UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA HIDRÁULICA

"ZONIFICACIÓN DE ÁREAS INUNDABLES POR MÁXIMAS AVENIDAS EN LA QUEBRADA SARINMAYO, LOCALIDAD DE ADACUCHO, DISTRITO DE NAMORA – CAJAMARCA – 2023"

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO HIDRÁULICO

PRESENTADO POR:

ALEXANDER SANGAY POMATANTA

ASESOR:

Dr. Ing. Luis Vásquez Ramírez

CAJAMARCA – PERÚ

2024

CONSTANCIA DE INFORME DE ORIGINALIDAD

- FACULTAD DE INGENIERÍA -

- 1. Investigador: ALEXANDER SANGAY POMATANTA DNI: 47946976 Escuela Profesional: INGENIERÍA HIDRÁULICA
- 2. Asesor: LUIS VÁSQUEZ RAMÍREZ Facultad: INGENIERÍA
- 3. Grado académico o título profesional

□Bachiller ■Título profesional □Segunda especialidad

□Maestro □Doctor

- 4. Tipo de Investigación:
 - Tesis 🛛 Trabajo de investigación

Trabajo de suficiencia profesional

Trabajo académico

- 5. Título de Trabajo de Investigación: "ZONIFICACIÓN DE ÁREAS INUNDABLES POR MÁXIMAS AVENIDAS EN LA QUEBRADA SARINMAYO, LOCALIDAD DE ADACUCHO, DISTRITO DE NAMORA – CAJAMARCA – 2023"
- **6. Fecha de evaluación:** 18/08/2024
- 7. Software antiplagio: TURNITIN URKUND (OURIGINAL) (*)
- 8. Porcentaje de Informe de Similitud: 9%
- 9. Código Documento: oid: :3117:373719562
- 10. Resultado de la Evaluación de Similitud:

APROBADO 🛛 PARA LEVANTAMIENTO DE OBSERVACIONES O DESAPROBADO

Fecha Emisión: 27/08/2024

FIRMA DEL ASESOR

FIRMA DEL A Nombres y Apellidos LUIS VÁSQUEZ RAMÍREZ DNI: 26693344 UNIDAD DE INVESTIGACIÓN FI

AGRADECIMIENTO

Agradecer a Dios por darme fortaleza y permitirme llegar hasta donde estoy.

A mis padres, Rosario Sangay y María Pomatanta, Así como a mis hermanos Javier, Roger, Edgar y Fany, por estar cuando los necesité.

A mis abuelos, Concepción y María, a la familia Sangay Santillán, en especial a Félix Sangay Santillán y familia, que fueron mi sostén en épocas difíciles.

A mi asesor, Dr. Ing. Luis Vásquez Ramírez por su apoyo para culminar esta investigación.

A mi compañera de vida, amigos y demás

A la Universidad Nacional de Cajamarca, por acogerme en sus aulas y poder cursas una carrera profesional.

DEDICATORIA

A mi madre que desde el cielo me ilumina

A mi hijo Paúl Rodrigo

INDICE	
ÍNDICE DE TABLAS	.vi
ÍNDICE DE FIGURAS	/iii
RESUMEN	xii
ABSTRACT	ciii
CAPITULO I	1
INTRODUCCIÓN	1
1.1. PLANTEAMIENTO DEL PROBLEMA	2
1.2. FORMULACIÓN DEL PROBLEMA	3
1.3. JUSTIFICACIÓN DE LA INVESTIGACIÓN	3
1.4. ALCANCE O DELIMITACIÓN DE LA INVESTIGACIÓN	4
1.5. LIMITACIONES	4
1.6. OBJETIVOS	4
1.6.1. Objetivo general	4
1.6.2. Objetivo específico	4
CAPITULO II	5
MARCO TEÓRICO	5
2.1. ANTECEDENTES TEÓRICOS DE LA INVESTIGACIÓN	5
2.1.1. Antecedentes internacionales	5
2.1.2. Antecedentes nacionales	6
2.1.3. Antecedentes locales	7
2.2. BASES TEÓRICAS	9
2.2.1. Aspectos generales	9
2.2.2. Hidráulica fluvial	12
2.2.3. Hidráulica de flujos de escombros	19
2.2.4. Geomorfología de la cuenca	22
2.2.5. Periodo de retorno	35
2.2.6. Completación y transferencia de datos hidrológicos	37
2.2.7. Análisis estadístico de datos Hidrológicos	38
2.2.8. Curvas Intensidad Duración y Frecuencia (IDF)	42
2.2.9. Modelamiento hidrológico con HEC-HMS	43
2.2.10. Coeficiente de rugosidad de Manning (n)	46

ÍNDICE

2.2.12. Modelamiento hidráulico con Iber	54
2.3. DEFINICION DE TÉRMINOS BÁSICOS	58
CAPITULO III:	60
MATERIALES Y MÉTODOS	60
3.1. UBICACIÓN DE LA ZONA DE ESTUDIO	60
3.2. MATERIALES Y EQUIPOS	63
3.3. PROCEDIMIENTO	64
3.3.1. Recopilación de la Información cartográfica y satelital	64
3.3.2. Recopilación de la Información Topográfica	64
3.3.3. Recopilación de la información Fotogramétrica	65
3.3.4. Caracterización del tramo en estudio según la hidráulica fluvial	66
3.3.5. Identificación de áreas inundadas del año 2013	69
3.3.6. Recopilación de información Hidrológica	70
3.4. TRATAMIENTO, ANÁLISIS DE DATOS Y PRESENTACIÓN DE RESULTADOS	74
3.4.1. Caracterización geomorfológica de la cuenca	74
3.4.2. Caracterización fluvial	81
3.4.3. Modelamiento Hidrológico	81
3.4.4. Modelamiento Hidráulico	103
3.4.5. Caudal de inundación en el año 2013.	118
CAPITULO IV	122
ANÁLISIS Y DISCUSION DE RESULTADOS	122
4.1. EN CUANTO A TOPOGRAFÍA	122
4.2. EN CUANTO A LA HIDRÁULICA FLUVIAL DEL TRAMO EN ESTUDIO	122
4.3. EN CUANTO AL MODELAMIENTO HIDROLÓGICO	123
4.4. EN CUANTO AL CAUDAL QUE DESBORDÓ E INUNDÓ EN EL AÑO 2013	125
4.5. EN CUANTO AL MODELAMIENTO HIDRÁULICO	126
CAPITULO V	127
CONCLUSIONES Y RECOMENDACIONES	127
5.1. CONCLUSIONES	127
5.2. RECOMENDACIONES	130
BIBLIOGRAFÍA	131
ANEXOS	136

ÍNDICE DE TABLAS

Tabla 01 Tamaño y forma del material	
Tabla 02 Valores interpretativos del factor de forma	
Tabla 03 Caracterización de la cuenca en función al índice de Gravelius	
Tabla 04 Clasificación de la pendiente del terreno	
Tabla 05 Valores máximos recomendados de riesgo admisible	
Tabla 06Valores críticos de $\Delta 0$ del estadísticoSmirnov – Kolmogorov	41
Tabla 07 Valores del coeficiente de rugosidad de Manning (n)	47
Tabla 08 Valores para el cálculo de rugosidad por el método de Cowan	
Tabla 09 Precipitaciones máximas a 24hr de la estación Namora	71
Tabla 10 Precipitaciones máximas a 24 hr de la estación Augusto Weberbauer	72
Tabla 11 Precipitaciones máximas a 24hr de la estación La Encañada	73
Tabla 12 Datos para la construcción de la Curva Hipsométrica	
Tabla 13 Datos de precipitaciones completas de la estación Namora	
Tabla 14 Precipitaciones máximas a 24 hr corregidas	
Tabla 15 Datos de precipitación para diferentes duraciones en minutos	
Tabla 16 Datos de Intensidades para diferentes duraciones en minutos	
Tabla 17 Intensidades transferidas a la altura media de la cuenca	
Tabla 18 Valores críticos de Smirnov Kolmogorov	90
Tabla 19 Comparación del valor estadístico con el valor crítico	
Tabla 20 Parámetros del modelo de Gumbel	
Tabla 21 TR estimados	
Tabla 22 Intensidades máximas en función al tiempo de duración y periodo de retorno	
Tabla 23 Ecuaciones ajustadas a las curvas IDF	
Tabla 24 Caudales para flujos Hiperconcentrados	
Tabla 25 Parámetros geomorfológicos de la cuenca	
Tabla 26 Resultados del modelamiento hidráulico	
Tabla 27 Resultados de áreas de inundación	

Tabla 28 Anexo 21: Datos para el cálculo de la pendiente del cauce principal	150
Tabla 29 Anexo 22: Prueba de bondad y ajuste para intensidades máximas en 5 minutos	151
Tabla 30 Anexo 23: Prueba de bondad y ajuste para intensidades máximas en 10 minutos	152
Tabla 31 Anexo 24: Prueba de bondad y ajuste para intensidades máximas en 15 minutos	153
Tabla 32 Anexo 25: Prueba de bondad y ajuste para intensidades máximas en 30 minutos	154
Tabla 33 Anexo 26: Prueba de bondad y ajuste para intensidades máximas en 60 minutos	155
Tabla 34 Anexo 27: Prueba de bondad y ajuste para intensidades máximas en 120 minutos	156
Tabla 35 Anexo 28: Datos para Hietograma TR=10 años	157
Tabla 36 Anexo 29: Datos para Hietograma TR=100 años	158
Tabla 37 Anexo 30: Datos para Hietograma TR=150 años	159
Tabla 38 Anexo 31: Datos para Hietograma TR=30 años	160
Tabla 39 Anexo 32: Coordenadas del cauce Obtenidas con estación total	161

ÍNDICE DE FIGURAS

Figura 01 Batimetría en cauce Natural	10
Figura 02 Representación del modelo hidrológico Lluvia – Escorrentía	12
Figura 03 Geometría Hidráulica de rios	13
Figura 04 Geometría de un rio en función al material	14
Figura 05 Morfología de rios	16
Figura 06 Regiones de flujo de escombros	19
Figura 07 Flujo hiperconectado	20
Figura 08 Flujo de escombros	21
Figura 09 Tipos de cuenca	22
Figura 10 Hidrograma según el fator de forma	23
Figura 11 Factor de forma para cuenca rectangular	24
Figura 12 Facto de forma para dos cuencas	25
Figura 13 División de cuenca en fajas por medio de curvas a nivel	27
Figura 14 Perfil longitudinal de un rio dividido en tramos iguales	
Figura 15 Tipos de Curva hipsométrica en cuenca	31
Figura 16 Curva hipsométrica, para cálculo de altitud media	
Figura 17 Orden de ríos en cuenca	
Figura 18 Curvas IDF para lluvias máximas	42
Figura 19 Hidrograma unitario triangular del SCS	46
Figura 20 Hidrograma de tránsito de avenidas	51
Figura 21 Almacenamiento según el método de Muskingum	
Figura 22 Modelo de malla triangular de cálculo	57
Figura 23 Mapa de ubicación del proyecto.	61
Figura 24 Delimitación del sector Adacucho.	62
Figura 25 Modelo de elevación digital (DEM)	64
Figura 26 Levantamiento topográfico del tramo en estudio de la quebrada Sarinmayo	65
Figura 27 Programación del vuelo	66
Figura 28 Fotografía del tramo en estudio	67

Figura 29 Fotografía del inicio del tramo en estudio	67
Figura 30 Fotografía del tramo en estudio	68
Figura 31 Pendiente del tramo en estudio	68
Figura 32 Medición de longitud de inundación	69
Figura 33 Medición de longitud de inundación	70
Figura 34 Delimitación de cuenca	74
Figura 35 Cálculo de parámetros geomorfológicos	75
Figura 36 Pendiente de la quebrada Sarinmayo	77
Figura 37 Curva hipsométrica de la cuenca.	79
Figura 38 Orden de ríos de la cuenca	80
Figura 39 Análisis visual gráfico de precipitaciones – Estación Namora	82
Figura 40 Análisis visual gráfico de precipitaciones – Estación La Encañada	82
Figura 41 Análisis visual gráfico de precipitaciones – Estación Augusto Weberbauer	83
Figura 42 Análisis de doble masa para elección de la estación base	84
Figura 43 Diagrama doble masa de la estación base y la estación Namora	84
Figura 44 Curvas IDF para distintos periodos de retorno	93
Figura 45 Mapa de Número de Curva	95
Figura 46 Hietograma para TR = 10 años	96
Figura 47 Hietograma para TR=100 años	96
Figura 48 Hietograma para TR=150 años	97
Figura 49 Metodología de trabajo con HEC-HMS	
Figura 50 Hietograma e Hidrograma para TR=10 años	99
Figura 51 Hietograma e Hidrograma para TR=100 años	99
Figura 52 Hietograma e Hidrograma para TR=150 años	100
Figura 53 Desborde de la quebrada Sarinmayo	101
Figura 54 Vista de las praderas de la zona en estudio	103
Figura 55 Asignación de rugosidades para el modelamiento en Iber	104
Figura 56 Mapa de velocidades para TR=10 años	106
Figura 57 Mapa de calados para $TR = 10$ años	107

