
UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERÍA CIVIL

PROYECTO PROFESIONAL

"PARROQUIA DE SAN AGUSTÍN - CAJAMARCA"

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO CIVIL

PRESENTADO POR LA BACHILLER: CHÁVEZ CARRILLO LESLIE JANETH

CAJAMARCA - PERÚ 2013

ASESORES

 $\label{localized} \mbox{Ing. MARCOS MENDOZA LINARES} $$ MCs Arq. FRANCISCO URTEAGA BECERRA$

AGRADECIMIENTO

Primero y antes que nada, dar gracias a Dios y a la virgen, por su compañía en cada paso que doy, por fortalecer mi corazón e iluminar mi mente, por haber puesto en mi camino a aquellas personas que me enseñaron el valor de la amistad durante mi vida universitaria.

A mis maestros que con sus enseñanzas y ejemplo, forjaron en mí conocimientos que me ayudarán a ser mejor profesional.

Un agradecimiento especial a mis asesores: Ing. Marcos Mendoza Linares y Arq. Francisco Urteaga Becerra, que con sus conocimientos y amistad colaboraron en la realización de este proyecto.

Finalmente agradecer a todas y cada una de las personas que han vivido conmigo la realización de esta tesis, por haberme brindado su apoyo, ánimo, cariño y amistad.

DEDICATORIA

Con mucho amor y gratitud a mi madre, Irma, que con sus consejos, paciencia, ejemplo y sacrificio me ha enseñado a ser una mejor persona, gracias por tu confianza y darme la oportunidad de culminar esta etapa de mi vida.

A mis abuelos, Natividad y Fabián que con su sabiduría me han ayudado a ser quien soy, gracias por enseñarme los verdaderos valores en especial el valor de la familia, siempre estarán en mis oraciones.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "Parroquia de San Agustín"

ÍNDICE GENERAL

Nro.	Pág
RESUMEN 01	13
CAPÍTULO I0	14
I. INTRODUCCIÓN0	15
1.1. OBJETIVOS	15
1.2. ANTECEDENTES DEL PROYECTO	.5
1.3. PLANTEAMIENTO DEL PROYECTO	16
1.4. ALCANCES	16
1.5. JUSTIFICACIÓN 0	16
1.6. CARACTERÍSTICAS LOCALES0	17
1.7. RECURSOS MATERIALES0	17
CAPÍTULO II - MARCO TEÓRICO01	18
CAPÍTULO II - MARCO TEÓRICO	
	19
2.1. INFORMACIÓN SOCIOECONÓMICA0	19 19
2.1. INFORMACIÓN SOCIOECONÓMICA 0 2.1.1. Definiciones 0	19 19 19
2.1. INFORMACIÓN SOCIOECONÓMICA 0 2.1.1. Definiciones 0 2.1.2. Determinación del tamaño de la muestra 0	19 19 19 21
2.1. INFORMACIÓN SOCIOECONÓMICA 0 2.1.1. Definiciones 0 2.1.2. Determinación del tamaño de la muestra 0 2.1.3. Determinación de la población de diseño 0	19 19 19 21 21
2.1. INFORMACIÓN SOCIOECONÓMICA 0 2.1.1. Definiciones 0 2.1.2. Determinación del tamaño de la muestra 0 2.1.3. Determinación de la población de diseño 0 2.2. TOPOGRAFÍA 0	19 19 19 21 21 21
2.1. INFORMACIÓN SOCIOECONÓMICA 0 2.1.1. Definiciones 0 2.1.2. Determinación del tamaño de la muestra 0 2.1.3. Determinación de la población de diseño 0 2.2. TOPOGRAFÍA 0 2.2.1. Definiciones 0	19 19 19 21 21 21
2.1. INFORMACIÓN SOCIOECONÓMICA 0 2.1.1. Definiciones 0 2.1.2. Determinación del tamaño de la muestra 0 2.1.3. Determinación de la población de diseño 0 2.2. TOPOGRAFÍA 0 2.2.1. Definiciones 0 2.2.2. Tipos De Levantamiento Topográfico 0	19 19 19 21 21 21 21 22
2.1. INFORMACIÓN SOCIOECONÓMICA 0 2.1.1. Definiciones 0 2.1.2. Determinación del tamaño de la muestra 0 2.1.3. Determinación de la población de diseño 0 2.2. TOPOGRAFÍA 0 2.2.1. Definiciones 0 2.2.2. Tipos De Levantamiento Topográfico 0 2.2.3. Métodos De Levantamiento Topográfico 0	19 19 21 21 21 21 22
2.1. INFORMACIÓN SOCIOECONÓMICA 0 2.1.1. Definiciones. 0 2.1.2. Determinación del tamaño de la muestra. 0 2.1.3. Determinación de la población de diseño. 0 2.2. TOPOGRAFÍA. 0 2.2.1. Definiciones. 0 2.2.2. Tipos De Levantamiento Topográfico. 0 2.2.3. Métodos De Levantamiento Topográfico. 0 2.2.4. Etapas De Un Levantamiento Topográfico. 0	19 19 21 21 21 21 22 22 22 23

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

2.3.3. Extracción De Muestras	024
2.3.4. Clasificación E Identificación De Suelos	024
2.3.5. Ensayos De Laboratorio	027
A) Contenido De Humedad (W%)	027
B) Peso Específico	028
C) Análisis Granulométrico	028
D) Límites De Consistencia	029
E) Consolidación	029
2.3.7. Capacidad Portante Del Suelo	030
2.3.8. Carga Admisible	032
2.3.9. Cálculo de Asentamientos	033
2.4. ARQUITECTURA	033
2.4.1. Elementos De Una Iglesia Católica Romana	033
2.4.2. Requerimientos De Ambientes Y Áreas	035
2.4.3. Distribución Del Sonido	038
2.4.4. Aislamiento Del Sonido	038
2.4.5. Parámetros Arquitectónicos Generales	039
2.5. ESTRUCTURAS	040
2.5.1. Estructuración y metrado de cargas	041
2.5.2. Análisis de Edificios.	042
2.5.3. Análisis Estructural	044
2.5.4. Análisis sísmico de Cimentaciones	•
2.5.5. Pre dimensionamiento de elementos estructurales	046
2.5.6. Diseño de elementos estructurales de concreto armado	049
2.6.7. Diseño de estructuras de acero	060
2.6. INSTALACIONES ELÉCTRICAS	062
2.6.1. Definiciones	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"	

2.6.2. Alumbrado Eléctrico para Edificios	.062
2.6.3. Iluminación y Sistemas de Iluminación	.063
2.6.4. Clases de Iluminación.	.063
2.6.5. Alumbrado General	.064
2.6.6. Circuito de Fuerza	.069
2.6.7. Sistema de Puesta a tierra	073
2.7. INSTALACIONES SANITARIAS.	.075
2.7.1. Sistema de abastecimiento de agua	.075
2.7.2. Cálculo de redes Interiores De Distribución De Agua	.076
2.7.3. Sistema de desagüe	083
2.7.4. Sistema De Colección Y Evacuación De Aguas De Lluvia	.086
2.8. ESTUDIO DE IMPACTO AMBIENTAL	089
2.8.1. Generalidades.	.089
2.8.2. Definiciones.	.090
2.8.3. Principales Métodos Del Estudio De Impacto Ambiental	.090
2.8.4. Matriz de interacción.	.091
CAPÍTULO III - METODOLOGÍA	.093
3.1. INFORMACIÓN SOCIOECONÓMICA	.094
3.1.1. Análisis poblacional	.094
3.1.2. Situación socio económica	.094
3.1.3. Determinación de la población de diseño	.097
3.2. TOPOGRAFÍA	.097
3.3. MECÁNICA DE SUELOS.	.097
3.3.1. Ubicación De Calicatas	.097
3.3.2. Exploración De Suelos	.097

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

3.3.3. Extracción De Muestras09	98
3.3.4. Clasificación de Suelos) 9
3.3.5. Ensayos De Laboratorio	00
3.3.6. Capacidad Portante	03
3.3.7. Carga Admisible	03
3.3.8. Cálculo de Asentamientos	03
3.4. ARQUITECTURA)4
3.4.1. Diseño Arquitectónico	04
3.5. ESTRUCTURAS)7
3.5.1. Cargas de diseño)7
3.5.2. Métodos de diseño	08
3.5.3. Materiales empleados	08
3.5.4. Predimensionamiento de elementos estructurales	08
3.6. INSTALACIONES ELÉCTRICAS	3
3.6.1. Diseño de alumbrado	13
3.6.2. Diseño de conductores	14
3.7. INSTALACIONES SANITARIAS.	15
3.7.1. Sistema de abastecimiento de agua	15
3.7.2. Sistema de desagüe y ventilación	16
3.7.3. Sistema de recolección y evacuación de aguas de lluvia	16
3.8. ESTUDIO DE IMPACTO AMBIENTAL	16
3.8.1. Identificación y valoración de impactos ambientales	17
3.8.2. Análisis y discusión de resultados de la evaluación del imparambiental	
3.8,3, Matrices	22
CAPÍTULO IV – PRESENTACIÓN DE RESULTADOS	23

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "Parroquia de San Agustín"

4.1. INFORMACIÓN SOCIO ECONÓMICA	124
4.2. TOPOGRAFÍA	124
4.3. MECÁNICA DE SUELOS	125
4.4. ARQUITECTURA	146
4.5. ESTRUCTURAS.	147
4.5.1. Generalidades	147
4.5.2. Método de diseño	147
4.5.3. Diseño de escalera	152
4.6. INSTALACIONES ELÉCTRICAS.	155
4.6.1. Sistema de alumbrado	139
4.7. INTALACIONES SANITARIAS	167
4.7.1. Sistema de abastecimiento de agua	167
4.7.2. Sistema de desagüe	173
4.7.3. Sistema de colección y evacuación de agua de lluvia	173
4.8. ESTUDIO DE IMPACTO AMBIENTAL	175
Cap. V CONCLUSIONES Y RECOMENDACIONES	
Cap. VI BIBLIOGRAFÍA	
Cap. VII PANEL FOTOGRÁFICO	
ANEXOS	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

ÍNDICE DE PLANOS

1. UBICACIÓN

- Plano De Ubicación: U - 01

2. TOPOGRAFÍA

- Plano Topográfico: T - 01

3. ARQUITECTURA

- Arquitectura Primer Nivel: A 01
- Arquitectura Segundo Nivel: A 02
- Arquitectura Tercer Nivel: A 03
- Arquitectura Cuarto Nivel: A 04
- Techos: A 05
- Elevaciones: A 06
- Cortes Y Elevaciones: A 07.
- Cortes: A 08

4. ESTRUCTURAS

- Cimentaciones: E 01
- Estructuras Elevaciones I Edificio: E 02
- Estructuras Elevaciones II Edificio: E 03
- Estructuras Elevaciones III Edificio: E 04
- Estructuras Elevaciones IV Edificio: E 05
- Estructuras Elevaciones V Edificio: E 06
- Estructuras Elevaciones VI Edificio: E 07
- Estructuras Elevaciones V II- Edificio: E 08
- Estructuras Elevaciones VIII Edificio: E 09
- Estructuras Elevaciones VIII Edificio: E 10
- Losas: E 11
- Techos capilla: E 12

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

5. INSTALACIONES ELECTRICAS

- Instalaciones Eléctricas 1° Edificio : IE 01
- Instalaciones Eléctricas 2° Y 3° Nivel Edificio : IE 02
- Instalaciones Eléctricas 4° Nivel Edificio : IE 03

6. INSTALACIONES SANITARIAS

- Instalaciones Sanitarias Red De Agua y Desagüe Primer Nivel : IS 01
- Instalaciones Sanitarias Red De Agua y Desagüe Segundo Y Tercer Nivel : IS 02
- Instalaciones Sanitarias Red De Agua y Desagüe Cuarto Nivel- Isometría : IS 03
- Instalaciones Sanitarias Drenaje pluvial: IS 04

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

RESUMEN

El proyecto profesional Parroquia de San Agustín – Cajamarca, se ubica en la intersección del Jr. Los topacios y Av. Huáscar (anteriormente Av. La Cantuta) – Urb. de Docentes y no docentes de la Universidad Nacional de Cajamarca, el terreno consta de un área de 646.48m² que es propiedad del Obispado de Cajamarca, el diseño tiene por finalidad la realización del expediente técnico a nivel de ejecución.

Los requerimientos y necesidades funcionales especificados en este proyecto obedecen a lo estipulado en el Reglamento Nacional de Edificaciones de acuerdo al tipo de edificación, y tratándose de una parroquia se la clasifica como edificación esencial.

El proyecto consta de siete partes, primero el estudio de la topografía la que se hizo con estación total de donde se obtuvo una topografía de tipo llana con pendiente promedio del 0.04%, la segunda es la parte arquitectónica para la que se usó los lineamientos del RNE 2009; la tercera parte es el estudio de mecánica de suelos de donde se concluye que el tipo de suelo es una arcilla inorgánica, con una capacidad portante de 0.67 Kg/cm2, por lo que se diseñó una platea de cimentación para el edificio y zapatas conectadas para la capilla; la cuarta parte es el análisis y diseño estructural para lo que se utilizó la Norma E-020 de cargas, la Norma E-030 Diseño Sismo resistente, la norma E-060 de concreto armado y la norma E-070 de albañilería, además del programa computacional Etabs versión 9.63, concluyendo en una estructura de sistema de tipo dual para el edificio y un sistema aporticado para la capilla; la quinta parte comprende las instalaciones eléctricas en la que se usó la norma EM-010 para las instalaciones eléctricas interiores que concluye en un sistema monofásico; la sexta parte son las instalaciones sanitarias con la norma IS-010 instalaciones sanitarias para edificaciones, donde se obtuvo el diseño para un sistema indirecto de agua, se realizó el diseño del desagüe y sistema de agua de lluvia; finalmente la séptima parte es la que corresponde al estudio de impacto ambiental para el que se usó bibliografía especializada y se diseñó la matriz de identificación, la matriz cromática y la matriz de Leopold.

Como en todo expediente técnico también se consideró las especificaciones técnicas, los costos y presupuestos obteniendo un monto para la ejecución de S/1, 314, 699.46

Finalmente se plantearon conclusiones y recomendaciones con la finalidad de lograr que se plasme el proyecto en una obra concreta con las condiciones previstas en su concepción de diseño.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

CAPÍTULO I

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

1. INTRODUCCIÓN

El proyecto consta en la elaboración de un expediente técnico de una edificación, que beneficiará a la población de diseño, es por esto que se debe tener especial cuidado en el diseño, tomando en cuenta las normas estipuladas dentro del reglamento nacional de edificaciones vigente.

Conociendo el crecimiento de población y tratándose de un proyecto de bien social, es que la Universidad Nacional de Cajamarca hace posible este proyecto a nivel de ejecución, cumpliendo así su labor de proyección a la comunidad, y para ello me hice presente en su representación ante la Diócesis de Cajamarca representada por la persona de Monseñor José Carmelo Martínez Lázaro, como Bachiller para la elaboración de dicho proyecto.

1.1. OBJETIVOS

1.1.1 GENERAL:

✓ Elaborar el proyecto profesional a nivel de ejecución: Parroquia de San Agustín, a fin de obtener el título profesional de Ingeniero Civil.

1.1.2 ESPECÍFICOS:

- ✓ Realizar el estudio de suelos, el diseño arquitectónico, estructural, eléctrico, sanitario y de impacto ambiental, para la elaboración del proyecto.
- ✓ Diseñar la estructura optimizando costos y recursos, a fin de que el proyecto resulte financiable para la entidad.
- ✓ Elaborar la memoria de cálculo, especificaciones técnicas y planos.

1.2. ANTECEDENTES DEL PROYECTO

El presente proyecto Parroquia de San Agustín, surge ante la necesidad de los pobladores de la zona, de una labor pastoral continua, y es por ello que dicha necesidad se dio a conocer al Obispo de la Diócesis de Cajamarca Monseñor José Carmelo Martínez Lázaro, y a la Universidad Nacional de Cajamarca, para que se elabore de manera formal un proyecto a nivel de ejecución de una parroquia; en la actualidad los pobladores de la Urb. De docentes y no docentes acuden a escuchar misa y realizar trabajo social en otras parroquias, como las del centro de la ciudad, las que se encuentran a una distancia alejada de la zona. Considerando que en dicha urbanización se cuenta con un terreno para estos fines, y que pertenece al

TO CAMBRIDATE OF THE PARTY OF T

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Obispado, es que me veo incentivada a colaborar en la elaboración del proyecto definitivo de la Parroquia de San Agustín.

1.3. PLANTEAMIENTO DEL PROYECTO

La necesidad de un lugar para realizar labor pastoral y social en la Urb. de los docentes y no docentes de la Universidad de Cajamarca, ha motivado a los pobladores de esta zona para que se organicen y soliciten al Obispo la construcción de una parroquia, ya que ésta cuenta con un área destinada para este fin.

1.4. ALCANCES

Por medio del presente proyecto profesional se buscó rescatar el fundamento de universalidad del catolicismo y la siembra de valores, por lo que se pensó en un diseño integrado entre la arquitectura, estructuras, instalaciones eléctricas e instalaciones sanitarias, de la capilla y edificio que ayude a este fin.

1.5. JUSTIFICACIÓN

En la actualidad el Obispado de Cajamarca en su afán de servir y evangelizar a la comunidad Católica de nuestra ciudad, ha venido descentralizando su labor pastoral, y es así que se viene extendiendo en distintas zonas como es el caso de la Urb. de los docentes y no docentes de la Universidad de Cajamarca; así como pobladores de zonas aledañas, concibiendo de esta manera el proyecto de la denominada Parroquia de San Agustín.

Teniendo en cuenta que la población católica de acuerdo al último censo realizado por el Instituto Nacional de Estadística e Informática INEI, sobrepasa el 70%, en la ciudad de Cajamarca y considerando que la mayoría de templos católicos se encuentran en el centro de la ciudad o a distancias muy lejanas y de dificil acceso para los residentes de la urbanización y, que el deseo de la gran mayoría de personas que residen en esta zona, es la de contar con un lugar de recogimiento espiritual, estructuralmente seguro y con un diseño más moderno en comparación con los templos existentes actualmente.

Es por esto que en coordinación con la junta directiva de la urbanización, con el Obispo de Cajamarca y luego de realizar un censo en el que refleja el gran porcentaje de fieles católicos practicantes que residen dentro del área de influencia, se decide la construcción de una capilla además de otras áreas, como salón parroquial, área administrativa y aulas para catequesis. El

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

tema se planteó en concordancia con la política de desarrollo de la Facultad de Ingeniería de la Universidad Nacional de Cajamarca, en materia de proyección social.

1.6. CARACTERÍSTICAS LOCALES

1.6.1. Ubicación

Distrito: Cajamarca.

• Provincia: Cajamarca.

• Departamento: Cajamarca

1.6.2. Características locales:

Altitud:

2678 m.s.n.m.

• Clima:

Templado - Seco.

• Temperatura media anual: 13 °C

• Norte:

9207910.9

• Sur:

776428.5

• Cuenca:

Río Marañón.

• Sub Cuenca:

Río cajamarquino.

1.6.3. Zona sísmica:

• Alta sismicidad (Zona 3)

1.7. RECURSOS MATERIALES

Para la ejecución del presente proyecto se han empleado, entre otros, los siguientes recursos materiales:

- Equipo topográfico.
- 01 Laptop pavilium dv6
- 01 impresora canon láser shop LBP-1120
- Material de escritorio.
- Materiales y equipo de la impresión
- Laboratorio de mecánica de suelos.
- Movilidad.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "Parroquia de San Agustín"

CAPÍTULO II-MARCO TEÓRICO

S COMMON TO THE PROPERTY OF TH

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

2.1. INFORMACIÓN SOCIOECONÓMICA

Teniendo un área de influencia de aproximadamente 35 hectáreas cuyos límites son: Av. Vía de evitamiento norte, Av. Atahualpa, Av. La Cantuta, y el río San Lucas; por no contar con datos precisos del número de familias católicas; se realizó una encuesta para analizar este aspecto, y así obtener información para la elaboración del proyecto "Parroquia de San Agustín".

Los resultados de la encuesta aplicada, nos dieron a conocer el número exacto de población católica; así mismo, podemos explicar algunas razones del por qué elaborar el proyecto Parroquia de San Agustín.

2.1.1. Definiciones

Población

Conjunto de individuos, constituido de forma estable, ligado por vínculos de reproducción e identificado por características territoriales, políticas, jurídicas, étnicas o religiosas.

Población de diseño

Es la población que permite calcular el espacio físico que ocupará un determinado proyecto, y que puede ser fácilmente calculado mediante métodos de análisis poblacional, utilizando muestreo o a partir de otros criterios según sea la naturaleza del proyecto, por ejemplo en lo que respecta a este proyecto se utilizará el método de muestreo, debido a que se trata a una población variable en referencia a la concurrencia a las celebraciones de actos litúrgicos.

Período de diseño

El periodo de diseño es por definición el tiempo que transcurre desde la iniciación del servicio, hasta que por falta de capacidad o desuso, sobrepasan las condiciones establecidas en el proyecto; consideraré un período de diseño de 30 años.

2.1.2. Determinación del tamaño de la muestra

Para determinar la población de diseño se consideran los siguientes pasos:

A. Descripción del proceso utilizado

La encuesta servirá para reflejar las costumbres, tradiciones y la religión que practican la población a encuestar de manera más consistente.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

a.1) Elaboración de la ficha socio-económica.

Esta ficha ha sido elaborada de tal forma que se pueda obtener información sobre la cantidad de católicos, y las necesidades que tienen de contar con un templo donde puedan practicar su religión. Se tiene las siguientes partes:

- Informativa: Número de integrantes por familia, edad, grado de instrucción, actividades religiosas en la semana.
- Descriptiva: Tipo de actividad religiosa y la frecuencia, a qué iglesia asiste y a qué distancia se encuentra, tipo de trabajo social que realiza.
- La última parte refleja la opinión de los encuestados acerca de la realización de este proyecto.

a.2) Tamaño de la muestra:

El realizar la encuesta en toda el área de influencia sería muy extenso es por eso que opta por realizar un proceso de muestreo aleatorio simple; mediante el cual, a través de una muestra representativa, podemos generalizar los resultados obtenidos en toda el área. Es necesario aclarar que la encuesta fue aplicada a una muestra de viviendas, para obtener datos más reales. El tamaño de la muestra se determina mediante las siguientes fórmulas:

Cuando el universo es mayor o igual a 100 000 habitantes

$$n \ge Z^2 \times P \times Q \dots (Ec. - 01)$$

$$E^2$$

Cuando el universo es menor a 100 000 habitantes

$$n \ge \underbrace{N \times Z^2 \times P \times Q}_{E^2 \times (N-1) + Z^2 \times P \times Q} \dots (Ec. - \theta 2)$$

Donde:

n = Tamaño de muestra

P = Proporción adecuada

E = Error máximo tolerable en la estimación

Z = Coeficiente del 95% de confiabilidad.

Q = Proporción Complementaria

N = Tamaño Poblacional (en este caso # de viviendas)

(Suárez, Mario-2012)

ORGENSAMOOD OF THE PROPERTY OF

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

a.3) Proceso de selección

El tamaño muestral fue distribuido mediante un proceso aleatorio simple al azar sin reposición (algunas viviendas de cada cuadra en toda la zona de influencia); obteniendo así resultados importantes para nuestro análisis.

a.4) Recojo de la información

La muestra fue seleccionada, luego de haber concluido la encuesta.

2.1.3. Determinación de la población de diseño

Al tamaño de la muestra se le aplicará finalmente una encuesta con el mayor criterio técnico, para así determinar en función a sus respuestas, la mayor posibilidad de asistencia a las diferentes celebraciones religiosas.

2.2. TOPOGRAFÍA

Para la realización de cualquier proyecto de ingeniería el primer paso es el levantamiento topográfico a través de cualquiera de los diferentes métodos, considerando el fin del proyecto, en el que se refleja todos los puntos del terreno o área donde se diseñarán los planos.

2.2.1. Definiciones

Topografía: Es la ciencia que tiene por objeto la medida y la representación gráfica de una porción de tierra indicando detalles de planimetría y altitud (cerros, ríos, árboles, etc), mediante la simbología topográfica.

(Torres, J.2004)

2.2.2. Tipos de levantamiento topográfico

Levantamientos planimétricos: Son aquellos en los que se representa al terreno en su proyección horizontal al que se le denomina Vista en Planta, esta representación no indica elevaciones ni depresiones del terreno.

Levantamientos altimétricos: Son aquellos en los que se tiene en cuenta la elevación y depresión del terreno que se está presentando por los perfiles longitudinales y secciones transversales.

(Torres, J.2004)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

2.2.3. Método de levantamiento topográfico

Se llama así al conjunto de operaciones que tienen por objeto la determinación relativa y ubicación de dos o más puntos ubicados sobre la superficie terrestre, estas operaciones consisten en medidas de distancias (horizontales o inclinadas), medida de ángulos (horizontales y verticales) y la toma de notas explicativas de las características de cada uno de estos puntos.

2.2.4. Etapas de un levantamiento topográfico

- A) Reconocimiento: Es la primera etapa de todo levantamiento topográfico y es uno de los más importantes, en esta etapa se debe tener en cuenta:
- a.1) Magnitud de trabajo: Para poder determinar el método, instrumentos y personal de apoyo a utilizar para el mejor desarrollo del trabajo de campo y de gabinete.
- a.2) Costo del trabajo: Estará supeditado a la naturaleza y tipo de terreno el que puede ser llano, ondulado, accidentado y montañoso, así como de la extensión de terreno a levantar, el que puede ser grande, mediano o pequeño.
- B) Organización de trabajo: La organización de trabajo dependerá del grado de precisión y de acuerdo a fines de levantamiento, factores que inciden en el método a utilizar. Para realizar una buena organización de un levantamiento topográfico se debe tener en cuenta:
- b.1) Rapidez y aceleración del trabajo.
- b.2) Claridad y sencillez en la toma de datos.
- b.3) Deberá existir concordancia entre el trabajo de campo y el de gabinete.
- b.4) Procurar que el personal esté debidamente capacitado.
- C) Trabajo de campo: El trabajo de campo comprende la recolección o toma de valores de distancias, ángulos ya sea horizontales y verticales en forma directa y notas explicativas de los diferentes puntos, así como la confección del croquis que nos servirá para hacer una interpretación y representación del terreno.
- D) Trabajo de gabinete: Se realiza dentro de una oficina, con los datos tomados en el terreno y las fórmulas matemáticas se pueden calcular los valores que nos servirá para el dibujo del terreno.

(Torres, J.2004)

TA CONTRACTOR OF THE PARTY OF T

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

2.3. MECÁNICA DE SUELOS

Es importante conocer las características propias del suelo en donde se ubicará la estructura de la parroquia, para poder determinar las dimensiones geométricas de la cimentación, los elementos estructurales que soportarán y distribuirán la carga uniformemente; y para asegurar que la estructura no tenga asentamientos importantes y que la misma no sea inestable. Los estudios de mecánica de suelos está normado por la Norma Técnica E-050 del Reglamento Nacional de Edificaciones, y en ella se consideran las exigencias mínimas.

2.3.1. Definiciones

Suelo: Delgada capa sobre la corteza terrestre de material que proviene de la desintegración y/o alteración física y/o química, de las rocas y de los residuos de las actividades de los seres vivos que sobre ella se asientan.

(Moreno, Isaac- 2004)

Arcillas: Son principalmente partículas sub-microscópicas en forma de escamas de mica, minerales arcillosos y otros minerales. Las arcillas se definen como partículas menores a 0.002 mm. Las arcillas se definen como aquellas partículas "que desarrollan plasticidad cuando se mezclan con una cantidad limitada de agua"

Limos: Son fracciones microscópicas de suelo que consisten en granos muy finos de cuarzo y algunas partículas en forma de escamas (hojuelas) que son fragmentos de minerales micáceos. Para que se clasifique como tal, el diámetro de las partículas de limo varía de 0,002 mm a 0,06 mm.

Suelos cohesivos: Son suelos que poseen características de cohesión y plasticidad. Dichos suelos pueden ser granulares con parte de arcilla o limo orgánico, que les im-porten cohesión y plasticidad, o pueden ser arcillas o limos orgánicos sin componentes granulares.

(Braja, M. 2001)

2.3.2. Exploración de suelos

En el Laboratorio de Mecánica de Suelos, es donde se va obtener los datos definitivos para el proyecto; para esto se debe saber el número de puntos de investigación con la siguiente tabla:

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Cuadro 2.01 Número de puntos de Investigación

Tipo de edificación	Número de puntos de investigación (n)					
A	1 cada 225 m2					
Urbanizaciones para viviendas, 3 por cada Ha. De terreno habilitad						
unifamiliares de hasta 3 pisos. (n)nunca será menos de tres excepto en						
casos indicados en RNE						

(FUENTE: RNE- 2009)

A) Sondeos exploratorios

Pozos a cielo abierto: Debe ser considerado como el más satisfactorio, ya que consiste en excavar un pozo de dimensiones suficientes para que un técnico pueda directamente bajar y examinar los diferentes estratos del suelo en su estado natural así como darse cuenta de las condiciones precisas referentes al agua contenida en el suelo. En estos pozos se pueden tomar muestras alteradas e inalteradas de los diferentes estratos que se haya encontrado.

(Juárez B, E/ Rico, A. 1998)

2.3.3. Extracción de muestras

Un muestreo adecuado y representativo es de vital importancia pues tiene el mismo valor que los ensayos en sí; a menos que la muestra obtenida sea verdaderamente representativa, cualquier análisis de la muestra sólo será aplicable a la propia muestra y no al material del cual procede, de ahí la necesidad de que el muestreo sea efectuado por el personal técnico conocedor de su trabajo.

(Mecánica de Suelos- UNI, 2007)

2.3.4. Clasificación e identificación de suelos

A) Sistema AASHTO (Asociación Americana de Funcionarios de Carreteras Estatales y del Transporte).

Este método, divide a los suelos en dos grandes grupos: Una formada por los suelos granulares y otra constituida por los suelos de granulometría fina. Y estos a su vez son clasificados en sub grupos, basándose en la composición granulométrica, el límite líquido y el índice de plasticidad.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Cuadro 2.02 Clasificación del suelo según AASHTO

Clasificación General	Materiales Granulares (35% o menos del total pasa el tamiz Nº 200)							Materiales limo-arcillosos (más del 35% del total pasa el tamiz N°200)			
Clasificación de	A	1	A-3		A	-2		A-4	A- 5	A-6	A-7
grupo	A-1-a	A-1-b		A-2-4	A-2-5	A-2-6	A-2-7				A-7-5 A-7-6
% de material que pasa el tamiz N° 10	50 máx.	51 máx.	51 mín.								
N° 40	15 máx.	25 máx.	10 máx.	35	35	35	35	36	35	36	36
N° 200	13 max.	23 max.	10 max.	máx.	máx.	máx.	máx	mín.	mín.	mín.	mín.
Características de la fracción que pasa el tamiz N° 40											
Limite Líquido, W _L				40 máx.	41 mín	40 máx.	41 mín	40 máx	41 mín	40 máx.	41 mín.
Índice Plástico, I _P	6 máx.	N.P.	10 máx	10 máx.	10 máx.	11 mín.	11 mín.	10 máx.	10 máx.	11 mín.	11 mín.
Índice de Grupo		0	0		0	4 n	náx.	8 màx.	12 máx.	16 màx.	20 màx.

(FUENTE: Mora, S. 1988)

B) Sistema SUCS (Clasificación Unificada de Suelos)

Este sistema, como la clasificación anterior, divide a los suelos en dos grandes grupos: granulares y finos. Un suelo se considera grueso si más del 50% de sus partículas se retienen en el tamiz # 200, y finos, si más de la mitad de sus partículas, pasa el tamiz # 200.

(Mora, S. 1988)

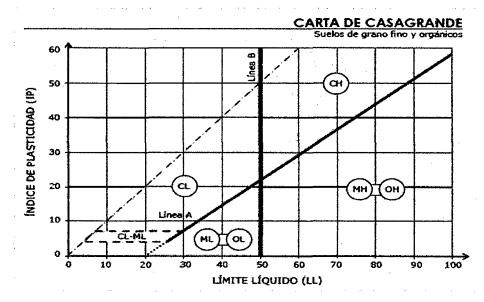
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

MEENLER!

"Parroquia de San Agustín"

Cuadro 2.03 Sistema Unificado de Clasificación de Suelos (SUCS)

	CLASIFIC	ACIÓN EN LA		CLA	SIFICAC	IÓN EN LA	BOR	ATOF	NO	
FINOS ≥ 50 % pasa Malla # 200 (0.08 mm.)				GRUESOS < 50 % pasa Malla # 200 (0.08 mm.)						
Tipo de Suelo	Símbolo	Lim. Liq.	Índice de Plasticidad	Tipo de Suelo	Símbolo	% RET Malla N° 4	% Pasa Malla N° 200	CU	СС	** IP
Limos Inorgánicos	ML	< 50	< 0.73 (WI - 20)		GW	٦ <u>٩</u>		> 4	1 a 3	
linorg,	МН	> 50	< 0.73 (wl – 20)	(Sravas	SEA GP	Ln 0.00m	< 5	≤6	<1ó>3	
as iras	CL	< 50	> 0.73 (wl - 20)	Ť	ى GM	1 -1.	. 10			< 0.73 (wl-20 ó <4
Arcillas Inorgánicas	CIT	- 50	V > 7	<u> </u>	GC	Ret 2	> 12			> 0.73 (wi-20) ó >7
	СН	> 50	> 0.73 (wl – 20)		SW	E		> 6	1 a 3	
Limos o Arcillas Orgánicos	OL	< 50	** wi seco al horno ≤ 75 % del wi	Агепаѕ	SP	50% de lu t. En 0.08 mm	< 5	≤6	<16>3	
Limo Arci Orgál	ОН	> 50	seco al aire	1 2 ×	SM					< 0.73 (WI-20) ó <4
ωχ		Materia oraáni	ica fibrosa se carboniza, se	1	SC	Ret	> 12			> 0.73 (wl-20) ý >7
Materia orgánica fibrosa se carboniza, se quema o se pone incandescente.						7 12% usar s W-SM, SP-	ímbolo doble SC.	como	GW-G	C,
Si IP \cong 0.73 (wl – 20) ó si IP entre 4 y 7 Si IP > 0.73 (wl – 20), usar símbolo doble:							ó si IP entre símbolo doble			1-SC.
CL-ML, CH-OH					En casos dudosos favorecer clasificación menos plástica					
** Si tiene olor orgánico debe determinarse adicionalmente wl seco					Ei: GW-GM en vez de GW-GC.					
En casos dudosos favorecer clasificación más plástica Ej: CH-MH en vez de CL-ML.					$CU = \underline{D60}$ $CC = \underline{D30^2}$					
	Si wl	= 50; CL-CH ó	ML-MH			D10				060 * D10


FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Gráfico 2.01

CARTA DE PLASTICIDAD PARA CLASIFICACIÓN DE SUELOS DE PARTÍCULAS FINAS EN EL LABORATORIO

FUENTE: (Mora, S. 1988.)

2.3.5. Ensayos de laboratorio

Estos ensayos se utilizan para identificar suelos de modo que puedan ser descritos y clasificados adecuadamente; los ensayos generales más comunes son:

- Contenido de humedad.
- Peso específico.
- Análisis granulométrico.
- Límites de consistencia
- Densidad Aparente
- Consolidación

(Ramirez, P. 2000)

A) Contenido de humedad (W%)

Es un ensayo que permite determinar la cantidad de agua presente en una cantidad dada de suelo en términos de su peso seco. El conocimiento de la humedad natural de un suelo no solo permite definir a priori el tratamiento a darle, durante la construcción, sino que también permite estimar su posible comportamiento, luego de la ejecución. Generalmente se expresa en porcentaje. Se calcula con la siguiente fórmula:

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

$$W(\%) = \frac{Ww}{Ws} * 100 \qquad ... \qquad (Ec.-03)$$

Donde:

Wh: Peso del suelo húmedo. (gr.)

Ws : Peso del suelo seco. (gr.)

Ww : Peso del agua contenida en la muestra de suelo (gr.)

(Llique, R. 2003)

B) Peso específico

Es la relación entre el peso y el volumen de las partículas minerales de la muestra del suelo. Los ensayos se realizan según el tipo de material: grava gruesa o piedra, arena gruesa y/o grava, material fino.

- Para partículas menores a 4.75 mm (Tamiz Nº 4) (MTC E 113 - 2000 basado en las Normas ASTM-D-854 y AASHTO-T-100), comprende a los Limos y Arcillas, se determina mediante la siguiente fórmula:

$$Gs = \frac{Wo}{Wo + W_2 - W_1} \qquad \dots (Ec. - 04)$$

Donde:

W2: Peso del picnómetro + agua (gr).

Wo: Peso del suelo seco (gr).

W1: Peso del picnómetro + agua + suelo (gr).

(Wihem, P. 1996)

C) Análisis granulométrico

Es una prueba para determinar cuantitativamente la distribución de las partículas de un suelo de acuerdo a su tamaño. Existente diferentes procedimientos para la determinación de la composición granulométrica de un suelo. Por ejemplo, para clasificar por tamaños las partículas gruesas, el procedimiento más expedito es de tamizado. Sin embargo, al aumentar la finura de los granos, el tamizado se hace cada vez más difícil teniéndose entonces que recurrir a procedimientos de sedimentación.

(Montejo, F. 2001)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

D) Límites de consistencia

Límite líquido (LL): Contenido de humedad que corresponde al límite arbitrario entre los estados de consistencia semilíquido y plástico de un suelo. El suelo con contenido de humedad menor a su límite líquido se comporta como material plástico.

Límite plástico (LP): Contenido de humedad que corresponde al límite arbitrario entre los estados de consistencia plástico y semisólido de un suelo. El suelo con contenido de humedad menor a su límite plástico se considera como material no plástico.

(Llique, R. 2003)

Índice de plasticidad (IP):

$$IP = LL - LP \qquad ... (Ec. - 05)$$

El Reglamento Nacional de edificaciones recomienda lo siguiente:

IP < 20 corresponde generalmente a limos.

IP > 20 corresponde generalmente a arcillas.

(Wihem, P. 1996)

Índice de grupo (IG):

$$IG=(F-35)*[0.2+0.005(LL-40)]+0.01*(F-15)*(IP-10) \dots (Ec. -06)$$

Donde:

F: % que pasa el tamiz Nº 200

LL: Límite líquido

IP: Índice de plasticidad

Cuadro 2.04 Características de Suelos Según sus Índices de Plasticidad

IP	CARACTERÍSTICAS	TIPOS DE SUELOS	COHESIVIDAD
0	No plástico	Arenoso	No cohesivo
< 7	Baja plasticidad	Limoso	Parcialmente cohesivo
7 - 17	Plasticidad media	Arcillo- limoso	Cohesivo
> 17	Altamente plástico	Arcilla	Cohesivo

(FUENTE: RNE, 2009.)

E) Consolidación

Cuando se somete a compresión a un suelo saturado, la disminución de su volumen se produce expulsando el agua contenida en sus poros, denominándose a este proceso

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

consolidación, a diferencia de la "compactación", que es la disminución de volumen que sufre un suelo no saturado por la expulsión de aire ocluido en sus intersticios.

Coeficiente de Consolidación
$$\longrightarrow$$
 $Cv = T_{50} * H^2_{50} \dots (Ec. - 07)$

Coeficiente de Compresibilidad
$$\longrightarrow$$
 $a=\underline{e2-e1}$... (*Ec.* - 08)

$$e = \frac{H_v}{H_S}$$
; $e = H_0 - H_w - \Delta H_n$; $H_w = \frac{V_w}{A_{amil}}$

Donde:

Cc: coeficiente de consolidación

H: espesor efectivo del estrato del suelo

t: tiempo correspondiente al factor T

S: asentamiento del estrato de suelo (arcilla o suelo fino saturado)

H: espesor del estrato de suelo

eo: índice de vacíos inicial

P0: tensión vertical efectiva inicial (antes de la aplicación de sobrecarga)

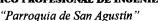
ΔP: incremento de tensión efectiva (o sobrecarga), la cual producirá la consolidación

C = Cc índice de compresibilidad que es la inclinación de la recta virgen de la curva

de consolidación en escala semi-logarítmica.

(Juarez B. - 1998)

2.3.6. Capacidad portante del suelo


Para comportarse satisfactoriamente, las cimentaciones superficiales deben tener dos características principales:

- La cimentación debe ser segura contra una falla por corte general del suelo que la soporta.
- La cimentación no debe experimentar un desplazamiento excesivo, es decir, un asentamiento excesivo. La carga por área unitaria de la cimentación bajo la cual ocurre la falla por corte en el suelo se llama capacidad de carga última. En materiales arenosos sueltos o arcillosos blandos la deformación puede crecer mucho al ser sometidos a cargas que se aproximen a la de falla, esto pudiese provocar que no se desarrolle un estado plástico completo, pero el asentamiento sería tal que obliga a considerar condición de falla. Este último caso sería el que Terzaghi define como de falla local.

(Braja, M. 2001)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Teoría de la capacidad de carga de Terzaghi

Usando el análisis de equilibrio, TERZAGHI expresó la capacidad de carga última en la forma:

Para cimientos corridos :
$$\mathbf{q_d} - \frac{2}{3} \mathbf{c} \, \mathbf{N'_c} + \mathbf{\gamma} \, \mathbf{D_f N'_q} + \frac{1}{2} \, \mathbf{\gamma} \, \mathbf{E} \, \mathbf{N'_{\gamma}} \dots (Ec. -09)$$

Para zapatas cuadrada :
$$\mathbf{q_d} = \mathbf{0.87} \, \mathbf{c} \, \mathbf{N'_c} + \mathbf{\gamma} \, \mathbf{D_f N'_q} + \mathbf{0.4} \, \mathbf{\gamma} \, \mathbf{B} \, \mathbf{N'_{\gamma}} \quad \dots \quad (Ec. -10)$$

Para zapatas circulares :
$$\mathbf{q_d} = \mathbf{0.87} \, \mathbf{c} \, \mathbf{N'_c} + \mathbf{\gamma} \, \mathbf{D_f N'_q} + \mathbf{0.6} \, \mathbf{\gamma} \, \mathbf{R} \, \mathbf{N'_{\gamma}} \dots (Ec. - 11)$$

$$\mathbf{q} = \mathbf{\gamma} * \mathbf{Df}$$

Donde:

qa: Capacidad de carga última (Kg/cm²).

c: Cohesión (Kg/cm²).

*: Peso específico de suelo (Kg/cm³).

D_f: Profundidad de cimentación (cm).

B: Ancho de la cimentación (cm).

Radio del cimiento (cm).

N_e: Coeficiente adimensional relativo a la cohesión.

Mq: Coeficiente adimensional relativo a la sobrecarga.

N_r: Coeficiente adimensional relativo al peso del suelo y ancho de la cimentación.

Los factores de capacidad de carga o coeficientes adimensionales, se encuentran en función del ángulo de fricción interna del suelo $\Phi^a = arctg\left(\frac{2}{3}tg\Phi\right)$

(Crespo Villalaz, C. 2004)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Cuadro 2.05 Factores de Capacidad de Carga Modificados de Terzaghi

ф	N'c	N'q	N'ф	ф	N'c	N'q	Nφ
0	5.70	1.00	0.00	26	15.53	6.05	2.59
1	5.90	1.07	0.005	27	16.30	6.54	2.88
2	6.10	1.14	0.02	28	17.13	7.07	3.29
3	6.30	1.22	0.04	29	18.03	7.66	3.76
4	6.51	1.30	0.055	30	18.99	8.31	4.39
5	6.74	1.39	0.074	31	20.03	9.03	4.83
6	6.97	1.49	0.10	32	21.16	9.82	5.51
7	7.22	1.59	0.128	33	22.39	10.69	6.32
8	7.47	1.70	0.16	34	23.72	11.67	7.22
9	7.74	1.82	0.20	35	25.18	12.75	8.35
10	8.02	1.94	0.24	36	26.77	13.97	9.41
11	8.32	2.08	0.30	37	28.51	15.32	10.90
12	8.63	2.22	0.35	38	30.43	16.85	12.75
13	8.96	2.38	0.42	39 ⊁	32.53	18.56	14.71
14	9.31	2.55	0.48	40	34.87	20.50	17.22
15	9.67	2.73	0.57	41	37.45	22.70	19.75
16	10.06	2.92	0.67	42	40.33	25.21	22.50
17	10.47	3.13	0.76	43	43.54	28.06	26.25
18	10.90	3.36	0.88	44	47.13	31.34	30.40
19	11.36	3.61	1.03	45	51.17	25.11	36.00
20	11.85	3.88	1.12	46	55.73	39.48	41.70
21	12.37	4.17	1.35	47	60.91	44.45	49.30
22	12.92	4.48	1.55	48	66.80	50.46	59.25
23	13.51	4.82	1.74	49	73.55	57.41	71.45
24	14.14	5.20	1.97	50	81.31	56.60	85.75
~ '							

(FUENTE: Braja, M. 2001)

2.3.7. Carga admisible

Es conocida también como Presión de Trabajo, Presión de Diseño o Presión Admisible y se calcula de la siguiente manera:

Curya admisible
$$(q_{adm}) = \frac{q_u}{FS}$$
 ... (Ec. -12)

Donde:

qadm: Carga admisible (kg/cm)

qu : Capacidad de carga (kg/cm)

FS : Factor de seguridad

(Braja, M. 2001)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

2.3.8. Cálculo de asentamientos

A) Método de consolidación

$$\Delta h = \frac{H}{1+ei} k \log \frac{p+\Delta p}{p} \quad \dots \quad (Ec. -13)$$

Donde:

Δh: Asentamiento probable (cm)

H: Espesor de estrato (cm)

ei: Relación de vacíos inicial

k: Índice de compresibilidad

p: Presión de apoyo (Kg/cm²)

 Δp : Incremento de presión (Kg/cm²)

H: 1.50B

Cuadro 2.06 Recomendaciones de parámetros para asentamiento diferencial

Asentamiento diferencial máximo	Magnitud en mm
Cimentaciones aisladas en arcilla	25
Losa en arcilla	50

(FUENTE: Braja, M. 2012)

2.4. ARQUITECTURA

Las formas de las iglesias son muy variadas, siendo las más corrientes las de planta de cruz latina (tipo occidental o romano) y las de cruz griega (tipo oriental o bizantino). No son raras tampoco las iglesias de planta circular o poligonal. Modernamente se han construido iglesias con planta y estilos arquitectónicos muy diversos, muchas de ellas de gusto dudoso y poco en consonancia con la solemnidad del arte religioso, que a partir de 1970 y 1980, nace el movimiento post modernista dejando de lado la complejidad de la arquitectura histórica.

2.4.1. Elementos de una iglesia católica

A) La nave

Es el espacio destinado al Pueblo, a todos los fieles. Se dispone de modo que el pueblo pueda participar fácilmente en el culto viendo el altar, el ambón y la sede. Los asientos se colocan dejando suficiente espacio para que los fieles puedan arrodillarse.

N C C L MANUEL S CONTROL OF THE S CONTRO

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

B) Altar

Punto principal del templo en el que convergen todas las miradas de los fieles, lleva su pavimento a un nivel superior al del resto de la iglesia en tres escalones por lo menos. Es el lugar fijo donde se ofrece el Santo Sacrificio de la Misa.

C) La sede presidencial

Es un asiento situado detrás o cerca del altar, en un lugar y altura idónea, para que el celebrante pueda ser visto como presidente de la Asamblea. Debe ser adecuada al estilo y tamaño de la iglesia, sin dar sensación de trono, porque la cátedra o sede de una catedral, sí que es un trono reservado a los obispos. Junto a la sede hay asientos para los diáconos. La sede puede ser de piedra o de madera, y debe tener dignidad.

D) El crucifijo

Se sitúa en el altar. También puede estar cerca de él o a modo de retablo, en la pared del fondo del presbiterio.

(Joseph Ratzinger, El espíritu de la liturgia)

E) Los confesonarios

Un lugar que se encuentra normalmente cerca de la nave de la iglesia donde se administra el Sacramento de la Reconciliación, para que el perdón de Dios llegue a los fieles. Los confesionarios deben ser cómodos, razonablemente espaciosos e insonorizados, provistos con una silla, un reclinatorio y una rejilla entre el sacerdote y el penitente, tal como establece el Código, canon 964.

(Código, canon 964)

F) La Sacristía

Es una habitación contigua al templo donde el sacerdote y los ministros se revisten de los ornamentos sagrados. No forma parte del conjunto litúrgico, pero tiene un papel importante en la preparación digna del culto. El motivo principal puede ser un crucifijo o una imagen sagrada. En la puerta de acceso hay una pila de agua bendita. Cuenta con una mesa espaciosa para extender los ornamentos, y cajones amplios en los que se guardan, con dignidad, seguridad y cuidado, los objetos necesarios para el culto.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

G) Atrio

Es la parte que precede a una iglesia, la cual consta de una o tres puertas de entrada en su

fachada principal. En el atrio obligatoriamente debe haber acceso para personas con

impedimento físico. El atrio no es un elemento que se requiera, pero puede, sin embargo,

tener cierta importancia. Puede usarse para procesiones, como lugar de reunión de la

congregación y como aislamiento del mundo exterior antes de entrar a la iglesia.

H) Sillas y bancos

En la nave de la iglesia hay sillas y bancos para acoger a todos e invitarles a tomarse tiempo

para escuchar a Dios, celebrar los sacramentos y encontrarse con otros. Estos "sitios" no están

numerados ni hay "reservados". Delante de Dios todos somos iguales. En celebraciones

especiales, por cortesía y para dar prioridad a las personas afectadas, se dejan algunos bancos

para determinadas familias (es el caso de funerales, bodas, primeras comuniones, etc).

I) Campanarios

Un campanario (o campanil) es un edificio o torre construida junto a una basílica, catedral,

iglesia o capilla y donde se colocan las campanas, con la finalidad de convocar la asistencia

de los feligreses al servicio religioso.

(Joseph Ratzinger, El espíritu de la liturgia)

2.4.2. Requerimientos de ambientes y áreas

Los ambientes se plantearán buscando tener una interrelación y funcionalidad entre ellos,

para lo cual se dan a continuación una serie de reglas preestablecidas para cada uno de los

elementos integrantes de una iglesia católica romana, para el caso del edificio donde se

considera oficinas, aulas para catequesis, salón parroquial y vivienda para el párroco se

tendrá en cuenta las normas del RNE-2009.

A. Requerimiento de áreas

- Sacristía de sacerdotes

Área mínima: 18.60 m^2 ; Óptimo: 27.90 m^2 .

- Sacristia coro

Mínima: 13.90 m²; Óptimo: 27.80 m².

Bach. Ing. Civil Chávez Carrillo, Leslie Janeth

35

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

- Altar mayor

De $56.0 \text{ a } 74.0 \text{ m}^2$

- Baptisterio

Área mínima: 13.90m²

- Nave principal de la iglesia

Para no menos de 200 congregantes: 0.84 a 0.93 m2 por persona.

Para 200 a 400 personas : 0.70 a 0.80 m2 por persona.

Para 400 a 500 personas : 0.65 a 0.70 m2 por persona.

- Pórtico o vestíbulo

0.14m2 por persona.

- Atrio

No se especifica su tamaño; generalmente es área parcialmente resguardada.

(Sleeper - 1966)

B. Anchos de pasillos

Para iglesias de tamaño mediano de 300, 500 a 750 asientos.

- Pasillo lateral: (Libre de salientes)

Ancho mínimo: 1.07m; Ancho óptimo: 1.37m.

- Pasillo central

Ancho mínimo: 1.80m; Ancho óptimo: 2.10m.

- Pasillo transversal del frente

Ancho mínimo: 1.80m; Ancho óptimo: 2.40m.

- Pasillo transversal posterior:

Ancho mínimo: 1.20m; Ancho óptimo: 1.50m.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

C. Espaciamiento de bancas

- Espaciamiento con apoyo para arrodillarse: Del respaldo del banco a la línea central de la baranda del frente:

Mínimo: 1.03m; Bueno: 1.08m

Variación según la encuesta: 0.81m. a 0.97m.

(Sleeper - 1966)

D. Longitud de los bancos

- Con acceso por ambos lados

Ancho mínimo del asiento: 0.45m (no se recomienda)

Mínima : 0.46

Buena : 0.51m.

Excelente: 0.55m.

Cuadro 2.07 Longitud de Bancas para Capillas

Capacidad de un Banco	Anchura por Asiento 0.46m.	Anchura por Asiento 0.51m.	Anchura por Asiento 0,56m.
08 personas por banco	3.76m.	4.16m.	4.57m.
10 personas por banco	4.67m.	5.18m,	5.69m.
12 personas por banco	5.59m.	6.20m.	6.81m.
14 personas por banco	6.50m	7.21m.	7.93m.

(FUENTE: Sleeper - 1966)

- Altura de bancas

De 0.84m a 0.92m

- Sección de bancas

De 0.38m a 0.54m

(Sleeper - 1966)

E. El altar

El altar se coloca al fondo de la nave central o en el ábside. La superficie en que se asienta el presbiterio de 5m de ancho y 8m de profundidad, va algo más alta que el resto de la iglesia (tres escalones por lo menos) y a veces separada por el llamado pasillo de comunión, a su vez un escalón más alto que la parte restante.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

F. Los confesionarios

Estos se instalan en los pasillos laterales y pueden utilizarse por los dos lados. El confesionario deber estar bien ventilado y ser de baja transmisión del sonido.

G. Sacristía general

Lugar donde generalmente se almacenan algunos muebles, los closet para sotanas, para incensarios, candelabros, cirios, artículos de tela u otros artículos para la conservación.

H. Sacristía del sacerdote

Lugar donde se almacena lienzos y vestimentas sagrados, armario pequeño para libros, misales, caja de seguridad para vasos sagrados, etc.

2.4.3. Distribución del sonido

Según la forma de la habitación el sonido se refleja en distintas direcciones y por tanto se distribuye de determinada manera.

- Formas convexas, dirigen las reflexiones en todas direcciones, son buenas difusoras.
- Formas cóncavas, focalizan las reflexiones, no son buenas difusoras. (Tienden a centralizar el sonido en un punto).
- Otros elementos que influyen en la difusión del sonido son las irregularidades de las superficies, el tamaño de la habitación, la distribución de los materiales absorbentes y las irregularidades y relieves.

(Pedrito Grinmont, 1999)

2.4.4. Aislamiento del sonido

A) Aislamiento acústico

Aquí se trata de impedir que sonidos indeseados ingresen a un recinto. El nivel de aislamiento necesario dependerá de la función que se le asigne al recinto. Los niveles de "ruido de fondo" admisibles no son iguales en un estudio de grabación, una biblioteca o una oficina. Un error en la determinación de estos valores puede provocar consecuencias negativas en los objetivos que se pretenden alcanzar, es decir, en el funcionamiento normal de dicho recinto.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Esencialmente hay dos tipos de transmisión sonora que se deben evitar: las ondas sonoras que se transmiten por el aire (transmisión aérea) y las que se transmiten por la estructura de la edificación (transmisión estructural).

(Crispín Tapia, 1993)

2.4.5. Parámetros arquitectónicos generales

A) Condiciones generales de diseño

Los requerimientos arquitectónicos generales, se encuentra en la Norma A-010 del Reglamento Nacional de Edificaciones, tomando en cuenta las características de diseño, las dimensiones mínimas de los ambientes, accesos y pasajes de circulación, escaleras, requisitos de iluminación, requisitos de ventilación, cálculo de ocupantes de una edificación y estacionamientos. Dimensiones de pasos y contrapasos de escaleras.

$$0.60 \text{m} \le 2 \text{C} + \text{P} \le 0.64 \text{m}$$

 $\text{p} \ge 0.25 \text{ m}; \quad 0.15 \le \text{C} \le 0.18 \text{ m} \quad ... \text{(Ec. -14)}$

Donde:

C: altura del contrapaso (mínimo 0.17m)

P: Longitud del paso (0.25m.)

El ancho mínimo que debe tener una escalera es de 1.20 m; contar como máximo con 17 pasos continuos y los descansos intermedios deben tener en la línea de pasos un ancho mínimo de 90cm.

B) Condiciones para oficinas

Los requerimientos arquitectónicos para Oficinas, se encuentra en la Norma A- 080 del Reglamento Nacional de Edificaciones, tomando en cuenta las condiciones de habitabilidad y funcionalidad, características de los componentes y dotación de servicios.

Cuadro 2.08 Dotación de Servicios

Número de ocupantes	Hombres	Mujeres
De 1 a 6 empleados	1L, 1u, 1I	-

(Fuente: RNE - 2009)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

C) Condiciones para vivienda

Los requerimientos arquitectónicos para Vivienda, se encuentra en la Norma A- 020 del Reglamento Nacional de Edificaciones, tomando en cuenta las condiciones de diseño, características de las viviendas.

D) Condiciones para educación

Los requerimientos arquitectónicos para Educación, se encuentra en la Norma A- 040 del Reglamento Nacional de Edificaciones, tomando en cuenta los aspectos generales, condiciones de habitabilidad y funcionabilidad, características de los componentes (vanos, acabados, escaleras), dotación de servicios.

Cuadro 2.09 Dotación de Servicios

Número de ocupantes	Hombres	Mujeres
De 0 a 60 alumnos	1L, 1u, 1I	1L, 1I

(Fuente: RNE - 2009)

E) Condiciones para servicios comunales

Los requerimientos arquitectónicos para Servicios Comunales, se encuentra en la Norma A-090 del Reglamento Nacional de Edificaciones, tomando en cuenta los aspectos generales, y las condiciones de habitabilidad.

(RNE - 2009)

2.5. ESTRUCTURAS

Las condiciones mínimas de diseño se establecen en el RNE, según su comportamiento sísmico, la norma se aplica al diseño de todas las edificaciones nuevas, a las existentes, y a las que resulten dañadas por la acción de los sismos y requieran de reparación. La filosofía mínima de diseño sismo resistente, consiste en:

- A. Evitar pérdidas de vidas.
- B. Asegurar la continuidad de los servicios básicos.
- C. Minimizar los daños de la propiedad.

*

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Por otro lado los planos del proyecto deberán contener: el sistema estructural sismo resistente, parámetros para definir la fuerza sísmica o el espectro de diseño, desplazamiento máximos del último nivel y el máximo desplazamiento relativo de entrepiso.

(RNE - 2009)

2.5.1. Estructuración y metrado de cargas

El metrado de cargas es un proceso con la cual se estiman las cargas actuantes sobre los distintos elementos estructurales que componen al edificio. Este proceso es aproximado ya que por lo general se desprecian los efectos hiperestáticos producidos por los momentos flectores, salvo que estos sean muy importantes. Como regla general, al metrar cargas debe pensarse en la manera como se apoya un elemento sobre otro.

- A. Cargas estáticas: Son aquellas que se aplican lentamente sobre la estructura, lo cual hace que se originen esfuerzos y deformaciones que alcanzan sus valores máximos en conjunto con la carga máxima. Prácticamente, estas solicitaciones no producen vibraciones en la estructura, ya su vez clasifican en:
- **a.1)** Cargas permanentes o muertas: Son cargas gravitacionales que actúan durante la vida útil de la estructura, como por ejemplo: el peso propio de la estructura y el peso de los elementos añadidos a la estructura (acabados, tabiques, maquinarias para ascensores y cualquier otro dispositivo de servicio que quede fijo en la estructura).
- **a.2)** Carga viva o sobrecarga: Son cargas gravitacionales de carácter movible, que podrían actuar en forma esporádica sobre los ambientes del edificio. Entre estas solicitaciones se tiene: al peso de los ocupantes, muebles, nieve, agua, equipos removibles, puente grúa, etc. Las magnitudes de estas cargas dependen del uso al cual se destinen los ambientes.
- **B.** Cargas dinámicas: Son aquellas cuya magnitud, dirección y sentido varían rápidamente con el tiempo, por lo que los esfuerzos y desplazamientos que originan sobre la estructura, también cambian con el tiempo; cabe indicar que el instante en que ocurre la máxima respuesta estructural, no necesariamente coincide con el de la máxima solicitación. Estas cargas clasifican en:

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

b.1) Viento: El viento es un fluido en movimiento sin embargo, para simplificar el diseño, se supone que actúa como una carga estática sobre las estructuras convencionales; pero, para

estructuras muy flexibles necesario verificar que su período natural de vibrar no coincida con

el de las ráfagas de viento, de lo contrario, podría ocurrir la resonancia de la estructura. La

estimación de estas cargas se estipulan en la Norma E.020 del RNE.

b.2) Sismos: Las ondas sísmicas generan aceleraciones en las masas de la estructura y por lo

tanto, fuerzas de inercia que varían a lo largo del tiempo; sin embargo, las estructuras

convencionales pueden ser analizadas empleando cargas estáticas equivalentes a las

producidas por el sismo.

(San Bartolomé, A. 1998)

2.5.2. Análisis de edificios

Para el análisis de edificios se tendrá en cuenta la distribución espacial de masas y rigidez que

sean adecuadas para el cálculo de los aspectos más significativos del comportamiento

dinámico de la estructura, además del peso de la edificación, desplazamientos laterales,

análisis estático y análisis dinámico.

A) Análisis estático

Este método representa las solicitaciones sísmicas mediante un conjunto de fuerzas horizontales actuando en cada nivel de la edificación, para este análisis se tendrá en cuenta lo

estipulado en el RNE (período fundamental, fuerza cortante en la base, etc):

Donde:

V: Fuerza cortante en la base

Z: Factor de zona (zona 3)

U: Categoría de la edificación

C: Factor de amplificación sísmica

S: Condiciones geotécnicas

P: Peso de la edificación

R: Sistema estructural

ONCOSSISSIONS

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

CIVIL NGENERIA

"Parroquia de San Agustín"

B) Análisis dinámico

El análisis dinámico de las edificaciones podrá realizarse mediante procedimientos de combinación espectral o por medio de análisis tiempo historia. Para edificaciones convencionales podrá usarse el procedimiento de combinación espectral, y para edificaciones especiales deberá usarse un análisis tiempo - historia.

b.1) *Modos de vibración*: Los períodos naturales y modos de vibración podrán determinarse por un procedimiento de análisis que considere apropiadamente las características de rigidez y la distribución de las masas de la estructura.

b.2) Aceleración espectral: Para cada una de las direcciones horizontales analizadas se utilizará un espectro inelástico de psuedo- aceleraciones definido por:

$$Sa = \underbrace{ZUCS}_{R} * g \dots (Ec. -15)$$

Donde:

Sa: Aceleración espectral

Z: Factor de zona (zona 3)

U: Categoría de la edificación

C: Factor de amplificación sísmica

S: Condiciones geotécnicas

g: Aceleración de gravedad

R: Sistema estructural

Para el análisis en la dirección vertical podrá usarse un espectro con valores iguales a los 2/3 del espectro empleado para las direcciones horizontales.

c.3) Criterios de combinación: Mediante los criterios de combinación que se indican, se podrá obtener la respuesta máxima esperada, mediante la siguiente expresión:

$$r = 0.25 * \in \sum |ri| + 0.75 \sqrt{\sum ri^2}$$
 ... (Ec. -16)

(RNE-2009)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

2.5.3. Análisis estructural

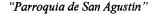
A) Método empleado para el análisis estructural

Resaltando la facilidad en el desarrollo del método así como su sistematización mediante el uso de computadoras se usará el método de rigidez, por seguir un procedimiento organizado que sirve para resolver estructuras determinadas e indeterminadas, estructuras linealmente elásticas y no linealmente elásticas.

El Programa de Computo ETABS Versión 9 (STRUCTURAL ANALYSIS PROGRAMS) es un programa basado en el método de rigideces por procedimientos matriciales, escrito bajo la hipótesis de la teoría de la elasticidad: continuidad, homogeneidad, isotropía, linealidad y elasticidad.

Teniendo en cuenta estas hipótesis el ETBS es capaz de analizar sistemas estructurales formados en base a elementos del tipo marco, cáscara y sólidos realizando un análisis tridimensional.

B) Análisis estructural por cargas verticales


Se refiere al análisis para cargas Permanentes o Muertas y Sobrecargas o Cargas Vivas. A continuación se hace una breve descripción de ambos casos:

b.1) Análisis por cargas permanentes o muertas: Consiste en el análisis en base a cargas que actúan permanentemente en la estructura para análisis tales como: Peso propio de vigas, losas, tabiquería, acabados, coberturas, etc. Estas cargas serán repartidas a cada uno de lo elementos que componen la estructura. Los pesos de losas, coberturas como de muros ser realizarán de acuerdo con los pesos establecidos por los fabricantes y al análisis propio a fin de reducir cargas, algunos otros materiales necesarios para la estimación de cargas muertas se encuentran registrados en la Norma de Cargas E.020

b.2) Análisis por sobre cargas o cargas vivas: Consiste en el análisis en base a las sobrecargas estipuladas en Normas Peruanas de estructuras referidas a Cargas E.020

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

C) Análisis estructural por cargas horizontales o dinámicas

El análisis dinámico de las edificaciones podrá realizarse mediante procedimientos de superposición espectral o por medio de análisis tiempo historia, según lo estipulado en la Norma de Diseño Sismo resistente E.030.

Al estructurar se buscará que la ubicación de columnas, placas y vigas tengan la mayor rigidez posible, de modo que al presentarse el sismo, éstas puedan soportar dichas fuerzas sin alterar la estructura. Para la determinación de los esfuerzos internos de la estructura en un análisis por sismo se podrá emplear el Método de Discretización de masas.

c.1) Método de discretización de masas: Método que nos permite comprender de manera simplista el comportamiento de las estructuras. A consecuencia de la dificultad para resolver problemas estructurales considerados como medios continuos, es decir, a tener que dar la respuesta de un sistema estructural cualesquiera en una infinidad de puntos se convierte en un problema complejo o complicado; es casi imposible hacerlo en forma total por lo que se facilita si calculamos la respuesta en unos cuantos puntos a través de la discretización de las masas concentradas y demás acciones de puntos determinados. El número de concentraciones de masas depende de la exactitud deseada en la solución del problema.

Este consiste en asumir que la masa se encuentra concentrada en puntos discretos en la que definimos solo desplazamientos, traslaciones, de tal manera que el modelo se asemeje de la mejor manera a la estructura real.

2.5.4. Análisis sísmico de cimentaciones

Las suposiciones que se hagan para los apoyos de la estructura deberán ser concordantes con las características propias del suelo de cimentación. El diseño de las cimentaciones deberá hacerse de manera compatible con la distribución de fuerzas obtenida del análisis de la estructura.

A) Capacidad portante: En todo estudio de mecánica de suelos deberán considerarse los efectos de los sismos para la determinación de la capacidad portante del suelo de cimentación. Para el cálculo de las presiones admisibles sobre el suelo de cimentación bajo acciones sísmicas, se empleará los factores de seguridad mínimos indicados en la NTE E 050 Suelos y cimentaciones.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

B) Momento de volteo: Toda estructura y su cimentación deberán ser diseñadas para resistir el momento de volteo que produce un sismo. El factor de seguridad deberá ser mayor o igual que 1.5.

C) Zapatas aisladas y cajones: Para zapatas aisladas con o sin pilotes en suelos tipo S3 y S4 (para las zonas 3 y 2) se proveerá elementos de conexión, las que deberán soportar en tracción o compresión, una fuerza horizontal mínima equivalente al 10% de la carga vertical que soporta la zapata.

2.5.5. Predimensionamiento de elementos estructurales

A) Predimensionamiento de losa aligerada

El peralte de las losas aligeradas podrá ser dimensionado considerando los siguientes criterios:

Cuadro 2.10 Peralte mínimo de elementos sujetos a flexión cuando no se calculen las deflexiones.

ESPESOR O PERALTE MÍNIMO (h)						
	Simplemente Apoyado	1 1		En voladizo		
Elementos	Elementos que no soportan o están ligados a divisiones u otro tipo de elementos no estructurales susceptibles de dañarse debido a deflexiones grandes.					
Losa maciza en una dirección	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Vigas o losas nervadas en una dirección	<u>L</u> 16	L 18.5	<u>L</u> 21	<u>L</u>		

(FUENTE: RNE - 2009)

L = luz entre apoyos (m). Donde:

Para losas aligeradas se usa como valor práctico: h = L / 25

Los valores dados en este cuadro se deben usar directamente en elementos de concreto de peso normal (alrededor de 2400Kg/m³) y refuerzo con Fy igual a 420 MPa.

ONGESTIONED AND THE PROPERTY OF THE PROPERTY O

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

B) Predimensionamiento De Vigas

Las vigas se dimensionan generalmente considerando un peralte del orden de L/10 a L/12 de la luz libre, debe aclararse que esta altura incluye el espesor de la losa del techo o piso.

El ancho es menos importante que el peralte, pudiendo variar entre 0.30 a 0.50 de la altura, la Norma Peruana de Concreto Armado indica que las vigas deben tener un ancho mínimo de 25cm, en el caso que estas formen parte de pórticos o elementos sismo resistentes de estructuras de concreto armado. Esta limitación no impide tener vigas de menor espesor (15 ó 20cm) si se trata de vigas que no forman pórticos, sino debemos considerar el cuadro 2.09

(Blanco Blasco, A. - 1994)

C) Predimensionamiento de columnas

Las columnas al ser sometidas a carga axial y momento flector, tienen que ser dimensionadas considerando los dos efectos simultáneamente, tratando de evaluar cuál de los dos es el que gobierna el dimensionamiento.

Actualmente la mayoría de edificaciones se diseñan con sistemas mixtos de pórticos y muros de corte, con lo cual permite reducir significativamente los momentos en las columnas debidos a sismo.

En base a lo anterior se recomienda los siguientes criterios:

c.1) Para edificios que tengan muros de corte en dos direcciones, tal que la rigidez lateral y la resistencia van a estar principalmente controladas por los muros, las columnas se pueden dimensionar suponiendo un área igual a:

Área de la columna=
$$\frac{P(servicio)}{0.45 f'c}$$
 ... (Ec. - 17)

c.2) Para el mismo tipo de edificio, el dimensionamiento de las columnas con menos carga axial, como es el caso de las esquineras o exteriores, se podrá hacer con un área igual a:

Área de la columna=
$$\frac{P(servicio)}{0.35 f'c}$$
 ... (Ec. - 18)

Donde: P= # pisos x Área tributaria x carga unitaria

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

c.3) Para edificios aporticados íntegramente de 3 a 4 pisos se recomienda que las columnas

deberán dimensionarse mediante alguna estimación del momento del sismo, demostrando la

experiencia que se requiera, columnas con un área fluctuante entre 1000 cm2 y 2000 cm2,

salvo que se tenga vigas con luces mayores a 7m.

c.4) Para edificios con luces significativas (mayores a 7 u 8 m), debe tenerse especial cuidado

en las columnas exteriores, pudiendo dimensionarse el peralte de la columna en un 70 u 80%

del peralte de la viga principal.

(Blanco Blasco, A. - 1994)

D) Pre dimensionamiento de muros de corte

Las placas pueden hacerse de mínimo 10cm, pero generalmente se consideran 15cm de

espesor en el caso de edificios de pocos pisos y de 20, 25 ó 30cm conforme vayan

aumentando el número de pisos o disminuyamos su densidad.

Para pre dimensionar los muros se puede utilizar un método aproximado, el cual consiste en

calcular las fuerzas cortantes en la base con el método establecido en la norma E-060, e

igualarlos a la suma de la resistencia al corte en los muros dada por:

 $Vc = 0.53*\sqrt{fc * b*1}$... (Ec. - 19)

Donde:

b= espesor estimado de muros

l= metros lineales posibles de muro

Vc= Cortante basal

Este método es referencial y se deberá efectuar una evaluación final luego de realizar un

análisis sísmico.

E) Predimensionamiento de escaleras

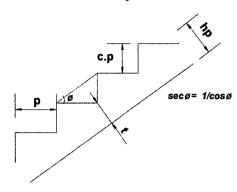
Las escaleras son elementos importantes en una edificación, las mismas que necesitan ser

analizadas con detenimiento, no solamente como estructura aislada en sí, sino también como

parte de un todo, especialmente en el comportamiento sísmico. De acuerdo al Reglamento

Nacional de Edificaciones nos especifica las siguientes características descritas anteriormente

(parte de arquitectura):



FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Gráfico 2.02

Donde:

L: Luz (m).

P: Paso (mín. 25 cm)

CP: Contrapaso (máx. 0.20m.)

t: Peralte de la losa.

Nota: El espesor de la losa se puede calcular así, t=L/21

(FUENTE: RNE - 2009)

2.5.6. Diseño de elementos estructurales de concreto armado

A) Diseño de losas aligeradas

Las losas están constituidas por una serie de pequeñas vigas T, llamadas nervaduras o viguetas, unidas a través de una losa de igual espesor que el de la viga. Las losas aligeradas son más ligeras que las losas macizas de rigidez equivalente, lo que les permite ser más eficientes para cubrir luces grandes. Las losas aligeradas no requieren el uso de encofrados metálicos pues el ladrillo actúa como encofrado lateral de las viguetas.

a.1) Momento Último Resistente

$$Mur = \phi w_{máx} f_c^* (1 - 0.59 * w_{máx}) b d^2 \qquad ... (Ec. - 20)$$

$$w_{máx} = \rho_{máx} * \left(\frac{f_y}{f_c^*}\right) ; \rho_{máx} \le 0.75 \rho_b \qquad ... (Ec. - 21)$$

$$\rho_b = \left[0.85 \beta_1 f_c^* / f_y\right] * \left[6000/(6000 + f_y)\right] ... (Ec. - 22)$$

Donde:

Mur: Momento último Resistente

φ: Factor de reducción por flexión (0.90)

w_{mér}:Índice de refuerzo máximo

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

b: ancho de la losa

d: Peralte efectivo del elemento

 f_c : Esfuerzo máximo de Concreto

 f_{v} : Esfuerzo de fluencia de acero

ρ_{máx}: Cuantía máxima

ρ_h: Cuantía balanceada

 β_1 : Coeficiente que relaciona parámetros de equilibrio interno

El factor β_1 deberá tomarse como 0.85 para resistencias de concreto de 280kg/cm^2 , y para resistencias mayores se disminuirá a razón de 0.05 por cada 70kg/cm^2 de aumento, debiendo tomarse un valor mínimo de $\beta_1 = 0.65$

a.2) Diseño de acero por flexión: Se tiene las siguientes fórmulas

$$As = \frac{Mu}{\left(\phi f_y\left(d - \frac{a}{2}\right)\right)} \quad \dots \quad (Ec. - 23)$$

$$a = \frac{As * f_y}{0.85 * f_c * b}$$
 ... (Ec. -24)

a.3) Refuerzo por contracción y temperatura: En las losas armadas en una dirección, el refuerzo principal por flexión hace las veces de refuerzo de temperatura en la dirección en la que está colocado. Sin embargo, en la dirección perpendicular, es necesario disponer de acero exclusivamente con este fin. El refuerzo debe tener una cuantía mínima de por lo menos 0.0014, además la armadura principal mínima, tiene la misma cuantía que el refuerzo de temperatura.

Para acero liso: Ast =
$$0.0025$$
bt (cm^2 /m) ... ($Ec. - 25$)
Para acero con fy= 4200 Kg/ cm^2 : Ast = 0.0018 bt (cm^2 /m)
b = 100 cm.

a.4) Espaciamiento del refuerzo (S):

$$S = \frac{Av * 100}{Ast}$$
 ... (Ec. - 26)

Donde:

Av: Área de la varilla (cm²)

As: Área calculada de acero por metro (cm^2)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

a.5) Comprobación por corte

Calculamos el Máximo Corte en la Cara del Apoyo

$$\phi Vc > Vud$$
; $\phi Vc = \phi 0.53 \sqrt{f_c'} bd$... (Ec. - 27)

Donde:

φ: Factor de reducción por cortante (0.85)

Vc: Fuerza cortante que absorbe el concreto

Vud: Fuerza cortante a la distancia "d" de la cara del apoyo (Kg)

b: ancho analizado de la losa (100cm)

d: Peralte efectivo del elemento

 f_c : Esfuerzo máximo de Concreto (Kg/cm²)

B) Diseño de vigas

b.1) Diseño por flexión

Todos los elementos que son sometidos a flexión son las vigas, los techos o pisos en una o dos direcciones, las escaleras y en general todas aquellas que están sometidas a cargas perpendiculares a su plano, las cuales ocasionan esfuerzos de flexión y cortante. Para elementos sometidos a flexión debemos tener en cuenta las ecuaciones anteriormente descritas.

$$Mur = \phi_{max} f_c (1 - 0.59* w_{max}) b d^2$$

$$w_{max} = \rho_{max} * \left(\frac{f_y}{f_c^*}\right) ; \rho_{max} \le 0.75 \rho_b$$

$$\rho_b = \left[0.85 \beta_1 f_c^* / f_y\right] * \left[6000 / (6000 + f_y)\right]$$

$$A_{s \min} = \rho_{\min} * b * d = \left(\frac{0.7 \sqrt{f_c^*}}{f_y}\right) b d \dots (Ec. - 28)$$

b.2) Diseño por cortante

El diseño de las secciones transversales de los elementos sujetos a fuerza cortante deberá basarse según lo indicado en la Norma Peruana en la siguiente expresión:

$$Vu \le \phi \ Vn \ \dots (Ec. - 29)$$

 $Vn = Vc + Vs$
 $Vu \le \phi (Vc + Vs)$

TO COLAMADOCA

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

NGENIERIA O A C

"Parroquia de San Agustín"

Donde:

Vu: Resistencia requerida por corte en la sección analizada.

Vn: Resistencia nominal.

Vc: Fuerza de corte que toma el concreto.

Vs: Fuerza de corte que toma el acero

Para elementos conectados monolíticamente con otros, la fuerza de corte de Vu se puede tomar a una distancia "d" de la cara de apoyo. La sección crítica para el diseño por tracción diagonal se encuentra a una distancia "d" de la cara de los apoyos.

- Contribución del concreto en la resistencia al corte (Vc)

Según la Norma E 0-60, para miembros sujetos únicamente a corte y flexión.

$$Vc = 0.53\sqrt{f_c'}bd$$
 ... (Ec. – 30)

Donde:

Vc: Fuerza de corte que toma el concreto

b: ancho analizado de la losa (100cm)

d: Peralte efectivo del elemento

 f_c : Esfuerzo máximo de Concreto (Kg/cm²)

- Contribución del refuerzo en la resistencia al corte

Cuando la fuerza cortante última Vu exceda la resistencia al corte del concreto ϕ Vc, deberá proporcionarse refuerzo de manera que se cumpla:

$$Vs = \frac{Vu}{\phi} - Vc \quad \dots \quad (Ec. -31)$$

Cuando se utilice estribos perpendiculares al eje del elemento:

$$V_S = \frac{Av * f_y * d}{S}$$
 ... (Ec. – 32)

Donde:

Av: Área del refuerzo por cortante.

d: Peralte efectivo del elemento.

fy: Esfuerzo de fluencia del refuerzo.

S: Espaciamiento entre estribos.

