SANAGORAN

	DESCRIPCION	N° VECES		MEDIDAS	3	PARCIAL	TOTAL	UNIDA
	DESCRIPCION	M. AECE2	LARGO	ANCHO	ALTO	PARCIAL	IUIAL	UNIDAL
04.07	LOSA				~ <u>~</u>			
04.07.01	ENCOFRADO DE LOSA	4					128.27	' m2
	· : ::::::::::::::::::::::::::::::::::						/ e	::::::::::::::::::::::::::::::::::::::
								~ .
	Fondo de losa	7.00	5.09	3.60		18.32	128.27]
04.07.02	ACERO FY= 4200 KG/CM2 EN LOSA						9011.52	2 kg
,	Acero	1.00				9011.52	9011.52	2
04.07.03	CONCRETO EN LOSA F'C=280 KG/C	M2 - FLOCTA	CHADO	,			29.92	2 m3
	Concreto	1.00	37.40	4.00	0.20	29.92	29.92	2]
04.07.04	CURADO DE CONCRETO						149.60) m2
	Curado	1.00	37.40	4.00	1	149.60	149.60	า

04.08.01

ENCOFRADO Y DESENCOFRADO DE VEREDA- SARDINELES

41.51 m2

Fondo de vereda	1.00	37.40	0.70		26.18	26.18
Lateral de vereda	1.00	37.40		0.20	7.48	7.48
Lateral de vereda	1.00	37.40		0.21	7.85	7.85

CONCRETO EN VEREDA -SARDINELE	S F'C=210 KG	/CM2				4.71 m3
Concreto	1.00	37.40	0.63	0.20	4.71	4.71

04.08.03

ACERO FY= 4200 KG/CM2 EN VEREDA	A - SARDINEI	LES	 		1027.48_kg	3
Acero	1.00			1027.48	1027.48	

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

PLANILLA DE METRADOS

Proyecto:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Cliente Lugar MUNICIPALIDAD DISTRITAL DE SANAGORAN
LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

	DESCRIPCION	N° VECES		MEDIDAS		PARCIAL	TOTAL	DINU
	DESCRIPCION	N VECES	LARGO	ANCHO	ALTO	PARCIAL	IOIAL	UNID
4.08.04	TARRAJEO SARDINELES CEMENTO-	ARENA = 1:4					30.29	m2
	Fondo de vereda	1.00	37.40	0.60		22.44	22.44]
	Lateral de vereda	1.00	37.40		0.21	7.85	7.85	
14.09	SISTEMA DE DRENAJE DE LOSA							
4.09.01	TUBERIA DE DRENAJE PVC SAL Ø 3"	.						m
	Estribos	12.00	0.30			0.30	3.60]
4.10	BARANDA METALICA							
4.10.01	BARANDA DE L 21/2"x21/2"x5/16"						145.04	m
	Estribos	4.00	36.26			36.26	145.04	
)4.11	PINTURA							
4.11.01	PINTADO DE SARDINELES Y LADOS I							m2
	Lateral de vereda	1.00	37.40		0.21	7.85	7.85	
4.11.02	PINTURA EN ESTRUCTURAS METALI	CAS					1018.78	m2
7.11.02	Serchas laterales	4.00	37.40		4.35	162.69	650.76	···
	Base	2.00			4.92	184.01	368.02	-1
)5	OBRAS COMPLEMENTARIAS							.
,,,	ODING COMPLLIMENTARIAS				•			
)5.01	PLACA RECORDATORIA							
5.01.01	ACERO FY= 4200 KG/CM2						13.00	kg
	Acero	1.00		<u> </u>		13.00	13.00)]
5.01.02	CONCRETO EN PACA RECORDATOR	NA F'C=175 I	(G/CM2				0.16	6 m3
0,0,,,0_	Losa	1.00		ļ	0.10	0.04		
	Pantalla	1.00					0.050	
	Cimentacion	1.00					0.075	-4
			_					•
5.01.03	ENCOFRADO Y DESENCOFRADO PA					0.00		m2
	Losa Pantalla	1.00			1 10	0.36	0.365	-4
		1.00					0.990	
	Cimentacion	1.00	1 0.50	<u> </u>	1 0.30	1 0.001	0.000	T)
5.01.04	PLACA RECORDATORIA DE MARMOI	LINA 0.30X0.	50 - TALLA	NDA			1.00	und

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA.

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, RÈGION LA LIBERTAD

PLANILLA DE METRADOS

Proyecto:

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Cliente Lugar MUNICIPALIDAD DISTRITAL DE SANAGORAN LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

	DESCRIPCION	N° VECES		MEDIDAS		PARCIAL	TOTAL	UNIDA
05.01.05	PINTADO DE PLACA RECORDATOR	ΙΔ	LARGO	ANCHO	ALIU		1.35	m2
75.01.05	Losa	1.00	0.36			0.36	0.365	
	Pantalla	1.00		0.30	1.10	0.99	0.990	
05.02	SEÑALIZACION							
5.02.01	SEÑALES INFORMATIVAS							und
	Señal	1.00	1.00		<u> </u>	1.00	1.000	
05.03	HABILITACION DE ACCESOS DEFIN	NITIVOS						
5.03.01	TRAZO Y REPLANTEO						0.342	Km
	trazo y replanteo	1.00	0.34			0.34	0.342	
05.03.02	CORTE DE MATERIAL SUELTO					-	4683.63	m3
)5.03.03	CONFORMACION DE TERRAPLENE	S CON MATER	RIAL PROP	10	•		48.675	m3
5.03.04	PERFILADO Y COMPACTADO DE SU	JB RASANTE					1520.00	m2
	Perfilado	1.00	380.00	4.00		1520.00	1520.00]
05.03.05	ELIMINACION DE MATERIAL EXCED		1 4000 001			r r	4634.95	m3
	corte Relieno	1.00				 	4634.95	ļ
)5.03.06	AFIRMADO				·		205.20	_m3
	Afirmado	1.00	342.00	4.00	0.15	205.20	205.20]
)5.04)5.04.01	CUNETAS EN CAMINO PEATONAL CONSTRUCCION DE CUNETAS EN	MATERIAL SII	ELTO				342.00	m
33.04.01	Cunetas	1.00			T	342,00	342.00	_
)6	MITIGAÇION DE IMPACTO AMBIEN		1					J
06.01	MITIGACION DE IMPACTO AMBIENT	ΓAL					1.00	GLB
		1.00				1.00	1.00]
)7	FLETE							
	FLETE TERRESTRE						1.00	GLB
07.01	LETE IEUKEOTKE						1.00	OLD.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