Figura 58 Mapa de velocidades para TR = 100 años	
Figura 59 Mapa de calados para TR =100 años	
Figura 60 Mapa de velocidades para TR = 150 años	110
Figura 61 Mapa de calados para TR = 150 años	111
Figura 62 Mapa de velocidades con flujos hiperconcentrados para TR = 10 años	112
Figura 63 Mapa de calados con flujos hiperconcentrados para TR = 10 años	
Figura 64 Mapa de velocidades con flujos hiperconcentrados para TR = 100 años	114
Figura 65 Mapa de calados con flujos hiperconcentrados para TR = 100 años	115
Figura 66 Mapa de velocidades con flujos hiperconcentrados para TR = 150 años	116
Figura 67 Mapa de calados con flujos hiperconcentrados para TR = 150 años	117
Figura 68 Ubicación de las Huellas de inundación del año (2013)	
Figura 69 Hietograma e Hidrograma para la inundación del año (2013)	
Figura 70 Mapa de velocidades para TR = 30 años	
Figura 71 Mapa de calados para TR = 30 años	
Figura 72 Anexo 01: Reporte de inundación (2013) de INDECI	
Figura 73 Anexo02: Mapa de riesgo de inundación – CENEPRED	
Figura 74 Anexo03: Ficha de identificación de punto crítico	
Figura 75 Anexo 04: Dron Phantom 4rtk	140
Figura 76 Anexo 05: Programación del vuelo	140
Figura 77 Anexo 06: Procesamiento de imágenes en AgisoftMetashape	141
Figura 78 Anexo 07: Ortofoto final	141
Figura 79 Anexo 08: Levantamiento topográfico tramo inicial	142
Figura 80 Anexo 09: Levantamiento topográfico tramo intermedio	142
Figura 81 Anexo 10: Levantamiento topográfico tramo final	143
Figura 82 Anexo 11: Inundación del mes de febrero de (2024)	143
Figura 83 Anexo 12: Identificación de Huellas de inundación	144
Figura 84 Anexo 13: Identificación de Huellas de inundación	
Figura 85 Anexo 14: Zonas de pastoreo	145
Figura 86 Anexo 15: Quebrada Sarinmayo	145

Figura 87 Anexo 16: Morfología en quebrada Sarinmayo tramo inicial	146
Figura 88 Anexo 17: Medición de ancho y altura promedio	146
Figura 89 Anexo 18: Plano topográfico de la qubrada Sarinmayo	147
Figura 90 Anexo 19: Plano topográfico General	148
Figura 91 Anexo 20: Modelo de elevación (DEM) resultante	149
Figura 92 Anexo 33: Mapa de inundación producida en el 2013	169
Figura 93 Anexo 34: Mapa de zonas inundables para TR=100 años	170

RESUMEN

La presente investigación denominada "Zonificación de Áreas Inundables por Máximas Avenidas en la Quebrada Sarinmayo, Localidad de Adacucho, Distrito de Namora - Cajamarca -2023", tuvo como objetivo principal realizar una zonificación de áreas inundables ocasionadas por el desborde de la quebrada Sarinmayo, en el sector Adacucho, al Noreste de la zona urbana del distrito de Namora, dado que ya existe un precedente de inundación en el año 2013 y, además, el sector a estudiar tiene un alto riesgo de inundación según la Autoridad Nacional del Agua (ANA). Para llevar a cabo dicha investigación, comenzamos recopilando la información topográfica con un dron Phantom 4 RTK y, para la zona de la propia quebrada, detallamos la topografía con una estación total. En cuanto a la información hidrológica, utilizamos las precipitaciones máximas a 24 horas de la estación Namora, convertimos las precipitaciones a intensidades y construimos las curvas IDF y, con estas curvas, elaboramos el hietograma de diseño por el método de los bloques alternos. Con ello, modelamos en HEC-HMS la precipitación escorrentía de la cuenca, obteniendo caudales de máximas avenidas de 13.8 m³/s, 26.5 m³/s y 29 m³/s, y con flujos hiperconcentrados de 18.40 m³/s, 35.33 m³/s y 38.67 m³/s, en ambos casos para periodos de retorno de 10 años, 100 años y 150 años respectivamente. En cuanto al modelamiento hidráulico, utilizamos el programa Iber para determinar que, en el año 2013, hubo una máxima avenida que desbordó la quebrada con un caudal de 20.2 m³/s y un periodo de retorno de 30 años, inundando 1930m2 de cultivos, 8444 m2 de pastos en la margen izquierda y 2491m2 en la margen derecha. Finalmente, modelamos hidráulicamente la quebrada con los caudales mencionados, luego identificamos y cuantificamos las zonas inundables. Para un TR = 10 años, se afectaron 1620m2 de cultivos y 10222m2 de pastos; para un TR = 100 años, 2259m2 de cultivos y 13121m2 de pastos; y para un TR = 150 años, 2390m2 de cultivos y 13470m2 de pastos. Para flujos hiperconcentrados, tenemos: para un TR = 10 años, 1718m2 de cultivos y 10761m2 de pastos; para un TR = 100 años, 2381m2 de cultivos y 14032m2 de pastos; y para un TR de 150 años, 2421m2 de cultivos y 13610m2 de pastos. En todos los casos, el tirante supera el puente hallado en la quebrada, además de inundar parte de la piscicultura.

Palabras clave: Zonificación, Inundación, Máximas Avenidas, Periodo de Retorno, Modelamiento Hidráulico.

ABSTRACT

This research titled "Zoning of Flood-Prone Areas Due to Maximum Flows in the Sarinmayo Stream, Adacucho Locality, Namora District - Cajamarca - 2023," aimed to create a zoning of floodprone areas caused by the overflow of the Sarinmayo stream in the Adacucho sector, located northeast of the urban area of the Namora district. This is due to a previous flood in 2013 and the high flood risk in the area, according to the National Water Authority (ANA). To conduct this research, we began by collecting topographic information using a Phantom 4 RTK drone, and for the area of the stream, we detailed the topography with a total station. Regarding hydrological information, we used the maximum 24-hour precipitation data from the Namora station, converting them into intensities and constructing IDF curves. With these curves, we developed the design hyetograph using the alternating block method. We modeled the precipitation-runoff of the basin in HEC-HMS, obtaining maximum flows of 13.8 m³/s, 26.5 m³/s, and 29 m³/s, as well as hyperconcentrated flows of 18.40 m³/s, 35.33 m³/s, and 38.67 m³/s, for return periods of 10, 100, and 150 years, respectively. In the hydraulic modeling, we used the Iber program, determining that in 2013 there was a maximum flow that overflowed the stream with a discharge of 20.2 m³/s and a return period of 30 years, flooding 1,930 m² of crops, 8,444 m² of pastures on the left bank, and 2,491 m² on the right bank. Finally, we hydraulically modeled the stream with the mentioned flows, identifying and quantifying the flood-prone areas. For a 10-year return period, 1,620 m² of crops and 10,222 m² of pastures were affected; for a 100-year return period, 2,259 m² of crops and 13,121 m² of pastures; and for a 150-year return period, 2,390 m² of crops and 13,470 m² of pastures. For hyperconcentrated flows, the results were: for a 10-year return period, 1,718 m² of crops and 10,761 m² of pastures; for a 100-year return period, 2,381 m² of crops and 14,032 m² of pastures; and for a 150-year return period, 2,421 m² of crops and 13,610 m² of pastures. In all cases, the water level exceeds the bridge located in the stream, in addition to flooding part of the fish farming area.

Keywords: Zoning, Flooding, Hydraulic Modeling, Maximum Flows, Return Period.

CAPITULO I

INTRODUCCIÓN

Las inundaciones han afectado de manera negativa a personas y comunidades a lo largo de la historia de la humanidad. Además, han ocasionado consecuencias notables en aspectos sociales, económicos y ambientales. El cambio del régimen de precipitaciones como resultado del cambio climático conduce a extremos de inundaciones y sequías. Investigaciones actuales demuestran que se prevé un incremento de las grandes inundaciones en diversas regiones del mundo. Según los patrones climáticos y los escenarios futuros, se espera que las inundaciones afecten 450 millones de personas y 430000 km2 de tierras de cultivo para el año 2050. (Haltas et al., 2021)

En Perú para el presente año, donde OCHA en un informe que cubre el periodo del 31 de marzo al 13 de abril, informa que según el instituto nacional de defensa civil (INDECI) reporta, 246 813 personas afectadas y 42 136 damnificadas según registros de Evaluaciones y Daños y Análisis de las Necesidades (EDAN) procesadas al 53%. Además, 298 centros de salud afectadas, 240.8 km de carreteras destruidas y 129.8 km de redes de agua colapsados por inundaciones y deslizamientos en todo el país, también menciona que aproximadamente 517 000 personas tienen necesidades humanitarias urgentes y con tendencia a seguir aumentando a medida que avance el reporte de daños. Para ello el ministro de economía y finanzas anunció que el costo de reactivación económica por del país por intensas lluvias suma 11 840 millones de soles, Finalmente indica que a la fecha se mantienen 1 056 distritos declarados en emergencia es decir 54% del país. (OCHA, 2023)

Otro caso de gran envergadura que no fue hace mucho es el fenómeno de "el niño" en el año 2017, que reportó INDECI, en el año 2019, dejando un saldo de 283 137 personas damnificadas, 1 644 879 personas afectadas, 1 159 establecimientos de salud afectados y 1 269 establecimientos comerciales afectados, lo que generó grandes daños económicos. En total fueron 17 millones de personas afectadas y un perjuicio económico que superan los 4 000 millones de dólares. (INDECI, 2019)

Las inundaciones son los eventos más importantes en la actualidad, porque ocurren siempre y por los enormes daños que causan, ya sea en términos de pérdidas económicas o humanas. De este modo, es necesario identificar las zonas que pueden son afectadas por este tipo de catástrofes, ya sea

con el fin de prevenir los daños o con el fin de evaluar los daños en caso de fenómenos hidrometeorológicos extremos. (Galeno, 2014).

1.1. PLANTEAMIENTO DEL PROBLEMA

1.1.1. Contextualización del problema

En Perú, desde diciembre hasta marzo se incrementan las lluvias en las tres vertientes del país, lo que provoca la activación de quebradas y ocasionalmente hasta la generación de huaycos. Estos fenómenos arrasan con todo a su paso, incluyendo propiedades, infraestructura de servicios e incluso la pérdida de vidas humanas como consecuencia de la inundación y activación de quebradas. Dependiendo de la presencia del fenómeno de «El Niño» o de anomalías en el comportamiento del anticiclón del Pacífico Sur, la intensidad de estas precipitaciones puede variar. (ANA, 2017).

Durante los eventos de El Niño en 1982-1983 y 1997-1998, la costa norte del país experimentó severas inundaciones debido a intensas lluvias. Estas lluvias incrementaron los caudales en todas las cuencas costeras, se activaron quebradas secas y provocaron avalanchas de lodo de diferentes tamaños. (ANA, 2010).

1.1.2. Descripción del problema

Las inundaciones en la sierra del Perú son un fenómeno recurrente, y la región Cajamarca no es ajeno a ello, un fenómeno frecuente que se desarrolla en épocas de lluvia y aun con más intensidad cuando aparecen el fenómeno de el niño o la niña, como consecuencia de aumento de caudales y la activación de quebradas secas se activen, aumenten su magnitud y en algunos casos hasta su desborde, tal es el caso de la quebrada Sarinmayo, sector Adacucho, distrito de Namora, provincia y departamento de Cajamarca, reportado por INDECI en el año 2013, donde hubo familias damnificadas, viviendas, carreteras y terrenos de cultivo inundados, causando pérdidas materiales y económicas, este proyecto identificará áreas inundables de dicho sector, y así poder generar pautas para tener un plan de contingencia, y además un crecimiento ordenado de la población.

1.2. FORMULACIÓN DEL PROBLEMA

Las máximas avenidas en la quebrada Sarín Mayo, sector Adacucho, ocasiona áreas inundables a zonificar. Es por ello que nos planteamos la siguiente pregunta: ¿Cuáles son las áreas inundables por desborde de la quebrada Sarinmayo producto de las máximas avenidas en el sector Adacucho, al Noreste de la zona urbana del distrito de Namora, provincia y departamento de Cajamarca?

1.3. JUSTIFICACIÓN DE LA INVESTIGACIÓN

Justificación científica

La investigación se rige por las normas del método científico, basándose en la identificación de un problema. Por ello, establecemos objetivos claros que, tras un análisis exhaustivo, nos permiten proponer recomendaciones de solución.

Justificación Técnico práctico

Se utilizan modelos numéricos para determinar la extensión de las inundaciones. En este caso, se empleó el software Iber, que permite identificar las zonas de inundación con precisión.

Justificación Social

Dicha investigación permitirá a las autoridades competentes plantear y ejecutar alternativas para mitigar los desbordes de la quebrada Sarinmayo. En cuanto a la población aledaña, contribuirá a generar conciencia y conocimiento, evitando así las edificaciones en zonas cercanas a la quebrada, así como la realización de cultivos agrícolas y pastoreos. Esto ayudará a prevenir pérdidas económicas e incluso humanas.

1.4. ALCANCE O DELIMITACIÓN DE LA INVESTIGACIÓN

La investigación se llevó a cabo entre mayo de 2023 y febrero de 2024. El tramo analizado inicia en el punto crítico de inundación identificado por la ANA, de coordenadas UTM: 795494 E, 9203476 N, y concluye en otro punto crítico de inundación de coordenadas UTM: 795735 E, 9203166 N. Este tramo corresponde a la quebrada Sarinmayo, situada en el sector Adacucho, distrito de Namora, provincia y departamento de Cajamarca. Para simular escenarios de desborde e identificar las zonas afectadas por las inundaciones, se empleará el software Iber. No se realizaron estudios experimentales de laboratorio.

1.5. LIMITACIONES

La limitación encontrada fue la falta de información en la Municipalidad Distrital de Namora. Específicamente, la oficina de Defensa Civil carecía de reportes actualizados, y la oficina de Desarrollo Territorial no disponía de mapas geográficos de las localidades.

1.6. OBJETIVOS

1.6.1. Objetivo general

Zonificar las áreas inundables ocasionadas por el desborde de la quebrada Sarinmayo, producto de máximas avenidas, en el sector Adacucho, al noreste de la parte urbana del distrito de Namora, provincia y departamento de Cajamarca.