El refuerzo transversal cumplirá con las condiciones siguientes a menos que las exigencias por diseño del esfuerzo cortante sean mayores:

TO CLAMATE TO COLUMNIA IN THE CALL AND ADDRESS OF THE

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

- Estará constituido pos estribos cerrados de diámetro mínimo de 3/8"
- Deberá colocarse estribos en ambos extremos del elemento, en una longitud (medida desde la cara del nudo hacia el centro de la luz), igual a dos veces el peralte del elemento (zona de confinamiento), con un espaciamiento So que no exceda el menos de los siguientes valores:
 - 0.25d
 - Ocho veces el diámetro de la barra longitudinal de menor diámetro (8db)
 - Máximo 30 cm.
 - El primer estribo deberá ubicarse a 5cms.

(FUENTE: A.C.I)

C) Diseño de columnas

Las columnas son estructurales que trabajan en compresión, pero debido a su ubicación en el sistema estructural, deberá soportar también solicitaciones de flexión, corte y torsión. En la práctica muchas columnas están sujetas a flexión alrededor de ambos ejes principales simultáneamente, es dificil realizar el diseño de columnas con flexión biaxial debido a que se necesita usar tanteos para encontrar y ubicar la profundidad del eje neutro.

c.1) Diseño por flexo-compresión

Para poder diseñar una columna en flexo-compresión se debe verificar que satisfaga la siguiente expresión:

$$P_u > 0.1 f_C A_g \dots (Ec. -33)$$

Para el diseño a flexo-compresión se deberá comprobar que la combinación de las cargas axiales y momentos actuantes sobre la columna no excedan el rango dado por el diagrama de iteración, en ambas direcciones de análisis. La resistencia última de un elemento a compresión no deberá ser mayor que:

$$\phi P_{n0} = \phi \left[0.85 f_c^2 \left(A_p - A_{st} \right) + A_{st} f_v \right] \dots (Ec. -34)$$

Donde:

A.: Área de la sección de la columna

 A_{st} : Área de acero de la columna

Φ: Factor de reducción de resistencia.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

c.2) Diseño por corte

Para el diseño por corte se debe verificar que se cumpla con las siguientes expresiones descritas anteriormente:

$$Vu = \phi Vn \quad \dots \text{ (Ec. } -35)$$

$$Vn = (Vc + Vs)$$

$$Vu \le \phi (Vc + Vc)$$

$$Vs = \frac{Av * f_y * d}{S}$$

$$Vc = 0.53\sqrt{f_c} bd(1 + 0.0071Nu / Ag)$$

Donde:

Nu: Carga axial actuante en la columna

Ag: Área bruta de la sección

S: Espaciamiento de los estribos

Para la distribución de estribos la norma recomienda lo siguiente:

- En ambos extremos de la columna se debe tener zonas de confinamiento que debe tener el mayor valor de las siguientes condiciones:

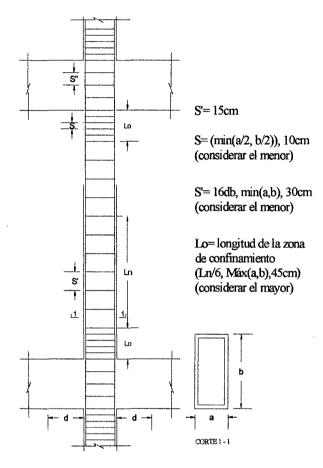
$$Lo = ln/6$$

- En la zona de confinamiento los estribos estarán separados una distancia que sea menor de los siguientes valores:

$$s=b/2$$

- El espaciamiento fuera de la zona de confinamiento no deberá ser mayor que:

smáx.= 16db de menor diámetro



FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Gráfico 2.03
ESPACIAMIENTO DE REFUERZO TRANSVERSAL

(FUENTE: A.C.I)

D) Diseño de muros de corte

d.1) Diseño a flexo compresión

De acuerdo a lo estipulado en la norma E-060 de Concreto Armado las placas son muros esbeltos, por lo tanto serán diseñados a flexo-compresión.

El refuerzo vertical debe ser repartido a todo lo largo de la longitud del muro, cumpliendo con el acero mínimo de refuerzo vertical; además se debe tener refuerzo concentrado en los extremos de los muros, debiendo confinarse estos núcleos con estribos.

La resistencia de un elemento sometido a compresión no debe ser mayor que:

$$\phi P_{n0} = \phi \left[0.85 f_c^{\cdot} (A_g - A_{st}) + A_{st} f_v \right]$$
, descrita anteriormente

OPERIOR DATE OF THE PROPERTY O

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

d.2) Diseño por corte

Para el diseño por corte se debe verificar que se cumplan las ecuaciones anteriormente descritas. Para la distribución del refuerzo horizontal la norma recomienda lo siguiente:

- La cuantía de acero horizontal (ρh) será mayor o igual que 0.0025
- El espaciamiento del refuerzo horizontal no excederá de los siguientes valores:

smáx=L/5

smáx=3t

smáx=45cm

- El refuerzo debe estar anclado de los extremos de la manera tal de poder desarrollar su esfuerzo de fluencia.

Con respecto a la cuantía de refuerzo vertical (ρv) la norma establece que será mayor o igual a:

$$\rho v = (0.0025 + 0.5(2.5 - H/L)(\rho h - 0.0025)) \ge 0.0025 \dots (Ec. - 36),$$

Pero no se necesitará ser mayor que el refuerzo horizontal requerido.

d.2) Diseño de núcleos de confinamiento

Los núcleos de confinamiento serán diseñados para soportar las cargas y momentos actuantes sobre ellos, por lo tanto estos serán diseñados por flexo compresión. El refuerzo por corte deberá cumplir de manera similar a lo estipulado para columnas debiendo confinarse con estribos cerrados siguiendo los siguientes parámetros:

- En ambos extremos del núcleo se debe tener las zonas de confinamiento que debe tener el mayor valor de las siguientes condiciones:

- En la zona de confinamiento los estribos estarán separados una distancia máxima s=10cm.
- El espaciamiento fuera de la zona de confinamiento la separación de estribos no debe ser mayor que:

Smáx.=12db, de menor diámetro

(FUENTE: A.C.I)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

E) Diseño de cimentaciones

Considerando que el diseño de las cimentaciones se debe realizar para absorber esfuerzo de corte y flexión así como realizar algunas verificaciones como las de punzonamiento, adherencia, volteo y anclaje, transmisión de esfuerzos el diseño se realiza considerando las expresiones indicadas en la Norma de Concreto Armado (corte y torsión), así como las dispuestas en la Norma A.C.I. 318-99, en su sección cimentaciones.

Para el caso de columnas y placas rectangulares, el cálculo de la presión transmitida al terreno se realiza mediante la distribución rectangular de presiones propuestas por Meyerhoff. Con lo cual para zapatas rectangulares de BxL (donde L>B) se obtiene la presión del terreno con la siguiente expresión:

$$\sigma = \frac{P}{2B(L/2-e)} \dots (Ec. -37)$$

Para el caso de placas tipo L, el cálculo de presión transmitida al terreno se realizará mediante la distribución lineal de las presiones:

$$\sigma = \frac{P}{BL} + \frac{6M}{BL^2} \dots (Ec. -38)$$

Al utilizar esta expresión se debe verificar que no existan valores de refuerzos negativos que significaría que la zapata trabaja a tracción lo cual no puede ser admitido.

(RNE-2009)

e.1) Diseño de zapatas conectadas

Las zapatas conectadas están conformadas por dos zapatas aisladas (excéntrica y central) unidas por una viga de cimentación, que permite controlar la rotación de la zapata excéntrica correspondiente a la columna perimetral. Se considera una solución económica, especialmente para distancias entre ejes de columnas mayores a 6m.

Estructuralmente se tiene dos zapatas aisladas, siendo una de ellas excéntricas, la que está en el límite de propiedad y diseñada bajo la condición de presión uniforme del terreno; el momento de flexión debido a que la carga de la columna y la resultante de las presiones del terreno no coinciden, es resistido por una viga de conexión rígida que une las dos columnas que forman la zapata conectada.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

La viga de conexión debe ser muy rígida para que sea compatible con el modelo estructural supuesto. La única complicaciones la interacción entre el suelo y el fondo de la viga. Algunos autores recomiendan que la viga no se apoye en el terreno, o que se apoye debajo de ella de manera que solo resista su peso propio. Si se usa un ancho pequeño de 30 ó 40cm. este problema es de poca importancia para el análisis.

$$h = \frac{L1}{7}$$
; $b = \frac{P1}{3.1L1} \ge \frac{h}{2}$... (Ec. -39)

Donde:

L1: espaciamiento entre la columna exterior y la columna interior

P1: carga total de servicio de la columna exterior

- Dimensionamiento de la zapata exterior: La zapata exterior transfiere su carga a la viga de conexión, actuando la zapata como una losa en voladizo a ambos lados de la viga de conexión. Se recomienda dimensionarla en planta considerando una dimensión transversal igual a 2 ó 2.5 veces la dimensión en la dirección de la excentricidad.

- Viga de conexión: Debe analizarse como una viga articulada a las columnas exterior e interior, que soporta la reacción neta del terreno en la zapata exterior y su peso propio.

(Morales -2011)

e.2) Diseño de plateas de cimentación

El diseño estructural de una losa de cimentación se efectúa mediante dos métodos: el método rígido convencional y el método flexible aproximado. En el método de diseño rígido convencional, la losa se supone que es infinitamente rígida; además, la presión en el suelo está distribuida en una línea recta y el centroide de la presión en el suelo coincide con la línea de acción de las cargas resultantes de las columnas.

(Braja -2012)

F) Diseño de escaleras

f.1) Cargas de diseño: De acuerdo a la Norma E-060, se tiene la siguiente carga de diseño:

$$U = 1.4CM + 1.7CV \dots (Ec. -40)$$

Donde:

U : Solicitación última de rotura.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

CM: Carga Muerta.

CV: Carga Viva.

f.2) Cálculo del momento resistente: Para calcular el momento resistente sin acero en compresión se utiliza la siguiente fórmula:

Mur =
$$\phi w_{max} f_c (1 - 0.59 * w_{max}) b d^2$$
 ... (Ec. -41)

Donde:

Mur: Momento último resistente.

b: Ancho de la escalera.

d: Peralte efectivo del elemento.

ω: Índice de refuerzo.

φ : Factor de reducción (0.90)

f c: Esfuerzo máximo del concreto.

f.3) Diseño de acero:

 Acero Por Flexión (As): Para el diseño del acero en escaleras, se emplean las siguientes fórmulas:

$$As = M / (\phi fy(d - a/2))$$
 ... (Ec. - 42)

$$a = As \cdot fy / (0.85 \cdot f'c \cdot b) \dots (Ec. -43)$$

Donde:

M: Momento actuante en la sección considerada.

φ : Factor de reducción por flexión.= 0.90

d: Peralte efectivo del elemento.

a: Profundidad del bloque comprimido rectangular equivalente.

b: Ancho de la escalera.

As: Área de acero requerida por tracción.

fy: Esfuerzo en la fluencia del acero.

f'c: Esfuerzo máximo que resiste el concreto.

 Acero Por Contracción y Temperatura (Asrt): El acero por contracción y temperatura no debe ser menor que el acero mínimo, se tienen las siguientes fórmulas:

A mín. = Asrt =
$$0.0018*b*d$$
 ... (Ec. - 44)

ON CHAMMACH

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

• Espaciamiento Minimo (S): Este espaciamiento será calculado con la siguiente expresión:

$$S = \frac{100 * Ab}{As}$$
 ... (Ec. - 45)

Donde:

S: Espaciamiento del acero.

Ab: Área de la varilla a utilizar.

As: Área de acero calculada.

2.5.7. Diseño de estructuras de acero

Actualmente existen las Normas E-90 de las especificaciones AISC (Instituto Americano para la Construcción de Acero) como reglamento de diseño. Para el diseño de estructuras de metálicas por lo que el Reglamento Nacional de Edificaciones las reconoce.

Dos son los enfoques de diseño estructural en acero conforme a lo disponible a la fecha:

"Diseño por Esfuerzos permisibles", conocido por sus siglas ASD (Allowable Stress Design)

"Diseño por Estado Límite", conocido por sus siglas LRFD (Load and Resistance Factor

Design).

En el diseño de estructuras de acero se prefiere usar el Método AISC – LRFD por presentar algunas ventajas con respecto al método AISCASD entre las cuales podemos mencionar que es un método más racional y por lo tanto se acerca más a la realidad de lo que ocurre en la vida útil de la estructura.

(Zapata Baglietto, Luís - 2da Edición)

A) Diseño De La Cobertura Liviana

En general, existen tres tipos de estructuras de acero más conocidas: los pórticos, las armaduras y las estructuras laminares. En nuestro caso veremos el estudio de las armaduras que se caracterizan por transmitir sólo cargas axiales a través de sus miembros.

Actualmente no existen especificaciones nacionales para el diseño de estructuras de acero, por lo que el Reglamento Nacional de Construcciones reconoce a las especificaciones AISC como reglamento de diseño. En las últimas dos décadas, el diseño estructural se está moviendo hacia un procedimiento más racional basados en conceptos de probabilidades y estados límites.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Los estados se dividen en dos categorías: resistencia y serviciabilidad. El primer estado se relaciona con el comportamiento para máxima resistencia dúctil, pandeos, fatiga, fractura, volteo o deslizamiento. El segundo estado tiene que ver con la funcionalidad de la estructura en situaciones tales como deflexiones vibraciones, deformación permanente y rajaduras. Es decir se debe conseguir que la estructura no sobrepase los estados límites mencionados; pero como es imposible conseguir riesgo cero en la práctica, el diseñador se debe conformar con una probabilidad adecuada, basada en métodos estadísticos, llamados "Métodos de Confiabilidad de Momentos de Primer Orden-Segundo Orden" para no sobrepasar las resistencias de los elementos.

La serie de combinaciones con la numeración AISC es la que sigue:

Cuadro 2.11 Combinaciones con la numeración AISC

Fórmula AISC- LRFD	Combinación de Carga	Máxima Posibilidad de Carga en la vida útil de 50 años		
A4.1	1.4D	Carga Muerta D durante la construcción		
A4.2	1.2D + 1.6L+ 0.5(S o Lr o R)	Carga Viva L.		
A4.3	$1.2D + 1.6(Lr \circ S \circ R) + (0.8W \circ 0.5L)$	Carga en el techo		
A4.4	$1.2D + 1.3W + 0.5L + 0.5(Lr \circ S \circ R)$	Carga de Viento W aditiva a la carga muerta		
A4.5	1.2D + 1.5E + (0.5L o 0.2S	Carga de Sismo E aditiva a la carga muerta		
A4.6	0.9D - (1.3W o 1.5E)	W o E opuesta a la carga muerta		

(Fuente: Zapata B. Luis)

Donde:

S: Carga de nieve.

Lr: Carga viva sobre el techo.

L: Cualquier otro tipo de carga viva.

W: Carga de viento.

E: Carga de sismo.

R: Carga inicial de lluvia en techos planos cuando falla el desagüe.

(Zapata Baglietto, Luís – 2da Edición)

A CHANDER

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

2.6. INSTALACIONES ELÉCTRICAS

Una vez comprendido el proyecto arquitectónico de la edificación, ya se puede desarrollar las instalaciones eléctricas, que no es más que dotar de energía a la edificación para su utilización en: alumbrado, fuerza, comunicaciones y otros, los que serán graficados en planos, memoria descriptiva y especificaciones técnicas.

2.6.1. Definiciones

Luminaria: Conjunto formado por artefacto y equipo

Artefacto: Chasis metálico o de otro material que sirve de soporte al equipo y que se encuentra en la pantalla y/o recinto óptico.

Equipo: Constituido por lámpara y en algunos casos accesorios auxiliares para el sistema de arranque.

Tablero general: Es el que protege el sistema de distribución de energía eléctrica (alumbrado tomacorrientes y otros) por intermedio de un interruptor general o varios, debe estar ubicado cerca al medidor de energía, en garaje, puerta de servicio. Este tablero va empotrado a una altura de 1.80 m.s.n.p.t. Cuando el tablero general consta de un solo interruptor se lo llama interruptor general.

Tablero de distribución: Conjunto de dispositivos de protección (interruptores), instalados en un panel bajo cubierta de caja metálica, cuyo número o cantidad es igual al de los circuitos derivados proyectados.

Demanda: Carga promedio que se obtiene durante un intervalo de tiempo especificado; este intervalo depende del uso que se quiera dar al valor de demanda correspondiente siendo generalmente igual a ¼, ½, ¾, y 1 hora.

(Rodríguez, M-2003)

2.6.2. Alumbrado eléctrico para edificios

El diseño de la iluminación artificial tiene como objetivo primordial de facilitar la visión, pero también puede servir para propósitos arquitectónicos. Con las luces eléctricas, la iluminación de los locales no se limita a las aberturas de ventanas y tragaluces, ni a las variaciones de la luz solar.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

ICO PROFESIONAL DE INGENIERÍA CIVIL "Parroquia de San Agustín"

2.6.3. Iluminación y sistemas de iluminación

El alumbrado en las diferentes partes de una edificación deberá estar de acuerdo con la concepción arquitectónica y específicamente con el uso para el cual han sido destinados los ambientes; así mismo y con mayor exigencia en el tipo de edificación de asistencia a la salud, se deberá asegurar una iluminación funcional que brinde las condiciones ergonómicas para la realización de las tareas o descanso de sus ocupantes. Los sistemas de iluminación o alumbrado se clasifican de acuerdo a su distribución luminosa, cada uno con su aplicación y tipo de luminaria.

A) Sistema de iluminación directa.

Cuando más de la mitad de la luz llega directamente desde su origen hasta el plano de trabajo, sin haber sido reflejada antes por las paredes y el techo.

B) Sistema de Iluminación Indirecta.

Cuando la luz se dirige primero sobre las paredes y el techo, y desde éstos se refleja hacia el plano de trabajo.

C) Sistema de iluminación semidirecta.

En este sistema la mayoría de la luz se dirige hacia el plano de trabajo, y una pequeña parte se dirige hacia el techo y las paredes.

D) Sistema de Iluminación Semi indirecta.

En este sistema la mayoría de la luz se dirige directamente a las paredes y al techo, y una pequeña parte se dirige hacia el plano de trabajo.

E) Sistema de Iluminación Difusa General.

En este sistema la distribución de la luz es aproximadamente la misma hacia arriba y hacia abajo.

2.6.4. Clases de iluminación

A) Iluminación localizada.

Consiste en colocar lámparas en los puntos donde se necesita la luz de un modo especial.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

B) Iluminación general.

Consiste en logar una distribución uniforme de la luz sobre toda el área que se requiere iluminar.

C) Iluminación combinada.

Consiste en lograr una iluminación general suficiente y además se coloca lámparas adicionales localizadas donde se requiere.

2.6.5. Alumbrado general

Las diferentes partes de la edificación deberán estar de acuerdo con la concepción arquitectónica y específicamente con el uso para el cual han sido destinados los ambientes. La iluminación persigue dos objetivos en general:

- Obtener una buena calidad de iluminación
- Conseguir efectos especiales y decorativos de acuerdo al ambiente a iluminar.

A) Factores que intervienen en el diseño de iluminación

- a.1) Plano de Trabajo: Es el plano en el cual generalmente se especifica y mide la iluminación. En alumbrado de interiores y a menos que se especifique lo contrario este plano se considera horizontal y a 0.85m sobre el nivel de piso y limitado por las paredes del recinto (según el Ministerio de Energía y Minas)
- a.2) Altura de Montaje: Es la distancia que existe entre la distancia de trabajo o altura de cavidad de piso y la lámpara.

H: Altura de piso a techo

N.P.T

P: Altura del plano de trabajo

Gráfico 2.04 Factores del diseño de iluminación

(Llique, R- 2006)

*

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

ico profesional de ingeniería civil "Parroquia de San Agustín"

a.3) Índice local: Es un parámetro que sirve para determinar el coeficiente de utilización; este índice está dado en letras desde la A hasta la J, y depende de la relación local.

Relación local: Es un valor que se determina por las dimensiones del ambiente, y mediante este valor se determina el índice de local, con las siguientes ecuaciones:

Relación local para iluminación directa, semidirecta y difusa general

$$R.L = \frac{ancho * l \arg o}{h*(ancho + l \arg o)} \quad ... \quad (Ec. - 46)$$

Relación de local para iluminación indirecta y semidirecta

$$R.L = \frac{3*ancho*l\arg o}{2*h*(ancho+l\arg o)} ... (Ec. -47)$$

(Llique, R- 2006)

Cuadro 2.12 Relación Local

Indice local	Relación de local	
J	Menor de 0.70	
I	0.70 a 0.90	
Н	0.90 a 1.12	
G	1.12 a 1.38	
F	1.38 a 1.75	
E	1.75 a 2.25	
D	2.25 a 2.75	
C	2.75 a 3.50	
В	3.50 a 4.50	
A	Mayor de 4.50	

(Llique, R- 2006)

- a.4) Factor de conservación o de mantenimiento (Fm): Es la relación entre la iluminación de una instalación después de un período especificado de uso y la iluminación de la misma instalación nueva. En cualquier sistema de iluminación el factor de conservación depende de tres elementos.
- Pérdida de la emisión luminosa debido a la vida de la lámpara, la emisión luminosa media a lo largo de la vida de la lámpara es de 10% a 25% más baja que la inicial.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustin"

- Pérdida de la emisión luminosa debido a la acumulación de suciedad en la luminaria y sobre las lámparas.
- Perdida de la emisión luminosa debido a la acumulación de suciedad sobre las paredes y los techos.

El valor del factor de conservación algunas veces está dado pos el fabricante en las tablas de datos lumínicos y depende de cada tipo de luminaria. Según el Ministerio de Energía y Minas el proyecto de alumbrado interior debe basarse en un factor de mantenimiento de 0.80 a menos que se indique lo contrario.

Cuadro 2.13 Factores de mantenimiento según ministerio de energía y minas

Reducción de la iluminación debido al ensuciamiento y edad de las lámparas, luminarias y recintos	Factor de mantenimiento (Fm)
Alto	0.80
Medio	0.70
Bajo	0.60

(FUENTE: Llique, R- 2006)

a.5) Nivel de Iluminación (E): La Norma EM-010 del Reglamento Nacional de Edificaciones, presenta la Tabla de Iluminancias mínimas a considerar en lux, según los ambientes al interior de las edificaciones y el tipo de tarea visual o actividad a realizar en ellos.

Cuadro 2.14 Iluminancias para ambientes al interior.

AMBIENTES	ILUMINANCIA EN SERVICIO (lux)	CALIDAD
Pasillos, corredores	100	D – E
Baños	100	C – D
Almacenes en tiendas	100	D – E
Escaleras	100	C – D

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Cuadro 2.15 Calidad de la iluminación por tipo de tarea visual o actividad.

CALIDAD	TIPO DE TAREA VISUAL O ACTIVIDAD
A	Tareas visuales muy exactas
В	Tareas visuales con alta exigencia. Tareas visuales de exigencia normal y de alta concentración
	Tareas visuales de exigencia y grado de concentración normales; y con un cierto grado de movilidad del
С	trabajador.
	Tareas visuales de bajo grado de exigencia y concentración, con trabajadores moviéndose
D	frecuentemente dentro de un área específica.
E	Tareas de baja demanda visual, con trabajadores moviéndose sin restricción de área.

a.6) Coeficiente de utilización o iluminación

Es el factor que tiene en cuenta la eficacia y distribución de luminarias; su altura de montaje, las dimensiones del local y la reflexión de las paredes, techos y pisos.

Para luminarias directas, semi - directas y difusa general, se calcula la relación local (RL) así:

$$R.L = \frac{\text{\'Areadelambiente}}{h*perimetrodelambiente} \dots (Ec. - 48)$$

Con el valor RL se buscará en los catálogos PHILLIPS el valor de Cu, según el tipo de luminarias; el valor de RL se encuentra en los catálogos como el valor de K (otra nomenclatura).

a.7) Flujo luminoso

Es la cantidad de lúmenes de cada lámpara, lo determina el fabricante o a través de la siguiente expresión:

$$NL = \frac{E * A}{Cu * Fm} \quad ... \quad (Ec. - 49)$$

Donde:

NL: Cantidad de lúmenes

E: Nivel de iluminación

A: Área del ambiente

Cu: Coeficiente de utilización

Fm: factor de mantenimiento

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

NGENUERIA

"Parroquia de San Agustín"

a.8) Número de lámparas

Se calcula con la siguiente expresión:

$$N^{\circ}l\acute{a}mp = \frac{NL}{N/l\acute{a}mp}$$
 ... (Ec. - 50)

Donde:

N°Lámp: Número de lámparas

NL: Flujo de lúmenes o número de lúmenes

N/Lámp: Cantidad de lúmenes por lámpara

Cuadro 2.16 Cantidad de Lúmenes Por Lámpara

TIPO DE LÁMPARAS	POTENCIA (Watts)	FLUJO LUMINOSO (Lumen)
	40	430
	60	730
Incandescentes	75	960
Standar	100	1380
	150	2220
	Fluorescentes	
Estándar	36	2500
Rectangular	58	4000
	30	2000
Común	40	2700
Rectangular	65	4500

(FUENTE: Llique, R- 2006)

a.9) Número de luminarias:

Se calcula mediante la siguiente fórmula:

N° de luminarias= Nivel de iluminación (lux) * superficie (lux) ... (Ec. - 51)

Flujo por luminaria (lúmenes)* Cu * Fm

Nivel de iluminación= N° de luminarias * Flujo de luminaria (lúmenes)* Cu* Fm

Superficie (m2)

... (Ec. - 52)

Entonces: N° luminarias= N° lámparas

... (Ec. - 53)

n/ luminaria

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Donde:

n/ luminaria: Número de lámparas por luminaria

a.10) Espaciamiento entre luminarias

Para determinar la ubicación de las salidas para el alumbrado, se tiene en cuenta lo siguiente (según manual de Westinghouse)

• El espacio entre lámparas en ambas direcciones debe ser de 0.80 a 1 veces la altura de montaje, nunca mayor que 1.3 veces tal altura.

$$0.80h \le S \le 1.3h$$

• La distancia máxima de las lámparas extremas es la mitad del espacio entre lámparas interiores.

Algunas veces está especificado en las tablas de datos lumínicos.

2.6.6. Circuitos de fuerza

A) Diseño geométrico

Viene a ser la distribución óptima de las salidas de iluminación, tomacorrientes (salidas de fuerza), interruptores, etc.

B) Diseño eléctrico

b.1) Cálculo de La Potencia Instalada y la Demanda Máxima

- Potencia instalada: Es la suma de las potencias de todos los aparatos, artefactos eléctricos y electrodomésticos, y todos aquellos que necesiten energía y estén contemplados dentro del proyecto de instalaciones eléctricas. El Código Nacional de Electricidad determina que para cada salida de tomacorrientes o tomacorrientes múltiples deberá considerarse una carga no mayor de 180 watts.
- Demanda Máxima: Sólo funcionan un determinado porcentaje, al cual se lo denomina factor de máxima demanda. La demanda máxima, según el Código Eléctrico del Perú, se calcula de la siguiente manera:
 - Los primeros 20,000 watts se calcularán al 100%.
 - Sobre los 20,000 watts, se calculará el 70%.

TOTAL SEGMENT

UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

C) Diseño del conductor

c.1) Intensidad de cálculo

Ic=
$$\underline{DMt}$$
 ... (Ec. - 54)
 $K*V*\cos \Phi$

Donde:

Ic: Intensidad de cálculo en amperios

DMt: Demanda máxima total en watts

K: Factor de suministro

K=1, para sistema monofásico

 $K = \sqrt{3}$, para sistema trifásico

V: Tensión de servicio (generalmente 220 voltios en Perú)

CosΦ: Factor de potencia, considerado 0.9

c.2) Intensidad de diseño

La intensidad de diseño (Id) viene a ser el 25% más que la intensidad de cálculo, luego:

(Llique, R- 2006)

C.3) Cálculo del calibre del conductor: El calibre del conductor se determina de acuerdo a la cantidad de amperios necesarios mediante la siguiente tabla:

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Cuadro 2.17 Capacidad de corriente permisible en amperios de los conductores de cobre aislados (basados en temperatura de 30°C)

Sección Nominal	Temperatura Máxima de Operación del Conductor				
(mm2)	60° Tipos TW -HTW		75° Tipos RHW, THWN, THWXHHW		
	En ducto	Al aire	En ducto	Al aire	
0.75	6	9			
1.0	8	11	WILLIAM		
1.5	10	16			
. 2,5	18	22	20	25	
4	25	32	27	37	
6	35	45	38	52	
10	46	67	50	78	
16	62	90	75	105	
25	80	120	95	140	
35	100	150	120	175	
50	125	185	145	220	
70	150	230	180	270	
95	180	275	215	330	

(FUENTE: Llique, R- 2006)

Cuadro 2.18 Factores de corrección más de tres conductores de canalización

Número De Conductores	Factor de Corrección		
4 a 6	0.80		
7 a 24	0.70		
25 a 42	0.60		
43 ó más	0.50		

(FUENTE: Llique, R- 2006)

El calibre mínimo de los conductores aceptado en instalaciones interiores será como sigue:

- Instalaciones de energía eléctrica en general 2.5mm Φ ó n° 14 AWG
- Instalaciones de energía eléctrica en viviendas tipo popular 1.5mmΦ ó nº16 AWG
- Instalaciones de servicios eléctricos auxiliares (timbres, relojes eléctricos, etc), $1mm\Phi$ ó 20 AWG

c.3) Chequeo por caída de tensión: Es un chequeo para controlar que la caída de tensión, que se produce al paso de corriente por el conductor, sea mayor que la recomendada por el Código Nacional de Electricidad. (CNE).

N COMMON OF THE PROPERTY OF TH

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Según el CNE, tomo V, artículo 3.1.2.1: "Los conductores de los circuitos derivados deberán ser dimensionados para que la caída de tensión no sea mayor de 2.5% para las cargas de fuerza, calefacción y alumbrado, o combinación de tales cargas y donde la caída de tensión máxima en alimentadores y circuitos derivados hasta el punto más alejado de utilización no exceda del 4%".

Entonces la caída de tensión entre el:

• Medidor y tablero general, no será mayor de 1.5%.

Tablero general y tablero de distribución a los puntos de salida más alejados, no será mayor al 2.5%.

$$2.5 \% \text{ de } 220 \text{ V} = 5.5 \text{ V} \dots \text{ (Ec. - 57)}$$

Para el cálculo de la caída de tensión, usamos la siguiente fórmula:

$$\Delta V = \frac{K*ID*\delta*L*\cos\Phi}{S} \qquad \dots \quad (Ec. - 58)$$

Donde:

ΔV: Caída de tensión

K: Factor dependiente del suministro

K=2, para sistema monofásico

 $K=\sqrt{3}$, para sistema trifásico

ID: Intensidad de corriente de diseño

Δ: Resistividad del material del conductor

L: Longitud del coductor

S: Sección del conductor en mm2

cosΦ: Factor de potencia

(Llique, R- 2006)

c.4) Determinación del diámetro de la tubería de conducción

La determinación del calibre de la tubería de conducción se hará en base al número de cables que irán a pasar por ésta. Para ello se tiene la siguiente tabla:

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Cuadro 2.19 Número de conductores en tubería

Calibre						
SEL	Ф3/4"	Ф1"	Ф1 1/4"	Ф1 ½"	Ф2"	Ф2 1/2"
SAP	Ф1/2"	Ф3/4"	Ф1"	Ф1 ¼"	Ф1 ½"	Ф3"
Nº 18	7	12	20	35	49	80
Nº 16	6	10	17	30	41	68
Nº 14	4	6	10	18	25	48
Nº 12	3	5	8	15	21	34
N° 10	1	4	7	13	17	29
Nº 8	1	3	4	7	10	17
Nº 6	1	1	3	4	6	1
Nº 4	1	1	1	3	5	8
N° 2		1	1	3	3	6

(FUENTE: Rodríguez - 2003)

2.6.7. Sistema de puesta a tierra

El Sistema de Puesta a Tierra son instalaciones subterráneas de Electrodos desnudos en contacto directo con el suelo, destinadas a conducir y dispersar corrientes eléctricas, para brindar la Seguridad Eléctrica que prevén las Normas y asegurar el correcto funcionamiento de los aparatos conectados al circuito eléctrico, aparte otros beneficios que se traducen en la calidad del uso del servicio eléctrico.

El sistema de Puesta a Tierra tiene dos finalidades importantes:

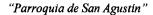
A) Evacuan y dispersan corrientes eléctricas con mínima resistencia: Las corrientes que se canalizan hacia tierra tiene diversos orígenes y amplitudes, en todos los casos, su dispersión en el suelo se hace a través de la Resistencia total del sistema de puesta a tierra (circuito, conexiones, componentes y suelo), cuya magnitud en lo posible debe ser mínima para asegurar la protección de las personas lo cual depende de la eficiencia en la instalación de los electrodos en el suelo.

B) Proveen a las masas el potencial de referencia cero: El comportamiento de la tierra como un sumidero infinito de carga, hace que su Potencial Eléctrico sea cero, luego, todo aparato cuya Masa sea conectada a la Tierra estará provisto de dicho Potencial de Referencia cero. Que propiciará tanto su óptimo funcionamiento, como el de los dispositivos asociados a él. En el presente proyecto, se ha previsto un pozo a tierra tipo malla para cada circuito eléctrico, donde convergen las líneas de tierra de todos los artefactos eléctricos que tienen cada conexión. Este pozo no será tratado con soluciones químicas por el alto nivel mostrado

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

en resistividad del suelo en estudio. La conservación óptima de un Sistema Puesta a Tierra instalados en suelo y climas secos, se logra inundando con unos 30 litros de agua, el interior de la Caja de Registro o el hoyo exterior, cada seis meses; si el clima es lluvioso o si la Puesta a Tierra está en un jardín con riego, no será necesario dicha conservación.


Para el Sistema de Puesta a Tierra se usarán electrodos de cobre, rodado con THOR GEL, dado su alto grado de resistencia a la corrosión, estos tipos de electrodos están indicados para cualquier clase de terreno, especialmente los corrosivos y los de alta resistividad, en los que puede ser necesario el empleo de varios electrodos unidos ente sí, para obtener el valor adecuado de la resistencia del Sistema de Puesta a Tierra de la instalación.

Las Normas Técnicas Peruanas del Sistema de Conexión a Tierra, elaboradas por el Comité Técnico Especializado de Seguridad Eléctrica – Sistema de Conexión a Tierra, ha ser aplicado en las instalaciones eléctricas en edificios públicos, edificios residenciales, viviendas unifamiliares o locales comerciales; en la Norma NTP 370.056 Electrodos para Puesta a Tierra, nos dicen que la clase de electrodos de puesta a tierra de cobre pueden ser uno o un grupo de los siguientes electrodos:

- **b.1)** Electrodo de varilla de cobre: de un diámetro nominal no menor de 12 mm y de longitud no menor de 2.0 m, la profundidad mínima a la cual debe introducirse es de 2.5 m. Si se encuentra roca a menos de 1.25 m de profundidad, el electrodo debe enterrase horizontalmente. Para identificar los electrodos de varilla de cobre llevarán gravado el nombre o marca del fabricante, longitud en metros, diámetro en milímetros y las siglas de la NTP 370.056.
- **b.2)** Electrodo compuesto de un conductor de cobre desnudo enterrado horizontalmente a una profundidad no menor de 0.75 m. El electrodo consiste de un conductor de cobre desnudo de por lo menos 10 m de longitud y de una sección no menor de 35 mm2.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

2.7. INSTALACIONES SANITARIAS

Las instalaciones sanitarias interiores en edificaciones requieren de los proyectistas un cuidadoso y estudiado diseño, a fin de lograr los siguientes objetivos:

- a) Dar un adecuado sistema de agua en lo referente a calidad y cantidad.
- b) Protección de la salud de las personas y de la propiedad.
- c) Eliminar las aguas servidas, bien mediante su conexión a la red pública o a un método sanitario de eliminación.

Las instalaciones sanitarias en forma general, incluyen las líneas de distribución de agua, los aparatos sanitarios, las tuberías de desagüe y ventilación, las de drenaje de agua de lluvia, así como equipos complementarios. El abastecimiento de agua y el desagüe se complementan, siendo el agua necesaria para el lavado de los aparatos sanitarios y para el transporte de los desechos sólidos por las tuberías de drenaje. Los aparatos sanitarios son la terminal del sistema de desagüe. El número y tipo de los aparatos sanitarios y su uso privado o público determinan el diámetro de las tuberías de agua y de desagüe, dependiendo su tipo y elección por lo general del propietario del inmueble que se diseña.

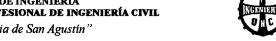
(Jimeno Blasco, E- 1995)

2.7.1. Sistema de abastecimiento de agua

El diseño del sistema de abastecimiento de agua de un edificio depende de los siguientes factores:

- Presión de agua en la red pública
- Altura y forma del edificio
- Presiones interiores necesarias

De aquí que cualquier método que se emplee puede ser: Directo e Indirecto.


A) Sistema de abastecimiento de agua directo

Se presenta este caso cuando la red pública es suficiente para servir a todos los puntos de consumo a cualquier hora del día. El suministro de la red pública debe ser permanente y abastecer directamente toda la instalación interna.

(Jimeno Blasco, E- 1995)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

B) Sistema indirecto

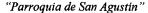
Cuando la presión de la red pública no es suficiente para dar servicio a los artefactos sanitarios de los niveles más altos, se hace necesario que la red pública suministre agua a reservorios domiciliarios (cisternas y tanques elevados) y de éstos se abastece por bombeo o gravedad a todo el sistema.

b.1) Ventajas:

- Existe reserva de agua para el caso de interrupción del servicio.
- Presión constante y razonable en cualquier punto de la red interior
- Elimina los sifonajes, por la separación de la red interna de la externa por los reservorios domiciliarios.
- Las presiones de las redes de agua caliente son más constantes.

b.2) Desventajas:

- Mayores posibilidades de contaminación del agua dentro del edificio.
- Se requiere equipo de bombeo.
- Mayor costo de construcción y mantenimiento.


2.7.2. Cálculo de las redes interiores de distribución de agua

Método de Roy B. Hunter

Fue el que aplicó por primera vez la teoría de las probabilidades al cálculo de los gastos en los sistemas de plomería. Este método consiste en asignar a cada aparato sanitario o grupo de aparatos sanitarios, un número de unidades de gasto o peso determinado experimentalmente. Para el diseño de tuberías se usará el gasto probable obtenido en base al número de unidades HUNTER, la máxima presión estática deberá ser menos de 40cm de columna de agua; la presión mínima en la entrada de los aparatos, será de 2m de columna de agua; la velocidad mínima recomendable será de 0.60m/seg y la máxima según la siguiente tabla.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Cuadro 2.20 Velocidad máxima en tuberías

Diámetro (pulg)	Velocidad máxima (m/seg)
1/2	1.90
3/4	2.20
1	2.48
1 1/4	2.85
1 ½ y mayores-	3.00

(FUENTE: Jimeno Blasco, E- 1995)

A) Diseño de redes de agua fría

El diseño de redes de agua fría está supeditado a efectuar las conexiones a cada uno de los aparatos sanitarios ubicados dentro de los baños privados o colectivos, a los que aisladamente se encuentran fuera de ella.

Cuadro 2.21 Unidades de gasto para el cálculo de las tuberías de distribución de agua (Aparatos de uso privado)

Aparatos Sanitarios		Unidades de Gasto			
	Tipo	Total	Agua Fría	Agua Caliente	
Tina		2	1.50	1.50	
Bidet		1	0.75	0.75	
Ducha		2	1.50	1.50	
Inodoro	Con tanque	3	3	-	
Lavadero	Cocina	3	2.00	2.00	
Lavatorio	Corriente	1	0.75	0.75	
Cuarto de baño completo	Con tanque	6	5	2	
Medio baño	Con tanque	4	4	0.75	

(FUENTE: Jimeno Blasco, E- 1995)

Nota: Para calcular tuberías de distribución que conduzca agua fría solamente, o agua fría más el gasto de agua a ser calentada, se usará las cifras indicadas en la primera columna. Para calcular diámetros de tuberías que conduzcan agua fría o agua caliente a un aparato sanitario que requiera de ambas, se usará las cifras indicadas en la segunda y tercera columna.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Cuadro 2.22 Unidades de gasto para el cálculo de las tuberías de distribución de agua (Aparatos de uso público)

Aparatos		Unidades de Gasto				
Sanitarios	Tipo	Total	Agua Fría	Agua Caliente		
Tina		4	3	3		
Inodoro	Con válvula semiautomática	8	8	_		
Lavadero	Cocina	4	3	3		
Lavatorio	Corriente	2	1.50	1.50		
Urinario	Con válvula semiautomática	5	5	-		

(FUENTE: Jimeno Blasco, E- 1995)

Nota: Para calcular tuberías de distribución que conduzca agua fría solamente, o agua fría más el gasto de agua a ser calentada, se usará las cifras indicadas en la primera columna. Para calcular diámetros de tuberías que conduzcan agua fría o agua caliente a un aparato sanitario que requiera de ambas, se usará las cifras indicadas en la segunda y tercera columna.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Cuadro 2.23 Gastos probables para aplicación del Método Hunter.

N° de	Gastos	Válvula	N° de	Gastos	Válvula	N° de	Gastos
Unidades	Probables	1	Unidades	Probables		Unidades	Probable
	Tanque			Tanque			
3	0.12	-	120	1.83	2.72	1100	8.27
4	0.18	-	130	1.91	2.80	1200	8.70
5	0.23	0.91	140	1.98	2.85	1300	9.15
6	0.25	0.94	150	2.06	2.95	1400	9.56
7	0.28	0.97	160	2.14	3.04	1500	9.90
8	0.29	1.00	170	2.22	3.12	1600	10.42
9	0.32	1.05	180	2.29	3.20	1700	10.85
10	0.34	1.06	190	2.37	3.25	1800	11.25
12	0.38	1.12	200	2.45	3.36	1900	11.71
14	0.42	1.17	210	2.53	3.44	2000	12.14
16	0.46	1.22	220	2.60	3.51	2100	12.57
18	0.50	1.27	230	2.65	3.58	2200	13.00
20	0.54	1.33	240	3.75	3.65	2300	13.42
22	0.58	1.37	250	2.84	3.71	2400	13.86
24	0.61	1.42	260	2.91	3.79	2500	14.29
26	0.67	1.45	270	2.99	3.87	2600	14.71
28	0.71	1.51	280	3.07	3.94	2700	15.12
30	0.75	1.55	290	3.15	4.04	2800	15.53
32	0.79	1.59	300	3.32	4.12	2900	15.97
34	0.82	1.63	320	3.37	4.24	3000	16.20
36	0.85	1.67	340	3,52	4.35	3100	16.51
38	0.88	1.70	380	3.67	4.46	3200	17.23
40	0.91	1.74	390	3.83	4.60	3300	17.85
42	0.95	1.78	400	3.97	4.72	3400	18.07
44	1.00	1.82	420	4.12	4.84	3500	18.40
46	1.03	1.84	440	4.27	4.96	3600	18.91
48	1,09	1.92	460	4.42	5.08	3700	19.23
50	1.13	1.97	480	4.57	5.20	3800	19.75
55	1.19	2.04	500	4.71	5.31	3900	20.17
60	1.25	2.11	550	5.02	5.57	4000	20.50
65	1.31	2.17	600	5.34	5.83		
70	1.36	2.23	650	5.85	6.09]	
75	1.41	2.29	700	5.95	6.35	1	úmero de
80	1.45	2.35	750	6.20	6.61	}	s de esta
85	1.50	2.40	800	6.60	6.84	į.	indiferente
90	1.56	2.45	850	6.91	7.11	1 -	efactos sean
95	1.62	2.50	900	7.22	7.36	de tanques	o de válvula
100	1.67	2.55	950	7.53	7.61	1	
110	1.75	2.60	1000	7.84	7.85	1	

(FUENTE: Jimeno Blasco, E- 1995)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

B) Dimensionamiento de los subramales

Cada sub ramal sirve a un aparato sanitario, y es dimensionado siguiendo valores que han sido elaborados después de numerosas experiencias con los diversos aparatos sanitarios.

Se puede utilizar la siguiente tabla para escoger el diámetro del sub ramal. La tabla suministra elementos para una estimación preliminar sujetos a modificaciones y rectificaciones que irán a ser determinadas por las particularidades de cada caso.

Cuadro 2.24 Dimensionamiento De Los Sub Ramales

Tipos de aparatos	Diámetro del sub ramal (plg)				
sanitarios	Presiones de hasta 10m	Presiones mayores de 10m	Diámetro mínimo		
Lavatorio	1/2	1/2	1/2		
Bidet	1/2	1/2	1/2		
Tina	³ ⁄ ₄ - 1/2	3/4	1/2		
Ducha	3/4	1/2	1/2		
Grifo de cocina	3/4	1/2	1/2		
Inodoro con tanque	1/2	1/2	1/2		
Inodoro con válvula	1 ½ - 2	1	1 1/4		
Inodoro con tanque	1/2	1/2	1/2		
Urinario con Válvula	1 - 1/2 - 2	1	1		

(FUENTE: Jimeno Blasco, E- 1995)

C) Dimensionamiento de los ramales de alimentación

El dimensionamiento de un ramal podrá efectuarse estudiando el suministro de agua, bajo dos formas distintas, a saber:

- En función del consumo simultáneo máximo posible de todos los aparatos sanitarios.
- En función del consumo simultáneo máximo probable de los aparatos sanitarios.

Método Empírico

Este método sigue recomendaciones prácticas de ciertos autores, para este fin se presenta a continuación una tabla dejando a criterio su utilización.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Cuadro 2.25 Dimensionamiento de los ramales

Aparatos servidos por el ramal	Aparatos a considerar en funcionamiento simultáneo	Consumo (lts/seg)
Un baño completo con inodoro de tanque	Tina y lavatorio	21
Dos baños completos con inodoro de tanque	Dos tinas	30
Tres baños completos con inodoro de tanque	Dos tinas y dos lavatorios	42
Un baño con inodoro de tanque, cocina y un baño de servicio con tanque	Tina, llave, cocina y dos inodoros	31
Un baño completo con inodoro de válvula flush	Un inodoro con válvula flush y la tina	135
Dos baños completos con inodoro de válvula flush	Dos inodoros	240
Tres baños completos con inodoro de válvula flush	Dos inodoros	240

(FUENTE: Jimeno Blasco, E- 1995)

D) Diseño hidráulico de tuberías

Para el cálculo de las tuberías de alimentación, sea que suministren agua de abajo hacia arriba o viceversa, puede aplicarse el método de las probabilidades pero resulta complicado y poco práctico en las aplicaciones por lo que se emplea el método de HUNTER. Este método consiste en asignar un peso a cada tipo de aparato o grupo de baños, según se trate de un uso público o privado.

Para ello se siguen los siguientes pasos:

- Elegir el ramal más desfavorable de la red de agua
- Dibujar la isometría de dicho ramal y separarlo por tramos.
- Calcular el número de unidades Hunter que influye en cada tramo, en función al tipo de aparato sanitario, usando la tabla del RNE.
- Transformar el número de unidades Hunter de cada tramo, a gasto en lts/seg, haciendo uso de la tabla correspondiente.
- Calcular el diámetro interior de la tubería, sin que este sobrepase la velocidad máxima (m/seg), ni sea inferior a la velocidad mínima permisible y de acuerdo a:

$$V = Q/A$$
 ... (Ec. - 59)

O NO CELLANDELL.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Donde:

V: velocidad en m/seg

Q: caudal en lt/seg

A: área transversal del conducto en m2

- Se calcula la velocidad asumiendo un diámetro cualquiera, si esta velocidad está comprendida entre la mínima y la máxima permisible, se adopta dicho diámetro, en caso contrario se aumenta o disminuye dicho diámetro, hasta que satisfaga los requerimientos.
- Calcular la pérdida de carga por fricción por metro lineal de tubería de cada tramo, teniendo presente la ecuación de Darcy Weisbach:

$$Hf = \frac{f * L * V^2}{d * 2g}$$
 ... (Ec. – 60)

$$Sf = \frac{\beta \cdot Q}{D^{5}} \quad \dots \quad (Ec. -61)$$

$$Sf = \frac{hf}{L_T} \dots (Ec. - 62)$$

Donde:

hf: pérdida por fricción

f: factor de fricción

L: longitud de tubería

V: velocidad de flujo

D: diámetro de la tubería

G: aceleración de la gravedad.

β: Factor que agrupa equivalente a: $\beta = \frac{8.f}{\Pi^2 g}$

Sf: Pendiente friccionante.

LT: longitud Total de la tubería (LT = L + Le)

Le: Longitud equivalente de cada accesorio

Los valor de β dependen de la rugosidad de las paredes de la tubería, como en el cuadro siguiente:

Cuadro 2.26

β	Material de la Tubería
0.0014	P.V.C
0.0025	Acero
0.0033	Fierro Galvanizado

(FUENTE: Jimeno Blasco, E- 1995)

O COMMUNICATION OF COMM

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

NGENIERIA O N C

"Parroquia de San Agustín"

- Medir en el plano las longitudes reales de los diferentes tramos y contabilizar el número de accesorios
- Calcular la pérdida de carga total, la misma que es igual a la pérdida de carga por metro lineal, multiplicado por la longitud total de la tubería de cada tramo.
- Calcular la pérdida de carga por altura del aparato más desfavorable, que en realidad viene a ser la altura de dicho aparato respecto del nivel de la tubería de alimentación.
- La pérdida de carga en el medidor se obtiene usando la tabla correspondiente.
- Se suma las pérdidas de carga.

E) Diseño de tanque cisterna

Para determinar el volumen de diseño de debe tomar en cuenta el volumen de consumo diario.

$$V = \frac{N^{\circ} personas * Consumo(lt / pers / dia)}{N^{\circ} \tan ques * N^{\circ} C \arg as / dia} \dots (Ec. - 63)$$

F) Diseño hidráulico de electrobomba

En caso de este sistema indirecto se tiene en cuenta lo siguiente:

• Para el caso de la bomba nos interesa conocer la potencia de la misma.

$$Hp = \frac{Qb * Hb}{75 * e}$$
 ... (Ec. - 64)
 $Hb = He + Hf + Ps$... (Ec. - 65)

Donde:

He: Pérdida de carga por elevación en metros

Hf: Pérdida de carga por fricción en tuberías y accesorios

Ps: Presión de agua a las salida de la tubería de impulsión, 2m mínimo.

Qb: gasto de bombearse (lts/seg.)

Hb: Altura dinámica (m)

e: Eficiencia de bomba 0.6-0.7

2.7.3. Sistema de desagüe

La evacuación de las aguas servidas se realiza por medio de un conjunto de tuberías, que deberían cumplir las siguientes condiciones:

• Evacuar rápidamente las aguas servidas, alejándolas de los aparatos sanitarios.

MACIONAL CONTROL OF CHARACTER CONTROL OF CONTROL

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

- Impedir el paso de aire, olores y organismos patógenos de las tuberías al interior de la vivienda o edificio.
- Las tuberías deben ser materiales durables e instalables de manera que no se provoque alteraciones con los movimientos de los edificios.
- Los materiales de las tuberías deben resistir la acción corrosiva del terreno en que están instaladas y de las aguas que transportan.

A) Partes que consta una red de evacuación

a.1) Tuberías de evacuación propiamente dichas

• Derivaciones: Son las que enlazan los aparatos sanitarios con las columnas o bajantes. Pueden ser simples cuando sirven a un solo aparato, y compuesta, cuando sirven a varios aparatos. En el primer caso el diámetro depende del tipo de aparato; en el segundo caso varía con la pendiente y el número de aparatos servidos de acuerdo a las unidades de peso.

Cuadro 2.27 Unidades De Descarga

Tipos de aparatos	Diámetro mínimo de la trampa (mm)	Unidades de descarga	
Inodoro (con tanque)		75 (3")	4
Inodoro (con tanque descarga reducida)		75 (3")	2
Inodoro (con válvula automática semiautomática)	у	75 (3")	, 8
Inodoro (con válvula automática semiautomática de descarga reducida)	у	75 (3")	4
Bidé		40 (1 ½")	3
Lavatorio		32 - 40 (1 1/4" - 1 1/2")	1 – 2
Lavadero de cocina		50 (2")	2
Lavadero de ropa		40 (1 ½")	2
Ducha privada		50 (2")	2
Tina		40 - 50 (1 ½" - 2")	2-3
Urinario de pared		40 (1 1/2")	4
Urinario de válvula automática semiautomática	у	75 (3")	8
Urinario de válvula automática semiautomática de descarga reducida	у	75 (3")	. 4
Sumidero		50 (2")	2

(Fuente: RNE 2009)

N C CAMPAGE A

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

- Columnas y bajantes: Son las tuberías de evacuación verticales. Llamadas también bajantes, son generalmente de PVC o fierro fundido, con lo cual son sólidas y durables, se recomienda que se enlacen en su parte inferior a los colectores horizontales de descarga en dos formas o se coloca un sifón en la base de cada columna, o bien se enlazan directamente las columnas con el colector, disponiendo un sifón al final de este.
- Colectores: Son las tuberías horizontales que recogen el agua servida al pie de las columnas o bajantes, así como las derivaciones en caso de viviendas o fábricas de un solo piso y la llevan a la red de alcantarillado público.

Los materiales más empleados son concreto, PVC, fierro fundido, se debe colocar cajas de registro en los puntos de recibo de bajantes o columnas, en los lugares de reunión de dos o más colectores, en los cambios de dirección, y cada 15m como máximo de longitud de cada colector. Se puede determinar de acuerdo a la siguiente tabla.

Cuadro 2.28 Dimensiones de las cajas de registro

Dimensiones interiores (m)	Diámetro máximo (mm)	Profundidad Máxima (m)
0.25 x 0.50 (10"x20")	100 (4")	0.60
0.30 x 0.60 (12"x24")	150 (6")	0.80
0.45 x 0.60 (18"x24")	150 (6")	1.00
0.60 x0.60 (24" x24")	200 (8")	1.20

(FUENTE: Jimeno Blasco, E- 1995)

Cuadro 2.29 Desagüe en los edificios: ramales horizontales

Diámetro de	Máximo Número de Unidades de Peso que Pueden Ser Conectados a un Ramal.						
Tuberías en		Pe	ndiente				
Pulgadas	0.50%	1%	2%	4%			
2			21	26			
2 1/2		20	24	31			
3		180	27	36			
4	1400	390	216	250			
5	2500	700	480	575			
6	3,900	1600	840	1000			
8		2900	1920	2300			
10		4,600	3500	4200			
12			5,600	6700			

(FUENTE: RNE-2009)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

a.2) Sifones y trampas

Dispositivos que tienen por objeto evitar que pasen al interior de los edificios las emanaciones procedentes de la red de evacuación, y al mismo tiempo, deben permitir el fácil paso de las materias sólidas en suspensión en el agua. El sistema usado consiste en un cierre hidráulico, deben llevar un registro que permita inspeccionarlos

a.3) Tuberías de ventilación

Están constituidas por una serie de tuberías que acomenten a la red de desagüe cerca de las trampas estableciendo una comunicación con el aire exterior.

2.7.4. Sistema de colección y evacuación de aguas de lluvia

Se llama así al sistema de canaletas y/o bombas y/o tuberías que recogen el agua proveniente de las precipitaciones pluviales que caen sobre los techos, patios y/o zonas pavimentadas de una edificación y la evacúa hacia un sistema de disposición final adecuado.

Es importante indicar que existen tres formas de evacuar finalmente el agua de lluvia:

- Red de evacuación de aguas de lluvia, separado del Sistema de Alcantarillado.
- Red de alcantarillado mixto o de uso tanto para desagüe cloacales como de lluvia
- Evacuación hacia cunetas, canales o jardines.

A) Consideraciones para el diseño

En el proyecto de un sistema de colección y evacuación de agua de lluvia, se deberá considerar dos etapas: El diseño del sistema y el Cálculo de los conductos.

Para el diseño del sistema, será necesario estudiar el proyecto arquitectónico de la edificación, a fin de determinar las áreas expuestas a lluvia techos, azoteas, patios, garajes, etc, donde se instalarán los accesorios necesarios que colectarán el agua de lluvia, diseñando la pendiente apropiada para cada área.

El cálculo de los conductos, ya sean horizontales para la colección de agua de lluvia o verticales para las bajadas respectivas, se puede efectuar con varias formas. Puede calcularse el diámetro de los conductos con la fórmula.

$$Q = \frac{CIA}{360} \cdots (Ec. - 66)$$

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Donde:

Q: caudal en m3/seg

C: relación entre la escorrentía y la cantidad de agua caída en el área

I: intensidad de lluvia en mm/hora

A: área a drenar en hectáreas.

El valor de C puede estimarse

Cuadro 2.30 Coeficientes de escorrentía para ser utilizados en el Método Racional

Características de la	Período de retorno (años)						
superficie	2	5	10	25	50	100	500
ÁREAS URBANAS							
Asfalto	0.73	0.77	0.81	0.86	0.90	0.95	1.00
Concreto/ Techos	0.75	0.80	0.83	0.88	0.92	0.97	1.00
Zonas verdes (jardines, parques,	etc)		- 	······································			
Condición pobre (cubierta de pa	sto menor	del 50%	del área)			
Plano 0-2%	0.32	0.34	0.37	0.40	0.44	0.47	0.58
Promedio 2-7%	0.37	0.40	0.43	0.46	0.49	0.53	0.61
Pendiente superior a 7%	0.40	0.43	0.45	0.49	0.52	0.55	0.62

(FUENTE: RNE-2009)

El cálculo hidráulico de la sección de las cunetas se realizará usando la expresión de Manning, más usada para el cálculo de canales, y que consiguientemente es aplicable al diseño de canaletas:

$$V = \frac{R^{2/3} * S^{1/2}}{n}$$
 ... (Ec. - 67)

$$Q = A \frac{R^{2/3} * S^{1/2}}{n}$$
 ... (Ec. - 68)

Donde:

O: Caudal

S: Pendiente de la canaleta en metros por metro

R: Radio hidráulico en metros

n: Coeficiente de Manning.

V: Velocidad del agua en metros por segundo

A : Área de la sección de la cuneta en metros cuadrados

STACTONAL CONTROL OF THE PROPERTY OF THE PROPE

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Cuadro 2.31 Valores de "n" dados por HORTON para ser usados en la fórmula de Manning.

MATERIAL	COEFICIENTE DE RUGOSIDAD (n)
Tubos de barro para drenaje.	0.014
Superficie de cemento pulido.	0.012
Tubería de concreto.	. 0.015
Canales revestidos con concreto.	0.014
Superficie de mampostería con cemento.	0.02
Acueductos semicirculares, metálicos lisos.	0.012
Acueductos semicirculares, metálicos corrugados.	0.025
Tuberías de plástico corrugadas ADS.	0.012
Canales en tierra, alineados y uniformes.	0.025

(FUENTE: Villón, M. 1994.)

Para el cálculo de I, se toma en cuenta:

$$I = a * (1 + K * \log T) * (t + b)^{n.1} \dots (Ec. - 69)$$

Para t<3 horas

Donde:

i= Intensidad de lluvia (mm/hora)

a= parámetro de intensidad (mm)

K= parámetro de frecuencia (adimensional)

b= parámetro (hora)

n= parámetro de duración (adimensional)

t= duración (hora), asumido en promedio de 15.2 para Perú.

(RNE -2009)

Cuadro 2.32 Subdivisión del territorio en zonas y subzonas Pluviométricas y valores de los parámtros K' y ξ_g que definen la distribución de probabilidades h_g en cada punto.

			G
ZONA	k' _g	Sub zona	ξ _g
123	$k_g = 0.553$	123,	$\xi_g = 0.85$
		1232	$\xi_{g} = 75$
		1233	$\xi_g = 100 - 0.22 \text{Y}$
		1234	$\xi_g = 70 - 0.019 \text{Y}$
		1235	$\xi_g = 24$
		1236	$\xi_g = 30.50$

(FUENTE: RNE- 2009)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Cuadro 2.33 Valores de los parámetros a y n que junto con K, definen las curvas de probabilidad pluviométrica en cada punto de las subzonas.

Sub Zona	Estación	Nº Total de estaciones	Valor de n	Valor de a
123,	321-385	2	0.357	32.2
1233	384-787-805	3	0.405	a=37.85-0.0083Y
123,3	244-193	2	0.432	
1235	850-903	2	0.353	9.2
123 ₆	840-913-918 958	4	0.380	11.0
123 ₈	654-674-679 709-713-714 732-745-752	9	0.232	14.0
123 ₉	769	1	0.242	12.1
123,0	446-557-594 653-672-696 708-711-712 715-717-724 757-773	14	0.254	a=3.01+0.0025Y
123,,	508-667-719 750-771	5	0.286	a=0.46+0.0023Y
5a ₂	935-968	2	0.301	a=14.1-0.078Y
5a ₅	559	1	0.303	a=-2.6+0.0031Y
5a ₁₀	248	1	0.434	a=5.80+0.0009Y

(FUENTE: RNE- 2009)

B) Canaletas para desagüe de lluvias

Son de sección semicircular y con los bordes salientes a fin de reforzar el perfil, se fabrican en diámetros de 100, 120, 150 y 200mm.

(Blasco, E - 1995)

2.8. ESTUDIO DE IMPACTO AMBIENTAL

2.8.1. Generalidades

Este estudio de impacto ambiental se ha desarrollado en dos etapas, ha saber: en campo y gabinete; en la primera se realizó un diagnóstico ambiental del lugar donde se emplazará la Parroquia de San Agustín" y su ámbito de influencia, mediante el inventario y evaluación de los componentes ambientales susceptibles de ser impactos con esta obra. En la segunda etapa

TO CAMMUSAN DE SINCE COMMUNICATION OF THE COMMUNICA

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

se realizó la identificación y evaluación de los impactos ambientales, a fin de plantear las medidas de control y/o mitigación.

La metodología aplicada es una combinación de los métodos de matrices: Matriz de Leopold y matriz cromática.

Esta metodología, se ha utilizó en las diferentes actividades que comprende dicha infraestructura. Las diferentes alternativas y/o rubros se evaluaron considerando las fases de construcción, operación y mantenimiento. El proceso de evaluación de los distintos rubros, se realizó mediante la ayuda de hojas de cálculo (Microsoft Excel).

2.8.2. Definiciones

A) Evaluación del impacto ambiental

Es la evaluación sistemática, reproducible e interdisciplinaria de los efectos potenciales de una acción propuesta y sus alternativas prácticas en los atributos físicos, biológicos, culturales y socioeconómicos de un área geográfica en particular.

Es a menudo un componente clave en la planificación de instalaciones nacionales, regionales o locales y en el planteamiento de utilización de terrenos. El propósito es asegurarse que los recursos ambientales de importancia se reconozcan al principio del proceso de planificación y se protejan a través de planteamientos y decisiones pertinentes

B) Estudio de impacto ambiental (Eia)

Documento que describe pormenorizadamente las características de un proyecto o actividad que pretende llevar a cabo o su modificación. Debe proporcionar antecedentes fundados para la predicción, identificación e interpretación de su impacto ambiental, así como describir y detallar la o las acciones que ejecutará para prevenir, corregir o mitigar sus efectos significativos adversos.

2.8.3. Principales métodos del estudio de impacto ambiental

La legislación pide estudios más o menos detallados según sea la actividad que se va a realizar. No es lo mismo la instalación de un bar que una pequeña empresa o un gran embalse o una central nuclear, por eso se distinguen como sigue:

2

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

ico profesional de Ingenieria civil
"Parroquia de San Agustin"

A. Informes medio ambientales: que se unen a los proyectos y son simplemente indicadores de la incidencia ambiental con las medidas correctoras que se podrían tomar.

- B. Evaluación preliminar: que incorpora una primera valoración de impactos que sirve para decidir si es necesaria una valoración más detallada de los impactos de esa actividad o es suficiente con este estudio más superficial.
- C. Evaluación simplificada: que es un estudio de profundidad media sobre los impactos ambientales.
- D. Evaluación detallada: en la que se profundiza por qué la actividad que se está estudiando es de gran envergadura.

El impacto ambiental se relaciona con las modificaciones en los ecosistemas, causadas por una o varias acciones (proyecto de ingeniería, un programa, una ley, una actividad o disposición administrativa con implicancias ambientales), provocadas directa o indirectamente por las actividades humanas, que ocasionan un cambio neto en el nivel de vida. Pueden ser positivos o negativos, o presentar las dos formas sobre distintos factores ambientales, dependiendo del factor socioeconómico que afecta.

2.8.4. Matriz de interacción

Las matrices pueden ser consideradas como listas de control bidimensionales: en una dimensión se muestran las características individuales de un proyecto (actividades propuestas, elementos de impacto, etc.), mientras que en la otra dimensión se identifican las categorías ambientales que pueden ser afectadas por el proyecto. De esta manera los efectos o impactos potenciales son individualizados confrontando las dos listas de control. Las diferencias entre los diversos tipos de matrices deben considerar la variedad, número y especificidad de las listas de control, así como el sistema de evaluación del impacto individualizado. Con respecto a la evaluación, ésta varía desde una simple individualización del impacto (marcada con una suerte de señal, una cruz, guión, asterisco, etc.) hasta una evaluación cualitativa (bueno, moderado, suficiente, razonable) o una evaluación numérica, la cual puede ser relativa o absoluta; en general una evaluación analiza el resultado del impacto (positivo o negativo). Entre los ejemplos más conocidos de matrices está la Matriz de Leopold.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

A) Matriz de Leopold

Este sistema utiliza un cuadro de doble entrada (matriz). En las columnas pone las acciones humanas que pueden alterar el sistema y en las filas las características del medio que pueden ser alteradas. Cuando se comienza el estudio se tiene la matriz sin rellenar las cuadrículas.

Ventajas:

Son muy útiles cuando se desea identificar el origen de ciertos impactos. Posibilitan tener un panorama general de las principales interacciones entre las acciones de un proyecto y los factores ambientales.

Desventajas:

Tiene limitaciones cuando se trata de establecer interacciones entre varios efectos, a veces requieren de información que no existe de manera sistemática y esta se debe de producir elevando los costos del estudio.

(Céspedes, J. 2001)

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NG EVIERIA G NC

CAPÍTULO III-METODOLOGÍA

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

3.1. INFORMACIÓN SOCIOECONÓMICA

Con la ayuda de planos de catastro de la Municipalidad Provincial de Cajamarca se puede determinar el área de influencia; se aplicó una encuesta y se procesaron los datos los que reflejan la cantidad de población católica lo que ayudará para el diseño.

3.1.1. Análisis poblacional

A. Determinación del tamaño de la muestra

Para la recolección de información del estudio socio-económico, se tuvo como fuente: Municipalidad Provincial de Cajamarca, Instituto Nacional de Estadística e Informática (INEI), y pobladores de la zona.

3.1.2. Situación socio -económica

A. Descripción del proceso utilizado

Se ha optado por aplicar una encuesta a un determinado número de familias, teniendo en cuenta los siguientes puntos:

a.1) Elaboración de la ficha socio-económica.

Esta ficha ha sido elaborada de tal forma que se pueda obtener información sobre la cantidad de católicos, y las necesidades que tienen de contar con un templo donde puedan practicar su religión.

Se tiene las siguientes partes:

- Informativa: El número promedio de integrantes por familia es cinco, con grado de instrucción superior en la mayoría de casos, y asistencia de una vez por semana mínimo a la iglesia.
- Descriptiva: Se tiene un 60% de la población que practica la religión Católica, que asisten
 por lo menos una vez a la semana, realizan trabajo social, y asisten a diversas iglesias como
 La Catedral, La Recoleta, San Roque, San Francisco, Baños de Inca, las que se encuentran a
 distancias lejanas del área de influencia.
- Los pobladores de la zona están de acuerdo con la construcción de la Parroquia.

a.2) Tamaño de la muestra

Como el número de viviendas del área de influencia es de 1270, se utiliza la ecuación 02:

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

$$n \ge \underbrace{N \times Z^2 \times P \times Q}_{E^2 \times (N-1) + Z^2 \times P \times Q}$$

Donde:

n = Tamaño de muestra

P = 0.4 Proporción adecuada

E = 0.07 Error máximo tolerable en la estimación

Z = 1.96 (Coeficiente del 95% de confiabilidad).

Q = Proporción Complementaria (0.6)

N = Tamaño Poblacional (1270 viviendas)

Reemplazando estos valores en la fórmula tenemos: $n \ge 164$

Teniendo en cuenta este resultado, el tamaño de muestra que usamos fue de 164 viviendas; las mismas que fueron aplicadas en diferentes días con ayuda de la junta directiva de la Urbanización de los Docentes y no docentes de la Universidad Nacional de Cajamarca.

a.3) Proceso de selección

Fue de manera aleatoria encuestando algunas viviendas de cada manzana obteniendo así nuestros resultados.

a.4) Recojo de la información

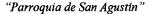
La muestra fue seleccionada, luego de haber concluido la encuesta.

3.1.3. Determinación de la población de diseño

Luego de aplicar la encuesta (descrita a continuación), con los datos del INEI y en función a sus respuestas, se obtuvo una población de 412 habitantes católicos, la mayor posibilidad de asistencia a las diferentes celebraciones religiosas.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"



UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA "PROYECTO PROFESIONAL PARROQUIA DE SAN AGUSTÍN" ENCUESTA DE POBLACIÓN

DIRECCIÓN: I.PREGUNTAS		Nº ENCUESTA:	
1)¿CUÁNTAS FAMILIAS VIVEN EN LA ROPIEDAD? a)Una NOMBRE SEXO	b)Dos EDAD	NIVEL ED	
2) PARTICIPA EN ALGUNA ORGANIZACIÓN VECINAL? a)SÍ b)No			
3) CUÁL ES LA RELIGIÓN QUE PRACTICA? a) Católica b)Evangélica c)Otra (especificar)			
4) ASISTE A MISA? Si () No() a)Con frecuencia b)A veces c)Muy poco			
5) A QUE PARROQUIA ASISTE? a) Catedral b) San Francisco c) La Recoleta d) Del Espíritu Santo e) Otra(especificar)			
6) A QUÉ DISTANCIA SE ENCUENTRA LA PARROQUIA? a)Cerca			
b)Regular c)Lejos		·	
7) REALIZARÍA ALGÚN TIPO DE CATEQUESIS? a) Sí(responder siguiente pregunta) b)No ¿CUÁL?			
8) REALIZARÍA ALGUN TRABAJO SOCIAL? a) Si b)No ¿CUÁL?			
9) ESTARÍA DE ACUERDO EN LA CONSTRUCCIÓN DE UNA PARROQU a) Sí b)No ¿POR QUÉ?		NA?	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

3.2. TOPOGRAFÍA

3.2.1. Reconocimiento del terreno

Fue la primera etapa, y consistió en inspeccionar el área del terreno, y así se determinó lo siguiente:

- a) La ubicación del terreno, la forma irregular y el tamaño.
- b) Se tiene una topografia llana.
- c) El tipo de levantamiento a utilizar es topográfico.

3.2.2. Levantamiento topográfico

Para el levantamiento topográfico se consideró dos partes:

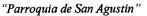
- a) Trabajo de campo: Se realizó usando materiales y equipos adecuados para cada necesidad proporcionados por la Facultad de Ingeniería, como una estación total (LEICA), una mira y una wincha, con los que se tomaron 27 puntos topográficos y se elaboró un croquis.
- b) Trabajo de Gabinete: Los datos obtenidos en la estación total se procesan en el programa Autocad Land, obteniendo así el área del terreno en planta y la topografía, además de la ejecución del plano de ubicación.

3.3. MECÁNICA DE SUELOS

El estudio de Mecánica de Suelos se ejecutó con la finalidad de garantizar la estabilidad y permanencia del proyecto ya para promover la utilización racional de los recursos, siguiendo los lineamientos de la norma E.050. Suelos y Cimentaciones.

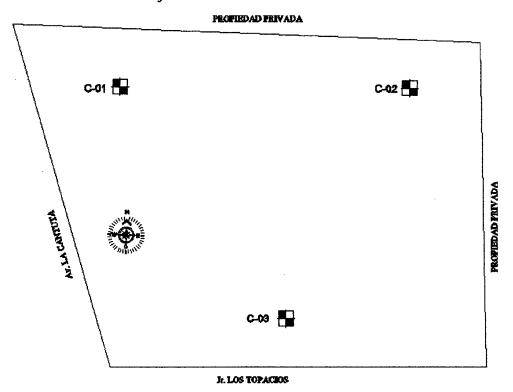
3.3.1. Ubicación de calicatas

El número de calicatas se determinó de acuerdo a la Tabla N°6 (Número de Puntos de Investigación) norma E.050 del RNE, porque el área es de 646.48m2 y el tipo de edificación "A" tenemos que son tres calicatas ubicadas en forma triangular abarcando todo el terreno.


3.3.2. Exploración de suelos

Para el muestreo de las calicatas se excavaron calicatas de dimensiones 1.00 m x 1.00 m x 3.30 m. de profundidad, con la finalidad poder ingresar y observar los estratos que la componen. Se midió la potencia de cada estrato describiendo, sus características, para luego extraer el material y llevarlo al laboratorio de la UNC.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL


En el siguiente cuadro se presentan las tres calicatas que se realizaron:

Cuadro 3.01. Estudio estratigráfico

Descripción	Ubicación de Calicatas	Nº Estratos
C1	Margen superior izquierda	3
C2	Margen superior derecha	3
СЗ	Margen inferior/centro	3

(FUENTE: Elaboración Propia)

Gráfico 3.01: Ubicación de calicatas

(FUENTE: Elaboración Propia)

3.3.3. Extracción de muestras

Las muestras fueron extraídas de cada estrato de las calicatas, y guardadas en bolsas con sus tarjetas respectivas indicando el número de calicata y estrato al que pertenecían, para luego trasladarlas al laboratorio de mecánica de suelos de la Universidad Nacional de Cajamarca, tratando de mantener a la muestra de manera inalterada, para así poder realizar los ensayos de laboratorio respectivos.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Menieula

"Parroquia de San Agustín"

3.3.4. Clasificación de suelos

La clasificación de suelos, se realizó con la ayuda del cuadro 2.04, y el método empleado fué el Sistema Unificado de Clasificación de Suelos (SUCS).

Calicata 1 - estrato 1

- Porcentaje que pasa la malla N°200= 99.72% es mayor al 50%, por lo que se trata de finos
- El límite líquido es 35.10, que es < 50. El suelo tiene un solo símbolo.
- El Índice de Plasticidad es 16.01

Por lo tanto el suelo según la carta de plasticidad es: C L, es decir una arcilla inorgánica.

Calicata 1 - estrato 2

- Porcentaje que pasa la malla N°200= 99.88% es mayor al 50%, por lo que se trata de finos
- El límite líquido es 46.90, que es < 50. El suelo tiene un solo símbolo.
- El Índice de Plasticidad es 18.73

Por lo tanto el suelo según la carta de plasticidad es: CL, es decir una arcilla inorgánica.

Calicata 1 - estrato 3

- Porcentaje que pasa la malla N°200= 99.71% es mayor al 50%, por lo que se trata de finos
- El límite líquido es 46.15, que es < 50. El suelo tiene un solo símbolo.
- El Índice de Plasticidad es 11.84

Por lo tanto el suelo según la carta de plasticidad es: CL, es decir una arcilla inorgánica.

Calicata 2 - estrato 1

- Porcentaje pasa en la malla N°200: 99.88% es mayor al 50%, por lo que el material es fino.
- El límite líquido es 33.10.
- El Índice de Plasticidad es 8.35

Por lo tanto el suelo según la carta de plasticidad es: CL, es decir una arcilla inorgánica.

Calicata 2 - estrato 2

- Porcentaje pasa en la malla N°200: 99.47% es mayor al 50%, por lo que el material es fino.
- El límite líquido es 51.50.
- El Índice de Plasticidad es 14.75

Por lo tanto el suelo es: CH, es decir una arcilla inorgánica.

ONCOLAMAGO.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Calicata 2 - estrato 3

- Porcentaje pasa en la malla N°200: 99.65% es mayor al 50%, por lo que el material es fino.
- El límite líquido es 57.70
- El Índice de Plasticidad es 27.37

Por lo tanto el suelo es: CH, es decir una arcilla inorgánica.

Calicata 3 - estrato 1

- Porcentaje que pasa la malla N°200= 99.50% es mayor al 50%, por lo que se trata de finos
- El límite líquido es 25.60, que es < 50. El suelo tiene un solo símbolo.
- El Índice de Plasticidad es 6.51

Por lo tanto el suelo según la carta de plasticidad es: CH, es decir una arcilla inorgánica.

Calicata 3 - estrato 2

- Porcentaje pasa en la malla N°200: 99.46% es mayor al 50%, por lo que el material es fino.
- El límite líquido es 58.80
- El Índice de Plasticidad es 31.27

Por lo tanto el suelo es: CH, es decir una arcilla inorgánica.

Calicata 3 - estrato 3

- Porcentaje pasa en la malla N°200: 99.68% es mayor al 50%, por lo que el material es fino.
- El límite líquido es 55.00
- El Índice de Plasticidad es 21.67

Por lo tanto el suelo es: CH, es decir una arcilla inorgánica.

3.3.5. Ensayos de laboratorio

Los ensayos se realizaron en el laboratorio de mecánica de suelos de la Universidad Nacional de Cajamarca, para luego realizar la clasificación del suelo. A continuación se presentan cada uno de los ensayos realizados:

A. Contenido de humedad (Norma A.S.T.M. D 2216)

Se seleccionó una fracción de material por cada estrato y se colocó en bolsas plásticas, a continuación se pesó un recipiente y se colocó la muestra dentro de ésta y se pesó, luego se

N CLIMANO

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

llevó a un proceso de secado en un horno por 24 horas a 110°C, al sacar la muestra se pesó nuevamente y se calculó el contenido de humedad con la Ecuación 03, del capítulo 2.

B. Peso específico de suelos (Norma A.S.T.M. D 854)

Se llenó con agua una fiola hasta la marca de 500 ml y se pesó, luego se pesó una fracción de muestra seca que pase el tamiz Nº 4, luego se vació la muestra dentro de la fiola y se vertió agua hasta cubrir la muestra y se agitó la fiola. Se llevó la fiola a la bomba de vacios durante 15 minutos, hasta que no se genere más burbujas dentro de la fiola, luego se retiró la fiola y se añadió agua hasta la marca de 500 ml y se pesó nuevamente. El peso específico se calculó con la Ecuación 04, del capítulo 2.