		Diseño		N° de elem.	N° de	Long.		•	Longit	ud (m) por	·ø		
	DESCRIPCIÓN	del Acero	DIAMETRO	iguales	piezas x elemento	x pieza	1/4" 0.25	3/8" 0.56	1/2"	5/8" 1.56	3/4" 2.24	1" 3.98	Peso kg
04.07.02	ACERO FY= 4200 KG/CM2 EN LOSA												
	Acero Longitudinal CAPA SUPERIOR	an and the second second	1/2"	1	21	37.60			805.39				
LOSA	Acero transversal CAPA SUPERIOR	त्र्यात्मा इत्या स्रोतात् वर्णात्मा इत्यास्या	5/8"	4	150	4.4				4118.40			
	Acero Longitudinal CAPA INFERIOR		1/2"	1	21	37.60			805.39				
·	Acero transversal CAPA INFERIOR		1/2"	4	150	4.4			2692.80				1
			TOTAL DE KILO		***		0.00	0.00		4118.40	0.00		
			Inclueyndo el 7	% de traslape	\$		0.00	0.00	4604.83	4406.69	0.00	0.00	9011.52
04.08.03	ACERO FY= 4200 KG/CM2 EN VEREDA	SARDINELES	/ <u></u>										
	Acero Longitudinal CAPA SUPERIOR	.स्वकृति वेद्ववस्यात्वस्य । स्व सम्बद्धाः स्वतः ।	3/8"	2	3	37.60		126.34					
LOSA	Acero transversal CAPA SUPERIOR	- See geginnik nigitigi Sirrigi Amusi -	1/2"	2	150	1.4			428.40				
V	Acero Longitudinal CAPA INFERIOR		3/8"	1	. 4	37.60		84.22					
	Acero transversal CAPA INFERIOR		1/2" OTAL DE KILO	2	150	1.05	0.00	210.56	321.30 749.70	0.00	0.00	0.00	ļ

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA
SANCHEZ CARRION, REGION LA LIBERTAD

	DESCRIPCIÓN	Diseño		N° de elem.	N° de	Long.				ud (m) po]
	DESCRIPCIÓN	del	DIAMETRO	iguales	piezas x	x	1/4"	3/8"	1/2"	5/8"	3/4"	1"	Pes
		Acero			elemento	pieza	0.25	0.56	1.02	1.56	2.24	3.98	kg
04.02.03	ACERO FY= 4200 KG/CM2 EN ESTRIE	30											
9 I,	Acero vertical de estribo	report on a real description	1"	2	32	11.20						2852.86	1
MIERIOR	acero longitudinal	A STATE OF THE STATE OF THE STATE OF	5/8"	2	64	6.35				1267.97			
ERIC	Acero vertical de estribo 2h/3	agarapa dalah dala	1"	2	33	7.00							
MIL	Caivala da astriba	vertical	5/8"	2	21	2.15				140.87			
	Cajuela de estribo	transversal	5/8"	2	13	6.35				257.56			
	Acero vertical de estribo	grangen and a superior and a superior	3/4"	2	46	10.16					2093.77		ĺ
. 0-	acero longitudinal de estribo	in an or and may real experience.	1/2"	2	48	6.35			621.79				
KERIOR		vertical	5/8"	2	21	3.55				232.60			
Cle.	Cajuela de estribo	transversal	5/8"	2	. 13	6.35				257.56			
,1-	Cajuela de esulbo	base long	3/4"	2	64	1.60							
		base trans	5/8"	2	6	6.35				118.87			
		7	OTAL DE KILO	<u>s</u>			0.00	0.00	621.79	2275.42		2852.86	
,,		,	Inclueyndo el 7	% de traslape	s		0.00	0.00	665.32	2434.70	2240.34	3052.56	8392
75			-										
4.03.03	ACERO FY= 4200 KG/CM2 EN ALETA	S											
NOR	Acero vertical de aleta		3/4"	4	25	10.30	·		<u> </u>		2307.20		1
ďO.		SAME AND SAME AND SAME AS A SAME AND A SAME	2.48	 							4700.01		ı

03.04.03.03	ACERO FY= 4200 KG/CM2 EN ALE	TAS											
<u>a</u>	Acero vertical de aleta		3/4"	1 4	25	10.30	r '	1		I	2307.20		٦ .
MERIOR	Acero vertical de aleta 2h/3		3/4"	4	26	7.3					1700.61		1
IMIL	Acero longitudinal	longitudinal	5/8"	. 4	52	5.60				1817.09]
JOK	Acero vertical de aleta	· Topulation to photographic process and an arrangement of	3/4"	4	33	10.30	*				3045.50		
ALIES.	Acero longitudinal		1/2"	4	41	5.60			936.77				
EXTERIOR		And the little of the control of the	3/8"	4	11	5.60		137.98]
		TOTAL DE KILOS							936.77	1817.09	7053.31	0.00	
		. II	ncluevndo el 7	% de traslape	S		0.00	147.64	1002.34	1944.28	7547.04	0.00	10641.31

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE. EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

	: 31	Diseño		N° de elem.	N° de	Long.			Longit	ud (m) po	r Ø		
	DESCRIPCIÓN	del	DIAMETRO	iguales	piezas x	х	1/4"	3/8"	1/2"	5/8"	3/4"	1"	Pes
		Acero		[elemento	pieza	0.25	0.56	1.02	1.56	2.24	3.98	kg
		- : · · · · · · · · · · · · · · · ·											
.01.02	CONCRETO F'C=210 KG/CM2 EN ZAPA	TAS			· — · · · · · · · · · · · · · · · · · ·								Promisi i ar, miriga
								,					-
	Acero principal de Zapata superior-	and the plant of the second	1"	2	32	8.00						2037.76	
E	Estribo		<u> </u>				ļ						4
S T	Acero secundario de Zapata superior- Estribo	An eminent of the Annual Contract Sec.	1"	2	36	8.45			i			2421.43	
R	Acero principal de Zapata inferior - Estribo	and the state of t	1"	2	32	8.00						2037.76	
B	Acero secundario de Zapata inferior- Estribo	राष्ट्रकारामा हरमोद्ध होई १,५५ हेन्सकारी र करना	1"	2	36	8.45						2421.43	
S	Acero de montaje principal		1"	2	4	7.3						232.43	1
	Acero de montaje secundario	extension single-party activities properties	1"	2	4	6.9						219.70	1
7	Acero principal de Zapata superior-	Central	1"	4	27	6.45						2772.47	1
	Aletas	Derecho	1"	4	4	4.05						257.90	
Α	Aletas	Izquierdo	1"	4	1	6.45						102.68	
L E	Acero secundario de Zapata superior- Aletas	and the second s	1"	4	27	7.55						3245.29	
Т		Central	1"	4	36	6,45						3696.62	
Α	Acero principal de Zapata inferior-	Derecho	1"	4	4	4.05						257.90	
S	Aletas	Izquierdo	1"	4	1	6.45						102.68	
	Acero secundario de Zapata inferior- Aletas	स्कृतकोञ्जा राजनसङ्ग्रास्त्रका के जनसङ्ग्र	1"	4	36	7.55			·			4327.06	
	Acero de montaje principal		1"	4	4	5.4						343.87	
	Acero de montaje secundario		1"	4	4	6.9		<u></u>				439.39	
	TOTAL DE KILOS							0.00	0.00	0.00	0.00	24916.39	
		المبيرين بالمحاصين كالنائن سبالا	nclueyndo el 7		·		0.00	0.00	0.00	0.00	0.00	26660.54	25660