1.6.2. Objetivo específico

- a) Caracterizar geomorfológicamente el área tributaria que generan los caudales pico de la Quebrada Sarinmayo.
- b) Recopilar y procesar la información topográfica de la zona en estudio.
- c) Caracterizar según la hidráulica fluvial al tramo en estudio de la quebrada Sarinmayo.
- d) Recopilar y procesar información hidrológica a utilizar en la zona de estudio.
- e) Estimar el caudal, periodo de retorno y área inundada ocurrido en el año 2013.
- f) Modelar hidráulicamente el tramo en estudio de la quebrada Sarinmayo,
- g) Elaborar mapas de zonas inundables por máximas avenidas en la quebrada Sarinmayo para periodos de retorno de 10, 100 y 150 años.

CAPITULO II

MARCO TEÓRICO

2.1. ANTECEDENTES TEÓRICOS DE LA INVESTIGACIÓN

2.1.1. Antecedentes internacionales

El objetivo de la investigación de fin de grado, titulada «Estudio hidrológico e hidráulico del río Carbones a su paso por el casco urbano de La Puebla de Cazalla (Sevilla)», era determinar las zonas inundables afectadas por las mayores crecidas del río Corbones, que se produjeron principalmente en el entorno de la localidad de Puebla de Cazalla, España. Para ello utilizó cartografía digital. En cuanto al modelo hidrológico utilizo la extensión HEC HMS, para periodos de retorno de 100 y 500 años, obteniendo caudales picos de 682.2 m3/s y 588 m3/s respectivamente. En cuanto al modelamiento hidráulico, esta investigación se realizó con Iber, utilizando el modelo de Saint Venant 2D. El modelo hidrodinámico muestra un calado máximo de 6,5 m y una velocidad de 6 m/s para un periodo de retorno de 500 años. En las partes situadas aguas arriba de las obras de cruce, se encontró el calado máximo; las velocidades máximas se encontraron sobre todo en el eje de todo el canal estudiado y a la salida de las obras de cruce, como los puentes. Para periodos de retorno TR=100 años alcanza un calado máximo de 5,7 m y una velocidad máxima de 5 m/s. Finalmente, el autor llegó a la conclusión de que existe mucha más peligrosidad en el tramo de estudio, incidiendo sobre suelos urbanos de la Puebla de Cazalla. (Valle, 2019).

En el artículo denominado "Zonificación de la amenaza por inundaciones en la planicie aluvial del rio Borburata, estado Carabobo, Venezuela", pretende caracterizar geomorfológicamente la cuenca del río Borburata, las condiciones de pluviometría que allí se dan y los escenarios que se crean durante las épocas de lluvia. Estos escenarios se manifiestan en la subida del nivel de las aguas del río, lo que da lugar a importantes zonas inundadas debido a que la zona se encuentra en la llanura aluvial. El investigador utiliza dos programas informáticos: HEC - RAS y ERDAS, respectivamente, para localizar las zonas inundables y la altura del nivel del agua para diversos periodos de retorno.

En este articulo obtienen periodos de retorno de 500 y 1000 años y caudales de 595.3 m3/s y 792.7 m3/s respectivamente, tienen mayor afectación de las áreas por inundación, en comparación con los periodos de retorno de 25, 50, y 100 años con caudales de 259.6 m3/s, 351.6 m3/s y 449.6 m3/s, respectivamente, que solo presenta un leve incremento en las áreas afectadas. Tras realizar los cálculos pertinentes, el estudio revela que las zonas de la localidad son susceptibles a inundaciones debido a eventos de lluvias excepcionales y caudales pico en diferentes periodos de retorno. Esto se debe tanto a factores externos, como las precipitaciones, e internos, como la configuración de la cuenca, la densidad del drenaje y las pronunciadas pendientes, entre otros. Además, la ubicación de la población en la llanura aluvial y su proximidad al río Borburata agravan los escenarios críticos de inundaciones. (Rivas & Carrera, 2016).

2.1.2. Antecedentes nacionales

En la tesis de pregrado "Evaluación hidrológico e hidráulico con el modelo Iber para determinar el riesgo por inundación en la población ribereña al rio Qochoq, provincia Calca - región Cusco 2017" determina que la pendiente de la sub cuenca del rio Qochoq es fuertemente empinada con pendientes de 25%-30%, dando lugar a que las velocidades de flujo aumenten cuando las precipitaciones son elevadas. En el lugar de estudio, la pendiente tiende a ser más llana con 0.2%, en consecuencia, es más propensa a inundarse. Además, en su investigación identificó niveles de peligro por inundación para diferentes periodos de retorno. Para Tr = 50 años el peligro por inundación es medio, alcanzando tirantes que varían de 1.5m a 2.8m y velocidades de 3.6m/s a 4.2 m/s. También para Tr =100 años, el peligro por inundación es alto, dado que los tirantes rebasarían las secciones de los tramos canalizados, variando de 1.2m a 3.1m, con velocidades de 4.1 m/s a 6.2m/s. Finalmente para Tr =500 años el peligro por la ciudad, estos tirantes rebasarían el tramo de canalización del rio que pasa por la ciudad, estos tirantes estarían comprendidos desde los 3 m a 4.4m, con velocidades de 4.8m/s a 7.1m/s. (Sequeiros & Farfan, 2019).

En la tesis de pregrado denominada "Análisis comparativo del modelamiento hidráulico utilizando IBER y HEC – RAS para determinar áreas inundables en la quebrada del diablo, región Tacna", tiene por objetivo principal realizar el modelamiento hidráulico con ambas herramientas computacionales mencionadas para que pueda determinar áreas

inundables y saber cuál es el software más adecuado para el lugar de estudio. Para esta investigación el autor parte de un precedente, que es un desastre ocurrió en el año 2020, cuando se activó la quebrada del diablo generándose un huaico. Para esta investigación lo que hicieron fue caracterizar geomorfológicamente su cuenca, en cuanto a los datos hidrológicos fue tomado de un artículo que desarrolló caudales máximos en la zona en estudio. Luego se hace el modelamiento con ambos programas y finalmente se comparan ambos y se concluye que, ambos modelos muestran zonas de inundación de acuerdo a la gestión de los recursos computacionales, pero el software HEC RAS - necesita un mayor uso de recursos computacionales para mejorar los resultados, por otro lado, el programa IBER se generó las zonas de inundación sin el uso de los recursos computacionales que HEC – RAS. Con ambos programas se determinaron las velocidades máximas encontrando una correlación de 0.797 lo cual muestra que existe una buena asociación entre ambos resultados de ambos programas, lo mismo sucede con el calado máximo y la cota de agua mínima que tienen correlaciones de 0.914 y -0.998 respectivamente, mostrando que ambos programas obtienen resultados confiables, sin embargo, existe una diferencia en el uso del recurso computacional que le da una ventaja al programa IBER sobre el HEC – RAS. (Cachicatari, 2023).

2.1.3. Antecedentes locales

La tesis de pregrado denominado, "identificación de áreas inundables por máximas avenidas en el rio Quinuas en el centro poblado la Quispa" ha realizado un modelamiento hidrológico para distintos periodos de retorno 15, 25 y 40 años, obteniendo caudales de: 110.753m3/s, 123.860m3/s, 136.844m3/s, respectivamente. En cuanto al modelamiento hidráulico para: TR=15 años, calcula un calado hasta de 2.5m, con velocidad de 6.25m/s en el cauce, en la parte poblada, 1.85m de calado y 2.3m/s, estos datos indican una peligrosidad muy alta en el lecho del rio según ACA y disminuye en zonas donde existen árboles. En cuanto a un TR=25 años ha calculado un calado de hasta 2.6m con velocidades de 5.995m/s en la zona del rio, así mismo, tirantes que llegan a los 2m, y velocidad de 2.1m/s el mismo pueblo del caserío, presentando una peligrosidad muy alta en toda la zona de inundación. Finalmente, para TR=40 años, el investigador calcula tirantes hasta de 2.6m en el mismo cauce y en el mismo pueblo hasta 2.1 m, indicando un alto grado de inundación, en cuanto a velocidades, alcanza hasta 6m/s en el mismo rio y 1.2m/s en el mismo pueblo, presentando

una peligrosidad muy alta según ACA, y en la parte alta siendo nula la peligrosidad. Según el modelamiento hidrológico e hidráulico realizado afirma que, para cada simulación realizada, se indica que la tendencia a inundarse en la margen izquierda es muy alta con un calado promedio de 0.4m, 0.2m en el puente, 0.8m en el centro poblado y hasta 2.6m en el eje del rio, debido a este desbordamiento se ven afectadas numerosas áreas de cultivo, vías de comunicación y el propio centro poblado. (Aparicio, 2021).

La siguiente tesis de pregrado denominado "Zonificación de áreas inundables por máximas avenidas en la quebrada Sarinmayo en la localidad de Namora - Cajamarca" tuvo como objetivo principal determinar las áreas expuestas a inundarse por las máximas avenidas de la quebrada Sarinmayo en la localidad de Namora – Cajamarca. En la investigación se realizó el levantamiento fotogramétrico con un dron Mavic Air 2, y se complementó con GPS diferencial CHNAV i90 además para la caracterización morfológica de la cuenca utilizó las cartas nacionales 15g, en cuanto a su modelamiento hidrológico fue realizado con HEC HMS, obteniendo como resultados caudales máximos de 27.6, 32.1, 37.3, y 49.1 m3/s para periodos de retorno de 50, 70, 100 y 200 años respectivamente, y además calculó el caudal que desbordó la quebrada en el año 2013, siendo de 32.1 m3/s, En cuanto al modelamiento hidráulico fue realizado con Iber y estimó las áreas en peligrosidad de inundación muy alta de 7700 m2, alta de 5441m2 y baja de 8051 m2. Además de ello también obtuvo velocidades para un periodo de retorno de 200 años de 7.58m-7s y calados de 3.28m. (Saldaña, 2023)

2.2. BASES TEÓRICAS

2.2.1. Aspectos generales

Inundación.

Una inundación es un evento que se produce cuando el aumento del caudal debido a las fuertes lluvias supera la capacidad de almacenamiento de los cauces fluviales y la capacidad de retención del suelo. Como consecuencia, la corriente del río se desborda y se extiende por las llanuras aluviales y las tierras que rodean los cursos de agua. (Fernandez, 2013).

Las metodologías utilizadas para predecir inundaciones en la presente investigación fueron los siguientes:

- a. Los métodos hidráulicos e hidrológicos: La finalidad de estos modelos es simular dos etapas. La primera etapa, conocida como modelización lluvia-escurrimiento, calcula un caudal pico a partir de las precipitaciones estimando la cantidad de agua escurrida (precipitación efectiva) en relación con la cantidad de agua caída por precipitación. La modelización del tráfico de crecidas es la segunda etapa; modela cómo se propaga el caudal pico y el nivel máximo a lo largo del cauce. (Herrero, 2009).
- b. Métodos geológicos y geomorfológicos: Para encontrar y examinar las capas de sedimentos depositadas por estos eventos, se emplean arreglos y tipos de formaciones geológicas, así como depósitos creados durante y después de las inundaciones, este método permite identificar las zonas propensas a las inundaciones. Las técnicas empleadas en el establecimiento de un marco conceptual de modelización proporcionan una primera aproximación al funcionamiento del fenómeno en función del relieve, las formaciones geológicas, la vegetación y otras condiciones. (Daza, 2016).

Batimetría

Según IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales), la batimetría consiste en realizar un levantamiento topográfico de terreno sumergido, abarcando

fondo de rio, ciénagas, humedales, lagos, embalses, entre otros; en otras palabras, es la representación cartográfica de los diversos cuerpos de agua". (IDEAM, 2014).

Se hallan las coordenadas X e Y, y Z corresponde a las profundidades de las masas de agua objeto de levantamiento, al igual que ocurre en los levantamientos topográficos convencionales. De esta forma, es posible describir los fondos y relieves de las masas de agua, así como todas aquellas anomalías que puedan existir en las mismas, dependiendo de la minuciosidad con la que se realice la batimetría. En concreto, los levantamientos batimétricos son un componente esencial para el uso de cualquier software de modelización hidráulica ya que permite evaluar los tránsitos de crecidas con fines de previsión hidrológica. (IDEAM, 2014).

Figura 01 *Batimetría en cauce Natural*

Nota. La figura muestra la batimetría en una quebrada, Tomada por el investigador al final del tramo en estudio de la quebrada Sarinmayo en el año 2023.

Una de las dificultades al realizar levantamientos con dron es la recopilación de datos en corrientes de ríos, ya que al trabajar con imágenes (ortofotos), solo se puede captar hasta el espejo de agua, lo que limita las curvas de nivel a esa superficie. Por ello, es necesario realizar un levantamiento batimétrico con estación total a lo largo de los 460 metros del área de estudio, generando una nube de puntos según las condiciones físicas del terreno y criterios establecidos. (IDEAM, 2014).

Fotogrametría

La fotogrametría es un método que utiliza imágenes fotográficas para calcular las dimensiones y la ubicación de los objetos en el espacio. La intersección de dos o más fotografías se utiliza para calcular esto. Los modelos digitales del terreno se pueden obtener mediante la fotogrametría y pueden ser utilizados para una variedad de propósitos. (Del Rio et al., 2019)

Ortofotografía

La ortofotografía es un tipo de mapa georreferenciado que ha sido ajustado para eliminar las distorsiones presentes en las fotografías originales. Este proceso transforma la representación en perspectiva cónica del terreno a una perspectiva ortogonal, lo que se denomina ortoproyección. Al aplicar esta técnica a fotografías digitales con los programas adecuados, se obtiene la ortofotografía digital conservando toda la información de la fotografía aérea, permitiendo medir distancias y superficies a escala, y garantizando su compatibilidad con mapas existentes. (Martinez & Rubio, 2018).