C. Análisis granulométrico (Norma ASTM D421)

Se utilizó el método de tamizado por lavado. Primero se secó, pulverizó y pesó la muestra (200gr), luego se la colocó en un recipiente y se dejó por algunas horas, para luego tamizar la muestra por la malla Nº 200 mediante un chorro de agua, la muestra retenida se pesó y se llevó a la estufa por 24 horas a 105°C, una vez que se sacó la muestra seca de la estufa, se pasó por los demás tamices restantes, pesando el material retenido en cada tamiz y se determinó el peso del suelo perdido durante el lavado. Luego se calculó los porcentajes de pesos retenidos en cada tamiz hallamos % PASA = 100 x PR/Pms. Se calculó los porcentajes pasantes acumulados % PASA = 100 - % PAR. Luego se dibujó la curva granulométrica.

c.1) Análisis granulométrico por lavado

• Procedimiento

- Pesar la muestra Pi aproximadamente 200 gr. seca al aire.
- Luego vaciar la muestra al tamiz #100,
- Colocar el tamiz con la muestra bajo un chorro de agua corriente y empezar a lavar.
- Cuando se note que el agua está limpia se recoge la cantidad retenida en la malla colocándose en una tara.
- Secar la muestra en un horno a 105° C por 24 hrs.
- Sacar las muestra del horno y pesarlas.
- Determinar los valores de P.R., % R., %Q.P., en un cuadro.
- Dibujar la curva granulométrica.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

D. Límites de consistencia

d.1) Límite líquido (Norma ASTM D4318)

En un recipiente de porcelana mezclar el suelo seco con agua mediante una espátula hasta obtener una pasta uniforme, luego se coloca una porción en la Copa de Casagrande se nivela mediante la espátula hasta obtener un espesor de 1cm, en el centro se hace una ranura con el acanalador y que la muestra quede dividida en dos partes, luego elevar y caer la copa mediante la manivela arzón de dos caídas por segundo hasta que las dos mitades se pongan en contacto en la parte inferior, registrar el número de golpes, luego retirar la parte de suelo que se ha puesto en contacta y se coloca en una tara para determinar su contenido de humedad, el suelo que queda se regresa al recipiente de porcelana, se agrega o disminuye agua dependiendo si el número de golpes ha sido alto o bajo. Luego se dibuja la curva de fluidez en escala semilogarítmica, luego se determina la ordenada correspondiente a 25 golpes y este valor será el límite líquido del suelo.

d.2) Límite plástico (ASTM D4318)

En una porción de mezcla preparada para el límite líquido, luego se le agrega suelo de tal manera que la pasta baje su contenido de humedad, luego se enrolla la muestra en la mano sobre una superficie lisa, hasta obtener cilindros de 3mm de diámetro y que se presenten agrietamientos, determinar su contenido de humedad y repetir dos veces, el límite plástico es el promedio de los dos valores de contenido de humedad.

d.3) Índice de plasticidad

Para calcular el índice de plasticidad, se utilizó la Ecuación 05, del capítulo 2.

E. Densidad aparente o peso volumétrico (Da)

Se registró el peso del recipiente de volumen conocido, se tomó una porción de material natural y se secó a una temperatura de 105°C, dejándolo caer desde una altura de 30 a 40cm. Se llenó y enrazó de material el recipiente y se registró el peso. Luego se determinó el peso volumétrico con la Ecuación 06.

F. Ensayo de consolidación (Norma ASTM D2435-96)

Con una muestra inalterada en el anillo metálico, luego se determina la densidad natural, se ensambla el anillo con la muestra en el consolidómetro, el que está equipado con una piedra porosa en la parte inferior, colocar otra piedra en la parte superior del anillo con la muestra,

TO STATE OF THE PARTY OF THE PA

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

luego se colocó la placa de distribución de carga sobre la piedra porosa, para luego colocar el consolidómetro en el equipo de consolidación, colocar en ceros la escala de presiones, y luego aplican las presiones en los siguientes minutos: 0.1", 0.25", 0.50", 1", 2", 4", 8", 15", 30", 1h, 2h, 4h, 8h, 16h, 24h y 48h, generalmente se registran hasta 24h o hasta que no se observe cambio de volumen significativo. Luego se dibuja las lecturas en una curva a escala semi - logarítmica. Para calcular la relación de vacíos y el coeficiente de consolidación se usará las ecuaciones 07 y 08, del capítulo anterior.

3.3.6. Capacidad portante del suelo

Se calculó teniendo en cuenta la falla por corte local debido al tipo de suelo que se tiene, usando las fórmulas de Terzaghi descritas en el capítulo anterior.

3.3.7. Carga admisible

Es la presión de diseño, es decir el cociente que existe entre la capacidad portante de suelo y el factor de seguridad, el que se encuentra con la fórmula descrita en el capítulo anterior.

3.3.8. Cálculo de asentamientos

El cálculo de asentamientos se obtiene utilizando las fórmulas de capítulo 2, con la ayuda de los datos del ensayo de consolidación.

Se trata de un asentamiento por consolidación ya que ocurre con el paso del tiempo en suelos arcillosos sometidos a una carga incrementada ocasionada por la construcción de una cimentación, dicho asentamiento puede conducir al daño de la superestructura; los parámetros de estos asentamientos diferenciales se muestran en el capítulo 2.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

3.4. ARQUITECTURA

Para el diseño arquitectónico, se ha tomado en cuenta las normas del Título III, ítem III.1.

Arquitectura del RNE 2009, de acuerdo a las necesidades plasmadas en la encuesta realizada

a la población del área de diseño.

Es por esto que se ha considerado el diseño del templo, que incluye las sacristías, también el

diseño independiente de un edificio donde se consideró un área para cochera, un área

administrativa (oficinas), casa para el párroco encargado, un salón parroquial, además de

aulas para catequesis, ambos ambientes se encuentran interconectados y funcionalmente

diseñados.

3.4.1. Diseño arquitectónico

A. Capilla: Para la capilla se tuvo en cuenta los elementos de una iglesia.

a.2) La nave

En esta zona se colocaron las bancas con una longitud de 4.67m, que albergarán a diez

personas cada una de acuerdo al cuadro 2.01 del capítulo 2, y con espacio de 1.04m de

acuerdo al ítem C espaciamiento de bancas del capítulo 2.

a.3) Altar

Por ser la zona donde se concentrarán todas las miradas, se consideró que se encuentre a un

nivel superior del NPT, tres escalones arriba, y cuenta con un área de 58.40m2, cumpliendo

con el requerimiento de áreas del capítulo 2.

a.4) El ambón

Será de madera, se ubica en la parte izquierda del altar, con una altura de 1.10m.

a.6) El crucifijo

Se encontrará situado el altar mayor.

a.7) Los confesonarios

Se ubican en los pasillos laterales (izquierda y derecha) de la iglesia.

a.9) La sacristía

Se consideraron las siguientes áreas, cumpliendo con el requerimiento de áreas mínimas del

capítulo 2.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Wesvieria UMC

- Sacristía de Sacerdotes: 21.22m2

Sacristía General: 15.38m2

a.10) Atrio

No se especifica un área mínima, contiene una rampa para discapacitados, a un nivel superior que el de la calle cumpliendo la función de aislamiento del exterior.

a.11) Ancho de pasillos

Los pasillos cumplirán con los anchos mínimos del capítulo 2.

- Pasillos Laterales: 1.44m

- Pasillo Central: 2.10m

- Pasillo Transversal del Frente: 1.90m

- Pasillo Transversal Posterior: 2.17m

a.12) Sillas y bancos

Los bancos tendrán una altura de 0.90m, una longitud de 4.67m y una sección de 0.50m, de acuerdo a los requerimientos de longitud de bancos del capítulo 2.

a.13) Campanarios

El campanario se ha considerado ubicarlo en la parte posterior derecha de la iglesia, a una altura de 11.00m, guardando relación armónica con la iglesia y el edificio.

a.14) Distribución del sonido

Para una mejor distribución de los sonidos se utilizará un enchapado de madera como material absorbente.

a.16) Aislamiento del sonido

El aislamiento del sonido se logrará habiendo considerado un atrio que aleje los ruidos del exterior específicamente en el templo.

B. Edificio

b.1) Nivel 1

 Se consideró el área para el estacionamiento de tres vehículos de acuerdo a la norma A.090 del RNE.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

- Una oficina de 16.66 m2
- Área para secretaría y archivador.
- Dos baños con 2L, 2I, 1U, según el siguiente cuadro y las consideraciones para el diseño de una iglesia.

b.2) Nivel 2

En este nivel se diseñó la vivienda para el párroco encargado, los parámetros se tomaron de las normas A.020 Vivienda y A.080 Oficinas del RNE, cuenta con:

- Dos habitaciones una doble de 16.20 m² y una principal de 13.35 m².
- Un estudio de 9.22 m²
- La sala y la cocina de 38.12 m²
- Lavandería de 6.48m²
- Un medio baño y dos baños completos
- Un oratorio de 24.33 m².

b.3) Nivel 3

Para el diseño de este nivel se tomó en cuenta la norma A.090 Servicios Comunales del RNE. Aquí se consideró el salón parroquial de 92.62m², un kitchenet, un Start y servicios higiénicos:

- Hombres: 1L, 1U, 1I
- Mujeres: 1L, 1I

b.4) Nivel 4

En este nivel se tuvieron consideraciones de la norma A.040 Educación del RNE, se diseñaron aulas para catequesis, con las siguientes áreas:

- Aula 1: 39.19 m².
- Aula 2: 39.96 m².
- Aula 3: 18.71 m².

Además de un Start y servicios higiénicos, de acuerdo a lo siguiente:

- Hombres: 1L, 1U, 1I
- Mujeres: 1L, 1I

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

3.5. ESTRUCTURAS

3.5.1. Cargas de diseño

Las cargas de gravedad y de sismo que se utilizaron para el análisis estructural de la edificación y en el diseño de los diferentes elementos estructurales, cumplen con la Norma Técnica de Edificaciones E-020 Cargas y con la Norma Técnica de Edificaciones E-030 Diseño Sismo Resistente. Considerando tres tipos de carga:

A. Carga muerta, son cargas permanentes que la estructura soporta, es decir el peso real de los materiales que conforman la edificación y otros elementos soportados por la edificación incluyendo su peso propio.

Carga muerta

Material o elemento	Peso unitario	
Concreto Armado	2.40tn/m3	
Losa Aligerada (h=25cm)	0.35tn/m2	
Losa Aligerada (h= 17cm)	0.28tn/m2	
Piso terminado (e=5cm)	0.10tn/m2	
Tabiquería	18kg/(m2xcm)	
Tabiquería Móvil	100kg/m2	

B. Carga Viva (CV): Peso eventual de los materiales, equipos, muebles y otros elementos movibles que soporta la edificación

Carga viva

OCUPACIÓN O USO	CARGA REPARTIDA
Oficinas	0.50tn/m2
Vivienda	0.20tn/m2
Lugar de asamblea	0.40tn/m2
Aulas	0.25tn/m2
Corredores y escaleras	0.40tn/m2

C. Cargas de sismo (CS): Carga generada debido a la acción del sismo sobre la estructura, para esto se ha utilizado el programa ETABS Versión 9.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

3.5.2. Método de diseño

Todos los elementos de concreto armado se diseñaran con el método de diseño por resistencia. Se amplifican las cargas muertas (CM) Y vivas dependiendo del tipo de carga, para luego usar las combinaciones establecidas en la Norma E-060 Concreto Armado, en el artículo 9.2 obteniendo la carga última y la resistencia requerida.

U = 1.4CM + 1.7CV

U = 1.25 (CM + -CV) + -CS

U=0.9CM+-CS

Los factores de reducción de resistencia Φ establecidos en la Norma E-060, artículo 9.3 según el tipo de solicitación a la que esté sometido el elemento son:

Flexión: 0.90

Cortante y torsión: 0.85

Flexo compresión: de 0.70 hasta 0.90

3.5.3. Materiales empleados

A. Concreto armado: Las propiedades varían de acuerdo al tipo de concreto y acero, para este edificación se utilizó:

Resistencia a la compresión: f'c= 210 kg/cm2

Módulo de Poisson: v=0.15

Módulo de elasticidad: Ec=15000√f c kg/cm2

B. Acero de refuerzo: debido a que el concreto tiene poca resistencia a la tracción se coloca en el concreto para que soporte estas tracciones, además contribuye a resistir la compresión y corte; el acero que se usa son barras de acero corrugado de gardo 60,las principales propiedades son:

Límite de fluencia

fy=4200kg/cm2

Módulo de elasticidad: Es= 2000000 kg/cm2

3.5.4. Predimensionamiento de elementos estructurales

A. Losa aligerada

El peralte de la losa se determinó con el fin de garantizar su comportamiento como diafragma rígido y poder controlar sus deflexiones.

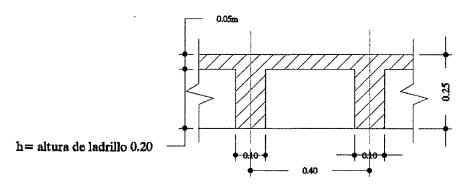
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Losas aligeradas: Para el cálculo del peralte de las losas aligeradas se dimensionará considerando el cuadro 2.10 del capítulo 2, y la fórmula L/21.

Donde:

L= luz libre


h= peralte de la losa

Para las losas de los niveles unos, dos y tres se tiene una luz entre apoyos de 5.65m, entre los ejes 1 y 2, con los ejes A y B por lo que se tendrá:

Para la losa de la parroquia (primera y segunda losa) se tendrá:

$$h = 4.95/21 = 0.23$$

$$h=0.25$$

Sección transversal del aligerado

B. Losas macisas

El espesor de la losa maciza se determina aplicando las fórmulas del cuadro 2.10

$$H = 1/28$$

Para el edificio tenemos:

$$H=3.75/28=0.133$$

Para la losa del último nivel (losa de techo), como no recibe mayores cargas, se tendrá:

$$h = 0.17$$

Comprobando:

$$h=2.02/28=0.07$$

Asumimos h= 0.17 para ambas losas llenas, por ser el mínimo aceptado por el RNE

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

C. Predimensionamiento de vigas

En el proyecto se utilizó para el peralte de las vigas principales h=L/14, según la norma E-060, cuadro 2.10 del RNE y para el ancho b=0.5*h

Donde:

L y b= luz libre

h= peralte de la viga

Obtenemos, para el edificio:

h= 7.01/14=0.501

h = 0.50m

b = 0.501*0.50

b = 0.255m

Tomamos b=0.30m (por empalme con columnas)

Para la capilla, se utilizó los criterios de la Colección del Ingeniero Civil L/12, así tenemos:

h = 5.39/12

h = 0.449 = 0.50 m

Entonces, b=0.50*0.50=0.25m

Asumimos b=0.30m (por empalme con columnas)

D. Predimensionamiento de columnas

Como las columnas son sometidas a carga axial y momento flector, tienen que ser dimensionadas considerando los dos efectos simultáneamente, tratando de evaluar cuál de los dos es el que gobierna el dimensionamiento.

Para las columnas se tendrá en cuenta las siguientes consideraciones:

- Un área fluctuante entre 1000 cm² y 2000 cm², salvo que se tenga vigas con luces mayores a 7m.
- Para edificios con luces significativas (mayores a 7 u 8 m), debe tenerse especial cuidado en las columnas exteriores, pudiendo dimensionarse el peralte de la columna en un 70 u 80% del peralte de la viga principal.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Así tenemos el peralte de la columna un 80% de la viga principal, como mínimo.

$$h = 0.40m$$

Por tener luz amplia entre ejes se aumenta el peralte de columnas, asumiendo h=0.60m. Luego b*h, será:

$$0.30*0.60=0.18m^2 \approx 1800cm^2$$

Donde:

b= ancho de la columna

h= peralte de la columna

E. Predimensionamiento de muros de corte

Para el dimensionamiento de las placas se tendrá en cuenta un ancho mínimo de 15cm; las placas absorben casi en su totalidad la fuerza cortante generada por el sismo en la base del edificio, para calcular la cortante se utiliza:

$$V = \frac{ZUCS * P}{R}$$

Donde:

Z. Factor de zona=0.4, departamento de Cajamarca, zona 3

U: Factor de uso=1.5, categoría A

C: Factor de amplificación sísmica=2.5

S: Factor de suelo=1.4, para un terreno de suelos flexibles.

R: Coeficiente de Reducción Sísmica= 7, para sistema dual.

P: Peso de la edificación

El peso de la edificación se calcula en forma aproximada por área tributaria y considerando una carga repartida de 1.0tn/m2. Considerando todos los niveles tenemos 715.20 Tn. Para el análisis sísmico se considera el 0.8P, para estructuras regulares, por lo tanto se tiene 572.16 Tn.

Finalmente obtenemos:

$$V = 171.65 \text{ Tn}$$

Utilizando la fórmula $V_c = 0.53\sqrt{f_c^*} * t * d$, para un f'c de 210 kg/cm2, y un espesor de placa igual a 25cm, entonces la longitud necesaria sería:

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

$$L = \frac{V}{7.68 * 0.25} = 171650/192 = 8.94 \text{ m}$$

Lo mismo ocurre en el otro eje "X" teniendo en cuenta que se trata de un sistema dual (R=7), de donde obtenemos L=8.94m.

F. Escaleras

Del plano de la arquitectura se tiene la escalera principal de dos tramos entre nivel y nivel, la altura que se debe cubrir entre el piso y el techo es de 2.89m, esto se debe cubrir con 17 contrapasos, por lo que tenemos:

$$Hcp= 289/17= 17cm$$

Teniendo en todos los pisos la misma altura.

$$t=\ln/25=4.59/25=0.18m$$

Tomamos un espesor t=0.15m

Este espesor es tanto para el espesor de la garganta como para el espesor del descanso.

En la capilla tenemos una escalera helicoidal, la que se encuentra apoyada en una columna de 48cm de diámetro la altura a cubrir es de 2.72m, con altura de contrapaso 0.17m de la que nos da 16 contrapasos, el espesor del escalón es de 0.12m, en forma trapezoidal, el ancho promedio del escalón o paso es de 0.25m, el radio de la escalera es de 1.00m.

G. Cimientos

Para los cimientos se diseñaron zapatas conectadas en la capilla, y una platea de cimentación para el edificio.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

3.6. INSTALACIONES ELÉCTRICAS.

Para el diseño del proyecto "Parroquia de San Agustín" se tomó en cuenta todos los pasos a seguir descritos en el capítulo 2.

3.6.1. Diseño de alumbrado.

La energía eléctrica será suministrada mediante el concesionario de la localidad. El proyecto contempla el diseño de las redes exteriores (Alimentadores al Tablero General) y las instalaciones interiores (iluminación, tomacorrientes) de los diferentes ambientes que comprende el proyecto.

Los trabajos se efectúan de acuerdo con los requisitos del Código Nacional de Electricidad y el Reglamento Nacional de Edificaciones.

El proyecto contempla el suministro de energía para la iglesia y para el edificio, los dos de la parroquia, con un alimentadores separados para los dos tableros generales. El tablero TG1 del edificio será alimentado por la línea de energía proveniente de la red pública ubicada en el Jr Los Topacios y el TG2 será alimentado por la línea de energía proveniente de la red pública ubicada en la Av La Cantuta.

Así mismo el proyecto contempla la puesta a tierra para lo cual se ha contemplado un pozo tierra

En el edificio a partir del tablero general TG1 se alimentará a los diferentes sub tableros, existiendo en total un número de 04 sub tableros o tableros de distribución los cuales atienden los siguientes ambientes:

- Primer Nivel
- TD 1: Hall, oficina, archivo, cochera, escalera y baño.
- Segundo Nivel
- TD 2: Sala, cocina- comedor, 03 dormitorios, estudio, lavandería, pasadizos, escalera y oratorio.
- Tercer Nivel
- TD 3: Salón parroquial, star, kitchenet, escalera y servicios higiénicos.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Cuarto Nivel

- TD - 4: Servicios higiénicos, 03 aulas y pasadizo.

Para la iglesia a partir del TG2 se alimentarán los pasadizos laterales el pasadizo principal,

las sacristías y el campanario. Así mismo se ha considerado la puesta a tierra para lo cual se

ha contemplado una pozo tierra.

De acuerdo a los requerimientos especiales para cada ambiente se han considerado los

siguientes niveles de alumbrado:

• Edificio

- Primer nivel: 2941 watts

- Segundo nivel: 3613.08 watts

- Tercer nivel: 4050 watts

- Cuarto nivel: 5226 watts

• Iglesia

- Todos los ambientes: 6678 watts

Luego se tener el número de watts totales se pudo calcular el diámetro del cable a utilizar

desde cada tablero de distribución a los tableros generales y por ende de los tableros

generales a los medidores.

3.6.2. Diseño de conductores.

Para el diseño de conductores se ha utilizado todos los criterios desarrollados en el capítulo 2,

como hallar la intensidad de cálculo, la intensidad de diseño, para así mediante tablas hallar

la sección nominal del conductor.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

3.7. INSTALACIONES SANITARIAS

La presente Memoria Descriptiva comprende y describe los conceptos utilizados en el desarrollo del proyecto de Instalaciones Sanitarias, las que corresponden a la Capilla y al Edificio de cuatro niveles denominada San Agustín, cuyo emplazamiento se encontrará ubicado en los terrenos propiedad del Obispado de Cajamarca, en la Urbanización de los docentes y no docente de Universidad Nacional de Cajamarca.

3.7.1. Sistema de abastecimiento de agua

a.1. Suministro:

Se ha determinado que el suministro de agua fría en la edificación se realice mediante un sistema indirecto, por tratarse de una edificación de cuatro niveles; el suministro de agua potable para las dos estructuras será único y se realizará desde la matriz que pasa por el Jr Los Topacios.

a.2. Distribución de agua fría:

La distribución de agua fría en la Capilla y el Edificio se realizará a través de tuberías de PVC, cuyos diámetros han sido calculados de acuerdo al caudal de máxima demanda simultánea, estimado por las unidades Hunter de cada aparato sanitario o punto de abastecimiento y cuidando que la presión de salida mínima en el aparato más desfavorable de toda la red no sea menor de 3.5 m.c.a.

a.3. Cálculos justificados de dotación diaria:

El cálculo de la dotación de agua que necesita la Parroquia de San Agustín se ha realizado con el máximo número de participantes a las celebraciones eucarísticas, además de las diferentes actividades realizadas en los ambientes de la Parroquia (oficinas, vivienda, centro de reuniones o espectáculos, y locales educacionales).

a.4. Diseño del tanque cisterna

El volumen del tanque ha sido calculado considerando la dotación de agua que estipula el Reglamento, pero teniendo presente que el Tanque de cada par de batería de baños será utilizado sólo durante pocos periodos de tiempo.

Se consideró el uso de tanque cisterna debido a que genera menos carga para el diseño estructural, es de fácil y más rápido mantenimiento, además de su fácil instalación.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

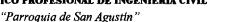
3.7.2. Sistema de desagüe y ventilación

El sistema de desagües es básicamente por gravedad, siendo las aguas negras evacuadas a través de tuberías empotradas en piso en el primer nivel, a las que a su vez llegan las montantes adosadas a los muros de niveles superiores, ubicando registros y sumideros en lugares donde permitan la inspección y el mantenimiento de las tuberías de desagüe.

Estas tuberías van a ser conectadas con los colectores proyectados, los cuales conducirán las aguas negras a la Red Pública de Alcantarillado. Se ha diseñado un sistema de ventilación de tal forma que se obtenga una máxima eficiencia en todos los puntos que requieran ser ventilados a fin de evitar rupturas de sellos de agua, alzas de presión y la presencia de malos olores. Las tuberías de ventilación irán empotradas en piso y muros y sus diámetros han sido definidos en conformidad a lo estipulado por el Reglamento Nacional de Edificaciones.

3.7.3. Sistema de recolección de aguas de lluvia

El sistema de recolección de aguas de lluvia es a través de canaletas en los techos de la edificación que serán conectadas a las montantes de desagües pluviales que se descargarán en las cunetas de la vía pública prevista para este fin.


3.8. ESTUDIO DE IMPACTO AMBIENTAL

Este estudio de impacto ambiental se ha desarrollado en dos etapas: en campo y gabinete; en la primera se realizó un diagnóstico ambiental del lugar donde se emplazará la Parroquia de San Agustín" y su ámbito de influencia, mediante el inventario y evaluación de los componentes ambientales susceptibles de ser impactos con esta obra. En la segunda etapa se realizó la identificación y evaluación de los impactos ambientales, a fin de plantear las medidas de control y/o mitigación.

La metodología aplicada es una combinación de los métodos de matrices: Matriz de Leopold y matriz cromática. Esta metodología, se ha utilizó en las diferentes actividades que comprende dicha infraestructura. Las diferentes alternativas y/o rubros se evaluaron considerando las fases de construcción, operación y mantenimiento. El proceso de evaluación de los distintos rubros, se realizó mediante la ayuda de hojas de cálculo (Microsoft Excel).

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

3.8.1. Identificación y valoración de impactos ambientales (valoración cualitativa de los impactos ambientales)

A) Introducción

La identificación de impactos ambientales, es el punto de partida del proceso de evaluación. Esta etapa se materializó, estudiando las interacciones derivadas del proyecto y las características específicas de los aspectos ambientales afectados en cada caso concreto.

B) Metodología

De acuerdo con lo manifestado anteriormente, la metodología para este caso específico, resultó en una combinación de los métodos de matrices: Matriz de Leopold y Matriz cromática.

Esta "metodología combinada", se la aplicará para las distintas actividades del proyecto. Las diferentes alternativas y/o rubros, serán evaluados considerando las fases de Construcción, Operación y Mantenimiento. La fase de cierre para estos tipos de proyectos es desechada por razones obvias, ya que dada la naturaleza de estos proyectos, su vida útil es permanente y dependiente de un adecuado programa de mantenimiento. En resumen, para cumplir con el objetivo se han seguido los siguientes pasos:

- Definición de las actuaciones del proyecto potencialmente generadoras de impacto.
- Definición de los parámetros del medio susceptibles de ser receptores de impactos.
- Identificación preliminar de los potenciales impactos, mediante la Matriz de Identificación de Impactos.
- Detección de impactos por el método de matrices causa-efecto (Matriz de Leopold), añadiendo parámetros de magnitud e importancia, considerando las fases de Construcción, Operación y Mantenimiento.
- Paralelamente, se elaboró la Matriz Cromática, como una simplificación "visual", ya que ésta permitirá visualizar la magnitud de los impactos positivos y negativos, y coadyuva en la adecuada caracterización de los mismos.
- Análisis de resultados (valoración cualitativa), añadiendo los comentarios pertinentes, que permitirán la caracterización de los impactos detectados, explicando los criterios que conducen a dicha caracterización, y determinaron si el impacto es positivo o negativo.
- Clasificación de los impactos, dando una relación jerarquizada, tanto de los impactos positivos como de los negativos, a fin de poder concluir su grado de adecuación ambiental.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

C) Identificación de las acciones del proyecto susceptibles de producir impactos

En general, para realizar la descripción de impactos de los diferentes rubros que comprende la construcción de la "Parroquia de San Agustín", se ha efectuado un listado de las acciones que pueden producir impactos y los factores del medio que pueden ser afectados. El Análisis de dichas acciones se ha efectuado para las fases de construcción, operación y mantenimiento.

- Fase de construcción
- Trabajos preliminares.
- Movimiento de tierras
- Instalación y funcionamiento de Caseta de Guardianía
- Transporte y acopio de materiales.
- Obras de concreto simple y armado.
- Obras de albañilería.
- Acabados.
- Fase de operación y mantenimiento
- Ocupación espacial.

D) Identificación de los factores ambientales susceptibles a recibir impacto

Considerando al medio ambiente de manera integral, se presenta a continuación, el listado de factores, susceptibles de ser afectados por las acciones de los diferentes rubros de la construcción de la "Parroquia de San Agustín"

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

FACTORES AMBIENTALES

		1 Aire	a) Calidad del aire
		1 Alle	b) Nivel de Ruido
		2 Suelos	a) Relieve y Topografía
	NE	Z Suelos	b) Contaminación (física, química, microbiológica)
	INERTE	3 Agua	a) Aguas Superficiales
<u> </u>	7	4 Procesos	a) Drenaje Superficial
M	В	1 Flora	a) Cubierta Vegetal
DIG	ιότ		a) Animales domésticos
MEDIO FÍSICO	віотісо	2 Fauna	b) Otras especies
(CO	PERCEPTUAL	PERCEPTUAL	a) Calidad Paisajística
			b) Potencial de vistas
ECONÓ SOCIO MEDIO	NOE 7 1. Estructura de Ocupación		a) Empleo
ÖPÖ	LA		a) Estilos de Vida
ECONÓMICO SOCIO- MEDIO	POBLACIÓN	2. Sectores de actividad	b) Calidad de Vida

E) Caracterización de efectos significativos

En general, dada la naturaleza de estos trabajos, no se ha reportado impactos negativos de carácter moderado, severo y crítico, respectivamente.

• Efectos compatibles

En fase de construcción:

- Movimientos de tierras.
- Movimiento de maquinaria.
- Acopio de material orgánico sobre el paisaje.
- Acopio de material seleccionado.

• Efectos positivos

Como es de esperarse el resto de los efectos de los diferentes rubros que constituyen el proyecto "Parroquia de San Agustín", se han caracterizado como positivos.

N Community of the Comm

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Descripción de los principales impactos

En el análisis de las acciones de construcción de la "Parroquia de San Agustín", se describen únicamente aquellas actividades de impacto potencial en el medio.

Debido a la naturaleza de las acciones en mención, la actividad de movimiento de tierras es la que presentan mayor impacto negativo (impacto compatible). Las acciones de ocupación espacial y mantenimiento respectivamente, son las que reportan mayor impacto positivo.

3.8.2. Análisis y discusión de resultados de la evaluación del impacto ambiental

A partir de la metodología de evaluación antes descrita, se ofrecen los resultados de la valoración de los impactos, mediante el desarrollo de matrices de identificación, matrices de Leopold, y matrices cromáticas, que forman parte de la "metodología combinada"

A) Diagnóstico de la situación preoperacional

El diagnóstico pre operacional permite determinar el estado en que se encuentra la zona, antes de la ejecución del proyecto, para luego identificar las acciones del proceso constructivo de la "Parroquia de San Agustín" con potencial impacto en el medio ambiente.

Descripción

En general, esta urbanización se encuentra en un franco proceso de consolidación urbana, pues a la fecha tiene resuelto los servicios de agua potable, alcantarillado, electrificación y un 100% de calles pavimentadas, igualmente presenta parques de recreación activa y pasiva en proceso de terminación.

En concordancia con lo manifestado anteriormente, la Urbanización de los docentes y no docentes de la UNC, se caracteriza por su ubicación en un entorno de buena calidad ambiental. Esta urbanización, tiene elementos singulares que le impregnan de ciertas características, como:

- Resalta el hecho de estar emplazada en una zona de consolidación urbana, con interesantes elementos paisajísticos en su entorno, como es el caso de su cercanía del Capac Ñan.
- El clima de zona es templado, variando en los parámetros ya anotados anteriormente.
- Está emplazado en una zona que está circundada por urbanizaciones ya consolidadas.

TO THE STATE OF TH

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

• El paisaje de ésta zona, está marcado por su grado de humanización y presencia en el entorno de diversos elementos de atracción visual, siendo su calidad medio - alta en la zona que se proyecta actuar.

B) Efectos sobre el ambiente físico

b.1) Topografía y geomorfología

Los impactos previsibles sobre la topografía están dados por todas las modificaciones directas de superficie, tanto por acción de la nivelación del terreno para la construcción del proyecto, como por la acumulación del material procedente del movimiento de tierras y de otros materiales necesarios para la obra.

b.2) Suelo

Los impactos previsibles sobre el suelo pueden ocurrir por remoción, enterramiento, erosión y por contaminación.

b.3) Aguas superficiales y subterráneas

Las aguas superficiales en la zona del proyecto, representadas por las aguas de escorrentía y originadas por las precipitaciones pluviales, no serán afectadas por las actividades de construcción de la "Parroquia de San Agustín"

Las aguas subterráneas serán afectadas, pues se producirán interrupciones de flujo; además la descarga de aguas superficiales no será interferida por la obra proyectada.

b.4) Paisaje

La principal modificación del paisaje, tiene relación con el almacenamiento temporal del material proveniente del movimiento de tierras de las actividades de construcción de la "Parroquia de San Agustín".

C) Efectos sobre el ambiente socioeconómico

La construcción del sistema de drenaje y obras conexas, crearán una demanda temporal de trabajo, aun cuando el empleo en dichas actividades será limitado.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

D) Efectos sobre el ambiente de interés humano

Según los estudios del diagnóstico ambiental de la zona, no se consideran efectos sobre el ambiente de interés humano, debido a la inexistencia de restos arqueológicos en el área del proyecto.

E) Análisis de costo-beneficio ambiental

En general, el costo ambiental de las actividades de este proyecto, está constituido por aquellos impactos negativos inevitables que ocurrirán durante la realización de estos trabajos y posterior mantenimiento. Por otro lado, los beneficios ambientales de las actividades, serán aquellos impactos positivos que originarán estas actividades en el entorno del proyecto.

3.9.6. Matrices

Luego de identificar los factores a intervenir durante la ejecución y la operación – mantenimiento se puede realizar las matrices, enfocando tanto los impactos positivos como negativos.

MATRICES

MATRIZ N° HOJA		TITULO DE LA MATRIZ
1	1 de 1	MATRIZ DE IDENTIFICACIÓN
2	1 de 1	MATRIZ DE LEOPOLD
3	1 de 1	MATRIZ CROMÁTICA

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

OIC OIC

CAPÍTULO IV-PRESENTACIÓN DE RESULTADOS

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

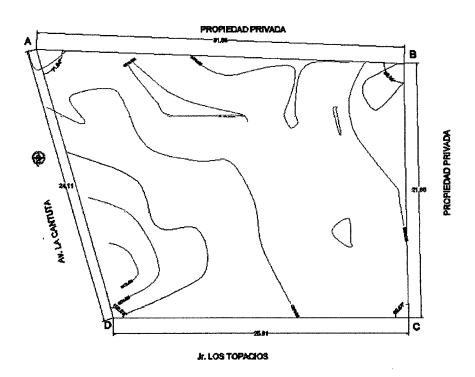
4.1. INFORMACIÓN SOCIOECONÓMICA

A) Datos poblacionales del área de influencia del proyecto

En este capítulo del proyecto se trata de resumir los cálculos hallados para los respectivos diseños de acuerdo a la especialidad.

Descripción	Cantidad
Nº viviendas	1270
Nº viviendas censadas	164
% pobladores católicos	60% (según INEI)
Nº pobladores católicos activos	412

(FUENTE: las encuestas)


4.2. TOPOGRAFÍA

4.2.1. Forma del terreno

El terreno tiene forma irregular, formando ángulo de 71.84° en el punto A, ángulo de 93.04° en el punto B, ángulo de 88.84° en el punto C, y el ángulo de 105.93° en el punto D.

4.2.2. Topografía del terreno

La topografia del terreno es de tipo llana, por tener pendiente suave de 0.04%; es decir, sin cambios bruscos de una cota a otra.

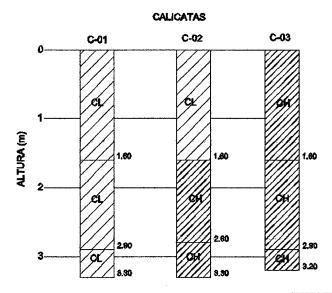
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

4.2.3. Perímetro

El perímetro del terreno es de 103.56 m, teniendo una longitud de 31.88m en el tramo AB, una longitud de 21.95m. en el tramo BC, una longitud de 25.61m en el tramo CD y finalmente 24.11m en el tramo AD.

4.3. MECÁNICA DE SUELOS


Después de realizar los diferentes ensayos mencionados en el capítulo 2, tenemos los resultados:

- Ubicación de calicatas (Ver plano T-01)

N° CALICATA	PROFUNDIDAD (m)	COTA (msnm)	COORDENADAS UTM	ESTRATO	COLOR MATERIAL	
				1	Marrón claro	
C-01	3.30	2678:80	776795.749 E, 9207137.460 N	2	Marrón oscuro	
				3	Gris verdoso	
		2678.80		1	Marrón	
C-02	3.30		2678.80	2678.80	776815.504 E, 9207137.358 N	2
		920/13/.336 IN	3	Gris verdoso		
			77.007.075 F	1	Marrón claro	
C-03	3.20	2678.90	776807.075 E, 9207121.776 N	2	Marrón oscuro	
			920/121.//0 N	3	Gris verdoso	

(FUENTE: elaboración propia)

- Perfil estratigráfico: En cada calicata se encontró tres estratos diferentes como se detalla a continuación:

(FUENTE: elaboración propia)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

De donde los símbolos CL y CH se refieren a arcillas inorgánicas.

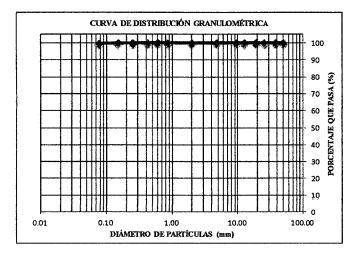
- Ensayos de laboratorio

Los diferentes ensayos se realizaron para cada estrato de cada calicata y, a continuación se presenta los resultados de las hojas de cálculo usadas para el procesamiento de datos.

PROYECTO

: PARROQUIA DE SAN AGUSTÍN - CAJAMARCA

UBICACIÓN


FECHA

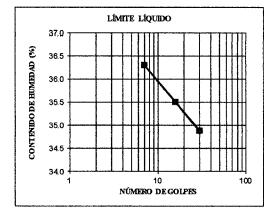
: DIST. CAJAMARCA-PROV. CAJAMARCA - DPTO. CAJAMARCA - REGIÓN CAJAMARCA

MUESTRA

ANÁLISIS GRANULOMÉTRICO NORMA: ASTM D 422/ C136

	MUESTRA:	200.00	gr.		
TAMIZ		PRP (gr)	%RP	%RA	% QUE PASA
N°	ABER (mm)	IAT (gr)	701(1	70KA	% QUE PASA
2"	50.00	0.00	0.00%	0.00%	100.00
1 1/2"	38.10	0.00	0.00%	0.00%	100.00
1"	25.00	0.00	0.00%	0.00%	100.00
3/4"	19.00	0.00	0.00%	0.00%	100.00
1/2	12.50	0.00	0.00%	0.00%	100.00
1/4"	9.50	0.00	0.00%	0.00%	100.00
Nº4	4.75	0.80	0.40%	0.40%	100.00
N 10	2.00	0.00	0.00%	0.40%	100.00
N 20	0.85	1.40	0.70%	1.10%	99.99
N 30	0.60	1.10	0.55%	1.65%	99.98
N 40	0.43	1.80	0.90%	2.00%	99.98
N 60	0.25	4.70	2.35%	4.35%	99.96
N 100	0.15	19.90	9.95%	14.30%	99.86
N 200	0.075	26.60	13.30%	27.60%	99.72
PÉRDIDA POR LAVADO	-,-	143.70	71.85%	99.45%	99.01
TOTAL		200.00			

CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

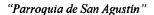

W t (gr)	25.4
Wmh + t (gr)	142.9
Wms + t (gr)	122
Wms	96.60
Ww	20.90
W(%)	21.64

CLASIFICACIÓN DEL SUELO POR AASHTO Y SUCS

% PASA	ΙL	LP	IP	CLASIFICA	CION
MALLA 200	(%)	(%)	(%)	AASHTO	SUCS
99.72	35.10	19.09	16.01	A-6	CI

LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO NORMA ASTM D4318

LÍN	ATTELİQUIDO	LÍMITEP	LÁSTICO	
40.30	37.50	40.70	40.00	40.00
60.20	64.60	63.90	42.60	41.80
54.90	57.50	57.90	42.20	41.50
14.60	20.00	17.20	2.20	1.50
5.30	7.10	6.00	0.40	0.30
36.30	35.50	34.88	18.18	20.00
7	16	30		
	35.10		19	.09


PESO ESPECÍFICO (ôs) NORMA: ASTM D 854

Pf C/ Agua (gr)	676	676
Pf (gr.)	164.7	164.7
Pss (gr.)	115.2	112.3
Pf+a+s (gr.)	742	736
P específico(gr/cm^3)	2.34	2.15
Pespecífico prom.(gr/cm^3)	2.2	245

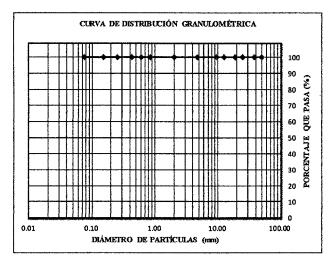
ARCILLA INORGÁNICA

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

PROYECTO

: PARROQUIA DE SAN AGUSTÍN - CAJAMARCA

UBICACIÓN


: DIST. CAJAMARCA- PROV. CAJAMARCA - DPTO. CAJAMARCA - REGIÓN CAJAMARCA

MUESTRA FECHA

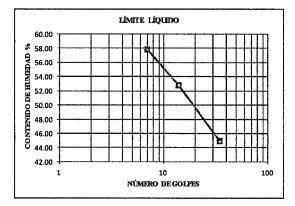
: C1 - E2

ANÁLISIS GRANULOMÉTRICO NORMA: ASTM D 422/ C136

	MUESTRA:	200.00	gr.]		
TAMIZ		PRP (gr)	%RP	%RA	% QUE PASA	
No	ABER (mm)	ricr (gi)	701/4	ZekA	70 QUE PASA	
2"	50.00	0.00	0.00%	0.00%	100.00	
1 1/2"	38.10	0.00	0.00%	0.00%	100.00	
1"	25.00	0.00	0.00%	0.00%	100,00	
3/4"	19.00	0.00	0.00%	0.00%	100.00	
1/2	12.50	0.00	0.00%	0.00%	100.00	
1/4"	9.50	0.00	0.00%	0.00%	100.00	
Nº4	4.75	0.00	0.00%	0.00%	100.00	
N 10	2.00	0.30	0.15%	0.15%	100.00	
N 20	0.85	0.40	0.20%	0.35%	100.00	
N 30	0.60	0.30	0.15%	0.50%	100.00	
N 40	0.43	0.40	0.20%	0.70%	99.99	
N 60	0.25	1.70	0.85%	1.55%	99.98	
N 100	0.15	9.70	4.85%	6.40%	99.94	
N 200	0.075	11.80	5.90%	12.30%	99.88	
PÉRDIDA POR LAVADO	-,-	175.40	87.70%	100.00%	99.00	
TOTAL		200.00				

CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

Wt(gr)	28.3
Wmh+t(gr)	183.1
Wms+t(gr)	151.8
Wms	123.50
Ww	31.30
W(%)	25.34


CLASIFICACIÓN DEL SUELO POR AASHTO Y SUCS

% PASA	IL.	LP	IP	CLASIFICA	CION
MALLA 200	(%)	(%)	(%)	AASHTO	SUCS
99.88	46.90	28.17	18.73	A-7	CIL

__ARCILLA INORGÁNICA

LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO NORMA ASTM D4318

LÍ	LÍMITE LÍQUIDO			LÁSTICO
40.20	23.30	29.70	7 4.30	74.30
62.60	45.60	46.80	76.60	76.10
54.40	37.90	41.50	76.10	75.70
14.20	14.60	11.80	1.80	1.40
8.20	7.70	5.30	0.50	0.40
57.75	52.74	44.92	27.78	28.57
7	14	35		
	46,90			.17

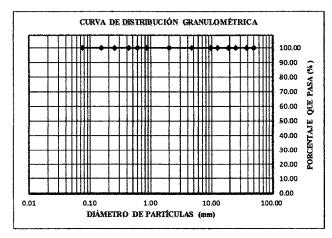
Pf C/Agua (gr)	675	675
Pf (gr.)	164.7	164.7
Pss (gr.)	57.5	54.2
Pf+a+s (gr.)	708	705
P específico(gr/cm^3)	2.35	2.24
Pespecífico prom(gr/cm^3)	2.3	295

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

PROYECTO

: PARROQUIA DE SAN AGUSTÍN - CAJAMARCA


UBICACIÓN

: DIST. CAJAMARCA - PROV. CAJAMARCA - DPTO. CAJAMARCA - REGIÓN CAJAMARCA

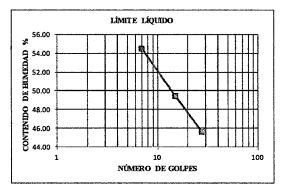
MUESTRA : C1 - E3 FECHA :

ANÁLISIS GRANULOMÉTRICO NORMA: ASTM D 422/ C138

	MUESTRA:	200.00	gr.]	
TAMIZ	Z	PRP (gr)	%RP	%RA	% QUE PASA
N°	ABER (mm)	rat (gi)	70IC	/4/6/	N QOLLASA
2"	50.00	0.00	0.00%	0.00%	100.00
1 1/2"	38.10	0.00	0.00%	0.00%	100.00
1"	25.00	0.00	0.00%	0.00%	100.00
3/4"	19.00	0.00	0.00%	0.00%	100.00
1/2	12.50	0.00	0.00%	0.00%	100.00
1/4"	9.50	2.90	1.45%	1.45%	99.99
N°4	4.75	2.80	1.40%	2.85%	99.97
N 10	2.00	5.20	2.60%	5.45%	99.95
N 20	0.85	5.50	2.75%	8.20%	99.92
N 30	0.60	1.90	0.95%	9.15%	99.91
N 40	0,43	1.80	0.90%	10.05%	99.90
N 60	0.25	4.60	2.30%	12.35%	99.88
N 100	0.15	32.00	16.00%	28.35%	99.72
N 200	0.075	1.30	0.65%	29.00%	99.71
PÉRDIDA POR LAVADO	-,-	142.00	71.00%	100.00%	99.00
TOTAL		200.00			

CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

Wt(gr)	27.5
Wmh+t (gr)	161.5
Wms + t (gr)	128.6
Wms	101.10
Ww	32.90
W(%)	32.54


CLASIFICACIÓN DEL SUELO POR AASHTO Y SUCS

% PASA	LL	LP	ĬP	CLASIFICA	ACION
MALLA 200	(%)	(%)	(%)	AASHTO	SUCS
99.71	46.15	34.31	11.84	A-7	CL

ARCILLA ORGÁNICA

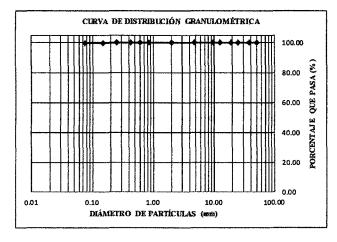
LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO NORMA ASTM D4318

LİN	ATTELÍQUIDO		LÍMITEP	LÁSTICO
39,60	43.00	39.60	26.30	23.70
62.00	67.50	61.00	28.60	24.90
54.10	59.40	54.30	28.00	24.60
14.50	16.40	14.70	1.70	0.90
7.90	8.10	6.70	0.60	0.30
54.48	49.39	45.58	35.29	33.33
7	15	28		
	46.15		34	.31

Pf C/Agua (gr)	676	676
Pf (gr.)	164.7	164.7
Pss (gr.)	59.2	61.3
Pf+a+s (gr.)	708	710
P especifico(gr/cm^3)	2.18	2,25
Pespecifico prom.(gr/cm^3)	2.2	215

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

PROYECTO : PARROQUIA DE SAN AGUSTÍN - CAJAMARCA


UBICACIÓN : DIST. CAJAMARCA - PROV. CAJAMARCA - DPTO. CAJAMARCA - REGIÓN CAJAMARCA

MUESTRA : C2 - E1

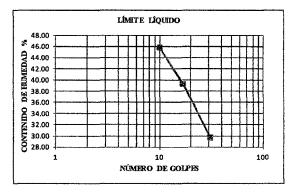
FECHA :

ANÁLISIS GRANULOMÉTRICO NORMA: ASTM D 422/ C136

	MUESTRA:	200.00	gr.		
TAMIZ	2	PRP (gr)	%RP	%RA	% QUEPASA
N°	ABER (mm)	FRF (gi)	70KF	76KA	A QUEFRSA
2"	50.00	0.00	0.00%	0.00%	100.00
1 1/2*	38.10	0.00	0.00%	0.00%	100.00
1"	25.00	0.00	0.00%	0.00%	100.00
3/4"	19.00	0.00	0.00%	0.00%	100.00
1/2	12.50	0.00	0.00%	0.00%	100.00
1/4"	9.50	0.00	0.00%	0.00%	100.00
N°4	4.75	0.00	0.00%	0.00%	100.00
N 10	2.00	0.30	0.15%	0.15%	100.00
N 20	0.85	0.40	0.20%	0.35%	100.00
N 30	0.60	0.30	0.15%	0.50%	100.00
N 40	0.43	0.40	0.20%	0.70%	99,99
N 60	0.25	1.70	0.85%	1.55%	99.98
N 100	0.15	9.70	4.85%	6.40%	99.94
Ņ 200	0.075	11.80	5.90%	12.30%	99.88
PÉRDIDA POR LAVADO	-,-	175.40	87.70%	100.00%	99.00
TOTAL		200.00			

CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

Wt(gr)	27.8
Wmh+t(gr)	153
Wms+t (gr)	126,4
Wms	98.60
Ww	26.60
W(%)	26.98


CLASIFICACIÓN DEL SUELO POR AASHTO Y SUCS

% PASA	LL	Tħ,	īħ	CLASIFICA	ACIÓN
MALLA 200	(%)	(%)	(%)	AASHTO_	SUCS
99.88	33.10	24.75	8.35	A-4	a.

ARCILLA INORGÁNICA

LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO NORMA ASTM D4318

LÍN	ATELÍQUIDO		LÍMITEP	LÁSTICO
37.60	26.10	40.30	40.80	40.70
55.10	48.10	61.30	43.00	43.50
49.60	41.90	56.50	42.60	42.90
12.00	15.80	16.20	1.80	2.20
5.50	6.20	4.80	0.40	0.60
45.83	39.24	29.63	22.22	27.27
10	17	31		
	33.10		24	.75

Pf C/ Agua (gr)	676	676
Pf (gr.)	164.7	164.7
Pss (gr.)	57.4	59.4
Pf+a+s (gr.)	707	708
Pespecifico(gr/cm^3)	2.17	2.17
Pespecifico prom (gr/cm^3)	2.	17

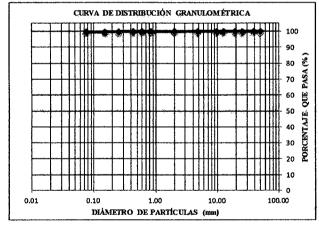
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

PROYECTO

: PARROQUIA DE SAN AGUSTÍN - CAJAMARCA

UBICACIÓN

FECHA


: DIST. CAJAMARCA - PROV. CAJAMARCA - DPTO. CAJAMARCA - REGIÓN CAJAMARCA

MUESTRA

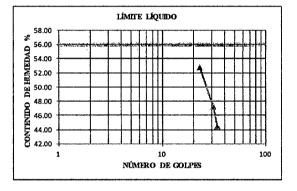
: C2 - E2

ANÁLISIS GRANULOMÉTRICO NORMA: ASTM D 422/ C136

	MUESTRA:	200.00	gr.		
TAMIZ		PRP (gr)	%RP	%RA	% QUE PASA
No	ABER (mm)	11d (gi)	/*//	/W.C.	N QOLI NO
2"	50.00	0.00	0.00%	0.00%	100.00
1 1/2"	38.10	0.00	0.00%	0.00%	100.00
1"	25,00	0.00	0.00%	0.00%	100.00
3/4"	19.00	0.00	0.00%	0.00%	100.00
1/2	12.50	0.00	0.00%	0.00%	100.00
1/4"	9.50	6.90	3.45%	3.45%	99.97
N°4	4.75	5.20	2.60%	6.05%	99.94
N 10	2.00	9.30	4.65%	10.70%	99.89
N 20	0.85	5.00	2.50%	13.20%	99.87
N 30	0.60	3.30	1.65%	14.85%	99.85
N 40	9,43	4,40	2.20%	17.05%	99,83
N 60	0.25	10.90	5.45%	22.50%	99.78
N 100	0.15	36.20	18.10%	40.60%	99.59
N 200	0.075	25.30	12.65%	53.25%	99.47
PÉRDIDA POR LAVADO	-,-	93.50	46.75%	100.00%	99.00
TOTAL		200.00		Ī	

CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

W t (gr)	29
Wmh + t (gr)	151.7
Wms + t (gr)	125.8
Wms	96,80
Ww	25.90
W(%)	26.76


CLASIFICACIÓN DEL SUELO POR AASHTO Y SUCS

% PASA	IL	LP	IP	CLASIFICA	CION
MALLA 200	(%)	(%)	(%)	AASHTO	SUCS
99.47	51.50	36.75	14.75	A-7	СН

ARCILLA ORGÁNICA

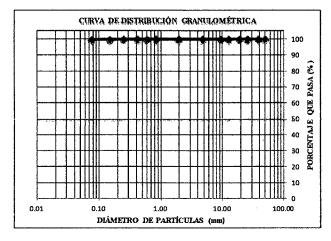
LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO NORMA ASTM D4318

LÍA	ATELÍQUIDO		LÍMITEP	LÁSTICO
41.10	42.40	40.70	38.50	38.50
60.20	69.50	65.40	41.90	41.80
53.60	60.80	57.80	41.00	40.90
12.50	18.40	17.10	2.50	2.40
6,60	8.70	7.60	0,90	0,90
52.80	47.28	44.44	36.00	37.50
23	31	34		
	51.50		36	.75

Pf C/Agua (gr)	676	676
Pf (gr.)	164.7	164.7
Pss (gr.)	63,6	54.2
Pf+a+s (gr.)	712	<i>7</i> 07
Pespecífico(gr/cm^3)	2.3	2.34
Pespecífico prom.(gr/cm^3)	2.	32

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

PROYECTO: PARROQUIA DE SAN AGUSTÍN - CAJAMARCA


UBICACIÓN : DIST. CAJAMARCA- PROV. CAJAMARCA - DPTO. CAJAMARCA - REGIÓN CAJAMARCA

MUESTRA : C2 - E3

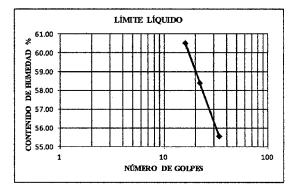
FECHA

ANÁLISIS GRANULOMÉTRICO NORMA: ASTM D 422/ C136

	MUESTRA:	200.00	gr.	<u> </u>	
TAMIZ		PRP (gr)	%RP	%RA	% QUEPASA
No	ABER (mm)	TKI (gi)	/0KI	ZUKA	N QUEI ADA
2"	50.00	0.00	0.00%	0.00%	100.00
1 1/2"	38.10	0.00	0.00%	0.00%	100.00
1*	25.00	0.00	0.00%	0.00%	100.00
3/4"	19.00	0.00	0.00%	0.00%	100.00
1/2	12.50	0.00	0.00%	0.00%	100.00
1/4"	9.50	3.40	1.70%	1.70%	99.98
N°4	4.75	1.10	0.55%	2.25%	99.98
N 10	2.00	3.80	1.90%	4.15%	99.96
N 20	0.85	3.80	1.90%	6.05%	99.94
N 30	0.60	1.50	0.75%	6.80%	99.93
N 40	0,43	2.30	1.15%	7.95%	99,92
N 60	0.25	6.00	3.00%	10.95%	99.89
N 100	0.15	23.50	11.75%	22.70%	99.77
N 200	0.075	24.10	12.05%	34.75%	99.65
PÉRDIDA POR LAVADO		130.50	65.25%	100.00%	99.00
TOTAL		200.00			

CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

W t (gr)	27.8
Wmh+t (gr)	198.6
Wms + t (gr)	160.9
Wms	133.10
Ww	37.70
W(%)	28.32


CLASIFICACIÓN DEL SUELO POR AASHTO Y SUCS

% PASA	LL	LP	P	CLASIFICA	NOIDA
MALLA 200	(%)	(%)	(%)	AASHTO	SUCS
99.65	57.70	30.33	27.37	A-7	CH

ARCILLA INORGÁNICA

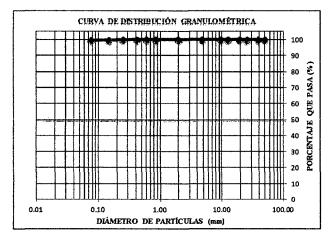
LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO NORMA ASTM D4318

LÍN	ATELÍQUIDO		LÍMITEP	LÁSTICO
38.50	40.70	26.40	42.80	42.80
57.60	62.40	46.00	45.00	44.90
50.40	54.40	39.00	44.50	44.40
11.90	13.70	12.60	1.70	1.60
7.20	8.00	7.00	0.50	0.50
60.50	58.39	55.56	29.41	31.25
16	22	34		
	57.70		30	.33

Pf C/Agua (gr)	<i>67</i> 6	676
Pf (gr.)	164,7	164.7
Pss (gr.)	59.9	58.8
Pf+a+s (gr.)	710	709
Pespecifico(gr/cm^3)	2.31	2.28
Pespecifico prom (gr/cm^3)	2.2	95

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

PROYECTO : PARROQUIA DE SAN AGUSTÍN - CAJAMARCA


UBICACIÓN : DIST. CAJAMARCA-PROV. CAJAMARCA - DPTO. CAJAMARCA - REGIÓN CAJAMARCA

MUESTRA : C3 - E1

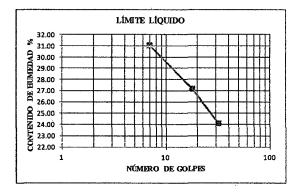
FECHA

ANÁLISIS GRANULOMÉTRICO NORMA: ASTM D 422/ C136

	MUESTRA:	200.00	gr.		
TAMIZ		PRP (gr)	%RP	%RA	OUTE DAGA
N°	ABER.(mm)	rkr (gi)	76KF	70KA	% QUE PASA
2"	50.00	0.00	0.00%	0.00%	100.00
1 1/2"	38.10	0.00	0.00%	0.00%	100.00
3"	25.00	0.00	0.00%	0.00%	100.00
3/4"	19.00	0.00	0.00%	0.00%	100.00
1/2	12.50	0.00	0.00%	0.00%	100.00
1/4"	9.50	0.00	0.00%	0.00%	100.00
N°4	4.75	0.00	0.00%	0.00%	100.00
N 10	2.00	0.70	0.35%	0.35%	100.00
N 20	0.85	2.90	1.45%	1.80%	99.98
N 30	0.60	2.50	1.25%	3.05%	99.97
N 40	0.43	4.20	2.10%	5,15%	99,95
N 60	0.25	13.50	6.75%	11.90%	99.88
N 100	0.15	40.00	20.00%	31.90%	99.68
N 200	0.075	35.90	17.95%	49.85%	99.50
PÉRDIDA POR LAVADO	-,-	100.30	50.15%	100.00%	99.00
TOTAL		200.00			

CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

W t (gr)	30.9
Wmh + t (gr)	151.3
Wms + t (gr)	130.2
Wms	99.30
Ww	21.10
W(%)	21.25


CLASIFICACIÓN DEL SUELO POR AASHTO Y SUCS

% PASA	Щ	LP	IP	CLASIFICA	CION	
MALLA 200	(%)	(%)	(%)	AASHTO	SUCS	
99.50	25.60	19.09	6.51	A-4	CH	

ARCILLA INORGÁNICA

LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO NORMA ASTM D4318

LÍN	ATTE LÍQUIDO		LÍMITEPLÁSTICO		
39.60	40.50	40.70	23.70	23.70	
79.30	70.50	76.30	26.30	25.50	
69.90	64.10	69.40	25.90	25.20	
30.30	23.60	28.70	2.20	1.50	
240	6,40	6.90	240	0.30	
31.02	27.12	24.04	18.18	20.00	
7	18	32			
	25.60		19.09		

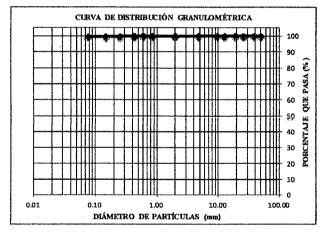
Pf C/ Agua (gr)	676	676
Pf (gr.)	164.7	164.7
Pss (gr.)	59.6	57.5
Pf+a+s (gr.)	712	711.2
P especifico(gr/cm^3)	2.53	2.58
Pespecifico prom (gr/cm^3)	2.5	555

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

PROYECTO

: PARROQUIA DE SAN AGUSTÍN - CAJAMARCA

UBICACIÓN


: DIST. CAJAMARCA - PROV. CAJAMARCA - DPTO. CAJAMARCA - REGIÓN CAJAMARCA

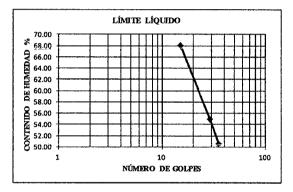
MUESTRA : C3 - E2

FECHA

ANÁLISIS GRANULOMÉTRICO NORMA: ASTM D 422/ C136

	MUESTRA:	200.00	gr.	l	
TAMIZ	Z.	PRP (gr)	%RP	%RA	% QUE PASA
N°	ABER (mm)	rat (gi)	. 7614	701224	/* QOBTASA
2 ^b	50.00	0.00	0.00%	0.00%	100.00
1 1/2"	38.10	0.00	0.00%	0.00%	100.00
1"	25.00	0.00	0.00%	0.00%	100.00
3/4"	19.00	0.00	0.00%	0.00%	100.00
1/2	12.50	0.00	0.00%	0.00%	100.00
1/4"	9.50	8.00	4.00%	4.00%	99.96
N°4	4.75	5.00	2.50%	6.50%	99.94
N 10	2.00	11.00	5.50%	12.00%	99.88
N 20	0.85	5.00	2.50%	14.50%	99.86
N 30	0.60	3.00	1.50%	16.00%	99.84
N 40	0.43	4,00	2.00%	18.00%	99.82
N 60	0.25	11.00	5.50%	23.50%	99.77
N 100	0.15	37.00	18.50%	42.00%	99.58
N 200	0.075	24.00	12.00%	54.00%	99.46
PÉRDIDA POR LAVADO	-,-	92.00	46.00%	100.00%	99.00
TOTAL		200.00			

CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

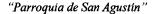

W t (gr)	26.2	
Wmh+t(gr)	151.3	
Wms+t(gr)	119.2	
Wms	93.00	
Ww	32.10	
W(%)	34.52	

CLASIFICACIÓN DEL SUELO POR AASHTO Y SUCS

% PASA	LL	LP	ĪΡ	CLASIFICA	CION
MALLA 200	(%)	(%)	(%)	AASHTO	SUCS
99,46	58.80	27.53	31.27	A-7	CH

LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO NORMA ASTM D4318

LÍN	TTE LÍQUIDO		LÍMITEP	LÁSTICO
74.30	40.30	40.10	26.40	26.40
86.40	51.30	51.70	28.70	27.80
81.50	47.40	47.80	28.20	27.50
7.20	7.10	7.70	1.80	1.10
4,90	3.90	3.90	9,50	0,30
68.06	54.93	50.65	27.78	27.27
15	29	35		
	58.80		27	.53

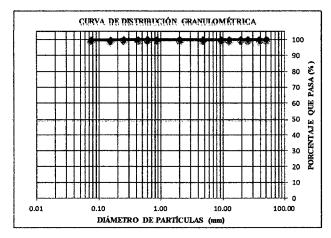

PESO ESPECÍFICO (δs) NORMA: ASTM D 854

Pf C/Agua (gr)	67 6	676
Pf (gr.)	164.7	164.7
Pss (gr.)	53.8	58.4
Pf+a+s (gr.)	707.2	709.1
Pespecifico(gr/cm^3)	2.38	2.31
Pespecifico prom.(gr/cm^3)	2.3	345

ARCILLA INORGÁNICA

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

PROYECTO : PARROQUIA DE SAN AGUSTÍN - CAJÀMARCA


UBICACIÓN : DIST. CAJAMARCA- PROV. CAJAMARCA - DPTO. CAJAMARCA - REGIÓN CAJAMARCA

MUESTRA : C3 - E3

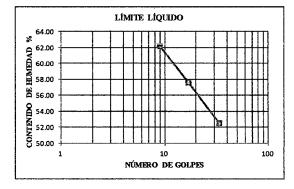
FECHA

ANÁLISIS GRANULOMÉTRICO NORMA: ASTM D 422/ C138

χ.	MUESTRA:	200.00	gr.		
TAMIZ	z.	PRP (gr)	%RP	%RA	% QUEPASA
N°	ABER (mm)	rid (gr)	701.0	70KA	/ QUELTADA
2"	50.00	0.00	0.00%	0.00%	100.00
1 1/2"	38.10	0.00	0.00%	0.00%	100.00
1"	25.00	0.00	0.00%	0.00%	100.00
3/4"	19.00	0.00	0.00%	0.00%	100.00
1/2	12.50	0.00	0.00%	0.00%	100.00
1/4"	9.50	2.00	1.00%	1.00%	99.99
N°4	4.75	3.00	1.50%	2.50%	99.98
N 10	2.00	7.00	3.50%	6.00%	99.94
N 20	0.85	4.00	2.00%	8.00%	99.92
N 30	0.60	1.50	0.75%	8.75%	99.91
N 40	0.43	3,00	1.00%	9.75%	99.90
N60	0.25	5.00	2.50%	12.25%	99,88
N 100	0.15	23.00	11.50%	23.75%	99.76
N 200	0.075	17.00	8.50%	32.25%	99.68
PÉRDIDA POR LAVADO	-,-	135.50	67.75%	100.00%	99.00
TOTAL		200.00			

CONTENIDO NATURAL DE HUMEDAD NORMA: ASTM D 2216

Wt(gr)	30.7
Wmh+t(gr)	188.3
Wms + t (gr)	149.8
Wms	119.10
Ww	38.50
W(%)	32.33


CLASIFICACIÓN DEL SUELO POR AASHTO Y SUCS

	%PASA	LL	LP	IP	CLASIFICA	CION
	MALLA 200	(%)	(%)	(%)	AASHTO	SUCS
Γ	99.68	55.00	33.33	21.67	A-7	CH

ARCILLA INORGÁNICA

LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO NORMA ASTM D4318

LÍN	ITELÍQUIDO		LÍMITEP	LÁSTICO
95.10	38,60	38.60	43.00	43.00
107.10	50.10	51.10	43.80	44.20
102.50	45.90	46.80	43.60	43.90
7.40	7.30	8.20	0.60	0.90
4.60	4.20	4.30	0.20	0.30
62.16	57.53	52.44	33.33	33.33
9	17	34		
	55.00		33	.33

Pf C/Agua (gr)	676	676
Pf (gr.)	164.7	164.7
Pss (gr.)	52.6	54.3
Pf+a+s (gr.)	706.4	707.8
P especifico(gr/cm^3)	2.37	2.41
Pespecífico prom.(gr/cm^3)	2.	39

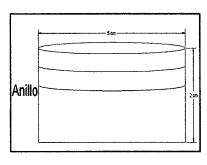
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Consolidación

El ensayo de consolidación se realizó a la calicata que va a recibir mayor peso de la edificación

PROYECTO: PARROQUIA DE SAN AGUSTÍN - CAJAMARCA

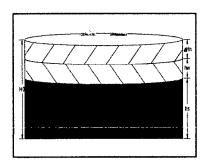

UBICACIÓN : DIST. CAJAMARCA-PROV. CAJAMARCA - DPTO. CAJAMARCA - REGIÓN CAJAMARCA

MUESTRA: C3. - E2

FECHA

ENSAYO: CONSOLIDACIÓN UNIDIMENSIONAL

NORMA ASTM D2435-96



 Aanil=
 31.66
 cm²

 Ho=
 2.54
 cm

 ΔHn=
 1.788
 mm

 $Ww = Wmh - Wms = 11.4 cm^3$

hw= Vw/Aw= Ww/Aanil

3.600 mm

luego:

hs= H0- Hw-ΔHn

hs= 20.012 mm

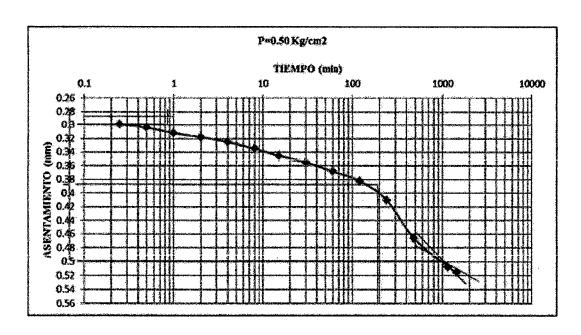
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

CALICATA 3

ESTRATO 2:

P=

0.5


Kg/cm2

Lecturas del Extensómetro

Dial del extensómetro:

0.001 cm

Tiempo	Tiempo (min)	Lectura (mm)
0"	0	0.268
15"	0.25	0.299
30"	0.5	0.304
1'	1	0.312
2'	2	0.318
4'	4	0.325
8'	8	0.335
15'	15	0.345
30'	30	0.355
1h	60	0.368
2h	120	0.382
4h	240	0.410
8h	480	0.466
19h	1140	0.507
19h15'	1155	0.508
24h20'	1460	0.515

De donde:

T50=

0.197 en curva teórica de Consolidación

t50= ΔH50= 185 min

Δ1130-

0.21 mm

H0=

25.4 mm

 $h=H0-\Delta H50=$

25.19 mm

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

%

H50= h/2=

12.595 mm

 $\Delta h1 =$

0.247

Luego:

 $hv1 = H0 - \Delta h1 - hs$

hv1 = 110 - 2111 - 118hv1 = 5.141

e= hv/hs

e= 25.688

Finalmente se calcula los coeficicentes:

a) Coeficicente de Consolidación

 $Cv = \underline{T_{50} * H^2_{50}}$

t50

Cv = 0.169

CALICATA 3

ESTRATO 2:

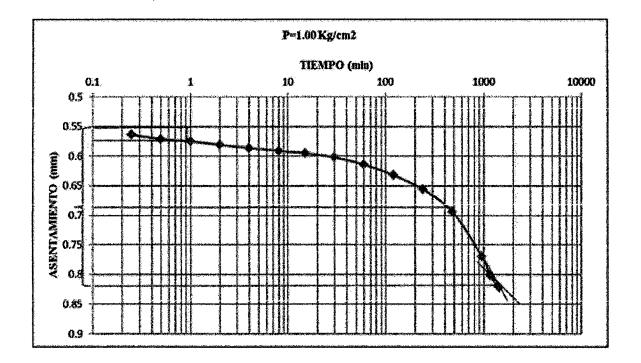
P=

Kg/cm2

Lecturas del Extensómetro

Dial del extensómetro:

0.001 cm


Tiempo	Tiempo (min)	Lectura (mm)
0"	0	0.560
15"	0.25	0.564
30"	0.5	0.571
1'	1	0.575
2'	2	0.581
4'	4	0.586
8'	8	0.591
15'	15	0.595
30'	30	0.602
1 h	60	0.614
2h	120	0.632
4h	240	0.656
8h	480	0.694
16h	960	0.770
19h15'	1155	0.801
23h05'	1385	0.819
24h	1440	0.822

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

De donde: T50= 0.197 en curva teórica de Consolidación

t50= 445 min Δ H50= 0.267 mm H0=25.4 mm $h=H0-\Delta H50=$ 25.133 mm H50=h/2=12.5665 mm Δh1≔ 0.262

Luego: $hv1 = H0 - \Delta h1 - hs$ e= hv/hs % hv1=5.126 25.613 mm

Finalmente se calcula los coeficicentes:

a) Coeficicente de Consolidación

Cv=T50 * H250 t50

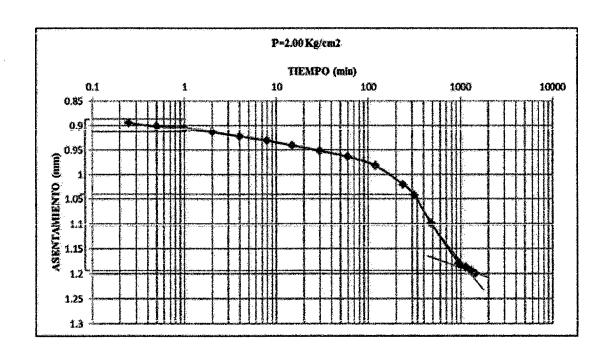
0.070 Cv=

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

CALICATA 3

ESTRATO 2:


Kg/cm2

Lecturas del Extensómetro

Dial del extensómetro:

0.001 cm

Tiempo	Tiempo (min)	Lectura (mm)
0"	0	0.879
15"	0.25	0.895
30"	0.5	0.902
1'	1	0.905
2'	2	0.913
4'	4	0.922
8'	8	0.931
15'	15	0.941
30'	30	0.952
1h	60	0.964
2h	120	0.982
4h	240	1.021
5h15'	315	1.043
8h	480	1.099
16h	960	1.180
18h58'	1138	1.188
21h52'	1312	1.195
24h	1440	1,20

De donde:

T50=

0.197 en curva teórica de Consolidación

t50=

315 min

ΔH50=

0.273 mm

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

H0= 25.4 mm $h=H0-\Delta H50=$ 25.127 mm H50=h/2=12.5635 mm

 $\Delta h1 =$ 0.321

Luego:

 $hv1 = H0 - \Delta h1 - hs$ e= hv/hs

hv1= 5.067 25.3179 mm

Finalmente se calcula los coeficicentes:

a) Coeficicente de Consolidación

Cv= T50 * H250 t50

0.099 Cv=

CALICATA 3

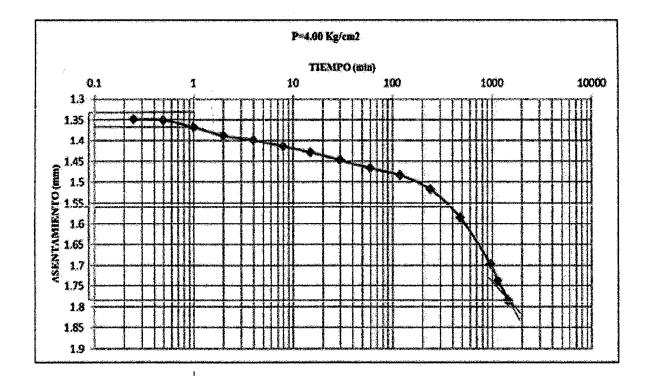
ESTRATO 3

Kg/cm2

Lecturas del Extensómetro

Dial del extensómetro:

0.001 cm


Tiempo	Tiempo (min)	Lectura (mm)
0"	0	1.345
15"	0.25	1.349
30"	0.5	1.351
1'	1	1.368
2'	2	1.388
4'	4	1.399
8'	8	1.415
15'	15	1.429
30'	30	1.448
1h	60	1.467
2h	120	1.484
4h	240	1.518
8h	480	1.586
16h	960	1.697
19h	1140	1.738
24h	1440	1.785
24h17'	1457	1.788

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

$$T50=$$

0.197 en curva teórica de Consolidación

t50=

375 min

 Δ H50=

0.443 mm

H0=

 $h=H0-\Delta H50=$

25.4 mm 24.957 mm

H50 = h/2 =

12.4785 mm

 $\Delta h1 =$

0.443 mm

Luego:

 $hv1 = H0 - \Delta h1 - hs$ hv1=

4.945 mm

e= hv/hs

24.7083

%

Finalmente se calcula los coeficicentes:

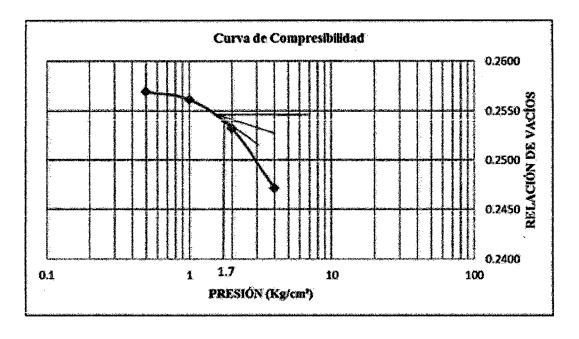
a) Coeficicente de Consolidación

T50 * H²50 Cv=

t50

0.082 Cv=

CURVA DE COMPRESIBILIDAD


P(Kg/cm ²)	0.5	1	2	4
e	0.2569	0.2561	0.2532	0.2471
e(%)	25.688	25.613	25.318	24.708

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL



COEFICIENTE DE CONSOLIDACIÓN CV

Calicata 3

P(Kg/cm²)	0.5	1	2	4
Cv	0.169	0.070	0.099	0.082

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

CAPACIDAD ADMISIBLE DEL SUELO

Fuerza de partículas	e atracción s	n entre	Cohesión:	ς =	0.2	Kg/cm ²				
Angulo d	lo de Fricción Interna : φ" =		12	(Ver anexo 01)						
Factores Carga	Factores de Capacidad de Carga		Datos del Suelo							
Nq=	2.22				co del Suelo:	γ =	0.00234	kg/cm³		
N c =	8.63		Cota de Fund	lación	Df =	160.00	cm			
Νγ=	0.35					γ. Df =	3.74	Tn / m²		
Capacida	ad de Carg	ra última en	Capacidad de Carga última en los Diferentes Elementos Estructurales							
Cimientos Corridos 2										
Cin	nientos Co	orridos	2	Zapatas Cuadi	radas	Zapa	itas Circu	lares		
Cin F.S	3.0	erridos	F.S	Zapatas Cuada	radas	Zapa F.S	atas Circu.	lares		
		erridos Q adm.		<u>-</u>	radas 9 adm.			lares 9 sdm.		
F.S	3.0		F.S	3.0		F.S	3.0	Ī		
F.S B	3.0 q _d (kg/	q adm.	F.S B	3.0 q d	q adm.	F.S	3.0 q _d (Tn/	q adm.		
F.S B (cm)	3.0 q _d (kg/ cm ²)	<i>q</i> adm. (kg / cm ²	F.S B (m)	3.0 q _d (Tn/m ²)	q adm. (Tn / m ²)	F.S R	3.0 q _d (Tn/ m ²)	q adm. (Tn / m ²)		
F.S B (cm)	3.0 q d (kg / cm ²) 2.0064	q adm. (kg / cm ²) 0.67	F.S B (m) 100.00	3.0 q d (Tn / m ²) 2.3524	q adm. (Tn / m ²)	F.S R 100.00	3.0 q d (Tn / m ²) 2.3623	q sdm. (Tn / m ²)		
F.S B (cm) 60 80	3.0 q d (kg / cm ²) 2.0064 2.0146	q adm. (kg / cm ²) 0.67	F.S B (m) 100.00 150.00	3.0 q d (Tn / m ²) 2.3524 2.3819	q adm. (Tn / m ²) 0.78 0.79	F.S R 100.00 150.00	3.0 q d (Tn / m ²) 2.3623 2.3623	q adm. (Tn / m ²) 0.79		

Este dato es obtenido con la fórmula de Terzaghi, descrita en el capítulo 2, de la tabla elegimos el esfuerzo admisible más bajo.

0.80

q adm.=

Kg/cm²

0.67

q adm.