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

INSUMOS

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10

Página:

MDS

Precios y cantidades de recursos requeridos por tipo

Obra	0491015	CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA. DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD
Subpresupuesto Fecha	001 24/06/2014	CONSTRUCCION DE PUENTE CARROZABLE EL BOSQUE

Lugar LA LIBERTAD - SANCHEZ CARRION - SANAGORAN 130906

Código	Recurso	Unidad	Cantidad	Precio S/.	Parcial S/.Pre	supuestado (
		MANO DE	OBRA			
0147000022	OPERADOR DE EQUIPO LIVIANO	hh	69.0649	15.20	1,049.71	1,049.99
	OPERADOR DE EQUIPO PESADO	hh	204.3307	15.20	3,105.82	3.116.26
	TOPOGRAFO	hh	204.5307	15.20	3,103.82	313.77
01470100032						
		hh	6,318.3613	12.90	81,506.84	81,536.38
0147010003		hh	4.698.8941	15.20	71,423.13	71,249.00
0147010004		hh	9,597,5683	11.54	110,755.96	110.746.70
0147010023	CONTROLADOR OFICIAL	hh	13.1147	15.20	199.27	187.35
					268,353.55	268,199.45
		MATERI	ALES			
	ALAMBRE NEGRO RECOCIDO # 16	kg	3,902.2844	3.81	14,867.69	15,051.67
0202000008	ALAMBRE NEGRO RECOCIDO # 8	kg	198.6420	3.81	756.82	754.83
	CLAVOS PARA MADERA C/C 3"	kg	191.2908	3.81	728.81	728.04
0202010062	CLAVOS PARA MADERA C/C PROME		0.4200	3.81	1.60	1.60
0202020004	" CLAVOS Fo No C/C 3"	l.m.	00.4000	2.04	400.00	420.00
		kg Kg	33.1688	3.91	129.69	130.09
	PERNO CABEZA DE COCHE 1/4" x 2 1		4.0000	3.81	15.24	15.24
0202050052	PERNO DE ANCLAJE C/TUERCA 1"x0 m.	.6 pza	16.0000	25.00	400.00	400.00
0202140001		und	6.0000	0.37	2.22	2.22
0202460096			192.0000	11.25	2,160.00	2,160.00
0202460097	PERNO C/TUERCA-ARANDELA 7/8"X1		1,024.0000	9.75	9,984.00	9,984.00
0202460099	1/2" PERNO C/TUERCA-ARANDELA 13/8"X 1/2"	(1 und	560.0000	12.25	6,860.00	6,860.00
0202460100	PERNO C/TUERCA-ARANDELA 5/8"X1	und	2,368.0000	8.25	19,536.00	19,536.00
0203030088	FIERRO FY=4200 K/CM2	kg	58,534.2660	2.72	159,213.21	159,436.19
	ARENA FINA	m3	0.5452	175.00	96.25	95.4
	ARENA GRUESA LIMPIA DE RIO	m3	1.4960	175.00	262.50	261.8
	PIEDRA CHANCADA DE 1/2"	m3	17.6385	170.00	2,998.80	2.998.5
0205000031						
		m3	226.8915	170.00	38,571.30	38,571.5
	ARENA GRUESA	m3	425.3652	175.00	74,439.75	74.438.9
0205020020		m3	0.0200	40.00	0.80	0.8
0205020023		m3	468.8320	95.00	44,538,85	44,539.04
0205020051	MARMOL GRIS ANDINO 0.30 X 0.50 e=2cm	und	1.0000	250.00	250.00	250.0
0205030076	MATERIAL GRANULAR DE CANTERA	m3	205.2000	25.00	5,130.00	5,130.00
0221000000	CEMENTO PORTLAND TIPO I (42.5KG		5,433.4929	18.38	99.867.55	99,864.4
0221000095	· ·	BOL	246.3600	35.00	8,622.60	8,622.6
0229010064		gin	15.1001	127.12	1,919.51	1,917.2
		-				•
	MASILLA (bolsa de 30 KG)	BOL	15.1001	42.37	639.79	640.6
0229120065	NEOPRENE REFORZADO CON R DE GALVANIZADAS E=1" (24"X12")	1/ una	2.0000	225.00	450.00	450.00
0229500091		kg	28.4000	11.86	336.82	336.8
0230550056		hm	234.9400	90.00	21,144.60	21,144.6
0232000054		GLB	1.0000	35.544.73	35,544,73	35,544.7
	ACCESOS PROVISIONALES CON MADERA	GLB	1.0000	2,000.00	2,000.00	2,000.00
0238000004		m3	0.1000	60.00	6.00	6.0
0239050000		m3	102.6089	1.00	102.61	100.4
0239050100			1.0000	10,500.00	10,500.00	10,500.0
	PERFIL A36 L 21/2"x21/2"x5/16	m m	145.0400	225.00	32,634.00	32,634.0
	1 MINI 16 MOV 6 41/6 X41/4 XJ/10	111	140.0400	223.00	JZ,UJ4.UU	JZ,UJ4.U
	MADERA TORNILLO	p2	54.0000	7.00	378.00	378.00

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10

Página :