Modelo digital de elevación

Un modelo de elevación digital (DEM), es una representación matemática y visual de las alturas en relación al nivel del mar, que permite caracterizar las formas de relieve y los objetos presentes. Estos valores se almacenan en un archivo de tipo ráster con una estructura regular, el cual se genera utilizando equipos de cómputo y programas especializados. (Martinez & Rubio, 2018).

Modelo hidrológico

Un modelo hidrológico es una representación simplificada de la realidad, donde podemos estudiar su relación causa - efecto de una cuenca a través de los datos de entrada (inputs) y salida (outputs) en función del tiempo, con los cuales se logra un mejor entendimiento de los procesos hidrológicos que tienen lugar en una cuenca. (Chow, 1994)

Nota. Representación del modelo hidrológico Lluvia – escorrentía en una cuenca, donde los datos de entrada (Inputs) son las precipitaciones y la salida (outputs). Tomada del libro: Hidrología aplicada de Chow, (1994).

2.2.2. Hidráulica fluvial

La hidráulica fluvial se centra en la comprensión y predicción del comportamiento del agua en los cauces naturales para un mejor manejo y uso de los recursos hídricos. Este campo se basa en principios de la mecánica de fluidos y la geomorfología fluvial. (Chow, 1994)

La hidráulica fluvial no puede ser entendida ni aplicada sin considerar otras ramas complementarias de la ingeniería. Está integrada con la hidráulica general y la hidráulica de canales. La meteorología y la hidrología son esenciales para analizar una de las etapas del fenómeno fluvial. La geología, la geomorfología y disciplinas relacionadas son cruciales para una comprensión más profunda del comportamiento fluvial. Además, la teoría del transporte de sedimentos es fundamental para abordar estos problemas. (Rocha, 1998).

La ingeniería de ríos

La ingeniería de ríos nos instruye sobre cómo interactuar y gestionar los ríos, abordando sus características principales y su constante movimiento. La característica más notable de un río es su dinamismo, el cual debe ser comprendido en profundidad para poder realizar su control y aprovechamiento. Esta disciplina también nos ayuda a manejar las grandes cantidades de agua y sedimentos que transportan los ríos, así como a entender su flujo

tridimensional y sus corrientes secundarias, que son bastante distintas de las idealizaciones encontradas en la mayoría de las fórmulas de la hidráulica de canales. (Rocha, 1998)

Geometría Hidráulica de un rio

Figura 03

Se ha descubierto que al examinar las dimensiones de las secciones transversales de los ríos se concluye que la anchura B es proporcional a la raíz cuadrada del caudal ($B\leftrightarrow Q^0.5$), es decir, que un río que es cuatro veces más caudaloso que otro tendrá una anchura aproximadamente doble. El movimiento del agua en lámina libre visible: cuanto mayor es el tamaño de la sección, en particular cuanto mayor es su dimensión vertical, profundidad, tirante o calado, y cuanto mayor es la velocidad media. Como el caudal Q es el resultado del producto de "B*y*v" y como "B $\leftrightarrow Q^0.5$ ", se puede deducir que el calado "y" aumentara más lentamente que la anchura "B", así como la velocidad. Por lo tanto, al dividir "B/y", que se conoce como relación de forma de la sección, crecerá, aunque de manera las lenta con el caudal. Es decir, un río más caudaloso tiene un cauce más profundo y ancho, pero es aún más ancho en relación a su profundidad, que un río menos caudaloso. (Vide, 2002).

Nota. Comparación de las relaciones de forma o anchuras relativas de un rio grande y uno pequeño, adaptado de (Vide, 2002).

Otra relación empírica nos dice que, cuanto menor es el contenido de material fino en el cauce, mayor es el cociente "B/y"; es decir, con material más grueso se tienen cauces más anchos. En la sección transversal, el aumento de "B/y" sucede cuanto mayor es el transporte solido del rio (el tamaño del material aluvial y el caudal del material transportado tienen el

mismo efecto morfológico en la sección transversal). La disminución de la sinuosidad, es otra consecuencia observable del aumento del transporte sólido, decir, el cauce se vuelve más recto. (Vide, 2002).

Figura 04

Geometría de un rio en función al material.

Nota. Se muestran las formas de sección transversal 1,2 y 3, con materiales grueso, medio y fino respectivamente adaptado de (Vide, 2002).

Morfología Fluvial

Se trata del análisis de cualquier tipo de modificaciones que ocurran en el río, ya sea en su perfil longitudinal como en su sección transversal (lecho y márgenes). Es fundamental entender que la morfología fluvial se centra principalmente en explicar cómo el río ha llegado a su estado actual, y no en estudiar su forma presente. Esto se debe a que su comportamiento está vinculado a la topografía y las condiciones geológicas de la zona. Por ello, el desarrollo y las formas que adopta un río varían entre una región plana y una con una pendiente pronunciada. (Rocha, 1998)

Clasificación de los ríos por su inundación

Rocha propone una primera clasificación básica y general que son las siguientes:

- Ríos con áreas de inundación
- Ríos sin áreas de inundación

La existencia de áreas de inundación es debido a los movimientos laterales que el río ha realizado a lo largo de una planicie aluvial con el tiempo. Estos movimientos resultan en que los cursos de agua recientes abandonen ciertas áreas, las cuales pueden convertirse en terrazas fluviales. Por otro lado, las avenidas con periodos de retorno bajos utilizan el cauce menor, que en ocasiones es un cauce de estiaje. El río se desborda de su cauce menor y ocupa el cauce mayor, también conocido como cauce de avenidas, cuando el periodo de retorno es mayor. (Rocha, 1998).

Clasificación de los ríos por su edad

Ríos Jóvenes. Esta es fase temprana de los ríos. Cuando el agua empieza a trazar su camino, posee una sección transversal en forma de V y es bastante irregular. Compuesto por materiales fragmentados, los torrentes de alta montaña son un ejemplo típico de los ríos en esta etapa. Los ríos jóvenes también revelan variaciones significativas en los niveles de su lecho y, por ende, en los calados del agua, como parte de los procesos de agradación y degradación que les son característicos. (Rocha, 1998)

Ríos Maduros. En su etapa madura, un río presenta una sección transversal más amplia y un valle considerablemente más ancho. La pendiente disminuye, indicando que el río está en un estado de equilibrio o muy cercano a él, es por ello que la pendiente y la energía del río son adecuadas para transportar el material sólido que recibe. En esta fase, se pueden observar pequeñas planicies de inundación y la formación de algunos meandros. (Rocha, 1998)

Ríos Viejos. En su etapa final de desarrollo, los ríos viejos presentan una pendiente aún menor y un mayor ancho. En esta fase, el río suele estar confinado, encauzado y controlado, lo que significa que su curso ha sido modificado y gestionado para prevenir inundaciones y otros problemas asociados. (Rocha, 1998).

Clasificación de los ríos por su pendiente

La pendiente de un río es un factor crucial que influye en su régimen hidráulico. Generalmente varía entre el 0.5% y el 1.5%, siendo mayor en las áreas montañosas y menor en los valles cercanos a la desembocadura. Cuando la pendiente del río supera el 1.5%, se clasifica como río torrencial. Si la pendiente es superior al

6%, se considera un torrente. En los torrentes, el elevado volumen de sedimentos arrastrados hace que el flujo presente características no Newtonianas. (Maza & García, 1996).

Clasificación de ríos por su morfología

Ríos Rectos. Son aquellos que tienen un curso lineal y poco sinuoso. En estos ríos, la falta de meandros o curvas pronunciadas resulta en un flujo de agua más directo y uniforme. Este tipo de curso suele encontrarse en etapas tempranas de desarrollo o en regiones con una topografía relativamente plana. (Rocha, 1998)

Ríos Entrelazados. También llamados ríos trenzados. Generalmente tienen pendiente fuerte y son anchos, éstos dan lugar a pequeños calados, otra característica es que el rio fluye a través de múltiples canales o brazos que rodean pequeñas islas. (Rocha, 1998)

Ríos Meándricos. Este tipo de ríos se componen de una sucesión de curvas. La característica de estas curvas es que son extremadamente dinámicas y no se deben a las características del terreno sino está relacionado con la naturaleza del comportamiento fluvial. (Rocha, 1998).

Figura 05

Morfología de rios.

Nota. La imagen representa la morfología de los ríos en planta tomado del manual de ingeniería de ríos (2018).

Clasificación de ríos por sus grados de libertad

Cuando un río tiene sus tres grados de libertad, se define como una corriente de agua que moldea su cauce ajustando libremente su ancho, profundidad y forma. Existen observaciones relativamente simples de las características en cuanto a su geometría de los ríos que indican relaciones empíricas entre ellas. Sin embargo, la razón detrás de por qué un río adopta estas formas, como la presencia de meandros, aún no se ha respondido completamente. (Vide, 2002).

Un grado de libertad. Se considera que un rio tiene un grado de libertad cuando, al conducir un caudal específico Q, la única variable que puede cambiar es el tirante del agua. En esta situación, no hay transporte de sedimentos. (Pérez, Rodríguez, & Molina, 2018).

Dos grados de libertad. Un cauce presenta dos grados de libertad cuando arrastra de manera constante un caudal sólido determinado. En este caso, tanto el tirante como la pendiente pueden variar hasta que el caudal líquido sea suficiente para transportar todo el caudal sólido. (Pérez, Rodríguez, & Molina, 2018).

Tres grados de libertad: Si, sumado al tirante y la pendiente, también se pueden modificar las márgenes y ajustar el ancho del cauce, se considera que este tiene tres grados de libertad. (Álvarez, 1995).

Clasificación según el material de lecho

Según el material se pueden clasificar en ríos con fondos aluviales (de grava o arena) y ríos con lecho rocoso o encajado. Los ríos de lecho aluvial, ya sea de gravas o arenas, se caracterizan por altas tasas de transporte de sedimentos y cambios morfológicos rápidos, que pueden ocurrir en semanas o años. En contraste, los ríos con lechos rocosos presentan un transporte de sedimentos muy bajo y su evolución morfológica es mucho más lenta, extendiéndose a lo largo de décadas o siglos debido a la resistencia del material de su lecho. (Maza & García, 1996).

Tamaño y forma del material

Existen diversas clasificaciones para identificar partículas según su tamaño. A continuación, se presenta una tabla de la American Geophysical Union (A.G.U.) basada en el diámetro de partícula. Los cantos rodados y guijarros se pueden dimensionar directamente, mientras que el tamaño de las gravas y arenas se determina mediante mallas. En el caso de los limos y arcillas, se utilizan métodos de sedimentación o microscopía para su medición. (Rocha, 1998).

Tabla 01

Tamaño y forma del material.

1. Cantos rodados (250 - 4000 mm)	Muy grandes.	4000 – 2000 mm
	Grandes.	2000 – 1000 mm
	Medianos.	1000 – 500 mm
	Pequeños.	500 – 250 mm
2. Guijarros (64 – 250 mm)	Grandes.	250 – 125 mm
	Pequeños.	125 – 64 mm
3. Gravas (2 – 64 mm)	Muy Gruesa.	64 – 32 mm
	Gruesa.	32 – 16 mm
	Media.	16- 8 mm
	Fina.	8 – 4 mm
	Muy fina.	4-2 mm
4. Arenas (0.062 – 2 mm)	Muy gruesa.	2 – 1 mm
	Gruesa	1 – 0.5 mm
	Media	0.5 – 0.25 mm
	Fina	0.25 – 0.125 mm
	Muy fina	0.125 – 0.062 mm
5. Limos		
(4 a 62 u) = (0.004 a 0.062 mm)		
6. Arcillas		
(0.24 a 4 u) = (0.00024 a 0.004 mm))	

Nota. la tabla muestra la clasificación de partículas por su diámetro, tomada de Rocha (1998).

2.2.3. Hidráulica de flujos de escombros

Un flujo de escombros es un fenómeno que ocurre cuando el agua se mezcla con una masa heterogénea de materiales como suelo y rocas. Este flujo generalmente transita por los cauces de ríos en quebradas o pendientes pronunciadas, acumulando y depositando material a lo largo de su trayecto. Esto provoca cambios en la presión de poros interna, lo que a su vez altera su comportamiento mecánico. En la imagen 06 se pueden identificar tres regiones distintas: en la cresta, hay rocas grandes que parecen formar muros de piedras en movimiento, dominadas por fuerzas de inercia. En la zona de lodos, se observan gravas en la parte superior, como si flotaran en el flujo. Finalmente, en la región de la cola, el flujo es inmaduro y tiende a transformarse en un flujo de lodos o en un cauce de hiperconcentración. (Escusa, 2016).

Figura 06

Regiones de flujo de escombros

Nota. En la imagen se observa diferentes regiones dentro de un flujo de escombros, tomado de Escusa (2016).

Tipos de flujos en quebradas

Avenidas de agua. Son flujos que transportan una carga típica de sedimentos a través del lecho de un arroyo en régimen turbulento. En estos casos, la cantidad de sedimento en suspensión es insuficiente para afectar el comportamiento del agua. Las características del fluido newtoniano rigen este tipo de flujo. (Castillo, 2006).

Flujos de Lodo: Este flujo se caracteriza por altas concentraciones de partículas finas, como limos y arcillas. A medida que la concentración de finos aumenta, los sedimentos tienden a flocular, formando una especie de cohesión entre el suelo y el agua. (Castillo, 2006).