Kg/cm²

0.79

q adm. ==

Kg/cm²

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

CÁLCULO DE ASENTAMIENTOS

Ensayo	Unidades	Calicata1	Calicata2	Calicata3
Contenido de humedad	%	25.34	26.76	34.32
Ancho de cimentación	m	1	1	1
Espesor del estrato	cm	160	160	160
Capacidad de carga	kg/cm2	0.7	0.7	0.7
Densidad natural	gr/cm3	3.45	2.62	3.52
Relación de vacíos	%	25.6	24.7	25.3
Límite líquido	adim	46.9	51.5	58.8
Indice de compresibilidad	adim	0.3321	0.3735	0.4392
Presion de apoyo	kg/cm2	0.546825	0.41527	0.55792
Asentamiento probable	cm	2.14	5.27	2.63

Como estos asentamientos sobrepasan los máximos permisibles (mencionados en el capítulo 2-cuadro 2.06) se recomienda el mejoramiento del suelo, ya que de no ser así se puede dañar la superestructura.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

4.4. ARQUITECTURA

4.4.1. Cuadro de áreas: Para el diseño arquitectónico se tuvo en consideración la norma A-010 del RNE, y de acuerdo al uso que se le va dar a cada ambiente de acuerdo al reglamento, por lo que tenemos:

- Capilla:

Primer Nivel							
Ambiente Área (m²)							
Capilla	206.45						
Altar	56.60						
Sacristía 1	15.15						
Sacristía 2	17.23						
½ Baño	3.05						
Área libre	155.02						

Segundo Nivel								
Ambiente Área (m²)								
Dormitorio 3	20.79							
Almacén	15.01							
Campanario	12.73							

- Edificio:

Primer Nivel							
Ambiente Área (m²)							
Hall	18.78						
Oficina	16.65						
Archivo	7.22						
Baño	3.84						
Cochera	92.49						

Segundo Nivel							
Ambiente	Área (m²)						
Estudio	9.18						
Baños	2.47; 2.64; 2.47						
Dormitorio principal	17.33						
Dormitorio doble	19.82						
Oratorio	25.85						
Lavandería	6.44						
Sala	21.08						
Cocina - comedor	17.03						

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

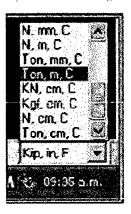
"Parroquia de San Agustín"

Tercer Nivel						
Ambiente Área (m²)						
Hall- Kitchenet	33.97					
Salón Parroquial	92.63					
Baño mujeres	7.56					
Baño hombres	7.48					

Cuarto Nivel							
Ambiente Área (m²)							
Hall- Kitchenet	33.97						
Salón Parroquial	92.63						
Baño mujeres	7.56						
Baño hombres	7.48						

(FUENTE: Elaboración propia)

4.5. ESTRUCTURAS

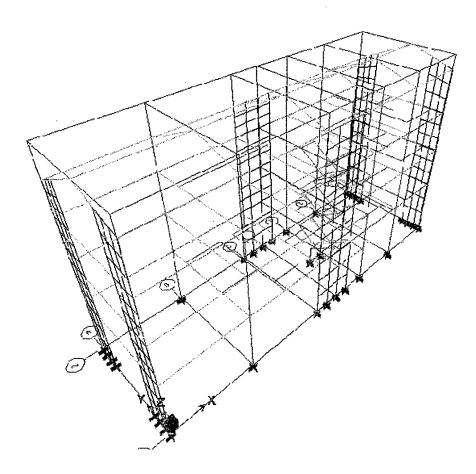

4.5.1. Generalidades

Por tratarse de un sistema dual pórticos y placas, los muros divisorios no fueron considerados en el diseño sólo se tomó su peso.

4.5.2. Método Del Diseño

Se utilizó el programa ETABS versión 9, y se idealizó como un ensamblaje de pórticos verticales y sistemas de muros de corte interconectados por diafragmas horizontales de piso, los cuales son rígidos en su propio plano.

a) Se definieron las unidades con las que se va a trabajar

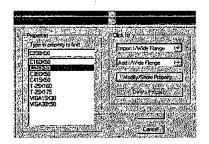


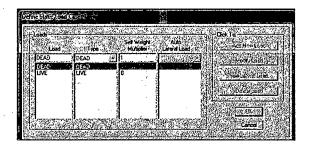
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

b) Para definir el dibujo, se trazó los ejes y la geometría en los ejes X, Y, Z, luego con las herramientas de trabajo se delinió los marcos del edificio y de la capilla respectivamente

c) Se define las condiciones de borde considerando al edificio empotrado.


- d) Se definió las propiedades del material que vamos a usar, es decir, creando un propio material a usar en el diseño de la estructura.
- e) Luego se definió las secciones de los elementos estructurales para luego asignar las secciones pre diseñadas a cada uno de los elementos según sean vigas o columnas


FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

f) Se definió el sistema de cargas a usar como son: el peso propio de la estructura, las cargas muertas y el juego de ca designé; para esta definición de cargas el peso propio entra con valor 1 y tanto las cargas muertas como las vivas con el valor de cero (no se incluye peso propio).

g) Espectro de Diseño. El análisis sísmico se realizo por superposición espectral para lo cual se generó el espectro de diseño.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

ESPECTRO DE DISEÑO

01. FACTOR DE ZONA

Z = 0.4

	FACTORES DE ZONA
ZONA	Z
3	0.4
2	0.3
1	0.15

02. FACTOR DE USO

U = 1.5

CATEGORIA	FACTOR U
A (Edificaciones Esenciales)	1.5
B (Edificaciones Importantes)	1.3
C (Edificaciones Comunes)	1.0
D (Edificaciones Menores)	a criterio

03. FACTOR DE SUELO

S = 1.4

$$Tp = 0.9$$

PARAMET ROS DEL SUELO							
Tipo	Descripcion	T _p (s)	S				
S ₁	Roca o suelos muy rígidos	0.4	1.0				
S ₂	Suelos intermedios	0.6	1.2				
S₃	Suelos flexibles o con estratos de gran espesor	0,9	1,4				
S ₄	Condiciones excepcionales	*	*				

(*) Los valores de Tp y S para este caso serán establecidos por el especialista, pero en ningún caso serán menores que los especificados para el perfil tipo S₃

04. COEFICIENTE DE REDUCCION

R = 7 (Sistema dual)

R= 7

(Sistem a dual)

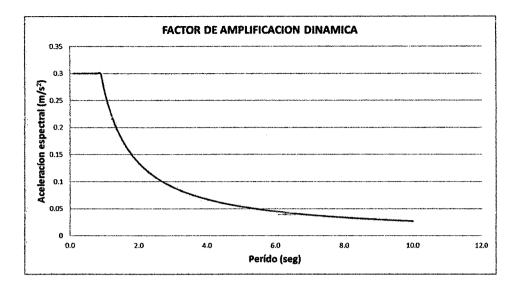
05. A continuacon se muestra la realcion entre T, C y Sa:

$$C = 2.5 \frac{Tp}{T}$$

; C≤2.5

C = 2.5

$$Sa = \frac{ZUCS}{R}g$$


OK

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

h) Se definió el sismo en la dirección Exx, en la dirección Eyy y en la dirección Ezz

ANALISIS DE CORTANTE BASAL Y CALCULO DEL FACTOR DE ESCALA

Z	U	С	S	R	Р	C/R >= 0.125	Ve (Tn)	Vd (Tn)	Vd = 80%Ve	Scale factor calculado	Scale factor final	Descripcion
0.4	1.5	2.5	1.4	7	835	0.357142857	250.50	200.06	200.40	1.17	1,17	х
0.4	1.5	2.5	1.4	7	835	0.357142857	250.50	200.37	200.40	1.17	1.17	Y

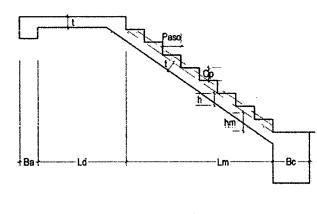
DE: PESO COMBINACION

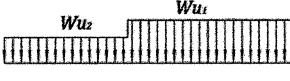
DE: SISMOX/SISMO Y

- Ζ factor de zona
- U factor de uso
- C factor de amplificacion sismico
- S factor de suelo
- R coeficiente de reduccion sismico
- Peso de la esctructura (carga permanente +% carga viva)
- Ve
- Contante estatico ($v = \frac{ZUCS}{R}P$) Cortante dinamico (dirección x ó Y, cual sea mayor) Vd
- i) Luego la combinación de cargas con cada una de las cargas definidas
- j) En todos los pisos le asignamos un diafragma de piso rígido, para que la estructura se mantenga como un todo estable.
- k) Corremos el programa y verificamos las áreas de acero en cada elemento

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

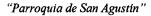
ÁREA DE ACERO DEL EJE A (EDIFICIO)

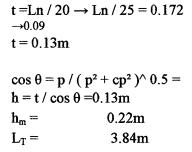

	2.494	0.616	0.816		1.603	1.048	3.675		0. 65.0556 7	1.339.05%651	0.8240.410.435	0.600 0.326 1.312
	1.237	1.046	1.144	1	1.766	1.100	1.816		0. 3266.63 3	0.538120175	1.659 .059 .223	0.657 0.608 0.665
19.000				43,548				37,486	7.500	35.269	원 건.	18,000
	4.102	1.337	1.460		2.458	1.244	4.384		2.4 0.70.9 25		4.4191.5838.195	1.155 0.618 2.503
	2.022	1.581	2.407		2.708	1.548	2.159		0.2 350.9 12		3.3591.4023.651	1.626 1.062 1.241
19.000				34.671				30.479	8.027	2.019971937 <mark>9</mark> 2.019847683 9	21.000	19.000
	3.940	1.276	1.877		2.697	1.291	4.419		0.3 5362 49		4.419.459.682	1.535 0.670 2.718
	1.844	1.485	2.213		2.713	1.531	2.194		0.1 0/30/8 97		3.619.4148.774	1.810 1.146 1.491
19.000				33.183				37.820	7.500	1.9504104 (§ 1.950419138	21.000	19.000
	3.405	1.051	2.018		2.825	1.352	3.898		0.1 023028 17		4.0941.2923.308	1.542 0.602 2.438
	1.683	1.223	1.655		2.148	1.564	1.923		0.1066660		3.2961.3259.181	1.449 0.865 1.520
core)	{ • → x			37.658				63.652	12.450	1.6654199419 1.665419924	27.315	19.000

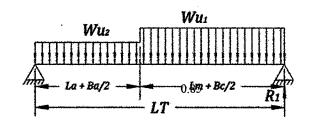

4.5.3. DISEÑO DE ESCALERA

DISEÑO DE ESCALERAS DE CONCRETO ARMADO

1.00 DATOS


_			
			kg/
	f'c =	210	cm ²
		420	
	f 'y =	_	cm ²
		240	-
	γ 'c=	0	
			kg/
	σ _S =	0.80	
	~~	***	kg/
	SC =	500	
	A 1 1	100	kg/
	Acabado =	100	m²
	Paso =	0.28	m
	Cp =	0.17	
	# Pasos =	8.00	unidades
	$L_{DESCANSO} =$	1.20	m
	Ancho =	1.20	m
	Ba =	0.30	m
	Bc =	0.50	m
	recubrimiento =	0.03	m




FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

2.00 PREDIMENSIONAMIENTO

3.00 METRADO DE CARGAS

Carga muerta	Wul	Wu2
Peso propio =	619 kg/ml	374 kg/ml
Acabado =	120 kg/ml	120 Kg/ml
Σ	739 kg/ml	494 kg/ml
Carga viva		
SC =	600 kg/ml	600 kg/ml
Combinación de carga		
U1 =	2055 kg/ml	1712 kg/ml

Calculo de
$$R_1$$

 $R_1 = 3714Kg$
 $Vx = R_1 - Wu_1X = 0$
 $X = 1.81m$

Momento máximo Mmax = 3356 kg-m Mdiseño = 0.8 Mmax = 2685 Kg-m

4.00 DISEÑO DE ACERO

As temp = $0.0018 \times b \times t = 2.81 \text{ cm}^2$

$a \rightarrow$	$2 \text{ cm} \rightarrow$	As =	Mu/(Øf	'y (d - a/2))		
Acero (+)						
	7.8					
As =	9	cm ²	\longrightarrow	a =	1.55	cm
$A_S =$	7.7	cm ²	\rightarrow	a =	1.55	cm
As ≡	7.7	cm ²				
As=	6.42	cm²/ml				
$\rho = 0.00495$		(cua	ntia coloca	ıda)		
$\rho_b = 0.02168$						

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

 $\rho_{max} = 0.50 \rho_b$ (para zona sísmica) $\rho_{max} = 0.01084$ As $max = 16.9cm^2$

Distribución de acero longitudinal positivo

1/2 (a) 0.14 m

Distribución de acero longitudinal negativo Acero (-)

As - =

2.14 cm²/ml

As < temp

(Si As temp < As -, entonces tomas As - para la distribucion de acero)

Ø ½ @ 0.25 m

Distribución de acero transversal

Ø

3/8 (a)

0.2 m

Usamos

Ø 3/8 @ 0.40 en DOS CAPAS

4.04 Chequeo del cortante

Vud = WuLn / 2 - Wu d

Vud =

3740.0 kg 3197 kg

Vud $\cos \theta =$ Vn =

3761 kg

Vc =

11978.5 kg

 \rightarrow Vn \leq Vc \rightarrow ok

5.00 CARGA DE SERVICIO PARA EL APOYO

W = 1339 kg/ml

P = 2571 kg

Ancho de zapata = 0.50 m

 $\sigma_1 = 4286 \text{ kg/m}^2$

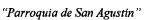
 $\sigma_1 = 0.43 \text{ kg/cm}^2 \rightarrow$

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

4.6. INSTALACIONES ELÉCTRICAS

Para el diseño de las instalaciones sanitarias se tomó en cuenta las fórmulas y parámetros dados en el capítulo 2.


4.6.1. Sistema de alumbrado

A. Edificio

Proyecto: "Proyecto Parroqui	"Proyecto Parroquia de San Agustín"						
Proyectista: Bach. Ing C	Bach. Ing Civil Leslie J. Chávez Carrillo						
PROYECTO DE ILUMINACIÓN DE AMBIENTES INTERIORES							
Realizado por :	Realizado por : L.J.C.C.						
Chequeado por :							
Ambientes a Diseñar :	Primer Piso						
	Carga Unitaria / m²	40.00	Watts/m ²				
	Hall	518	Watts				
	Oficina	720	Watts				
	Archivo	192	Watts				
	Baño	31	Watts				
	Cochera	220	Watts				
Cálculo de la Potencia Instalada	Tomacorrientes en hall	360	Watts				
	Tomacorrientes en oficina	360	Watts				
	Tomacorrientes en archivo	180	Watts				
	Tomacorrientes en baño	180	Watts				
	Tomacorrientes en cochera	180	Watts				
	Potencia total de tomacorrientes	1260.0	Watts				
	Potencia Instalada Total	2941.0	Watts				
	Potencia total de Alumbrado	1681.0	Watts				
	Potencia total de Tomacorrientes	1260	Watts				
C(-1-1-1-1-D1-34(-1	Potencia Instalada Total	2941.00	Watts				
Cáculo de la Demanda Máxima	Factor de demanda	1					
	Factor de demanda	100.0	%				
	Demanda Máxima Total	2941.00	Watts				

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Proyecto: "Proyecto Parroquia d	"Proyecto Parroquia de San Agustín"					
Proyectistas: Bach. Ing Civil	Bach. Ing Civil Leslie J. Chávez Carrillo					
PROYECTO DE ILUMINACIÓN DE AMBIENTES INTERIORES						
Realizado por : L.J.C.C.						
Chequeado por :						
CÁLCULO DE CONDUCTO	DRES DE ALUMBRADO IN	TERIOR AL T	Г.D.			
	Tipo de corriente	Corriente monof	fásica			
	Factor de suministro (K)	1.000				
Intensidad de cálculo	Voltaje (V)	220	Voltios			
intensidad de Calculo	Factor de potencia (Cos Ø)	0.90				
	Demanda máxima total	2941.00	watts			
	Intensidad de cálculo (Ic)	14.85	Amperios			
Intensidad de diseño	Intensidad de diseño (Id)	18.57	Amperios			
Cálculo del calibre del conductor	Sección nominal del conductor	2.10	mm ²			
Calculo del cambre del conductor	Calibre del conductor Nº	14.00				
	Tipo de corriente	Corriente monof	ásica			
	Factor para caida de tensión (K)	2.000				
	Longitud más alejada del circuito	11.8	m			
	Valor de j	0.0175	Ohm.			
Comprobación del calibre del conductor	Intensidad de diseño (Id)	18.57	Amperios			
por caida de tensión	Factor de potencia (Cos Ø)	0.90	Amperios			
	Sección nominal del conductor	2.10	mm ²			
·	Caida de tensión (Cr)	3.29	Voltios			
	Observación de caida de tensión	Los valores está	in O.K.			

Proyecto : Provectistas :	"Proyecto Parroquia de San Agustín" Bach. Ing Civil Leslie J. Chávez Carrillo			
· · · · · · · · · · · · · · · · · · ·		NACIÓN DE AMBIENTES I	NTERIORES	}
Realizado por	;	L.J,C,C,	···········	
Chequeado por	CULO DE LOS CONDI	CTORES DE LOS CIRCUI	TOS DERIVA	DOS
		Primer Piso ARA ALUMBRADO Y TOM		* '
		Tipo de comiente	Corriente Mono	fásica
		Factor de suministro (K)	1.000	
Intensidad de cálculo	idad da ailamla	Voltaje (V)	220	Voltios
	idad de calculo	Factor de potencia (Cos Ø)	0.90	
		Demanda máxima total	1260.00	Watts
		Intensidad de cálculo (lc)	6.36	Amperios
Intens	idad de diseño	Intensidad de diseño (ld)	7.95	Amperios
Cáloulo del d	calibre del conductor	Sección nominal del conductor	2.10	mm²
Calculo del c	campre del conductor	Calibre del conductor Nº	14.00	
		Tipo de corriente	Corriente Mono	fásica
		Factor para caida de tensión (K)	2.000	
		Longitud más alejada del circuito	11.8	m
a		Valor de j	0.0175	Ohm.
-	lel calibre del conductor	Intensidad de diseño (Id)	7.95	Amperios
por caida de tensión	uua ue tension	Factor de potencia (Cos Ø)	0.90	Amperios
		Sección nominal del conductor	2.10	nım²
		Caida de tensión (Cr)	1.41	Voltios
		Observación de caida de tensión	Los valores esta	án O.K.

Resultados:

Alumbrado:

2 × 2.1 mm² TW - AWG - 20 mm Ø PVC - SEL

Tomacorrientes:

2 × 2.1 mm² + 1 × 4.0 mm² TW - AWG - 20 mm Ø PVC - SEL

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Proyecto: "Proyecto Parroquia	"Proyecto Parroquia de Śan Agustin"					
Proyectistas: Bach. Ing Civ	Bach. Ing Civil Leslie J. Chávez Carrillo					
PROYECTO DE ILUMINACIÓN DE AMBIENTES INTERIORES						
D	LJCC.					
Realizado por :	L.J.C.C.					
Chequeado por :						
CALCULO DE CONI	<u>PUCTORES ALIMENTADOR</u>	ES AL T.G.				
	Tipo de comiente	Corriente mono	fásica			
	Factor de suministro (K)	1.000				
Intensidad de cálculo	Voltaje (V)	220	Voltios			
intensidad de cajedio	Factor de potencia (Cos Ø)	0.90				
	Demanda máxima total	2941.00	watts			
	Intensidad de cálculo (Ic)	14.85	Amperios			
Intensidad de diseño	Intensidad de diseño (1d)	18.57	Amperios			
Cálculo del calibre del conductor	Sección nominal del conductor	3.30	mm²			
Calculo del carlore del conductor	Calibre del conductor Nº	12.00				
	Tipo de corriente	Corriente mono	fásica			
	Factor para caida de tensión (K)	2.000				
	Longitud más alejada del circuito	0.3	m			
	Valor de j	0,0175	Ohm			
Comprobación del calibre del conducto	Intensidad de diseño (Id)	18.57	Amperios			
por caida de tensión	Factor de potencia (Cos Ø)	0.90	Amperios			
	Sección nominal del conductor	3.30	mm ²			
	Caida de tensión (CT)	0.05	Voltios			
	Observación de caida de tensión	Los valores est	án O.K.			

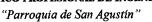
Resultados:

Alimentador

2 × 3.3 mm² TW - AWG - 20 mm Ø PVC - SEL

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"


Segundo nivel

Proyecto: "Proyecto Parroqui	"Proyecto Parroquia de San Agustín"			
Proyectista: Bach. Ing C	Bach. Ing Civil Leslie J. Chávez Carrillo			
PROYECTO DE ILU	MINACIÓN DE AMBIENTES I	NTERIORES	3	
Realizado por :	LJ.C.C.			
Chequeado por ;				
Ambientes a Diseñar :	Segundo Piso			
	Pasadizo	540	Watts	
	Baños	93	Watts	
	Estudio	640	Watts	
	Dormitorios	398	Watts	
	Lavanderia	31	Watts	
	Oratorio	227	Watts	
	Sala	120	Watts	
	Cocina	240	Watts	
Potencia instalada	Tomacorrientes en pasadizo	180	Watts	
rotencia distanda	Tomacorrientes en baños	360	Watts	
	Tomacorrientes en estudio	540	Watts	
	Tomacorrientes en dormitorios	1080	Watts	
	Tomacorrientes en lavandería	360	Watts	
	Tomacorrientes en oratorio	720	Watts	
	Tomacorrientes en sala	540	Watts	
	Tomacorrientes en cocina	540	Watts	
	Potencia total de tomacorrientes	4320.0	Watts	
	Potencia instalada total	6608.8	Watts	
	Potencia total de alumbrado	1701.6	Watts	
	Potencia total de tomacorrientes	2520	Watts	
Cáculo de la demanda máxima	Potencia instalada total	4221.60	Watts	
Caculo de la demanda maxima	Factor de demanda	0.35		
	Factor de demanda	35.0	%	
	Demanda máxima total	3613.08	Watts	

Proyecto:	"Proyecto Parroquia de San Agustín"				
Proyectistas :	Bach. Ing Civil Leslie J. Chávez Carrillo				
J	PROYECTO DE ILUMI	NACIÓN DE AMBIENTES I	NTERIORES	8	
Realizado por	:	L.J.C.C.			
Chequeado por	:				
CÁL	CULO DE CONDUCTO	RES DE ALUMBRADO IN	TERIOR AL	T.D.	
		Tipo de comente	Corriente mono	fàsica	
		Factor de suministro (K)	1.000		
Intons	idad da aálanla	Voltaje (V)	220	Voltios	
Intensidad de cálculo		Factor de potencia (Cos Ø)	0.90		
		Demanda máxima total	933.00	watts	
		Intensidad de cálculo (Ic)	4.71	Amperios	
Intens	idad de diseño	Intensidad de diseño (Id)	5.89	Amperios	
C01- 1-1	calibre del conductor	Sección nominal del conductor	2.10	mm²	
Calculo del	canbre dei conductor	Calibre del conductor Nº	14.00		
		Tipo de corriente	Corriente mono	fàsica	
		Factor para caida de tensión (K)	2.000		
		Longitud más alejada del circuito	18.30	m	
		Valor de j	0.0175	Ohm.	
-	lel calibre del conductor	Intensidad de diseño (Id)	5.89	Amperios	
por caida de tensión	uaa de tension	Factor de potencia (Cos Ø)	0.90	Amperios	
		Sección nominal del conductor	2.10	mm ²	
		Caida de tensión (CT)	1.62	Voltios	
		Observación de caida de tensión	Los valores est	án O.K.	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Proyecto:	"Proyecto Parroquia de San Agustín"				
Proyectistas :	Bach. Ing Civil Leslie J. Chávez Carrillo				
PRO	YECTO DE ILUMI	NACIÓN DE AMBIENTES I	NTERIORES	S	
Realizado por	: LJ.C.C.				
Chequeado por	•				
CÁLCUI	LO DE LOS CONDI	UCTORES DE LOS CIRCUI	TOS DERIVA	DOS	
		Primer Piso			
	CIRCUITO DERI	VADO PARA TOMACORRI	ENTES		
		Tipo de Corriente	Corriente Mond	fásica	
		Factor de Suministro (K)	1.000		
Intonnidad	Interestant de Célerale	Voltaje (V)	220	Voltios	
Intencidad de Cálculo	Factor de Potencia (Cos Ø)	0.90			
	Demanda Máxima Total	1940.00	Watts		
		Intencidad de Cálculo (Ic)	9.80	Amperios	
Intencidad	l de Diseño	Intencidad de Diseño (Id)	12.25	Amperios	
Cálculo dal Calil	bre del Conductor	Sección Nominal del Conductor	2.10	mm²	
Carculo del Cam	ore der Conductor	Calibre del Conductor Nº	14.00		
		Tipo de Corriente	Corriente Mono	ofásica	
		Factor para Caida de Tensión (K)	2.000		
		Longitud más alejada del Circuito	24.01	m	
C	4-1-6-19 4-1	Valor de j	0.0175	Ohm.	
Comprobación del Calibre de Conductor por Caida de Tencio		Intencidad de Diseño (Id)	12.25	Amperios	
Conductor por t	Cauda de Tencion	Factor de Potencia (Cos Ø)	0.90	Amperios	
		Sección Nominal del Conductor	2.10	mm²	
		Caida de Tención (CT)	4.41	Voltios	
		Observación de Caida de Tención	Los valores est	án O.K.	

Resultados: Alumbrado: 2 × 2.1 mm² TW - AWG - 20 mm Ø PVC - SEL

Tomacorrientes: 2 ×2.1 mn² + 1 × 4.0 mm² TW - AWG - 20 mm Ø PVC - SEL

Proyecto:	"Proyecto Parroquia de	"Proyecto Parroquia de San Agustín"			
Proyectistas :	Bach. Ing Civil Leslie J. Chávez Carrillo				
I	PROYECTO DE ILUMII	NACIÓN DE AMBIENTES I	NTERIORES	ļ	
Realizado por	:	L.J.C.C.			
Chequeado por	:				
	CÁLCULO DE COND	UCTORES ALIMENTADOI	RES AL T.G		
	•	Tipo de corriente	Corriente monof	àsica	
		Factor de suministro (K)	1.000		
Intensidad de cálculo	Voltaje (V)	220	Voltios		
	idad de calculo	Factor de potencia (Cos Ø)	0.90		
		Demanda máxima total	3613.08	watts	
		Intensidad de cálculo (Ic)	18.25	Amperios	
Intens	idad de diseño	Intensidad de diseño (Id)	22.81	Amperios	
Cáloulo dal a	calibre del conductor	Sección nominal del conductor	3.30	mm ²	
Calculo del C	exhibite del conductor	Calibre del conductor Nº	12.00		
		Tipo de corriente	Corriente monof	àsica	
		Factor para caida de tensión (K)	2.000		
		Longitud más alejada del circuito	2.89	m	
~ , ,,		Valor de j	0.0175	Ohm.	
	del calibre del conductor	Intensidad de diseño (Id)	22.81	Amperios	
por ca	ida de tensión	Factor de potencia (Cos Ø)	0.90	Amperios	
		Sección nominal del conductor	3.30	mm ²	
		Caida de tensión (CT)	0.63	Voltios	
		Observación de caida de tensión	Los valores están O.K.		

Resultados : Alimentador : $2 \times 3.3 \text{ mm}^2 \text{ TW - AWG - } 20 \text{ mm } \varnothing \text{ PVC - SEL}$

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL


Tercer nivel

Proyecto:	"Proyecto Parroquia de San Agustín" Bach. Ing Civil Leslie J. Chávez Carrillo						
Proyectista :							
PROYECTO DE ILUMINACIÓN DE AMBIENTES INTERIORES							
Realizado por	:	L.J.C.C.					
Chequeado por	:						
Ambientes a Diseñar	:	Tercer Piso		:			
		Pasadizo	86	Watts			
		Baños	124	Watts			
		Hall/ kitchenet	420	Watts			
		Salón parroquial	600	Watts			
Dotonoio	instalada	Tomacorrientes en pasadizo	180	Watts			
rotencia	iiis taiaua	Tomacorrientes en baños	360	Watts			
		Tomacorrientes en hall-kitchenet	900	Watts			
		Tomacorrientes en salón parroquia	1440	Watts			
		Potencia total de tomacorrientes	2880.0	Watts			
		Potencia instalada total	4110.0	Watts			
		Potencia total de alumbrado	1230.0	Watts			
		Potencia total de tomacorrientes	2880	Watts			
Cámha da la da	emanda máxima	Potencia instalada total	4110.00	Watts			
Cacmo de la de	KIIIKKIII KDUKIII	Factor de demanda	1				
		Factor de demanda	100.0	%			
		Demanda máxima total	4110.00	Watts			

Proyecto:	"Proyecto Parroquia de San Agustín" Bach. Ing Civil Leslie J. Chávez Carrillo				
Proyectistas :					
P	PROYECTO DE ILUM	INACIÓN DE AMBIENTES I	INTERIORE	S	
Realizado por	•	L.J.C.C.			
Chequeado por	:				
	CULO DE CONDUCTO	ORES DE ALUMBRADO IN	TERIOR AL	T.D.	
		Tipo de corriente	Corriente mono	fàsica	
		Factor de suministro (K)	1.000		
Intons	idad da aálaula	Voltaje (V)	220	Voltios	
Intensidad de cálculo		Factor de potencia (Cos Ø)	0.90		
		Demanda máxima total	643.00	watts	
		Intensidad de cálculo (Ic)	3.25	Amperios	
Intens	idad de diseño	Intensidad de diseño (Id)	4.06	Amperios	
Cálaula dal a	calibre del conductor	Sección nominal del conductor	2.10	mm²	
Carcino del C	andie dei conductor	Calibre del conductor Nº	14.00		
		Tipo de corriente	Corriente mono	ofàsica	
		Factor para caida de tensión (K)	2.000		
		Longitud más alejada del circuito	21.65	m	
O	lal adiban dal asadarata	Valor de j	0.0175	Ohm.	
•	lel calibre del conducto:	Intensidad de diseño (Id)	4.06	Amperios	
por caida de tensión	Factor de potencia (Cos Ø)	0.90	Amperios		
		Sección nominal del conductor	2.10	mm ²	
		Caida de tensión (C _T)	1.32	Voltios	
		Observación de caida de tensión	Los valores est	tán O.K.	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Proyecto:	"Proyecto Parroquia de	"Proyecto Parroquia de San Agustin"			
Proyectistas :	Bach. Ing Civil	Bach. Ing Civil Leslie J. Chávez Carrillo			
P	ROYECTO DE ILUMI	NACIÓN DE AMBIENTES I	NTERIORES		
Realizado por	:	L.J.C.C.			
Chequeado por	:				
CÁLO	CULO DE LOS CONDI	CTORES DE LOS CIRCUI	TOS DERIVA	DOS	
		Primer Piso			
	CIRCUITO DERI	VADO PARA TOMACORRI	ENTES		
		Tipo de corriente	Corriente Mono	fásica	
Intensidad de cálculo	Factor de suministro (K)	1.000			
	tana an adama	Voltaje (V)	220	Voltios	
	idad de caiculo	Factor de potencia (Cos Ø)	0.90		
		Demanda máxima total	1440.00	Watts	
		Intensidad de cálculo (Ic)	7.27	Amperios	
Intens	idad de diseño	Intensidad de diseño (Id)	9.09	Amperios	
Cálaula dal a	alibre del conductor	Sección nominal del conductor	2.10	mm²	
Carculo del c	ambre del conductor	Calibre del conductor Nº	14.00		
		Tipo de corriente	Corriente Mono	fásica	
		Factor para caida de tensión (K)	2.000		
		Longitud más alejada del circuito	5.78	m	
		Valor de j	0.0175	Ohm.	
-	el calibre del conductor	Intensidad de diseño (Id)	9.09	Amperios	
por caida de tensión	Factor de potencia (Cos Ø)	0.90	Amperios		
		Sección nominal del conductor	2.10	mm ²	
		Caida de tensión (Cr)	0.79	Voltios	
		Observación de caida de tensión	Los valores está	n O.K.	

Resultados:

Alumbrado:

2 × 2.1 mm² TW - AWG - 20 mm Ø PVC - SEL

Tomacorrientes:

 $2 \times 2.1 \text{ mm}^2 + 1 \times 4.0 \text{ mm}^2 \text{ TW - AWG - 20 mm Ø PVC - SEL}$

Proyecto: "Proyecto Parroqui	"Proyecto Parroquia de San Agustín"				
Proyectistas: Bach. Ing C	Bach. Ing Civil Leslie J. Chávez Carrillo				
PROYECTO DE ILU	MINACIÓN DE AMBIENTES	INTERIORE	S		
Realizado por :	L.J.C.C.		********		
Chequeado por :					
CÁLCULO DE CO	NDUCTORES ALIMENTADO	RES AL T.G			
	Tipo de corriente	Corriente mono	offisica		
	Factor de suministro (K)	1.000			
Intensidad de cálculo	Voltaje (V)	220	Voltios		
intensidad de Carculo	Factor de potencia (Cos Ø)	0.90			
	Demanda máxima total	4110.00	watts		
	Intensidad de cálculo (Ic)	20.76	Amperios		
Intensidad de diseño	Intensidad de diseño (Id)	25.95	Amperios		
Cálculo del calibre del conductor	Sección nominal del conductor	3.30	mm²		
Calculo del cambre del conductor	Calibre del conductor Nº	12.00			
	Tipo de corriente	Corriente monofàsica			
	Factor para caida de tensión (K)	2.000			
	Longitud más alejada del circuito	5.87	m		
G	Valor de j	0.0175	Ohm.		
Comprobación del calibre del conductor por caida de tensión	Intensidad de diseño (Id)	25.95	Amperios		
	Factor de potencia (Cos Ø)	0.90	Amperios		
	Sección nominal del conductor	3.30	mm²		
	Caida de tensión (C _T)	1.45	Voltios		
	Observación de caida de tensión	Los valores es	tán O.K.		

Resultados:

Alimentador:

2 × 3.3 mm² TW - AWG - 20 mm @ PVC - SEL

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Cuarto nivel

Proyecto:	"Proyecto Parroquia de San Agustín"				
Proyectista :	Bach. Ing C	ivil Leslie J. Chávez Carrillo			
P	ROYECTO DE ILUM	INACIÓN DE AMBIENTES INT	ERIORES		
Realizado por	por : L.J.C.C.				
Chequeado por	:				
Ambientes a Diseñar	:	Cuarto Piso			
		Pasadizo	258	Watts	
		Baños	124	Watts	
		Salón 1, 2 y 3	1064	Watts	
***	Tomacorrientes en pasadizo	360	Watts		
Potencia instalada		Tomacorrientes en baños	360	Watts	
		Tomacorrientes en salón 1, 2 y 3	3060	Watts	
		Potencia total de tomacorrientes	3780.0	Watts	
		Potencia instalada total	5226.0	Watts	
		Potencia total de alumbrado	1446.0	Watts	
		Potencia total de tomacorrientes	3780	Watts	
66-1-1-1	- A 7 7 7	Potencia instalada total	5226.00	Watts	
Cáculo de la demanda máxima	a demanda maxima	Factor de demanda	1		
		Factor de demanda	100.0	%	
		Demanda máxima total	5226.00	Watts	

Proyecto:	"Proyecto Parroquia de	San Agustín"			
Proyectistas :	Bach. Ing Civil Leslie J. Chávez Carrillo				
PR	OYECTO DE ILUMIN	ACIÓN DE AMBIENTES INT	ERIORES		
	·····				
Realizado por	:	L.J.C.C.			
Chequeado por	:				
CÁLCI	JLO DE CONDUCTO	RES DE ALUMBRADO INTER	LIOR AL T.	D4	
		Tipo de corriente	Corriente moi	nofàsica	
		Factor de suministro (K)	1.000		
Intensidad de cálculo	Voltaje (V)	220	Voltios		
	au ue caiculo	Factor de potencia (Cos Ø)	0.90		
		Demanda máxima total	840.00	watts	
		Intensidad de cálculo (Ic)	4.24	Amperios	
Intensid	ad de diseño	Intensidad de diseño (Id)	5.30	Amperios	
Cálculo del cal	ibre del conductor	Sección nominal del conductor	2.10	mm ²	
Calculo del cal	abic der conductor	Calibre del conductor №	14.00		
		Tipo de corriente	Corriente moi	nofàsica	
		Factor para caida de tensión (K)	2.000		
		Longitud más alejada del circuito	17.8	m	
		Valor de j	0.0175	Ohm.	
Comprobación del calibre del conducto por caida de tensión		Intensidad de diseño (Id)	5.30	Amperios	
	a ue tension	Factor de potencia (Cos Ø)	0.90	Amperios	
		Sección nominal del conductor	2.10	mm²	
		Caida de tensión (CT)	1.42	Voltios	
		Observación de caida de tensión	Los valores e	stán O.K.	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Proyecto :	"Proyecto Parroquia de San Agustin"				
Proyectistas :	Bach. Ing Civil Leslie J. Chávez Carrillo				
PRO	YECTO DE ILUMIN	ACIÓN DE AMBIENTES INT	ERIORES		
Realizado por	:	L,J.C.C.			
Chequeado por	:				
CÁLCUL	O DE LOS CONDU	CTORES DE LOS CIRCUITOS	S DERIVAD	os	
	CIRCUITO DERIV	Cuarto Piso ADO PARA TOMACORRIEN	TES		
		Tipo de corriente	Corriente Mo	nofásica	
Intensidad de cálculo		Factor de suministro (K)	1.000		
		Voltaje (V)	220	Voltios	
	i de caiculo	Factor de potencia (Cos Ø)	0.90		
		Demanda máxima total	1440.00	Watts	
		Intensidad de cálculo (lc)	7.27	Amperios	
Intensidad	d de diseño	Intensidad de diseño (Id)	9.09	Amperios	
Cálcula dal calib	ore del conductor	Sección nominal del conductor	2.10	mm²	
Calculo del cam	ore del conductor	Calibre del conductor No	14.00		
		Tipo de corriente	Corriente Mo	nofásica	
		Factor para caida de tensión (K)	2.000		
		Longitud más alejada del circuito	21.83	m	
Community dela	althus dal sandustan	Vaîor đe j	0.0175	Ohm.	
Comprobación del calibre del conduct por caida de tensión		Intensidad de diseño (Id)	9.09	Amperios	
	de tension	Factor de potencia (Cos Ø)	0.90	Amperios	
		Sección nominal del conductor	2.10	mm²	
		Caida de tensión (C _T)	2.98	Voltios	
		Observación de caida de tensión	Los valores e	stán O.K.	

Resultados:

Alumbrado:

2 × 2.1 mm² TW - AWG - 20 mm Ø PVC - SEL

Tomacorrientes:

 $2 \times 2.1 \text{ mm}^2 + 1 \times 4.0 \text{ mm}^2 \text{ TW - AWG - } 20 \text{ mm } \emptyset \text{ PVC - SEL}$

Proyecto:	"Proyecto Parroquia de San Agustín"			
Proyectistas :	Bach. Ing	Civil Leslie J. Chávez Carrillo		
1	PROYECTO DE IL	UMINACIÓN DE AMBIENTE:	S INTERIORES	
Realizado por	:	L.J.C.C.		
Chequeado por	;			
CÁI	CULO DE CONDI	UCTORES ALIMENTADORES	DEL TG AL T.D4	
		Tipo de corriente	Corriente monofàsica	
		Factor de suministro (K)	1.000	
		Voltaje (V)	220 Voltios	
Intens	idad de cálculo	Factor de notencia (Cos Ø)	0.90	

	Tipo de corriente	Corriente monofa	isica
	Factor de suministro (K)	1.000	
Intensidad de cálculo	Voltaje (V)	220	Voltios
Threfisidad de Carculo	Factor de potencia (Cos Ø)	0.90	
	Demanda máxima total	5226.00	watts
	Intensidad de cálculo (Ic)	26.39	Amperios
Intensidad de diseño	Intensidad de diseño (Id)	32.99	Amperios
Cálculo del calibre del conductor	Sección nominal del conductor	3.30	mm²
	Calibre del conductor No	12.00	
	Tipo de corriente	Corriente monofàsica	
	Factor para caida de tensión (K)	2.000	
	Longitud más alejada del circuito	9	m
	Valor de j	0.0175	Ohm.
Comprobación del calibre del conductor	Intensidad de diseño (Id)	32.99	Amperios
por caida de tensión	Factor de potencia (Cos Ø)	0.90	Amperios
	Sección nominal del conductor	3.30	mm ²
	Caida de tensión (Cr)	2.83	Voltios
	Observación de caida de tensión	Los valores está	n O.K.

Resultados:

Alimentador:

2 × 3.3 mm² TW - AWG - 20 mm Ø PVC - SEL

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Proyecto: "Proyecto Parroquia de	"Proyecto Parroquia de San Agustín"					
Proyectistas: Bach. Ing Civil	Bach. Ing Civil Leslie J. Chávez Carrillo					
PROYECTO DE ILUMI	PROYECTO DE ILUMINACIÓN DE AMBIENTES INTERIORES					
Realizado por :	L.J.C.C.					
Chequeado por :						
CÁLCULO DE CON	DUCTORES DEL T.G. AL N	MEDIDOR				
	Tipo de corriente	Corriente monof	àsica			
	Factor de suministro (K)	1.000				
Intensidad de cálculo	Voltaje (V)	220	Voltios			
intensidad de carculo	Factor de potencia (Cos Ø)	0.90				
	Demanda máxima total	15830.08	watts			
	Intensidad de cálculo (Ic)	79.95	Amperios			
Intensidad de diseño	Intensidad de diseño (Id)	99.94	Amperios			
Cálculo del calibre del conductor	Sección nominal del conductor	8.40	mm ²			
Calculo del calibre del conductor	Calibre del conductor Nº	8.00				
	Tipo de corriente	Corriente monof	asica a			
	Factor para caida de tensión (K)	2.000				
	Longitud más alejada del circuito	6	m			
C 1.1	Valor de j	0.0175	Ohm.			
Comprobación del calibre del conductor por caida de tensión	Intensidad de diseño (Id)	99.94	Amperios			
	Factor de potencia (Cos Ø)	0.90	Amperios			
	Sección nominal del conductor	8.40	mm ²			
	Caida de tensión (Cr)	2.25	Voltios			
	Observación de caida de tensión	Los valores está	in O.K.			

Resultados:

Aimentador:

 $2 \times 8.4 \text{ mm}^2 \text{ TW} - \text{AWG} - 20 \text{ mm} \varnothing \text{ PVC} - \text{SEL}$

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

B. Capilla

Proyecto :	"Proyecto Parroquia de San Agustín"							
Proyectista: Bach. Ing Ci	Bach. Ing Civil Leslie J. Chávez Carrillo							
PROYECTO DE ILUMINACIÓN DE AMBIENTES INTERIORES								
Realizado por :	L.J.C.C							
Chequeado por :								
Ambientes a Diseñar :	Capilla							
	Baño	31	Watts					
	Sacristía 1 y 2	240	Watts					
	Capilla lado 1 y 2	312	Watts					
	Capilla centro	800	Watts					
	Altar	156	Watts					
Cálculo de la potencia instalada	Campanario	93	Watts					
	Exteriores	230	Watts					
<i>,</i>	Exteriores jardín	360	Watts					
	Tomacorriente capilla	2160	Watts					
	Potencia total de tomacorrientes :	2160.0	Watts					
	Potencia instalada total :	4382.0	Watts					
	Potencia total de alumbrado :	583.0	Watts					
	Potencia total de tomacorrientes :	1639	Watts					
Cáculo de la demanda máxima	Potencia instalada total :	2222.00	Watts					
Caculo de la demanda maxima	Factor de demanda :	1						
	Factor de demanda :	100.0	ê/o					
	Demanda máxima total :	4382.00	Watts					

Proyecto: "Proyecto Parroquia d	cto : "Proyecto Parroquia de San Agustín"					
Proyectistas: Bach. Ing Civil	Bach. Ing Civil Leslie J. Chávez Carrillo					
PROYECTO DE ILUMINACIÓN DE AMBIENTES INTERIORES						
Realizado por : LJ.C.C.						
Chequeado por :						
CÁLCULO DE CONDUCT	ORES DE ALUMBRADO IN	TERIOR AL	T.G			
	Tipo de corriente	Corriente mono	fàsica			
	Factor de suministro (K)	1.000				
Intensidad de cálculo	Voltaje (V)	220	Voltios			
intensidad de Calculo	Factor de potencia (Cos Ø)	0.90				
	Demanda máxima total	4382.00	watts			
	Intensidad de cálculo (Ic)	22.13	Amperios			
Intensidad de diseño	Intensidad de diseño (Id)	27.66	Amperios			
Cálculo del calibre del conductor	Sección nominal del conductor	3.30	mm²			
Calculo del cambre del conductor	Calibre del conductor Nº	12.00				
	Tipo de corriente	Corriente mono	fàsica			
	Factor para caida de tensión (K)	2.000				
	Longitud más alejada del circuito	31	m			
	Valor de j	0.0175	Ohm.			
Comprobación del calibre del conducto por caida de tensión	Intensidad de diseño (1d)	27.66	Amperios			
	Factor de potencia (Cos Ø)	0.90	Amperios			
	Sección nominal del conductor	3.30	mm²			
	Caida de tensión (Cr)	8.19	Voltios			
	Observación de caida de tensión	Los valores esta	án ok			

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Proyecto:	"Proyecto Parroquia de San Agustin"				
Proyectistas :	Bach. Ing Civil Leslie J. Chávez Carrillo				
PR	OYECTO DE ILUMI	NACIÓN DE AMBIENTES I	NTERIORES		
Realizado por	:	L.J.C.C.	····		
Chequeado por	:				
CÁLCI	ULO DE LOS CONDI	UCTORES DE LOS CIRCUI	TOS DERIVA	DOS	
	CID CHIEG DEDI	Parroquia	713.720716		
	CIRCUITO DERI	VADO PARA TOMACORRI Tipo de corriente	Corriente Mono	Cosino	
		Factor de suministro (K)	1.000	iasica	
Intensidad de cálculo	Voltaje (V)	220	Voltios		
	ad de calculo	Factor de potencia (Cos Ø)	0.90		
		Demanda máxima total	1980.00	Watts	
		Intensidad de cálculo (Ic)	10.00	Amperios	
Intensid	ad de diseño	Intensidad de diseño (Id)	12.50	Amperios	
Cálculo del cal	libre del conductor	Sección nominal del conductor	3.30	mm²	
		Calibre del conductor No	12.00		
		Tipo de corriente	Corriente Mono	făsica	
		Factor para caida de tensión (K)	2.000		
		Longitud más alejada del circuito	35.75	m	
Campushasián dal	l aalikuu dal aandussaa	Valor de j	0.0175	Ohm.	
Comprobación del calibre del conductor por caida de tensión	Intensidad de diseño (Id)	12.50	Amperios		
	Factor de potencia (Cos Ø)	0.90	Amperios		
		Sección nominal del conductor	3.30	mm ²	
		Caida de tensión (CT)	4.27	Voltios	
		Observación de caida de tensión	Los valores esti	án Ω,K,	

 $2\times3.3~\text{mm}^2~\text{TW}$ - $A\,\text{WG}$ - $\,20~\text{mm}\,\varnothing\,\,\text{PVC}$ - $\,\text{SEL}$

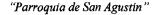
 $2 \times 2.1 \text{ mm}^2 + 1 \times 4.0 \text{ mm}^2 \text{ TW - AWG - } 20 \text{ mm } \emptyset \text{ PVC - SEL}$

Proyecto:	"Proyecto Parroquia de San Agustín"					
Proyectistas :	Rach. Ing Civil Leslie J. Chávez, Carrillo					
PROYECTO DE ILUMINACIÓN DE AMBIENTES INTERIORES						
Realizado por	:	L.J.C.C.				
Chequeado por	· · · · · · · · · · · · · · · · · · ·					
CA	ALCULO DE CONDUC	TORES DE ALUMBRADO.	Y			
		Tipo de corriente	Corriente mono	fàsica		
		Factor de suministro (K)	1,000			
Intensidad de cálculo		Voltaje (V)	220	Voltios		
		Factor de potencia (Cos Ø)	0.90			
		Demanda máxima total	4382.00	watts		
		Intensidad de cálculo (Ic)	22.13	Amperios		
Intensi	dad de diseño	Intensidad de diseño (Id)	27.66	Amperios		
Cálculo dal c	alibre del conductor	Sección nominal del conductor	5.30	mm ²		
Calculo del Ca	andie dei conductoi	Calibre del conductor Nº	10.00			
		Tipo de corriente	Corriente mono	fásica		
		Factor para caida de tensión (K)	2.000			
		Longitud más alejada del circuito	8	m		
		Valor de j	0.0175	Ohm.		
Comprobación del calibre del conductor por caida de tensión	Intensidad de diseño (Id)	27.66	Amperios			
	Factor de potencia (Cos Ø)	0.90	Amperios			
	Sección nominal del conductor	5.30	mm ²			
		Caida de tensión (Cr)	1.32	Voltios		
		Observación de caida de tensión	Los valores esta	án O.K.		

Resultados:

Resultados:

Alimentador:


Alumbrado:

Tomacorrientes:

2 × 8.4 mm² TW - AWG - 20 mm Ø PVC - SEL

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

4.7. INSTALACIONES SANITARIAS

4.7.1. Sistema de abastecimiento de agua

Cálculo del gasto para oficinas (primer piso)

SISTEMA INDIRECTO DE AGUA

A) CÁLCULO DE LAS DOTACIONES O GASTO TOTAL

1.- CÁLCULO DEL GASTO PARA OFICINAS

1.1) Primera Planta

Para oficinas se calculará a razón de:

6 lt/día por m². útil

Ambiente	Área (m²)	Dotación (lt/día)
Oficina	16.71	100.26
Secretaría	14.85	89.10
Archivo	7.22	43.32
Servicios higiénicos	7.07	42.42

Dotación =	275.10	lt/día	

2.- CÁLCULO DEL GASTO PARA VIVIENDA

Gasto:

2.1) Segunda Planta

Área del lote:

Hasta 200m²

Dotación:

1500

lt/día

1500 lt/día

Dotación =	1500.00	lt/dia	

3.- CÁLCULO DEL GASTO PARA DE ESPECTÁCULOS O CENTROS DE REUNIÓN

3.1) Tercera Planta

Tipo de estab	lecimiento:	Auditorio	
Dotación:		3	lt/asiento
Asientos:		93	personas
Gasto:		93*3	,
	Gasto:	2 7 9	lt/día
Ambiente		Área	Dotación (lt/día)
Baños I	Públicos	16.25	97.5

Dotación =	376.50	lt/día

4.- CÁLCULO DEL GASTO PARA LOCALES EDUCACIONALES

4.1) Cuarta Planta

Tipo de local educacional

Dotación diaria

Nº de alumnado

Alumnado y personal

no residente

50 lt/persona

Dotación:

60

3000

lt/dia

Ambiente Baños Públicos Área

Dotación (lt/día)

16.54 99.24

Dotación = 3099.24 lt/día

Por lo que tenemos:

GASTO TOTAL =	4975.74	lt/día
GASTO TOTAL =	4.97574	m³/día

NOTA: El Gasto Total se ha calculado como la sumatoria de los Gastos Parciales de la 2da, la Segunda. Tercera y Cuarta Planta.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

DISEÑO DE TANQUES DE ALMACENAMIENTO

A) DISEÑO DEL TANQUE CISTERNA

1.- CÁLCULO DEL VOLUMEN DEL TANQUE CISTERNA

Vtc = Volumen del tanque cisterna

$$Vtc = 3/4 \text{ Gasto Total} = 0.75 * 4.97574$$

 $Vtc = 3.73$ m³

2.- CÁLCULO DE LAS DIMENSIONES TANQUE CISTERNA Por otro lado :

Recomendable: b/l = 1/2 ó 1/2.5

$$b = 1/2 = 0.5 \dots ok$$

Recomendable: h/l = 2/3h=2l/3

Reemplazando en la ecuación (1) y despejando l, tenemos:

$$Vtc = (1/2)*|*(21/3) = 3.57$$

$$i^{5} = 11.20$$

$$i = 2.24$$

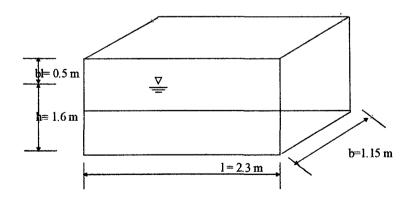
$$m.$$
Aproximando:
$$b = 1.15$$

$$m.$$

$$h = 1.53$$

$$m.$$
Aproximando:
$$h = 1.60$$

$$m.$$


Asumiendo un Borde Libre: bl = 0.50

m.

Por lo tanto:

$$ht = h + bl$$
 $ht = 2.10$ m.

Las dimensiones del Tanque Cisterna serán las siguientes:

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

B) DISEÑO DEL TANQUE ELEVADO

1.- CÁLCULO DEL VOLUMEN DEL TANQUE ELEVADO

Vte = Volumen del Tanque Elevado

Vte = 1/3 (Gasto Total)

....(2)

Reemplazando en ecuación (2):

$$Vte = (1/3) * 4.97574$$

$$Vte = 1.66 m3$$

2.- CÁLCULO DE LAS DIMENSIONES TANQUE ELEVADO

Vte =
$$h*(\pi/4*D^2)$$
...... (3)

donde:

D= diámetro

h = altura útil

ota: Considerando un Tanque Elevado de sección circular;

(Según el R.N.C.)

Asumiendo borde libre bl =

0.40

1.52

Asumiendo borde libre D=

m. m

reemplazando en (3):

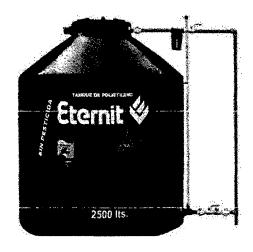
Vte = $h(3.1416*1.52^2/4) =$

1.66

h = 0.916342541

Asumiendo] =	1.00	m	

Por lo tanto:


ht = Altura total del tanque

ht = h + bl

Aproximando:

ht =	1.40 1.60	m. 	
 1 .			

Las dimensiones del Tanque Elevado serán las siguientes:

D=1.52 hea=1.00 Diámetro

altura del espejo de agua

bl = 0.40

borde libre

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

CÁLCULO DE LA TUBERÍA DE ADUCCIÓN

1.- CÁLCULO DEL CAUDAL DE ENTRADA:

$$Qe = Vtc/t$$
(4)

$$Vtc = 1.66$$

Consideremos, 2 horas al tiempo de llenado del tanque disterna:

$$t = 42*3600$$

$$t = 7200$$

seg.

Reemplazando valores en la ecuación (4), tenemos:

$$Qe = 0.000230 \text{ m}^3/\text{seg}.$$

2.- CÁLCULO DEL DIÁMETRO:

De la ecuación de continuidad, tenemos::

$$Q = V * A = V * (\Pi(D^2)/4)$$

Donde: V = Velocidad del fluido en la tubería

D = Diámetro de la tubería

Despejando:

$$D = (4*Qe/\Pi*V)^0.5$$

Diámetro Máximo: (Para V = 0.6 m/seg.)

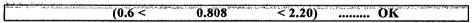
$$D = 0.0221$$
 m.

$$\mathbf{D} = 0.9$$

Diámetro Mínimo: (Para V = 3.0 m/seg.)

$$D = 0.0099$$
 m. $D = 0.4$ "

Por lo que tomaremos un valor entre este rango, además el diámetro elegido será comercial:


$$f = 3/4$$
"
 $f = 3/4$

$$f = 0.01905$$

m

Verificación de la velocidad:

$$V = (4*Qe)/(p*D^2)$$

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

CÁLCULO DE LAS TUBERÍAS DEL SISTEMA DE BOMBEO A) CÁLCULO DE LA TUBERÍA DE IMPULSIÓN

1.- CÁLCULO DEL CAUDAL DE BOMBEO

Qe = Vte/t(5)
Vte =
$$3.73$$
 m^3 .

Consideremos, 4 horas como tiempo de llenado del tanque:

$$t = 4*3600$$

 $t = 14400$ seg.

= 14400

Reemplazando valores en la ecuación (5), tenemos:

 $Qe = 0.000259 m^3 / seg.$

2.- CÁLCULO DEL DIÁMETRO:

De la ecuación de continuidad, tenemos::

$$Q = V * A = V *((D^2)/4)$$

Donde: V = Velocidad del fluido en la tubería D = Diámetro de la tubería

Despejando:

$$D = (4*Oe/p*V)^0.5$$

Diámetro Máximo: (Para V = 0.6 m/seg.)

$$D = 0.0235$$
 m.
 $D = 0.9$ "

Diámetro Mínimo: (Para V = 3.0 m/seg.)

$$D = 0.0105$$
 m.
 $D = 0.4$ "

Por lo que tomaremos un valor entre este rango, además el diámetro elegido será comercial: f = 3/4"

$$f = 0.01905$$
 n

Verificación de la velocidad:

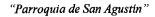
$$V = (4*Qe)/(p*D^2)$$

 $V = 0.909$ m/seg.

B) PÉRDIDA DE CARGA POR METRO DE LONGITUD EN LA TUBERÍA DE IMPULSIÓN

donde: B 0.0014 (para PVC rígido)

luego :


0.493573473

CÁLCULO DE LA TUBERÍA DE SUCCIÓN

Se escoje el diámetro comercial siguiente a la tubería de impulsión

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

PÉRDIDA DE CARGA POR METRO DE LONGITUD EN LA TUBERÍA DE SUCCIÓN

Pci = (B * Q^2)/(D^5)

donde: B 0.0014 (para PVC rigido)

luego:

Pcs =

1.844E+06 m.

DISEÑO DE LA BOMBA

P = (Q*Hd)/(R*75)(5)

donde:

0.0003

0.2592 l/s

R =

Eficiencia de la bomba: 60%

Hd=

0.6

donde :

Hs + Ht + Hft

2 m.

Ht = Altura total

13.17 m.

Hft = Hfi + Hfs

Hs = Altura de succión

Hft = $13.5*6.664*10^{(-7)} + 1.5*8.749*10^{(-3)}$

Hft=

3.688E+06

luego:

Hd=

3.688E+06 m.

Hd=

3.688E+01

m.

reemplazando en (5):

P =

0.0002

P =

0.2124

HP

 $HP*0.7461 \, KW/HP = .$

0.158 KW.

DISEÑO DEL MEDIDOR DE INGRESO									
Presión en la Matriz (PM)		30.00	m						
Presión de Salida (Ps)	=	3.50	m						
Altura Estática (Ht)	=	15.67	m						
Gasto de Entrada	=	1.62	Lts / seg.						
Gasto de Entrada	=	25.68	Gln / min.						
Carga disponible (Hf)	=	10.83	m						
Carga disponible (Hf)		15.38	lib / pulg. ²						
Carga Máxima del medidor	=	7.69	lib / pulg. ²						

De la Tabla (PERDIDA DE PRESIÓN EN MEDIDOR TIPO DISCO)

con $\emptyset = 1$ " obtenemos una pérdida de presión de 6.15 lib/pulg² que es menor que la carga máxima que acepta el medidor.

Diámetro del Medidor (Ø)	=	1	Pulg.	
Pérdida de Presión en Medidor	=	4.32	m	
Presión a la salida del Medidor	=	25.68	m	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

DISEÑO DE LA RED DE AGUA FRÍA

DISEÑO DE LA RED DE AGUA FRÍA DEL CENTRO EDUCATIVO

Presión en la Matriz	P.M =	30.00	m	
Presión de Salida	P.s =	3,50	m	
Altura de Trabajo	Ht=	15.67	m	
	1			

Altura	de irabac)	nt-	10.07	п	1											
Tra	umo	U.H.	Q	Longitud		CODO DE 45°							CODO DE 90	P			
			(It/seg.)	(m)	(pulg.)	Nº Codos	Ø (Pulg)	L. Equiv.	Perd. Carga.	Total L. Equiv	Total. P. Carga	Nº Codos	Ø (Pulg)	L Equiv.	Perd. Carga.	Total L. Equiv	Total. P. Carg
A.	В	95.00	1.62	3,44	11/2	0	1	0.477		0.000		4	11/2	1.295		5.180	
В	-C	75.00	1.41	17.10	11/2	0	1	0.477		0.000		7	11/2	1.295		9.065	
C.	-D	52.00	1.15	19.99	1 1/2	0	1	0.477		0.000		7	11/2	1.295		9.065	
D.	-Е	25.00	0.64	30.83	11/4	0	1	0.477		0.000		9	11/4	1.091		9.819	

												Diámetro del Medi		 =	1	Pulg.		
												Presión a la salida o	lel Medidor	Ps =	25.68	m		
												Coeficiente de Rug	osidad	β=	0.0014	para PVC.		
TEE								VÁ	LVULA COM	PUERTA		Ĭ.e	Lr	Sr	Hſ	Presión	V	Vmáx
Nº Tees	Ø (Pulg)	L. Equiv.	Perd. Carga.	Total L. Equiv	Total. P. Cargi	N° Válv.	Ø (Pulg)	L Equiv.	Perd. Carga.	Total L. Equiv	Total. P. Carg	(m)	(m)	<u> </u>	(m)	(m)	(m/s)	(m/s)
0	1 1/2	3.109		0.000		1	11/2	0.328		0.328		5.508	8.95	0.046	0.410	25.27	1.42	3.05
3	1 1/2	3.109		9.327		1	11/2	0.328		0.328		18.720	35.82	0.035	1.242	24.03	1.24	3.05
3	11/2	3.109		9.327		1	11/2	0.328		0.328		18.720	38.71	0.023	0.899	23.13	1.01	3.05
2	11/4	2618		5.236		1	11/4	0.278		0.278		15.333	46.16	0.018	0.820	22.31	0.81	2.85

4.7.2. Sistema de desagüe

Como se sabe el desagüe trabaja por gravedad y por tratarse de una edificación la tubería para las instalaciones interiores será de 4"

4.7.3. Sistema de colección y evacuación de agua de lluvia

A) Cálculo de la intensidad

Utilizando la ecuación 69 del capítulo 2, considerando que el proyecto se ubica en la zona 123 y subzona 123₁, mediante las tablas 2.31 y 2.32 encontramos la intensidad,

$$I = a * (1 + K * \log T) * (t + b)^{n.1} \dots (Ec. - 69)$$

Donde:

i= Intensidad de lluvia (mm/hora)

a = 32.2

K = 0.553

b= parámetro (hora)

n= parámetro de duración (adimensional)

t= duración (hora), asumido en promedio de 15.2 para Perú.

T= tiempo en años (25 años)

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Tenemos:

$$I = 21.82mm / h$$

Tomando en cuenta el RNE, cuando no se conoce la precipitación o es muy pequeña, puede tomarse 100mm/hora.

B) Cálculo del caudal

Usando la ecuación 66, encontramos el caudal

Q=CIA/360

Factores que intervienen en el cálculo del caudal (Q)	Nomenclatura									
Área a drenar	A =	0.03164	На							
Intensidad de lluvia	I =	100.00	mm / h							
Relación entre escorrentía y la										
cantidad de lluvia caida en el área	C =	0.88	para Techos							
Caudal	Q =	0.008	m³/seg.							

C) Cálculo hidráulico de la sección de la cuneta

Tomando en cuenta la ecuación 68 (ecuación de Manning)

$$Q = A \frac{R^{2/3} * S^{1/2}}{n}$$

Donde:

 $Q = 0.008 \text{ m}^3/\text{seg}$

 $A = 316.4 \text{ m}^2$

S=0.020 (2% mínimo, según RNE)

n=0.012 (sección semicircular de fierro, cuadro 2.30)

Reemplazando en la fórmula:

R = 0.00266 m.

Como el radio es menos del mínimo, tomamos un radio de 4"

FACULTAD DE INGENIERÍA. ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

4.8. ESTUDIO DE IMPACTO AMBIENTAL

4.8.1. Identificación de impactos

MATRIZ DE IDENTIFICACIÓN DE LA "PARROOUIA DE SAN AGUSTÍN"

					FASE			-		col	NSTRUC	CIÓN			OPER	ACIÓN
	ESTUDIO DE IMPACTO AMBIENTAL MATRIZ DE EVALUACIÓN NIVEL CUALITATIVO Realizado por: Bach. Ing. Civil Chávez Carrillo, Leslie Janeth FACTORES AMBIENTALES AFECTADOS a) Calidad del aire b) Nivel de Ruido I N E E 2 Suelos a) Relieve y Topografía					a) Trakajos Preliminares	(trazo, rivelación y replanteo)	nto de Tiem	(excav., riv., fondos, refenos, y apison, met)	c) Instalación y funcionamiento de Caseta de Quantiania y Amacén	d) Transporte y Accipio de Materiales	e) Otras de Concreto Simpley Armado	f) Chras de Albarillería (mros de bahlo)	g) Acabados	a) Ocupación espacial	b) Markenimiento
	Τ			a) Calidad del aire		 	•	•	7	•	•					
		$_{I}$	1 Aire	b) Nivel de Ruido		•			-	•	•	•		•		
			2 - Suoles	a) Relieve y Topograffa		•	•			•	•	•				
D		R T	2 30003	b) Contaminación (física, química, microbio	lógica)		•	•		•	•	4.	•		•	•
o		E	3 Agua	a) Aguas Superficiales			•	•							•	
F	L		4 Procesos	a) Drenaje Superficial			•	•			•				•	
1	1	B I	1 Flora	a) Cubierta Vegetal			8	•				4 3.			•	
S	2	o o	2 Fauna	a) Animales domésticos							•				•	
C		c	z i duner	b) Otras especies			0	•							•	
	E	E P A	1 Paisaie	a) Calidad Paisajística			8	•			•	•	•	•	•	
		T L U		b) Potencial de vistas			•	•			•	4	•	•	•	
M S E E O C D C O	M d	C	Estructura de Ocupación	a) Empleo			•	•		•	•	•	•	•		•
li i N	L B	8 4	2. Sectores	a) Estilos de Vida							•				•	•
000		4 N	de actividad	b) Calidad de Vida											•	•

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

MATRIZ CROMATICA DE LA "PARROOUIA DE SAN AGUSTÍN"

				FASE					CONSTR	UCC	ÓN				OPER	ACIÓN
E	; !	MATRIZ Di NIVEL C Realizado por: Bac eslie Janeth	PACTO AMBIENTAL E EVALUACIÓN UALITATIVO th. Ing. Civil Chávez Carrillo,	I MPACTANTES	a) Trabajos Praliminares	(tracco, rilivatación y reptanteco)	b) Movimiento de Tienras ecav niv. fondo, refenos, y apsonms)	O B	Transporte y Apopio de Materiales		Amado	() Obras da	(muros de lactillo)	g) Acabados	a) Ocupación espacial	b) Martenimiento
	FAC	TORES AMBI	ENTALES AFECTADOS a) Calidad del aire	-	12.0	M		0	6	H70.5558		-				
		1 Aire	b) Nivel de Ruido				CM	CM							50.000	
м	I N	ļ				MA.	СМ	4	<u> </u>		CM		.		CM	
E	E R	2 Suelos	a) Relieve y Topografia			114	CM				СМ		**		Marie Marie	at Later Sales
D	T E		b) Contaminación (física, química, microbi	ológica)		N.	M	CM	_ a	•	M	حتا	M	М	CM	CM
0	E	3 Agua	a) Aguas Superficiales		•	М	CM								CM	
F		4 Procesos	a) Drenaje Superficial		r	W	CM		C	v					CN	
s s	3,	1 Flora	a) Cubierta Vegetal			264	СМ				СМ			_	CM	
ī	o T		a) Animales domésticos			<u> </u>			a						CNI	
CO	0	2 Fauna	b) Otras especies		K	м	СМ								cave	
	P E E P A		a) Calidad Paisajistica		C	ж	М		a	4	CM		M.	СИ	cavi	
	RTL	1 Paisaje	b) Potencial de vistas) Potencial de vistas					G	•	см	Ħ,	ж	ĊM	СМ	
M S C	PC	Estructura de Ocupación	a) Empleo					1				ti				
E C N C	BI	2. Sectores	a) Estilos de Vida		- THE							200	2570000	200000000000000000000000000000000000000		
OM	L N	de actividad	b) Calidad de Vida					+				+-				

	LEYENDA	
2286	Impactos Positivos	
CM S	Impactos Negativos Irrelevantes	
M	Impactos Negativos Moderados	
	Impactos Negativos Severos	
	Impactos Negativos Críticos	

FACULTAD DE INGENIERÍA. ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

MATRIZ DE IDENTIFICACIÓN DE LA "PARROQUIA DE SAN AGUSTÍN"

					FASE				CO	NSTRUCC	ЮN			OPER	ACIÓN
		A.R.L.	MATRIZ DI NIVEL C ealizado por: Bac eslie Janeth	PACTO AMBIENTAL E EVALUACIÓN UALITATIVO h. Ing. Civil Chávez Carrillo, ENTALES AFECTADOS	- MPACTANTES	a) Trabajos Preliminares	(trazo, nivelación y replanteo)	b) Movimiento de Tierras (excav., nv., fondos, rellenos, y apison, met)	c) Instalación y funcionamiento de Caseta de Guardianía y Almacén	d) Transporte y Acopio de Materiales		(cmentos, col, vigas, losas, escaleras, etc.) n) Obras de Albañillería (muros de ladrilo)	g) Acabados	a) Ocupación espacial	b) Mantenimiento
	<u>'</u>	FAC	TORES ANDI	a) Calidad del aire		_		•	-	5			 		
		$_{I}$	1 Aire	b) Nivel de Ruido				•	 	•	•			•	
M		N E		a) Relieve y Topografia		•	•	•		•	•	•			
D	- 1	R T	2 Suelos	b) Contaminación (física, química, microbio	lógica)	•	•	•	•	•	•	•		•	•
0		E	3 Agua	a) Aguas Superficiales		•	•	٠						•	
F			4 Procesos	a) Drenaje Superficial		•	•	•		•				•	
1	1 2	B I	1 Flora	a) Cubierta Vegetal		•	•	•			•			•	
S	7	0	2 Fauna	a) Animales domésticos						•				•	
C	(I C	2,= raund	b) Otras especies			•	•						•	
	E	E P A	1 Paisaje	a) Calidad Paisajistica		•		•		•	•	•	•	•	
		T L U	<u> </u>	b) Potencial de vistas		•		•		•	•	•	•	•	
M S E E O C		P O	Estructura de Ocupación	a) Empleo			•	•	•	•	•	•	•		•
DCO			2. Sectores	a) Estilos de Vida						•				•	•,
1 1 N 0 0 Ó	○	4 N	de actividad	b) Calidad de Vida										•	•

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

MATRIZ DE INTERACCIÓN DE LA "PARROOUIA DE SAN AGUSTÍN"

				FASE					CON	STRUCCIÓ	N				OPER	ACIÓN	Í		الجاجعت	-	,
M : Magnitu	R Lud cla	JDIO DE IMP MATRIZ DE NIVEL CU lealizado por: Bach. leslie Janeth	- MPACTARTES	a) Trabajos Preliminares	(trazo, nivelación y replanteo)	b) Movimiento de Tierras	(excav., nlv.,fondos, relienos.) apison.,met)	c) Instalación y funcionamiento de Caseta de Guardiania y Almacén	d) Transporte y Acopio de Materiales	e) Obras de Concreto Simple y Armado (cirrentos, col vigas, losas, escaleras, etc.)	Obras de Albafillería	(muros de ladrillo)	g) Acabados	a) Ocupación espacial	b) Marterimiento		s u i	W A	TORI	4	
	a) Calidad del aire				-1	+1	-2	+1	-1 +2	1 +1		1					+0 +0	+0		-5 +5	-59
	,	I Alle	b) Nivel de Ruido		7	+1	-2	+1		1 +1	-2	1	+1		-2 +2		+0 +0	}		-9 +7	
E	N E	2 Suelos	त) Relieve y Topografía		1	+1	-2	+2		.1 +1	-2 +2	-2	+2				+0 +0	1		-8 +8	
D	R T		b) Contaminación (física, química, microbiolo	ógica)	7	+1	6	+1	-1 +2	-1 +1	4 +3	4	+3	+2	-3 +2	-2 +2	+2 +0			-26 +17	
o	T E 3 Agua a) Aguas Superficiales				7	+1	-2	+2				T			3 +3		+0 +0]		-6 +6	
F		4 Procesos	a) Drenaje Superficial		1	+1	-1	+1		1 +1					-2 +2		+0 +0	1	+0	-5 +5	+48
Í	B	1 Flora	a) Cubierta Vegetal		-3	+1	-3	+1			-3 +1				-3 +1		+0 +0	+0		-12 +4	-9
S	Ø T		a) Animales domésticos							-1 +1					+3		+0 +0			-2 +4	
C	CO	2 Fauna	b) Otras especies		-2	+2	3	+2				\top			-2 +3		+0 +0		+0	-7 +7	+15
	P E E P A		a) Calidad Paisajística		-1	+1	4	+1		-2 +1	-2 +2	-2	+2	-2 +2	-2 +2		+0 +0	+0		-15 +11	-29
	R T L C U	1 Paisaje	b) Potencial de Vistas		1	+1	-2	+1		-2 +1	-2 +2	-2		-2 +2	3 +3		+0 +0		+0	-14 +12	+23
MSEMEOCM	PC	Estructura de Ocupación	a) Empleo		+4	+1	+4	+1	+2 +1	2 +2	+4 +2	+4		+4 +2		+2 +2	+26 +13	+53		+0 +0	+0
DCO	DN 4 1	2. Sectores	a) Estilos de Vida						i	+5 +2				<u>=</u> .	+8 +3	+4 +2	+17	İ		+0 +0	
0000		de actividad	b) Calidad de Vida									1			+8 +3	+2 +3	+10 +6	1	+26	+0 +0	+0
	POSITIVAS ACCIONES				+4 +29	+1	+4	+1	+2 * +1	+7	+4 +2	+4	+2	+4 +2 +13	+16 +6 +24	+8 +7 +13	TOTAL	+53	+26	TOTAL	-97 86
		TANTES	NEGATIVAS		-13 -36	+11	-27	+13	-2	-10 +8	-15 +11	-11	+10	-8 +6 +63	-21 +21 -23	-2 +2 +23	ye manana ye danana danana				

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

4.8.2. Medidas de corrección

Esta corrección se hará de acuerdo a las condiciones ambientales preexistentes, tales como suelo y vegetación, así como otros elementos existentes que forman parte del paisaje.

Las propuestas dadas se han estructurado de tal manera que cada modificación detectada encuentre una actuación concreta como respuesta al impacto producido.

A) Medidas correctoras para las distintas fases de desarrollo de las acciones de construcción de la "Parroquia de San Agustín"

- Fase de construcción
- Controlar las emisiones de ruidos y vibraciones en aquellas operaciones productoras de los mismos.
- Acumular los materiales de obra, en puntos seleccionados con anterioridad para evitar impactos visuales negativos.
- Limpiar inmediatamente las zonas de residuos y eliminar totalmente los escombros.
- Fase de funcionamiento
- Que las tareas de mantenimiento de la infraestructura de la "Parroquia de San Agustín", se efectúen en concordancia con un plan de monitoreo permanente, a fin de garantizar su eficiente funcionamiento.

B) Medidas protectoras y correctoras en función del tipo de impacto

Impactos compatibles

Para estos tipos de impactos se tratará de maximizar los efectos positivos y evitar aquellos negativos que pudieran presentarse a raíz de éstos, por lo tanto, lo adecuado es proponer medidas preventivas.

- Movimiento de maquinaria.
- Prohibición de cambios de aceite u otras reparaciones de maquinaria contaminante del suelo.
- Cese de actividades en horario nocturno.

E CLUMBURG.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

- En fase de operación
- Ocupación permanente del suelo: Una forma de mitigar, sería establecer un adecuado programa de mantenimiento de la "Parroquia de San Agustín"

C) Programa de vigilancia

Estas tareas se reducen a las acciones de mantenimiento de la "Parroquia de San Agustín" en concordancia con un adecuado programa de monitoreo.