2

MDS

Precios y cantidades de recursos requeridos por tipo

Obra	0491015 CONSTRUCCION DE DISTRITO DE SANAG	L-PUENT		L BOSQUE, EI		
Subpresupuesto Fecha					· · · · · · · · · · · · · · · · · · ·	
Lugar	130906 LA LIBERTAD - SANG	CHEZ CA	RRION - SANAGOR	AN		
Código	Recurso	Unidad	Cantidad	Precio SI.	Parcial S/,Pre	esupuestado (
0243010033	MADERA TORNILLO DE 2" X 3" X 8'	pza	768.7344	28.00	21,524.44	21,524.56
0243130092	MADERA DE EUCALIPTO	p2	180.0000	2.50	450.00	450.00
0243400033	SEÑALES INFORMATIVA DE 90 X 200	und	1.0000	450.00	450.00	450.00
0243580014	CM PARANTE DE MADERA DE EUCALIPTO DE 2.5"X L=2.5	und	384.8100	3.00	1,154.43	1,154.43
0244010039	ESTACA DE MADERA	pza	235.6200	0.50	117.81	117.81
0244030021	TRIPLAY DE 4'x8'x 4 mm	pln	60.0000	20.33	1,219.80	1,219.80
0244030028	GIGANTOGRAFIA	m2	10.0000	19.25	192.50	192.50
0245010001	MADERA TORNILLO INC.CORTE	p2	4,141.2134	4.50	18,635.45	18,636.87
0245010002	P/ENCOFRADO TRIPLAY DE 19 MM.	pln	151.0014	84.74	12,795.74	12,793.94
	VIGA DE ACERO W 14x74 (L=20')	pza	4.0000	1,775.00	7,100.00	7,100.00
	VIGA DE ACERO W 14x74 (L=20')	pza	38.0000	1,630.00	61.940.00	61.940.00
	VIGA DE ACERO W 14x145 (L=20')	pza	12.0000	2,880.00	34,560.00	34,560.00
	VIGA DE ACERO W 14x143 (L=20')	pza	14.0000	530.00	7,420.00	7,420.00
	VIGA DE ACERO W 21x73 (L=20')	pza	14.0000	1.760.00	24,640.00	24.640.00
	VIGA DE ACERO W 27x114 (L=20')	pza	8.0000	2,800.00	22,400.00	22,400,00
	PERFIL DE ACERO WT4X24- A36 (L=20)		28.0000	325.00	9,100,00	9,100.00
0251200034	JUNTA DE DILATACION 2" X 4" X 1/2"		7.2000	125.00	900.00	900.00
0054000040	CON ANCLAJE DE 3/8" @.25		4 7400		50.07	57.00
0254020042		gin	1.7390	33.89	58.97	57.80
0254200001	PINTURA ANTIOXIDANTE	gin	101.8780	46.61	4,748.63	4,747.51
0254210021	ANTICORROSIVO EPOXICO	gln	81.5024	23.14	1,885.91	1,884.74
025444005	THINER ACRILICO	gln	40.7512	8.00	326.00	326.01
0256010099	CALAMINA	pln	14.4000	18.00	259.20	259.20
0256020101	PLANCHA ACERO 1"x 0.60m x 0.52m	pln	8.0000	75.00 16.00	600.00	600.00
0265910004 0273010007	CARTELA METALICA DE 1/2" A-36 TUBO PVC SAL 2" X 3M	und pza	120.0000 26.9280	5.00	1,920.00 134.65	1,920.00 134.64
		•		-	829,623.27	830,015.32
		EQL	IPOS		025,025.27	030,013.32
0337010001	HERRAMIENTAS MANUALES	%MO			8,091.33	8,091.33
	CAMION VOLQUETE 15 M3.	hm	225.0393	190.00	42,757.60	42,755,88
0348080000	MOTOBOMBA 10 HP 4"	hm	5.5548	20.00	111.00	113.32
0348110007	VOLQUETE DE 15 M3	hm	8.0000	200.00	1,600.00	1,600.00
0348120002	CAMION CISTERNA 4X2 (AGUA) 2,000	hm	5.5548	100.00	555.00	555.48
0348130006	GAL. CAMION PLATAFORMA, 17 TN	hm	16.0000	190.00	3,040.00	3.040.00
	MAQUINA SOLDADORA	hm	72.2649	25.00	1.806.50	1.806.49
	GENERADOR DE ELECTRICIDAD	hm	152.9049	35.00	5,351.50	5.351.91
	COMPRESORA NEUMATICA 87 HP 250-330 PCM	hm	147.8440	85.00	12.566.40	12.566.74
0349030001	COMPACTADOR VIBR. TIPO PLANCHA HP	· hm	805.2654	25.00	20,131.75	20.128.04
0349030007	RODILLO LISO VIBR AUTOP 101-135HP 10-12T		4.6892	125.00	586.25	586.02
0349030013	RODILLO LISO VIBR AUTOP 70-100 HP 7-9 T.		3.4268	125.00	428.75	428.87
0349040011	CARGADOR S/LLANTAS 160-195 HP 3.5 YD3.		56.7061	190.00	10,774.90	10.772.53
0349040023	RETROEXCAVADOR S/ORUG 115-165H .75-1.4Y		70.5445	290.00	20,456.60	20.447.68
0349040034 0349060006	TRACTOR DE ORUGAS DE 190-240 HP MARTILLO NEUMATICO DE 29 Kg.	hm hm	65.5736 295.6880	290.00 25.00	19,015.30 7,392.25	19.016.35 7.392.20
	·			Fect	na : 25/06/20 1	14 06;42:28a.m.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

S10

Página:

3

MDS

Obra

Precios y cantidades de recursos requeridos por tipo

0491015 Subpresupuesto 001 Fecha 24/06/2014

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA. DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

CONSTRUCCION DE PUENTE CARROZABLE EL BOSQUE

Lugar 130906 LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

Código	Recurso	Unidad	Cantidad	Precio S/.	Parcial S/.P	resupuestado (
0349060012	BARRENOS	hm	295.6880	25.00	7,392.25	7,392.20
0349070004	VIBRADOR DE CONCRETO 4 HP 2.40"	hm	178.6957	20.00	3,574.00	3,573.79
0349090000	MOTONIVELADORA DE 125 HP	hm	3.4268	170.00	583.10	582.77
0349090013	MOTONIVELADORA DE 145-160 HP	hm	4.6892	170.00	797.30	803.09
0349100011	MEZCLADORA CONCRETO TROMPO 8 HP 9 P3	hm	178.6957	30.00	5,361.00	5,360.84
0349900013	TALADRO ELECTRICO	hm	83.8400	12.00	1,006.08	1,005.60
•		y			173,378.86	173,371.13
	·			Total S/.	1,271,355.67	1,271,585.90
				S/.		1.271.585.90

La columna parcial es el producto del precio por la cantidad requerida; y en la última columna se muestra el Monto Real que se está utilizando

Fecha:

25/06/2014 06:42:28a.m.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

FORMULA POLINÓMICA

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANGHEZ CARRION, REGION LA LIBERTAD

S10 MDS

Página :

Fórmula Polinómica - Agrupamiento Preliminar

Presupuesto

Moneda

0491015

CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA,

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Subpresupuesto

001 CONSTRUCCION DE PUENTE CARROZABLE EL BOSQUE 24/06/2014

Fecha presupuesto

NUEVOS SOLES

Indice	Descripción	% Inicio	% Saldo Agrupamiento
02	ACERO DE CONSTRUCCION LISO	4.374	0.000
03	ACERO DE CONSTRUCCION CORRUGADO	12.538	16.912 +02
04	AGREGADO FINO	0.028	0.000
05	AGREGADO GRUESO	13.049	13.077 +04
21	CEMENTO PORTLAND TIPO I	8.532	21.749 +51
29	DOLAR	0.263	0.000
30	DOLAR (GENERAL PONDERADO)	1.663	2.708 +29+73+65+54+56
32	FLETE TERRESTRE	2.795	2.795
37	HERRAMIENTA MANUAL	0.636	0.000
38	HORMIGON	0.000	0.000
39	INDICE GENERAL DE PRECIOS AL CONSUMIDOR	3.400	3.400
43	MADERA NACIONAL PARA ENCOF. Y CARPINT.	2.041	4.633 +44+45
44	MADERA TERCIADA PARA CARPINTERIA	0.120	0.000
45	MADERA TERCIADA PARA ENCOFRADO	2.472	0.000
47	MANO DE OBRA INC. LEYES SOCIALES	21.092	21.092
48	MAQUINARIA Y EQUIPO NACIONAL	4.343	13.634 +49+37
49	MAQUINARIA Y EQUIPO IMPORTADO	8.655	0.000
51	PERFIL DE ACERO LIVIANO	13.217	0.000
54	PINTURA LATEX	0.552	0.000
56	PLANCHA DE ACERO LAC	0.068	0.000
65	TUBERIA DE ACERO NEGRO Y/O GALVANIZADO	0.151	0.000
73	DUCTO TELEFONICO DE PVC	0.011	0.000
	Total	100.000	100.000

Fecha: 36/2014 07:17:31a.m.