Flujos hiperconcentrados: Se considera flujo hiperconcentrado cuando la concentración de volumen sólido varía entre el 20% y el 60%, con un peso específico de aproximadamente 2 tn/m3. Este tipo de flujo está compuesto por una mezcla de agua y partículas granulares, siendo estas últimas las más predominantes. Su comportamiento está controlado por el agua, lo que lo hace similar al de un flujo de agua o inundación, y carece de cohesión. (Suarez, 2001).

Nota. Esquema del flujo Hiperconcentrado desde su formación hasta su sedimentación, tomado de Suarez (2001).

Flujos de escombros: Los componentes principales del flujo de escombros son agua, matriz fina y materiales más gruesos. En cuanto a la mecánica de movimiento, este flujo suele ocurrir en áreas de alta pendiente y se caracteriza por concentraciones elevadas de material sólido, especialmente partículas gruesas. Estas partículas se transportan con relativa facilidad y a altas velocidades, que pueden alcanzar hasta 20 m/s. La velocidad tiende a aumentar con el incremento de la pendiente y a disminuir con un aumento en la concentración de sólidos. (Suarez, 2001).

Figura 08 *Flujo de escombros*

Nota. La figura muestra un esquema del flujo de escombros o detritos, tomado de Suarez, 2001.

Caudal de flujos hiperconcentrados

La metodología sugerida por O'brien (2000) estima el hidrograma de flujo de detritos utilizando el hidrograma de flujo de agua multiplicado por un factor basado en la concentración volumétrica de detritos. la ecuación empleada por O'brien para este propósito es la siguiente:

$$Qt = BF * Qi \tag{1}$$

$$BF = \frac{1}{1 - Cv}$$
(2)

Donde:

Qt = Caudal total de flujo de detritos

Qi = Caudal liquido (m3/s)

BF = Factor (Bulking Factor)

Cv = Concentración volumétrica de detritos

Reología de los flujos de escombros

La reología se encarga de estudiar el comportamiento de las partículas en un volumen específico de flujo, relacionando la fluidez del mismo y las deformaciones con los esfuerzos generados por las partículas. Esta disciplina clasifica los diferentes tipos de flujos según la concentración de sedimentos y la viscosidad, distinguiéndolos en flujos newtonianos y no newtonianos. (Suarez, 2001).

2.2.4. Geomorfología de la cuenca

Analizar la geomorfología de una cuenca hidrográfica permite anticipar su comportamiento hidrológico, hidráulico e hidrodinámico, lo que está directamente relacionado con fenómenos como inundaciones, avenidas torrenciales y deslizamientos. Esto sugiere que comprender estas variables es esencial para la gestión del riesgo en la cuenca. Por lo tanto, es fundamental calcular los parámetros geomorfológicos para determinar su impacto en el comportamiento de la cuenca. (Aparicio, 1992)

Figura 09 *Tipos de cuenca*

Nota. La figura representa los tipos de cuencas, que son las endorreicas y exorreicas. Tomado de: Fundamentos de hidrología de superficie. Aparicio (1989).

Al analizar la geomorfología de una cuenca hidrográfica nos va a permitir conocer de manera anticipada su comportamiento hidrodinámico, hidráulico e hidrológico, los cuales están relacionados directamente con los fenómenos de inundación, avenidas torrenciales y hasta deslizamientos. Por lo tanto, lo que indica el entendimiento de estas variables contribuye al conocimiento de la gestión del riesgo de la cuenca. Es por ello que es importante determinar los parámetros geomorfológicos de la cuenca para comprender su impacto en el comportamiento de la misma.
Parámetros Geomorfológicos de la cuenca

• Parámetros de forma

Área (A)

Es la superficie delimitada por una línea divisoria de aguas de la región de estudio y se expresa generalmente en km². Este valor es crucial, ya que un error en su medición afecta de manera directa a sus resultados obtenidos. (Lux, 2016)

El área se determina a partir de la delimitación por las líneas imaginarias, conocidas como divisorias de aguas o Divortium aquarum, y generalmente presenta una forma irregular. (Villón, 2002).

Perímetro (P)

Se define por la longitud de la línea divisoria o Divortium aquarum, que separa la cuenca de otras cuencas adyacentes, comenzando desde los puntos de mayor nivel topográfico. (Aparicio, 1992)

Factor de forma de Horton (F)

La configuración geométrica de la cuenca proyectada sobre el plano horizontal es la forma de la cuenca, según el ANA del año 2010.

Hidrograma según el fator de forma

Nota. Se evidencia la variación de los hidrogramas según la forma de la cuenca, tomada del estudio de máximas avenidas en las cuencas de la zona centro ANA (2010).

La geometría de la cuenca influye en los hidrogramas de caudales máximos, lo que ha motivado múltiples intentos de medir este efecto a través de un valor numérico. Es por ello que Horton propuso un factor adimensional de forma como indicador para caracterizar la forma de una cuenca, que se presentará a continuación. (ANA, 2010)

$$F = \frac{ancho}{longotud} = \frac{B}{L}$$
(3)

Figura 11 *Factor de forma para cuenca rectangular*

Nota. Se indica la forma de dimensionar una cuenca para el cálculo del factor de forma, tomada del libro de hidrología de máximo Villon (2002).

Suponiendo que la cuenca es de forma rectangular

$$F = \frac{BxL}{LxL} = \frac{A}{L^2} \tag{4}$$

$$F = \frac{A}{L^2} \tag{5}$$

Si una cuenca tiene un factor de forma (F) mayor que otra (como el caso de la imagen 12), hay una mayor probabilidad de que una tormenta intensa ocurra simultáneamente en toda el área de la cuenca. En cambio, si la cuenca tiene un (F) menor, es menos probable que concentre las intensidades de lluvias en comparación con una cuenca de igual área, pero con un F mayor. (Villón, 2002)

Figura 12 Facto de forma para dos cuencas

Nota. La imagen muestra el factor de forma para dos cuencas, tomada del libro de hidrología de máximo Villon. (2002).

Los análisis de los valores se muestras en la tabla siguiente:

Tabla 02

Valores interpretativos del factor de forma

Valores Aproximados	Forma de la cuenca
< 0.22	Muy alargada
0.22 - 0.30	Alargada
0.30 - 0.37	Ligeramente alargada
0.37 - 0.45	Ni alargada, ni ensanchada
0.45 - 0.60	Ligeramente ensanchada
0.60 - 0.80	Ensanchada
0.80 - 1.20	Muy ensanchada
> 1.20	Rodeando el desagüe

Nota. Esta tabla nos muestra valores aproximados del factor de forma, para poder saber de qué forma es nuestra cuenca en estudio. Tomada de Delgadillo y Moreno (2011).

Índice de Gravelius (Kc)

Gravelius definió el índice de compacidad de una cuenca como la relación, entre el perímetro de la cuenca, y el perímetro de una circunferencia equivalente que tiene la misma área de la cuenca, es decir: $K = \frac{P(perímetro \ de \ la \ cuenca)}{P_o(perímetro \ de \ un \ circulo \ de \ igual \ área)} \tag{6}$

$$K = \frac{P}{2\pi r} \tag{7}$$

$$A = \pi r^2 \to r = \sqrt{\frac{A}{\pi}} \tag{8}$$

Sustituyendo (8) en (7), se tiene:

$$K = \frac{P}{2\pi\sqrt{\frac{A}{\pi}}} = \frac{P}{2\sqrt{\pi A}}$$
(9)

$$K = 0.28 \frac{P}{\sqrt{A}} \tag{10}$$

El índice de compacidad busca expresar la manera en que influye el perímetro y del área de una cuenca en la escorrentía, principalmente en las características del hidrograma. Las cuencas alargadas (K>1) tienen menores probabilidades de ser completamente cubiertas por una tormenta. (Villón, 2002).

Tabla 03

Caracterización de la cuenca en función al índice de Gravelius

Valores de Kc	Forma	Características	
1.00 - 1.25	Compacta o redonda a oval	Presenta peligros	
	redonda	torrenciales altos	
1.25 - 1.50	Oval redonda a oval oblonga	Presenta peligros	
		torrenciales moderados	
1.50 - 1.75	Oval oblonga a rectangular	Presenta peligros	
	oblonga	torrenciales bajos	
> 1.75	Casi rectangular (alargada)	Presenta peligros	
		torrenciales muy bajos	

Nota. Esta tabla nos muestra valores en función al índice de Gravelius, para conocer su forma de la cuenca y sus características de peligros torrenciales. Tomado del ANA (2010).

• Parámetros de relieve

Pendiente media de la cuenca

La pendiente media de la cuenca es un elemento crucial en su estudio, ya que tiene una relación significativa y compleja con la infiltración, la escorrentía superficial y la humedad del suelo. Además, influye en el tiempo de concentración del agua en un punto determinado del cauce. (ANA, 2010).

Criterio de Alvord

La determinación de la pendiente de la cuenca se basa en obtener previamente las pendientes entre las curvas de nivel cada 50 metros, utilizando la franja definida por las líneas medias que pasan entre estas. Para calcular la pendiente de una de ellas se realiza como se muestra a continuación.

Figura 13

División de cuenca en fajas por medio de curvas a nivel

Nota. Se muestra la división de la cuenca en áreas parciales, cada área está delimitada por curvas a nivel, tomada del estudio de máximas avenidas en las cuencas de la zona centro ANA (2010).

La pendiente parcial del área de la cuenca es:

$$S_1 = \frac{D}{W} \tag{11}$$

$$W = \frac{a}{l} \tag{12}$$

 S_1 = Pendiente de la faja analizada

W = ancho de la faja analizada

a =área de la faja analizada

l = Longitud de curva de nivel

La pendiente Total del área de la cuenca es:

$$S = \frac{D*L}{A} \tag{13}$$

Donde:

S = Pendiente media de la cuenca

D = Equidistancia entre curvas de nivel en, km

A =área de la cuenca, en km2

L = Longitud de todas las curvas de nivel, en km

Clasificación de la pendiente del terreno

Tabla 04

Clasificación de la pendiente del terreno

Rango de pendiente%	Termino descriptivo
0 - 2	Llano
2 - 5	Suave
5 - 10	Accidentado medio
10 - 15	Accidentado
15 - 25	Fuertemente accidentado
25 - 50	Escarpado
> 50	Muy escarpado

Nota. En esta tabla se describe a la pendiente de la cuenca en función al rango de valore calculados por el método de Alvord. Tomado del ANA (2010).

Longitud del cauce principal

La longitud del cauce principal se refiere a la distancia desde el punto donde el rio se une con su receptor hasta su naciente cerca de la divisoria de aguas. Este parámetro tiene influencia significativa en el tiempo de concentración y además en la mayoría de los índices morfométricos. Se determina a partir del mapa digital de la red de drenaje. (Baldeon, 2016).

Pendiente del cauce

El conocimiento de la pendiente del cauce principal de una cuenca es un parámetro crucial para estudiar el comportamiento del recurso hídrico. Este parámetro es fundamental, por ejemplo, para determinar las características óptimas de su aprovechamiento hidroeléctrico y para resolver problemas relacionados con inundaciones. (Villón, 2002).

Existen varios métodos, entre los que podemos mencionar y el que utilizaremos será el método de Taylor y Schwars, en el cual considera a un rio formado por n tramos de igual longitud y cada una de ellas con pendiente uniforme.

Pendiente uniforme

Este método define la pendiente del cauce como la relación entre la diferencia de alturas que existe entre los extremos del cauce y la proyección horizontal de su longitud, es decir:

$$S = \frac{H}{L} \tag{14}$$

Donde:

S = pendiente

H = diferencia de cotas entre los extremos del cauce, en Km

L = Longitud del cauce, en Km

Ecuación de Taylor y Schwarz

$$S = \left[\frac{n}{\frac{1}{\sqrt{S_1}} + \frac{1}{\sqrt{S_2}} + \dots \frac{1}{\sqrt{S_n}}}\right]^2$$
(15)

Figura 14 *Perfil longitudinal de un rio dividido en tramos iguales*

Nota. La imagen muestra la división en tramos iguales del cauce principal, como menciona el método de Taylor y Schwarz, tomada de Villon (2002).

Donde:

n = cantidad de tramos iguales, en los que se divide el perfil

 S_1, S_2, \dots, S_n = Pendiente para cada tramo, según $S = \frac{H}{L}$

S = Pendiente media del cauce

L = Longitud del cauce, en Km

Curva hipsométrica

Una curva hipsométrica muestra gráficamente la variación altitudinal de una cuenca, mostrando una relación entre cada altura y el porcentaje correspondiente del área situada por encima de esa altura. Generalmente, los extremos de la curva presentan variaciones abruptas. La curva hipsométrica con concavidad hacia arriba muestra una cuenca con valles extensos y cumbres escarpadas, mientras que una concavidad hacia abajo sugiere valles profundos y sabanas planas. Además, las curvas hipsométricas también se han asociado con las edades de los ríos de las respectivas cuencas. (ANA, 2010).

Figura 15 *Tipos de Curva hipsométrica en cuenca*

Nota. Los tipos de curva hipsométrica según du edad, tomada del estudio de máximas avenidas en las cuencas de la zona centro ANA (2010).

Altitud media de la cuenca

La elevación media está referida a la cota absoluta respecto del mar. La elevación media de la cuenca también se obtiene a partir de la curva hipsométrica, equivalente a la cota correspondiente del 50% del área de la cuenca tal como se muestra en la Imagen 16. (ANA, 2010).

Una elevación media alta generalmente se asocia con mayores precipitaciones, lo que puede llevar a un aumento en la escorrentía superficial. Esto es especialmente relevante en eventos de lluvia intensa, donde las cuencas con pendientes pronunciadas son más susceptibles a inundaciones.

Figura 16 *Curva hipsométrica, para cálculo de altitud media*

Nota. La curva hipsométrica muestra la altitud media de la cuenca en función al 50% del área de la cuenca, tomada del estudio de máximas avenidas en las cuencas de la zona centro ANA (2010).