Se recomienda, una constante vigilancia en contra de la intrusión de basuras, escombros en la zona del Proyecto.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

CAPÍTULO V-CONCLUSIONES Y RECOMENDACIONES

OF CLUMPARCY OF

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

5.1. CONCLUSIONES

- Se logró optimizar el diseño arquitectónico, estructural, de instalaciones sanitarias e instalaciones eléctricas.
- Del estudio de mecánica de suelos se obtuvo un suelo arcilloso, es decir; de baja capacidad portante 0.67 Kg / cm², mala para la cimentación.
- Para el diseño estructural se ha propuesto una estructura resistente, rígida y con alta tenacidad ante el colapso por acciones sísmicas. Sin embargo, la veracidad de los resultados está en función de un modelo que se aproxime al comportamiento de la estructura real.
- Del diseño de la Instalaciones sanitarias debido a la probable variación de la presión en la red de agua de la edificación planteada, se ha propuesto incluir tanque elevado prefabricado (sistema indirecto), de tal manera de garantizar un suministro de agua constante
- De las instalaciones eléctricas se obtuvo el diseño de dos sistemas monofásicos independientes para la iglesia y para el edificio.
- Del estudio de impacto ambiental se han propuesto una serie de medidas de mitigación que permitirán reducir los efectos ambientales durante y después del proceso constructivo del proyecto.
- La estructura se diseñó optimizando costos y recursos con la finalidad de hacer viable su ejecución, siendo el presupuesto total S/. 1314699.56 el cual se distribuye en S/. 621030.55 para la arquitectura, S/. 600141.40 para las estructuras, S/. 72114.23 para las instalaciones sanitarias y finalmente S/. 21413.38 para las instalaciones eléctricas.
- Se ha logrado a elaborar el proyecto profesional parroquia de San Agustín, mediante el cual se obtendrá el título de Ingeniero Civil.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

5.2. RECOMENDACIONES

- Para un suelo de baja capacidad portante se recomienda hacer un mejoramiento de suelo, y así disminuir los costos de la cimentación.
- Se recomienda el uso del programa ETABS, debido a la facilidad de uso ya que es de mayor ayuda para el diseño de edificaciones.
- Se recomienda el uso de un tanque elevado prefabricado por la facilidad de instalación, de una sola pieza de polietileno que garantiza la impermeabilidad, fácil limpieza y su capa antimicrobiana evita la adherencia de bacterias, además que no requiere de un diseño estructural.
- Se recomienda el cumplimiento estricto del expediente técnico, planos y especificaciones técnicas durante la ejecución de obra.
- Que la obra se ejecute durante el período de estiaje para un mejor avance físico y así reducir riesgos ambientales y accidentes.
- Se recomienda el uso de agregados de las canteras del río Mashcón y del Gavilán.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

CAPÍTULO VI -BIBLIOGRAFÍA

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

- Megabyte Grupo editorial, 2009, Reglamento Nacional de Construcciones, Megabyte, Lima.
- Manual de Laboratorio de Mecánica de Suelos. Ing Mg. Rosa Haydee Llique Mondragón.
 Editorial universitaria de la UNC 2003 Primera Edición
- Capítulo Peruano del American Concrete Institute ACI 318 05 : Normas de Construcciones en Concreto Estructural I , Edición 2004 , Lima – Perú
- Antonio Blanco Blasco: Estructuración y Diseño de Edificaciones de Concreto Armado, segunda edición 1994
- Ángel San Bartolomé: Análisis de Edificios Pontificia Universidad Católica del Perú -1999.
- 6. Ing. Roberto Morales Morales: Diseño en Concreto Armado, Instituto de la Construcción y Gerencia, Edición 2003 2004.
- 7. Luis F. Zapata Baglietto : Diseño Estructural en Acero, Segunda Edición, Lima Perú 1995
- 8. Ing. Enrique Jimeno Blasco: Instalaciones Sanitarias En Edificaciones CIP
- Ing. Mario Germán Rodríguez Macedo: Diseño de Instalaciones Eléctricas en Residencias.
 Edición 2003.
- 10. Vicente Conesa fdes-vitora: Guía metodológica para la Evaluación del Impacto ambiental. Tercera Edición 1997
- 11.Mgs. Mario Suárez y Mcs. Fausto Tapia: Inter aprendizaje de estadística básica. Primera edición 2012.
- 12. Jimeno Blanco Blasco: Instalaciones Sanitarias en edificaciones. Segunda edición 1995.
- 13. Braja M. Das: Mecánica de Suelos. Edición 2012.
- 14. Braja M. Das: Fundamento de ingeniería y cimentaciones. Séptima edición 2012
- 15. Juárez Badillo: Mecánica de Suelos. Quinta edición 2007, editorial Limusa.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

CAPÍTULO VII-PANEL FOTOGRÁFICO

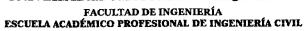
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Levantamiento topográfico del terreno

Excavación de calicatas

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

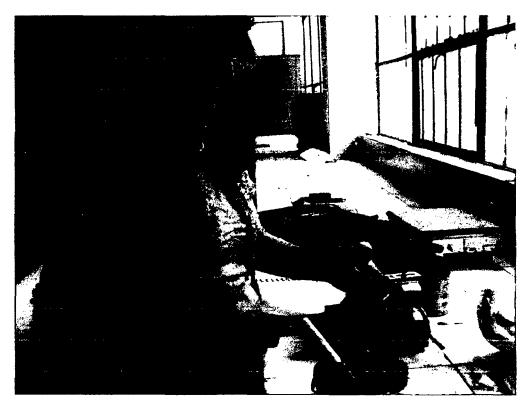


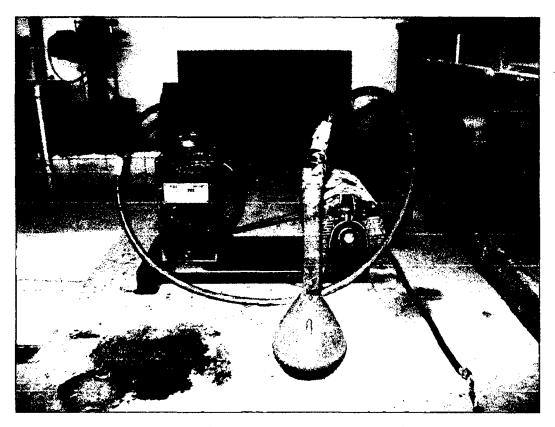
Perfilado de calicatas

Secado de muestras al sol de los estratos

"Parroquia de San Agustin"

Análisis granulométrico por lavado


Preparación de muestra para ensayo de consolidación


FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Elaboración de muestras para ensayos de límite líquido y límite plástico

Equipo usado para el ensayo de peso específico

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL NGENTER LA

"Parroquia de San Agustín"

<u>ANEXOS</u>

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

ANEXO 1

TIPO DE SUELO COMMISSION				PARA	METR	OS C	ARACT	PARAMETROS CARACTERISTICOS DEL	င္သေဒ င		SUELO						
TIPO DE SUELO (2000 (1704 (1704 Ann)) WATHER MATHER MATHER METAL METAL MATHER METAL		CRAMILLO	ECTRA	SMIT	X ATTER		PEBO ES	ECHICO	CMAN	OB4	TOR		070 60	24.96.46.3	ACTA AL	CORTE	DECENSION DAY
Fig. 10 Fig.	•	20'0 ×	2.00	ITACE	10 0 × 03	100			HATLERAL	Ş	MAL		-	NG NO 1E		2	
Market depote 3 to 10 Mark		002 o.N	Nº 10) H	ϴ	Q.	Α.	Yaum	3	D. Soca		Es # E0	(a/at	θ	ပ	d,ø	¥
1		*	×	*	*	*	Tim3	Tim3	3¢	17m3	*	Ca liptora?	D	()	TANZ		m/s
Table 3 or 10 or 1		•	,,,			•	7,1	58.3	Ji	2.5	3	ឡ	00	B	-	A	16-31
1. 1. 1. 1. 1. 1. 1. 1.		2	?		-		٦. م	1.05	~	5	9	85	0.4	Ø	•	32	1050
1	Andrea de constante de la constante de const	9.7		λ.	•	•	2.1	1.15	3	7	-	400	0.7	R		33	1.05-02
Fig. 10 Fig. 14 Fig.	CONTRACTOR OF THE CONTRACTOR O	?	3	,			2.3	1.35	13	2.5	*	100	6.0	S	í	98	1.05-08
15 16 17 18 18 18 18 18 18 18	Genta araseas con áreu imoses o arcitezos	**	1	2	<u>@</u>		2.1	1.75	6	2.1	~	8	0.7	ລ	1	*	1 05.03
1.9 1.0 0.9 \$5 32 22 2.2 3 0.0 0.7 35 30 30 1.0 1.0 0.0 0.7 35 30 30 30 1.7 1.0 0.0 0.0 0.0 0.0 30	The to altern to extracting greening	22	3	\$\$	K	x	2.4	1.45	e	× ~	9	DQZ-	0.5	9	¢	H	108-03
2.2 3 0.00 0.7 95 0.5 30 1.0 1.0 0.0 0.8 40 - 2.2 1.7 1.0 0.0 0.8 40 - 2.2 1.7 1.0 0.0 0.0 0.0 1.0 0.0 2.15 1.0 0.0 0.0 0.0 1.1 0.0 0.0 2.15 1.0 0.0	Meads de graves y areras erructus par fines	न्न	8	Q	2			105		ď	ပ္	0.51	30	5.6	8	Z	1 05-09
1.5 1.5 27.5 32.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.2 2.2 1.0 </th <th></th> <th>ફ</th> <th>ì</th> <th>95</th> <th>23</th> <th>ક્ર</th> <th>2.25</th> <th>1.3</th> <th>ŭ</th> <th>2.2</th> <th>¢</th> <th>000 000</th> <th>0.7</th> <th>35</th> <th>0.5</th> <th>8</th> <th>1.06.11</th>		ફ	ì	95	23	ક્ર	2.25	1.3	ŭ	2.2	¢	000 000	0.7	35	0.5	8	1.06.11
175 10 960 06 40 22 22 175 15 276 CT 32 30 10 215 15 270 0.5 10 2.0 32 215 6 0.0 0.6 0.7 10 2.0 32 215 10 2.0 0.6 0.7 10 0.7 32 22 1 5.0 0.6 0.7 1.0 0.7 32 1.6 2.2 2.0 0.6 1.0 2.0 32	Barton Landborn Com	* `	2				1 6	69 E	21	9:	31	351	315	æ		Đ,	201.01
15. 23.C CT 35.C CT 35.C CT 35.C CT 35.C AD	with the state of		3		•		1.8	1,1	25	. 75	01	98	0.8	S	,	22	1.0E-03
175 8 700 056 42 - 34 15 10 270 077 100 - 34 215 6 800 063 41 - 34 22 10 100 063 40 5 24 17 10 100 075 34 10 32 18 12 20 075 22 22 22 18 15 110 06 36 36 30 1 30 165 23 30 07 30 3			2				1.6	55.4	2	w T	=	250	10	X		Q,	ও চে
15 10 220 QV 150 3.2 3.2 215 6 600 0.65 41 - 34 22 1 500 0.69 40 0 30 22 7 500 0.69 40 0 32 4 72 2 3 0 1 5 22 18 7 2 3 0 3 2 2 2 18 15 3 0 3 3 1 2 2 18 15 3 0 3 1 3 3 3 165 23 30 0 3 1 3 3 165 30 3 1 3 3 3 3 165 30 3 1 3 3 1 3 4 165 30 3 3 3	Media kt Miller greek	ia V	\$;	·	,	*	2	*0	1.75	67	8	0.85	42	•	8	200-04
215 6 600 0.65 41 34 22 7 500 0.69 32 1 30 22 7 500 0.69 32 1 30 17 7 500 0.79 40 6 32 18 77 37 0.75 32 1 0 18 37 0.7 3.0 0.7 33 1 22 175 14 50 0.7 30 0.5 30 3 1 20 175 17 30 0.5 30 30 3 1 20 1 175 17 30 0.5 30 3 1 20 1		1		•			1.8	-	-	2	ç	2:0	٥٠	6.3		32	\$ 0E.O4
2 13 150 0.69 32 1 30 22 7 500 0.69 40 0 32 17 75 34 40 6 32 2 16 77 40 18 4 5 22 2 16 77 40 18 36 4 30 3	Marie Dien granusche y inchte oon grane	C v	3			,	2.5	12	\$	215	9	8	0.65	41	-	አ	20E-03
2.2 7 500 063 40 0 22 2 17 34 15 2 22 1 12 2 3 2 2 2 2 1 2 2 2 3 3 2	Azena con firos que no alteran la esiniciara	8	8	Ç.	18	-	29	901	31	2	13	œ	90	35	1	ន	1 DE-03
1 1 1 14 15 22 <th>กุกานทา</th> <th>\$\$</th> <th>3</th> <th>45</th> <th>X</th> <th>25</th> <th>2.25</th> <th>1,3</th> <th>+</th> <th>2.2</th> <th>٠</th> <th>200</th> <th>690</th> <th>40</th> <th>Ö</th> <th>ĸ</th> <th>1.0E-07</th>	กุกานทา	\$\$	3	45	X	25	2.25	1,3	+	2.2	٠	200	690	40	Ö	ĸ	1.0E-07
2 12 279 0.75 32 1 20 1 20 1 10 </th <th>Azona och Gros que afferts ta estructura</th> <th>73</th> <th>4.0.4</th> <th>q</th> <th>16</th> <th>3</th> <th>18</th> <th>5.0</th> <th>λį</th> <th>1.7</th> <th>ξ.</th> <th>36</th> <th>14</th> <th>43</th> <th>5</th> <th>Z</th> <th>1 GE C7</th>	Azona och Gros que afferts ta estructura	73	4.0.4	q	16	3	18	5.0	λį	1.7	ξ.	36	14	43	5	Z	1 GE C7
16 27 43 28 2 20 </th <th>ומוועו</th> <th>\$</th> <th>,</th> <th>0;</th> <th>33</th> <th>30</th> <th>2,15</th> <th>1.1</th> <th>*</th> <th>2</th> <th>24</th> <th>668</th> <th>5Ł Ó</th> <th>સ્ક</th> <th>,70</th> <th>30</th> <th>105-10</th>	ומוועו	\$,	0;	33	30	2,15	1.1	*	2	24	668	5Ł Ó	સ્ક	, 70	30	105-10
1.6 15 110 0.6 15 30 15 30 15 30 15 30 30 15 30 30 15 30 17 30 16 30 17 30 17 30 17 30	The paper of section	634	- 4	16	જ	77	. 75	2.6	2	91	22	C	er	82		33	106.54
155 23 35 0.9 150 0.7 22 17 17 18 18 17 18 18 18	לבינות לתומים לו משינות		3	15	23	11	2.1	1.1	51	1.8	51	310	90	Ş	0.6	S,	200-00
175 18 70 0.7 33 1 28 186 14 50 0.9 32 1.3 78 176 23 25 1 70 2 10 176 37 30 0.99 30 2 30 146 27 30 0.99 30 6 6 15 27 1 7 15 15 17 16 20 0.3 2 2 17 16 20 0.3 2 2 17 16 1 30 0.6 1 17 16 1 30 0.6 1 18 1 30 0.6 2 1 18 1 30 0.6 2 1		5	788.7	ç	2	`	1	98.0	Эř	- 55	£3	æ	60	22	Ĉ	12	206-06
185 20 20 1 24 6 20 186 14 15 15 15 15 15 15 15	ורכינס הג ליינים וויני ויג מי מי מי	3	Š	0;	22	20	~	8	R	1.75	3.8	દ		33	1	æ	2 CF-CB
185 14 50 09 32 13 78 175 27 75 1 70 2 10 175 17 30 059 30 2 30 145 27 6 1 77 3 15 145 27 7 7 15 15 15 17 16 20 03 25 22 22 17 16 20 03 25 22 22 17 16 1 30 0.6 . 1 17 16 1 30 0.6 . . 18 1 30 0.6 . . 18 1 30 0.5 . .	A see for the brain of sea for the of	· .	4	18	151	7	61	550	Ŕ	1.85	20	æ	-	R	9	æ	105-07
152 22 25 15 170 2 10 170	Marie de Laborates	3	}	55	æ	92	22	1.2	2	1.85	14	23	60	2	1.3	8	2.05.00
175 17 30 0,90 30 2 20 145 27 6 1 17 10 6 165 20 1 27 3 15 15 17 16 30 0 1 17 15 15 17 18 30 0.3 2 22 22 1 18 1 25 2 2 2 2 2 1 4 1 25 2 2 2 2 1 4 1 25 2 2 2 2 1 4 1 25 2 2 2 2 1 4 1 25 2 2 2 2 1 4 1 25 2 2 2 1 1 4 1 2 2 2 2 2	A de de de la faction de la constante de la co	4,00	- P	oi-	1.5	6.	8,	033	3	5.	22	98	-	a?	ં	10	SCE.CO
1.45 27 6 1 17 10 6 1.62 20 20 1 27 3 15 1.7 27 1 1 1 1 1 1.7 13 30 0.5 2 22 2 1.7 13 30 1 1 2 22 2 1.7 1 2 2 2 2 2 2 1.7 1 2 3 1 3 0 6 1.7 1 2 2 2 2 2	Sami provided on proce		7	ġ	25	28	2.1	1.1	\$	1.75	17	æ	0.50	×	2	ક્ષ	1:CE-10
165 20 20 1 27 3 15 17 18 30 0.3 26 2 22 17 18 30 0.3 66	A company of the second	5	8	60	8	33	1.65	0.7	6.5	1.45	12	٤		11	9	9	1.05.48
17 18 30 0.5 26 22 22 (1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	ARCHE UP 61 19 19 19 19 19 19 19 19 19 19 19 19 19	3	3	\$ }	35	98	2	1	32	291	02	98	1	u	\$	15	1.0E-11
17 18 30 03 28 22 22 (10 12 12 12 12 12 12 12 12 12 12 12 12 12	The second secon	. 0	٤	7	33	10	1.03	7.5	3	3≱ .	12		1	-11	7	1	新新。 1
8 1 30 0.6		i fant	2	ă	45	30	1.9	6.0	8	1.1	13	Óζ	0.3	92	2	22	1 CE-11
		je, 44.			Liberal		10.1	K >	\$02			; ;	4.4	2.3	1.5		22.32
2 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•	•		,	*	1.3	0.3	105			β	-	Я	0.6	*	1.02-09
. 6.0 5.5 2.8 0.0 .	Emm			9	Я	ă	22	33	ğ	·	·	77	-	72	~		10 G.
		•	٠	0,2	8	130	14	80	द्ध			15	6.0	9 22	0.0	٠	3,50

Bach. Ing. Civil Chávez Carrillo, Leslie Janeth

192

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

ANEXO 2

Coeficiente de balasto de acuerdo al tipo de suelo

En la Tabla [2.18]. Se presentan algunos valores referenciates de este coeficiente para diferentes tipos de suelos, según la ciasificación del sistema unificado de suelo.

Tabla [2.18] Correlación entre el tipo de suelo y el coeficiente de balasto.

(Fuente: Cimentaciones de concreto armado en edificaciones, "Julio Rivera" pag. 107)

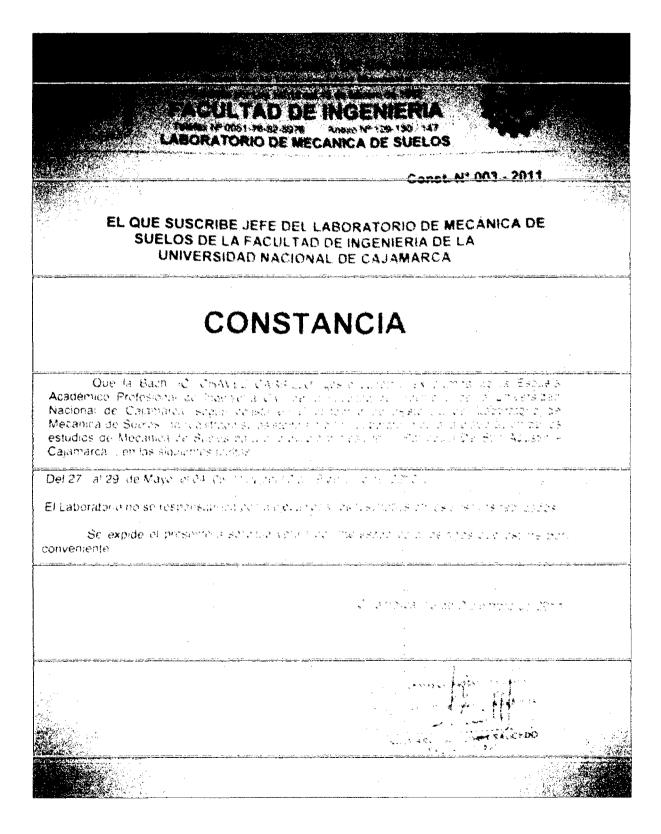
Descripțion de los suelas	** A*K	(cm²)		
	Simbolo	Rango 🔿	Promedio	
Gravas bien graduadas	GW.	14-20	17	
Gravas arcillosas	GC	11-19	15	
Gravas mai graduadas	GP	8-14	11	
Gravas limosas	GM	8-14	10	
Arenas bien graduadas	SW	6-16	11	
Arenas arcillosas	sc	6-16	11	
Arenas mai graduadas	SP	5-9	7	
Arenas limosas	SM	5.9	7	
Limos orgánicos	ML	4-8	6	
Arcillas con grava o con arena	CL	4-6	5	
Limos orgánicos y arcillas limosas	OL	3-5	4	
Limos inorgánicos	MH	1.5	3	
Arcillas inorgánica	СН	1-5	3	
- Artillas organicais	OH	4.4	2	

MÓDULO DE REACCIÓN DEL SUELO

Tabla [2.19.]

(Kg/Cm²) (Kg/Cm²)	Est. Adm.	Winkler	K	Est Adm.	Winkler	1	Est Adm	Winkler
0.25 0.65 1.55 3.19 2.85 5.70 0.30 0.78 1.60 3.28 2.90 5.80 0.35 0.91 4.65 3.37 2.95 5.80 0.40 1.04 1.70 3.46 3.00 6.00 0.45 1.17 4.75 3.55 3.05 5.30 5.10 0.55 1.30 1.80 3.64 3.30 6.20 6.50 0.55 1.39 1.85 3.73 3.35 6.30 6.40 0.05 1.48 1.90 3.82 3.20 6.40 0.70 1.66 2.00 4.00 3.30 6.60 0.72 1.66 2.00 4.00 3.35 6.70 0.85 1.93 2.15 4.30 3.35 6.70 0.79 1.66 2.00 4.00 3.30 6.60 0.75 1.75 2.05 4.10 3.34 6.90		(Kg/Cm ³)	13	(Ka/Cm²)		4		(Kg/Cm³)
0.45	0.25	0.65	7:1	1.55	3.19	鯼		5.70
0.40	9.302	0.78		1.60		鰧	2.90	5.80
0.44 1.17 4.75 3.55 3.05 6.10 0.50 1.30 1.80 3.64 3.30 6.20 0.85 1.39 1.88 3.73 3.15 6.30 0.60 1.48 1.90 3.82 3.20 6.40 0.70 1.66 2.90 4.00 3.30 6.60 0.75 1.75 2.05 4.10 3.35 6.70 0.80 1.84 2.10 4.20 3.40 6.80 0.95 1.93 2.15 4.30 3.45 6.90 0.95 2.02 2.20 4.40 3.50 7.00 0.95 2.01 2.22 4.40 3.55 7.10 0.95 2.11 2.25 4.50 3.65 7.00 0.95 2.11 2.25 4.50 3.55 7.10 1.00 2.20 2.30 4.60 3.60 7.20 1.105 2.29 2.35	0.35	0.91	7/1	4.65	3.37	4	2.95	5.90
0.55	0.40	1.04	74	1.70	3.46	100	3.00	
0.65	0.45		*	4.75		ĝ	3.05	
0.66 1.48 1.59 3.82 3.20 6.40 0.65 1.57 1.85 3.91 4.23 6.50 0.70 1.86 2.00 4.00 3.30 6.60 0.95 1.75 2.05 4.10 3.35 6.70 0.80 1.84 2.70 4.20 3.40 6.80 0.85 1.93 2.95 4.30 3.45 6.90 0.95 2.02 2.20 4.40 3.50 7.00 0.95 2.11 2.25 4.50 3.35 7.10 1.00 2.20 2.30 4.60 3.60 7.20 1.05 2.29 2.35 4.70 3.65 7.20 1.10 2.38 2.40 4.80 3.70 7.40 1.15 2.47 2.45 4.90 3.75 7.50 3.24 4.80 3.70 7.50 3.80 7.60 3.25 2.56 2.55	0.50		7/4	1.60		3	3.10	
0.55 1.57 1.85 3.91 4.25 6.60 0.70 1.86 2.00 4.00 3.30 6.60 0.75 1.75 2.05 4.10 3.35 6.70 0.80 1.84 2.10 4.20 3.49 6.80 0.85 1.93 2.15 4.30 3.45 6.90 0.95 2.11 2.22 4.40 3.59 7.00 0.95 2.11 2.25 4.50 3.55 7.10 1.00 2.20 2.30 4.60 3.60 7.20 1.30 2.29 2.235 4.70 3.65 7.30 4.10 2.38 2.40 4.80 3.70 7.40 1.15 2.47 2.45 4.90 3.75 7.50 4.28 2.56 2.50 5.00 3.80 7.60 4.25 2.85 5.50 5.00 3.85 7.70 4.25 2.85 2.55			3#			25		
0.76 1.66 2.00 4.00 3.30 6.60 0.75 1.75 1.75 2.05 4.10 3.35 6.70 0.80 1.84 2.70 4.20 3.40 6.80 0.95 1.93 2.15 4.30 3.43 6.80 0.90 2.02 2.20 4.40 3.59 7.00 0.98 2.11 2.25 4.50 3.55 7.10 1.00 2.20 2.20 4.60 3.60 7.20 1.10 2.38 2.40 4.80 3.70 7.40 1.15 2.47 2.45 4.90 3.76 7.50 1.25 2.56 2.50 5.00 3.80 7.70 1.25 2.85 2.55 5.10 3.85 7.70 1.25 2.85 2.55 5.10 3.85 7.70 1.25 2.85 2.55 5.10 3.85 7.70 1.25 2.85	0.60			190		M	3.20	
0.75	-0.66		123		3.91	20	······4.25	6.50
0.86 1.84 2.10 4.20 3.40 6.80 0.055 1.93 215 4.30 3.45 6.80 0.90 2.02 2.20 4.40 3.50 7.00 0.95 2.11 2.25 4.50 3.55 7.10 1.00 2.20 2.30 4.60 3.60 7.20 1.10 2.38 2.40 4.80 3.70 7.40 1.15 2.47 2.45 4.90 3.75 7.50 3.26 2.56 2.50 5.00 3.80 7.60 4.25 2.85 2.55 5.10 3.85 7.70 1.30 2.74 2.86 5.20 3.90 7.80 4.28 2.83 2.85 5.30 3.95 7.90	0.70	1.66	M	2.00	4.00	禄	3.30	6.60
0.85 1.93 2.15 4.30 3.45 6.90 0.90 2.02 2.20 4.40 3.50 7.00 0.95 2.11 2.25 4.50 3.55 7.10 1.00 2.20 2.30 4.60 3.60 7.20 1.105 2.29 2.35 4.70 3.65 7.30 1.10 2.38 2.20 4.80 3.76 7.40 1.15 2.47 2.45 4.90 3.76 7.40 3.29 2.56 2.50 5.00 3.85 7.70 4.25 2.85 2.55 5.10 3.85 7.70 4.30 2.74 2.86 5.20 3.90 7.80 4.35 2.83 2.65 5.30 3.95 7.90	0.75	1.75	74	Z05	4.10		3.35	
0.96 2.02 2.20 4.40 3.50 7.00 0.98 2.11 2.25 4.50 3.55 7.10 1.00 2.20 2.30 4.60 3.60 7.20 1.105 2.23 2.40 4.80 3.70 7.40 1.15 2.47 2.45 4.90 3.75 7.50 1.26 2.56 2.50 5.00 3.80 7.60 4.25 2.65 2.55 5.10 3.85 7.70 1.30 2.74 2.80 5.20 3.90 7.80 4.25 2.83 2.85 5.30 3.95 7.90	0.80	1,84] [210	4.20	魔	340	6.80
0.95 2.11 2.25 4.50 3.55 7.10 1.00 2.20 2.30 4.60 3.60 7.20 1.30 2.29 2.235 4.70 3.65 7.30 1.10 2.38 2.40 4.80 3.70 7.40 1.15 2.47 2.45 4.90 3.75 7.5 3.26 2.56 2.50 5.00 3.80 7.60 4.25 2.85 2.55 5.10 3.85 7.70 1.30 2.74 2.86 5.20 3.90 7.80 4.28 2.83 2.85 5.30 3.95 7.90	0.85	1.93	74		4.30	10	3.45	6.90
1,006	0.90	2.02	74	2.20	4.40	鯼	3.50	7.00
1.05 2.29 2.35 4.70 3.65 7.30 1.10 2.38 2.40 4.80 3.70 7.40 1.15 2.47 2.45 4.90 3.75 7.50 1.26 2.56 2.50 5.00 3.80 7.60 4.25 2.65 2.55 5.10 3.85 7.70 1.30 2.74 2.80 5.20 3.90 7.80 4.25 2.83 2.85 5.30 3.95 7.90	0.95	2,11	■	2.25	4.50	18	3.55	7.10
\$1.10 \$2.38 \$2.40 \$4.80 \$3.70 \$7.40 \$1.15 \$2.47 \$2.45 \$4.90 \$3.75 \$7.50 \$2.26 \$2.50 \$5.00 \$3.80 \$7.60 \$4.25 \$2.85 \$2.55 \$5.10 \$3.85 \$7.70 \$1.30 \$2.74 \$2.80 \$5.20 \$3.90 \$7.80 \$4.35 \$2.83 \$2.85 \$5.30 \$3.95 \$7.90	1.00		1#	2.30	4.60			7.20
1.15 2.47 2.65 4.90 3.75 7.50 3.20 2.56 2.50 5.00 3.80 7.60 4.25 2.65 2.55 5.10 3.85 7.70 4.30 2.74 2.60 5.20 3.90 7.80 4.48 2.83 2.65 5.30 3.95 7.90	1.05			2.35	4.70	138		
126 256 250 500 380 7.60 125 265 255 5.10 3.85 7.70 130 274 280 5.20 3.90 7.80 435 283 265 5.30 3.95 7.90					4.80			
\$\frac{125}{25}\$ \$\frac{25}{25}\$ \$\frac{5}{10}\$ \$\frac{335}{330}\$ \$\frac{7}{70}\$ \$\frac{130}{25}\$ \$\frac{274}{260}\$ \$\frac{5}{20}\$ \$\frac{3}{390}\$ \$\frac{7}{70}\$ \$\frac{435}{253}\$ \$\frac{265}{250}\$ \$\frac{5}{30}\$ \$\frac{3}{390}\$ \$\frac{7}{70}\$ \$\frac{435}{250}\$ \$\frac{2}{350}\$ \$\frac{7}{30}\$ \$\frac{3}{350}\$ \$\frac{7}{70}\$						le u	3.75	
1.39 2.74 2.80 5.20 3.90 7.80 1.435 2.83 2.65 5.30 3.95 7.90	120					1		
1.35 2.83 2.65 5.30 2.95 7.90	1.25		13			黨	3.85	
]			8	3.90	
140 29 1 270 540 1 800	125		1			18		
1.45 3.01 2.75 5.50	1.40	2.92		2.70	5.40	嬶	4:00	8.00
	1.50	3.10	13	2.60	5.60	纖	Carried Carr	

Nota: Esta tabla es un resumen de diferentes trabajos que han realizado el Prof. Terzaghi y otros cinco ingenieros connotados (en diferentes épocas). Y se la puede encontrar en la Tesis de maestría "Interacción Suelo-Estructuras: Semi-espacio de Winkler", Universidad Politécnica de Cataluña, Barcelona- España. 1993 (Autor Nelson Morrison).



FACULTAD DE INGENIERIA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

ANEXO 3

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

ESPECIFICACIONES TÉCNICAS PROYECTO PARROQUIA DE SAN AGUSTÍN

ARQUITECTURA

01.00.00 MUROS Y TABIQUES DE ALBAÑILERIA

GENERALIDADES

Albañilería es el proceso constructivo determinado por el uso de ladrillo, los que por sus dimensiones modulares permiten la ejecución de muros portantes, de acompañamiento ó tabiquería, teniendo muros en aparejos de soga y cabeza.

La resistencia a la compresión de la albañilería está en relación directa de su calidad estructural, nivel de su resistencia a la intemperie o cualquier causa de deterioro.

A la perfección geométrica del ladrillo.

A la adhesividad del mortero.

A la calidad de mano de obra.

EL MORTERO

El mortero cumple en la albañilería las funciones:

Separar las unidades de albañilería de manera de absorber sus irregularidades.

Consolidación de las unidades para formar un elemento rígido y no un conjunto de piezas sueltas.

El espesor de las juntas depende:

La perfección de las unidades.

Trabajabilidad del mortero.

Calidad de la mano de obra.

A pesar de que el mortero y el concreto se elaboran con los mismos ingredientes, las propiedades necesarias en cada caso son diferentes. Mientras que para el concreto la propiedad fundamental es la resistencia, para el mortero tiene que ser la adhesividad con la unidad de albañilería.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGEWIERIA U M C

Para ser adhesivo, el mortero tiene que ser trabajable, retenido y fluido.

El mortero debe prepararse con cemento, arena y la máxima cantidad posible de agua sin que la mezcla segregue (Según el diseño de mezcla). El agua proveerá trabajabilidad, la arena retentividad y fluidez y el cemento resistencia.

La trabajabilidad del mortero debe conservarse durante el proceso de asentado. Por esta razón, toda mezcla que haya perdido trabajabilidad deberá retemplarse. Dependiendo de condiciones regionales de humedad y temperatura, el retemplado puede hacerse hasta 1 ½ y 2 horas después de mezclado el mortero.

Se debe usar solamente cemento Pórtland tipo I.

La arena deberá ser limpia libre de materia orgánica.

El agua será fresca, limpia y bebible, no se usará agua de acequia u otras que contengan materia orgánica.

El mortero será de proporción cemento arena 1:4.

LA MANO DE OBRA

Deberá utilizar únicamente mano de obra calificada., es importante vigilar los siguientes puntos:

El humedecimiento y/o limpieza de la unidad de albañilería según sea el caso.

La alineación y aplomado.

El menor espesor posible de juntas horizontales del mortero (1 a 1.5 cm.).

El procedimiento de asentado, particularmente la presión sobre las unidades de albañilería durante la colocación.

El llenado total de juntas verticales del mortero

La calidad de la albañilería mejora con la mano de obra y la buena procedencia de los materiales.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

01.03.00 MURO DE CANTO LADRILLO KING KONG DE SOGA C/M 1:4

El ladrillo es la unidad de albañilería fabricada con arcilla, mineral terroso o pétreo que contiene esencialmente silicatos de aluminio hidratados, fabricados con máquinas, el proceso de moldaje exige el uso de arena para evitar que la arcilla se adhiera a los moldes, dándole con esto un acabado característico en cuanto se refiere a sus dimensiones, resistencia a los esfuerzos y cierta permeabilidad.

El ladrillo de arcilla es consecuencia del tratamiento de la arcilla seleccionada, mezclado con adecuada proporción de agua, y arena elaborado en secuencias sucesivas de mezclado e integración de la humedad, moldeo, secado y cocido en hornos a una temperatura del orden de 1000 °C.

Los ladrillos de arcilla cocido que se especifican deben de satisfacer ampliamente las Normas Técnicas de ITINTEC 331-017/78 siendo optativo de parte del Contratista el uso del ladrillo silícico calcáreo el que deberá de satisfacer las Normas de ITINTEC 331-032/80 y el Reglamento Nacional de Construcciones en cuanto no se opongan a las Normas de ITINTEC.

CONDICIONES GENERALES

Los ladrillos a emplearse en las obras de albañilería deberán cumplir con las siguientes condiciones:

Resistencia mínima a la carga de ruptura 95 kg/cm2, promedio de 5 unidades ensayadas consecutivamente y del mismo lote.

Los ladrillos tendrán dimensiones exactas y constantes así para los ladrillos KK maquinado será de 10 X 12 X 24 cm.

La textura debe ser homogénea, de grano uniforme.

La superficie deberá ser de asiento rugosa y áspera.

De coloración rojiza amarillenta, uniforme.

De dureza inalterable a los agentes externos, al ser golpeados con el matillo emitan un sonido metálico.

Presentación

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

El ladrillo tendrá aristas vivas bien definidas con dimensiones exactas y constantes. Se rechazarán los ladrillos que presenten los siguientes defectos. Los sumamente porosos, desmenuzables, permeables, insuficientemente cocidos, los que al ser golpeados con el martillo emitan un sonido sordo. Que presenten resquebrajaduras, fracturas, hendiduras o grietas, los vidriosos, deformes y retorcidos.

Los que contengan materias extrañas, profundas o superficiales como conchuelas, grumos de naturaleza calcárea, residuos de materiales orgánico, manchas y vetas de origen salitroso.

El Inspector de Obras velará constantemente por el fiel cumplimiento de estas especificaciones desechado los lotes que no estén de acuerdo con lo que se determina, no siendo esta medida causal para prórroga de plazo de entrega de la obra, abono de adicionales y otros.

EJECUCIÓN

La ejecución de la albañilería será prolija. Los muros quedarán perfectamente aplomados y las hiladas bien niveladas, guardando uniformidad en toda la edificación.

Se verterá agua a los ladrillos en forma tal que quede bien humedecido y no absorban el agua del mortero. No se permitirá agua vertida sobre el ladrillo puesto en la hilada anterior en el momento de la colocación del nuevo ladrillo. Si el muro se va a levantar sobre los sobrecimientos se mojará la cara superior de estos. El procedimiento será levantar simultáneamente todos los muros de una sección, colocándose los ladrillos sobre una capa completa de mortero extendida íntegramente sobre la anterior hilada, rellenando luego las juntas verticales con la cantidad suficiente de mortero.

El espesor de las juntas será 1.5 cm, promedio con un mínimo de 1.2 cm, y máximo de 2 cm. Se dejarán tacos de madera en los vanos que se necesiten para el soporte de los marcos de las puertas y ventanas.

Los tacos serán de madera seca, de buena calidad y previamente alquitranados; de dimensiones 2" x 3" x 8" para los muros de cabeza y de 2" x 3" x 4" para los de soga, llevarán alambres o clavos salidos por tres de sus caras para asegurar el anclaje con el muro. El número de tacos por vanos no será menor de 6, estando en todos los casos esta supeditado el número y ubicación de los tacos a lo que se coordine con la supervisión.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

El ancho de los muros será el indicado en los planos. El tipo de aparejo será tal que las juntas verticales sean interrumpidas de una a otra hilada, ellas no deberán corresponder ni aún estar vecinas al mismo plano vertical para lograr un buen amarre.

En la sección de cruce de dos o más muros se asentarán los ladrillos en forma tal, que se levanten simultáneamente los muros concurrentes. Se evitarán los endentados y las cajuelas para los amarres en las secciones de enlace de dos o más muros.

Sólo se utilizarán los endentados para el amarre de los muros con columnas esquineras o de amarre. Mitades o cuartos de ladrillos se emplearán únicamente para el remate de los muros. Una sola calidad de mortero deberá emplearse en un mismo muro o en los muros que se entrecrucen.

Resumiendo el asentado de los ladrillos en general, será hecho prolijamente y en particular se pondrá atención a la calidad de ladrillo, a la ejecución de las juntas, al aplomo del muro y perfiles de derrames, a la dosificación, preparación y colocación del mortero así como la limpieza de las caras expuestas de los ladrillos. Se recomienda el empleo de escantillón.

METODO DE MEDICION

La unidad de medición es por metro cuadrado, se determinará el área neta total, multiplicando cada tramo por su longitud y altura respectiva y sumando los resultados. Se descontará el área de vanos o aberturas y las áreas ocupadas por columnas y dinteles, ejecutado por el supervisor de la obra.

BASE DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

02.00.00 REVOQUES Y ENLUCIDOS

Comprende los trabajos de acabados factibles de realizar en paramentos, vigas, columnas, placas, etc., proporciones definitivas de mezcla con el objeto de presentar una superficie de protección, impermeabilización y al tener un mejor aspecto de los mismos; todos los

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

revestimientos se ejecutarán en los ambientes indicados en los cuadros de acabados y/o planos de detalle.

Cemento

El cemento satisfará la Norma ASTM-C 150.

Calidad de la arena

La arena a usarse en los tarrajeos siempre y cuando esté seca deberá pasar el integro de la muestra por la criba N° 8, no más del 80% para la criba N° 30, no más de 20% por la criba N° 50, no más de 5% por la criba N° 100. Será arena lavada, limpia uniforme con granulometría que sea de fina a gruesa, libre de materiales orgánicos, salitrosos, cuarzo, marmolina, materiales sílicos o calcáreos libre de sales, residuos vegetales y otros elementos perjudiciales, siendo de preferencia arena de río o piedra molida.

Agua

El agua a ser usada en la preparación de mezclas para tarrajeos deberá ser potable y limpia; en ningún caso selenitoso y que no contenga soluciones químicas u otros elementos extraños que puedan ser perjudiciales al fraguado, resistencia y durabilidad de las mezclas.

Impermeabilizante

En los casos indicados en los planos o cuadros de acabados, se utilizará impermeabilizante en polvo o base de una combinación concentrada de agentes de estearato repelente al agua y reductores de la misma que evita la absorción o penetración de agua en la estructura.

02.01.00 TARRAJEO PRIMARIO RAYADO CON MORTERO CEMENTO **ARENA**

La superficie a cubrirse con el tarrajeo debe frotarse previamente con el rascado y eliminación de rebabas demasiadas pronunciadas, se limpiará y humedecerá convenientemente el paramento. El trabajo está constituido por una primera capa de mezcla con la que se conseguirá una superficie más o menos plana vertical pero de aspecto rugoso listo para aplicar el tarrajeo determinado en el cuadro de acabados.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

METODO DE MEDICION

La unidad de medición es por metro cuadrado, se computarán todas las áreas netas a vestir o revocar. Por consiguiente se descontarán los vanos o aberturas y otros elementos distintos al revoque, como molduras y demás salientes que deberán considerarse en partidas independientes.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

02.02.00TARRAJEO EN MUROS INTERIORES CON CEMENTO-ARENA 1:4

02.03.00TARRAJEO EN MUROS EXTERIORES CON CEMENTO-ARENA 1:4

Comprende los trabajos de tarrajeo en muros exteriores de albañilería. Se empleará para ello una mezcla de cemento y arena en proporción 1:4 y con una cantidad de agua adecuada según sea el caso.

El tarrajeo que se aplique directamente al muro, no será ejecutado hasta que estas superficies queden limpias y con una aspereza que permita la adherencia con éste. En el caso de muros con bloques de concreto, las paredes no deberán mojarse en bruto y el mortero debe ser más plástico que el utilizado normalmente para ladrillos, de manera que el bloque pueda absorber el exceso de agua.

El espesor mínimo será de 1 cm para cualquier revoque a ejecutar.

Estas mezclas se prepararán en bateas de madera u otro material adecuado y aprobado por la supervisión, perfectamente limpias de cualquier residuo anterior.

El tarrajeo se hará con cintas de la misma mezcla perfectamente alineadas y aplomadas, la aplicación de la mezcla se hará pañeteando con fuerza y presionando contra las superficies; para evitar vacíos interiores y obtener una capa no mayor a 2,5 cm.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENIERIA O M C

Las superficies a obtener serán planas, sin resquebrajamientos o defectos. En paños de gran área se harán bruñas de 1cm x 1cm con la finalidad de evitar fisuras por contracción de fragua.

METODO DE MEDICION

La unidad de medida será el metro cuadrado (m2) de superficie tarrajeada.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

02.03.00VESTIDURA DE DERRAMES EN PUERTAS, VENTANAS Y VANOS C:A 1:4

Los derrames de puertas, ventanas y vanos se ejecutarán nítidamente corriendo hasta el marco correspondiente. Los encuentros de muros, deben ser en ángulos perfectamente perfilados, las aristas de los derrames expuestos a impactos serán convenientemente boleados, los encuentros de muros con el cielo raso terminará en ángulo recto, salvo que se indique lo contrario en los planos.

METODO DE MEDICION

En los derrames la unidad de medida es el metro lineal, para el cómputo del metrado total se medirá la longitud efectivamente ejecutada de cada esquina en cada cara del vano, sumándose para obtener el total.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "Parroquia de San Agustín"

Marvine II

03.00.00 PISOS Y PAVIMENTOS

03.01.00 CONTRAPISO DE 40 MM. PARA PISO CEMENTO PULIDO

COLOREADO

El Contrapiso es una capa de cemento; arena, cuya finalidad es alcanzar el nivel requerido para la colocación del acabado y al mismo tiempo proporcionar una superficie

uniforme para recibir el material de asentamiento (mortero, pegamento, etc.) adecuado al

piso previsto para la superficie de circulación.

Se hará un contrapiso de mortero, mezcla cemento-arena gruesa, de los tipos y espesores

que en los planos se señalan de acuerdo al acabado o mezcla no propia del falso piso o

losa, en este caso el espesor del contrapiso será de 2".

Se echará una lechada de agua de cemento, en toda la superficie del piso momentos antes

de iniciar el trabajo del contrapiso. Igualmente con anterioridad a la ejecución del

contrapiso deberán quedar instaladas las tuberías del las instalaciones sanitarias,

instalaciones eléctricas y de comunicaciones, probadas hidráulicamente de acuerdo a lo

que se indique en las especificaciones pertinentes.

No se permitirá el tránsito sobre el contrapiso, tanto de personal, como ser utilizados de

depósitos de elementos de obra; en lo posible se cerrarán los ambientes.

Con el fin de reducir el manipuleo de concreto al mínimo, la mezcla deberá realizarse lo

más cerca posible del sitio donde se va a vaciar el concreto. De este modo se aminorara

las segregaciones y pérdidas de sus componentes.

METODO DE MEDICION

La unidad de medición es por metro cuadrado, se medirá el área neta comprendida entre

los extremos de los muros que lo limitan.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la

unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y

pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá

compensación total por el costo de material, equipo, mano de obra e imprevistos

necesarios para completar la partida.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

MENUELL

03.02.00 PISOS CERAMICO

Es el elemento de cerámico con su cuerpo no absorbente, destinados a pisos, sometida a un proceso de moldeo y cocción.

Serán de color uniforme, las piezas deberán presentar el color natural de los materiales que la conforman.

Las dimensiones de los cerámicos serán de 20cm x 30cm. Las tolerancias admitidas en las dimensiones de las aristas serán de más o menos 0.6% del promedio; más o menos 5% en el espesor.

Las piezas deberán cumplir con los requisitos establecidos por las normas de ITINTEC 333.004 para la sonoridad, escuadría, alabeo, absorción de agua resistencia al impacto y resistencia al desgaste.

Las muestras finales que cumplan con las especificaciones establecidas deberán ser sometidas a la aprobación del Arquitecto Proyectista. No se aceptarán en obra piezas diferentes a las muestras aprobadas.

Las piezas cerámicas se asentarán con mortero 1:4 cemento y arena gruesa.

El polvo de fragua deberá ser antiácido del mismo color de las piezas.

No se aceptará la colocación de piezas rotas o rayadas; las juntas deberán quedar perfectamente alineadas; las piezas colocadas no deben presentar desnivel en los bordes. En los casos en los que haya que colocar cartabones, estos se obtendrán por cortes a máquina, debiendo presentar bordes bien definidos sin despostilladuras, guiñaduras, etc.

Para su colocación y fraguado se considerarán las mismas especificaciones que para los zócalos cerámicos.

METODO DE MEDICION

La unidad de medición es por metro cuadrado para pisos cerámicos y se medirá el área comprendida entre los paramentos de los muros sin revestir, ejecutado y aceptado por el supervisor de la obra.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

04.00.00 ZÓCALOS Y CONTRAZOCALOS

04.01.00 ZÓCALO DE CERÁMICO 20 x 30 CM

Los cerámicos a emplear, serán de colores claros de primera calidad. Las dimensiones serán las convencionales de 20cm x 30cm, de lo contrario será según lo que se indique en el cuadro de acabados correspondiente. El material para su aplicación es mezcla cemento arena en proporción 1:1, la fragua se ejecutará preferentemente con porcelana.

La colocación de los cerámicos se ejecutará sobre el muro previamente tratado con el tarrajeo primario con mezcla 1:5 el que debe permanecer húmedo. Se ejecutará una nivelación a fin de que la altura sea perfecta y constante, la base para el asentado se hará empleando cintas para lograr una superficie plana y vertical.

Se colocarán las piezas con la capa de mezcla en su parte posterior previamente remojadas. A fin de que no se formen cangrejeras interiores, se dispondrán en forma de damero y con las juntas de las hiladas verticales y horizontales coincidentes y separadas en 1.5 mm., como máximo. La unión del zócalo con el muro tendrá una bruña perfectamente definida.

Para el fraguado del cerámico se utilizará porcelana la que se humedecerá y se hará penetrar en la separación de estas por comprensión de tal forma que llene completamente las juntas posteriormente se pasará un trapo seco para limpiar la pieza así como también para igualar el material de fragua (porcelana), de ser absolutamente necesario el uso de partes de cerámico (cartabones) estos serán cortados a máquina debiendo de presentar corte nítido sin despostilladuras, quiñaduras, etc.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

Las muestras finales que cumplan con las especificaciones establecidas deberán ser sometidas a la aprobación del Arquitecto Proyectista. No se aceptarán en obra piezas diferentes a las muestras aprobadas.

METODO DE MEDICION

La unidad de medición es por metro cuadrado, se tomará el área realmente ejecutada y cubierta por las piezas planas, por consiguiente agregando el área de derrames y sin incluir la superficie de las piezas especiales de remate.

Si la superficie a revestir es rectangular, el área se obtendrá multiplicando la longitud horizontal por la altura correspondiente, midiéndose está desde la parte superior del contrazócalo, si hubiera, hasta la parte inferior de la moldura o remate.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

05.02.00 LISTELOS DE CERÁMICA DE 8 x 30 CM

Los cerámicos a emplear, serán de colores claros de primera calidad. Las dimensiones serán las convencionales de 8cm x 30cm según lo indique en el cuadro de acabados correspondiente. El material para su aplicación es mezcla cemento arena en proporción 1:1, la fragua se ejecutará preferentemente con porcelana.

La colocación de los cerámicos como listelos se ejecutará sobre el muro previamente tratado con el tarrajeo primario con mezcla 1:5 el que debe permanecer húmedo. Se ejecutará una nivelación a fin de que la altura sea perfecta y constante, la base para el asentado se hará empleando cintas para lograr una superficie plana y vertical.

Para el fraguado del cerámico se utilizará porcelana la que se humedecerá y se hará penetrar en la separación de estas por comprensión de tal forma que llene completamente las juntas posteriormente se pasará un trapo seco para limpiar la pieza así como también

Of Community of the Com

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Resvient

para igualar el material de fragua (porcelana), de ser absolutamente necesario el uso de partes de cerámico (cartabones) estos serán cortados a máquina debiendo de presentar corte nítido sin despostilladuras, quiñaduras, etc.

METODO DE MEDICION

La unidad de medición es por metro lineal, se tomará la longitud realmente ejecutada y cubierta por las piezas planas.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

05.00.00 COBERTURAS

05.01.00 COBERTURA CON TEJA ANDINA

Sobre la losa del segundo piso se colocara la cobertura de Teja Andina según lo que indique los planos, asentada con mortero cemento-arena en proporción 1:4.

Para el colocado se tratará de que las piezas queden perfectamente alineadas y trabadas a fin de que existan los traslapes necesarios para que el agua discurra normalmente por los canales hasta las canaletas recolectoras para ser eliminadas mediante los tubos de evacuación al exterior.

Se consideran aquí las cumbreras en todo lo largo de las aristas o convergencia de planos de los techos inclinados.

METODO DE MEDICION

La unidad de medición es por metro cuadrado, se medirá el área neta ejecutada.

BASES DE PAGO

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

05.02.00 COBERTURA CON POLICARBONATO

06.00.00 CARPINTERIA DE MADERA

Este capítulo se refiere a la ejecución de puertas, ventanas y otros elementos de carpintería que en los planos se indican de madera o de sus derivados. En general, salvo que en los planos no se especifique otra cosa toda la carpintería a ejecutarse será hecha con madera cedro selecto,

La madera será de primera calidad, seleccionada derecha, sin nudos, rajaduras, partes blandas o cualquier otra imperfección que pueda afectar su resistencia o malograr su apariencia.

Todos los elementos se ceñirán exactamente a los cortes, detalles y medidas especificadas en los planos de carpintería de madera.

Los elementos de madera serán cuidadosamente protegidos para que no reciban golpes, abolladuras o manchas hasta la total entrega de la obra. Será responsabilidad del contratista cambiar aquellas piezas que hayan sido dañadas por acción de sus operarios o implementos y los que por cualquier acción no alcancen el acabado de la calidad especificada.

Especificaciones de calidad

La madera será del tipo seleccionado, debiendo presentar fibras rectas u oblicuas con dureza de suave a media.

No tendrá defectos de estructura, madera tensionada, comprimida, nudos grandes, etc.

Podrá tener nudos sanos, duros y cerrados no mayores de 30 mm., de diámetro.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

GAC C

Debe tener buen comportamiento el secado (Relación Contracción tangencial radial menor de 2.0) si torcimientos, colapso, etc.

No se admitirá más de un nudo de 30 mm., de diámetro (o su equivalente en área) por cada medio metro de longitud del elemento, o un número mayor de nudos cuya área total sea mayor que un nudo de 30 mm., de diámetro.

La madera debe ser durable, resistente al ataque de hongos e insectos y aceptar fácilmente tratamientos con sustancias químicas a fin de aumentar su duración.

Los elementos podrán tener hendiduras superficiales cuya longitud no sea mayor que el ancho de la pieza, exceptuándose las hendiduras propias del secado con las limitaciones antes anotadas.

El contenido de humedad de la madera no deberá ser mayor de la humedad de equilibrio con el medio ambiente, no pudiendo ser menor del 14% al momento de su colocación.

TRABAJOS COMPRENDIDOS

Las piezas descritas en la presente especificación no constituyen una relación limitativa, que excluya los otros trabajos que se encuentran indicados y/o detallados en los planos ni tampoco los demás trabajos de carpintería de madera que sea necesario para completar el proyecto, todos los cuales deberán ser ejecutados por el Contratista.

ESPECIFICACIONES CONSTRUCTIVAS

Marco para puertas

Las superficies de los elementos se entregarán limpias y planas, con uniones ensambladas nítidas y adecuadas.

Los astillados de moldurado o cepillados no podrán tener más de 3 mm. de profundidad.

Las uniones serán mediante espigas pasantes y además llevará elementos de sujeción.

La carpintería deberá ser colocada en blanco, perfectamente pulida y lijada para recibir posteriormente el tratamiento de pintura.

Se fijarán a los muros mediante tarugos o tacos.

I ACTOMIAL OF CALLAGATOR

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Los marcos de las puertas se fijarán a la albañilería por intermedio de tornillos a los tacos de madera alquitranada los que deben de hacer quedado convenientemente asegurados en el momento de ejecución de los muros.

Los marcos que van sobre el concreto sin revestir se fijarán mediante clavos de acero disparados con herramienta especial.

La madera empleada deberá ser nueva, de calidad adecuada y sin estar afectada por insectos xilórganos

Los marcos de las puertas y ventanas, se asegurarán con tirafones de 3" colocados en huecos de ½" de profundidad de ½" de diámetro (avellanados), a fin de esconder la cabeza, se tapará ésta con un tarugo puesto al hilo de la madera y lijado.

Se tendrá en cuenta las indicaciones de movimiento o sentido en que abren las puertas, así como los detalles correspondientes, para el momento de colocar los marcos y puertas. El inspector deberá aprobarlos materiales y su total presentación.

INSPECCION EN EL TALLER

El contratista indicará oportunamente al Ingeniero Supervisor el taller que tendrá a cargo la confección de la carpintería de madera para constatar en sitio la correcta interpretación de estas especificaciones y su fiel cumplimiento.

PROTECCIÓN

Los marcos, después de colocarlos, se protegerán con listones asegurados con clavos pequeños sin remachar, para garantizar que las superficies y sobre todo las aristas, no sufran daños por la ejecución de otros trabajos en las cercanías.

Las hojas de puertas y rejillas serán objeto de protección y cuidados especiales después de haber sido colocados para que se encuentren en las mejores condiciones en el momento en que serán pintados o barnizados.

06.01.00 PUERTAS DE CEDRO

De acuerdo a las indicaciones arriba mencionadas, siguiendo todo lo descrito anteriormente.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NEEWEERIA O MC

METODO DE MEDICION

La unidad de medición es por metro cuadrado tratándose de puertas.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

06.02.00 PUERTA CONTRAPLACADA

a.- Bastidores

La madera a emplearse en el bastidor cumplirá las especificaciones indicadas:

Será del tipo de cedro selecto.

Será de fibra recta u oblicua con dureza de suave a media.

No tendrá defectos de estructuras: madera tensionada, comprimida, con nudos grandes, etc., podrá tener nudos sanos, duros y cerrados no mayores de 30 mm.

Debe tener un buen comportamiento al secado, sin torcimientos, colapso.

La madera debe ser durable, resistente al ataque de hongos e insectos y aceptar fácilmente el tratamiento con sustancias químicas a fin de aumentar su duración.

Los elementos podrán tener hendiduras superficiales.

Los cercos no deberán tener un ancho inferior a 45mm. medios en la hoja terminada.

En ambos lados del cerco y a su mitad se colocará listones o refuerzos adicionales de espesor igual al cerco de 30mm.. de largo por 100mm. de ancho a fin de ofrecer un asiento firme para la colocación de las chapas.

E COLORADA

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

MARKET METERS

Los cercos y cabezales se unen entre sí en cada esquina mediante grapas corrugadas o conectores metálicos colocados sobre la cara y el reverso. Los cercos podrán ser empalmados, de dos piezas como máximo, unidos mediante grapas.

b.- Material de Relleno

El relleno interior de la puerta podrá ser de cualquier material resistente a la polilla, capaz de formar una junta sólida con las cargas y cuyo ancho sea idéntico al de los cercos y cabezales.

Puede ser fabricado por cualquiera de los siguientes sistemas:

Listones de madera con un espesor mínimo de 15mm. colocados horizontalmente con una separación máxima de 10cm.

Polietileno expandido anti-inflamante o similar técnopor.

La hoja armada deberá resistir esfuerzo mínimo a rotura por compresión de 2Kg/cm².

El pegamento a usarse en las juntas de los cercos y del alma del relleno con el triplay será de tipo área formaldehído (A 70) o similar.

c.- Plancha de Triplay

Las tapas de las hojas serán de triplay de tipo Lupuna resistente a la polilla, así como a la humedad con una cara seleccionada, el espesor mínimo será de 4mm. (El triplay será de calidad B.B.).

METODO DE MEDICION

La unidad de medición es por metro cuadrado tratándose de puertas.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

06.03.00 VENTANAS BATIENTES y/o CORREDIZAS DE MARCO EN MADERA DE CEDRO

De acuerdo a las indicaciones en el ítem 09.00.00 arriba mencionadas, siguiendo todo lo descrito anteriormente.

METODO DE MEDICION

La unidad de medición es por metro cuadrado para el caso de ventanas.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

07.00.00 CARPINTERIA METALICA Y HERRERIA

Este rubro comprende los trabajos que se ejecutan con elementos metálicos que no tengan función estructural resistente; bajo el contexto de carpintería metálica están comprendidas las puertas, ventanas, rejas y estructuras similares que se ejecutan con perfiles especiales, barras, planchas, platinas, etc.

Deberá tenerse especial cuidado en proteger la carpintería, durante el traslado, almacenamiento, y colocación en obra, de golpes que deformen su estructura, raspaduras, etc. Los elementos que acusen algún defecto deberán ser cambiados.

La carpintería metálica incluye la cerrajería necesaria para el buen funcionamiento, seguridad y acabado; debiendo el ejecutor de la obra recabar la correspondiente aprobación del Ingeniero Inspector.

07.01.00 CANTONERAS ALUMINIO EN ESCALERAS Y JUNTAS PISOS

Estas cantoneras de aluminio serán perfiles 1 ½" X 1 ½" y estarán colocados en todas las juntas de construcción como también en todos los pasos de las escaleras a construirse.

HAGIONAL OF CLAMATER

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENIERI ONC

Tendrán las características de acuerdo al diseño en los planos.

METODO DE MEDICION

El método de medición es por metro lineal, de acuerdo con lo detallado en los planos, ejecutado y aceptado por el Supervisor de la obra.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la

unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

08.00.00 CERRAJERIA

La presente especificación se refiere a los elementos de cerrajería para las puertas de madera, aluminio y fierro. Las cerraduras serán del tipo pesado serie 161 y de acuerdo a la especificación Federal Americana FF-11-106 a. Lo incluido en estas específicaciones es: cerraduras, bisagras, picaportes, topes, etc. El inspector, antes de la colocación deberá aprobarse cada elemento de cerrajería.

08.01.00 CERRADURA PARA PUERTA

CERRADURA TIPO B INTERIOR - US-53/NPS o SIMILAR

CERRADURA TIPO C BAÑOS - US-42/NPS o SIMILAR

Las cerraduras de la presente especificación son para instalar en el hueco redondo en los frentes y bordes de las puertas.

Su forma es cilíndrica, con mecanismo de acero, sistema de cinco pines, dos perillas y escudos no ornamentales, lo que permitirá un número prácticamente ilimitado de unidades sin repetir la llave y hacer cualquier combinación con las llaves maestras.

Tipo B

: Puertas interiores

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "Parroquia de San Agustín"

Tipo C

: En SS. HH.

Los materiales que forman todas las partes de la cerradura serán de acero inoxidable pulido, satinado y resistente a cualquier condición atmosférica. Todas las piezas serán elaboradas con el material más adecuado, conforme a las funciones y esfuerzos a que están sometidas.

El supervisor se reserva el derecho de aprobar la marca y forma de las cerraduras.

METODO DE MEDICION

La unidad de medición es por pieza, el cómputo se efectuará por cada una de las piezas iguales en dimensiones y características, ejecutado y aceptado por el supervisor de la obra.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

9.00.00 VIDRIOS CRISTALES Y SIMILARES

9.01.00 VIDRIOS SEMIDOBLES TRANSPARENTE

Este capítulo se refiere a la completa adquisición y colocación de todos los materiales, labores e implementos relacionados con las superficies vidriadas para la iluminación de los ambientes.

Se colocarán en ventanas, mamparas, puertas y otros elementos en donde se indiquen en los planos. Y se instalarán en lo posible después de terminados los trabajos del ambiente. Se usará vidrio transparente incoloro semidoble crudo.

En general serán planos, sin fallas ni burbujas de aire ni alabamientos.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

MENNENIA UMC

Proceso de colocación

Su colocación se hará con operarios especializados. En ventanas y puertas de madera serán colocados con junquillos según se indique en los planos.

En puertas y ventanas de madera los vidrios se asegurarán con junquillo del mismo material. En puertas, mamparas y ventanas de fierro los vidrios se asegurarán con silicona.

Antes de la terminación de la obra y mientras no se haga entrega de ella habiendo sido ya colocados los vidrios, serán éstos marcados o pintados con una lechada de cal, para evitar impactos o roturas por el personal de la obra. Todos los vidrios serán lavados a la terminación del trabajo, limpiándolos de toda mancha.

METODO DE MEDICION

La unidad de medición es por pie cuadrado, el cómputo total se obtendrá sumando los pies cuadrados de cada pieza, para cada tipo de pieza se tomará el largo por el ancho, midiendo las dimensiones en pulgadas pares de espacio que ocupará el vídrio y luego calculando su área en pies cuadrado.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

10.00.00 PINTURA

Este capítulo comprende la pintura de todos los muros y columnas, cielo raso, vigas, carpintería en general, etc., que se indica en el cuadro de acabados; así como para todos aquellos elementos en los que se indica un acabado terminado.

Todos los materiales deberán ser llevados a la obra en sus respectivos envases originales. Los materiales que necesiten ser mezclados lo serán en la misma obra. Aquellos que se adquieren listos para ser usados, deberán emplearse sin alteraciones y de conformidad con

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

las instrucciones de los fabricantes. No se permitirá el empleo de imprimaciones mezcladas, a fin de evitar falta de adhesión de las diversas capas entre sí.

Antes de comenzar la pintura será necesario efectuar resanes y lijado de todas las superfícies, las cuales llevarán una base de imprimante de calidad, debiendo ser este de marca conocida.

Se aplicarán 2 capas de pintura, de acuerdo al acabado. Sobre la primera capa de muros y cielo raso, se harán los resanes y masillados necesarios antes de la segunda capa definitiva. No se aceptarán desmanches, sino más bien otra capa de pintura de paño completo.

Los ambientes de madera deberán ser cepillados y lijados con distintas graduaciones según la calidad de materiales, nudos y contrahebras; se recubrirán con una mano de goma laca y se emparejará con aceite de linaza.

Las superficies que no puedan ser terminadas satisfactoriamente con el número de capas de pintura especificada, podrán llevar otras capas adicionales, según como se requiera para producir un resultado satisfactorio.

10.01.00 PINTURA LATEX EN INTERIORES Y EXTERIORES

Se aplicará dos manos de imprímante y dos manos con pinturas basadas en látex vinil sintético.

Se permitirá solamente el empleo de las siguientes marcas y tipos:

Sherwin Williams, "ExcelloMate", Vencedor "Supermate o similares"

La pintura es el producto formado por uno o varios pigmentos con o sin carga y otros aditivos dispersos homogéneamente, con un vehículo, que se convierte en una película sólida; después de su aplicación en capas delgadas y que cumple con una función de objetivos múltiples.

Es un medio de protección contra los agentes destructivos del clima y el tiempo; un medio de higiene que permite lograr superficies lisas, limpias y luminosas, de propiedades asépticas, un medio de ornato de primera importancia y un medio de señalización e identificación de las cosas y servicios.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

O IC

Requisitos para Pinturas

La pintura no deberá ostentar un asentamiento excesivo en su recipiente abierto, y deberá

ser fácilmente dispersada con una paleta hasta alcanzar un estado suave y homogéneo.

La pintura no deberá mostrar engrumecimiento, de colocación, conglutimiento ni

separación del color, y deberá estar exenta de terrenos y natas.

La pintura al ser aplicada deberá extenderse fácilmente con la brocha, poseer cualidades

de enrasamiento y no mostrar tendencias al escurrimiento o a correrse al ser aplicada en

las superficies verticales y lisas.

La pintura no deberá formar nata, en el envase tapado en los períodos de interrupción de

la facna de pintado.

La pintura deberá secar dejando un acabado liso y uniforme, exento de asperezas, granos

angulosos, partes disparejas y otras imperfecciones de la superficie. El contratista

propondrá las marcas de pintura a emplearse. Los colores serán determinados por el

cuadro de acabados o cuadro de colores, o en su defecto por el Arquitecto Proyectista.

El contratista será responsable de los desperfectos o defectos que pudieran presentarse,

hasta (60) días después de la recepción de la obra, quedando obligado a subsanarlas a

entera satisfacción.

Materiales

Todos los materiales deberán ser llevados a la obra en sus respectivos envases originales.

Los materiales que necesiten ser mezclados, lo serán en la misma obra.

Aquellos que se adquieran para ser usados, deberán emplearse sin alteraciones y de

conformidad con las instrucciones de los fabricantes. No se permitirá el empleo de

imprimaciones mezcladas. A fin de evitar falta de adhesión de las diversas capas entre sí.

Proceso de Pintado

Antes de comenzar la pintura, será necesario efectuar resanes y lijado de todas las

superficies, las cuales llevará una base de imprimante de calidad, debiendo ser este de

marca conocida. Se aplicarán dos manos de pintura. Sobre la primera mano, de muros y

cielo rasos, se hará los resanes y masillados necesarios antes de la segunda mano

D C CAMMANA)

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENIERIA B N C

definitiva. No se aceptarán desmanches, sino más bien otra mano de pintura de paño completo.

Todas las superficies a las que se debe aplicar pintura estar secas y deberá dejarse tiempo suficiente entre las manos o capas sucesivas de pintura, a fin de permitir que está seque convenientemente.

Ningún pintado exterior deberá efectuarse durante horas de lluvia, por menuda que está fuera. Las superficies que no puedan ser terminadas satisfactoriamente con el número de manos de pintura especificadas deberán llevar manos adicionales según requieran para producir un resultado satisfactorio sin costo adicional alguno.

Tipos de Pintura

La aplicación de pintura se hará de acuerdo a lo estipulado en el cuadro de acabados y colores o serán determinados por el proyectista de acuerdo con las muestras que presentará el contratista.

Imprimante

Es una pasta basada en látex a ser utilizado como imprimante. Deberá ser un producto consistente al que se le pueda agregar agua para darle una viscosidad adecuada para aplicarla fácilmente. En caso necesario el Contratista podrá proponer y utilizar otro tipo de imprimante, siempre y cuando cuente con la aprobación del Ingeniero Inspector. Al secarse deberá dejar una capa dura, lisa y resistente a la humedad, permitiendo la reparación de cualquier grieta, rajadura, porosidad y asperezas. Será aplicada con brocha.

Pintura a base de "Látex Vinil"

Son pinturas tipo supermate, superlátex o similares, compuestas de ciertas dispersiones en agua de resinas insolubles; que forman una película, hasta constituir una continua, al evaporarse el agua.

La pintura entre otras características, debe ser resistente a los álcalis del cemento, resistente a la luz y a las inclemencias del tiempo. Se aplicarán en los ambientes indicados en los planos respectivos, dos manos de imprimación a base wallfix o similar y

N. C. January D.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGEWIERIA UNC

2 manos de pintura como mínimo. Debe soportar el lavado con agua y jabón sin sufrir alteraciones en su acabado.

METODO DE MEDICION

La unidad de medición es por metro cuadrado, se medirá el área total neta a ejecutar.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

10.02.00 PINTURA EN PUERTAS C/BARNIZ 2 MANOS

10.03 PINTURA EN VENTANAS C/BARNIZ 2 MANOS

Para las piezas de carpintería de madera, previamente al acabado con la pintura barniz se efectuará los trabajos de lijado y masillado, se lijarán con lija de grano decreciente a fino, de acuerdo con la aspereza que presente la madera, luego se aplicará una base blanca hasta eliminar los poros de la madera de tal manera que presenten un acabado liso y resistente, posteriormente se aplicará la pintura con equipo de pintar.

Antes de efectuar la pintura definitiva se quitará el polvo y eliminación las salpicaduras de cemento o yeso, las manchas de grasa o de otras sustancias extrañas y se aplicará una nueva mano de barniz.

Color

La selección de colores deberá ser consultada al Arquitecto Proyectista y las muestras se realizarán en los lugares mismos donde se va a pintar, y en forma tal que se puedan ver con la luz natural del ambiente.

Aceptación

Se rechazará la pintura que no cumpla las características y calidad establecidas.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NG EWIERIA G M C

Procedimiento de Ejecución

La pintura a usarse será extraída de sus envases originales y se empleará sin adulteración alguna procediendo en todo momento de acuerdo a las especificaciones proporcionadas por los fabricantes. La pintura se aplicará en capas sucesivas a medida que se vayan secando las anteriores. Se dará un mínimo de 2 manos.

METODO DE MEDICION

El método de medición es por metro cuadrado. En los cielos rasos de medirá el área del cielo raso comprendida entre las caras laterales de las paredes o vigas que lo limitan, a este resultado se le agregará el área neta de la cara inferior y las laterales de la vigas para obtener el cómputo total.

En los muros interiores y exteriores se medirá el área neta a pintarse de muros y salientes como columnas y volados agregando el área de los derrames para obtener el cómputo total. Por consiguiente se descontará los vanos o aberturas.

En puertas de madera se tomará como área la superficie integral de las dos caras sin descontar huecos o vidrios si lo hubiera, el área de una cara será igual al producto del ancho por el alto, es decir, entre caras exteriores del marco.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

ESPECIFICACIONES TÉCNICAS ESTRUCTURAS

GENERALIDADES

Este documento ha sido elaborado teniendo en cuenta las siguientes consideraciones. Para que sirva como información complementaria de la que se indica en los planos respectivos. Se ha tenido en cuenta criterios de carácter constructivo respecto a los materiales, procedimientos de construcción, etc.

TOTAL OF CHARLES

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENIERIA G A C

Consideraciones particulares de la zona, que por su naturaleza son susceptibles a variaciones.

Estas especificaciones se complementan con el Reglamento Nacional de Construcciones y las normas de ASTM y el ACI.

01.01.00 OBRAS PROVISIONALES

01.01.01 CARTEL DE OBRA

DESCRIPCIÓN

Esta partida comprende la confección, pintado y colocación del cartel de obra de dimensión aprox. (3.60 x 2.40m) las piezas serán acopladas y clavadas de tal manera que queden perfectamente rígidas.

Los bastidores y parantes serán de madera eucalipto, los paneles de triplay lupuna de 4 mm, la superficie a pintar será previamente lijada y recibirá una mano de pintura base; Los colores y emblemas serán los indicados por la entidad contratante.

MÉTODO DE MEDICIÓN

El Presupuesto considera la unidad (und) como unidad de medida en la partida correspondiente al Cartel de Obra.

BASES DE PAGO

El precio constituirá compensación por todo el trabajo ejecutado para confeccionar el cartel, pintarlo y colocarlo en obra.

El pago será efectuado mediante el presupuesto contratado a precios unitarios por unidad (und) con cargo a la partida "Cartel de Obra" según precios unitarios del contrato, entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo

Al finalizar de los trabajos todas las construcciones provisionales deberán ser retiradas y limpiadas.

OF COMMUNITY OF THE PROPERTY O

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENIERIA O N C

01.01.01 CASETA DE ALMACÉN Y GUARDIANÍA

DESCRIPCIÓN

De acuerdo a las necesidades de la obra esta incluye y contempla la construcción de una caseta para utilizarla como oficina, almacén y guardianía, será un espacio dentro del área del proyecto, ubicada convenientemente y en coordinación con la supervisión.

MÉTODO DE MEDICIÓN

Se medirá por un monto m2

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

01.02.00 TRABAJOS PRELIMINARES

01.02.01 NIVELACIÓN TRAZO Y REPLANTEO PRELIMINAR

DESCRIPCIÓN

Se refiera a los trabajos topográficos que se efectuaran en el lugar de la obra, con el personal y el equipo necesario de precisión, a fin de realizar el replanteo de los datos y especificaciones indicadas de acuerdo a los planos, además realizar algunos reajustes y controlar los resultados.

Se tendrá fijo el Bench Marck o cota de referencia, planilla de cotas, estacas o puntos auxiliares, etc, los que serán cuidadosamente observados en los planos y que representan fielmente la topografía del terreno.

MÉTODO DE MEDICIÓN

El trabajo se medirá por M2.

BASES DE PAGO

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENERIH O M C

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá compensación total por el costo de material, equipo, mano de obra e imprevistos necesarios para completar la partida.

01.03.00 MOVIMIENTO DE TIERRAS

01.03.01.01 EXCAVACIÓN DE ZANJAS Y ZAPATAS

01.03.01.01 EXCAVACIÓN DE ZANJAS Y ZAPATAS

DESCRIPCION

Las excavaciones para zapatas, cimientos corridos, muros de contención, de pozos para cisternas subterráneas, serán del tamaño exacto al diseño de estas estructuras, se omitirán los moldes laterales cuando la compactación del terreno lo permita y no exista riesgo y/o peligro de derrumbes o de filtraciones de agua.

Antes del vaciado, se deberá aprobar la excavación, no se permitirá ubicar zapatas, cimientos u otra estructura sobre material de relleno sin consolidación adecuada.

El fondeo de toda la excavación para cimentación debe estar limpio y parejo, y se debe retirar el material suelto. Si por casualidad el contratista se excede en la profundidad de la excavación, no se permitirá el relleno con material suelto, sino se rellenará con mezcla de concreto ciclópeo 1:12 o en su defecto con hormigón compactado.

MÉTODO DE MEDICIÓN

El método de medición es por metro cúbico, de acuerdo con lo detallado en los planos, ejecutado y aceptado por el Supervisor de la obra.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá

MA STOWAL PROJECT OF COLUMN AND ADDRESS OF THE PROPERTY OF THE

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENIERIA G H C

compensación total por el costo de material, equipo, mano de obra e imprevistos

necesarios para completar la partida.

01.03.04.01 ACARREO Y ELIMINACIÓN DE MATERIAL EXCEDENTE D=30M

El Contratista eliminará periódicamente los desmontes que se tengan en obra. Una vez

terminada la obra deberá dejar el terreno completamente limpio de desmonte u otros

materiales que interfieran.

MÉTODO DE MEDICIÓN

El método de medición es por metro cúbico.

BASES DE PAGO

El pago será efectuado por la cantidad de metrado ejecutado medidos de acuerdo a la

unidad de la partida, al Precio Unitario del Análisis de Costos Unitarios, cuyo precio y

pago constituirá compensación absoluta por el trabajo realizado, y dicho pago constituirá

compensación total por el costo de material, equipo, mano de obra e imprevistos

necesarios para completar la partida

01.04.00 OBRAS DE CONCRETO SIMPLE

01.04.01 SOLADOS

01.04.01.01 SOLADO PARA ZAPATAS

01.04.01.02 SOLADO PARA LOSA

En esta Partida se consideran trabajos de vaciado de una capa de concreto, con el objetivo

de nivelar el terreno para posteriormente vaciar las zapatas.

Se empleará para ello concreto en una proporción de 1:12 (cemento: hormigón).

Se efectuará el vaciado previa limpieza, apisonado y humedecimiento de la superficie, el

terreno será nivelado de tal manera que se asegure un espesor mínimo y uniforme de 4".

METODO DE MEDICION

TO A MANUAL OF THE PARTY OF THE

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

La unidad de medida será el metro cuadrado (m2) y comprenderá el área de contacto con el terreno natural de las zapatas.

BASES DE PAGO

Se pagará según el número de metros cuadrados medidos según lo anteriormente descrito bajo la autorización del supervisor, al precio que indique el Análisis de Costos, cuyo precio y pago constituirá compensación absoluta por el trabajo realizado.

01.04.02 SOBRECIMIENTOS

01.04.02.01 SOBRECIMIENTO DE CONCRETO C:H 1:8 MÁS 25% DE PIEDRA 3"

DESCRIPCION

Llevarán sobrecimientos todos los muros de la primera planta, siendo el dimensionamiento el especificado en los planos respectivos, debiendo respetarse lo estipulado en estos en cuanto a proporciones, materiales y otras indicaciones.

Los sobrecimientos serán de concreto en proporción de 1:8 (cemento – hormigón) más 25% de P.M. máximo de 3", de resistencia especificada en los planos.

Para lograr la integridad de los cimientos con los sobrecimientos, se dejarán en la parte superior de los primeros, piedras medianas a medio sumergir, y antes de vaciar el sobrecimiento se verificará que la superficie esté limpia, luego se aplicará una lechada de cemento y finalmente se procederá al vaciado.

El encofrado a usarse deberá estar en óptimas condiciones garantizándose con estos: alineamientos, idénticas secciones, economía, etc.

El encofrado podrá retirarse a los dos días de haberse llenado el sobrecimiento. Luego del fraguado inicial, se curará este por medio de constantes baños de agua durante 3 días como mínimo a partir del vaciado.

La cara superior del sobrecimiento deberá ser lo más nivelada posible, lo cual garantizará el regular acomodo de las unidades de albañilería.

MÉTODO DE MEDICIÓN

P O SAMARITA AND S

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

MGENTERIA O A C

El trabajo ejecutado, de acuerdo a las prescripciones antes dichas, se medirá en metros cúbicos (m3).

BASES DE PAGO

El pago se hará por metro cúbico (m3) según precio unitario del contrato, entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.04.02.02 ENCOFRADO Y DESENCOFRADO DE SOBRECIMIENTOS

DESCRIPCIÓN

Se armará el encofrado con madera sin cepillar y espesor no menor de 1.5". Los encofrados llevan un barrote de refuerzo de 2" x 3"cada 0.50mt. Se cuidará la verticalidad y nivelación del encofrado así como que su construcción sea rígida. El desencofrado podrá hacerse después de 24 horas de vaciado el concreto.

MÉTODO DE MEDICIÓN

El trabajo ejecutado, de acuerdo a las prescripciones antes dichas, se medirá en metros cuadrados (m2).

BASES DE PAGO

El pago se hará por metro cuadrado (m2) según precio unitario del contrato, entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.05.00.00 OBRAS DE CONCRETO ARMADO

01.05.00 ZAPATAS

01.05.01.01 ZAPATAS DE CONCRETO F'C=175 KG/CM2

DESCRIPCIÓN

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGEWIER I

Esta Partida abarca los trabajos para la ejecución de zapatas que servirán de apoyo para las columnas, las dimensiones se especifican en los planos del proyecto.

Se empleará una mezcla de concreto de dosificación aprobada por el supervisor con un f'c de 175 Kg/cm2. Se usará acero de refuerzo de fy = 4200 Kg/cm2.

La mezcla del concreto (cemento y agregados) deberá hacerse en una superficie limpia y apropiada, debiéndose mezclar con (mezcladora trompo) hasta que se logre una distribución uniforme de los materiales en seco y añadiéndose posteriormente el agua necesaria No se permitirá el remezclado del concreto que ha endurecido, el concreto se preparará lo más cerca posible a su destino final.

Los bordes de la zapata serán encofrados. Cuando no se requiera efectuar el vaciado de una falsa zapata, se procederá a vaciar un solado, el mismo que estará limpio y humedecido, se colocará previamente la malla de refuerzo para proceder al llenado.

Antes de vaciar el concreto se eliminará toda suciedad y materia extraña del espacio que va a ser ocupado por él mismo.

El concreto deberá ser vaciado continuamente o en capas de un espesor que no se llene concreto sobre otro que haya endurecido. La altura máxima de colocación del concreto por caída libre será de 2.5m, si no hay obstrucciones tales como armadura o arriostres de encofrado y de 1.5m si existen estas.

MÉTODO DE MEDICIÓN

El trabajo ejecutado, de acuerdo a las prescripciones antes dichas, se medirá en metros cúbicos (m3).

BASES DE PAGO

El pago se hará por metro cúbico (m3) según precio unitario del contrato, entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.05.02.02 ACERO Fy=4200 KG/CM2 Ø 1/2" PARA ZAPATAS

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

Reputation of the Control of the Con

DESCRIPCIÓN

El acero será corrugado con un fy = 4,200 kg/cm2

Ganchos y dobleces: Todas las barras se doblarán en frío, no se doblará en la obra ninguna barra parcialmente embebida en concreto, excepto esté indicado en los planos.