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ-CARRION, REGION LA LIBERTAD

S10

MDS

Página

Fórmula Polinómica

Presupuesto

0491015 CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE, EN CASERIO DE CARACMACA

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

Subpresupuesto

001 CONSTRUCCION DE PUENTE CARROZABLE EL BOSQUE

Fecha Presupuesto

24/06/2014

Moneda

NUEVOS SOLES

Ubicación Geográfica

130906 LA LIBERTAD - SANCHEZ CARRION - SANAGORAN

K = 0.211*(Mr / Mo) + 0.421*(CAr / CAo) + 0.177*(AMr / AMo) + 0.164*(MFr / MFo) + 0.061*(IDr / IDo)

Monomio	Factor	(%) Símbolo	indice	Descripción
1	0.211	100.000 M	47	MANO DE OBRA INC. LEYES SOCIALES
2	0.421	40.143	03	ACERO DE CONSTRUCCION CORRUGADO
		51,781 CA	21	CEMENTO PORTLAND TIPO I
3	0.177	74.011 AM	05	AGREGADO GRUESO
		25.989	43	MADERA NACIONAL PARA ENCOF, Y CARPINT,
4	0.164	17.073	32	FLETE TERRESTRE
		82.927 MF	· 48	MAQUINARIA Y EQUIPO NACIONAL
5	0.061	44.262	30	DOLAR (GENERAL PONDERADO)
		55.738 ID	39	INDICE GENERAL DE PRECIOS AL CONSUMIDO

Fecha:)14 07:16:21a.m.

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA.

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ANEXOS N° 9: PANEL FOTOGRÁFICO

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

IMAGEN N° 01: Vista de la situación actual de la zona de estudio

IMAGEN N° 01: Vista de la situación actual de los accesos

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

IMAGEN N° 03: Inicio del estudio topográfico para el puente

IMAGEN N° 04: Vista del tipo de socavación genera en el rio

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA, DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

IMAGEN Nº 05: Excavación de calicatas en el margen derecho C1

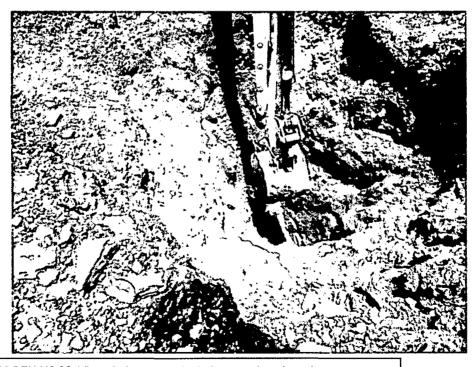


IMAGEN N° 06: Vista de la presencia de la roca el cual se cimentara

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

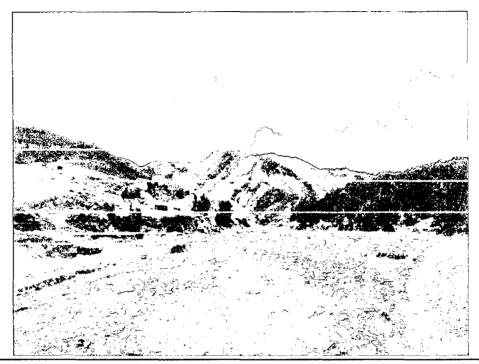


IMAGEN N° 07: Vista de la cuenca del cual discurre el agua por el lecho del rio

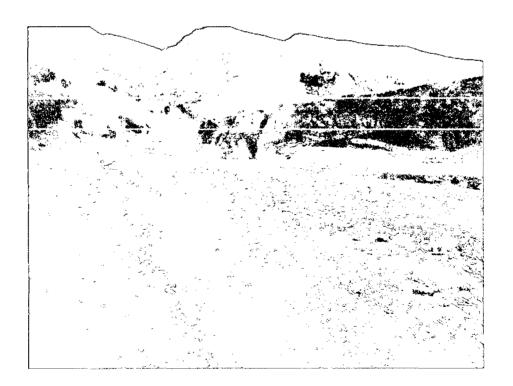


IMAGEN N° 08: Vista del tipo de erosión que se genera en el lecho del rio

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ANEXOS N° 10: PROGRAMACIONES DE OBRA

VER TOMO DE PLANOS

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

ANEXOS Nº 11: PLANOS

VER TOMO DE PLANOS

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA.

DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

INDICE DE TABLAS

TABLA N° 1: Distancias de acceso con respecto a Huamachuco	8
TABLA N° 2: Clasificación del terreno según el ángulo de inclinación	12
TABLA Nº 3: Elección de la equidistancia para curvas de nivel	13
TABLA N° 4: Tamaño relativo de las cuencas hidrográficas	14
TABLA N° 5: Valores críticos de Δt para la prueba de Smirnov – Kolmogorov de bondad de ajuste	19
TABLA N° 6: Coeficientes de escorrentía	22
TABLA № 7: Coeficiente de rugosidad "n" a utilizar en la fórmula de Manning	24
TABLA N° 8: Valores del coeficiente β	26
TABLA N° 9: Valores del diámetro del material	27
TABLA N° 10: Coeficiente de contracción µ	27
TABLA N° 11: Valores del coeficiente correctivo Pα en función de α	29
TABLA N° 12: Valores del coeficiente Pq en función de Q1/Q	
TABLA № 13: Valores del coeficiente correctivo P _R en función de R	29
TABLA N° 14: Sistema Unificado de Clasificación; símbolos de grupo para suelos tipo grava	
TABLA N° 15: Tabla De Clasificación S.U.C.S	41
TABLA N° 16: Factores de capacidad de carga modificados de Terzaghi	42
TABLA N° 17: Parámetros característicos del suelo	43
TABLA N° 18: limites de graduado fino	
TABLA N° 19: Límites de graduado grueso	
TABLA N° 20: Clase de Carretera por la Topografía	
TABLA N° 21: Distancia de Velocidad de Parada	
TABLA N° 22: Elementos de Curva	
TABLA N° 23: Fricción Transversal Máxima en Curvas	
TABLA N° 24: Radios mínimos y peraltes máximos	
TABLA N° 25: Índice K para el cálculo de la Longitud de Curva vertical Convexa	
TABLA N° 26: Índice para el cálculo de la Longitud de Curva vertical Cóncava	
TABLA N° 27: Pendientes Máximas	
TABLA N° 28: Dimensiones mínimas de Cunetas.	
TABLA N° 29: Longitudes mínimas de transición de bombeo Y transición de peralte (m)	
TABLA N° 30: Taludes de Corte	
TABLA N° 31: Taludes de relleno	
TABLA N° 32: Modificación por número de vías cargadas	
TABLA N° 33: Incremento por carga dinámica	
TABLA N° 34: Combinaciones de Carga y Factores de Carga	
TABLA N° 35: Factores de Carga para Cargas Permanentes γ _P	
TABLA Nº 36: Factor de Corte Diferido para Conexiones de Miembros en Tracción	
TABLA N° 37: Selección para las aplicaciones en secciones	
TABLA N° 38: Garganta Efectiva de Soldaduras de tope con Junta de Penetración Parcial	
TABLA N° 39:Tamaño de Soldadura Efectiva Soldaduras de tope Biseladas	
TABLA N° 40: Espesor Mínimo de Garganta Efectiva	
TABLA N° 41: Tamaño Minimo de Stadua de Pete.	
TABLA N° 42:Pretensión Mínima de Pernos, kips*	
TABLA N° 43:Pretensión Tensión Nominal de Conectores y Partes Roscadas, kgf/cm ² (MPa)	
TABLA N° 44: Dimensiones de Agujero Nominal, in	
TABLA N° 45: Distancia Mínima al Borde ^[a] , in, desde el Centro del Agujero Estándar ^[b] hasta el Borde de la Parte)
Conectada	104
TABLA N° 46: Coeficiente de fricción	117

FACULTAD DE INGENIERIA

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA,
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ-CARRION, REGION LA LIBERTAD

INDICE DE FIGURAS

Figura 1: Croquis con una distribución frecuente de estribos	28
Figura 2: cueva de distribución granulométrica	
Figura 3: Límites de Atterberg	
Figura 4: Carta de plasticidad	
Figura 5: Elementos De Curva Horizontal	
Figura 6: Tipos De Puentes Según Su Luz Libre	
Figura 7: Características del camión de diseño	
Figura 8: sección de vigas con agujero para pasadores	
Figura 9: Estribo en voladizo de concreto armado	113

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL: CONSTRUCCION DEL PUENTE CARROZABLE EL BOSQUE EN EL CASERIO DE CARACMACA
DISTRITO DE SANAGORAN, PROVINCIA SANCHEZ CARRION, REGION LA LIBERTAD

BIBLIOGRAFÍA

(s.f.).

AASTHO. (2001). DISEÑO DE PUENTES.

ACI. (1994).

AISC. (2005).

ARMCO. (1958). MANUAL DE DRENAJE Y PRODUCTOS DE CONSTRUCCION.

Badillo, E. J. (2010). mecanica de suelos tomo I. Mexico: Lumusa.

Badillo, E. J. (2010). MECANICA DE SUELOS TOMO I. MEXICO: LIMUSA.

Badillo, E. J. (s.f.). mecanica de suelos tomo I.

Belándria, R. E. (2008).

Chow, V. T. (1994). HIDROLOGIA APLICADA. BOGOTA: COPYRIGHT.

Das, B. M. (1989). FUNDAMENTOS DE INGENIERIA GEOTECNICA. MEXICO: COPYRIGHT.

Felices, A. R. (1998). Hidráulica de tuberías y canales. Capítulo II.

Gálvez, F. E. (1981). TOPOGRAFIAS.

Ghilan, P. R.-C. (1997). Topografía 11° edicion.

Goza, U. N. (2007).

Herrera, P. A. (1980).

Mantilla, J. H. (1996). estructuras.

Manual Para Diseño de Carreteras. (s.f.).

Matera, L. C. (2003). *TOPOGRAFIA PLANA*. Venezuela: Publicaciones de Ingeniera ULA.

Mijares, F. A. (1992). Hidrologia superficial. Mexico: Limusa.

Ministerio de Transportes y Comunicaciones. (2008). Manual Para el Diseño de Carreteras no Pavimentadas de Bajo Volumen de Tránsito. Lima.

Morán, W. C. (1989). MECANICA DE FLUIDOS. LIMA.

MTC. (2007). Manual de diseño de puente. Lima: Instituto de la construccion y gerencia. NTP. (2006).

Ortiz, J. M. (1989).

Pastor, L. (2006).

Reyes, E. R. (2003).

Reyes, L. C. (1992). HIDROLOGIA BASICA. LIMA: CONCYTEC.

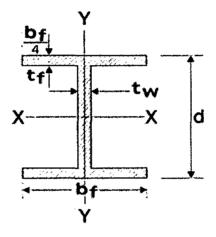
Ripoll, V. C. (1997).

Valdivieso, F. O. (2011). HIDROLOGIA 1.

Villon, B. M. (2011). HIDROLOGIA. LIMA: MAXSSOF.

Wicke, M. W. (s.f.). MANUAL DE MECANICA DE SUELOS.

VIGAS "H" ALAS ANCHAS (WF) STANDARD AMERICANO


<u>Descripción:</u> Producto de sección transversal en forma de H, que se obtiene por Laminación de Tochos precalentados hasta una temperatura de 1250°C.

Usos: Estructuras metálicas, puentes, edificios, grúas.

PROPIEDADES MECANICAS

MODELA TECNICA	F	R	Α	NORMA EQUIVALENTE
NORMA TECNICA	Kg/mm ²	Kg/mm ²	%	
 ASTM A-36	25.3 min	41min	20 min	JIS G-3101 SS400
ASTM A-572 GR 50	35.2 min	46min	16 min	DIN 17100 St 52.3
 ASTM A-992	35.2 min	46min	18 min	JIS G-3106 SM490 YA

* Ver 1.5 Planchas y Vigas para puentes

DIMENSIONES, PESO UNITARIO Y CARACTERISTICAS DE LA SECCIÓN

DESIGNACION			AREA DE	ALTURA	A	LA	ESPESOR .	~~~		EJE X-)	(UE Y-1	
			A	đ	ANCHO	espeson	ŧw.	PESO Ka/m	1	S	•	1	S'	P 0
Pu:	lg x lb.	/pse	Pelg. ²	Pulg.	Pulg.	Pulg.	Puig.		Polg. ⁴	fg. ⁴ Pulg. ³	Polg.	Pulg.4	Pulg.3	Pulg.
4	×	13	3.83	4.16	4.060	0.345	0.280	19.35	11.3	5.46	1.72	3.86	1.90	1.00
6	ж	9	2.68	5.90	3.940	0.215	0.170	13.39	16.4	5.56	2.47	2.20	1.11	0.905
6	ж	12	3.55	6.03	4.000	0.280	0.230	17.86	22.1	7.31	2.49	2.99	1.50	0.918
6	х	15	4.43	5.99	5.990	0.260	0.230	22.32	29.1	9.72	2.56	9.32	3.11	1.46
6	х	16	4.74	6.28	4.030	0.405	0.260	23.81	32.1	10.20	2.6	4.43	2.20	0.967
6	x	20	5.87	6.20	6.020	0.365	0.260	29.76	41.4	13.40	2.66	13.30	4.41	1.50
6	×	25	7.34	6.38	6.080	0.455	0.320	37.20	53.4	16.70	2.7	17.10	5.61	1.52
8	×	10	2.96	7.89	3.940	0.205	0.170	14.88	30.80	7.81	3.22	2.09	1.06	0.841
8	×	15	4.45	8.11	4.015	0.315	0.245	22.32	48.0	11.80	3.29	3.41	1.70	0.876
8	×	18	5.26	8.14	5.250	0.330	0.230	26.79	61.9	15.20	3.43	7.97	3.04	1.23