Red de drenaje

El sistema de drenaje de una cuenca se refiere a las trayectorias o formas que guardan entre sí los cauces de las corrientes naturales dentro de ella. Esta característica es crucial para el estudio de cuencas, ya que revela que tan eficiente es el sistema de drenaje en el escurrimiento resultante, es decir, la rapidez con la que evacúa el agua que recibe. La forma de drenaje también proporciona indicios sobre las condiciones del terreno y la superficie de la cuenca (Villón, 2002).

El modelo de STRAHLER es uno de los criterios para establecer el orden de los ríos en una cuenca. Según este modelo, se consideran canales de primer orden para aquellos que no tienen afluentes. La unión de dos canales de orden uno forma un canal de orden dos, y así sucesivamente. (ANA, 2010).

Figura 17 Orden de ríos en cuenca

Nota. En la siguiente imagen nos muestra el orden de ríos por el método de STRAHLER, tomada del libro de Hidrología de Villón (2002).

Tiempo de concentración

Es el tiempo necesario para que una gota de agua pueda recorrer desde el punto hidráulicamente más lejano hasta la salida de la cuenca. Transcurrido el tiempo se considera que toda la cuenca contribuye a la salida. El tiempo de concentración real depende de varios factores como la geometría en planta de la cuenca (una cuenca alargada detendrá mayor tiempo de concentración), además de su pendiente, ya que una mayor pendiente dará lugar a flujos con mayor velocidad y por ende a menores tiempos de concentración, también depende de su área, características del suelo, cobertura vegetal, entre otros. (MTC, 2012).

Existen varias ecuaciones para calcular el tiempo de concentración, a continuación, presentaremos dos ecuaciones.

• Kirpich (1940)

Desarrollada a partir de información proporcionada por el servicio de conservación de suelos SCS en siete cuencas rurales de Tennessee con canales bien definidos y pendientes pronunciadas (3 - 10 %); para flujos superficiales de concreto o

asfalto se debe multiplicar al t_c por 0.4, para canales de concreto por 0.2, pero en flujo superficial en suelo descubierto no se debe hacer ningún ajuste.

$$T_c = 0.01947 * L^{0.77} * S^{-0.385}$$
(16)

Donde:

Tc = Tiempo de concentración, min

L = Longitud del canal desde aguas arriba hasta la salida, m.

S = Pendiente promedio de la cuenca, m/m

• California Culverts Practice (1942)

La ecuación de Kirpich; desarrollada para pequeñas cuencas montañosas

$$T_c = 0.0195 \left(\frac{L^3}{H}\right)^{0.385} \tag{17}$$

Donde:

L = longitud del curso de agua más largo, m.

H = diferencia de nivel entre la divisoria de aguas y la salida, m.

• Método de Témez

Esta ecuación es el resultado de una modificación del profesor J.R. Témez a la ecuación del método racional, la elabora para la dirección general de carreteras, tras experimentarla en varias cuencas aforadas. Su aplicación se ve limitada por el rango adecuado de uso que esta entre 1 Km2 – 3000 Km2. Según los registros de sus usuarios y la aplicación de la misma no hay limitaciones por el tipo de terreno o su morfología.

$$T_c = 0.3 \left(\frac{L}{S^{0.25}}\right)^{0.76} \tag{18}$$

Tc = Tiempo de concentración (h)

L = Longitud del cauce (Km)

S = Pendiente del cauce (m/m)

2.2.5. Periodo de retorno

Se le denomina periodo de retorno "T", al tiempo promedio expresado en años, en el cual el valor del caudal máximo de una avenida es igualada o superado una vez cada "T" años. Para seleccionar un periodo de retorno adecuado a utilizar en el diseño de una obra es necesario tener en cuenta la relacion que existente entre la probabilidad de que ocurra un evento, la vida util de la estructura y el riesgo de falla admisible, este riesgo depende de factores económicos, sociales, tecnicos y otros. (MTC, 2012)

Entonces decimos que la probabilidad de ocurrencia de un evento en cualquier observación es el inverso de su periodo de retorno y se expresa de la siguiente manera:

$$P(X \ge Xt) = \frac{1}{T}$$

Para la estadistica, el "T" es la inversa de la probabilidad de que un evento ocurra.

$$T = \frac{1}{p} \tag{19}$$

Donde:

T = periodo de retorno

 $P(X \ge Xt) =$ Probabilidad de excedencia

Xt = Intervalo de rrecurrencia

Riesgo de falla

El riesgo de falla se refiere a la determinación anticipada del nivel de riesgo que se está dispuesto a asumir en caso de que la obra u estructura falle dentro de su vida útil. Esto implica que no ocurra un evento de magnitud superior al considerado en el diseño en su primer año, luego en el segundo, y así sucesivamente, a lo largo de cada uno de los años de vida útil de la obra (MTC, 2012).

El riesgo de falla admisible en función del periodo de retorno y la vida útil de la obra se determina por:

$$R = 1 - \left(1 - \frac{1}{T}\right)^n \tag{20}$$

Donde:

R = Riego de falla

T = Periodo de retorno

n = Vida útil de la obra, en años

Tabla 05

Valores máximos recomendados de riesgo admisible

Tipo de obra	Riesgo Admisible (%)
Puentes	25
Alcantarillas de paso de quebradas importantes y badenes	30
Alcantarillas de paso quebradas menores y descarga de agua de cunetas	35
Drenaje de la plataforma (a nivel longitudinal)	40
Subdrenes	40
Defensas ribereñas	25

Nota. La tabla muestra valores recomendados de riesgo admisible en obras de drenajes, obtenida del manual de hidrología hidráulica y drenaje del MTC (2012).

Vida útil considerado:

- Puentes y defensas ribereñas n = 40 años
- Alcantarillas de quebradas importantes n = 25 años
- Alcantarillas de quebradas menores n = 15 años
- Drenaje de plataforma y Sub drenes n = 15 años

2.2.6. Completación y transferencia de datos hidrológicos

Método de relación normalizada

Para este método se utilizan los valores observados en las estaciones cercanas que están distribuidas uniformemente alrededor de la estación incompleta y que tienen los registros faltantes para estimar la lluvia faltante en una estación pluviométrica. Los valores observados en estas estaciones auxiliares se ponderan mediante las relaciones o cocientes con respecto a la precipitación media correspondiente. (Preciado et al., 2011)

Es decir, que el dato faltante anual (o mensual) PX será igual a:

$$P_{x} = \frac{1}{n} \left(\frac{N_{x}}{N_{1}} P_{1} + \dots + \frac{N_{x}}{N_{n}} P_{n} \right)$$
(21)

Donde:

 P_x = Precipitación de la estación a completar

n = estaciones con datos, estaciones cercanas a la estación a la cual será completada

 N_x = Precipitación media anual (o media mensual) en la estación incompleta, en milímetros.

 $N_1 \dots N_n$ = Precipitación media anual (o media mensual) en las estaciones auxiliares 1 … n, en milímetros

 $P_1 \dots P_n$ = precipitación anual (o mensual) observada en las estaciones 1 ... n, para la misma fecha que falta en milímetros.

Transferencia de información hidrológica

Cuando no se conocen las intensidades en alguna de las cuencas, es necesario transferirlas previamente. Dado que las intensidades máximas son una variable poco frecuente, la función de transferencia se determina utilizando el principio de similitud. (Ortiz, 2016).

La siguiente ecuación es válida para transferir información de intensidades de precipitación y frecuencia.

$$\frac{I_0 t_0}{H_0} = \frac{I_d t_d}{H_d}$$
(22)

$$I_d = \left(\frac{H_d}{H_0}\right) \left(\frac{t_0}{t_d}\right) I_0 = H_e * t_e^{-1} * I_0$$
⁽²³⁾

37

Id= Intensidad de precipitación en la cuenca destino

I0=Intensidad de precipitación en la cuenca de origen

Id=Escala de periodos de duración

He=Escala de altitudes

2.2.7. Análisis estadístico de datos Hidrológicos

Para el análisis estadístico de datos hidrológicos generalmente se cuenta con un registro de datos hidrometeorológicos, como precipitaciones, caudales, evapotranspiración y temperaturas. A partir de su comprensión del problema físico, seleccionará un modelo probabilístico que represente de manera adecuada el comportamiento de la variable. (Villón, 2006).

Los valores máximos o mínimos de los conjuntos de datos se denominan valores extremos. La distribución de valores extremos de Gumbel y la distribución Log-Pearson Tipo III son dos distribuciones que se ajustan adecuadamente al fenómeno de las crecidas de ríos y/o a los datos de precipitaciones máximas anuales. (Chow, 2000).

Distribución Log - Pearson tipo III

Esta distribución fue creada como una técnica para ajustar una curva a ciertos datos. Su utilización está respaldada, ya que ha demostrado ser efectiva en muchas aplicaciones, especialmente en el análisis de picos de crecientes. (Chow, 1994)

Dicha distribución es expresada por:

$$f(x) = \frac{\lambda^{\beta}(x-\varepsilon)^{\beta-1}e^{-\lambda(y-\varepsilon)}}{\Gamma(\beta)}$$
(24)

$$y = logx \tag{25}$$

$$\lambda = \frac{s_x}{\sqrt{\beta}} \tag{26}$$

38

$$\beta = \left(\frac{2}{c_s}\right)^2 \tag{27}$$

$$\varepsilon = \bar{\mathsf{X}} - S_x \sqrt{\beta} \tag{28}$$

f(x) = función de densidad de probabilidad

 $\lambda, \beta y \varepsilon$ = Parámetros para distribución de probabilidad

 Γ = Funcion gamma

e = Numero de Euler

 σ = Desviación típica

 $\sigma^2 = Varianza$

 C_s = Coeficiente de asimetría

Distribución Gumbel

La distribución de Gumbel, también conocida como distribución de valores extremos, se utiliza comúnmente para analizar variables meteorológicas, ya que se enfoca en los valores extremos y se ajusta adecuadamente para determinar los máximos como extremos. (Chow, 1994)

$$f(\mathbf{x}) = e^{-e^{-\alpha(\mathbf{x}-\beta)}}$$
(29)

siendo

$$\beta = \propto (x - \mu) \tag{30}$$

$$\alpha = \frac{1.28255}{S_{\chi}} \tag{31}$$

$$\mu = \bar{\mathbf{x}} - 0.45005 \, S_x \tag{32}$$

e = Numero de Euler

 \bar{x} = Media aritmética de la muestra

 S_x = Desviación típica de la muestra

Estadístico de prueba de Smirnov - Kolmogorov

Esta prueba implica comparar las diferencias entre la probabilidad empírica de los datos muestrales y la probabilidad teórica, tomando como referencia el valor máximo del valor absoluto de la diferencia entre el valor observado y el valor esperado según la teoría del modelo. (Villón, 2007).

$$\Delta = \max|F(x) - P(x)| \tag{33}$$

Donde:

 Δ = Estadísticos de Smirnov – Kolmogorov, cuyo valor representa la máxima diferencia entre la probabilidad ajustada y la probabilidad empírica.

F(x) = Probabilidad de la distribución teórica

P(x) = probabilidad experimental o empírica de los datos, denominado también frecuencia acumulada.

El estadístico Δ_0 es un valor crítico para un nivel de significancia \propto se tiene que

$$P[max|F(x) - P(x)| \ge \Delta_0] = \alpha \tag{34}$$

$$\begin{array}{c} o\\ P(\Delta \ge \Delta_0) = \propto \end{array} \tag{35}$$

También:

$$P(\Delta < \Delta_0) = 1 - \alpha \tag{36}$$

Valores críticos de Δ_0 del estadístico Smirnov – Kolmogorov Δ , para varios valores de *N* y niveles de significancia \propto .

Tabla 06

Valores críticos de $\Delta 0$ del estadístico Smirnov – Kolmogorov

Tamaño	Nivel de significación α				
muestral N	0.2	0.15	0.1	0.05	0.01
1	0.9	0.925	0.95	0.975	0.995
2	0.684	0.726	0.776	0.842	0.929
3	0.565	0.597	0.642	0.708	0.828
4	0.494	0.525	0.564	0.624	0.733
5	0.446	0.474	0.51	0.565	0.669
6	0.0.41	0.436	0.47	0.521	0.618
7	0.381	0.405	0.438	0.486	0.577
8	0.358	0.381	0.411	0.457	0.543
9	0.339	0.36	0.388	0.432	0.514
10	0.322	0.342	0.368	0.41	0.49
11	0.307	0.326	0.352	0.391	0.468
12	0.295	0.313	0.338	0.375	0.45
13	0.284	0.302	0.325	0.361	0.433
14	0.274	0.292	0.314	0.349	0.418
15	0.266	0.283	0.304	0.338	0.404
16	0.258	0.274	0.295	0.328	0.392
17	0.25	0.266	0.286	0.318	0.381
18	0.244	0.259	0.278	0.309	0.371
19	0.237	0.252	0.272	0.301	0.363
20	0.231	0.246	0.264	0.294	0.356
25	0.21	0.22	0.24	0.27	0.32
30	0.19	0.2	0.22	0.24	0.29
35	0.18	0.19	0.21	0.23	0.27
N > 35	$\frac{1.07}{\sqrt{N}}$	$\frac{1.14}{\sqrt{N}}$	$\frac{1.22}{\sqrt{N}}$	$\frac{1.36}{\sqrt{N}}$	$\frac{1.63}{\sqrt{N}}$

Nota. En la tabla observamos Valores críticos de Δ_0 del estadístico Smirnov – Kolmogorov Δ , para varios valores de N y niveles de significancia \propto tomada del libro de Hidrología estadística estadística de Máximo Villon (2007).