El radio de doblez mínimo para ganchos estándar medido en la parte interior de la barra será el siguiente:

DIÁMETRO DE VARILLA

RADIO MÍNIMO

3/8" a 5/8"

2 1/2" diámetros

3/4" a 1

3 diámetros

Mayores de 1"

4 diámetros

Colocación del refuerzo: El refuerzo se colocará con precisión y será apoyado adecuadamente sobre soportes de concreto, metal u otro material aprobado, espaciadores o estribos.

Tolerancia: El refuerzo se colocará en las proporciones especificadas en los planos con las siguientes tolerancias.

En elementos sujetos a flexión, muros y columnas en las cuales "d" es mayor de 60 cm + o - 12mm.

La posición longitudinal de dobleces y extremos de barras: + o - 5mm, excepto que no será reducido el recubrimiento especificado de concreto en los extremos.

Espaciamiento de barras: La separación libre entre barras paralelas (excepto en columnas y entre capas múltiples de barras en vigas) no será menor que el diámetro nominal que la barra, 1½ veces el tamaño máximo del agregado grueso, o a 5cm cuando el refuerzo de vigas principales o secundarias este colocado en dos o más capas, la distancia libre entre capas no será menor de 2.5cm y las barras de las capas superiores se colocarán directamente sobre las de capas inferiores.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Empalmes en el refuerzo: No se harán empalmes en el refuerzo, excepto los que se muestran en los planos de estructuras.

La longitud del traslape para barras deformadas de tracción será no menor que 24, 30 y 36 diámetros de barras para límites de fluencia especificadas de 2800, 3500 y 4200 kg/cm2 respectivamente, ni menor a 30 cm. Para barras lisas de longitud mínima de traslape será el doble que para barras corrugadas.

La longitud del traslape para barras deformadas en compresión será no menor de 20, 24 y30 diámetros de barras para aceros con límites de fluencia especificados de 3500, 4200 y 5250 kg/cm2 respectivamente, ni menor de 80 cm. Cuando la resistencia especificada del concreto sea menor que 210 kg/cm2 la longitud del traslape será 1/3 mayor que los valores antes mencionados.

MÉTODO DE MEDICIÓN

La medición se hará por kg.

BASES DE PAGO

El pago por concepto de acero, se hará tomando como base el precio unitario por kilogramo (Kg.) de acero adquirido y colocado, incluyendo la mano de obra e imprevisto para cumplir con el metrado.

01.05.03 VIGAS DE CIMENTACION

01.05.03.01 CONCRETO EN VIGAS DE CIMENTACION F'C=210 KG/CM2

DESCRIPCIÓN

Esta Partida abarca los trabajos para la ejecución de vigas de cimentacion que servirán de apoyo para las columnas y muros, las dimensiones se especifican en los planos del proyecto.

Se empleará una mezcla de concreto de dosificación aprobada por el supervisor con un f'c de 175 Kg/cm2. Se usará acero de refuerzo de fy = 4200 Kg/cm2.

La mezcla del concreto (cemento y agregados) deberá hacerse en una superficie limpia y apropiada, debiéndose mezclar con (mezcladora trompo) hasta que se logre una

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

OMC O

distribución uniforme de los materiales en seco y añadiéndose posteriormente el agua necesaria No se permitirá el remezclado del concreto que ha endurecido, el concreto se preparará lo más cerca posible a su destino final.

Los bordes de la zapata serán encofrados. Cuando no se requiera efectuar el vaciado de una falsa zapata, se procederá a vaciar un solado, el mismo que estará limpio y humedecido, se colocará previamente la malla de refuerzo para proceder al llenado.

Antes de vaciar el concreto se eliminará toda suciedad y materia extraña del espacio que va a ser ocupado por él mismo.

El concreto deberá ser vaciado continuamente o en capas de un espesor que no se llene concreto sobre otro que haya endurecido. La altura máxima de colocación del concreto por caída libre será de 2.5m, si no hay obstrucciones tales como armadura o arriostres de encofrado y de 1.5m si existen estas.

MÉTODO DE MEDICIÓN

El trabajo ejecutado, de acuerdo a las prescripciones antes dichas, se medirá en metros cúbicos (m3).

BASES DE PAGO

El pago se hará por metro cúbico (m3) según precio unitario del contrato, entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.05.03.02 ACERO Fy=4200 KG/CM2 Ø 1/2" EN VIGAS DE CIMENTACION

DESCRIPCIÓN

El acero será corrugado con un fy = 4,200 kg/cm2

Ganchos y dobleces: Todas las barras se doblarán en frío, no se doblará en la obra ninguna barra parcialmente embebida en concreto, excepto esté indicado en los planos.

El radio de doblez mínimo para ganchos estándar medido en la parte interior de la barra será el siguiente:

DIÁMETRO DE VARILLA

RADIO MÍNIMO

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

3/8" a 5/8"

2 1/2" diámetros

3/4" a 1

3 diámetros

Mayores de 1"

4 diámetros

Colocación del refuerzo: El refuerzo se colocará con precisión y será apoyado adecuadamente sobre soportes de concreto, metal u otro material aprobado, espaciadores o estribos.

Tolerancia: El refuerzo se colocará en las proporciones especificadas en los planos con las siguientes tolerancias.

En elementos sujetos a flexión, muros y columnas en las cuales "d" es mayor de 60 cm + o = 12mm.

La posición longitudinal de dobleces y extremos de barras: + o - 5mm, excepto que no será reducido el recubrimiento especificado de concreto en los extremos.

Espaciamiento de barras: La separación libre entre barras paralelas (excepto en columnas y entre capas múltiples de barras en vigas) no será menor que el diámetro nominal que la barra, 1½ veces el tamaño máximo del agregado grueso, o a 5cm cuando el refuerzo de vigas principales o secundarias este colocado en dos o más capas, la distancia libre entre capas no será menor de 2.5cm y las barras de las capas superiores se colocarán directamente sobre las de capas inferiores.

Empalmes en el refuerzo: No se harán empalmes en el refuerzo, excepto los que se muestran en los planos de estructuras.

La longitud del traslape para barras deformadas de tracción será no menor que 24, 30 y 36 diámetros de barras para límites de fluencia especificadas de 2800, 3500 y 4200 kg/cm2 respectivamente, ni menor a 30 cm. Para barras lisas de longitud mínima de traslape será el doble que para barras corrugadas.

La longitud del traslape para barras deformadas en compresión será no menor de 20, 24 y30 diámetros de barras para aceros con límites de fluencia especificados de 3500, 4200 y 5250 kg/cm2 respectivamente, ni menor de 80 cm. Cuando la resistencia especificada del concreto sea menor que 210 kg/cm2 la longitud del traslape será 1/3 mayor que los valores antes mencionados.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENIERIA D N C

MÉTODO DE MEDICIÓN

La medición se hará por kg.

BASES DE PAGO

El pago por concepto de acero, se hará tomando como base el precio unitario por kilogramo (Kg.) de acero adquirido y colocado, incluyendo la mano de obra e imprevisto para cumplir con el metrado.

01.05.03.03 ENCOFRADO Y DESENCOFRADO VIGA DE CIMENTACION

DESCRIPCIÓN

Los encofrados tendrán una resistencia adecuada para resistir con seguridad y sin deformaciones apreciables las cargas impuestas por su propio peso, los encofrados serán herméticos a fin de mantener su posición y forma. Los encofrados serán debidamente alineados y nivelados de tal manera que formen elementos de ubicación y de las dimensiones indicadas en los planos.

Se armará el encofrado con madera sin cepillar y espesor no menor de 1.5". Los encofrados llevan un barrote de refuerzo de 2" x 3"cada 0.50mt. Se cuidará la verticalidad y nivelación del encofrado así como que su construcción sea rígida.

MÉTODO DE MEDICIÓN

El trabajo ejecutado, de acuerdo a las prescripciones antes dichas, se medirá en metros cuadrados (m2).

BASES DE PAGO

El pago se hará por metro cuadrado (m2) según precio unitario del contrato, entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

01.05.04 COLUMNAS

01.05.05.01 CONCRETO EN COLUMNAS F'C=210 KG/CM2

DESCRIPCIÓN

Esta Partida abarca los trabajos para la ejecución de columnas, de las dimensiones que se

especifican en los planos del provecto.

Se empleará una mezcla de concreto de dosificación aprobada por el supervisor con un

f'c de 210 Kg/cm². Se usará acero de refuerzo de fy = 4200 Kg/cm².

La mezcla del concreto (cemento y agregados) deberá hacerse en una superficie limpia y

apropiada, debiéndose mezclar con (mezcladora trompo) hasta que se logre una

distribución uniforme de los materiales en seco y añadiéndose posteriormente el agua

necesaria No se permitirá el remezclado del concreto que ha endurecido, el concreto se

preparará lo más cerca posible a su destino final.

El concreto deberá ser vaciado continuamente o en capas de un espesor que no se llene

concreto sobre otro que haya endurecido. La altura máxima de colocación del concreto

por caída libre será de 2.5m, si no hay obstrucciones tales como armadura o arriostres de

encofrado y de 1.5m si existen estas.

MÉTODO DE MEDICIÓN

El trabajo ejecutado, de acuerdo a las prescripciones antes dichas, se medirá en metros

cúbicos (m3).

BASES DE PAGO

El pago se hará por metro cúbico (m3) según precio unitario del contrato, entendiéndose

que dicho precio y pago constituirá compensación total por toda la mano de obra,

incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para

la ejecución del trabajo.

01.05.04.02 ACERO Fy=4200 KG/CM2 Ø 1/2" PARA COLUMNAS

DESCRIPCIÓN

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

MGENTERIA O M C

El acero será corrugado con un fy = 4,200 kg/cm2

Ganchos y dobleces: Todas las barras se doblarán en frío, no se doblará en la obra ninguna barra parcialmente embebida en concreto, excepto esté indicado en los planos.

El radio de doblez mínimo para ganchos estándar medido en la parte interior de la barra será el siguiente:

DIÁMETRO DE VARILLA

RADIO MÍNIMO

3/8" a 5/8"

2 1/2" diámetros

3/4" a 1

3 diámetros

Mayores de 1"

4 diámetros

Colocación del refuerzo: El refuerzo se colocará con precisión y será apoyado adecuadamente sobre soportes de concreto, metal u otro material aprobado, espaciadores o estribos.

Tolerancia: El refuerzo se colocará en las proporciones especificadas en los planos con las siguientes tolerancias.

En elementos sujetos a flexión, muros y columnas en las cuales "d" es mayor de 60 cm + o = 12mm.

La posición longitudinal de dobleces y extremos de barras: + o - 5mm, excepto que no será reducido el recubrimiento especificado de concreto en los extremos.

Espaciamiento de barras: La separación libre entre barras paralelas (excepto en columnas y entre capas múltiples de barras en vigas) no será menor que el diámetro nominal que la barra, 1½ veces el tamaño máximo del agregado grueso, o a 5cm cuando el refuerzo de vigas principales o secundarias este colocado en dos o más capas, la distancia libre entre capas no será menor de 2.5cm y las barras de las capas superiores se colocarán directamente sobre las de capas inferiores.

Empalmes en el refuerzo: No se harán empalmes en el refuerzo, excepto los que se muestran en los planos de estructuras.

La longitud del traslape para barras deformadas de tracción será no menor que 24, 30 y 36 diámetros de barras para límites de fluencia especificadas de 2800, 3500 y 4200 kg/cm2

MG CICHAIL PROPERTY OF THE PRO

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENIERIA O M C

respectivamente, ni menor a 30 cm. Para barras lisas de longitud mínima de traslape será

el doble que para barras corrugadas.

La longitud del traslape para barras deformadas en compresión será no menor de 20, 24 y30 diámetros de barras para aceros con límites de fluencia especificados de 3500, 4200 y

5250 kg/cm2 respectivamente, ni menor de 80 cm. Cuando la resistencia especificada del

concreto sea menor que 210 kg/cm2 la longitud del traslape será 1/3 mayor que los

valores antes mencionados.

MÉTODO DE MEDICIÓN

La medición se hará por kg.

BASES DE PAGO

El pago por concepto de acero, se hará tomando como base el precio unitario por

kilogramo (Kg.) de acero adquirido y colocado, incluyendo la mano de obra e imprevisto

para cumplir con el metrado.

ACERO Fy=4200 KG/CM2 Ø 5/8" PARA COLUMNAS

DESCRIPCIÓN

El acero será corrugado con un fy = 4,200 kg/cm2

Ganchos y dobleces: Todas las barras se doblarán en frío, no se doblará en la obra

ninguna barra parcialmente embebida en concreto, excepto esté indicado en los planos.

El radio de doblez mínimo para ganchos estándar medido en la parte interior de la barra

será el siguiente:

DIÁMETRO DE VARILLA

RADIO MÍNIMO

3/8" a 5/8"

2 ½" diámetros

3/4" a 1

3 diámetros

Mayores de 1"

4 diámetros

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

New York

Colocación del refuerzo: El refuerzo se colocará con precisión y será apoyado adecuadamente sobre soportes de concreto, metal u otro material aprobado, espaciadores o estribos.

Tolerancia: El refuerzo se colocará en las proporciones especificadas en los planos con las siguientes tolerancias.

En elementos sujetos a flexión, muros y columnas en las cuales "d" es mayor de 60 cm + o - 12mm.

La posición longitudinal de dobleces y extremos de barras: + o - 5mm, excepto que no será reducido el recubrimiento especificado de concreto en los extremos.

Espaciamiento de barras: La separación libre entre barras paralelas (excepto en columnas y entre capas múltiples de barras en vigas) no será menor que el diámetro nominal que la barra, 1½ veces el tamaño máximo del agregado grueso, o a 5cm cuando el refuerzo de vigas principales o secundarias este colocado en dos o más capas, la distancia libre entre capas no será menor de 2.5cm y las barras de las capas superiores se colocarán directamente sobre las de capas inferiores.

Empalmes en el refuerzo: No se harán empalmes en el refuerzo, excepto los que se muestran en los planos de estructuras.

La longitud del traslape para barras deformadas de tracción será no menor que 24, 30 y 36 diámetros de barras para límites de fluencia especificadas de 2800, 3500 y 4200 kg/cm2 respectivamente, ni menor a 30 cm. Para barras lisas de longitud mínima de traslape será el doble que para barras corrugadas.

La longitud del traslape para barras deformadas en compresión será no menor de 20, 24 y30 diámetros de barras para aceros con límites de fluencia especificados de 3500, 4200 y 5250 kg/cm2 respectivamente, ni menor de 80 cm. Cuando la resistencia especificada del concreto sea menor que 210 kg/cm2 la longitud del traslape será 1/3 mayor que los valores antes mencionados.

MÉTODO DE MEDICIÓN

La medición se hará por kg.

BASES DE PAGO

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

El pago por concepto de acero, se hará tomando como base el precio unitario por kilogramo (Kg.) de acero adquirido y colocado, incluyendo la mano de obra e imprevisto para cumplir con el metrado.

ACERO Fy=4200 KG/CM2 Ø 3/8" PARA COLUMNAS

DESCRIPCIÓN

El acero será corrugado con un fy = 4,200 kg/cm2

Ganchos y dobleces: Todas las barras se doblarán en frío, no se doblará en la obra ninguna barra parcialmente embebida en concreto, excepto esté indicado en los planos.

El radio de doblez mínimo para ganchos estándar medido en la parte interior de la barra será el siguiente:

DIÁMETRO DE VARILLA

RADIO MÍNIMO

3/8" a 5/8"

2 1/2" diámetros

¾" a 1

3 diámetros

Mayores de 1"

4 diámetros

Colocación del refuerzo: El refuerzo se colocará con precisión y será apoyado adecuadamente sobre soportes de concreto, metal u otro material aprobado, espaciadores o estribos.

Tolerancia: El refuerzo se colocará en las proporciones especificadas en los planos con las siguientes tolerancias.

En elementos sujetos a flexión, muros y columnas en las cuales "d" es mayor de 60 cm + o - 12mm.

La posición longitudinal de dobleces y extremos de barras: + o - 5mm, excepto que no será reducido el recubrimiento especificado de concreto en los extremos.

Espaciamiento de barras: La separación libre entre barras paralelas (excepto en columnas y entre capas múltiples de barras en vigas) no será menor que el diámetro nominal que la barra, 1½ veces el tamaño máximo del agregado grueso, o a 5cm cuando el refuerzo de

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NG ENTERIT

vigas principales o secundarias este colocado en dos o más capas, la distancia libre entre capas no será menor de 2.5cm y las barras de las capas superiores se colocarán directamente sobre las de capas inferiores.

Empalmes en el refuerzo: No se harán empalmes en el refuerzo, excepto los que se muestran en los planos de estructuras.

La longitud del traslape para barras deformadas de tracción será no menor que 24, 30 y 36 diámetros de barras para límites de fluencia especificadas de 2800, 3500 y 4200 kg/cm2 respectivamente, ni menor a 30 cm. Para barras lisas de longitud mínima de traslape será el doble que para barras corrugadas.

La longitud del traslape para barras deformadas en compresión será no menor de 20, 24 y30 diámetros de barras para aceros con límites de fluencia especificados de 3500, 4200 y 5250 kg/cm2 respectivamente, ni menor de 80 cm. Cuando la resistencia especificada del concreto sea menor que 210 kg/cm2 la longitud del traslape será 1/3 mayor que los valores antes mencionados.

MÉTODO DE MEDICIÓN

La medición se hará por kg.

BASES DE PAGO

El pago por concepto de acero, se hará tomando como base el precio unitario por kilogramo (Kg.) de acero adquirido y colocado, incluyendo la mano de obra e imprevisto para cumplir con el metrado.

01.05.04.03 ENCOFRADO Y DESENCOFRADO DE COLUMNAS

DESCRIPCIÓN

Los encofrados tendrán una resistencia adecuada para resistir con seguridad y sin deformaciones apreciables las cargas impuestas por su propio peso, los encofrados serán herméticos a fin de mantener su posición y forma. Los encofrados serán debidamente alineados y nivelados de tal manera que formen elementos de ubicación y de las dimensiones indicadas en los planos.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

Se armará el encofrado con madera sin cepillar y espesor no menor de 1.5". Los encofrados llevan un barrote de refuerzo de 2" x 3"cada 0.50mt. Se cuidará la verticalidad y nivelación del encofrado así como que su construcción sea rígida.

MÉTODO DE MEDICIÓN

El trabajo ejecutado, de acuerdo a las prescripciones antes dichas, se medirá en metros cuadrados (m2).

BASES DE PAGO

El pago se hará por metro cuadrado (m2) según precio unitario del contrato, entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.05.05 VIGAS

01.05.05.01 CONCRETO EN VIGAS F'C 210 KG/CM2 CERCO PERIMETRICO

DESCRIPCIÓN

Esta Partida abarca los trabajos para la ejecución de vigas, de las dimensiones que se especifican en los planos del proyecto.

Se empleará una mezcla de concreto de dosificación aprobada por el supervisor con un f'c de 210Kg/cm2. Se usará acero de refuerzo de fy = 4200 Kg/cm2.

La mezcla del concreto (cemento y agregados) deberá hacerse en una superficie limpia y apropiada, debiéndose mezclar con (mezcladora trompo) hasta que se logre una distribución uniforme de los materiales en seco y añadiéndose posteriormente el agua necesaria No se permitirá el remezclado del concreto que ha endurecido, el concreto se preparará lo más cerca posible a su destino final.

El concreto deberá ser vaciado continuamente o en capas de un espesor que no se llene concreto sobre otro que haya endurecido. La altura máxima de colocación del concreto por caída libre será de 2.5m, si no hay obstrucciones tales como armadura o arriostres de encofrado y de 1.5m si existen estas.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

MÉTODO DE MEDICIÓN

El trabajo ejecutado, de acuerdo a las prescripciones antes dichas, se medirá en metros cúbicos (m3).

BASES DE PAGO

El pago se hará por metro cúbico (m3) según precio unitario del contrato, entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01. 05.05.02 ACERO Fy=4200 KG/CM2 Ø 3/8" PARA VIGAS

DESCRIPCIÓN

El acero será corrugado con un fy = 4,200 kg/cm2

Ganchos y dobleces: Todas las barras se doblarán en frío, no se doblará en la obra ninguna barra parcialmente embebida en concreto, excepto esté indicado en los planos.

El radio de doblez mínimo para ganchos estándar medido en la parte interior de la barra será el siguiente:

DIÁMETRO DE VARILLA

RADIO MÍNIMO

3/8" a 5/8"

2 1/2" diámetros

3/4" a 1

3 diámetros

Mayores de 1"

4 diámetros

Colocación del refuerzo: El refuerzo se colocará con precisión y será apoyado adecuadamente sobre soportes de concreto, metal u otro material aprobado, espaciadores o estribos.

Tolerancia: El refuerzo se colocará en las proporciones especificadas en los planos con las siguientes tolerancias.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENIERIA G N C

En elementos sujetos a flexión, muros y columnas en las cuales "d" es mayor de 60 cm + o - 12mm.

La posición longitudinal de dobleces y extremos de barras: + o - 5mm, excepto que no será reducido el recubrimiento especificado de concreto en los extremos.

Espaciamiento de barras: La separación libre entre barras paralelas (excepto en columnas y entre capas múltiples de barras en vigas) no será menor que el diámetro nominal que la barra, 1½ veces el tamaño máximo del agregado grueso, o a 5cm cuando el refuerzo de vigas principales o secundarias este colocado en dos o más capas, la distancia libre entre capas no será menor de 2.5cm y las barras de las capas superiores se colocarán directamente sobre las de capas inferiores.

Empalmes en el refuerzo: No se harán empalmes en el refuerzo, excepto los que se muestran en los planos de estructuras.

La longitud del traslape para barras deformadas de tracción será no menor que 24, 30 y 36 diámetros de barras para límites de fluencia especificadas de 2800, 3500 y 4200 kg/cm2 respectivamente, ni menor a 30 cm. Para barras lisas de longitud mínima de traslape será el doble que para barras corrugadas.

La longitud del traslape para barras deformadas en compresión será no menor de 20, 24 y30 diámetros de barras para aceros con límites de fluencia especificados de 3500, 4200 y 5250 kg/cm2 respectivamente, ni menor de 80 cm. Cuando la resistencia especificada del concreto sea menor que 210 kg/cm2 la longitud del traslape será 1/3 mayor que los valores antes mencionados.

MÉTODO DE MEDICIÓN

La medición se hará por kg.

BASES DE PAGO

El pago por concepto de acero, se hará tomando como base el precio unitario por kilogramo (Kg.) de acero adquirido y colocado, incluyendo la mano de obra e imprevisto para cumplir con el metrado.

ACERO Fy=4200 KG/CM2 Ø 1/2" PARA VIGAS

DESCRIPCIÓN

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

El acero será corrugado con un fy = 4,200 kg/cm2

Ganchos y dobleces: Todas las barras se doblarán en frío, no se doblará en la obra ninguna barra parcialmente embebida en concreto, excepto esté indicado en los planos.

El radio de doblez mínimo para ganchos estándar medido en la parte interior de la barra será el siguiente:

DIÁMETRO DE VARILLA

RADIO MÍNIMO

3/8" a 5/8"

2 ½" diámetros

3/4" a 1

3 diámetros

Mayores de 1"

4 diámetros

Colocación del refuerzo: El refuerzo se colocará con precisión y será apoyado adecuadamente sobre soportes de concreto, metal u otro material aprobado, espaciadores o estribos.

Tolerancia: El refuerzo se colocará en las proporciones especificadas en los planos con las siguientes tolerancias.

En elementos sujetos a flexión, muros y columnas en las cuales "d" es mayor de 60 cm + o = 12mm.

La posición longitudinal de dobleces y extremos de barras: + o - 5mm, excepto que no será reducido el recubrimiento especificado de concreto en los extremos.

Espaciamiento de barras: La separación libre entre barras paralelas (excepto en columnas y entre capas múltiples de barras en vigas) no será menor que el diámetro nominal que la barra, 1½ veces el tamaño máximo del agregado grueso, o a 5cm cuando el refuerzo de vigas principales o secundarias este colocado en dos o más capas, la distancia libre entre capas no será menor de 2.5cm y las barras de las capas superiores se colocarán directamente sobre las de capas inferiores.

Empalmes en el refuerzo: No se harán empalmes en el refuerzo, excepto los que se muestran en los planos de estructuras.

La longitud del traslape para barras deformadas de tracción será no menor que 24, 30 y 36 diámetros de barras para límites de fluencia especificadas de 2800, 3500 y 4200 kg/cm2

De cymerty of the control of the con

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

respectivamente, ni menor a 30 cm. Para barras lisas de longitud mínima de traslape será el doble que para barras corrugadas.

La longitud del traslape para barras deformadas en compresión será no menor de 20, 24 y30 diámetros de barras para aceros con límites de fluencia especificados de 3500, 4200 y 5250 kg/cm2 respectivamente, ni menor de 80 cm. Cuando la resistencia especificada del concreto sea menor que 210 kg/cm2 la longitud del traslape será 1/3 mayor que los valores antes mencionados.

MÉTODO DE MEDICIÓN

La medición se hará por kg.

BASES DE PAGO

El pago por concepto de acero, se hará tomando como base el precio unitario por kilogramo (Kg.) de acero adquirido y colocado, incluyendo la mano de obra e imprevisto para cumplir con el metrado.

ACERO Fy=4200 KG/CM2 Ø 5/8" PARA VIGAS

DESCRIPCIÓN

El acero será corrugado con un fy = 4,200 kg/cm²

Ganchos y dobleces: Todas las barras se doblarán en frío, no se doblará en la obra ninguna barra parcialmente embebida en concreto, excepto esté indicado en los planos.

El radio de doblez mínimo para ganchos estándar medido en la parte interior de la barra será el siguiente:

DIÁMETRO DE VARILLA

RADIO MÍNIMO

3/8" a 5/8"

2 1/2" diámetros

3/4" a 1

3 diámetros

Mayores de 1"

4 diámetros

NA CIONAL OLIMANIA DE LA COLONAL DE LA COLON

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

NGENIERI ONC

Colocación del refuerzo: El refuerzo se colocará con precisión y será apoyado adecuadamente sobre soportes de concreto, metal u otro material aprobado, espaciadores o estribos.

Tolerancia: El refuerzo se colocará en las proporciones especificadas en los planos con las siguientes tolerancias.

En elementos sujetos a flexión, muros y columnas en las cuales "d" es mayor de 60 cm + o - 12mm.

La posición longitudinal de dobleces y extremos de barras: + o - 5mm, excepto que no será reducido el recubrimiento especificado de concreto en los extremos.

Espaciamiento de barras: La separación libre entre barras paralelas (excepto en columnas y entre capas múltiples de barras en vigas) no será menor que el diámetro nominal que la barra, 1½ veces el tamaño máximo del agregado grueso, o a 5cm cuando el refuerzo de vigas principales o secundarias este colocado en dos o más capas, la distancia libre entre capas no será menor de 2.5cm y las barras de las capas superiores se colocarán directamente sobre las de capas inferiores.

Empalmes en el refuerzo: No se harán empalmes en el refuerzo, excepto los que se muestran en los planos de estructuras.

La longitud del traslape para barras deformadas de tracción será no menor que 24, 30 y 36 diámetros de barras para límites de fluencia especificadas de 2800, 3500 y 4200 kg/cm2 respectivamente, ni menor a 30 cm. Para barras lisas de longitud mínima de traslape será el doble que para barras corrugadas.

La longitud del traslape para barras deformadas en compresión será no menor de 20, 24 y30 diámetros de barras para aceros con límites de fluencia especificados de 3500, 4200 y 5250 kg/cm2 respectivamente, ni menor de 80 cm. Cuando la resistencia especificada del concreto sea menor que 210 kg/cm2 la longitud del traslape será 1/3 mayor que los valores antes mencionados.

MÉTODO DE MEDICIÓN

La medición se hará por kg.

BASES DE PAGO

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

El pago por concepto de acero, se hará tomando como base el precio unitario por kilogramo (Kg.) de acero adquirido y colocado, incluyendo la mano de obra e imprevisto para cumplir con el metrado.

01. 05.05.03 ENCOFRADO Y DESENCOFRADO DE VIGAS

DESCRIPCIÓN

Los encofrados tendrán una resistencia adecuada para resistir con seguridad y sin deformaciones apreciables las cargas impuestas por su propio peso, los encofrados serán herméticos a fin de mantener su posición y forma. Los encofrados serán debidamente alineados y nivelados de tal manera que formen elementos de ubicación y de las dimensiones indicadas en los planos.

Se armará el encofrado con madera sin cepillar y espesor no menor de 1.5". Los encofrados llevan un barrote de refuerzo de 2" x 3"cada 0.50mt. Se cuidará la verticalidad y nivelación del encofrado así como que su construcción sea rígida.

MÉTODO DE MEDICIÓN

El trabajo ejecutado, de acuerdo a las prescripciones antes dichas, se medirá en metros cuadrados (m2).

BASES DE PAGO

El pago se hará por metro cuadrado (m2) según precio unitario del contrato, entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leves sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

総

01.05.07 ESCALERAS

01.05.05.01 CONCRETO EN ESCALERAS F'C 210 KG/CM2

DESCRIPCIÓN

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Esta Partida abarca los trabajos para la ejecución de vigas, de las dimensiones que se especifican en los planos del proyecto.

Se empleará una mezcla de concreto de dosificación aprobada por el supervisor con un f'c de 210Kg/cm2. Se usará acero de refuerzo de fy = 4200 Kg/cm2.

La mezcla del concreto (cemento y agregados) deberá hacerse en una superficie limpia y apropiada, debiéndose mezclar con (mezcladora trompo) hasta que se logre una distribución uniforme de los materiales en seco y añadiéndose posteriormente el agua necesaria No se permitirá el remezclado del concreto que ha endurecido, el concreto se preparará lo más cerca posible a su destino final.

El concreto deberá ser vaciado continuamente o en capas de un espesor que no se llene concreto sobre otro que haya endurecido. La altura máxima de colocación del concreto por caída libre será de 2.5m, si no hay obstrucciones tales como armadura o arriostres de encofrado y de 1.5m si existen estas.

MÉTODO DE MEDICIÓN

El trabajo ejecutado, de acuerdo a las prescripciones antes dichas, se medirá en metros cúbicos (m3).

BASES DE PAGO

El pago se hará por metro cúbico (m3) según precio unitario del contrato, entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01. 05.05.02 ACERO Fy=4200 KG/CM2 PARA ESCALERAS

DESCRIPCIÓN

El acero será corrugado con un fy = 4,200 kg/cm2

Ganchos y dobleces: Todas las barras se doblarán en frío, no se doblará en la obra ninguna barra parcialmente embebida en concreto, excepto esté indicado en los planos.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "Parroquia de San Agustín"

El radio de doblez mínimo para ganchos estándar medido en la parte interior de la barra será el siguiente:

DIÁMETRO DE VARILLA

RADIO MÍNIMO

3/8" a 5/8"

2 1/2" diámetros

3/4" a 1

3 diámetros

Mayores de 1"

4 diámetros

Colocación del refuerzo: El refuerzo se colocará con precisión y será apoyado adecuadamente sobre soportes de concreto, metal u otro material aprobado, espaciadores o estribos.

Tolerancia: El refuerzo se colocará en las proporciones especificadas en los planos con las siguientes tolerancias.

En elementos sujetos a flexión, muros y columnas en las cuales "d" es mayor de 60 cm + o - 12mm.

La posición longitudinal de dobleces y extremos de barras: + o - 5mm, excepto que no será reducido el recubrimiento especificado de concreto en los extremos.

Espaciamiento de barras: La separación libre entre barras paralelas (excepto en columnas y entre capas múltiples de barras en vigas) no será menor que el diámetro nominal que la barra, 1½ veces el tamaño máximo del agregado grueso, o a 5cm cuando el refuerzo de vigas principales o secundarias este colocado en dos o más capas, la distancia libre entre capas no será menor de 2.5cm y las barras de las capas superiores se colocarán directamente sobre las de capas inferiores.

Empalmes en el refuerzo: No se harán empalmes en el refuerzo, excepto los que se muestran en los planos de estructuras.

La longitud del traslape para barras deformadas de tracción será no menor que 24, 30 y 36 diámetros de barras para límites de fluencia especificadas de 2800, 3500 y 4200 kg/cm2 respectivamente, ni menor a 30 cm. Para barras lisas de longitud mínima de traslape será el doble que para barras corrugadas.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENIERIA D NC

La longitud del traslape para barras deformadas en compresión será no menor de 20, 24 y30 diámetros de barras para aceros con límites de fluencia especificados de 3500, 4200 y 5250 kg/cm2 respectivamente, ni menor de 80 cm. Cuando la resistencia especificada del concreto sea menor que 210 kg/cm2 la longitud del traslape será 1/3 mayor que los valores antes mencionados.

MÉTODO DE MEDICIÓN

La medición se hará por kg.

BASES DE PAGO

El pago por concepto de acero, se hará tomando como base el precio unitario por kilogramo (Kg.) de acero adquirido y colocado, incluyendo la mano de obra e imprevisto para cumplir con el metrado.

01. 05.07.03 ENCOFRADO Y DESENCOFRADO ESCALERAS

DESCRIPCIÓN

Los encofrados tendrán una resistencia adecuada para resistir con seguridad y sin deformaciones apreciables las cargas impuestas por su propio peso, los encofrados serán herméticos a fin de mantener su posición y forma. Los encofrados serán debidamente alineados y nivelados de tal manera que formen elementos de ubicación y de las dimensiones indicadas en los planos.

Se armará el encofrado con madera sin cepillar y espesor no menor de 1.5". Los encofrados llevan un barrote de refuerzo de 2" x 3"cada 0.50mt. Se cuidará la verticalidad y nivelación del encofrado así como que su construcción sea rígida.

MÉTODO DE MEDICIÓN

El trabajo ejecutado, de acuerdo a las prescripciones antes dichas, se medirá en metros cuadrados (m2).

BASES DE PAGO

El pago se hará por metro cuadrado (m2) según precio unitario del contrato, entendiéndose que dicho precio y pago constituirá compensación total por toda la mano

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.05.07 MUROS TABIQUES (PLACAS)

01.05.05.01 CONCRETO EN PLACAS F'C 210 KG/CM2

DESCRIPCIÓN

Esta Partida abarca los trabajos para la ejecución de vigas, de las dimensiones que se especifican en los planos del proyecto.

Se empleará una mezcla de concreto de dosificación aprobada por el supervisor con un f'c de 210Kg/cm2. Se usará acero de refuerzo de fy = 4200 Kg/cm2.

La mezcla del concreto (cemento y agregados) deberá hacerse en una superficie limpia y apropiada, debiéndose mezclar con (mezcladora trompo) hasta que se logre una distribución uniforme de los materiales en seco y añadiéndose posteriormente el agua necesaria No se permitirá el remezclado del concreto que ha endurecido, el concreto se preparará lo más cerca posible a su destino final.

El concreto deberá ser vaciado continuamente o en capas de un espesor que no se llene concreto sobre otro que haya endurecido. La altura máxima de colocación del concreto por caída libre será de 2.5m, si no hay obstrucciones tales como armadura o arriostres de encofrado y de 1.5m si existen estas.

MÉTODO DE MEDICIÓN

El trabajo ejecutado, de acuerdo a las prescripciones antes dichas, se medirá en metros cúbicos (m3).

BASES DE PAGO

El pago se hará por metro cúbico (m3) según precio unitario del contrato, entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "Parroquia de San Agustín"

01. 05.05.02 ACERO Fy=4200 KG/CM2 PARA PLACAS

DESCRIPCIÓN

El acero será corrugado con un fy = 4,200 kg/cm2

Ganchos y dobleces: Todas las barras se doblarán en frío, no se doblará en la obra ninguna barra parcialmente embebida en concreto, excepto esté indicado en los planos.

El radio de doblez mínimo para ganchos estándar medido en la parte interior de la barra será el siguiente:

DIÁMETRO DE VARILLA

RADIO MÍNIMO

3/8" a 5/8"

2 1/2" diámetros

3/4" a 1

3 diámetros

Mayores de 1"

4 diámetros

Colocación del refuerzo: El refuerzo se colocará con precisión y será apoyado adecuadamente sobre soportes de concreto, metal u otro material aprobado, espaciadores o estribos.

Tolerancia: El refuerzo se colocará en las proporciones especificadas en los planos con las siguientes tolerancias.

En elementos sujetos a flexión, muros y columnas en las cuales "d" es mayor de 60 cm + o - 12mm.

La posición longitudinal de dobleces y extremos de barras: + o - 5mm, excepto que no será reducido el recubrimiento especificado de concreto en los extremos.

Espaciamiento de barras: La separación libre entre barras paralelas (excepto en columnas y entre capas múltiples de barras en vigas) no será menor que el diámetro nominal que la barra, 1½ veces el tamaño máximo del agregado grueso, o a 5cm cuando el refuerzo de vigas principales o secundarias este colocado en dos o más capas, la distancia libre entre capas no será menor de 2.5cm y las barras de las capas superiores se colocarán directamente sobre las de capas inferiores.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENIERIA O A C

Empalmes en el refuerzo: No se harán empalmes en el refuerzo, excepto los que se muestran en los planos de estructuras.

La longitud del traslape para barras deformadas de tracción será no menor que 24, 30 y 36 diámetros de barras para límites de fluencia especificadas de 2800, 3500 y 4200 kg/cm2 respectivamente, ni menor a 30 cm. Para barras lisas de longitud mínima de traslape será el doble que para barras corrugadas.

La longitud del traslape para barras deformadas en compresión será no menor de 20, 24 y30 diámetros de barras para aceros con límites de fluencia especificados de 3500, 4200 y 5250 kg/cm2 respectivamente, ni menor de 80 cm. Cuando la resistencia especificada del concreto sea menor que 210 kg/cm2 la longitud del traslape será 1/3 mayor que los valores antes mencionados.

MÉTODO DE MEDICIÓN

La medición se hará por kg.

BASES DE PAGO

El pago por concepto de acero, se hará tomando como base el precio unitario por kilogramo (Kg.) de acero adquirido y colocado, incluyendo la mano de obra e imprevisto para cumplir con el metrado.

01. 05.07.03 ENCOFRADO Y DESENCOFRADO EN PLACAS

DESCRIPCIÓN

Los encofrados tendrán una resistencia adecuada para resistir con seguridad y sin deformaciones apreciables las cargas impuestas por su propio peso, los encofrados serán herméticos a fin de mantener su posición y forma. Los encofrados serán debidamente alineados y nivelados de tal manera que formen elementos de ubicación y de las dimensiones indicadas en los planos.

Se armará el encofrado con madera sin cepillar y espesor no menor de 1.5". Los encofrados llevan un barrote de refuerzo de 2" x 3"cada 0.50mt. Se cuidará la verticalidad y nivelación del encofrado así como que su construcción sea rígida.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Partoquia de San Agustín"

NGENIERIA O NC

MÉTODO DE MEDICIÓN

El trabajo ejecutado, de acuerdo a las prescripciones antes dichas, se medirá en metros cuadrados (m2).

BASES DE PAGO

El pago se hará por metro cuadrado (m2) según precio unitario del contrato, entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

CUBIERTAS

01.01 COBERTURA DE TECHO CON ETERNIT TIPO TEJA ANDINA SOBRE TECHO DE CONCRETO

Esta conformada por planchas de eternit tipo Teja Andina que irán adosados a durmientes sobre la losa final mediante tirafones u algún tipo de gancho galvanizado previamente aprobado por la supervisión.

Su almacenamiento será verticalmente en terreno plano, firme y seco, descansarán sobre listones de madera (uno en la parte inferior y uno en la pared), apoyándolas con u ángulo de 15º respecto a la pared y en un máximo de 80 planchas.

A fin de evitar la superposición de 04 planchas deberán despuntarse las dos intermedias, este corte tendrá 3cm de ancho y un largo igual al traslape longitudinal.

En la unión de estas losas se colocará la cumbrera y será asentada de la misma manera.

Antes de izar las planchas de eternit se deberá hacer la limpieza necesaria chequeando que no se encuentren rotas ni con fisuras.

La madera a utilizar como durmientes será madera tornillo de buena calidad y se debe asegurar que esté seca y bien cepillada.

Los durmientes irán sobre la losa final, separados uno de otro a no más de 1.0 mt entre ejes. Se debe chequear con rigurosidad su alineamiento.

N CO MANUAL PLANTS AND ADDRESS OF THE PARTY AN

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

O C

MÉTODO DE MEDICIÓN

Se medirá por metro cuadrado (M2) de plancha colocada.

FORMAS DE PAGO

El pago constituirá la compensación total por la mano de obra, herramientas y materiales necesarios para su colocación.

02.00.00 ESTRUCTURA METALICA

02.01.00 TECHO METALICO

ESPECIFICACIONES GENERALES

ALCANCES

En este documento se detallan las especificaciones técnicas y normas constructivas que regirán los procesos de fabricación y montaje de las estructuras metálicas, fijaciones correspondientes al Proyecto a ser ejecutado.

En caso de discrepancias entre planos y especificaciones, las especificaciones son mandatorias. En caso de discrepancias entre las dimensiones medidas a escala dibujadas en los planos y las cotas indicadas en ellos, las cotas prevalecen. En el caso de discrepancias entre los planos de acero estructural y los planos de otras especialidades, los planos estructurales gobiernan.

MATERIALES

Perfiles

Los perfiles laminados y planchas serán de acero al carbono, calidad estructural, conforme a la Norma ASTM A36.

Los perfiles formados en frío se fabricarán a partir de flejes de acero al carbono, calidad estructural, conforme a la Norma ASTM A570, Gr.36.

Las propiedades mecánicas mínimas de estos aceros se indican a continuación:

Propiedad

A36

NACOWAL POLICE

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

INGENIERIA O M C

- Esfuerzo de Fluencia (Kg/mm²)

25

- Resistencia en tensión (Kg/mm²)

41-56

- Alargamiento de rotura (%)

23%

Las propiedades dimensionales de los perfiles serán las indicadas en las Tablas de Perfiles de la Norma ASTM A6: "Standard Specification for General Requirements for Rolled Steel Plates, Shapes, Sheet Piling, and Bars for Structural Use". Cualquier variación de estas propiedades deberá limitarse a las tolerancias establecidas en la misma Norma.

Soldadura

La soldadura será de arco eléctrico y/o alambre tubular. El material de los electrodos será del tipo E60 con una resistencia mínima a la tensión (Fu) de 4,200 kg/cm2. El material de soldadura deberá cumplir con los requerimientos prescritos en las Normas AWS A5.1 ó AWS A5.17 de la American Welding Society, dependiendo de si la soldadura se efectúa por el método de arco metálico protegido ó por el método de arco sumergido, respectivamente.

Pintura

Se usará un sistema de pintura epóxico formulado para mantenimiento industrial y marino. El sistema seleccionado debe ser de primera calidad y contar con las hojas técnicas de especificaciones, rango de aplicación y certificaciones correspondientes al producto.

Pintura de base

La pintura de base será un anticorrosivo epoxi-poliamida de dos componentes formulado para mantenimiento industrial y marino. Deberá tener un contenido de sólidos no menor al 50% en volumen de la mezcla de sus componentes y su formulación debe estar diseñada para garantizar un recubrimiento de excelente resistencia a la intemperie, a agentes químicos poco agresivos tanto ácidos como alcalinos, a los solventes y al agua dulce o salada.

Pintura de acabado

La pintura de acabado será un esmalte epoxi-poliamida de dos componentes formulado para mantenimiento industrial y marino. Deberá tener un contenido de sólidos no menor

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

al 50% en volumen de la mezcla de sus componentes y su formulación debe estar diseñada para garantizar una película de acabado de excelente resistencia a la intemperie, abrasión, a agentes químicos poco agresivos tanto ácido como alcalinos, a los solventes y al agua dulce o salada.

Certificados de Calidad

El Contratista de las Estructuras Metálicas deberá acreditar la calidad de los materiales adquiridos para la construcción mediante los certificados de calidad respectivos, en los que se indiquen las propiedades físicas, químicas y mecánicas que sean relevantes. En caso de no existir estos certificados, la Supervisión podrá ordenar la realización de las pruebas correspondientes en una laboratorio reconocido de primera línea. El costo de estas pruebas será de cuenta del Contratista.

FABRICACIÓN

La habilitación y fabricación de las estructuras de acero se efectuará en concordancia a lo indicado en el Code of Standard Practice for Steel Buildings and Bridges del AISC, última edición.

Materiales

Todos los materiales serán de primer uso y deberán encontrarse en perfecto estado. La calidad y propiedades mecánicas de los materiales serán los indicados en este documento y en los planos de fabricación de las estructuras, pero en caso de controversia, estas especificaciones tendrán precedencia.

Las propiedades dimensionales de los perfiles serán las indicadas por la designación correspondiente de la Norma ASTM A6, y cualquier variación en las mismas deberá encontrarse dentro de las tolerancias establecidas por la misma Norma para tal efecto.

El fabricante informará al sobre la fecha de arribo de los materiales al Taller, de manera que éste pueda proceder a su inspección. Ningún trabajo de fabricación podrá iniciarse antes de que el haya dado su conformidad a la calidad y condiciones de los materiales. Con ese objeto, el podrá solicitar los certificados de los materiales u ordenar los ensayos que permitan confirmar la calidad de los mismos.

En caso de que los perfiles llegados al taller presenten encorvaduras, torcimientos u otros defectos en un grado que excede las tolerancias de la Norma ASTM A6, el podrá

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

NGENIERIA B N C

"Parroquia de San Agustín"

autorizar la ejecución de trabajos correctivos mediante el uso controlado de calor o procedimientos mecánicos de enderezado, los cuales serán de cargo y cuenta del fabricante y/o del Constructor.

Tolerancias de fabricación

Las tolerancias dimensionales de los elementos ya fabricados se ajustarán a lo indicado en la Norma ASTM A6, excepto que aquellos miembros que trabajan en compresión no tendrán una desviación en su "derechura" mayor a 1/1000 de su longitud axial entre puntos de soporte lateral.

La variación de la longitud real respecto a su longitud detallada no podrá ser mayor de 1/32" (0.8 mm) para aquellos elementos con ambos extremos preparados para uniones tipo "contacto".

La variación de la longitud real de cualquier otro elemento de la estructura respecto a su longitud detallada no será mayor que 1/16" (1.6 mm) para elementos de 30' (9,144 mm) de longitud y menores, ni mayor que 1/8" (3.2 mm) para elementos de más de 30' (9,144 mm) de longitud.

Las vigas y tijerales detallados sin una contraflecha específica se fabricarán de tal manera que después del montaje, cualquier contraflecha proveniente del laminado ó debida al proceso de fabricación apunte siempre hacía arriba.

Cualquier desviación permisible en el peralte de las vigas puede producir cambios abruptos de peralte en los empalmes. Cualquier diferencia de peralte en juntas empernadas, en tanto se encuentre dentro de las tolerancias permitidas, puede compensarse mediante el uso de planchas de relleno. En el caso de juntas soldadas, el perfil del cordón de soldadura puede ajustarse para compensar la variación de peralte, en tanto la sección y perfil del cordón resultante cumpla los requerimientos de la AWS.

Proceso de Corte y Enderezado

El corte de los materiales podrá hacerse térmicamente (con oxi-acetileno) o por medios mecánicos (cizallado, aserrado, etc.). Los elementos una vez cortados deberán quedar libres de rebabas y los bordes deberán aparecer perfectamente rectos.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

El corte con oxígeno deberá hacerse con máquina. Los bordes cortados con oxígeno que estarán sujetos a esfuerzo y/o que recibirán soldadura deberán quedar libres de imperfecciones.

No se permitirá imperfecciones mayores de 1/8" (3.2 mm). Las imperfecciones mayores de 1/8" (3.2 mm) debidas al proceso de corte deberán eliminarse por esmerilado. Todas las esquinas entrantes deberán ser redondeadas con un radio mínimo de 1/2" (12.7 mm) y deberán estar libres de entalladuras.

No se requiere preparación de los bordes de planchas y perfiles que hayan sido cizallados o cortados a gas excepto cuando se indique específicamente en los planos de fabricación.

Perforaciones de Huecos

Todas las perforaciones son efectuadas en el taller previamente al arenado y pintado. Las perforaciones se efectuarán por taladrado, pero también pueden ser punzonadas a un diámetro 1/8" (3.2 mm) menor que el diámetro final y luego terminadas por taladrado.

El diámetro final de los huecos estándares será 1/16" (1.6 mm) mayor que el diámetro del perno que van a alojar y su aspecto será perfectamente circular, libre de rebabas y grietas. Los elementos con perforaciones que no cumplan con estas características serán rechazados.

Equipo Mínimo de Fabricación

- Máquina de Soldar de 300 Amp. MIG/MAG	2 Unidades
- Máquina de Soldar de 300 Amp. (Trifásica)	2 Unidades
- Máquina de Soldar de 250 Amp. (Monofásica)	2 Unidades
- Equipos de Corte manuales	4 Unidades
- Esmeriles Angulares Eléctricos 7" •	4 Unidades
- Cizalla eléctrica o hidráulica	1 Unidad
- Plegadora eléctrica o hidráulica	1 Unidad
- Taladros de Base Magnética (Diam. Max. 1")	1 Unidad
- Herramientas manuales (juegos completos)	4 Juegos

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Montacargas de 03 ton

1 Unidad

Inspección y Pruebas

El Contratista de las Estructuras Metálicas deberá proporcionar todas las facilidades que requiera la Supervisión para efectuar la inspección del material en el taller, garantizando su libre acceso a todas las áreas donde se estén efectuando los trabajos de fabricación. La Supervisión está facultada para rechazar los trabajos que no se adecuen a los procedimientos indicados en estas especificaciones ó en las normas a las que aquí se hace referencia.

ARENADO

Preparación de las Superficies

Para lograr la performance esperada del sistema de pintura es esencial que las superficies a ser pintadas se preparen adecuadamente. Las superficies deberán estar siempre completamente secas y libres de rebabas, derrames de soldadura, escorias, oxidación, escamas sueltas, suciedad, polvo, grasa, aceite y todo otro material extraño antes de la aplicación de la pintura. El grado de preparación de la superficie es el indicado en estas especificaciones.

Arenado

La preparación de las superficies de acero, previa a la aplicación de pintura, se efectuará por el procedimiento de "arenado al metal blanco", según norma SSPC-SP-5 del Steel Structures Painting Council (SSPC).

El "arenado al metal blanco" es el procedimiento de limpieza de superficies de acero mediante la proyección de un chorro de arena impulsado por aire comprimido, prolongado hasta que la superficie presente un color uniforme gris blanco con brillo metálico, sin zonas oscuras u opacas. De este modo se eliminan el óxido, grasa, polvo, suciedad, escorias de soldadura, pintura antigua y cualquier otra sustancia que puedan afectar la adherencia de la pintura. Además al producir determinado grado de rugosidad en la superficie, facilita la impregnación de la pintura y mejora su adhesión.

La estructura arenada deberá ser inmediatamente pintada de acuerdo a las recomendaciones proporcionadas por el fabricante de la pintura. No podrá quedarse a la intemperie sin pintar, debido a que inmediatamente se inicia el proceso de oxidación

TO CALMADOCA MARCON TO CAL

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

NG ENVERTED ONC

como consecuencia de la intemperie o del aire marino, en cuyo caso tendría que volverse a efectuar el procedimiento de arenado.

Requisitos

Arena

Procedencia: La arena deberá ser de cantera o de río, lavada y seca. No se deberá usar arena de playa.

Composición: Deberá ser 95% cuarzo; el 5% restante podrá ser mica, feldespato y rocas diversas.

No deberán usarse arenas contaminadas con sustancias orgánicas (calcita, etc.) u oxidantes (salitre, pirita, etc.)

Granulometria: Deberá pasar la malla 26 y ser retenida por la malla 30.

Aspecto: Deberá ser limpia, con color uniforme.

Aire Comprimido

Presión: aproximadamente 689.5 kPa (100 psi), a la salida del compresor.

Caudal: aproximadamente 0.094 m3/s (200 pcm) por cada tobera de arenado.

Composición: Libre de agua y aceite.

Reactivo de inspección: se usará "varsol"

Condiciones ambientales: Humedad relativa no mayor del 85%

Cuando la humedad ambiental sea mayor del 85% no se deberá arenar a la intemperie.

Planta de Arenado:

De preferencia todo el proceso de "arenado" deberá hacerse en un ambiente cubierto diseñado para tal fin, con el objeto de garantizar una perfecta ejecución y calidad de este trabajo.

Equipo Mínimo de Arenado

Compresora de capacidad 350 pcm ó similar

01 Unidad

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

Tolvas para llenado de arena (5 m3 de capacidad)

01 Unidad

Máscaras protectoras

02 Unidades

Juego de Repuestos de mangueras para equipos

01 Juegos

Inspección y Pruebas

Todos los equipos y materiales utilizados, así como el resultado del trabajo ejecutado bajo esta especificación, estarán sujetos a inspección por la Supervisión. El Contratista deberá corregir todo trabajo y reemplazar todo material que sea encontrado defectuoso.

Para verificar la calidad del arenado, se aplicará el reactivo de inspección a las zonas cuestionadas. Si se observan puntos de corrosión (puede utilizarse una lupa), el arenado no será aceptado y deberá rehacerse.

PINTURA

Consideraciones Generales

Todas las superficies recibirán los tipos de pintura y espesores indicados en esta especificación.

La pintura deberá ser aplicada en estricto acuerdo con las instrucciones del fabricante para cada caso.

La preparación de la superficie, imprimado y pintado debe ser realizada antes del ensamblaje o montaje.

La limpieza y parchado de las áreas dañadas y de las áreas soldadas deberá ser hecho en adición al sistema de pintura especificado.

Espesores y otros

Espesor de la película

Los límites del espesor seco de pintura serán respetados estrictamente. El espesor de las capas de pintura será verificado, usando resistencia magnética o principios de corrientes tales como "Elcometer". "Leptoskop", "Microtest", etc.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

Con el propósito de lograr el espesor de película seca especificado, se recomienda mediciones previas de espesor húmedo durante la aplicación de la pintura. Si el espesor seco no alcanza el valor especificado se añadirán una o más capas de pintura.

Curado

El grado de curado de las pinturas epóxicas será verificado en base a su resistencia a solventes. Luego de frotada la superficie durante un tiempo dado con el solvente adecuado, la pintura no deberá aflojarse y la prueba se hará raspando con la uña. El tipo de solvente y el tiempo de aplicación, estará en acuerdo con la norma SSPC correspondiente.

Adherencia y corrosión

La adherencia del imprimante a la superficie de acero y la adherencia entre capas de aplicación sucesiva y el imprimante después del curado, deberá comprobarse haciendo (con un cuchillo filudo) una incisión en forma de V a través de la pintura. La adherencia será satisfactoria si la película de pintura no puede "pelarse" con el cuchillo, ni de la superficie de acero ni entre capas sucesivas.

La aplicación de fuerza suficiente para romper la pintura deberá dejar porciones de película fuertemente adheridas a la superficie. La falla en esta prueba indicará pobre resistencia de adherencia debido a causas tales como retención de solvente, mala preparación de superficies u otros.

Las áreas que muestren estos defectos será limpiadas de toda la pintura y repintadas siguiendo nuevamente el proceso desde la preparación de la superficie.

Inspección

La supervisión tiene el derecho de inspeccionar los trabajos de pintura en todas las etapas y rechazar cualquier trabajo y/o procedimiento que no esté conforme a lo indicado en estas especificaciones.

El trabajo terminado tendrá las tonalidades especificadas y mostrará superficies suaves y parejas. Estará libre de superficies pegajosas luego del secado, fisuras y cuarteamientos, arrugas, depresiones, parches, marcas de brocha o rodillo u otros defectos perjudiciales a la calidad y apariencia de la protección.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Antes de la aceptación final de trabajo de pintura se efectuará una inspección total de las

estructuras metálicas.

Reparación de defectos y de daños

Cualquier defecto o daño será reparado antes de la aplicación de las capas sucesivas de

pintura; de ser necesario las superficies en cuestión deberán ser dejadas libres de pintura.

Las áreas donde la pintura necesite re-aplicarse deberán ser limpiadas dejándolas

totalmente libres de grasa, aceite u otro material extraño y deberán estar secas. Las

superficies a repararse, para daños localizados menores de 1 m2, podrán prepararse

usando medios mecánicos.

Luego se aplicarán sucesivamente las capas de pintura necesarias para cumplir con la

especificación. Estas capas deberán fusionarse a la capa final de las áreas circundantes.

Superficies metálicas en contacto con concreto

Las superficies metálicas que estarán en contacto con concreto deberán ser arenadas al

metal blanco, pudiendo tener como protección única el imprimante.

Sistema epóxico

Se usará un sistema epóxico aplicado de acuerdo a las recomendaciones del Fabricante y

con la siguiente secuencia:

Limpieza: De acuerdo a lo indicado en el numeral 5.

Imprimante epóxico: Una mano de base anticorrosiva aplicada de acuerdo a las

instrucciones del Fabricante, con un espesor mínimo de 100 micrones.

Acabado: Dos manos de esmalte epóxico aplicadas de acuerdo a las instrucciones del

Fabricante. El imprimante y una mano de acabado podrán hacerse en taller. La segunda

mano deberá aplicarse en sitio, después de haber reparado los daños ocurridos en el

transporte y/o en las zonas de soldadura en obra, mediante el proceso completo detallado

en el numeral 6.4. El espesor total mínimo del acabado será de 100 micrones.

Equipo mínimo de Inspección

El Contratista dispondrá como mínimo, en el lugar donde se realice su trabajo, del

siguiente equipo básico de inspección para el control de:

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENIERIA O N C

Condiciones ambientales

Termómetro de ambiente

Termómetro de contacto

Medidor del espesor de pintura

Elcómetro o medidor de espesor de pinturas

Equipo Mínimo de Pintura

Pistola Devilbiss JGA o similar.

02 Unidades

Compresora eléctrica o autopropulsada 150psi

02 Unidad

Juego de repuestos de mangueras para equipos 02 Juegos

MONTAJE

Consideraciones Generales

El Contratista de las Estructuras Metálicas deberá efectuar el montaje de las misma preservando el orden y la limpieza, contando con las instalaciones provisionales requeridas para este fin y con los equipos adecuados para efectuar las maniobras que aseguren la ejecución del montaje en concordancia con las buenas práctica de la Ingeniería.

El Contratista deberá designar un Ingeniero Responsable del Montaje, además del personal, de todo nivel, debidamente calificado y con experiencia para la ejecución de este tipo de trabajos.

Previamente las estructuras y elementos fabricados deberán haber sido marcados para permitir su identificación y transportados adecuadamente, cuidando de no deformarlos ni dañarlos.

Llegados a Obra, las estructuras y sus elementos de conexión deberán ser almacenados ordenadamente en un ambiente designado para tal fin, que permita un acceso rápido y les de un grado de protección contra la lluvia, el sol y el polvo.

El Contratista está obligado a respetar lo detallado en los Planos de Montaje previamente aprobados.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

Recepción de los materiales

El Contratista debe revisar, antes del montaje, cada uno de los embarques de materiales que llegan a la obra. Si se detecta que algunos de los materiales que arriban a obra se encuentran dañados, lo informará de inmediato a la Supervisión, el que debe decidir si es posible rehabilitarlos en el sitio o deben ser devueltos para su reposición.

Debe proveerse arriostamientos temporales cuando sea necesario para resistir las cargas impuestas por las operaciones de transporte y montaje.

Instalación de los pernos de anclaje

Las tolerancias en su ubicación respecto de lo indicado en los Planos de Montaje, no será mayor que:

1/8" entre centros de cualesquiera dos pernos dentro de un grupo de pernos de anclaje.

1/4" entre centros de grupos de pernos de anclaje adyacentes.

1/2" para el nivel del extremo superior de los pernos de anclaje.

Instalación de los pernos de la estructura

Los pernos estarán provistos de tuerca y arandela plana. En aquellas conexiones donde las superficies exteriores de los elementos conectados no son perpendiculares al eje del perno, deberán usarse arandelas biseladas.

La parte roscada del perno no debería estar incluida, preferiblemente, en el plano de corte de los elementos que conectan. Las llaves de tuercas utilizadas para la instalación de los pernos deben ser de las dimensiones precisas para no producir daños en la cabeza o la tuerca de los pernos.

Tolerancias de montaje.

Los elementos verticales de la estructura, o columnas, se consideran aplomados si la desviación de su eje de trabajo respecto a la línea de plomo no excede 1:500.

El nivel de elementos conectados a columnas es considerado aceptable si la distancia desde el punto de trabajo del elemento al nivel superior de empalme de la columna no se desvía más que 3/16" (4.5 mm) ni menos que 5/16" (8.0 mm) que la distancia especificada en los planos.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

Cualquier elemento se considerará aplomado, nivelado y alineado si la variación angular de su eje de trabajo respecto al alineamiento indicado en los planos no excede 1:500.

Soldadura en Obra.

El procedimiento de ejecución de las soldaduras de campo debe ser tal, que se minimicen las deformaciones y distorsiones del elemento que se está soldando.

El tamaño de las soldaduras debe ser regular, su apariencia limpia y debe estar libre de grietas, porosidades ní exhíbir inadecuada penetración o fusión incompleta. Una vez ejecutada la soldadura, deberán eliminarse las partículas sueltas, escoria u óxido procediéndose a la aplicación de una mano de pintura anticorrosiva.

Antes de proceder a soldar, se removerá con cepillo de alambre, toda capa de pintura en las superficies para soldar y adyacentes, se limpiara cuidadosamente toda el área inmediatamente antes de soldar. Terminada la operación de soldadura, se limpiará el área y se pintará de acuerdo al procedimiento indicado en el acápite de pintura.

Pintura de Resane

Una vez que el montaje ha sido concluido, se resanará o se repintará las zonas dañadas de la superficie de pintura. Previamente se eliminarán el polvo, la suciedad o cualquier materia extraña que se haya acumulado durante el período de montaje como resultado de los trabajo y la exposición a la intemperie. Se aplicarán dos (02) manos de pintura de acabado sobre el área dañada consistente en un esmalte epóxico, compatible y de la misma marca del imprimante.

Equipo mínimo de transporte y montaje

- Camión Grúa HIAB 06 Ton.	01 Unidad		
- Camión Baranda de 04 Ton.	01 Unidad		
- Máquina de soldar de 300 Amp.	02 Unidades		
- Equipos de corte manual	02 Unidades		
- Esmeriles eléctricos de 7"	02 Unidades		
- Sierra vaivén eléctrica	01 Unidad		

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

- Tirfor de 3.0 Ton con 50 m de cable

01 Unidad

- Tecle Rachet de 3.0 Ton.

01 Unidad

- Cuerpos de Andamios

10 Juegos

- Cajones metálicos con herramientas manuales

02 Juegos

Seguridad, Limpieza, Orden, Higiene y Medio Ambiente

Es obligación del Contratista de las Estructuras Metálicas efectuar los trabajos preservando la debida seguridad a las personas, equipos, bienes propios y de terceros y a la propiedad pública, así como manteniendo adecuada limpieza y orden en la ejecución de los mismos, especialmente durante el desarrollo de los trabajos en el sitio de la Obra.

Durante la ejecución de los trabajos en Obra, todo el personal del Contratista de las Estructuras Metálicas deberá contar con los implementos de seguridad requeridos para este tipo de trabajos, sin limitación alguna, como por ejemplo cascos, botas con punteras de acero, caretas de soldar, anteojos para esmerilar, cinturones de seguridad, cabos, etc.

Igualmente todas sus herramientas, implementos y equipos deben ser seguros y perfectamente adecuados para estos trabajos, particularmente los andamios, escaleras, pasarelas, equipos de oxicorte, etc. Particular atención merecen los equipos y materiales que puedan derivar en situaciones de incendio o explosión, como por ejemplo: combustibles y lubricantes, oxígeno, acetileno, acetogen y similares, siendo obligación prioritaria preservarlos y guardarlos correctamente.

Es obligación del Contratista de las Estructuras Metálicas efectuar diariamente la limpieza del área de trabajo a su cargo y mantener los materiales, equipos, implementos, herramientas, etc. en perfecto orden. Periódicamente deberá eliminar los desechos, basuras, retazos y desperdicios que hubiere, para lo cual previamente los debe haber acomodado en un lugar pre-establecido.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

ESPECIFICACIONES TECNICAS DE SUMINISTRO DE MATERIALES MATERIALES ELECTRICOS

GENERALIDADES

Estas especificaciones estipulan los materiales para la ejecución de los trabajos, todo material no cubierto por estas especificaciones deberá sujetarse a las buenas normas instalación y deberán cumplir estrictamente lo establecido por el Código Nacional de Electricidad-Sistema de Utilización Tomo V y el Reglamento Nacional de Construcciones.

ARTEFACTOS DE ILUMINACIÓN

En general los artefactos de iluminación serán de 220V – 60 Hz con equipos de alto factor de potencia y de las características y modelos que están indicados en los planos.

LUMINARIAS TIPO FLUORESCENTES

Se utilizarán luminarias tipo fluorescentes dobles lineales de 2x40 W-220V para colgar, se utilizar fluorescentes circulares de 32W-220V para adosar.

CABLES CONDUCTORES DE BAJA TENSIÓN

INSTALACIONES INTERIORES

Salvo indicación contraria, en las instalaciones interiores se tendrán conductores unipolares de cobre, con aislamiento de PVC especial, resistente al calor, humedad y agentes químicos tipo THW para las fases respectivamente, según indicación en los planos.

El conductor tendrá las siguientes características:

A. Características generales:

CABLE TIPO THW

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NORMAS DE FABRICACIÓN.

:ITINTEC 370.048(Calibre mm²)

:UL-83 (Calibres AWG)

:VDE 0250 (Calibres AWG)

Tensión del servicio

:600Voltios(en AWG), :750Voltios(en mm²)

Temperatura de operación

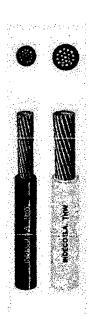
:75°C

DESCRIPCIÓN

Conductores de cobre electrolítico recocido, sólido o cableado. Aislamiento de PVC

USOS

Aplicación general en instalaciones fijas; edificaciones, interior de locales con ambiente seco o húmedo, conexiones de tableros de control y en general en todas las instalaciones que requieran caracteristicas superiores al TW.


CARACTERÍSTICAS

Alta resistencia dieléctrica, resistencia a la humedad, productos químicos, grasas, aceites y al calor. Retardante a la llama.

EMBALAJE

De 1,5 a 35 mm²: en rollos estándar de 100 metros. De 10 a 500mm²: en carretes de madera.

COLORES

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

De 1,5 a 4mm²: Amarillo, azul, blanco, negro, rojo y verde

Mayores de 4mm²: solo en color negro

CALIBRE: 2,5 - 500 mm²

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "Parroquia de San Agustín"

B. Características Eléctricas

ESPECIFICACIONES CONDUCTORES TW - mm²

CALIBRE			DIAMETRO	ESPESOR	DIAMETRO		
CONDUCTOR	N° HILOS	DIAMETRO HILO	CONDUCTOR	AISLAMIENTO	EXTERIOR	PESO	DUCTO
mm²		mm	, mm	mm	mm	Kg/Km	A
0,75	1	1,0	1,0	0,75	2,5	12	7
1	1	1,1	1,1	0,75	2,6	15	9
1,5	1	1,4	1,4	0,75	2,9	20	3
2,5	1	1,8	1,8	0,75	3,3	31	2
4	1	2,3	2,3	0,75	3,8	45	8
6	1	2,8	2,8	0,75	4,3	65	5
10	1	3,6	3,6	1,15	5,9	3	6

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "Parroquia de San Agustín"

ESPECIFICACIONES CONDUCTORES THW - mm²

18	Si .	ir	G	ESPESOR AISLAMIENTO	, <u>}</u> .	DIAMETRO EXTERIOR	DUCTO
mm²		mm	mm	mm	mm	Kg/Km	A
			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				
2,5	7	0,67	2,0	1,15	4,3	36	22
4	7	0,85	2,6	1,15	4,9	56	3 0
6	7	1,04	3,1	1,15	5,4	78	3 8
10	7	1,35	4,1	1,50	7,1	131	5
16	7	1,70	5,1	1,50	8,1	193	7 5
25	7	2,14	6,4	1,50	9,4	290	9 5

TABLEROS ELECTRICOS

TABLERO GENERAL.

Tablero eléctrico empotrado, del tipo engrampe 54 polos, trifásico 380/220 V.

Estarán formados por dos partes:

- A) Gabinete
- B) Interruptores
- A) Gabinete

HACTONAL POLICE OF COLUMN AND COL

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

NEE-VIERTE O NC

Formado por:

a) Cajas:

Serán del tipo para empotrar en la pared, construida de fierro galvanizado de 1.5 mm. de espesor, debiendo traer huecos ciegos en sus costados, de diámetros variados 20 mm., 25 mm, 35 mm etc. de acuerdo con los alimentadores. Las dimensiones de las cajas serán las recomendadas por los fabricantes, debiendo tener como máximo, cuatro tamaños diferentes de cajas.

Deberá tener espacio necesario por los cuatro costados para poder hacer todo el alambrado en ángulo recto.

b) Marco y Tapa:

Serán construidos del mismo material que la caja, debiendo estar empernado interiormente a la misma.

El marco llevará una plancha que cubra los interruptores.

La tapa debe ser pintada en color gris oscuro, y en relieve debe llevar la denominación del tablero.

En la parte interior de la tapa llevará un compartimiento donde se alojará y asegurará firmemente una cartulina plastificada blanca con el Directorio de Circuitos, este Directorio debe ser hecho con letras mayúsculas y ejecutado en imprenta.

Dos copias, igualmente hechas en imprenta, deben ser remitidas al propietario.

Toda pintura será al duco.

La puerta llevará chapa y llave tipo Yale, debiendo ser tapa de una sola hoja.

c) Barras y Accesorios:

Las barras deben ir aisladas de todo el gabinete, de tal forma de cumplir exactamente con las especificaciones de Tablero de Frente Muerto.

Las barras serán de cobre electrolítico de capacidad mínima:

FACULTAD DE INGENIERÍA
ESCUEIA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

INTERRUPTOR GENERAL

BARRAS

90 A

200 A.

INTERRUPTORES SECUNDARIOS BARRAS

20 - 30 - 40 A

200 A.

Traerán barra para conectar las diferentes tierras de todos los circuitos, éstos se harán por medio de tornillos, debiendo haber uno final para la conexión a la red de tierra. Los tornillos serán de bronce.

B) <u>Interruptores</u>:

Serán del tipo termomagnéticos.

La conexión de los alambres debe ser lo más simple y segura, las orejas serán fácilmente accesibles, la conexión eléctrica debe asegurar que no ocurra la menor pérdida de energía por falsos contactos.

Deben ser del tipo intercambiable, de tal forma que los interruptores puedan ser removidos sin tocar los adyacentes.

El alambrado de los interruptores debe ser hecho por medio de terminales de tornillos con contactos de presión de bronce o de fierro galvanizado.

Los interruptores deben llevar claramente marcados las palabras FUERA (OFF) y SOBRE (ON).

Protección contra sobrecarga por medio de placa bimetálica y con contactos de aleación de plata de tal forma que aseguren un excelente contacto eléctrico disminuyendo la posibilidad de picaduras y quemado.

Deben ser apropiados para trabajar en las condiciones climáticas de la zona donde van a ser instalados.

Los interruptores serán bipolares de 20 A del tipo de disparo común interno de las capacidades indicadas en planos y similares a los fabricados por Heineman, Westinghouse, Federal, General Electric, Bullog, AEG y otras de reconocida marca.

- Interruptor diferencial 30mA (1), para protección en circuitos de

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGEWIERIA C M C

Tomacorrientes.

TABLEROS DE DISTRIBUCIÓN

Tableros eléctricos empotrados, del tipo empotrado de 12, 24, 36 polos.

Estarán formados por dos partes:

A) Gabinete:

Formado por:

a) Cajas:

Serán del tipo para empotrar en la pared, construida de fierro galvanizado de 1.5 mm. de espesor, debiendo traer huecos ciegos en sus costados, de diámetros variados 20 mm., 25 mm, 35 mm etc. de acuerdo con los alimentadores. Las dimensiones de las cajas serán las recomendadas por los fabricantes, debiendo tener como máximo, cuatro tamaños diferentes de cajas.

Deberá tener espacio necesario por los cuatro costados para poder hacer todo el alambrado en ángulo recto.

b) Marco y Tapa:

Serán construidos del mismo material que la caja, debiendo estar empernado interiormente a la misma.

El marco llevará una plancha que cubra los interruptores.

La tapa debe ser pintada en color gris oscuro, y en relieve debe llevar la denominación del tablero.

En la parte interior de la tapa llevará un compartimiento donde se alojará y asegurará firmemente una cartulina plastificada blanca con el Directorio de Circuitos, este Directorio debe ser hecho con letras mayúsculas y ejecutado en imprenta.

Dos copias, igualmente hechas en imprenta, deben ser remitidas al propietario.

Toda pintura será al duco.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

La puerta llevará chapa y llave tipo Yale, debiendo ser tapa de una sola hoja.

c) Barras y Accesorios:

Las barras deben ir aisladas de todo el gabinete, de tal forma de cumplir exactamente con las especificaciones de Tablero de Frente Muerto.

Las barras serán de cobre electrolítico de capacidad mínima:

INTERRUPTOR GENERAL

BARRAS

20 - 30 A

200 A.

INTERRUPTORES SECUNDARIOS BARRAS

15 - 20 A

200 A.

Traerán barra para conectar las diferentes tierras de todos los circuitos, éstos se harán por medio de tornillos, debiendo haber uno final para la conexión a la red de tierra. Los tornillos serán de bronce.

B) Interruptores:

Serán del tipo termomagnéticos.

La conexión de los alambres debe ser lo más simple y segura, las orejas serán fácilmente accesibles, la conexión eléctrica debe asegurar que no ocurra la menor pérdida de energía por falsos contactos.

Deben ser del tipo intercambiable, de tal forma que los interruptores puedan ser removidos sin tocar los adyacentes.

El alambrado de los interruptores debe ser hecho por medio de terminales de tornillos con contactos de presión de bronce o de fierro galvanizado.

Los interruptores deben llevar claramente marcados las palabras FUERA (OFF) y SOBRE (ON).

Protección contra sobrecarga por medio de placa bimetálica y con contactos de aleación de plata de tal forma que aseguren un excelente contacto eléctrico disminuyendo la posibilidad de picaduras y quemado.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

REENIERIA O A C

Deben ser apropiados para trabajar en las condiciones climáticas de la zona donde van a ser instalados.

Los interruptores serán bipolares de 15,20 y tripulares de 20,30, 40 A del tipo de disparo común interno de las capacidades indicadas en planos y similares a los fabricados por Heineman, Westinghouse, Federal, General Electric, Bullog, AEG y otras de reconocida marca.

- Interruptor diferencial; con una sensibilidad de 30mA, para 25A (1), para protección en circuitos de Tomacorrientes.

2.6.3. ELECTRODUCTOS:

Todas las tuberías serán de plástico pesado PVC-CP (SAP), fabricados de acuerdo a las normas elaboradas por el ITINTEC.

El diámetro mínimo de las tuberías a usarse será de 20 mm en PVC-CP (SAP).

Las uniones de tubo a tubo se efectuarán a presión, con pegamento PVC, producto Standard de los fabricantes de tuberías.

Las uniones de tuberías a caja se efectuarán con "conexiones a caja" del mismo material que la tubería, siendo producto Standard del fabricante de tubos.

2.6.4. CAJAS DE PASE PARA REDES ELÉCTRICAS TELEFONO Y AUDIO

Todas las cajas de tamaño estándar americano serán de fierro galvanizado pesado, y de las siguientes dimensiones:

Octogonal 100 x 55 x 40mm Prof.: Salidas a centro de luz.

Rectangular 100 x 55 x 55mm Prof.: Salidas a interruptor de luz, tomacorriente, teléfonos y cómputo.

Cuadrada 100 x 100 x 50mm, 150 x 150 x 100mm, 250 x 250 x 100mm.

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL "Parroquia de San Agustín"

2.6.5. INTERRUPTOR DE LUZ, TOMACORRIENTES.

Los interruptores de luz simples, dobles, conmutación, serán unipolares, 220V - 15 A, Ticino Magic # 5001 ó similar aprobado.

Los tomacorrientes monofásicos con línea a tierra, tipo Ticino serie Magic Nº 5028 A, 16 A, 230 C., ó similar aprobado de tensión estabilizada.

Los tomacorrientes a prueba de agua (intemperie) simple, universal, 10 A, 230 V, serán con tapa Magíc Idrobox ó similar aprobado.

Las salidas de voz/data serán de tipo jackete.

2.4 MATERIAL PARA PUESTA A TIERRA

1.4.1 Alcance

Estas especificaciones cubren las condiciones técnicas requeridas para la fabricación, pruebas y entrega de accesorios para la puesta a tierra de las estructuras que se utilizarán en las redes secundarias.

2.4.2 Normas Aplicables

Los accesorios metálicos, materia de la presente especificación, cumplirán con las prescripciones de las siguientes normas :

ITINTEC 370-042 Conductores de cobre recocido para uso Eléctrico (Respaldado ahora por INDECOPI)

ANSI C135.14 STAPLES WITH ROLLED OR SLASH POINSTS FOR OVERHEAD LINE CONSTRUCTION.

2.4.3 Descripción de los accesorios

1.4.3.1 Conductor

El conductor la bornera del tablero con el electrodo, será de cobre desnudo, cableado y recocido, de las siguientes características:

N STANSON OF THE PROPERTY OF T

UNIVERSIDAD NACIONAL DE CAJAMARCA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

FACULTAD DE INGENIERÍA

"Parroquia de San Agustín"

- Sección mínima : 10 mm2.

- Número de alambres : 7.

- Diámetro nominal de los alambres : 1.78 mm.

- Diámetro nominal exterior : 5.1 mm.

- Elongación mínima : 10 %.

2.4.3.2 Electrodo de Cooperweld

Será una varilla de acero recubierta con una capa de cobre mediante un proceso de soldadura atómica.

Tendrá las siguientes dimensiones:

- Diámetro nominal : 16 mm

- Longitud : 2.40 m

Para el caso de Data, se utilizará la varilla de cobre puro.

2.4.3.3 Borne para el electrodo

Será de bronce, adecuado para garantizar un ajuste seguro entre el conductor de cobre para puesta a tierra y el electrodo descrito en los acápites anteriores.

2.4.3.4 Caja de registro

Será de concreto de forma circular, de dimensiones : 198x173x145 mm de radio.

La tapa será pintada indicando puesta a tierra

2.4.3.5 Tratamiento

La tierra para el enterrado de la puesta a tierra tendrá el siguiente tratamiento:

- Compuesto químico tipo Bentonita.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

- Tierra vegetal, en dosificación según Lámina de detalle.

2.4.3.6 Pruebas

El proveedor presentará al propietario seis (06) copias certificadas de los documentos que demuestren que todas las pruebas señaladas en las normas consignadas han sido realizadas y que los resultados obtenidos están de acuerdo con esta especificación y la oferta del postor.

2.4.3.7 Embalaje

El conductor se entregará en carretes de madera de suficiente rigidez para soportar cualquier tipo de transporte y debidamente cerrado con listones, también de madera, para proteger al conductor de cualquier daño.

Los otros materiales serán cuidadosamente embalados en cajas de madera de dimensiones adecuadas.