	TRADI S.A. VIGAS "H" ALAS ANCHAS (WF) STANDARD AMERICANO													
8	X	21	6.16	8.28	5.270	0.400	0.250	31.25	75.3	18.20	3.49	9.77	3.71	1.26
8	×	24	7.08	7.93	6.495	0.400	0.245	35.72	82.8	20.90	3.42	18.30	5.63	1.61
8	×	28	8.25	8.06	6.535	0.465	0.285	41.67	98,0	24.30	3.45	21.70	6.63	1.62
В	x	31	9.13	8 00	7.995	0.435	0.285	46.13	310.0	27.50	3.47	37.10	9.27	2.02
8	x	35	10.30	8.12	8.020	0.495	0.310	52.09	127.0	31.20	3.51	42.60	10.60	2.03
8	×	40	11.70	8.25	8.070	0.560	0.360	59.53	146.0	35.5	3.53	49.10	12.20	2.04
8	×	48	14.10	8.50	8.110	0.685	0.400	71.43	184.0	43.30	3.61	60.90	15.00	2.08
10	x	17	4.99	10.11	4.010	0.330	0.240	25.30	81.9	16.20	4.05	3.56	1.78	0.845
10	x	19	5.62	10.2	4.02	0.395	0.250	28.3	96.3	18.8	4,14	4.29	2.14	0.87
10	×	22	6.49	10.17	5.750	0.360	0.240	32.74	118.0	23.20	4.27	11.40	3.97	1.33
10	x	26	7.61	10.33	5.770	0.440	0.260	38.69	144.0	27.90	4.35	14.10	4.89	1.36
10	×	30	8.84	10.47	5.810	0.510	0.300	44.64	170.0	32.40	4.38	16.7	5.75	1.37
10	x	33	9.71	9,73	7.960	0.435	0.290	49.11	170.0	35.00	4.19	36.60	9.20	1.94
10	×	39	11.5	9.92	7.99	0.530	0.315	58.0	209.0	42.1	4.27	45.0	11.3	1.98
10	×	42	12.40	9.70	10.075	0.415	0.420	62.50	210.0	43 4	4.13	71,70	14.20	2.41
10	×	45	13.30	10.10	8.020	0.620	0.350	66.97	248.0	49.10	4.33	53.40	13.30	2.01
10	×	49	14.40	9.98	10.000	0.560	0.340	72.92	272.0	54.60	4.35	93.40	18.70	2.54
10	×	54	15.80	10.1	10.00	0.615	0.370	80,40	303.0	60.0	4.37	103.0	20.60	2.56
10	×	60	17.60	10.22	10.080	0.680	0.420	89.29	341.0	66.70	4.39	116.00	23.00	2.57

			AMIA DE	ACTUBA	A	LA	ESPESOR		. 1	延 X -)	((EJE Y-Y	y 5
	BNA		A	đ	MOIO	E2785-08	tw	PESO Ka/m	1	S	•	r	S'	r r
pus	g x %	/pre	Pulp.2	Polg.	Pole.	Pulg.	Polg.	, , , , , , , , , , , , , , , , , , ,	Pulg. ⁴	Polg. ³	Polg.	Polg. ⁴	Ndg.3	Polg.
10	×	68	19.9	10.4	10.1	0.770	0.470	101.2	394.0	75.7	4,44	134.0	26.4	2.59
17	×	19	5 57	12 16	4.000	0 350	0.235	28 28	130 0	21 30	4 87	3 76	1 68	0 822
12	×	26	7 65	12.22	6.490	0.380	0.230	38.69	204.0	33.4	5.17	17.30	5.34	1.51
12	×	30	8.79	12.34	6.520	0.440	0.260	44.64	238.0	38.6	5.21	20.30	6.24	1.52
12	×	35	10 30	12 50	6.560	0 520	0 300	52 09	285 0	45 6	5 75	24 50	7 47	1 54
12	×	40	11.80	11.94	8.005	0.515	0.295	59.53	310.0	51.9	5.13	44.10	11.00	1.93
12	×	45	13.1	12.1	8.05	0.575	0.335	67.0	348.0	57.7	5.15	50.0	12.4	1.95
12	×	53	15 60	12 06	9.995	0.575	0.345	78.87	425 0	70.6	5.23	95 80	19.20	2.48
12	×	53 HP	15 50	11 78	12.045	0,435	0.435	78.87	393.0	66.8	5.03	127.00	21.10	2.86
12	×	58	17.0	12.2	10.0	0.640	0.360	86.4	475.0	/8.0	5.28	107.0	21.4	2.51
12	×	65	19 10	12 12	12,000	0 605	0,390	96 73	533 0	87 9	5 28	174 00	29 10	3.07
12	×	72	21.10	12.25	12.240	0.670	0.430	107.10	597.0	97.4	5.31	195.OD	32.40	3.04
12	×	79	23 20	12.38	12.000	0.735	0.470	117.60	662.0	1070	5.34	216.00	35.80	3.05
12	×	87	25 6	125	12 10	0 810	0 515	129 5	740 0	1180	5.38	241 0	39 7	3 07
12	×	96	28.2	12.7	12.2	0.900	0.550	143.0	833.0	131.0	5.44	270.0	44.4	3.09
12	×	120	35.2	13.1	12.3	1.11	0.710	178.6	1070.0	163.0	5.51	345.0	56.0	3.13
14	×	22	6 49	13 74	5.000	0.335	0.230	32.74	199.0	29.0	5.54	7 00	2.80	1.04
14	_	74	7 40	120	6 02	A 43A	n see	20 7	715 0	26.3	E &E	9.01	7 66	1 00