2.2.8. Curvas Intensidad Duración y Frecuencia (IDF)

La curva IDF es un componente que relaciona la intensidad de la lluvia (mm/hr) con el tiempo en minutos durante la precipitación, y también considera la frecuencia de ocurrencia de un evento según el periodo de retorno utilizado en el diseño. (MTC, 2012).

Para generar las curvas IDF deben provenir de los registros pluviográficos de la zona de estudio. Sin embargo, estos deben ser los registros más altos de una serie temporal de varios años, con el fin de realizar el estudio de frecuencia utilizando cada uno de las series así formadas.

Nota. La imagen muestra un ejemplo de las curvas de intensidad – duración – frecuencias para lluvias máximas, tomada del libro de hidrología, hidráulica y drenaje del MTC (2012).

La duración de la lluvia de diseño para el drenaje en consideración es igual al tiempo de concentración (tc), ya que la escorrentía llega a su pico en el tiempo de concentración, en el momento en que toda el área está contribuyendo al flujo en la salida. (MTC, 2012).

Según MTC 2012, menciona que cuando no se tenga registros pluviográficos que permitan obtener las intensidades máximas menores a 1 hora, se puede utilizar la metodología propuesta por Dick Peschke para calcular estas intensidades, ya que relaciona el tiempo de duración de la tormenta con la precipitación máxima en 24 horas. La expresión es la siguiente:

$$P_d = P_{24h} \left(\frac{d}{1440}\right)^{0.25} \tag{37}$$

Donde:

 P_d =Precipitación total (mm)

d = duración en minutos

 P_{24h} = Precipitación máxima en 24 horas (mm)

2.2.9. Modelamiento hidrológico con HEC-HMS

HEC-HMS es un software de modelamiento que permite simular la respuesta de una cuenca en términos de escurrimiento superficial, como resultado de la precipitación, representando la cuenca como un conjunto integrado de componentes hidrológicos e hidráulicos. Para emplear el programa, se requiere disponer de las curvas IDF y de los parámetros morfológicos de la cuenca. (MTC, 2012)

Hietograma de diseño utilizando curvas IDF

La gráfica del hietograma representa la distribución temporal de la intensidad de la lluvia en mm y el tiempo ya sea en horas o minutos desde el inicio hasta el final de la tormenta, lo que permite identificar la máxima intensidad y el momento en que se produce. (Villón, 2002).

Método del bloque alterno

Para generar los hietogramas de diseño, este método requiere las curvas IDF. Este método produce hietogramas que reflejan la precipitación caída en ciertos rangos,

relacionando la duración de la intensidad con el tiempo total de la tormenta. Se ajusta la intensidad y la secuencia temporal para que la máxima intensidad ocurra en el centro de la duración, con los bloques ordenados de manera descendente a ambos extremos, facilitando así la construcción del hietograma de diseño. (Chow, 1994)

Numero de curva

En un estudio realizado por la universidad agraria la Molina y la Autoridad Nacional del Agua, realizaron un mapa de numero de curva con sistema de información geográfica (SIG), los cuales permiten trabajar con datos diversos como mapas de cobertura y uso elaborados por MINAM, uso de suelo elaborado por FAO UNESCO, y DEM obtenido de Shuttle Radar Topography MIssion-SRTM, obteniendo como resultado mapas ráster de Numero de Curva. (Portuguez & Verano, 2016)

Un valor de numero de curva N=100 quiere decir que toda la lluvia se convierte en escorrentía, mientras que un valor N=1 señala que toda la lluvia se infiltra, por lo que los números de curva representan escorrentía, para hallar este número de curva es necesario conocer las prácticas agrícolas existentes en la cuenca, así como la condición hidrológica y grupo hidrológico (Villón, 2002).

Hidrograma sintético triangular del SCS

El hidrograma adimensional del SCS utiliza el número de curva para calcular la precipitación neta y la precipitación retenida, considerando las características morfológicas y la cobertura del suelo de la cuenca en estudio. El volumen de agua resultante de la diferencia entre la lluvia neta y las abstracciones se propaga por el río siguiendo el hidrograma unitario. El método HUS del SCS se basa en la creación de un hidrograma unitario que refleja la respuesta de una cuenca a una lluvia efectiva de una pulgada (o un milímetro) de profundidad durante una duración específica. (MTC, 2012).

Basándose en la revisión de una gran cantidad de hidrogramas unitarios, el Soil Conservation Service (SCS) propone este hidrograma en el que el tiempo se expresa en horas y el caudal en m3/s.cm, y se elabora como se muestra.

Tiempo de recesión (t_R) : puede aproximarse a:

$$t_{\rm R} = 1.67 * {\rm Tp}$$
 (38)

Donde:

Tp: tiempo de ocurrencia del pico en horas

Caudal pico (q_p) : siendo el área bajo el HU debe ser igual a una escorrentía de 1 cm

$$q_p = \frac{2.08*A}{\mathrm{Tp}} \tag{39}$$

Donde:

A: Área de drenaje en km2

Tp: Tiempo de ocurrencia del pico en horas

Tiempo de retardo (t_p) : en estudios de muchas cuencas se demuestra que el tiempo de retardo (el intervalo entre el centroide del hietograma y el caudal pico) en horas y se halla de la siguiente manera:

$$t_p = 0.6 * t_c$$
 (40)

Donde:

Tc: Tiempo de concentración de la cuenca

Tiempo de ocurrencia del pico (TP): se expresa como

$$TP = \frac{D}{2} + t_{\rm p} \tag{41}$$

Donde:

D: duración de la lluvia (h)

Figura 19

Hidrograma unitario triangular del SCS

Nota. La figura fue recopilada del libro de hidrologia apliacada de Ven te Chow (1994).

2.2.10. Coeficiente de rugosidad de Manning (n)

Este coeficiente indica el grado de resistencia que las paredes y el fondo del canal presentan al flujo de agua, ya sea natural o artificial, Cuanto más ásperas o rugosas sean estas superficies, mayor será la dificultad que enfrentará el agua para desplazarse. (Martinez & Solano, 2020).

Tabla 07

Valores del coeficiente de rugosidad de Manning (n)

Tipo de canal y descripción			Minimo	Normal	Máximo
С	Cana	iles revestidos			
	C1	No metal			
		a) Cemento			
		1 superficie pulida	0.01	0.011	0.013
		2 Mortero	0.011	0.013	0.015
		b) Concreto			
		1 Terminada con llana metalica	0.011	0.013	0.015
		2 Terminada con llana de madera	0.013	0.015	0.016
		3 Pulido con gravas de fondo	0.015	0.017	0.02
		4 Sin pulir	0.014	0.017	0.02
		5 Lanzado seccion buena	0.016	0.019	0.023
		6 Lanzado seccion ondulada	0.018	0.022	0.025
		7 Sobre roca bien excavada	0.017	0.02	
		8 Sobre roca irregularmente excavada	0.022	0.027	
D	Corn	ientes naturales			
	1ת	Corrientes menores (ancho superficial en nivel creciente			
	<i>D</i> 1	< 100 pies			
		a) Corrientes en planicies			
		1 Limpias, rectas máximo nivel, sin monticulos ni pozos	0.025	0.02	0.022
		profundos	0.025	0.03	0.033
		2 Igual al anterior, pero con piedras y malezas	0.03	0.035	0.04
		3 Limpio, serpenteante, algunos pozos y bancos de arena	0.033	0.04	0.045
		4 Igual al anterior, pero con algunos matorrales y piedras	0.035	0.045	0.05
		5 igual al anterior, niveles bajos, pendientes y secciones	0.04	0.048	0.055
		más ineficientes			
		6 Igual al 4 pero con más piedras	0.045	0.05	0.06
		7 Tramos lentos, con malezas y nozos profindos	0.045	0.05	0.00
		/ Tranos kikos, con maczas y pozos protundos	0.05	0.07	0.00
		8 Tramos con muchas malezas, pozos profundos o canales	0.075	0.1	0.15
		de crecientes con muchos arboles con matorrales baios	0.075	0.1	0.15
		de crecientes con macilos arbores con matorrales bajos			
		b) Corrientes montañosas, sin vegetación en el canal, bancas			
		usualmente empinadas, árboles y matorrales a lo largo de las			
		bancas sumergidas en niveles altos			
		1 Fondo: gravas, cantos rodados y algunas rocas	0.03	0.04	0.05
		2 Fondo: cantos rodados con rocas grandes	0.04	0.05	0.07
		_			

D 2	Planicies de inundación			
	a) Pastizales, sin matorrales			
	1 Pasto corto	0.025	0.03	0.035
	2 Pasto alto	0.03	0.035	0.05
	b) Áreas cultivadas			
	1 Sin cultivo	0.02	0.03	0.035
	2 Cultivos en linea maduros	0.025	0.035	0.045
	3 Campos de cultivo maduros	0.03	0.04	0.05
	c) Matorrales			
	1 Matorrales dispersos, mucha maleza	0.035	0.05	0.07
	2 Pocos matorrales y árboles en invierno	0.035	0.05	0.06
	3 Pocos matorrales y árboles en verano	0.04	0.06	0.08
	4 Matorrales medios a densos en invierno	0.045	0.07	0.11
	5 Matorrales medios a densos en verano	0.07	0.1	0.16
	d) Árboles			
	1 Sauces densos rectos en verano	0.11	0.15	0.2
	2 Terreno limpio, con troncos sin retoños	0.03	0.04	0.05
	3 Igual al anterior, pero con gran cantidad de retoños	0.05	0.06	0.08
	 Gran cantidad de árboles, algunos troncos caidos, con poco crecimiento de matorrales, nivel de agua por debajo de las ramas 	0.08	0.1	0.12
	5 Igual al anterior, pero con nivel creciente por encima de las ramas	0.1	0.12	0.16
D3	Corrientes mayores (anchos superficiales, nivel de			
	creciente >100 pies). El valor de n es menor que el			
	correspondiente a corrientes menores con descripción			
	similar, debido a que las banca ofrecen resistencia menos			
	efectiva			
	a) Sección rectangular, sin cantos rodados ni matorrales	0.025		0.06
	b) Sección irregular y rugosa	0.035		0.1

Nota. En la tabla observamos Valores para el coeficiente de rugosidad n en corrientes naturales y planicies, tomada del libro de Hidrología aplicada de Chow (1994).

Para la estimación de este coeficiente n en un cauce natural hay diversos métodos, uno de ellos es el de Cowan que presentamos a continuación.

Método de Cowan

En 1956, Cowan creó una fórmula que analiza la interacción de varios parámetros que describen o valoran las características particulares de un cauce para calcular el valor del coeficiente de rugosidad de Manning.

$$n = (n_0 + n_1 + n_2 + n_3 + n_4) * m_5 \tag{42}$$

Los valores que se presenta la tabla N°08, considera el material del perímetro, las irregularidades, las variaciones en la sección transversal, el impacto de las obstrucciones, la vegetación y la curvatura o meandros en planta.

Donde:

 n_0 : Rugosidad base para un canal recto, uniforme, prismático y con rugosidad homogénea.

 n_1 : Rugosidad adicional debida a irregularidades superficiales del perímetro mojado a lo largo del tramo en estudio.

 n_2 : Rugosidad adicional equivalente debida a variación de forma y de

dimensiones de las secciones a lo largo del tramo en estudio.

 n_3 : Rugosidad equivalente debida a obstrucciones existentes en el cauce.

 n_4 : Rugosidad adicional equivalente debida a la presencia de vegetación.

 m_5 : Factor de corrección para incorporar efecto de sinuosidad del cauce o

presencia de meandros. (Chow, 1994)

I abla vo	Tab	la	08
-----------	-----	----	----

Condiciones del cauce			Valores
	Tierra		0.02
Material	Corte en roca		0.025
consolidado	Grava fina	110	0.024
	Grava gruesa		0.028
	Suave		0.000
Grado de	Menor	n.	0.005
Irregularidad	Moderado	111	0.01
	Severo		0.02
X7 · · · / 1 1	Gradual		0.000
variación de la sección transversal	Ocasionalmente alternante	n ₂	0.005
sección transversar	Frecuentemente Alternante		0.010 - 0.015
	Insignificante		0.000
Efeccto de las	Menor	n ₃	0.010 - 0.015
obstrucciones	Apreciable		0.020 - 0.030
	Severo		0.040 - 0.060
	Baja		0.005 - 0.01
Vagatación	Media	n.	0.010 - 0.025
Vegetación	Alta	114	0.025 - 0.05
	Muy alta		0.05 - 1
Constitution 1	Menor		1.000
meandros de	Apreciable	m_5	1.150
	Severa		1.300

Valores para el cálculo de rugosidad por el método de Cowan

Nota. En la tabla obtenemos valores necesarios para calcular la rugosidad n por el método de Cowan, tomada del libro de Hidrología aplicada de Chow (1994).

2.2.11. Tránsito de avenidas

El tránsito de avenidas consiste en obtener un hidrograma de un punto aguas abajo a partir del hidrograma de un punto aguas arriba, o en calcular el hidrograma de salida de un depósito a partir del hidrograma de entrada. La utilidad de este procedimiento es clara: el carácter catastrófico de una avenida está directamente relacionado con la altura del pico del hidrograma (caudal máximo), por lo que es fundamental calcular cómo disminuye ese pico a medida que se avanza aguas abajo. El hidrograma generado inicialmente será más alto y de menor duración, y conforme avanza, el volumen pasará por los puntos siguientes con un

hidrograma cada vez más aplanado, como se muestra en la figura a continuación. (Sánchez, 2013)

Figura 20

Hidrograma de tránsito de avenidas

Nota. La imagen muestra el comportamiento del hidrograma del a lo largo de un canal, en función a su caudal y tiempo. Tomada de Sánchez (2013).