Cada caja deberá tener impresa la siguiente información:

- Nombre del propietario
- Nombre del fabricante
- Tipo de material y cantidad
- Masa neta y total

2.4.3.8 Información técnica requerida

El postor presentará con su oferta las hojas de características técnicas garantizadas debidamente llenadas, firmadas y selladas.

Asimismo, deberá adjuntar catálogos del fabricante en los que se muestren fotografías o dibujos con las dimensiones, formas y características mecánicas de los accesorios.

En caso que el postor proponga normas distintas a las especificadas deberá incluir una copia de éstas.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

01.00.00 INSTALACIONES SANITARIAS

01.01.00 SISTEMA DE DESAGUE

01.01.01 SALIDAS DE PVC SAL PARA DESAGUE DE 2" DESCRIPCIÓN.

Los puntos de desagüe comprenden desde la salida para los aparatos hasta las conexiones de los ramales con el colector secundario, montante o caja en cada caso. Las tuberías y accesorios seran de PVC-SAL de 2"

UNIDAD DE MEDIDA.

La unidad de medida es por punto.

BASES DE PAGO

El pago se hará por Punto (Pto) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.01.02 SALIDAS DE PVC SAL PARA DESAGUE DE 4" DESCRIPCIÓN.

Los puntos de desagüe comprenden desde la salida para los aparatos hasta las conexiones de los ramales con el colector secundario, montante o caja en cada caso. Las tuberías y accesorios seran de PVC-SAL de 4"

UNIDAD DE MEDIDA.

La unidad de medida es por punto.

BASES DE PAGO

El pago se hará por Punto (Pto) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENTERIA O MC

01.01.03 SALIDAS DE PVC SAL PARA DESAGUE DE 4" DESCRIPCIÓN.

Los puntos de desagüe comprenden desde la salida para los aparatos hasta las conexiones de los ramales con el colector secundario, montante o caja en cada caso. Las tuberías y accesorios seran de PVC-SAL de 4"

UNIDAD DE MEDIDA.

La unidad de medida es por punto.

BASES DE PAGO

El pago se hará por Punto (Pto) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.01.04 SALIDAS DE PVC SAL PARA VENTILACION DE 4" DESCRIPCIÓN.

Los puntos de desagüe comprenden desde la salida para los aparatos hasta las conexiones de los ramales con el colector secundario, montante o caja en cada caso. Los accesorios seran de PVC-SAL de 4"

UNIDAD DE MEDIDA.

La unidad de medida es por punto.

BASES DE PAGO

El pago se hará por Punto (Pto) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

01.01.05 DEL 01.01.05 AL 01.01.07 TUBERIAS 2", 3" Y 4" DESCRIPCIÓN.

- a. Tubería de PVC SAL de 2, 3 Y 4 Pulgadas, rígido, unión a simple presión, de la clase correspondiente. El interior de los mismos sera totalmente liso.
- b. Accesorios de PVC rígido, unión a simple presión o unión roscada, de la clase correspondiente, según proyecto.
- c. Pegamento o cemento solvente para tuberías de PVC.
- d. Para otro tipo de tuberías y accesorios, no considerados en las presentes especificaciones se deberá indicar la Norma Técnica Internacional correspondiente.

UNIDAD DE MEDIDA.

La unidad de medida es el metro.

BASES DE PAGO

El pago se hará por Metro (M) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.01.08 AL 01.01.18 ACCESORIOS 2", 3" Y 4"

DESCRIPCIÓN.

Accesorios de PVC-SAL de 2, 3 y 4 pulgadas. El interior de los mismos sera totalmente liso.

Pegamento o cemento solvente para tuberías de PVC.

Para otro tipo de tuberías y accesorios, no considerados en las presentes especificaciones se deberá indicar la Norma Técnica Internacional correspondiente.

UNIDAD DE MEDIDA.

La unidad de medida es la pieza.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

NGENIERIA O MC

BASES DE PAGO

El pago se hará por Pieza (Pza) según precio unitario del contrato entendiéndose que

dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo

las leyes sociales, materiales y cualquier actividad o suministro necesario para la

ejecución del trabajo.

01.01.19 SUMIDEROS DE BRONCE CROMADO 2"

DESCRIPCIÓN.

Los sumideros serán de bronce para colocarse en las cabezas de los tubos o conexiones

con tapa roscada e irán al ras de los pisos acabados.

UNIDAD DE MEDIDA.

La unidad de medida es la pieza.

BASES DE PAGO

El pago se hará por Pieza (Pza) según precio unitario del contrato entendiéndose que

dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo

las leyes sociales, materiales y cualquier actividad o suministro necesario para la

ejecución del trabajo.

01.01.20 SUMIDEROS DE BRONCE CROMADO 3"

DESCRIPCIÓN.

Los sumideros serán de bronce para colocarse en las cabezas de los tubos o conexiones

con tapa roscada e irán al ras de los pisos acabados.

UNIDAD DE MEDIDA.

La unidad de medida es la pieza.

BASES DE PAGO

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENIERIA UNC

El pago se hará por Pieza (Pza) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.01.21 AL 01.01.22 REGISTRO ROSCADO DE 3" Y 4"

Los registros serán de bronce para colocarse en las cabezas de los tubos o conexiones con tapa roscada e irán al ras de los pisos acabados.

Se usarán sumideros de bronce, según plano de detalle:

- a) Simple cuerpos de bronce, rejilla movible, conectados por trampa "P".
- b) Cromadas para duchas.

UNIDAD DE MEDIDA.

La unidad de medida es la pieza.

BASES DE PAGO

El pago se hará por Pieza (Pza) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.01.23 SOMBRERO DE VENTILACION DE 4"

Las ventilaciones que lleguen hasta el techo de la azotea se prolongarán sobre el nivel de la cobertura en una longitud mayor de 30cm. rematando en un sombrero de ventilación que será de PVC de diámetro 3", según lo establecido en los planos.

UNIDAD DE MEDIDA.

La unidad de medida es la pieza.

BASES DE PAGO

El pago se hará por pieza (Pza) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo

TOTAL MARKET

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

MGENIERIA O MC

las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.01.24 CAJA DE REGISTRO DE DESAGUE

DESCRIPCIÓN.

Las cajas de registro deben ser de albañilería de las dimensiones indicadas, con marco y tapa de concreto con perfiles metálicos, según diseño, mayormente de dimensiones 12" x 24".

UNIDAD DE MEDIDA.

La unidad de medida es la pieza.

BASES DE PAGO

El pago se hará por pieza (Pza) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.01.25 PRUEBA HIDRAULICA P/DESAGUE

DESCRIPCIÓN.

Consistirá en llenar con agua las tuberías instaladas, después de haber taponado las salidas más bajas, debiendo permanecer por lo menos 24 horas sin presentar escapes. Si el resultado no es satisfactorio se procederá a realizar las correcciones del caso y se repetirá la prueba hasta eliminar las filtraciones.

UNIDAD DE MEDIDA.

La unidad de medida es el metro.

BASES DE PAGO

El pago se hará por metro (M) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las

N STATE OF S

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Parroquia de San Agustín"

NGENIERIA B NC

leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.02.00 SISTEMA DE AGUA FRIA

01.02.01 SALIDA DE AGUA FRIA CON TUBERIA DE PVC-SAP

DESCRIPCIÓN.

Se instalarán todas las salidas para la alimentación de los aparatos sanitarios previstos en los planos. Las salidas quedarán enrasadas en el plomo bruto de la pared con un codo, tees, niple o unión roscada de fierro galvanizado.

Las tuberías y accesorios a utilizar son de plástico PVC para una presión de 150 libras por pulgada cuadrada y uniones roscadas.

La altura de las salidas a los aparatos sanitarios serán los siguientes:

Lavatorios

55 cm. sobre N.P.T.

Inodoro tanque bajo

20 cm. sobre N.P.T.

Ducha

180 cm. sobre N.P.T.

las alturas que indiquen los planos.

UNIDAD DE MEDIDA.

La unidad de medida es el punto.

BASES DE PAGO

El pago se hará por Punto (Pto) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENTERIA O N C

01.02.02 AL 02.02.06 RED DE DISTRIBUCION TUBERIA PVC SAP 2", 3/", 1/2"

DESCRIPCIÓN.

Tuberías de los diferentes diámetros serán del tipo espiga campana, clase 10., empotradas en piso y paredes. N.T.P.

Para tuberías y accesorios de unión soldada deben usar limpiador y pegamento para PVC, seguir las instrucciones del fabricante y esperar el tiempo de secado recomendado antes de someter las mismas a presión.

Para tuberías y accesorios de unión roscada usar sellador para sistemas de agua a presión como cinta teflón ú otros.

Fijar la tubería antes del vaciado para evitar los vacíos entre ella y el concreto.

Para tubería empotrada en mampostería dejar canaletas antes de su instalación y posteriormente rellenadas con concreto.

Aplicar la protección anticorrosiva en caso necesario con la debida anticipación al vacíado.

Para el pase de tubería a través de los elementos estructurales, se debe cumplir la Norma Técnica de edificación del rubro Estructuras E.060: Concreto Armado Acápite 6.3.

UNIDAD DE MEDIDA.

La unidad de medida es el metro.

BASES DE PAGO

El pago se hará por Metro (M) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.02.07 AL 01.02.12 ACCESORIOS PVC DIAMETRO

DESCRIPCIÓN.

TEE de PVC-SAP de 1", 1" x 3/4", 3/4", llevará impresa en alto relieve la marca del fabricante. El interior de la misma será totalmente liso.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

MGENTERIA O NC

UNIDAD DE MEDIDA.

La unidad de medida es la unidad.

BASES DE PAGO

El pago se hará por Unidad (Und) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.02.13 REDUCCIONES 34" A 12"PVC

DESCRIPCIÓN.

Reducciones de PVC-SAP de 1" A ½", ¾" A ½", 1 ½" A 1", 1" A ¾" llevarán impresa en alto relieve la marca del fabricante. El interior de los mismos serán totalmente liso.

UNIDAD DE MEDIDA.

La unidad de medida es la unidad.

BASES DE PAGO

El pago se hará por Unidad (Und) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.02.14 A 01.02.15 VALVULAS DE COMPUERTA DE BRONCE DE '%' Y '%'

DESCRIPCIÓN.

Las válvulas de compuerta de ½" y ¾" de diámetro serán de bronce con uniones roscadas con marca de fábrica y presión de trabajo grabados en alto relieve en el cuerpo de la válvula para 125 lbs/pulg2.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

Uniones dobles del tipo universal, de ½" y ¾" totalmente fabricadas en F°G°, asiento cónico para una presión de trabajo hidráulico de 150 psi. Llevarán impreso en relieve la marca del fabricante.

UNIDAD DE MEDIDA.

La unidad de medida es la unidad.

BASES DE PAGO

El pago se hará por Pieza (Pza) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.02.16 PRUEBA HIDRAULICA AGUA

DESCRIPCIÓN.

Se realizará antes de empotrar o enterrar los tubos y podrán efectuarse en forma parcial a medida que avance el trabajo.

La prueba se realizará con bomba de mano y manómetro, debiendo las tuberías y accesorios soportar una presión de 100 lb/plg2. sin que en un lapso de 15 minutos se note descenso, en cuyo caso se localizará el punto o puntos de filtración y se corregirá para luego efectuar la prueba nuevamente.

UNIDAD DE MEDIDA.

La unidad de medida es el metro.

BASES DE PAGO

El pago se hará por metro (M) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

C STATE OF S

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

HGENERIA U M C

01.02.17 PRUEBA DE DESINFECCION RED DE AGUA FRIA

DESCRIPCIÓN.

Después de probada la red general de agua, se lavará interiormente con agua limpia y se descargará totalmente.

El sistema se desinfectará usando cloro o una mezcla de solución de hipoclorito de calcio.

Las tuberías se llenarán lentamente con agua aplicando el agente desinfectante en una porción de 50 partes por millón de cloro activo. Después de por lo menos 3 horas de haber llenado las tuberías, se comprobará en los extremos de la red el contenido de cloro residual.

Si el cloro residual acusa menos de 5 partes por millón se evacuará el agua de las tuberías y se repetirá la operación de desinfección.

Cuando el cloro residual esté presente en una proporción mínima de 5 partes por millón, la desinfección se dará por satisfactoria y se lavarán las tuberías con agua potable hasta que no queden trozos del agente químico usado.

UNIDAD DE MEDIDA.

La unidad de medida es el metro.

BASES DE PAGO

El pago se hará por metro (M) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o sumínistro necesario para la ejecución del trabajo.

01.03.00 DRENAJE PLUVIAL

01.03.01 TUBERIA PVC SAL DE 3"

DESCRIPCIÓN.

a. Tubería de PVC SAL de 3 Pulgadas, rígido, unión a simple presión, de la clase correspondiente. El interior de los mismos sera totalmente liso.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

NGENIERIA O MC

b. Accesorios de PVC rígido, unión a simple presión o unión roscada, de la clase correspondiente, según proyecto.

c. Pegamento o cemento solvente para tuberías de PVC.

d. Para otro tipo de tuberías y accesorios, no considerados en las presentes especificaciones se deberá indicar la Norma Técnica Internacional correspondiente.

UNIDAD DE MEDIDA.

La unidad de medida es por metro lineal.

BASES DE PAGO

El pago se hará por Metro Lineal (M) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.03.02 SUMIDEROS DE BRONCE CROMADO 3"

DESCRIPCIÓN.

Los sumideros serán de bronce para colocarse en las cabezas de los tubos o conexiones con tapa roscada e irán al ras de los pisos acabados.

UNIDAD DE MEDIDA.

La unidad de medida es la pieza.

BASES DE PAGO

El pago se hará por Pieza (Pza) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

HACIONAL OF CALMADICAL

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

Merveril

01.03.03 CODO PVC SAL DE 3" x 90°

DESCRIPCIÓN.

Codo de PVC-SAL de 3" x 90°, será impresa en alto relieve la marca del fabricante. El interior de la misma será totalmente liso.

UNIDAD DE MEDIDA.

La unidad de medida es la pieza.

BASES DE PAGO

El pago se hará por Pieza (Pza) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

01.03.04 CANALETA PLUVIAL DE TECHO

DESCRIPCIÓN.

La canaleta seré de PVC resistente a impactos, prefabricada, de facil manipule e instalación, ver detalle del fabricante.

UNIDAD DE MEDIDA.

La unidad de medida es el Metro Lineal.

BASES DE PAGO

El pago se hará por Metro Lineal (M) según precio unitario del contrato entendiéndose que dicho precio y pago constituirá compensación total por toda la mano de obra, incluyendo las leyes sociales, materiales y cualquier actividad o suministro necesario para la ejecución del trabajo.

FACULTAD DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL
"Parroquia de San Agustín"

ANEXO 3

RESUMEN DEL PRESUPUESTO

TOTAL DEL PRESUPUESTO	1,314,699.56
TOTAL DEL PRESUPUESTO INSTALACIONES ELECTRICAS	21,413.38
TOTAL DEL PRESUPUESTO INSTALACIONES SANITARIAS	72,114.23
TOTAL DEL PRESUPUESTO ESTRUCTURAS	600,141.40
TOTAL DEL PRESUPUESTO ARQUITECTURA	621,030.55

Las fuentes de financiamiento son diversas y entre ellas tenemos:

- Las aportaciones directas de los fieles; prestaciones, colectas, limosnas y oblaciones.
- La colaboración del Estado y del resto de las administraciones públicas

1

Presupuesto

Presupuesto 0303001 PARROQUIA DE SAN AGUSTIN Subpresupuesto 002 ARQUITECTURA1
Cliente UNIVERSIDAD NACIONAL DE CAJAMARCA LUgar CAJAMARCA - CAJAMARCA - CAJAMARCA

Costo al 06/05/2013

Item	Descripción	Und.	Metrado	Precio SI.	Parcial SI.
01	ARQUITECTURA				446,014.48
01.01	MUROS Y TABIQUES DE ALBAÑILERIA				64,982.33
01.01.01	MURO DE SOGA LADRILLO KING-KONG DE SOGA C/M 1:4	m2	1,122.32	57.90	64,982.33
01.02	REVOQUES Y ENLUCIDOS	•			85,591.39
01.02.01	TARRAJEO EN INTERIORES CON CEMENTO-ARENA 1:4	m2	2,244.64	35.36	79,370.47
01.02.02	TARRAJEO EN EXTERIORES CON CEMENTO-ARENA 1:4	m2	150.00	28.41	4,261.50
01.02.03	VESTIDURA DE DERRAMES EN PUERTAS, VENTANAS Y VANOS C:A 1:4	m	120.00	10.81	1,297.20
01.02.04	JUNTA DE CONSTRUCCION CON TEKNOPORT	m	39.00	16.98	662.22
01.03	PISOS Y PAVIMENTOS				154,932.10
01.03.01	CONTRAPISO DE 0.20M.	m2	513.85	132.82	68,249.56
01.03.02	CONTRAPISO DE 48 MM.	m2	345.14	27.67	9,550.02
01.03.03	PISOS DE CERÁMICO	m2	514.09	52.40	26,938.32
01,03.04	PISO DE PORCELANATO	m2	345.14	94.75	32,702.02
01.03.05	PISO DE LAJA	m2	48.90	159.34	7,791.73
01.03.06	ZOCALO DE CERAMICA DE 20 X 30	m2	68.00	67.16	4,566.88
01.03.07	VEREDA DE CONCRETO F'C=140 KG/CM2 E= 4"	m2	98.20	40.25	3,952.55
01.03.08	ENCOFRADO Y DESENCOFRADO EN VEREDAS	m2	22.10	53.44	1,181.02
01.04	ZOCALOS Y CONTRAZOCALOS				714.24
01.04.01	LISTELOS DE CERAMICA 8 x 30 CM	m	18.00	39.68	714.24
01.05	COBERTURA				60,310.35
01.05.01	COBERTURA DE TEJA ANDINA	m2	845.23	64.18	54,246.86
01.05.02	COBERTURA CON POLICARBONATO	m2	53.10	114.19	6,063.49
01.06	CARPINTERIA DE MADERA				30,780.29
01.06.01	PUERTA DE MADERA DE CEDRO	m2	133.15	231.17	30,780.29
01.07	CARPINTERIA METALICA Y HERRERIA				9,912.08
01.07.01	VENTANA DE FIERRO	m2	111.80	74.39	8,316.80
01.07.02	CANTONERA DE ALUMINIO	m	81.60	19,55	1,595.28
01.08	CERRAJERIA				4,643.25
01.08.01	CERRADURA PTA INTR PESTILLO MANIJA LLAVE GOAL 53 NPS	pza	41.00	65.09	2,668.69
01.08.02	BISAGRA CAPUCHINA DE 4"	pza	164.00	12.04	1,974.56
01.09	VIDRIOS, CRISTALES Y SIMILARES				7,676.92
01.09.01	VIDRIO SEMIDOBLE, PROVISION Y COLOCACION EN VENTANAS FIERRO	p2	1,242.22	6.18	7,676.92
01.10	PINTURA				26,471.53
01.10.01	PINTURA LÁTEX EN INTERIORES Y EXTERIORES	m2	2,394.64	8.41	20,138.92
01.10.02	PINTURA EN PUERTAS C/BARNIZ 2 MANOS	m2	266.30	13.49	3,592.39
01.10.03	PINTURA ESMALTE+ANTICORR. CARPINTERIA METALICA	m2	111.80	24.51	2,740.22

COSTO DIRECTO
GASTOS GENERALES (13%)
UTILIDAD (5%)
SUB TOTAL
IGV (18%)

57,981.88 22,300.72 526,297.08 94,733.47 621,030.55

446,014.48

TOTAL DEL PRESUPUESTO ARQUITECTURA

SON: SEISCIENTOS VEINTIUN MIL TREINTA CON 55/100 NUEVOS SOLES

Fecha:

01/06/2013 07:35:22 p.m.

Presupuesto

Presupuesto Subpresupuesto Cliente Lugar	0303001 PARROQUIA DE SAN AGUSTIN 004 ESTRUCTURAS 1 UNIVERSIDAD NACIONAL DE CAJAMARCA CAJAMARCA - CAJAMARCA - CAJAMARCA			Costo al	06/05/2013
Item	Descripción	Und.	Metrado	Precio SI.	Parcial SI.
01	ESTRUCTURAS				403,813.24
01.01	OBRAS PROVISIONALES				13,400.00
01.01.01	CARTEL DE OBRA	und	1.00	900.00	900.00
01.01.02	CASETA ADICIONAL P/GUARDIANIA Y/O DEPOSITO	m2	50.00	250.00	12,500.00
01.02	TRABAJOS PRELIMINARES				4,922.52
01.02.01	TRAZO Y REPLANTEO	m2	646.00	1.24	801.04
01.02.02	LIMPIEZA DE TERRENO MANUAL	m2	646.00	1.74	1,124.04
01.02.03	REFINE Y NIVELACION EN TERRENO NORMAL	m2	646.00	4.64	2,997.44
01.03	MOVIMIENTO DE TIERRAS				2,847.72
01.03.01	EXCAVACIONES				1,135.70
01.03.01.01	EXCAVACION DE ZANJAS	m3	82.09	11.59	951.42
01.03.01.02	EXCAVACION PARA ZAPATAS	m3	15.90	11.59	184.28
01.03.02	NIVELACIONES			•	479.49
01.03.02.01	NIVELACION Y APISONADO MANUAL	m2	328.42	1.46	479.49
01.03.03	RELLENOS				199.98
01.03.03.01	RELLENO CON MATERIAL PROPIO CON EQUIPO	m3	8.90	22.47	199.98
01.03.04	ELIMINACION DE MATERIAL EXCEDENTE				1,032.55
01.03.04.01	ELIMINACION DE MATERIAL EXCEDÊNTE HASTA DPROM. 30 M.	m3	89.09	11.59	1,032.55
01.04	OBRAS DE CONCRETO SIMPLE				12,047.41
01.04.01	SOLADOS				6,036.45
01.04.01.01	SOLADO DE CONCRETO E= 3" MEZCLA 1:12 CEMENTO-HORMIGON	m2	164.19	24.86	4,081.76
01.04.01.02	SOLADO PARA ZAPATAS DE 2" MEZCLA 1:12 CEMENTO-HORMIGON	m2	68.90	28.37	1,954.69
01.04.02	SOBRECIMIETOS				6,010.96
01.04.02.01	CONCRETO EN SOBRECIMIENTO 1:8 C:H + 25 % P.M	m3	8.94	263.36	2,354.44
01.04.02.02	ENCOFRADO Y DEDESENCOFRADO SOBRECIMIENTOS	m2	101.57	36.00	3,656.52
01.05	OBRAS DE CONCRETO ARMADO				370,595.59
01.05.01	LOSA DE CIMENTACION				42,079.31
01.05.01.01	CONCRETO EN LOSA DE CIMENTACION F'C≃ 175 KG/CM2	m3	82.09	351.23	28,832.47
01.05.01.02	ACERO FY = 4200 KG/CM2 EN LOSA DE CIMENTACION	kg	3,710.60	3.57	13,246.84
01.05.02	ZAPATAS				10,359.76
01.05.02.01	CONCRETO EN ZAPATAS F'C= 175 KG/CM2	m3	15.90	351.23	5,584.56
01.05.02.02	ACERO FY = 4200 KG/CM2 EN ZAPATAS	kg	1,337.59	3.57	4,775.20
01.05.03	VIGAS DE CIMENTACION				21,127.08
01.05.03.01	CONCRETO EN VIGAS DE CIMENTACION F'C= 210 KG/CM2	m3	27.78	343.67	9,547.15
01.05.03.02	ACERO FY = 4200 KG/CM2 EN VIGAS DE CIMENTACION	kg	1,813.25	3.57	6,473.30
01.05.03.03	ENCOFRADO Y DESENCOFRADO VIGA DE CIMENTACION	m 2	164.73	. 31.00	5,106.63
01.05.04	COLUMNAS				64,832.51
01,05.04.01	CONCRETO EN COLUMNAS F'C=210 KG/CM2	m3	54.13	516.25	27,944.61
01.05.04.02	ACERO FY = 4200 KG/CM2 EN COLUMNAS	kg	4,776.76	3.57	17,053.03
01.05.04.03	ENCOFRADO Y DESENCOFRADO NORMAL EN COLUMNAS	m2	558.10	35.54	19,834.87
01.05.05	VIGAS				97,220.10
01.05.05.01	CONCRETO EN VIGAS F'C=210 KG/CM2	m3	149.47	376.17	56,226.13
01.05.05.02	ACERO FY = 4200 KG/CM2 EN VIGAS	kg	5,009.40	3.62	18,134.03

01.05.05.03	ENCOFRADO Y DESENCOFRADO NORMAL EN VIGAS	m2	448.41	50.98	22,859.94
01.05.06	LOSAS ALIGERADAS				74,273.84
01.05.06.01	CONCRETO F'C=210 KG/CM2. PARA LOSAS ALIGERADAS	m3	62.59	384.91	24,091.52
01.05.06.02	ACERO FY = 4200 KG/CM2 EN LOSAS ALIGERADAS	kg	2,953.88	3.62	10,693.05
01.05.06.03	ENCOFRADO Y DESENCOFRADO PARA LOSAS ALIGERADAS	m2	536.54	42.72	22,920.99
01.05.06.04	LADRILLO DE ARCILLA HUECO 15X30X30 - LOSA ALIGERADA	und	4,292.30	3.86	16,568.28
01.05.07	ESCALERAS				18,723.18
01.05.07.01	CONCRETO EN ESCALERAS F'C=210 KG/CM2	m3	3.65	539.43	1,968.92
01.05.07.02	ACERO GRADO 60 EN ESCALERAS	kg	745.00	4.27	3,181.15
01.05.07.03	ENCOFRADO Y DESENCOFRADO NORMAL EN ESCALERAS	m2	183.00	74.17	13,573,11
01.05.08	MUROS TABIQUES (PLACAS)				41,979.81
01.05.08.01	CONCRETO EN MUROS REFORZADOS F'C= 210 KG/CM2	m3	36.54	514.58	18,802.75
01.05.08.02	ACERO Fy = 4200 kg/cm2	kg	4,355.24	3.94	17,159.65
01.05.08.03	ENCOFRADO Y DESENCOF MUROS REFORZADOS	m2	146.16	41.17	6,017.41
02	ESTRUCTURA METALICA				27,198.97
02.01	TECHO METALICO	m	61.40	442.98	27,198.97
	COSTO DIRECTO				431,012.21
	GASTOS GENERALES (13%)				56,031.59
	UTILIDAD (5%)			_	21,550.61
	SUB TOTAL				508,594.41
	IGV (18%)			_	91,546.99
	TOTAL DEL PRESUPUESTO ESTRUCTURAS				600,141.40

SON: SEISCIENTOS MIL CIENTO CUARENTA Y UNO CON 40/100 NUEVOS SOLES

Fecha: 01/06/2013 07:36:35 p.m.

S10 L**JCC**

Presupuesto

Presupuesto Subpresupues Cliente Lugar	006 I SUB GERENCI	PARROQUIA DE SAN AGUSTIN INSTALACIONES ELECTRICAS A DE ESTUDIOS - CAJAMARCA - CAJAMARCA - CAJAMARCA			Costo al	06/05/2013
ltem	Descripción		Und.	Metrado	Precio SI.	Parcial S/.
01	INSTALACIONES	S ELECTRICAS				40,490.31
01.01	SALIDA PARA CE	ENTROS DE LUZ C/INTERRUPTOR	pto	126.00	113.39	14,287.14
01.02	SALIDA PARA TO	DMACORRIENTES BIPOLARES SIMPLES CON PVC	pto	84.00	95.47	8,019.48
01.03	SALIDA PARA AM	NTENA DE TELEVISION CON PVC	pto	10.00	69.57	695.70
01.04	SALIDA PARA AI	NTENA DE RADIO CON PVC	pto	10.00	51.24	512.40
01.05	CAJA DE PASE O	OCTOGONAL	und	20.00	43.53	870.60
01.06	TUBO PVC SEL ((E/C) 3/4° X 3.00 M.	m	########	7.05	12,436.20
01.07	TABLERO DE DIS	STRIBUCION	und	6.00	111.77	670.62
01.08	INTERRUPTOR 1	THERMOMAGNETICO MONOFASICA 2 X 150A	pza	2.00	78.35	156.70
01.09	INTERRUPTOR 1	THERMOMAGNETICO MONOFASICA 2 X 15A	pza	22.00	33.35	733.70
01.10	INTERRUPTOR 1	THERMOMAGNETICO MONOFASICA 2 X 30A	pża	10.00	53.35	533.50
01.11	SALIDA PARA TI	HERMA CON PVC	pto	1.00	64.33	64.33
01.12	PUESTA A TIER	RA	und	1.00	1,509.94	1,509.94
02	ARTEFACTOS					11,301.00
02.01	ALUMBRADO					11,301.00
02.01.01	LUMINARIA MAS	TER	und	4.00	85.00	340.00
02.01.02	LUMINARIA DAY	WABE	und	5.00	92.00	460.00
02.01.03	LUMINARIA TBS	260 3	und	2.00	105.00	210.00
02.01.04	LUMINARIA TIPO	ESPOT EMPOTRADO CON ESPEJO	und	8.00	91.00	728.00
02.01.05	LUMINARIA E FI	X TBS 260	und	24.00	107.00	2,568.00
02.01.06	LUMINARIA PAR	A EMPOTRAR EN EL TECHO	und	7.00	92.00	644.00
02.01.07	LUMINARIA CIR	CULAR ADOSADA EN TECHO	und	34.00	66.00	2,244.00
02.01.08	LUMINARIA Phoi	oos Wall Light	und	10.00		
02.01.09	LUMINARIA ADC	SADA BBS560	und	8.00	66.00	528.00
02.01.10	LUMINARIA ADC	SADA MASTER TL5	und	10.00	77.00	770.00
02.01.11	LUMINARIA E FI	X TBS260 semi Brillo	und	1.00	140.00	140.00
02.01.12	LUMINARIA MAS	STER SOX - E	und	1.00	129.00	129.00
02.01.13	LUMINARIA SUS	PENDIDA MASTER SOX -E	und	2.00	580.00	1,160.00
02.01.14	LUMINARIA PAR	tA PISO Nexis post	und	12.00	115.00	1,380.00
	COSTO DIRECTO					51,791.31
	GASTOS GENER UTILIDAD (5%)	KALES (13%)				6,732.87 2,589.57
	SUB TOTAL					61,113.75
	IGV (18%)					11,000.48
	TO	OTAL DEL PRESUPUESTO I.E.				72,114.23

SON: SETENTA Y DOS MIL CIENTO CATORCE CON 23/100 NUEVOS SOLES

Fecha: 01/06/2013 07:40:22 p.m.

Presupuesto

Presupuesto Subpresupu Cliente Lugar	0303001 PARROQUIA DE SAN AGUSTIN 005 INSTALACIONES SANITARIAS UNIVERSIDAD NACIONAL DE CAJAMARCA CAJAMARCA - CAJAMARCA			Costo al	06/05/2013
Item	Descripción	Und.	Metrado	Precio SI.	Parcial S/.
01	APARATOS Y ACCESORIOS SANITARIOS				3,473.07
01.01	APARATOS SANITARIOS				3,126.23
01.01.01	INODORO CON FLUXOMETRO	und	4.00	250.89	1,003.56
01.01.02	INODORO TANQUE BAJO COLOR	pza	5.00	120.00	600.00
01.01.03	LAVATORIO DE PARED BLANCO 1 LLAVE	pza	9.00	140.89	1,268.01
01.01.04	URINARIOS DE LOZA DE PICO BLANCO	pza	2.00	127.33	254.66
01.02	ACCESORIOS SANITARIOS				346.84
01.02.01	DUCHA CROMADA 1 LLAVE INCL.ACCESORIOS	und	4.00	86.71	346.84
02	SISTEMA DE DESAGUE				5,663.84
02.01	SALIDAS DE DESAGUE				1,304.34
02.01.01	SALIDA DE DESAGUE Ø 4"	pto	9.00	49.76	447.84
02.01.02	SALIDA DE DESAGUE Ø 2"	pto	15.00	32.76	491.40
02.01.03	SALIDAS DE PVC SAL PARA VENTILACION DE 2"	pto	5.00	73.02	365.10
02.02	REDES DE DISTRIBUCIÓN				2,599.65
02.02.01	TUBERIA DE PVC SAL 4"	m	45.00	29.17	1,312.65
02.02.02	TUBERIA DE PVC SAL 2 ^e	m	75.00	17.16	1,287.00
02.03	ACCESORIOS DE REDES				583.95
02.03.01	YEE PVC-SAL 4" A 2"	und	15.00	38.93	583.95
02.04	ADITAMENTOS VARIOS				692.46
02.04.01	SUMIDERO DE BRONCE 2", PROVISION Y COLOCACION	und	4.00	72.74	290.96
02.04.02	REGISTRO ROSCADO DE 4"	pza	5.00	58.02	290.10
02.04.03	SOMBRERO PARA VENTILACION DE P.V.C. DE 2º	und	5.00	22.28	111.40
02.05	CAMARAS DE INSPECCIÓN				483.44
02.05.01	CAJA DE REGISTRO DE DESAGUE 12" X 24"	pza	4.00	120.86	483.44
03	SISTEMA DE AGUA FRIA				2,341.96
03.01	SALIDAS DE AGUA FRIA				478.35
03.01.01	SALIDA DE AGUA FRIA CON TUBERIA DE PVC-SAP 1/2"	pto	9.00	53.15	478.35
03.02	REDES DE DISTRIBUCIÓN	_	00.00	40.44	1,241.70
03,02.01	TUBERÍA PVC CLASE 10 SP P/AGUA FRÍA, D=1"	, m	30.00	18.41	552.30
03.02.02	TUBERIA PVC CLASE 10 SP P/AGUA FRIA, D=3/4*	m	45.00	15.32	689.40 117.10
03.03	ACCESORIOS DE REDES		4.00	45.40	
03.03.01	CODO PVC-SAP 1"* 90	und	1.00	15.18	15.18
03.03.02	CODO PVC AGUA C-10 3/4"	und	1.00	14.68	14.68 30.36
03.03.03	TEE PVC ACIA C 40 3/4	und	2.00	15.18	
03.03.04	TEE PVC AGUA C-10 3/4"	und	4.00	14.22	56.88 504.81
03.04	LLAVES, VALVULAS	A770	9.00	EC 00	504.81
03.04.01	VALVULAS DE COMPUERTA DE BRONCE DE 1/2°	pza	9.00	56.09	3,899.88
04	DRENAJE PLUVIAL				•
04.01	CANALETA PLUVIAL DE TECHO		404.60	40.04	3,899.88
04.01.01	CANALETA PLUVIAL DE TECHO	m	101.68	10.94	1,112.38
04.01.02	TUBERIA DE PVC SAL 4"	m	86.00	29.17	2,508.62

04.01.03	CODO PVC SAL 4"X90°	pza	8.00	34.86	278.88
	COSTO DIRECTO				15,378.75
	GASTOS GENERALES (13%)				1,999.24
	UTILIDAD (5%)				768.94
	SUB TOTAL				18,146.93
	IGV (18%)				3,266.45
	TOTAL DEL PRESUPUESTO I.S.				21,413.38

SON: VEINTIUN MIL CUATROCIENTOS TRECE CON 38/100 NUEVOS SOLES

Fecha; 01/06/2013 07:39:08 p.m.

Análisis de precios unitarios

Presupuesto Subpresupuesto		3001 PARROQUIA DE SAN AGI 002 ARQUITECTURA1				Fecha presupuesto	06/05/2013
Partida	01.01.01	MURO DE SOGA LADRILI	LO KING-KONG	DE SOGA C/M 1:4			
Rendimiento	m2/DIA	11.4000	EQ. 11.4000	Costo unitario di	recto por : m2	57.90	
Código	Descripción Re	ecurso	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra					
0147010002	OPERARIO		hh	1.0000	0.7018	14.65	10.28
0147010004	PEON		hh	0.5000	0.3509	11.25	3.95
		Materiales					14.23
0205010004	ARENA GRUES		m3		0.0300	100.00	3.00
0217000023		DE ARCILLA 9X14X24 CM	und		40.0000	0.67	26.80
0221000000		RTLAND TIPO I (42.5KG)	BOL		0.4080	18.85	7.69
0239050000	AGUA	(12 WO 11 0 1 (42.01(0)	m3		0.0150	2.50	0.04
02000000	7.007.		1110		0.0100	2.00	37.53
		Equipos					000
0337010001	HERRAMIENTA	• •	%MO		3.0000	14.23	0.43
0348090002	ANDAMIO MET	AL TABLAS-ALQUILER	est		0.0439	130.00 ¥	5.71
						•	6.14
Partida	01.02.01	TARRAJEO EN INTERIOR	RES CON CEME	NTO-ARENA 1:4			
Rendimiento	m2/DIA	6.0000	EQ. 6.0000	Costo unitario di	recto por : m2	35.36	
Código	Descripción Re	ecurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0147010002	OPERARIO	mano de obla	hh	1.0000	1.3333	14.65	19.53
0147010004	PEON		hh	0.5000	0.6667	11.25	7.50
							27.03
		Materiales					
0202010005	CLAVOS PARA	MADERA C/C 3"	kg		0.0220	4.30	0.09
0204000000	ARENA FINA		m3		0.0160	100.00	1.60
0221000000	CEMENTO PO	RTLAND TIPO I (42.5KG)	BOL		0.1200	18.85	2.26
0245010001	MADERA TORM	NILLO INC.CORTE P/ENCOFRAI	OO p2		0.8500	4.20	3.57
		Equipos					7.52
0337010001	HERRAMIENTA	Equipos AS MANITALES	%MO		3.0000	27.03	0.81
0337010001	LICITATAMICIAL	10 MANUALLO	ZOIVIO		3.0000	27.00	0.81
Partida	01.02.02	TARRAJEO EN EXTERIO	RES CON CEME	ENTO-ARENA 1:4			
Rendimiento	m2/DIA	8.0000	EQ. 8.0000	Costo unitario di	recto por ; m2	28.41	
Código	Descripción Re	ecurso	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra					
0147010002	OPERARIO		hh	1.0000	1.0000	14.65	14.65
0147010004	PEON		hh	0.5000	0.5000	11.25	5.63
							20.28
		Materiales					
0202010005		MADERA C/C 3"	kg		0.0220	4.30	0.09
0204000000	ARENA FINA		m3		0.0160	100.00	1.60
0221000000		RTLAND TIPO I (42.5KG)	BOL		0.1200	18.85	2.26
0245010001	MADERA TOR	NILLO INC.CORTE P/ENCOFRAI	OO p2		0.8500	4.20	3.57
		. .					7.52
0007040004		Equipos	0/1/0	,	A 5		
0337010001	HERRAMIENTA	40 MANUALES	%МО		3.0000	20.28	0.61

Partida	01.02.03	VESTIDURA DE DERRAMI	ES EN PUERTAS	S, VENTANAS Y VA	ANOS C:A 1:4		
Rendimiento	m/DIA	18.0000	EQ. 18.0000	Costo unitario d	lirecto por : m	10.81	
Código	Descripción R	ecurso	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra					
0147010002	OPERARIO		hh	1.0000	0.4444	14.65	6.51
0147010004	PEON		hh	0.5000	0.2222	11.25	2.50
							9.01
·		Materiales					
0204000000	ARENA FINA		m3		0.0060	100.00	0.60
0221000000		RTLAND TIPO I (42.5KG)	BOL	•	0.0158	18.85	0.30
0245010001	MADERA TORI	NILLO INC.CORTE P/ENCOFRAD	OO p2		0.1500	4.20	0.63
		Equipes					1.53
0337010001	UEDDAMENT	Equipos AS MANUALES	%МО		3.0000	9.01	0.27
0337010001	LICIAMICIAL	AS IVIAINUALES	TOIVIO		3.0000	3.01	0.27
							0.27
Partida	01.02.04	JUNTA DE CONSTRUCCIO	ON CON TEKNO	PORT			
	•						
Rendimiento	m/DIA	20.0000	EQ. 20.0000	Costo unitario d	lirecto por : m	16.98	
		-					
Código	Descripción R	ecurso	Unidad	Cuadrilia	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra					
0147010002	OPERARIO		hh	1.0000	0.4000	14.65	5.86
0147010003	OFICIAL		hh	1.0000	0.4000	13.65	5.46
0147010004	PEON		hh	0.5000	0.2000	11.25	2.25
							13.57
		Materiales '					
0260000002	TEKNOPOR D	E 1" x 4' x 8'	pln		0.2000	15.00	3.00
		Equipos					3.00
0337010001	HEDDAMIENT	Equipos AS MANUALES	%MO		3.0000	13.57	0.41
0337010001	TIEN CHAILM	AO MANDALES	701910		0.000	10.07	0.41
							
Partida	01.03.01	CONTRAPISO DE 0.20M.					
Rendimiento	m2/DIA	60.0000	EQ. 60.0000	Costo unitario di	recto por : m2	132.82	
Código	Descripción R	decurso	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra					
0147000022		E EQUIPO LIVIANO	hh	1.0000	0.1333	15.60	2.08
0147010002	OPERARIO		hh	3.0000	0.4000	14.65	5.86
0147010003	OFICIAL		hh	1.0000 6.0000	0.1333 0.8000	13.65	1.82 9.00
0147010004	PEON		hh	0.0000	0.0000	11.25	18.76
		Materiales					10.10
0205000001	GRAVILLA	inglei igigə	m3		0.2500	100.00	25.00
0205000001	ARENA GRUE	SA	m3		0.3000	100.00	30.00
0221000000		RTLAND TIPO I (42.5KG)	BOL		3.0000	18.85	56.55
0239050000	AGUA		m3		0.0820	2.50	0.21
0243160052	REGLA DE MA	NDERA	p2		0.1000	2.40	0.24
			•				112.00
		 .					-

Equipos

MEZCLADORA CONCRETO TROMPO 8 HP 9 P3

%MO

hm

HERRAMIENTAS MANUALES

0337010001

0349100011

18.76

15.00

3.0000

0.1000

0.7500

0.56

1.50

Partida	01.03.02	CONTRAPISO DE 48 MM.
1 0,1140	01.00.02	001111111100 === 10 111111

Rendimiento	m2/DIA	100.0000	EQ.	100.0000	Costo unitario dir	ecto por : m2	27.67	
Código	Descripción Rec	urso		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra						
0147000022	OPERADOR DE I	EQUIPO LIVIANO		hh	1.0000	0.0800	15.60	1.25
0147010001	CAPATAZ			hh	0.1000	0.0080	14.65	0.12
0147010002	OPERARIO			hh	3.0000	0.2400	14.65	3.52
0147010003	OFICIAL			hh	1.0000	0.0800	13.65	1.09
0147010004	PEON			hh	6.0000	0.4800	11.25	5.40
		Materiales						11.38
0205010004	ARENA GRUESA			m3		0.0700	100.00	7.00
0221000000		rland Tipo I (42.5kg)		BOL		0.3927	18.85	7.40
0239050000	AGUA	D 410 111 0 1 (42.01.0)		m3		0.0820	2.50	0.21
0243160052	REGLA DE MADE	PΔ		p2		0.0600	2.40	0.14
0243100002	NEGEN DE MADE	-11/1		μZ		0.0000	2.40	14,75
		Equipos						14.70
0337010001	HERRAMIENTAS	• •		%МО		3.0000	11.38	0.34
0349100007		ONCRETO TAMBOR 18HP 11	1P3	hm	1.0000	0.0800	15.00	1.20
00 10 100001						0.000		1.54
Partida	01.03.03	PISOS DE CERÁMICO						
Rendimiento	m2/DIA	45.0000	EQ.	45.0000	Costo unitario dir	ecto por : m2	52.40	
Código	Descripción Rec	HITEO		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
Codigo	begorpolon nee	Mano de Obra		Ollidad	oudina	Carriada	11000007.	i arolai or.
0147010002	OPERARIO	mano do oura		hh	1.0000	0.1778	14.65	2.60
0147010004	PEON			hh	0.5000	0.0889	11.25	1.00
					3.000	0.5500		3.60
		Materiales						
0221010060	CEMENTO BLAN	ICO		kg		0.2500	21.00	5.25
0230460037	PEGAMENTO PA	ARA PISOS CERAMICOS		gln		0.0320	45.00	1.44
0240130053	CERAMICA 30 X	30 CM		m2		1.0500	40.00	42.00
								48.69
		Equipos						
0337010001	HERRAMIENTAS	MANUALES		%MO		3.0000	3.60	0.11
								0.11
Partida	01.03.04	PISO DE PORCELANATO)					
Rendimiento	m2/DIA	15.0000	EQ	15.0000	Costo unitario di	recto por : m2	94.75	
Ct 4:	Događania Pos	N. 190 a		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Código	Descripción Rec	Mano de Obra		Omaaa	Cuadrilla	Cantidad	riecio si.	raiciai Si.
0147010002	OPERARIO	manu de Obia		hh	1.8750	1.0000	14.65	14.65
0147010002	PEON			hh	1.8750	1.0000	11.25	11.25
V 147 V 10004	LEON			£851	1.0750	1.0000	: 1. Z J	25.90
		Materiales						23.30
0240140001	PORCELANATO	साबादा ।बादर		m2		1.0500	57.00	59.85
0240140001	PEGAMENTO PO	ORCELANATO		kg		3.0000	3,00	9.00
UZTU 14UUUZ	I LOAWENTO PO	JIVLLANA (V		Λy		3.0000	3,00	68.85
								00,03

Partida	01.03.05	PISO DE LAJA					
Rendimiento	m2/DIA	12.0000 E	EQ. 12.0000	Costo unitario dir	ecto por : m2	159.34	
Código	Descripción Reco		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
	00504040	Mano de Obra		4.0350	4.000	44.05	40.04
0147010002	OPERARIO		hh bb	1.8750	1.2500	14.65	18.31 14.06
0147010004	PÉON		hh	1.8750	1.2500	11.25	32.37
		Materiales					02.01
0205030000	LAJA AREQUIPE	ÑA	m2		1.0500	120.00	126.00
		Facher					126.00
0337010001	HERRAMIENTAS	Equipos MANUALES	%MO		3.0000	32.37	0.97
0337010001	HERRAWIENTAS	WANDALES	761910		3.0000	32.37	0.97
Partida	01.03.06	ZOCALO DE CERAMICA D	E 20 X 30				
Rendimiento	m2/DIA	8.0000	EQ. 8.0000	Costo unitario di	recto por : m2	67.16	
Código	Descripción Rec	urso	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra					
0147010002	OPERARIO		hh	1.0000	1.0000	14.65	14.65
0147010004	PEON		hh	0.5000	0.5000	11.25	5.63
		Materiales					20.28
0204000000	ARENA FINA	midler idles	m3		0.0200	100.00	2.00
0221000000		LAND TIPO I (42.5KG)	BOL		0.1200	18.85	2.26
0221010060	CEMENTO BLAN		kg		0.2500	21.00	5.25
0239050000	AGUA		m3		0.0040	2.50	0.01
0240130054	CERAMICA 20 X	30 CM	m2		1.0500	35.00	36.75
							46.27
		Equipos					
0337010001	HERRAMIENTAS	MANUALES	%МО		3.0000	20.28	0.61 0.61
				<u>*</u>			0.01
Partida	01.03.07	VEREDA DE CONCRETO F	F'C=140 KG/CN	12 E= 4"			
Rendimiento	m2/DIA	120.0000	EQ. 120.0000	Costo unitario di	recto por : m2	40.25	
Otalica	Ossaniu siću Dan		ll-ld-d	O	O41-14	Durata Of	Daniel Of
Código	Descripción Rec	urso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO	mano de Obig	hh	6.0000	0.4000	14.65	5.86
0147010003	OFICIAL		hh	1.0000	0.0667	13.65	0.91
0147010004	PEON		hh	6.0000	0.4000	11.25	4.50
							11.27
000400000	APROPLIA MILLA	Materiales	•		A A 4	40.5.5	
0204000000	ARENA FINA	DA DE 400	m3 3		0.0140	100.00	1.40
0205000003 0205010004	PIEDRA CHANCA ARENA GRUESA		m3 m3		0.0570 0.0460	100.00 100.00	5.70 4.60
0203010004		LAND TIPO I (42.5KG)	BOL		0.8690	18.85	4.60 16.38
0239050000	AGUA	D 840 111 O 1 (42.01/G)	m3		0.0250	2.50	0.06
	. 100/1				0.0200	2.00	28.14
		Equipos					
0337010001	HERRAMIENTAS	• •	%MO		3.0000	11.27	0.34
0349100011	MEZCLADORA C	ONCRETO TROMPO 8 HP 9 P3	hm .	0.5000	0.0333	15.00	0.50
							0.04

Partida	01.03.08	ENCOFRADO Y DESENCO	OFRADO EN VE	REDAS			
Rendimiento	m2/DIA	25.0000	EQ. 25.0000	Costo unitario di	recto por : m2	53.44	
Código	Descripción Re	curso	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra					
0147010002	OPERARIO		hh	1.0000	0.3200	14.65	4.69
0147010003	OFICIAL	•	hh	1.0000	0.3200	13.65	4.37
0147010004	PEON		hh	2.0000	0.6400	11.25	7.20
		Materiales					16.26
0202000008	ALAMBRE NEG	RO RECOCIDO #8	kg		0.3500	4.50	1.58
0202010005	CLAVOS PARA	MADERA C/C 3"	kg		0.3500	4.30	1.51
0245010001	MADERA TORN	IILLO INC.CORTE P/ENCOFRAC	OO p2		8.0000	4.20	33.60
							36.69
		Equipos					
0337010001	HERRAMIENTA	S MANUALES	%MO		3.0000	16.26	0.49
							0.49
Partida	01.04.01	LISTELOS DE CERAMICA	8 x 30 CM				
Rendimiento	m/DIA	10.0000	EQ. 10.0000	Costo unitario o	firecto por ; m	39.68	
Código	Descripción Re	curso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0147010002	OPERARIO	Mailo de Obia	hh	0.1500	0.1200	14.65	1.76
0147010002	PEON		hh	0.0500	0.0400	11.25	0.45
			****	0.0000	0.0400	11.20	2.21
		Materiales					
0224000029	LISTELOS		m		3.5000	9.00	31.50
0224000030	PEGAMENTO P	ARA CERAMICA	kg		3.0000	1.80	5.40
0224000031	FRAGUA		kg		0.5000	1.00	0.50
							37.40
		Equipos					
0337010001	HERRAMIENTA	S MANUALES	%МО		3.0000	2.21	0.07
							0.07
Partida	01.05.01	COBERTURA DE TEJA AN	NDINA				
Rendimiento	m2/DIA	30.0000	EQ. 30,0000	Costo unitario di	recto por : m2	64.18	
Código	Descripción Re		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0447040000	0000 1010	Mano de Obra		4 4050	0.000	44.05	
0147010002	OPERARIO		hh	1.1250	0.3000	14.65	4.40
0147010004	PEON		hh	1.8750	0.5000	11.25	5.63
		Materiales					10.03
0299010001	TEJA ANDINA	ridioi lalco	m2		1.0500	25.00	26.25
0299010003	ANCLAJES DE	COBERTURAS	und		12.0000	2.30	27.60
			-		,,,,,,,	2.50	53.85
		Equipos					
0337010001	HERRAMIENTA	• •	%МО		3.0000	10.03	0.30

Partida	01.05.02	COBERTURA CON POLI	CARBONATO				
Rendimiento	m2/DIA	20.0000	EQ. 20.0000	Costo unitario dir	recto por : m2	114.19	
Código	Descripción Re	curso	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra					
0147010002	OPERARIO		hh	2.5000	1.0000	14.65	14.65
0147010004	PEON		hh	1.2500	0.5000	11.25	5.63
							20.28
		Materiales					
0299010002	POLICARBONA	ТО	m2		1.0500	56.00	58.80
0299010003	ANCLAJES DE	COBERTURAS	und		15.0000	2.30	34.50
						•	93.30
		Equipos					
0337010001	HERRAMIENTA	S MANUALES	%MO		3.0000	20.28	0.61
							0.61
Partida	01.06.01	PUERTA DE MADERA D	E CEDRO				
Donally to a	2/DIA	4.0000	EO 4 0000	0			
Rendimiento	m2/DIA	1.0000	EQ. 1.0000	Costo unitario di	recto por ; mz	231.17	
Código	Descripción Re	NCUFOA	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial SI.
Codigo	Descripcion No	Mano de Obra	Gilluag	Cuaulilla	Cantidad	Frecio Si.	raiciai 31.
0147010002	OPERARIO	mano do Obra	hh	1.0000	8.0000	14.65	117.20
0147010003	OFICIAL		hh	0.5000	4.0000	13.65	54.60
	0		••••	0.0000	1.0000	10.00	171.80
		Materiales					.,
0202010003	CLAVOS PARA	MADERA C/C 2"	kg		0.0560	4.50	0.25
0239000000	COLA SINTETIC	CA FULLER	gln		0.1200	30.00	3.60
0241500002	MADERA CEDR	RO	p2		10.2800	4.90	50.37
			•				54.22
		Equipos					
0337010001	HERRAMIENTA	S MANUALES	%MO		3.0000	171.80	5.15
							5.15
Partida	01.07.01	VENTANA DE FIERRO					
Rendimiento	m2/DIA	8.0000	EQ. 8.0000	Costo unitario di	recto por ; m2	74.39	
6 (!!	Book to trop			Q	061-1	D101	D1-1-04
Código	Descripción Re		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
04.47040000	OPERADIO	Mano de Obra	LL	1.0000	1.0000	14.65	14.65
0147010002 0147010004	OPERARIO		hh	0.5000	0.5000	11.25	14.65 5.63
014/010004	PEON		hh	0.3000	0.5000	11.20	20.28
		Materiales					20.20
0229500091	SOLDADURA	Hinrey Idica	kg		1.0000	16.00	16.00
0251010003		x1 1/4"x1/8" x6m. AREQUIPA	ry pza		0.8600	35.00	30.10
0251010005	TEE 3/4"x1/8"	A. D. ADW. AGIILES (GILA)	pza pza		0.7000	5.00	3.50
0251130055		ERRO 3/4" X 1/8".	pza		0.6500	6.00	3.90
320.10000	* may to 11 W/ t for the 1 12		L=~		2.3400	0.00	53.50
		Equipos					3
0337010001	HERRAMIENTA		%MO		3.0000	20.28	0.61

Partida	01.07.02	CANTONERA DE ALUM	INIO					
Rendimiento	m/DIA	20.0000	EQ.	20.0000	Costo unitario di	recto por : m	19.55	
Código	Descripción Recurs	so Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0147010002	OPERARIO			hh	0.2500	0.1000	14.65	1.47
0147010004	PEON			hh	0.7500	0.3000	11.25	3.38
								4.85
0050550000	TEDARINIAL ALLIAND	Materiales	/V1/V 2			4.0500	44.00	44.70
0252550002	I ERIVINAL ALOW.P	ÆSCALERA T/ANGULO 1/	2//2/ J	pza		1.0500	14.00	14.70 14.70
Partida	01.08.01	CERRADURA PTA.INTR	.PEST	ILLO MANIJ	IA LLAVE GOAL 53	B NPS		
Rendimiento	pza/DIA	8.0000	EQ.	8.0000	Costo unitario dire	ecto por : pza	65.09	
Código	Descripción Recurs	so		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra						
0147010002	OPERARIO			hh .	1.0000	1.0000	14.65	14.65 14.65
		Materiales		•				14.03
0226510020	CERRADURA CON	SEGURO INTERIOR		pza		1.0000	50.00	50.00
								50.00
		Equipos						
0337010001	HERRAMIENTAS M	ANUALES		%MO		3.0000	14.65	0.44 0.44
								0.44
Partida	01.08.02	BIS	AGRA	CAPUCHIN	A DE 4"			
Rendimiento	pza/DIA	15.0000	EQ.	15.0000	Costo unitario dire	ecto por : pza	12.04	
Código	Descripción Recur	so Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
0147010002	OPERARIO	Mario de Obra		hh	1.0000	0.5333	14.65	7.81
								7.81
		Materiales						
0226080019	BISAGRA ALUMINIZ	Z.CAPUCHINA 4"x4"		PAR		1.0000	4.00	4.00
		Equipos						4.00
0337010001	HERRAMIENTAS M	• •		%МО		3.0000	7.81	0.23
								0.23
Partida	01.09.01	VIDRIO SEMIDOBLE. PI	ROVISI	ON Y COLO	CACION EN VENT	ANAS FIERRO		
Rendimiento	p2/DIA	75.0000	EQ.	75.0000	Costo unitario di	recto por : p2	6.18	
Código	Descripción Recun	so		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
	•	Mano de Obra						
0147010002	OPERARIO			hh	1.0000	0.1067	14.65	1.56
0147010004	PEON			hh	0,5000	0.0533	11.25	0.60
		Materiales						2.16
0230460032	SILICONA	सावाद्याखाटड		und		0.0500	12.00	0.60
0279000007		RENTE INCOLORO CRUDO	O MED			1.0500	3.20	3.36
								3.96
		Equipos						

%MO

3.0000 2.16

0.06

0337010001 HERRAMIENTAS MANUALES

Partida	01.10.01	PINTURA LÁTEX I	EN INTERIO	RES Y EXTE	ERIORES			
Rendimiento	m2/DIA	45.0000	EQ.	45.0000	Costo unitario dir	ecto por : m2	8.41	
Código	Descripción Recu	ırso		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra						
0147010002	OPERARIO			hh	1.0000	0.1778	14.65	2.60
0147010004	PEON			hh	0.5000	0.0889	11.25	1.00
								3.60
		Materiales						
0230900002	IMPRIMANTE			gln		0.1300	25.00	3.25
0254030008	PINTURA LATEX I	PATO CPP		gln		0.0500	29.00	1.45
		- •				jā.		4.70
0007040004	LICODALICATAO	Equipos		0/140		2 2000	0.00	0.44
0337010001	HERRAMIENTAS	MANUALES		%MO		3.0000	3.60	0.11
								0.11
Partida	01.10.02	PINTURA EN PUE	RTAS C/BAI	RNIZ 2 MAN	os			
Rendimiento	m2/DIA	18.0000	EQ.	18.0000	Costo unitario dir	recto por : m2	13.49	
Código	Descripción Recu	urso		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
	Docomponent to the second	Mano de Obra			oud	J	1100.00.	r arolar ox.
0147010001	CAPATAZ			hh	0.1000	0.0444	14.65	0.65
0147010002	OPERARIO			hh	1.0000	0.4444	14.65	6.51
0147010004	PEON			hh	0.5000	0.2222	11.25	2.50
								9.66
		Materiales						
0239020075	LIJA PARA MADE	RA		und		0.2000	2.00	0.40
0254070019	TAPAPOROS DE	MADERA ACABADA (C/BARNIZ O I	. gln		0.0556	25.00	1.39
0254080000	BARNIZ MARINO			gln		0.0500	35.00	1.75
								3.54
		Equipos						
0337010001	HERRAMIENTAS	MANUALES		%MO		3.0000	9.66	0.29
								0.29
Partida	01.10.03	PINTURA ESMAL	TE+ANTICO	RR. CARPIN	ITERIA METALICA			
Rendimiento	m2/DIA	45.0000	EQ.	45.0000	Costo unitario di	ecto por : m2	24.51	
Código	Descripción Recu	ırso		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra						
0147010002	OPERARIO			hh	1.0000	0.1778	14.65	2.60
0147010004	PEON			hh	0.5000	0.0889	11.25	1.00
		Materiales						3.60
0253030027	THINER	materiales		gln		0.0200	35.00	0.70
0254110090	PINTURA ESMAL	TE		gin		0.3200	30.00	9.60
0254210020	ANTICORROSIVO			gln		0.3000	35.00	10.50
				<i>J</i>		2.3000	00.00	20.80
		Equipos						

%МО

3.0000

3.60

0.11 **0.11**

0337010001

HERRAMIENTAS MANUALES

Presupuesto Subpresupuesto Partida		001 PARROQUIA DE SAN AGUST 004 ESTRUCTURAS 1 CARTEL DE OBRA	'IN			Fect	na presupuesto	06/05/2013
Rendimiento	und/DIA	0.1(1 <u>2</u> 5 <u>2</u> 65/6)	EQ.		Costo unitario dire	cto por : und	900.00	
Código	Descripción Re	curso		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
		Materiales						
0239900095	CARTEL DE OBI	RA INC.INSTALACION Y TRANSP		GLB		1.0000	900.00	900.00 900.00
Partida	01.01.02	CASETA ADICIONAL PIGUAR	RDIA	NIA Y/O DE	POSITO			
Rendimiento	m2/DIA	1.0000	EQ	. 1.0000	costo unitario dire	ecto por : m2	250.00	
Código	Descripción Re	curso Materiales		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0243900001	CASETA ADICIO	NAL TECHADA SEDAPAL		m2		1.0000	250.00	250.00 250.00
Partida	01.02.01	TRAZO Y REPLANTEO						
Rendimiento	m2/DIA	200.0000	EQ	. 200,0000	losto unitario dire	ecto por : m2	1.24	
Código	Descripción Re	Descripción Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0147010002	OPERARIO	Mario de Obra		hh	1.0000	0.0400	14.65	0.59
0147010002	PEON			hh	0.5000	0.0200	11.25	0.33
	. 2011				0.000	0.0200	71.20	0.82
		Materiales						
0202010005	CLAVOS PARA I	MADERA C/C 3"		kg		0.0050	4.30	0.02
0230990080	WINCHA			und		0.0030	50.00	0.15
0243940003	MADERA PARA	ESTACAS		p2		0.0200	3.00	0.06
0280010001	YESO EN BOLS	A DE 20 KG		bls		0.0150	7.00	0.11
								0.34
		Equipos						
0337010001	HERRAMIENTA			%MO		3.0000	0.82	0.02
0337020046	MIRA TOPOGRA	AFICA		HE	0.5000	0.0200	3.00	0.06 0.08
Partida	01.02.02	LIMPIEZA DE TERRENO MAN	NUAL					
Rendimiento	m2/DIA	60.0000	EQ	. 60.0000	costo unitario dire	ecto por : m2	1.74	
Código	Descripción Re	curso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
0147010002	OPERARIO	maily us Obid		hh	0.1000	0.0133	14.65	0.19
0147010002	PEON			hh	1.0000	0.0133	11.25	1.50
V 171 V 1VVV7	LON	Equipes		1113	1.0000	0.1000	11.20	1.69
0337010001	HERRAMIENTA	Equipos S MANHALES		%MO		3.0000	1.69	0.05
0337010001	DENTAINIENTA	O NIPUTUALEO		70IVIU		3.0000	1.09	0.00

Partida	01.02.03	REFINE Y NIVELACION EN TE	RRE	NO NORM	AL			
Rendimiento	m2/DIA	20.0000	EQ.	20.0000	costo unitario dire	ecto por : m2	4.64	
Código	Descripción Recurs			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0147010004	PEON	Mano de Obra		hh	1.0000	0.4000	11.25	4.50 4.50
0337010001	HERRAMIENTAS M	Equipos Anuales		%МО		3.0000	4.50	0.14 0.14
Partida	01.03.01.01	EXCAVACION DE ZANJAS						
Rendimiento	m3/DIA	4.0000	EQ.	4.0000	costo unitario dire	ecto por : m3	11.59	
Código	Descripción Recurs			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0147010004	PEON	Mano de Obra		hh	0.5000	1.0000	11.25	11.25 11.25
0337010001	HERRAMIENTAS M	Equipos Anuales		%МО		3.0000	11.25	0.34 0.34
Partida	01.03.01.02	EXCAVACION PARA ZAPATA	s					
Rendimiento	m3/DIA	3.5000	EQ.	3.5000	costo unitario dire	ecto por : m3	11.59	
Código	Descripción Recur			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010004	PEON	Mano de Obra		hh	0.4375	1.0000	11.25	11.25
0337010001	HERRAMIENTAS M	Equipos Anuales		%МО		3.0000	11.25	0.34 0.34
Partida	01.03.02.01	NIVELACION Y APISONADO	MANI	UAL				
Rendimiento	m2/DIA	120.0000	EQ.	. 120.0000	costo unitario dire	ecto por : m2	1.46	
Código	Descripción Recur	so Mano de Obra	•	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0147010002	OPERARIO	Mario de Opra		hh	1.0010	0.0667	14.65	0.98
0147010002	PEON			hh	0.5000	0.0333	11.25	0.37
V 171 V 10004	LON	Matadala		1111	0.0000	J.,UJJJ	11.23	1.35
0243160052	REGLA DE MADER	M ateriales A		p2		0.0300	2.40	0.07 0.07
		Equipos						0.07
		rdaihoa		0/140		0.0005	4.05	

%MO

3.0000

1.35

0.04 0.04

0337010001

HERRAMIENTAS MANUALES

Partida 01.03.03.01		RELLENO CON MAT	ERIAL PROPIO CON EQUIPO
Rendimiento	m3/DIA	400.0000	EQ. 400.0000 losto

Rendimiento	m3/DIA	400.0000	EQ.	400.0000	costo unitario dire	ecto por : m3	22.47	
Código	Descripción Recu		(Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
0147010003	OFICIAL	Mano de Obra	ı	hh	1.0000	0.0200	13.65	0.27
						0.0200	,5.55	0.27
		Materiales						
0205010015	MATERIAL DE RE	LLENO	1	m3		1.0000	15.00	15.00
								15.00
		Equipos						
0349040010		ANTAS 125-155 HP 3 YD3.		hm	1.0000	0.0200	180.00	3.60
0349040033	TRACTOR DE ORI	UGAS DE 140-160 HP	l	hm	1.0000	0.0200	180.00	3.60
								7.20
Partida	01.03.04.01	ELIMINACION DE MATERIAL	EXCE	DENTE H	ASTA DPROM. 30	M.		
Rendimiento	m3/DIA	40.0000	EQ.	40.0000	losto unitario dire	cto por : m3	11.59	
Código	Descripción Recu	irso	1	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial SI.
		Mano de Obra			***************************************			
0147010004	PEON		1	hh	5.0000	1.0000	11.25	11.25
								11.25
		Equipos						
0337010001	HERRAMIENTAS I	MANUALES	1	%MO		3.0000	11.25	0.34
								0.34
Partida	01.04.01.01	SOLADO DE CONCRETO E=	3" MEZ	ZCLA 1:12	2 CEMENTO-HOR	MIGON		
Dandinianta	m2/DIA	¢.	EQ.		Costo unitario dire	ato per : m?	24.86	
Rendimiento	MZDIA		EW.		Costo unitario une	icio poi . Inz		
Código	Descripción Recu	irso	-	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
		Mano de Obra						
0147000022	OPERADOR DE E	QUIPO LIVIANO		hh		0.0070	15.60	0.11
0147010001	CAPATAZ			hh		0.0200	14.65	0.29
0147010002	OPERARIO			hh		0.1900	14.65	2.78
0147010004	PEON		I	hh		0.4400	11.25	4.95
								8.13
		Materiales				0.0040	40.00	0.04
0201000001	ACEITE PARA MO			gln		0.0010	40.00 18.85	0.04
0221000000		LAND TIPO I (42.5KG)		BOL		0.2300 0.0200	18.85 15.65	4.34 0.31
0234000000 0238000000	GASOLINA 84 OC HORMIGON	IANUS		gln m3		0.1400	85.00	11.90
0239050000	AGUA			m3		0.0120	2.50	0.03
220000000						5.5120	2.00	16.62
		Equipos						
0337010001	HERRAMIENTAS	• •		%MO		0.0300	8.13	
0349100007	MEZCLADORA CO	ONCRETO TAMBOR 18HP 11P3		hm		0.0070	15.00	0.11

01.04.01.02	SOLADO PARA ZAPATAS DE 2" MEZCLA 1:12 CEMENTO-HORMIGON
•	

Partida

Rendimiento	m2/DIA	80.0000	EQ.	80,0000	losto unitario dire	cto por : m2	28.37	
Código	Descripción Re			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra						
0147000022		E EQUIPO LIVIANO		hh	1.0000	0.1000	15.60	1.56
0147010001	CAPATAZ			hh	0.2000	0.0200	14.65	0.29
0147010002	OPERARIO			hh	2.0000	0.2000	14.65	2.93
0147010003	OFICIAL			hh	1.0000	0.1000	13.65	1.37
0147010004	PEON			hh	6.0000	0.6000	11.25	6.75
		**				•		12.90
0004000004	OFMENTO DOS	Materiales		501		0.0040	40.05	5.05
0221000001		RTLAND TIPO I (42.5KG) ATLAS		BOL		0.2840	18.85	5.35
0238000000	HORMIGON)		m3		0.0940	85.00	7.99
0243160052	REGLA DE MAI	JERA		p2		0.1000	2.40	0.24 13.58
		Equipos						13.30
0337010001	HERRAMIENTA			%МО		3.0000	12.90	0.39
0349100011		CONCRETO TROMPO 8 HP 9 P3		hm	1.0000	0.1000	15.00	1.50
0343100011	MILZOLADOIVA	CONORLIO INCIMI O O III 913		1111	1.0000	0.1000	10.00	1.89
Partida	01.04.02.01	CONCRETO EN SOBRECIMIE	ENTO	1:8 C:H +	25 % P.M			
Rendimiento	m3/DIA	15.0000	EQ.	15.0000	osto unitario dire	ecto por : m3	263.36	
- · ·							-	.
Código	Descripción Re			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0147010002	OPERARIO	Mano de Obra		hh	1.0000	0,5333	14.65	7.81
0147010002	OFICIAL			hh	1.9950	1.0640	13.65	14.52
0147010003	PEON			hh	7.9950	4,2640	11.25	47.97
0 1470 10004	FEON			1(()	7.3330	4,2040	11.20	70.30
		Materiales						70.00
0205000010	PIEDRA MEDIA			m3		0.4200	80.00	33.60
0221000000		RTLAND TIPO I (42.5KG)		BOL		3.8900	18.85	73.33
0238000000	HORMIGON	,		m3		0.8900	85.00	75.65
0239050000	AGUA			m3		0.1460	2.50	0.37
								182.95
		Equipos						
0337010001	HERRAMIENTA	AS MANUALES		%MO		3.0000	70.30	2.11
0349100011	MEZCLADORA	CONCRETO TROMPO 8 HP 9 P3		hm	1.0000	0.5333	15.00	8.00
								10.11
Partida	01.04.02.02	ENCOFRADO Y DEDESENCO	DFRAI	DO SOBRE	ECIMIENTOS		•	
Rendimiento	m2/DIA	20.0000	EQ.	20.0000	costo unitario dire	ecto por : m2	36.00	
۸۲٦٠	December 11 To			11-14 1	A =4 W	On which is	Decide Of	De-det Of
Código	Descripción Re			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0447040000	ODED ADIO	Mano de Obra		LL	4 0000	0.4000	44.05	E 00
0147010002	OPERARIO			hh	1.0000	0.4000	14.65	5.86
0147010003	OFICIAL			hh	1.0000	0.4000	13.65	5.46
0147010004	PEON			hh	0.5000	0.2000	11.25	2.25
		Materiales						13.57
0202000008	ALAMRDE NEC	RO RECOCIDO # 8		kg		0.2600	4.50	1.17
0202000005		, MADERA C/C 3"		kg		0.1300	4.30	0.56
0202010003		NILLO INC.CORTE P/ENCOFRADO		p2		4.8300	4.30	20.29
V2430 1000 I	WADERA TOR	VILLO INOLOGIA I E FIENCOFRADO		hr		7.0000	7.20	20.29
		Equipos						22.02
0337010001	HERRAMIENTA	• •		%MO		3,0000	13.57	0.41
0007 V 1000 I	I THE RESTAURT OF THE	10 110 TO TO TO TO TO TO TO TO TO TO TO TO TO		,u.110		5,000	10.01	0.41
								V.71

Partida	01.05.01.01	CONCRETO EN LOSA DE CII	MENTACION F'C	C= 175 KG/CM2			
Rendimiento	m3/DIA	25.0000	EQ. 25.0000	costo unitario dire	ecto por : m3	351.23	
Código	Descripción Re	curso	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
		Mano de Obra					
0147000022		EQUIPO LIVIANO	hh	2.0000	0.6400	15.60	9.98
0147010002	OPERARIO		hh	2.0000	0.6400	14.65	9.38
0147010003	OFICIAL		hh	1.0000	0.3200	13.65	4.37
0147010004	PEON		hh	8.0000	2.5600	11.25	28.80 52.53
		Materiales					32.33
0205000003	PIEDRA CHANC		m3		0.7600	100.00	76.00
0205010004	ARENA GRUESA		m3		0.5100	100.00	51.00
0221000000		TLAND TIPO I (42.5KG)	BOL		8,6600	18.85	163.24
0239050000	AGUA	11.0 11.0 1 (12.01.0)	m3		0.1840	2.50	0.46
			2				290.70
		Equipos					
0349070004	VIBRADOR DE (CONCRETO 4 HP 2.40"	hm	1.0000	0.3200	10.00	3.20
0349100011	MEZCLADORA (CONCRETO TROMPO 8 HP 9 P3	hm	1.0000	0.3200	15.00	4.80
							8.00
						•	
Partida	01.05.01.02	ACERO FY = 4200 KG/CM2 E	N LOSA DE CIN	MENTACION			
Rendimiento	kg/DIA	350.0000	EQ. 350.0000	Costo unitario dir	ecto por : kg	3.57	
Código	Descripción Re	curso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Ū	•	Mano de Obra					
0147010002	OPERARIO		hh	1.0000	0.0229	14.65	0.34
0147010003	OFICIAL		hh	0.5000	0.0114	13.65	0.16
							0.50
		Materiales					
0202000007	ALAMBRE NEGI	RO RECOCIDO # 16	kg		0.0600	4.50	0.27
0203020003	ACERO CORRU	IGADO 0 1/2"	kg		0.4716	2.78	1.31
0203020004	ACERO CORRU	IGADO 0 5/8"	kg		0.5280	2.78	1.47
							3.05
		Equipos					
0337010001	HERRAMIENTA	S MANUALES	%МО		3.0000	0.50	0.02
							0.02
Partida	01.05.02.01	CONCRETO EN ZAPATAS F	C= 175 KG/CM2	!			
Rendimiento	m3/DIA	25.0000	EQ. 25.0000	losto unitario dire	ecto por : m3	351.23	
Código	Descripción Re	CLIFSO	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial SI.
		Mano de Obra					
0147000022	OPERADOR DE	EQUIPO LIVIANO	hh	2.0000	0.6400	15.60	9.98
0147010002	OPERARIO		hh	2.0000	0.6400	14.65	9.38
0147010003	OFICIAL		hh	1.0000	0.3200	13.65	4.37
0147010004	PEON		hh	8.0000	2.5600	11.25	28.80
							52.53
		Materiales					
0205000003	PIEDRA CHANC	CADA DE 1/2"	m3		0.7600	100.00	76.00
0205010004	ARENA GRUES	A	m3		0.5100	100.00	51.00
0221000000	CEMENTO POR	RTLAND TIPO I (42.5KG)	BOL		8.6600	18.85	163.24
0239050000	AGUA		m3		0.1840	2.50	0.46
							290.70
		Fauinos					

Equipos

1.0000

1.0000

hm

hm

0.3200

0.3200

10.00

15.00

3.20

4.80 8.00

VIBRADOR DE CONCRETO 4 HP 2.40"

MEZCLADORA CONCRETO TROMPO 8 HP 9 P3

0349070004

0349100011

40000	~V _	4200	MOIORES	FN ZAPA	TAC
ACHRO	FY =	4ляі	KUILMI	FN ZAPA	I AS

Partida

01.05.02.02

Rendimiento	kg/DIA	350.0000	EQ.	350.0000	Costo unitario dire	ecto por ; kg	3.57	
Código	Descripción Recu	irso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0147010002	OPERARIO	.nano do obile		hh	1,0000	0.0229	14.65	0.34
0147010002	OFICIAL			hh	0.5000	0.0229	13.65	0.16
014/010003	OFICIAL			1111	0.3000	0.0114	13.03	0.10
		Materiales						0.30
0202000007	ALAMBRE NEGRO			kg		0.0600	4.50	0.27
0203020003	ACERO CORRUG			kg		0.4716	2.78	1.31
0203020004	ACERO CORRUGA			kg		0.5280	2.78	1.47
0203020004	ACERO CORROGA	ADO 0 3/8		NY		0.3200	2.10	3.05
		Equipos						3.00
0337010001	HERRAMIENTAS	. ,		%МО		3.0000	0.50	0.02
0001010001	, IL, (1 / WILLIAM 10)	Will die Control	•	70.1.0		0.0000	0.00	0.02
•								0.02
Partida	01.05.03.01	CONCRETO EN VIGAS DE CI	MEN	TACION F'	C= 210 KG/CM2			
Rendimiento	m3/DIA	25.0000	EQ.	25.0000	osto unitario dire	cto por : m3	343.67	
Código	Descripción Recu	Irso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra			- add - in-		110010 01.	r al oldi ox
0147000022	OPERADOR DE E			hh	1.0000	0.3200	15.60	4,99
0147010002	OPERARIO			hh	2.0000	0.6400	14.65	9.38
0147010003	OFICIAL			hh	1.0000	0.3200	13.65	4,37
0147010004	PEON			hh	8.0000	2.5600	11.25	28.80
								47.54
		Materiales			•			
0205000003	PIEDRA CHANCA	DA DE 1/2°		m3		0.8500	100.00	85.00
0205010004	ARENA GRUESA			m3		0.4200	100.00	42.00
0221000000	CEMENTO PORTI	LAND TIPO I (42.5KG)		BOL		8.6600	18.85	163.24
0239050000	AGUA			m3		0.1840	2.50	0.46
								290.70
		Equipos						
0337010001	HERRAMIENTAS	MANUALES		%MO		3.0000	47.54	1.43
0349070004	VIBRADOR DE CO	NCRETO 4 HP 2.40"		hm	0.5000	0.1600	10.00	1.60
0349100011	MEZCLADORA CO	ONCRETO TROMPO 8 HP 9 P3		hm	0.5000	0.1600	15.00	2.40
								5.43
Partida	01.05.03.02	ACERO FY = 4200 KG/CM2 E	N VIG	SAS DE CIN	MENTACION			
Rendimiento	kg/DIA	350.0000	EQ.	. 350.0000	Costo unitario dir	ecto por : kg	3.57	
Cádina	Denodualisa Des-	IFO A		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
Código	Descripción Recu	irso Mano de Obra		Unidad	Cuadrilla	Cantidad	PIECIO SI.	Parcial SI.
0447040000	OPERARIO	mano de Obra		hh	1.0000	0.0229	14.65	0.34
0147010002				hh hh	0.5000	0.0229	13.65	0.16
0147010003	OFICIAL			1111	0.5000	0.0114	13.03	0.10
		Materiales						0.50
0202000007	AL AMODE NECO	Materiales O RECOCIDO # 16		ka		0.0600	4.50	0.27
				kg ka		0.0800	2.78	0.27
0203020002	ACERO CORRUG			kg ka		0.1596	2.78	0.44
0203020003	ACERO CORRUG			kg ka		0.1596	2.78	1.38
0203020004	ACERO CORRUG			kg ka		0.4960	2.76 2.78	0.45
0203020005	ACERO CORRUG	MUU () 3/4		kg		0.1013	2.10	3.05
		Equipos					•	3,03
0337010001	HERRAMIENTAS	• •		%MO		3.0000	0.50	0.02
00010 IUUU I	1 IFT / AMIENA 149	IN THE TOTALLO		/OIVIO		3.0000	0.50	0.02