-		RO						VIG				CHAS (
1	RAD	S.A.				,			ST.	ANDA	RD AN	MERICA	NO	
• "1		20	7.07	14.7	دب.د	U.74U	درد.	20.	27.0	د.دد	ره.د	Q.7 I	رو.د	1.00
14		30	8.85	13 84	6./30	0.385	0.2/0	44.64	291.0	42.0	5.73	19.60	5.82	1.49
14	×	34	10 00	13 98	6.745	0 455	0.285	50 60	340 0	48 6	5 83	73 30	6 91	1 53
14	×	3B	11 20	14 10	6.770	0.515	0.310	56.55	385.0	54.6	5.87	26 70	7.88	1.55
14	×	43	12 60	13 66	7.995	0.530	0.305	63.99	428 0	62.7	5.82	45 20	11.30	1.89
14	×	48	14 10	13 79	8.030	0 595	0.340	71 43	485 0	70 3	5.85	51 40	12 80	1 91
14	×	53	15.60	13.92	8.060	0.660	0.370	78.87	541.0	77.B	5.89	57.70	14.30	1.92
14	×	61	17.90	13 89	9.995	0.645	0.375	90.78	640.0	92 2	5.98	107 00	21.50	2,45
14	×	68	20 00	14 04	10.035	0.720	0.415	101.20	723 0	103.0	6 01	121 00	24.20	2.46
14	×	71	21.80	14.17	10.070	0.785	0.450	110.10	796.0	112.0	6.04	134.00	26.60	2.48
14	×	82	24.10	14.31	10.130	0.855	0.510	122.00	882.0	123.0	6.05	148.00	29.30	2.48
14	×	90	26 50	14 02	14,520	0 710	0.440	133 90	9990	143.0	6 14	362 0	49,90	37
16	×	26	7 68	15 69	5.500	0 345	0,250	38.69	301.0	38.4	6.26	9.59	3.49	1.12
16	×	31	9.13	15.9	5.53	0.440	0.275	46.2	3/5.0	47.2	6.41	12.4	4.49	1,17
16	×	36	10 60	15.86	6.985	0 430	0.295	53 57	448 0	56 5	6 51	24 50	7 00	1 52
16	×	40	11.80	16,01	6.995	0.505	0.305	59.53	518.0	64.7	6.63	28.90	8.25	1.57
16	×	45	13.30	16.13	7.035	0.565	0.345	66.97	586.0	72.7	6.65	32 80	9.34	1.57

DIMENSIONES, PESO UNITARIO Y CARACTERISTICAS DE LA SECCIÓN

			AREA DE SECCION	ALTURA	A	LA	ESPESOR MANA	PESO		IJ€ X-)	(. 1	EJE Y-1	
	IGNA	CION /pie *	A	d	ANCHO	espesor	ŧw	Kg/m		\$	7	P	S'	*
pon	g x ~~	/ poo	Pulg. ²	Polg.	Polg.	Polg.	Polg.	,	Polg. ⁴	Polg. ³	Polg.	Polg.4	Polg. ³	Polg.
16	ж	50	14,7	16.3	7.07	0.630	0.380	74.4	659.0	81.0	6.68	37.2	10.5	1.59
16	×	57	16.80	16.43	7.320	0.715	0.430	84.83	758.0	92.2	6.72	43.10	12.10	1.6
16	×	67	19.6	16.3	10.2	0.665	0.395	99.7	954.0	137.0	6.96	119.0	23.2	2.46
16	×	77	22.6	16.5	10.3	0.760	0.455	114.6	1110.0	134.0	7.00	138.0	26.9	2.47
18	×	35	10.30	17.70	6.000	0.425	0.300	52.09	510.0	57.6	7.04	15.30	5.12	1.22
18	×	40	11,80	17.90	6.015	0.525	0.315	59.33	612.0	68.4	7.21	19.10	6.35	1.27
18	×	46	13.5	18.1	6.06	0.605	0.360	68.5	712.0	78.8	7.25	22.5	7.43	1.29
18	×	50	14.70	17.99	7.495	0.570	0.355	74.41	800.0	88.9	7.38	40.10	10.70	1.65
18	x	55	16.20	18.11	7.530	0.630	0.390	81.85	890.0	98.3	7.41	44.90	11.90	1.67
18	×	60	17.6	18.2	7.56	0.695	0.415	89,3	984.0	108.0	7 47	50.1	13.3	1 68
18	ж	65	19.10	18.35	7.590	0.750	0.450	96.73	1070.0	117.0	7.49	54.80	14.40	1.69
18	×	76	22.30	18.21	11.035	0.680	0.425	113.10	1330,0	146.0	7.73	152.00	27.60	2.61
18	×	86	25.30	18.39	11.090	0.770	0.480	128.00	1530.0	166.0	7.77	175.00	31.60	2.63
18	×	106	31.1	18.7	11.2	0.940	0.590	157.8	1910.0	204.0	7.84	220.0	39.4	2.66
18	×	158	46.3	19,7	11.3	1.44	0.810	235.2	3060.0	310.0	8.12	347.0	61.4	2.74
21	ж	44	13.00	20.66	6.500	0.750	0.350	65.18	843.0	81.6	8.06	20.70	6.36	1.26
21	×	62	18.30	20.99	8.240	0.615	0.400	92.27	1330.0	127.0	8.54	57.50	13.90	1.77
21	×	68	20.00	21.13	8.270	0.685	0.430	101.20	1480.0	1400	8.6	64.70	15.70	1.8
21	×	73	21.50	21.24	8.295	0.740	0.455	108.60	1600.0	151.0	8.64	70.60	17.00	1.81
24	×	55	16.20	23.57	7.005	0.505	0.395	81.85	1350.0	114.0	9.11	29.10	8.30	1.34

VIGAS "H" ALAS ANCHAS (WF) STANDARD AMERICANO

24	X	62	18.2	23.7	7.04	0.590	0.430	92.3	1550.0	131.0	9.23	34.5	9.80	1.38
24	*	68	20,10	23.73	8.965	0.585	0.415	101.20	1830.0	154.0	9.55	70.40	15.70	1.87
24	×	76	22.40	23.92	8,990	0.680	0.440	113.10	2100.0	176.0	9.69	82.50	18.40	1.92
24	×	84	24.70	24.10	9.020	0.770	0.470	125.00	2370.0	196.0	9.79	94.40	20.90	1.95
24	x	94	27.70	24,31	9.065	0.875	0.515	139.90	2700.0	222.0	9.87	109.00	24.00	1.98
24	×	104	30.60	24.06	12.750	0.750	0.500	154.80	2100.0	258.0	10.1	259.00	40.70	2.91
24	×	117	34.40	24.26	12.800	0.850	0.550	174.10	3540.0	291.0	10.1	297.00	46.50	2.94
27	*	84	24.80	26.71	9.960	0.640	0.460	125.00	2850.0	213.0	10.7	106.00	21.20	2.07
27	*	114	33.6	27.3	10.1	0.930	0.570	169.7	4080.0	299.0	11.0	159.0	31.5	2.18

^{*} Longitud Standard: 20'y 30'

I = Momento de inercia

S = Módulo de sección alrededor del eje

r = Radio de rotación alrededor del eje