FNCOFRADO	Y DESENCOFRADO	VIGA DE CIMI	-NTACION

Partida

01.05.03.03

Rendimiento	m2/DIA	45,0000	EQ.	45.0000	costo unitario dire	cto por : m2	31.00	
Código	Descripción Recu	urso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
0147010002	OPERARIO	mano de Obra		hh	1.0000	0.1778	14.65	2.60
0147010003	OFICIAL			hh	1.0000	0.1778	13.65	2.43
0147010004	PEON			hh	0.5000	0.0889	11.25	1.00
		Matadalaa						6.03
000000000	AL AMPRE NEOR	Materiales				0.0000	4.50	4.47
0202000008	ALAMBRE NEGRO			kg		0.2600	4.50	1.17
0202010005	CLAVOS PARA M			kg		0.1500	4.30	0.65
0245010001	MADERA TORNIL	LO INC.CORTE P/ENCOFRADO		p2		5.4700	4.20	22.97
								24.79
		Equipos						
0337010001	HERRAMIENTAS	MANUALES		%MO		3.0000	6.03	0.18
								0.18
Partida	01.05.04.01	CONCRETO EN COLUMNAS	F'C=2	210 KG/CM	2			
Rendimiento	m3/DIA	10.0000	EQ.	10.0000	costo unitario dire	ecto por : m3	516.25	
Ot dim.	Denotinalia Des			11	0 199	0 41-4	D 1.01	5 '10'
Código	Descripción Reci	urso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
04.47000000	ODED 40 OD DE E				0.0000	0.4000	45.00	07.44
0147000022	OPERADOR DE E	QUIPO LIVIANO		hh	3.0000	2.4000	15.60	37.44
0147010002	OPERARIO			hh	2.0000	1.6000	14.65	23.44
0147010003	OFICIAL			hh	1.0000	0.8000	13.65	10.92
0147010004	PEON			hh	12.0000	9.6000	11.25	108.00
		** * * * * * * * * * * * * * * * * * * *						179.80
		Materiales		•			400.00	25.00
0205000003	PIEDRA CHANCA	IDA DE 1/2"		m3		0.8500	100.00	85.00
0205010004	ARENA GRUESA			m3		0.4200	100.00	42.00
0221000000		LAND TIPO I (42.5KG)		BOL		9.7400	18.85	183.60
0239050000	AGUA			m3		0.1840	2.50	0.46
		Equipos				•		311.06
0227040004	HERRAMIENTAS	Equipos		0/140		2 0000	170.00	E 20
0337010001				%MO	4.0000	3.0000	179.80	5.39
0349070004		ONCRETO 4 HP 2.40°		hm	1.0000	0.8000	10.00	8.00
0349100011	MEZULADORA CI	ONCRETO TROMPO 8 HP 9 P3		hm	1,0000	0.8000	15.00	12.00 25.39
						•		20.39
Partida	01.05.04.02	ACERO FY = 4200 KG/CM2 E	N CO	LUMNAS				
Rendimiento	kg/DIA	350.0000	EQ.	350.0000	Costo unitario din	ecto por : kg	3.57	
Cádina	Donorinoión Bos	II.		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Código	Descripción Reci	Mano de Obra		Unidad	Cuadinia	Cantidad	riecio si.	raiciai 31.
0147010002	OPERARIO	Mario de Onia		hh	1.0000	0.0229	14.65	0.34
0147010002	OFICIAL.			hh	0.5000	0.0223	13.65	0.16
0147010003	OFICIAL			1111	0.5000	0.0114	13.03	0.10
		Materiales						0.50
0202000007	ALAMBRE NEGR	O RECOCIDO # 16		ka		0.0600	4.50	0.27
0202000007	ACERO CORRUG			kg kg		0.0006	2.78	0.03
							2.78	1.07
0203020002	ACERO CORRUG			kg		0.3864		
0203020004	ACERO CORRUG			kg		0.4000	2.78	1.11
0203020005	ACERO CORRUG	SAUC 0 3/4"		kg		0.2040	2.78	0.57
								3.05
		Equipos		****			<u></u>	
0337010001	HERRAMIENTAS	MANUALES		%MO		3.0000	0.50	0.02
		•						0.02

Partida	01.05.04.03	ENCOFRADO Y DESENCOFF	RADO NORMAL	EN COLUMNAS			
Rendimiento	m2/DIA	15,0000	EQ. 15.0000	osto unitario dire	ecto por ; m2	35.54	
Código	Descripción Re	curso	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
		Mano de Obra					
0147010002	OPERARIO		hħ	1.0000	0.5333	14.65	7.81
0147010003	OFICIAL		hh	0.5000	0.2667	13.65	3.64
		Matadalaa					11.45
020200000	AL ANADDE NEC	Materiales	l.a		0.2000	4.50	4.05
0202000008 0202010005		RO RECOCIDO # 8 MADERA C/C 3"	kg tra		0.3000	4.50 4.30	1.35
0202010003		ILLO INC.CORTE P/ENCOFRADO	kg p2		0.1700 5.1600	4.30	0.73 21.67
0243010001	WADEIO TONI	ILLO INO.CONTETTENCOTRADO	μz		3.1000	4.20	23.75
		Equipos	•				
0337010001	HERRAMIENTA	S MANUALES	%MO		3.0000	11.45	0.34
							0.34
Partida	01.05.05.01	CONCRETO EN VIGAS F'C=2	210 KG/CM2				
Rendimiento	m3/DIA	20.0000	EQ. 20.0000	costo unitario dire	ecto por : m3	376.17	
Código	Descripción Re	· curso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial Si.
•	•	Mano de Obra					
0147000022	OPERADOR DE	EQUIPO LIVIANO	hh	3.0000	1.2000	15.60	18.72
0147010002	OPERARIO		hh	2.0000	0.8000	14.65	11.72
0147010003	OFICIAL		hh	1.0000	0.4000	13.65	5.46
0147010004	PEON		hh	8.0000	3.2000	11.25	36.00
							71.90
222522222	DIEDDA OLIANO	Materiales			0.0500	400.00	0.5.00
0205000003	PIEDRA CHANC		m3		0.8500	100.00	85.00
0205010004	ARENA GRUES		m3		0.4200	100.00	42.00
0221000000 0239050000	AGUA	(TLAND TIPO I (42.5KG)	BOL m2		9.0000	18.85	169.65
0239050000	AGUA		m3		0.1840	2.50	0.46 297.11
		Equipos					
0337010001	HERRAMIENTA	S MANUALES	%MO		3.0000	71.90	2.16
0349070004	VIBRADOR DE	CONCRETO 4 HP 2.40"	hm	0.5000	0.2000	10.00	2.00
0349100011	MEZCLADORA	CONCRETO TROMPO 8 HP 9 P3	hm	0.5000	0.2000	15.00	3.00
							7.16
Partida	01.05.05.02	ACERO FY = 4200 KG/CM2 E	N VIGAS				
Rendimiento	kg/DIA	350.0000	EQ. 350.0000	Costo unitario di	recto por : kg	3.62	
Código	Descripción Re	curso	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
•		Mano de Obra	· · · · ·			,	
0147010002	OPERARIO		hh	1.0000	0.0229	14.65	0.34
0147010003	OFICIAL		hħ	0.5000	0.0114	13.65	0.16
							0.50
		Materiales					
0202000007	ALAMBRE NEG	RO RECOCIDO # 16	kg		0.0600	4.50	0.27
0203020001	ACERO CORRU		kg		0.0342	2.78	0.10
0203020002	ACERO CORRU		kg		0.3638	2.78	1.01
0203020003	ACEDO CODDI	10400 0 4 /01	ka		0.4520	2 70	0.42

kg

kg

%MO

0.1520

0.4295

0.0404

3.0000

2.78

2.78

2.78

0.50

0.42

1.19

0.11 3.10

0.02 0.02

0203020003

0203020004

0203020005

0337010001

ACERO CORRUGADO 0 1/2"

ACERO CORRUGADO 0 5/8"

ACERO CORRUGADO 0 3/4"

HERRAMIENTAS MANUALES

Equipos

ENCOFRADO Y	DESENCOFRADO NORMA	FN VIGAS

01.05.05.03

Partida

Rendimiento	m2/DIA	8.5000	EQ. 8.5000	osto unitario dire	ecto por : m2	50.98	
Código 👇	Descripción Re	ecurso	Unidad	Cuadrilla	Cantidad	Precio Si.	Parcial S/.
		Mano de Obra					
0147010002	OPERARIO		hh	1.0000	0.9412	14.65	13.79
0147010003	OFICIAL		hh	0.5000	0.4706	13.65	6.42 20.2 1
		Materiales					20.21
0202000008	ALAMBRE NEG	RO RECOCIDO #8	kg		0.2100	4.50	0.95
0202010005	CLAVOS PARA	MADERA C/C 3"	kg		0.2400	4.30	1.03
0245010001	MADERA TORN	IILLO INC.CORTE P/ENCOFRADO	p2		6.7100	4.20	28.18
		Equipos					30.16
0337010001	HERRAMIENTA	S MANUALES	%МО		3.0000	20.21	0.61 0.61
Partida	01.05.06.01	CONCRETO F'C=210 KG/CM	2. PARA LOSAS	ALIGERADAS			
Rendimiento	m3/DIA	14.0000	EQ. 14.0000	osto unitario dire	ecto por ; m3	384.91	
Código	Descripción Re	ecurso	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
•	•	Mano de Obra					
0147000022	OPERADOR DE	EQUIPO LIVIANO	hh	0.5000	0.2857	15.60	4.46
0147010002	OPERARIO		hh	1.0000	0.5714	14.65	8.37
0147010003	OFICIAL		hh	1.0000	0.5714	13.65	7.80
0147010004	PEON		hh	8.0000	4.5714	11.25	51.43
		SS-A					72.06
0205000004	PIEDRA CHANG	Materiales	m3		0.8500	100.00	85.00
0205010004	ARENA GRUES		m3		0.4900	100.00	49.00
0221000000		RTLAND TIPO I (42.5KG)	BOL		8.7200	18.85	164.37
0239050000	AGUA	(12AND 111 O 1 (42.01(O)	m3		0.2100	2.50	0.53
02000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0.11,00	2.00	298.90
		Equipos					
0337010001	HERRAMIENTA	S MANUALES	%MO		3.0000	72.06	2.16
0348090002	ANDAMIO MET	AL TABLAS-ALQUILER	est		0.0357	130.00	4.64
0349070004		CONCRETO 4 HP 2.40"	hm	0.5000	0.2857	10.00	2.86
0349100011	MEZCLADORA	CONCRETO TROMPO 8 HP 9 P3	hm	0.5000	0.2857	15.00	4.29 13.95
Partida	01.05.06.02	ACERO FY = 4200 KG/CM2 E	N LOSAS ALIGI	ERADAS	•		
Rendimiento	kg/DIA	350.0000	EQ. 350.0000	Costo unitario dir	ecto por : kg	3.62	
Código	Descripción Re	ecurso	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra					
0147010002	OPERARIO		hh	1.0000	0.0229	14.65	0.34
0147010003	OFICIAL		hh	0.5000	0.0114	13.65	0.16
		Materiales					0.50
0202000007	ALAMBRE NEG	RO RECOCIDO # 16	kg		0.0600	4.50	0.27
0203020001	ACERO CORRU	JGADO 0 1/4"	kg		0.1832	2.78	0.51
0203020002	ACERO CORRU	JGADO 0 3/8"	kg		0.1912	2.78	0.53
0203020003	ACERO CORRU	JGADO 0 1/2"	kg		0.6456	2.78	1.79
		P ostorio					3.10
0227040004	HERRAMIENTA	Equipos	%MO		3.0000	0.50	0.02
0337010001	DEDINAMIENTA	NO IVIANUALEO	70IVIO		3.0000	0.00	0.02

Partida	01.05.06.03	ENCOFRADO Y DESENCOFR	ADO PAR	A LO	SAS ALIGERADAS	3		
Rendimiento	m2/DIA	12.0000	EQ. 12.0	000	losto unitario dire	ecto por ; m2	42.72	
Código	Descripción Re	curso	Unic	dad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra						
0147010002	OPERARIO		hh		1.0000	0.6667	14.65	9.77
0147010003	OFICIAL		hh		0.5000	0.3333	13.65	4.55
								14.32
		Materiales						
0202000008		RO RECOCIDO #8	kg			0.1000	4.50	0.45
0202010005		MADERA C/C 3"	kg			0.1100	4.30	0.47
0245010001	MADERA TORN	ILLO INC.CORTE P/ENCOFRADO	p2			5.1500	4.20	21.63
								22.55
		Equipos		_				
0337010001	HERRAMIENTA		%M	0		3.0000	14.32	0.43
0348090002	ANDAMIO MET	AL TABLAS-ALQUILER	est			0.0417	130.00	5.42
								5.85
· Partida	01.05.06.04	LADRILLO DE ARCILLA HUE	CO 15X30	X 3U -	LOSA ALIGERAD	Α		
i dinad	01.00.00.04	EADNIELO DE ANOILEA NOL	,00 10,00	A30 -	LOOM ALIGERAD	^		
Rendimiento	und/DIA	1,600.0000	EQ. ###	####	# osto unitario dire	cto por : und	3.86	
Código	Descripción Re	curso	Unic	dad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
		Mano de Obra						
0147010002	OPERARIO		hh		20.0000	0.1000	14.65	1.47
0147010004	PEON		hh		20.0000	0.1000	11.25	1.13
								2.60
		Materiales						
0217010007	LADRILLO P/TE	CHO 15x30x30 CM 8 HCOS, REX	und			1.0500	1.20	1.26 1.26
Partida	01.05.07.01	CONCRETO EN ESCALERAS	F'C=210 F	(GICI	W2			
Rendimiento	m3/DIA	10.0000	EQ. 10.0	JUUU	losto unitario dire	ecto por : m3	539.43	
Código	Descripción Re	ecurso	Unic	dad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra						
0147000022	OPERADOR DE	EQUIPO LIVIANO	hh		3.0000	2.4000	15.60	37.44
0147010001	CAPATAZ		hh		0.2000	0.1600	14.65	2.34
0147010002	OPERARIO		hh		2.0000	1.6000	14.65	23.44
0147010003	OFICIAL		hħ		1.0000	0.8000	13.65	10.92
0147010004	PEON		hh		12.0000	9.6000	11.25	108.00
								182.14
		Materiales						
0201000004	ACEITE PARA I		gln			0.0080	40.00	0.32
0205000003	PIEDRA CHANO		m3			0.8500	100.00	85.00
0205010004	ARENA GRUES		m3			0.4200	100.00	42.00
0221000000		RTLAND TIPO I (42.5KG)	BOL	•		9.7400	18.85	183.60
0234000000	GASOLINA 84 (DCIANOS	gin			0.5400	15.65	8.45

0147010001	CAPATAZ	hh	0.2000	0.1600	14.65	2.34	
0147010002	OPERARIO	hh	2.0000	1.6000	14.65	23.44	
0147010003	OFICIAL	hħ	1.0000	0.8000	13.65	10.92	
0147010004	PEON	hh	12.0000	9.6000	11.25	108.00	
						182.14	
	Materiales						
0201000004	ACEITE PARA MOTOR SAE-30	gln		0.0080	40.00	0.32	
0205000003	PIEDRA CHANCADA DE 1/2"	m3		0.8500	100.00	85.00	
0205010004	ARENA GRUESA	m3		0.4200	100.00	42.00	
0221000000	CEMENTO PORTLAND TIPO I (42.5KG)	BOL		9.7400	18.85	183.60	
0234000000	GASOLINA 84 OCTANOS	gin		0.5400	15.65	8.45	
0239050000	AGUA	m3		0.1840	2.50	0.46	
						319.83	
	Equipos						
0337010001	HERRAMIENTAS MANUALES	%MO		3.0000	182.14	5.46	
0349070004	VIBRADOR DE CONCRETO 4 HP 2.40"	hm	1.0000	0.8000	10.00	8.00	
0349100007	MEZCLADORA CONCRETO TAMBOR 18HP 11P3	hm	1.0000	0.8000	15.00	12.00	
0349180024	WINCHE DE DOS BALDES (350KG)M.E. 3.6HP	hm	1.0000	0.8000	15.00	12.00	
						37.46	

Partida	01.05.07.02	ACERO GRADO 60 EN ESCA	LERA	s				
Rendimiento	kg/DIA	266.6700	EQ.	266.6700	Costo unitario din	ecto por : kg	4.27	
Código	Descripción Rec			Unidad	Cuadrilla	Cantidad	Precio Si.	Parcial S/.
0147010001	CAPATAZ	Mano de Obra		hh	0.3400	0.0102	14.65	0.15
0147010002	OPERARIO			hh	1.0000	0.0300	14.65	0.44
0147010003	OFICIAL			hh	1,0000	0.0300	13.65	0.41
								1.00
		Materiales						
0202000007	ALAMBRE NEGR	O RECOCIDO # 16		kg		0.0600	4.50	0.27
0203000018	FIERRO CORR. 5	i/8" SIDERPERU G-60		kg		1.0700	2.78	2.97
								3.24
2007240004		Equipos		0/110				
0337010001	HERRAMIENTAS	MANUALES		%MO		3.0000	1.00	0.03
								0.03
Partida	01.05.07.03	ENCOFRADO Y DESENCOFF	RADO	NORMAL	EN ESCALERAS			
Rendimiento	m2/DIA	5.0000	EQ.	5.0000	losto unitario dire	ecto por ; m2	74.17	
Código	Descripción Rec	urso		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
		Mano de Obra						
0147010001	CAPATAZ			hh	0.1000	0.1600	14.65	2.34
0147010002	OPERARIO			hh	1.0000	1.6000	14.65	23.44
0147010003	OFICIAL			hh	1.0000	1.6000	13.65	21.84 47.62
		Materiales						47.02
0202000007	ALAMBRE NEGR	O RECOCIDO # 16		kg		0.0800	4.50	0.36
0202010005	CLAVOS PARA M			kg		0.1500	4.30	0.65
0245010001		LO INC.CORTE P/ENCOFRADO		p2		5.7400	4.20	24.11
				•				25.12
		Equipos						
0337010001	HERRAMIENTAS	MANUALES		%МО		3.0000	47.62	1.43 1.43
Partida	01.05.08.01	CONCRETO EN MUROS REF	orz <i>a</i>	ADOS F'C=	210 KG/CM2			
Rendimiento	m3/DIA	10.0000	EQ.	10.0000	losto unitario dire	ecto por : m3	514.58	
0.1	B							
Código	Descripción Rec	urso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial Si.
0147000022	OPERADOR DE E			hh	2.0000	1.6000	15.60	24.96
0147010001	CAPATAZ	LOGOTI O ETVIZATO		hh	0.2000	0.1600	14.65	2.34
0147010002	OPERARIO			hh	2.0000	1.6000	14.65	23.44
0147010003	OFICIAL			hh	1.0000	0.8000	13.65	10.92
0147010004	PEON			hh	12.0000	9.6000	11.25	108.00
								169.66
		Materiales						
0201000004	ACEITE PARA MO			gln		0.0080	40.00	0.32
0205000003	PIEDRA CHANCA			m3		0.8500	100.00	85.00
0205010004	ARENA GRUESA			m3		0.4200	100.00	42.00
0221000000		LAND TIPO I (42.5KG)		BOL		9.7400	18.85	183.60
0234000000	GASOLINA 84 OC	CHANOS		gln 2		0.5400	15.65	8.45
0239050000	AGUA			m3		0.1840	2.50	0.46 319.83
		Equipos						319.83
0337010001	HERRAMIENTAS	• •		%MO		3.0000	169.66	5.09
0349070004		ONCRETO 4 HP 2.40"		hm	1.0000	0.8000	10.00	8.00
0349100007		ONCRETO TAMBOR 18HP 11P3		hm .	1.0000	0.8000	15.00	12.00
								25.00

Partida	01.05.08.02	ACERO Fy = 4200 kg/cm2
---------	-------------	------------------------

Rendimiento	kg/DIA	350.0000	EQ.	350.0000	Costo unitario din	ecto por : kg	3.94	
Código	Descripción Rec	curso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra						
0147010001	CAPATAZ			hh	0.1000	0.0023	14.65	0.03
0147010002	OPERARIO			hh	1.0000	0.0229	14.65	0.34
0147010003	OFICIAL			hh	1.0000	0.0229	13.65	0.31
								0.68
		Materiales						
0202000007	ALAMBRE NEGF	RO RECOCIDO # 16		kg		0.0600	4.50	0.27
0203020002	ACERO CORRU	GADO 0 3/8"		kg		1.0700	2.78	2.97
								3.24
		Equipos						
0337010001	HERRAMIENTAS	MANUALES		%МО		3.0000	0.68	0.02
								0.02
Partida	01.05.08.03	ENCOFRADO Y DESENCOF I	MURO	S REFORZ	ZADOS			
Rendimiento	m2/DIA	11.0000	EQ.	11.0000	costo unitario dire	ecto por : m2	41.17	
Código	Descripción Rec	curso		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
		Mano de Obra						
0147010001	CAPATAZ			hh	0.1000	0.0727	14.65	1.07
0147010002	OPERARIO			hh	1.0000	0.7273	14.65	10.65
0147010003	OFICIAL			hh	1.0000	0.7273	13.65	9.93
								21.65
		Materiales						
0202000008	ALAMBRE NEGF	RO RECOCIDO #8		kg		0.0800	4.50	0.36
0202010005	CLAVOS PARA	MADERA C/C 3°		kg		0.2200	4.30	0.95
0245010001	MADERA TORNI	LLO INC.CORTE P/ENCOFRADO		p2		4.1800	4.20	17.56
								18.87
		Equipos						
0337010001	HERRAMIENTAS	S MANUALES		%MO		3.0000	21.65	0.65
								0.65
Partida	02.01	TECHO METALICO						
Day dinainate	(DIA	20.0000	F0	20 0000	Oneth unitaria di		440.00	
Rendimiento	m/DIA	20.0000	EQ.	20.0000	Costo unitario di	ecto por : m	442.98	
Código	Descripción Rec	OUFO A		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Codigo	Descripcion Nec	Mano de Obra		Omeau	Cuadillia	Califidati	FIGURE SI.	raiciai 31.
0147000024	OPERADOR DE			hh	0.0375	0.0150	15.60	0.23
0147000024	OPERARIO	GNOA		hh	0.0375	0.1500	14.65	2.20
0147010002	OFICIAL			hh	0.7500	0.3000	13.65	4.10
0147010003	OFICIAL			IIII	0.7300	0.3000	13.03	6.53
		Materiales						0.00
0251030063	CANAL U 10" x 2			m		10.7800	35.00	377.30
0251030005		DO DE ACERO 4"x10"x 1/4"		m		1.0000	55.00 55.00	55.00
0231070003	TODO CONDINAL	70 DE 70ENO 7 X 10 X 1/4		***		1.0000	JJ.UU	432.30
		Equipos						4JZ.3U
0337600012	DISCOS DE COF	• •		pza		0.1000	25.00	2.50
0337600012	ESCOBILLAS AC			und und		0.0100	25.00 15.00	0.15
0348070020		RTE Y SOLDEO (OXI-ACET)		hm	0.3750	0.1500	10.00	1.50
3070010020		TIL 1 GOLDEG (GM-MOLT)			0.0130	J. 1300	10.00	4.15
								7.13

Presupuesto	0303001 PARROQUIA DE SAN AGUSTIN
Subpresupuesto	006 INSTALACIONES ELECTRICAS

006 INSTALACIONES ELECTRICAS
01 01 SALIDA PARA CENTROS DE LUZ CINTERRUPTOR

Fecha presupuesto 06/05/2013

Partida	01.01	SALIDA PARA CENTROS DE I	LUZ C/INTERR	UPTOR			
Rendimiento	pto/DIA	8.0000	EQ. 8.0000	osto unitario dir	ecto por : pto	113.39	
Código	Descripción Re		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra		4 4 4 4 4 4	4 0000	44.05	44.05
0147010002	OPERARIO		hh	1.0000	1.0000	14.65	14.65
0147010004	PEON		hh	0.5000	0.5000	11.25	5.63 20.28
		Materiales					20.20
0207010000	CARLE TW # 1	4 AWG 2.5 MM2	m		9.0000	2.60	23.40
0212090004		IG GALV 4"X2 1/8"	und		1.0000	3.00	3.00
0212090049		ONAL GALV. 4" X 2 1/8 "	und		1.0000	3.00	3.00
0212410011		RES DE COMMUTACION	und		1.0000	14.00	14.00
0229040001	CINTA AISLAN		rll		0.1000	5.00	0.50
0275010003		L (E/C) 3/4" X 3.00 M.	pza		1.5000	6.00	9.00
0275130005	CURVAS PVC	• •	pza		3.0000	1.20	3.60
0275140003	CONEXIONES	A CAJA PVC SEL 3/4"	pza		3.0000	12.00	36.00
			,			•	92.50
		Equipos					
0337010001	HERRAMIENT	AS MANUALES	%MO		3.0000	20.28	0.61
							0.61
Partida	01.02	SALIDA PARA TOMACORRIE	NTES BIPOLA	RES SIMPLES (CON PVC		
Rendimiento	pto/DIA	8.0000	EQ. 8.0000	osto unitario dir	ecto por : pto	95.47	
Código	Descripción R	acurea	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Godigo	peooripolon (Mano de Obra	Officea	Outuillia	odinidaa	1 10010 01.	i biolai oi.
0147010002	OPERARIO	india do obid	hh	1,0000	1.0000	14,65	14.65
0147010004	PEON		hh	0.7500	0.7500	11,25	8.44
	,			0.1.000	0000		23.09
		Materiales					
0207010000	CABLE TW # 1	4 AWG 2.5 MM2	m		8.1500	2.60	21.19
0212010001	TOMACORRIE	NTE SIMPLE PLANO BAKELITA	und		1.0000	12.00	12.00
0212090049	CAJA OCTOG	ONAL GALV. 4" X 2 1/8 "	und		1.0000	3.00	3.00
0229040001	CINTA AISLAN	ITE	rii		0.1000	5.00	0.50
0274040002	CONEXION A	CAJA PVC SAP 3/4"	pza		2.0000	12.00	24.00
0275010003	TUBO PVC SE	L (E/C) 3/4" X 3.00 M.	pza		1.5000	6.00	9.00
0275120002	UNION PVC SE	EL 3/4"	pza		1.0000	2.00	2.00
							71.69
		Equipos					
0337010001	HERRAMIENT	AS MANUALES	%МО		3.0000	23,09	0.69
							0.69
Partida	01.03	SALIDA PARA ANTENA DE TI	ELEVISION CO	ON PVC			
Rendimiento	pto/DIA	4.0000	EQ. 4.0000	osto unitario di	recto por ; pto	69.57	
Código	Descripción R	ecurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Ū	•	Mano de Obra					
0147010001	CAPATAZ		hh	0.1000	0.2000	14.65	2.93
0147010002	OPERARIO		hh	1.0000	2.0000	14.65	29.30
0147010004	PEON		hh	0.7500	1.5000	11.25	16.88
							49.11
		Materiales					
0212090004	CAJA RECTAN	NG GALV 4"X2 1/8"	und		1.0000	3.00	3.00
0212100026	PLACA DE SA	LIDA DE TELEVISION Y TELEFONO	und		1.0000	5.00	5.00
0272240001	TUB. PVC SEL	. P/INST. ELECT. DE 5/8" x 3m	und		1.5000	6.00	9.00
0272250001	CURVA LIVIAN	NO PVC SEL P/INST. ELECT 5/8°	und		1.0000	1.00	1.00
							18.00
		Equipos	****			** **	<u> </u>
0337010001	HERRAMIENT	AS MANUALES	%MO		5.0000	49.11	2.46
							2.46

Partida	01.04	SALIDA PARA ANTENA DE RA	ADIO CON	PVC	;			
Rendimiento	pto/DIA	4.0000	EQ. 4.00	000	osto unitario dire	ecto por : pto	51.24	
Código	Descripción Recu	rso Mano de Obra	Uni	dad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010001	CAPATAZ		hh		0.1000	0.2000	14.65	2.93
0147010002	OPERARIO		hh		1.0000	2.0000	14.65	29.30
								32.23
		Materiales						
0212090004	CAJA RECTANG	GALV 4"X2 1/8"	und	l		1.0000	3.00	3.00
0212100026	PLACA DE SALIDA	A DE TELEVISION Y TELEFONO	und)		1.0000	5.00	5.00
0272240001	TUB. PVC SEL P/I	NST. ELECT. DE 5/8" x 3m	und	I		1.4000	6.00	8.40
0272250001	CURVA LIVIANO F	PVC SEL P/INST. ELECT 5/8"	und	ì		1.0000	1.00	1.00
								17.40
		Equipos						
0337010001	HERRAMIENTAS	MANUALES	%N	Ю		5.0000	32.23	1.61
								1.61
Partida	01.05	CAJA DE PASE OCTOGONAL	•					
		45.000					40.50	
Rendimiento	und/DIA	15.0000	EQ. 15.0	0000	osto unitario dire	ecto por : und	43.53	
Chaine	December 16th Decem		11-1		مالله معالم	Cantidad	Desais Of	Danaial Cl
Código	Descripción Recu		Uni	idad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO	Mano de Obra	hh		1,0000	0.5333	14.65	7.81
0147010002	PEON		hh		0.5000	0.3333	11.25	3.00
0147010004	FEON		1111		0.3000	0.2007	11,23	10.81
		Materiales						10.01
0212090004	CAJA RECTANG		und			1,0000	3.00	3.00
0275010003	TUBO PVC SEL (E		pza			4.5000	6.00	27.00
0275130005	CURVAS PVC SE	•	pza			2,0000	1.20	2.40
			•					32.40
		Equipos						
0337010001	HERRAMIENTAS	MANUALES	%N	MO		3.0000	10.81	0.32
								0.32
Partida	01.06	TUBO PVC SEL (E/C) 3/4" X 3.	.00 M.					
Rendimiento	m/DIA	180.0000	EQ. ##	******	Costo unitario d	irecto por : m	7.05	
Código	Descripción Recu		Uni	idad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
04.47040000	OPERADIO	Mano de Obra	LL.		4 0000	0.0444	44.65	0.65
0147010002 0147010004	operario Peon		hh hh		1.0000 0.5000	0.0444 0.0222	14.65 11.25	0.65 0.25
0147010004	FEON		101		0.5000	U.UZZZ	11.20	0.90
		Materiales						0.00
0275010003	TUBO PVC SEL (E		pza	3		1,0200	6.00	6.12
	·	•	•					6.12
		Equipos						
0337010001	HERRAMIENTAS	MANUALES	%N	ON		3.0000	0.90	0.03
								0.03
Partida	01.07	TABLERO DE DISTRIBUCION						
Rendimiento	und/DIA	4.0000	EQ. 4.0	000	osto unitario dire	ecto por : und	111.77	
					A 1.7%	04144	Develo Of	Descript Of
Código	Descripción Recu		Un	idad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0447040000	ODEDADIO	Mano de Obra	LL		4 0000	2.0000	44 65	20.20
0147010002	OPERARIO		hh hh		1.0000 0.5000		14.65 - 11.25	29.30 11.25
0147010004	PEON		nn		UUUC.U	1.0000	_ 11.20	11.25 40.55
		Materiales						40.00
0212700091	TABLERO DE DIS		unc	d		1.0000	70.00	70.00
02 121 0000 I			UIIC	-		1.0000	. 5.00	70.00
		Equipos						
0337010001	HERRAMIENTAS	• •	% !	MO		3.0000	40.55	1.22
								1.22

Partida	01.08	INTERRUPTOR THERMOMA	GNETI	CO MON	OFASICA 2 X 15	0A		
Rendimiento	pza/DiA	20.0000	EQ.	20.0000	osto unitario dire	ecto por : pza	78.35	
Código	Descripción R			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
04.470.40000	ODEDADIO	Mano de Obra			4 0000	0.4000	44.00	5.00
0147010002	OPERARIO			hh	1.0000	0.4000	14.65	5.86
0147010004	PEON			hh	0.5000	0.2000	11.25	2.25 8 .11
		Materiales						•
0212020041	INTERRUPTO	R TERMOMAGNETIC DE 3x150A		und		1.0000	70.00	70.00
		Equipos						70.00
0337010001	HERRAMIENT	FAS MANUALES		%MO		3.0000	8.11	0.24
***************************************	1121 4 4 4417-2111					0.0000		0.24
Partida	01.09	INTERRUPTOR THERMOMA	GNETI	CO MON	OFASICA 2 X 15	A		
Rendimiento	pza/DIA	20.0000	EQ.	20.0000	osto unitario dire	ecto por : pza	33.35	
Cádina	Descripción F	Daguma		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Código	Descripcion r	Kecurso Mano de Obra		Onidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
0147010002	OPERARIO	,,,_,,,		hh	1.0000	0.4000	14.65	5.86
0147010004	PEON			hh	0.5000	0.2000	11.25	2.25
								8.11
		Materiales						
0212400083	INTERRUPTO	OR TERMOMAGNETICO 2 X 15 AMP.		pza		1.0000	25.00	25.00
								25.00
		Equipos						
0337010001	HERRAMIENT	ras manuales		%MO		3.0000	8.11	0.24 0.24
Partida	01.10	INTERRUPTOR THERMOMA	CHET	ICO MON	OEACICA 2 V 2/	14		
rollud	01.10	WIERROFFOR TREMINON	ONE	CO MON	OFAUIOA Z A SI	<i>i</i> A		
Rendimiento	pza/DIA	20.0000	EQ	20.0000	osto unitario dire	ecto por : pza	53.35	
Código	Descripción F			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra						
0147010002	OPERARIO			hh	1.0000	0.4000	14.65	5.86
0147010004	PEON			hh	0.5000	0.2000	11.25	2.25
		Materiales						8.11
0212020088	INTERRUPTO	DR TERMOMAGNETICO DE 2x30A		und		1.0000	45.00	45.00
02 12020000	INTLIATOR TO	IN TEMPOREMONE NOO DE 2000A		unu		1.0000	40.00	45.00
		Equipos						
0337010001	HERRAMIEN	TAS MANUALES		%МО		3.0000	8.11	0.24 0.24
								V.24
Partida	01.11	SALIDA PARA THERMA CO	N PVC					
Rendimiento	pto/DIA	5,0000	EQ	5.0000	osto unitario dir	recto por : pto	64.33	
Código	Descripción f	Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
J	•	Mano de Obra						
0147010001	CAPATAZ			hh	0.1000	0.1600	14.65	2.34
0147010002	OPERARIO			hh	1.0000	1.6000	14.65	23.44
0147010004	PEON			hh	0.7500	1.2000	11.25	13.50
								39.28
0007040004	A481==	Materiales		_		4 7000	0.50	5.05
0207010001		12 AWG - 4 MM2		m		1.7000	3.50	5.95
0212090003		SONAL GALV. LIVIANA 4"x4"x2 1/2		und		1.0000	3.00 9.00	3.00 9.00
0212100044	PLACA SALIE			und rii		1.0000 0.1000	9.00 5.00	9.00 0.50
0229040001	CINTA AISLA	NIE L P/INST, ELECT, DE 5/8" x 3m				0.1000 0.5700	5.00 6.00	3.42
0272240001 0272250001		IL P/INST, ELECT, DE 5/8" X 3m INO PVC SEL P/INST, ELECT 5/8"		und und		2.0000	1.00	2.00
0212230001	OURVA LIVIA	INO EVO SEL FAINST, ELECT 3/0"		ullu		2.0000	1.00	23.87
		Equipos						-4.01
0337010001	HERRAMIEN	TAS MANUALES		%МО		3.0000	39.28	1.18
								1 18

Partida	01.12	PUESTA A TIERRA						
Rendimiento	und/DIA	4.0000	EQ.	4.0000	xsto unitario dire	cto por : und	1,509.94	
Código	Descripción Recu	rso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra						
0147010002	OPERARIO			hh	1.0000	2.0000	14.65	29.30
0147010004	PEON	,		hh	0.5000	1.0000	11.25	11.25
		Materiales						40.55
0004040000	TIEDDA CEDNIDA			2		2 2000	45.00	00.00
0204010002	TIERRA CERNIDA	•		m3		2.0000	45.00	90.00
0204010005	THOR GEL	-0111D0 T011D0 40 0		kg		20.0000	60.00	1,200.00
0206010002		ESNUDO T/DURO 16 mm2		m		10.0000	2.00	20.00
0206500070		AB COPPERWELD		pza		1.0000	6.00	6.00
0221000000		LAND TIPO I (42.5KG)		BOL		0.2000	18.85	3.77
0230100001		RE DE 3/4" x 2.40m.		und		1.0000	80.00	80.00
0230100004	ABRAZADERA DE	COBRE DE 3/4"		und		1.0000	12.00	12.00
0238000000	HORMIGON			m3		0.1200	85.00	10.20
0239990011	TAPA METALICA			und		1.0000	45.00	45.00
0275130005	CURVAS PVC SE	L 3/4°		pza		1.0000	1.20	1.20
								1,468.17
		Equipos					_	
0337010001	HERRAMIENTAS	MANUALES		%MO		3.0000	40.55	1.22 1. 22
Partida	02.01.01	LUMINARIA MASTER						
Rendimiento	und/DIA		EQ.	C	Costo unitario dire	ecto por : und	85.00	
Código	Descripción Recu	rso Materiales		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0212120024	TB S260 28X 54W			und		2.0000	20.00	40.00
0212480001	LUMINARIA MAS			und		1.0000	45.00	45.00
								85.00
Partida	02.01.02	LUMINARIA DAY WABE						
Rendimiento	und/DIA		EQ.	C	Costo unitario dire	cto por : und	92.00	
Código	Descripción Recu	rso Materiales		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0212120025	LED 160W Color B			und	,	2.0000	22.00	44.00
0212480002	LUMINARIA DAY					1.0000	48.00	
0212400002	LOWINARIA DAT	WADE		und		1.0000	40.00	48.00 92.00
Partida	02.01.03	LUMINARIA TBS 260 3						
Rendimiento	und/DIA		EQ.	C	Costo unitario dire	cto por ; und	105.00	
Código	Descripción Recu	rso Materiales		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0212120026	MASTED LED Tub	e GA300 600mm 54W		und		2.0000	20.00	40.00
0212480003	LUMINARIA TBS 2			und		1.0000	65.00	65.00
								105.00
Partida	02.01.04	LUMINARIA TIPO ESPOT EMPO	OTR	ADO CO	N ESPEJO			
Rendimiento	und/DIA		EQ.	C	Costo unitario dire	ecto por ; und	91.00	
Código	Descripción Recu	ırso Materiales		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0212120027	LATINA LED BBS			und		1.0000	21.00	21.00
0212480004		ESPOT EMPOTRADO CON ESPEJ	.10	und		1.0000	70.00	70.00
72 12400004	LONINATIA HEO	LOI OT LINIFOTT ALLO CON 23FE	•••	unu		1.0000	70.00	70.00

Partida	02.01.05 LUMINARIA E FIX TBS 260						
Rendimiento	und/DIA	EQ.	Co	sto unitario dire	ecto por : und	107.00	
Código	Descripción Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0212120028 0212480005	Materiales MASTER LED tube GA200 de 25W LUMINARIA FIX TBS 260		und und		2.0000 1.0000	21.00 65.00	42.00 65.00 107.00
Partida	02.01.06 LUMINARIA PARA EMPOTRA	AR EN I	EL TECHO	•			
Rendimiento	und/DIA	EQ.	Со	sto unitario dire	ecto por : und	92.00	
Código	Descripción Recurso Materiales		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0212120029 0212480006	MASTER TL5 Circular 60W LUMINARIA PARA EMPOTRAR EN TECHO		und und		2.0000 1.0000	21.00 50.00	42.00 50.00 92.00
Partida	02.01.07 LUMINARIA CIRCULAR ADO	SADA	EN TECH	D			
Rendimiento	und/DIA	EQ.	Co	sto unitario dire	ecto por : und	66.00	
Código 0212120029 0212480007	Descripción Recurso Materiales MASTER TL5 Circular 60W LUMINARIA CIRCULAR ADOSADA EN TECHO		Unidad und	Cuadrilla	1.0000	Precio S/. 21.00 45.00	Parcial S/. 21.00 45.00
Partida	02.01.09 LUMINARIA ADOSADA BBS5	560 ·	und		1.0000	45.00	45.00 66.00
Rendimiento	und/DIA	EQ.	Co	sto unitario dire	ecto por ; und	66.00	
Código	Descripción Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0212120032 0212480008	Materiales LUMINARIA RAL9016 DE 43W LUMINARIA ADOSADA BBS560		und und		1.0000 1.0000	21.00 45.00	21.00 45.00 66.00
Partida	02.01.10 LUMINARIA ADOSADA MAST	TER TL	.5		·		
Rendimiento	und/DIA	EQ.	Co	sto unitario dire	ecto por ; und	77.00	
Código	Descripción Recurso Materiales		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0212120033 0212480009	TL5C - 60W LUMINARIA ADOSADA MASTER TL5		und und		1.0000 1.0000	21.00 56.00	21.00 56.00 77.00
Partida	02.01.11 LUMINARIA E FIX TBS260 se	mi Brill	lo .				
Rendimiento	und/DIA	EQ.	Co	sto unitario dire	cto por ; und	140.00	
Código	Descripción Recurso Materiales		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0212120034 0212480010	LAMPARA 830 WARN WRITE DE 14W LUMINARIA E FIX TBS260 SEMI BRILLO		und und		4.0000 1.0000	21.00 56.00	84.00 56.00 140.00
Partida	02.01.12 LUMINARIA MASTER SOX - I	E					
Rendimiento	und/DIA	EQ.	Co	sto unitario dire	ecto por ; und	129.00	
Código	Descripción Recurso Materiales		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0212120035 0212480011	LAMPARA KL716093 A G9 DE 40W LUMINARIA MASTER SOX - E		und und		3.0000 1.0000	23.00 60.00	69.00 60.00

129.00

Partida	02.01.13 LUMINARIA SUSPENDIDA	LUMINARIA SUSPENDIDA MASTER SOX -E							
Rendimiento	und/DIA	EQ. Costo u	initario directo por : und	580.00					
Código	Descripción Recurso	Unidad Co	uadrilla Cantidad	Precio S/.	Parcial S/.				
	Materiales								
0212120037	LAMPARA KL716091ACR 69X40X110 G9 DE 40	W und	10.0000	23.00	230.00				
0212480012	LUMINARIA SUSPENDIDA MASTER SOX - E	und	1,0000	350.00	350.00				
ı					580.00				
Partida	02.01.14 LUMINARIA PARA PISO N	lexis post							
Rendimiento	und/DIA	EQ. Costo u	ınitario directo por ; und	115.00					
Código	Descripción Recurso	Unidad Cu	uadrilla Cantidad	Precio S/.	Parcial S/.				
	Materiales								
0212120038	LAMPARA 1x max/9W - GX 53	und	1.0000	25.00	25.00				
0212480013	LUMINARIA PARA PISO NEXIS POST	und	1.0000	90.00	90.00				

Análisis de precios unitarios

Presupuesto Subpresupuesto Partida		001 PARROQUIA DE SAN AGUSTIN 005 INSTALACIONES SANITARIAS INODORO CON FLUXOMETRO				Fecha presupuesto	06/05/2013
Rendimiento	und/DIA	6.0000	EQ. 6.0000	Costo unitario dire	ecto por : und	250.89	
Código	Descripción Rec		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0447040000	OPERADIO	Mano de Obra	h h	0.7500	1.0000	14.65	14.65
0147010002 0147010004	OPERARIO PEON		hh hh	0.7500 0.3750	0.5000	11.25	5.63
0147010004	LON		101	0.0700	0.0000		20.28
		Materiales					
0210020014	INODORO P/FLU	XOMETRO NORMAL COLOR C/A.	und		1.0000	230.00	230.00
							230.00
		Equipos					
0337010001	HERRAMIENTAS	SMANUALES	%MO		3.0000	20.28	0.61
		•	•	•			0.61
Partida	01.01.02	INODORO TANQUE BAJO COLO	OR .				
Failud	01.01.02	INODORO TARROL BASO VOLC	2K				
Rendimiento	pza/DIA		EQ.	Costo unitario dir	ecto por : pza	120.00	
	•	•					
Código	Descripción Rec	curso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Materiales					
0210020012	INODORO TQUE	E. BAJO NORMAL COLOR C/A.	und		1.0000	120.00	120.00
							120.00
Partida	01.01.03	LAVATORIO DE PARED BLANC	O 1 LLAVE			•	
Rendimiento	pza/DIA	8.0000	EQ. 8.0000	Costo unitario dir	ecto por : pza	140.89	
Código	Descripción Rec	curso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
ŭ	•	Mano de Obra	*				
0147010002	OPERARIO		hh	1.0000	1.0000	14.65	14.65
0147010004	PEON		hh	0.5000	0.5000	11.25	5.63
							20.28
0040040000		Materiales				400.00	
0210040088	LAVATORIO 23"	X17" P/GRIF.4" BLANCO C/A	und		1.0000	120.00	120.00
		Equipos					120.00
0337010001	HERRAMIENTAS	- •	%MO		3.0000	20.28	0.61
330.31333.		,			0.000	25.25	0.61
Partida	01.01.04	URINARIOS DE LOZA DE PICO	BLANCO				
Rendimiento	pza/DIA	4.0000	EQ. 4.0000	Costo unitario dir	recto por : pza	127.33	
Código	Descripción Re	citeo	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
coulgo	pesonibolon Kel	Mano de Obra	Univau	Cuatinid	verluudü	FIEGO SI.	FEIVIGI 91.
0147010002	OPERARIO		hh	0.2500	0.5000	14.65	7.33
							7.33
		Materiales					
0210050008	URINARIO PICO	BLANCO	und		1.0000	120.00	120.00
							120.00

Partida	01.02.01	DUCHA CROMADA 1 LLAV	E INCL.ACCESORIOS				
Rendimiento	und/DIA	10.0000	EQ. 10.0000	Costo unitario din	ecto por ; und	86.71	
Código	Descripción Re	ecurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO	mano de obja	hh	1.0000	0.8000	14.65	11.72
0147010004	PEON		hh	0.5000	0.4000	11.25	4.50
							16.22
		Materiales					
0210060008	DUCHA CROM	ADA INC.GRIF 1 LLAVE	und		1.0000	70.00	70.00
		Equipos					70.00
0337010001	HERRAMIENTA	• •	%MO		3.0000	16,22	0.49
							0.49
0.44	00.04.04						
Partida	02.01.01	SALIDA DE DESAGUE Ø 4'	•				
Rendimiento	pto/DIA	6.0000	EQ. 6.0000	Costo unitario di	recto por ; pto	49.76	
Código	Descripción Ro	ecurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra					
0147010002	OPERARIO		hh	1.0000	1.3333	14.65	19.53
0147010004	PEON		hh	0.5000	0.6667	11.25	7.50
•		Materiales				•	27.03
0230460019	PEGAMENTO F	PLASTICO P/PVC CCP	gln		0.0200	45.00	0.90
0272130011		P/DESAGUE DE 4°	m .		0.9140	23.00	21.02
							21.92
		Equipos					
0337010001	HERRAMIENTA	AS MANUALES	%MO		3.0000	27.03	0.81
				•			0.81
Partida	02.01.02	SALIDA DE DESAGUE Ø 2'					
Rendimiento	pto/DIA	8.0000	EQ. 8.0000	Costo unitario di	recto por : pto	32.76	
Código	Descripción Re	ecurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra		4			
0147010002	OPERARIO		hh	1.0000	1.0000	14.65	14.65
0147010004	PEON		hh	-0.5000	0.5000	11.25	5.63 20.28
		Materiales					20.20
0230460019	PEGAMENTO F	PLASTICO P/PVC CCP	gin		0.0200	45.00	0.90
0272130009	TUB. PVC SAL	P/DESAGUE DE 2*	m		0.9140	12.00	10.97
							11.87
0007040004	LIEDD AL HENT	Equipos	****				• • •
0337010001	HERRAMIENTA	AS MANUALES	%МО		3.0000	20.28	0.61 0.61
							0.01
Partida	02.01.03	SALIDAS DE PVC SAL PAR	RA VENTILACION DE 2"				
Rendimiento	pto/DIA	6.0000	EQ. 6.0000	Costo unitario di	recto por ; pto	73.02	
Código	Descripción Re	ecurso	Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/.
		Mano de Obra					
0147010002	OPERARIO		hh	1.0000	1.3333	14.65	19.53
0147010004	PEON		hh	1.0000	1.3333	11.25	15.00
		Materiales					34.53
0230460019	PEGAMENTO	Materiales PLASTICO P/PVC CCP	gin		0.0100	45.00	0.45
0272130009		P/DESAGUE DE 2"	g" ¹		2.5000	12.00	30.00
0272140001	CODO DE 90 P		und		1.0000	7.00	7.00
							37.45
		Equipos					
0337010001	HERRAMIENTA	AS MANUALES	%MO		3.0000	34.53	1.04
							1.04

Partida	02.02.01	TUBERIA DE PVC SAL 4"					
Rendimiento	m/DIA	30.0000	EQ. 30.0000	Costo unitario o	directo por ; m	29.17	
Código	Descripción Rec		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010000	ODEDADIO	Mano de Obra	hh	1.0000	0.2667	14.65	3.91
0147010002 0147010004	OPERARIO PEON		hh	0.5000	0.1333	11.25	1.50
0147010001	, 2011		••••	0.000	5/1505		5.41
		Materiales					
0230460019	PEGAMENTO PL	ASTICO P/PVC CCP	gln		0.0030	45.00	0.14
0272130011	TUB. PVC SAL P	DESAGUE DE 4°	m		1.0200	23.00	23.46
							23.60
0007040004	I ICCOLO ANNICNITA C	Equipos	%МО		3.0000	5.41	0.16
0337010001	HERRAMIENTAS	MANUALES	76IVIO		3.0000	5.41	0.16
	-						0.10
Partida	02.02.02	TUBERIA DE PVC SAL 2"					
Rendimiento	m/DIA	35.0000	EQ. 35.0000	Costo unitario	directo por ; m	17.16	
Código	Descripción Rec	urso - Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO	Mario de Obra	hh	1.0000	0.2286	14,65	3.35
0147010002	PEON		hh	0.5000	0.1143	11.25	1.29
0111010001	7 2011			0.0000	0		4.64
		Materiales					
0230460019	PEGAMENTO PL	ASTICO P/PVC CCP	gln		0.0030	45.00	0.14
0272130009	TUB. PVC SAL P	/DESAGUE DE 2"	m ·		1.0200	12.00	12.24
				•			12.38
		Equipos					
0337010001	HERRAMIENTAS	MANUALES	%MO		3.0000	4.64	0.14
							0.14
Partida	02.03.01	YEE PVC-S	AL 4" A 2"				
Rendimiento	und/DIA	12.0000	EQ. 12.0000	Costo unitario di	recto por : und	38.93	
					•		D. 1101
Código	Descripción Rec	eurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO	mano de Obia	hh	1.0000	0.6667	14.65	9.77
0147010004	PEON		hh	0.5000	0.3333	11.25	3.75
							13.52
		Materiales					
0272810001	YEE PVC C/RED	UCCION 4" X 2"	pza		1.0000	25.00	25.00
		Faulusa					25.00
0337010001	HERRAMIENTAS	Equipos MANHALES	%MO		3.0000	13.52	0.41
0007010007	TIETA GAMETATAC	MANOULLO	MINO		0.0000	10.02	0.41
Partida	02.04.01	SUMIDERO DE BRONCE 2", PF	ROVISION Y COLO	DCACION			
Rendimiento	und/DIA	6.0000	EQ. 6.0000	Costo unitario di	recto por : und	72.74	
Código	Descripción Rec	·ureo	Unidad	Cuadriila	Cantidad	Precio S/.	Parcial S/.
codigo	Descripcion Nec	Mano de Obra	Olijada	Guadinia	Vandad	110000.	raioiai or.
0147010002	OPERARIO		hh	1.0000	1.3333	14.65	19.53
0147010004	PEON		hh	0.5000	0.6667	11.25	7.50
							27.03
		Materiales					
	DECAMENTO DI	ASTICO P/PVC CCP	gln		0.0200	45.00	. 0.90
0230460019					1.0000	15.00	15.00
0268040000	SUMIDERO DE E		und		4 0000	40.00	40.00
0268040000 0272130009	SUMIDERO DE E TUB. PVC SAL P	/DESAGUE DE 2"	m		1.0000	12.00	12.00
0268040000 0272130009 0272140001	SUMIDERO DE E TUB. PVC SAL P CODO DE 90 PV	/DESAGUE DE 2" C SAL DE 2"	m und		1.0000	7.00	7.00
0268040000 0272130009	SUMIDERO DE E TUB. PVC SAL P CODO DE 90 PV	/DESAGUE DE 2"	m				7.00 10.00
0268040000 0272130009 0272140001	SUMIDERO DE E TUB. PVC SAL P CODO DE 90 PV	/DESAGUE DE 2* C SAL DE 2* SIMP C/REDUC PVC SAL 4*A2*	m und		1.0000	7.00	7.00
0268040000 0272130009 0272140001	SUMIDERO DE E TUB. PVC SAL P CODO DE 90 PV	/DESAGUE DE 2* C SAL DE 2* SIMP C/REDUC PVC SAL 4*A2* Equipos	m und		1.0000	7.00	7.00 10.00

Partida	02.04.02	REGISTRO ROSCADO DE 4"					
Rendimiento	pza/DIA	6.0000	EQ. 6.0000	Costo unitario dire	ecto por : pza	58.02	
Código	Descripción Re	ecurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial Si.
0147010002	OPERARIO	mailo de Obia	hh	1,0000	1.3333	14.65	19.53
0147010004	PEON		hħ	0.5000	0.6667	11.25	7.50
							27.03
0210150022	REGISTRO DE	Materiales BRONCE DE 4"	und		1.0000	20.00	20.00
0230460019		PLASTICO P/PVC CCP	gin		0.0040	45.00	0.18
0272170019	TEE SANITARIA	A SIMP C/REDUC PVC SAL 4"A2"	und		1.0000	10.00	10.00
							30.18
0007040004		Equipos	%MO		3.0000	27.03	0.81
0337010001	HERRAMIENTA	45 INIAIVOALES	761410		3.0000	27.03	0.81
Partida	02.04.03	SOMBRERO PARA VENTILACI	ON DE P.V.C. DE 2"				
Rendimiento	und/DIA	18.0000	EQ. 18.0000	Costo unitario dir	ecto por ; und	22.28	
Código	Descripción Re	P CHITEA	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Coulgo	pescripcion N	Mano de Obra	Omaag	Cuadrina	Calluda	ricolo os.	raiciai 3/.
0147010002	OPERARIO		hh	1.0000	0.4444	14.65	6.51
0147010004	PEON		hh	0,5000	0.2222	11.25	2.50
		Materiales					9.01
0272210001	SOMBRERO DI	E VENTILACION PVC SAL DE 2"	und		1,0000	13.00	13.00
							13.00
		Equipos					
0337010001	HERRAMIENTA	AS MANUALES	%MO		3.0000	9.01	0.27
							0.27
Partida	02.05.01	CAJA DE REGISTRO DE DESA	GUE 12" X 24"				
Dondiminata	n=n/DIA	6 0000	EO 6 0000	Coota unitaria di	note per : pro	420.00	
Rendimiento	pza/DIA	6.0000	EQ. 6.0000	Costo unitario di	ecto por : pza	120.86	
Rendimiento Código	pza/DIA Descripción Re		EQ. 6.0000 Unidad	Costo unitario di	ecto por ; pza	120.86 Precio S/.	Parcial S/.
Código	Descripción Re		Unidad	Cuadrilla	Cantidad	Precio SI.	
Código 0147010002	Descripción Re	ecurso	Unidad hh	Cuadrilla 1.0000	Cantidad 1.3333	Precio S <i>I</i> . 14.65	19.53
Código	Descripción Re	ecurso	Unidad	Cuadrilla	Cantidad	Precio SI.	
Código 0147010002	Descripción Re	ecurso	Unidad hh	Cuadrilla 1.0000	Cantidad 1.3333	Precio S <i>I</i> . 14.65	19.53 7.50
Código 0147010002 0147010004 0204000000	Descripción Re OPERARIO PEON ARENA FINA	ecurso Mano de Obra Materiales	Unidad hh hh m3	Cuadrilla 1.0000	Cantidad 1.3333 0.6667	Precio S <i>I.</i> 14.65 11.25	19.53 7.50 27.03 3.00
Código 0147010002 0147010004 0204000000 0221000000	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POF	ecurso Mano de Obra	Unidad hh hh m3 BOL	Cuadrilla 1.0000	Cantidad 1.3333 0.6667 0.0300 0.7500	Precio S <i>I</i> . 14.65 11.25 100.00 18.85	19.53 7.50 27.03 3.00 14.14
Código 0147010002 0147010004 0204000000 0221000000 02380000000	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POF HORMIGON	ecurso Mano de Obra Materiales	Unidad hh hh m3 BOL m3	Cuadrilla 1.0000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100	14.65 11.25 100.00 18.85 85.00	19.53 7.50 27.03 3.00 14.14 0.85
Código 0147010002 0147010004 0204000000 0221000000	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POR HORMIGON AGUA	ecurso Mano de Obra Materiales	Unidad hh hh m3 BOL	Cuadrilla 1.0000	Cantidad 1.3333 0.6667 0.0300 0.7500	Precio S <i>I</i> . 14.65 11.25 100.00 18.85	19.53 7.50 27.03 3.00 14.14
Código 0147010002 0147010004 020400000 022100000 0238000000 0239050000	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POR HORMIGON AGUA CAJA DE DESA	ecurso Mano de Obra Materiales RTLAND TIPO I (42.5KG)	Unidad hh hh m3 BOL m3 m3	Cuadrilla 1.0000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 0.0100	14.65 11.25 100.00 18.85 85.00 2.50	19.53 7.50 27.03 3.00 14.14 0.85 0.03
Código 0147010002 0147010004 0204000000 0221000000 0238000000 0239050000 0250010000	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POR HORMIGON AGUA CAJA DE DESA	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12"X24" O F°F° DE DESAGUE 12" X 24"	Unidad hh hh m3 BOL m3 m3 und	Cuadrilla 1.0000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 0.0100 1.0000	14.65 11.25 100.00 18.85 85.00 2.50 50.00	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00
Código 0147010002 0147010004 0204000000 0221000000 0238000000 0239050000 0250010000 0250060010	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POF HORMIGON AGUA CAJA DE DESA TAPA CIMARCO	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12"X24" O F°F° DE DESAGUE 12" X 24" Equipos	Midad hh hh m3 BOL m3 m3 und pza	Cuadrilla 1.0000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 0.0100 1.0000	14.65 11.25 100.00 18.85 85.00 2.50 50.00 25.00	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00 93.02
Código 0147010002 0147010004 0204000000 0221000000 0238000000 0239050000 0250010000	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POR HORMIGON AGUA CAJA DE DESA	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12"X24" O F°F° DE DESAGUE 12" X 24" Equipos	Unidad hh hh m3 BOL m3 m3 und	Cuadrilla 1.0000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 0.0100 1.0000	14.65 11.25 100.00 18.85 85.00 2.50 50.00	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00
Código 0147010002 0147010004 0204000000 0221000000 0238000000 0239050000 0250010000 0250060010	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POF HORMIGON AGUA CAJA DE DESA TAPA CIMARCO	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12"X24" O F°F° DE DESAGUE 12" X 24" Equipos	Midad hh hh m3 BOL m3 m3 und pza	Cuadrilla 1.0000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 0.0100 1.0000	14.65 11.25 100.00 18.85 85.00 2.50 50.00 25.00	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00 93.02
Código 0147010002 0147010004 0204000000 0221000000 0238000000 0239050000 0250010000 0250060010	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POF HORMIGON AGUA CAJA DE DESA TAPA CIMARCO	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12"X24" O F°F° DE DESAGUE 12" X 24" Equipos	Unidad hh hh m3 BOL m3 m3 und pza	Cuadrilla 1.0000 0.5000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 0.0100 1.0000	14.65 11.25 100.00 18.85 85.00 2.50 50.00 25.00	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00 93.02
Código 0147010002 0147010004 0204000000 0221000000 0238000000 0239050000 0250010000 0250060010	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POF HORMIGON AGUA CAJA DE DESA TAPA CIMARCI	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12*X24* O F°F° DE DESAGUE 12* X 24* Equipos AS MANUALES	Unidad hh hh m3 BOL m3 m3 und pza	Cuadrilla 1.0000 0.5000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 0.0100 1.0000 1.0000 3.0000	14.65 11.25 100.00 18.85 85.00 2.50 50.00 25.00	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00 93.02
Código 0147010002 0147010004 0204000000 0221000000 0239050000 0250010000 0250060010 Partida Rendimiento	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POF HORMIGON AGUA CAJA DE DESA TAPA CAMARCO HERRAMIENTA 03.01.01 pto/DIA	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12*X24* O F°F° DE DESAGUE 12* X 24* Equipos AS MANUALES SALIDA DE AGUA FRIA CON 1 8.0000	Unidad hh hh m3 BOL m3 m3 und pza %MO	Cuadrilla 1.0000 0.5000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 1.0000 1.0000 3.0000	Precio S/. 14.65 11.25 100.00 18.85 85.00 2.50 50.00 25.00 27.03	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00 93.02
Código 0147010002 0147010004 0204000000 0221000000 0238000000 0250010000 0250060010 0337010001	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POF HORMIGON AGUA CAJA DE DESA TAPA CAMARCO HERRAMIENTA 03.01.01	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12"X24" O F°F° DE DESAGUE 12" X 24" Equipos AS MANUALES SALIDA DE AGUA FRIA CON T 8.0000	Unidad hh hh m3 BOL m3 m3 und pza %MO	Cuadrilla 1.0000 0.5000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 0.0100 1.0000 1.0000 3.0000	14.65 11.25 100.00 18.85 85.00 2.50 50.00 25.00	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00 93.02
Código 0147010002 0147010004 0204000000 0221000000 0239050000 0250010000 0250060010 Partida Rendimiento	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POF HORMIGON AGUA CAJA DE DESA TAPA CAMARCO HERRAMIENTA 03.01.01 pto/DIA	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12*X24* O F°F° DE DESAGUE 12* X 24* Equipos AS MANUALES SALIDA DE AGUA FRIA CON 1 8.0000	Unidad hh hh m3 BOL m3 m3 und pza %MO	Cuadrilla 1.0000 0.5000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 1.0000 1.0000 3.0000	Precio S/. 14.65 11.25 100.00 18.85 85.00 2.50 50.00 25.00 27.03	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00 93.02
Código 0147010002 0147010004 0204000000 0221000000 0239050000 0250010000 0250060010 Partida Rendimiento Código	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POF HORMIGON AGUA CAJA DE DESA TAPA CAMARCO HERRAMIENTA 03.01.01 pto/DIA Descripción Re	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12"X24" O F°F° DE DESAGUE 12" X 24" Equipos AS MANUALES SALIDA DE AGUA FRIA CON T 8.0000	Unidad hh hh m3 BOL m3 m3 und pza %MO TUBERIA DE PVC-SAP	Cuadrilla 1.0000 0.5000 1/2" Costo unitario di Cuadrilla	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 1.0000 1.0000 3.0000 recto por : pto	Precio S/. 14.65 11.25 100.00 18.85 85.00 2.50 50.00 25.00 27.03	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00 93.02 0.81 0.81 Parcial Si.
Código 0147010002 0147010004 0204000000 0221000000 0238000000 0250010000 0250060010 Partida Rendimiento Código 0147010002	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POR HORMIGON AGUA CAJA DE DESA TAPA CAMARCO HERRAMIENTA 03.01.01 pto/DIA Descripción Re OPERARIO	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12"X24" O F°F° DE DESAGUE 12" X 24" Equipos AS MANUALES SALIDA DE AGUA FRIA CON 1 8.0000 ecurso Mano de Obra	Unidad hh hh m3 BOL m3 m3 und pza %MO TUBERIA DE PVC-SAP EQ. 8.0000 Unidad hh	Cuadrilla 1.0000 0.5000 1/2" Costo unitario di Cuadrilla 1.0000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 1.0000 1.0000 3.0000 recto por : pto Cantidad 1.0000	Precio S/. 14.65 11.25 100.00 18.85 85.00 2.50 50.00 25.00 27.03 63.15 Precio S/.	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00 93.02 0.81 0.81
Código 0147010002 0147010004 0204000000 0221000000 0238000000 0250010000 0250060010 Partida Rendimiento Código 0147010002 0147010004	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POR HORMIGON AGUA CAJA DE DESA TAPA CIMARCO HERRAMIENTA 03.01.01 pto/DIA Descripción Re OPERARIO PEON	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12*X24* O F°F° DE DESAGUE 12* X 24* Equipos AS MANUALES SALIDA DE AGUA FRIA CON 1 8.0000 ecurso Mano de Obra	Unidad hh hh hh m3 BOL m3 m3 und pza %MO TUBERIA DE PVC-SAP EQ. 8.0000 Unidad hh hh	Cuadrilla 1.0000 0.5000 1/2" Costo unitario di Cuadrilla 1.0000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 1.0000 1.0000 3.0000 recto por : pto Cantidad 1.0000 0.5000	14.65 11.25 100.00 18.85 85.00 2.50 50.00 25.00 27.03 63.15 Precio S/.	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00 93.02 0.81 0.81
Código 0147010002 0147010004 0204000000 0221000000 0238000000 0250010000 0250060010 Partida Rendimiento Código 0147010002	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POR HORMIGON AGUA CAJA DE DESA TAPA CIMARCO HERRAMIENTA 03.01.01 pto/DIA Descripción Re OPERARIO PEON	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12"X24" O F°F° DE DESAGUE 12" X 24" Equipos AS MANUALES SALIDA DE AGUA FRIA CON 1 8.0000 ecurso Mano de Obra	Unidad hh hh m3 BOL m3 m3 und pza %MO TUBERIA DE PVC-SAP EQ. 8.0000 Unidad hh	Cuadrilla 1.0000 0.5000 1/2" Costo unitario di Cuadrilla 1.0000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 1.0000 1.0000 3.0000 recto por : pto Cantidad 1.0000	Precio S/. 14.65 11.25 100.00 18.85 85.00 2.50 50.00 25.00 27.03 63.15 Precio S/.	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00 93.02 0.81 0.81 Parcial Si.
Código 0147010002 0147010004 0204000000 0221000000 0239050000 0250010000 0250060010 Partida Rendimiento Código 0147010002 0147010004	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POR HORMIGON AGUA CAJA DE DESA TAPA CIMARCO HERRAMIENTA 03.01.01 pto/DIA Descripción Re OPERARIO PEON PEGAMENTO E TUB. PVC SAP	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12"X24" O F°F° DE DESAGUE 12" X 24" Equipos AS MANUALES SALIDA DE AGUA FRIA CON 1 8.0000 ecurso Mano de Obra Materiales PLASTICO P/PVC CCP	Unidad hh hh hh m3 BOL m3 m3 und pza %MO TUBERIA DE PVC-SAP EQ. 8.0000 Unidad hh hh	Cuadrilla 1.0000 0.5000 1/2" Costo unitario di Cuadrilla 1.0000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 1.0000 1.0000 3.0000 recto por : pto Cantidad 1.0000 0.5000	Precio S/. 14.65 11.25 100.00 18.85 85.00 2.50 50.00 25.00 27.03 63.15 Precio S/. 14.65 11.25	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00 93.02 0.81 0.81 Parcial S/. 14.65 5.63 20.28
Código 0147010002 0147010004 0204000000 0221000000 0239050000 0250010000 0250060010 Partida Rendimiento Código 0147010002 0147010004	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POR HORMIGON AGUA CAJA DE DESA TAPA CIMARCO HERRAMIENTA 03.01.01 pto/DIA Descripción Re OPERARIO PEON PEGAMENTO E TUB. PVC SAP	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12"X24" O F°F° DE DESAGUE 12" X 24" Equipos AS MANUALES SALIDA DE AGUA FRIA CON 1 8.0000 ecurso Mano de Obra Materiales PLASTICO P/PVC CCP PRESION P/AGUA C-10 R. 1/2"	Unidad hh hh hh m3 BOL m3 m3 und pza %MO TUBERIA DE PVC-SAP EQ. 8.0000 Unidad hh hh	Cuadrilla 1.0000 0.5000 1/2" Costo unitario di Cuadrilla 1.0000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 1.0000 1.0000 3.0000 recto por : pto Cantidad 1.0000 0.5000 0.0040 2.1700	Precio S/. 14.65 11.25 100.00 18.85 85.00 2.50 50.00 25.00 27.03 63.15 Precio S/. 14.65 11.25	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00 93.02 0.81 0.81 0.81
Código 0147010002 0147010004 0204000000 0221000000 0239050000 0250010000 0250060010 Partida Rendimiento Código 0147010002 0147010004	Descripción Re OPERARIO PEON ARENA FINA CEMENTO POR HORMIGON AGUA CAJA DE DESA TAPA CIMARCO HERRAMIENTA 03.01.01 pto/DIA Descripción Re OPERARIO PEON PEGAMENTO E TUB. PVC SAP	Mano de Obra Materiales RTLAND TIPO I (42.5KG) AGUE DE 12"X24" O F°F° DE DESAGUE 12" X 24" Equipos AS MANUALES SALIDA DE AGUA FRIA CON 1 8.0000 ecurso Mano de Obra Materiales PLASTICO P/PVC CCP PRESION P/AGUA C-10 R. 1/2" C/R PVC SAP P/AGUA DE 1/2" Equipos	Unidad hh hh hh m3 BOL m3 m3 und pza %MO TUBERIA DE PVC-SAP EQ. 8.0000 Unidad hh hh	Cuadrilla 1.0000 0.5000 1/2" Costo unitario di Cuadrilla 1.0000	Cantidad 1.3333 0.6667 0.0300 0.7500 0.0100 1.0000 1.0000 3.0000 recto por : pto Cantidad 1.0000 0.5000 0.0040 2.1700	Precio S/. 14.65 11.25 100.00 18.85 85.00 2.50 50.00 25.00 27.03 63.15 Precio S/. 14.65 11.25	19.53 7.50 27.03 3.00 14.14 0.85 0.03 50.00 25.00 93.02 0.81 0.81 0.81 Parcial S/. 14.65 5.63 20.28 0.18 21.70 10.38

Partida	03.02.01	TUBERÍA PVC CLASE 10 SP P	/AGUA F	RÍA, D=1"				
Rendimiento	m/DIA	109.0000	EQ.	100.0000	Costo unitario d	irecto por : m	18.41	
Código	Descripción Re			Unided	Cuadrilla	Cantidad	Precio S/.	Parcial SI.
0147010002	OPERARIO	Mano de Obra		hh	1,0000	0.0800	14.65	1.17
0147010002	PEON			hh	0.5000	0.0400	11.25	0.45
								1.62
		Materiales		•				
0230460019		PLASTICO P/PVC CCP		gin -		0.0280	45.00	1.26
0272000018		PRESION C-10 EC DE 1° x 5m		und		1.0300	15.00	15.45
0272030002	UNION R PVC	SAP P/AGUA DE 1"		und		0.0100	3.00	0.03
		Equipos						16.74
0337010001	HERRAMIENTA			%МО		3.0000	1.62	0.05
								0.05
Partida	03.02.02	TUBERIA PVC CLASE 10 SP F	P/AGUA F	RiA, D=3/4"				
Rendimiento	m/DIA	100.0000	EQ.	100.0000	Costo unitario o	firecto por : m	15.32	
Código	Descripción R	ecurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra						
0147010002	OPERARIO			hh	1,0000	0.0800	14.65	1.17
0147010004	PEON	•		hh	0.5000	0.0400	11.25	0.45
		Materiales						1.62
0230460019	PEGAMENTO I	PLASTICO P/PVC CCP		gln		0.0280	45.00	1.26
0272000017		PRESION C-10 EC DE 3/4" x5m		und		1.0300	12.00	12.36
0272030007	UNION SP PVC	SAP PIAGUA DE 3/4"		und		0.0100	3.00	0.03
					•			13.65
		Equipos						
0337010001	HERRAMIENT	AS MANUALES		%МО		3.0000	1.62	0.05
								0.05
Partida	03.03.01	CODO PVC-SAP 1" * 90						
Rendimiento	und/DIA	15.0000	EQ.	15,0000	Costo unitario din	ecto por : und	15.18	
Código	Descripción R	ecurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial Si.
oungo	Descripcion 10	Mano de Obra		0111445	o Baariila	ounada	1100,0 0,.	Turbiur or.
0147010002	OPERARIO			hh	1.0000	0.5333	14.65	7.81
0147010004	PEON			hh	0.5000	0.2667	11.25	3,00
								10.81
		Materiales						
0230460019 0272060002		PLASTICO P/PVC CCP		gin		0.0010 1.0000	45.00	0.05
02/2000002	CODO DE 900	R PVC SAP P/AGUA DE 1*		und		1.0000	4.00	4.00 4.05
		Equipos						1.00
0337010001	HERRAMIENTA	AS MANUALES		%MO		3.0000	10.81	0.32
								0.32
Partida	03.03.02	CODO PVC AGUA C-10 3/4"						
Rendimiento	und/DIA	15.0000	EQ	15.0000	Costo unitario dir	ecto por : und	14.68	
Código	Descripción R	ecurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra						
0147010002	OPERARIO			hh	1.0000	0.5333	14.65	7.81
0147010004	PEÓN			hh	0.5000	0.2667	11.25	3.00
		Mataulalaa						10.81
0230460019	PECAMENTO	Materiales PLASTICO P/PVC CCP		gln		0.0010	45.00	0.05
02720600019		C/R PVC SAP P/AGUA DE 3/4"		und		1.0000	3.50	3.50
		and the second s						3.55
		Equipos						
0337010001	HERRAMIENT	AS MANUALES		%MO		3.0000	10.81	0.32

Partida	03.03.03	TEE PVC AGUA C-10 1"						
Rendimiento	und/DIA	15.0000	EQ. 15.0	000	Costo unitario dire	cto por : und	15.18	
Código	Descripción Re		Unid	iad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
04.4704.0000	ODEDADIO	Mano de Obra	hh		1.0000	0.6333	14.65	7.81
0147010002	OPERARIO		hh		1.0000	0.5333		
0147010004	PEON		hh		0.5000	0.2667	11.25	3.00 10.81
		Materiales						*
0230460019	PEGAMENTO F	PLASTICO P/PVC CCP	gln			0.0010	45.00	0.05
0272070012	TEE SP PVC S	AP P/AGUA DE 1°	und			1,0000	4.00	4.00
		England						4.05
0337010001	HERRAMIENTA	Equipos AS MANUALES	%M0	0		3.0000	10.81	0.32
*								0.32
Partida	03.03.04	TEE PVC AGUA C-10 3/4"						
Rendimiento	und/DIA	15.0000	EQ. 15.0	0000	Costo unitario dire	ecto por ; und	14.22	
Código	Descripción Ro	ecurso	Unio	dad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
_		Mano de Obra						
0147010002	OPERARIO	•	hh		1.0000	0.5333	14.65	7.81
0147010004	PEON		hh		0.5000	0.2667	11.25	3.00
								10.81
		Materiales						
0230460019		PLASTICO P/PVC CCP	gin			0.0020	45.00	0.09
0272070011	TEE SP PVC S	AP P/AGUA DE 3/4"	und			1.0000	3.00	3.00 3.09
		Equipos						V
0337010001	HERRAMIENTA	• •	%M0	0		3.0000	10.81	0.32
								0.32
Partida	03.04.01	VALVULAS DE COMPUERTA D	DE BRONCE D	DE 1/2"				
Rendimiento	pza/DIA	8.0000	EQ. 8.00	000	Costo unitario dire	ecto por : pza	56.09	
Código	Descripción R	ecurso	Unic	dad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra						
0147010002	OPERARIO		hh		1.0000	1.0000	14.65	14.65
0147010004	PEON		hh		0.5000	0.5000	11.25	5.63
		Materiales						20.28
0230480032	CINTA TEFLO		pza			0.1000	2.00	0.20
0265050011		RSAL DE Fo. GALV. DE 1/2*	und			2.0000	2.00	4.00
0265130064		So DE 1/2" x 1 1/2"	und			2.0000	3.00	6.00
0277000002		PUERTA DE BRONCE DE 1/2"	und		•	1.0000	25.00	25.00
•								35.20
		Equipos						•
0337010001	HERRAMIENTA	AS MANUALES	%M	0		3.0000	20.28	0.61
							·	0.61
Partida	04.01.01	CANALETA PLUVIAL DE TECH	10	•				
Rendimiento	m/DIA	60.0000	EQ. 60. 0	0000	Costo unitario o	firecto por : m	10.94	
Código	Descripción R	ecurso	Unic	dad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra						
0147010002	OPERARIO		hh		1.0000	0.1333	14.65	1.95
0147010004	PEON .		ħh		0.5000	0.0667	11.25	0.75
		Makt-1						2.70
000404000	OAMAI ETA C	Materiales				4.0000	0.00	0.46
0261010026	CANALETA PL	UVIAL DE TECHO	m			1.0200	8.00	8.16 8.16
		Equipos						0.10
0337010001	HERRAMIENT	• •	%M	0	•	3.0000	2.70	0.08
			,,,,,,,,	-				0.08

Rendimiento Código 0147010002 0147010004	m/DIA Descripción Re	30.0000	EQ. 30.0000	Costo unitario o	lirecto por : m	29.17	
0147010002	Descripción Re				•		
		ecurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra					
0147010004	OPERARIO		hh	1.0000	0.2667	14.65	3.91
	PEON		hh	0.5000	0.1333	11.25	1.50
							5.41
		Materiales					
0230460019		PLASTICO P/PVC CCP	glri		0.0030	45.00	0.14
0272130011	TUB. PVC SAL	P/DESAGUE DE 4"	m		1.0200	23.00	23.46
							23.60
		Equipos	****				
0337010001	HERRAMIENTA	AS MANUALES	%MO		3.0000	5.41	0.16
							0.16
Partida	04.01.03	CODO PVC SAL 4"X90°					
Rendimiento	pza/DIA	6.0000	EQ. 6.0000	Costo unitario din	ecto por : pza	34.86	
Código	Descripción Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra				- 1	
0147010001	CAPATAZ		hh	0.1000	0.1333	14.65	1.95
0147010002	OPERARIO		hh	1.0000	1.3333	14,65	19.53
							21.48
		Materiales		,			
0230460011		PARA PVC AGUA FORDUIT	gln	•	0.0030	45.00	0.14
0273110004	CODOS PVC S	AL 4" X 90°	pza		1.0500	12.00	12.60
							12.74
0007040004	Equipos HERRAMIENTAS MANUALES		8/140		0.0000	04.40	
0337010001	HERRAMIENTA	45 MANUALES	%MO		3.0000	21.48	0.64 0.64

·