Método de Muskingum

El método desarrollado por G.T. McCarthy en 1938, conocido como Muskingum, lleva el nombre del distrito donde fue creado por el Servicio de Conservación del distrito de Muskingum, Ohio, EE. UU. Este método modela el almacenamiento en un cauce teniendo en cuenta la combinación de dos tipos de almacenamiento: el prismático, que se forma a partir de un volumen de sección transversal constante a lo largo del cauce, y el almacenamiento en cuña, que surge de la diferencia entre los caudales de entrada y salida, como se muestra a continuación. (Chow, 1994).

Figura 21 *Almacenamiento según el método de Muskingum*

Nota. La imagen muestra el almacenamiento por cuña y por prisma en un cauce natural, tomada del libro de hidrología aplicada de Chow (1994).

Como se supone que el caudal de salida es proporcional al área de la sección del cauce, el volumen de almacenamiento prismático es proporcional al caudal de salida:

$$S = KQ \tag{43}$$

El volumen de almacenamiento por cuña es proporcional a la diferencia entre las entradas y salidas.

$$S = KX(I - Q) \tag{44}$$

En función de la forma de almacenamiento en cuña, X es un factor de ponderación que puede tener valores entre 0 y 0.5; cuando X=0 no hay cuña, no hay curva de remanso y el almacenamiento actúa como un embalse S=KQ; No habrá atenuación en el pico y la cuña está completamente desarrollada cuando X=0.5. En cauces naturales de baja pendiente y muy caudalosos, X suele estar cerca de 0 y, cuanto más caudal y pendiente tenga, estará cerca de 0.5. (Chow, 1994).

El almacenamiento total en el tramo de cauce considerado seria

$$S = KQ + KX(I - Q) = K[XI + (I - X)Q]$$
(45)

Analizando en dos instantes de tiempo consecutivos 1 y 2, la variación en el almacenamiento a través del tramo sería la diferencia entre ambos almacenamientos.

$$S_2 - S_1 = K[XI_2 + (I - X)Q_2] - K[XI_1 + (I - X)Q_1]$$
(46)

Al utilizar la ecuación de continuidad, la variación en el almacenamiento es igual a:

$$S_2 - S_1 = \frac{l_1 + l_2}{2} \Delta t - \frac{Q_1 + Q_2}{2} \Delta t \tag{47}$$

Remplazando (43) en (42) tenemos:

$$K[XI_2 + (I - X)Q_2] - K[XI_1 + (I - X)Q_1] = \frac{I_1 + I_2}{2}\Delta t - \frac{Q_1 + Q_2}{2}\Delta t$$
(48)

Despejando Q_2 obtenemos:

$$Q_{2} = \frac{KX + \frac{\Delta t}{2}}{K(1-X) + \frac{\Delta t}{2}} I_{1} + \frac{-KX + \frac{\Delta t}{2}}{K(1-X) + \frac{\Delta t}{2}} I_{2} + \frac{K(1-X) - \frac{\Delta t}{2}}{K(1-X) + \frac{\Delta t}{2}} Q_{1}$$
(49)

Haciendo cambio de valores

$$C1 = \frac{KX + \frac{\Delta t}{2}}{K(1-X) + \frac{\Delta t}{2}}$$
(50)

$$C2 = \frac{-KX + \frac{\Delta t}{2}}{K(1-X) + \frac{\Delta t}{2}}$$
(51)

$$C3 = \frac{K(1-X) - \frac{\Delta t}{2}}{K(1-X) + \frac{\Delta t}{2}}$$
(52)

Por lo tanto, la ecuación quedaría se la siguiente manera

$$Q_2 = C_1 I_1 + C_2 I_2 + C_3 Q_1 \tag{53}$$

Se comprueba que la suma de valores C_1 , C_2 y $C_3 = 1$ esto como comprobación de los cálculos realizados manualmente

2.2.12. Modelamiento hidráulico con Iber

El modelo numérico bidimensional Iber está diseñado para simular el flujo turbulento en lámina libre en cauces naturales. Se utiliza para la evaluación de zonas inundables, el cálculo de áreas de flujo preferente y el análisis hidráulico de encausamientos, entre otros. Este modelo fue desarrollado por el Grupo de Ingeniería de Agua y Medio Ambiente (GEAMA) de la Universidad de La Coruña, el Grupo de Ingeniería Matemática de la Universidad de Santiago de Compostela, el Instituto FLUMEN de la Universidad Politécnica de Cataluña, y el Centro Internacional de Métodos Numéricos en Ingeniería, con el apoyo del Centro de Estudios Hidrográficos del CEDEX. Iber se basa en dos herramientas de modelización numérica bidimensional existentes, Turbillón y CARPA, ambas utilizando el método de volúmenes finitos, y se integra en un único código con capacidades ampliadas. (CEDEX & FLUMEN, 2012).

La herramienta IBER cuenta actualmente con tres módulos de cálculo principales: un módulo hidrodinámico, un módulo de turbulencia y un módulo de transporte de sedimentos. Todos los módulos operan sobre una malla no estructurada de volúmenes finitos, compuesta por elementos triangulares y cuadriláteros. En este caso, nos centraremos en el módulo hidrodinámico. (CEDEX & FLUMEN, 2012).

Modelo matemático

En el módulo hidrodinámico, que compone la base de IBER, se dan solución a las ecuaciones de aguas someras o poco profundas bidimensionales o ecuaciones de Saint Venant, incorporando los efectos de la turbulencia y rozamiento superficial por el viento. Y se pueden expresar como:

$$\frac{\partial h}{\partial t} + \frac{\partial hU}{\partial x} + \frac{\partial hUy}{\partial y} = 0$$
(54)

$$\frac{\partial}{\partial t}(hU_x) + \frac{\partial}{\partial x}\left(hU_x^2 + g\frac{h^2}{2}\right) + \frac{\partial}{\partial y}\left(hU_xU_y\right) = -gh\frac{\partial Z_b}{\partial x} + \frac{\tau_{s,x}}{\rho} - \frac{\tau_{b,x}}{\rho} + \tag{55}$$

$$\frac{\partial}{\partial x} \left(v_t h \frac{\partial U_x}{\partial x} \right) + \frac{\partial}{\partial y} \left(v_t h \frac{\partial U_x}{\partial y} \right)$$
(56)

54

$$\frac{\partial}{\partial t}(hU_{y}) + \frac{\partial}{\partial x}(hU_{x}U_{y}) + \frac{\partial}{\partial y}\left(hU_{y}^{2} + g\frac{h^{2}}{2}\right) = -gh\frac{\partial Z_{b}}{\partial y} + \frac{\tau_{s,y}}{\rho} - \frac{\tau_{b,y}}{\rho} + \frac{\partial}{\partial x}\left(v_{t}h\frac{\partial U_{y}}{\partial x}\right) + \frac{\partial}{\partial y}\left(v_{t}h\frac{\partial U_{y}}{\partial y}\right)$$
(57)

h = tirante hidráulico

 $U_x U_y$ = velocidades horizontales promediadas en profundidad

g aceleración de la gravedad

 ρ = densidad del agua

 $Z_b = \cot a \ de \ fondo$

 τ_s = fricción en la superficie libre debida al rozamiento producido por el viento

 τ_b = fricción debida al rozamiento del fondo

 V_t = viscosidad turbulenta

La fricción de fondo se evalúa utilizando la fórmula de Manning de la siguiente manera:

$$\tau_{b,x} = \rho g h \frac{n^2 U_x |U|^2}{h^{\frac{4}{3}}} \tag{58}$$

$$\tau_{b,y} = \rho g h \frac{n^2 U_y |U|^2}{h^{4/3}} \tag{59}$$

La fuerza de rozamiento ejercida por el viento sobre la superficie libre se estima a partir de la velocidad del viento a 10m de altura, utilizando para ello la ecuación de Van Dorn

$$\tau_{s,x} = \rho C_{VD} | V_{10} | V_{x,10} \tag{60}$$

$$\tau_{s,y} = \rho C_{VD} | V_{10} | V_{y,10} \tag{61}$$

55

h = tirante hidráulico

 $V_{x,10}$ $V_{y,10}$ = componentes de la velocidad del viento a 10m de altura

 $|V_{10}|$ = modulo de la velocidad del viento a 10m de altura

 C_{VD} = coeficiente de arrastre superficial que se calcula en función a la velocidad del viento a partir de la siguiente expresión

$$|V_{10}| \ge 5.6 \frac{m}{s} \to C_{VD} = 1.2 * 10^{-6} + 2.25 * 10^{-6} (1 - \frac{5.6}{|V_{10}|})^2$$
 (62)

Las ecuaciones hidrodinámicas, así como el coeficiente de Manning y la velocidad del viento, pueden ser impuestas de manera variable tanto en el espacio como en el tiempo.

Modelo Numérico

El modelo IBER emplea el Método de los Volúmenes Finitos (FVM) para resolver las ecuaciones de Saint Venant. Este método crea un volumen de control a partir de la malla original, uniendo los baricentros de los triángulos o cuadriláteros. Dentro de cada volumen de control, se calculan variables como la velocidad en las direcciones x e y, y la profundidad para cada celda. Los valores obtenidos representan la media del elemento y se almacenan en su centro geométrico. Existen dos tipos de mallas: la malla estructurada, compuesta por elementos de 3 o 4 lados organizados en forma de matriz, y la malla no estructurada, formada por elementos de 3 o 4 lados que no están ordenados entre sí (Cea, 2005).

Malla de cálculo

Para resolver una ecuación diferencial utilizando el método de volúmenes finitos, es fundamental realizar una discretización espacial del dominio en estudio. Esto implica dividir el dominio en celdas de tamaño relativamente pequeño, formando una malla de cálculo. IBER utiliza mallas no estructuradas compuestas por elementos con 3 o 4 lados, permitiendo la combinación de ambos tipos dentro de una misma malla. La principal ventaja de las mallas no estructuradas es su capacidad para adaptarse fácilmente a cualquier geometría, sin requerir

una organización interna específica. Esta característica las hace especialmente adecuadas para aplicaciones en hidráulica fluvial. (CEDEX & FLUMEN, 2012).

Nota. En figura se muestra Malla de cálculo formada por una Red Irregular de Triángulos Rectángulos (RTIN). Tomada de CEDEX & FLUMEN (2014).

2.3. DEFINICION DE TÉRMINOS BÁSICOS

Caudal: El caudal es el volumen de agua que pasa por una sección transversal de un río, arroyo, canal u otro curso de agua en un periodo de tiempo específico. (Fetter, 1994)

Aforo de caudal: Es el conjunto de operaciones que deber ser realizadas en estaciones de aforo para determinar el caudal de un cauce natural únicamente conociendo la cota del nivel de agua.

Hidrología: La hidrología es la ciencia natural que investiga el agua, su ocurrencia, circulación y distribución en la superficie terrestre. También estudia sus propiedades químicas y físicas y su interacción con el medio ambiente, incluyendo los seres vivos.(Villón, 2004)

Tirante: El nivel de agua en una corriente es una medida expresada en metros o centímetros, que indica la altura alcanzada por el agua en relación con un nivel de referencia determinado. (Pilán, Fernandez, & Pilán, 2007)

Riesgo de falla: Indica la probabilidad de que un evento específico ocurra dentro de un determinado periodo de retorno. (MTC, 2012)

Curva IDF (Intensidad – Duración – Frecuencia): Es una gráfica que relaciona los valores de duración (equivalentes al tiempo de concentración) y un período de retorno seleccionado para determinar la intensidad máxima de diseño. (Chow, 2000)

Cauce: Curso de agua por el cual fluye permanentemente agua.

Crecida: Es la presencia de abundante cantidad de agua en una sección trasversal de un cauce natural, puede provocar el desbordamiento

Fenómeno El Niño: Calentamiento extraordinario de la temperatura de las aguas ubicadas en el pacífico oriental la que influencia de manera significativa en el clima a nivel mundial.

Velocidad de cauce: Es la rapidez con la que el flujo de agua se desplaza en un punto particular de un curso fluvial.
Rugosidad: Se refiere a la irregularidad de la superficie del fondo de un conducto hidráulico. Esta rugosidad puede variar en tamaño y forma dependiendo del tipo de conducto, que puede incluir tuberías, canales o el lecho de un río. (Chow, 1994)

Cuenca: Es la superficie de terreno en donde se presenta el escurrimiento superficial y tiene un punto de salida. (Manchemo, Vásconez, & Araque, 2018)

Estación pluviométrica: Es un equipo o instalación destinada a registrar y medir la cantidad de precipitación en un área específica. (MTC, 2012)

Dron: Conocido también como Vehículos Aéreos No Tripulados (UAV) que no transportar un operador humano, utilizando fuerzas aerodinámicas para proporcionar elevación del vehículo y son piloteados a distancia. (Ferraro, 2018)

DEM: Es la representación digital del relieve del terreno como una superficie continua, utilizando Modelos Digitales de Elevación (DEM) que se crean a partir de un conjunto finito de datos de elevación. (Li, Zhu, & Gold, 2004).

Mosaico: Por otro lado, un mosaico es una composición de imágenes capturadas desde una o más cámaras, que presentan áreas superpuestas, y que se ensamblan en una sola imagen para ampliar la cobertura visual de la escena. Cuando el mosaico se ajusta para corregir las distorsiones provocadas por el relieve del terreno y los objetos presentes en él, se le denomina ortomosaico. (Li, Zhu, & Gold, 2004)

Quebrada: Es una característica topográfica de pequeña escala resultante de la acción de agentes geológicos como el viento o la fuerza de la precipitación y escorrentía en un área de terreno susceptible a la erosión. (Castillo, 2006)

Soil Conservation Service (SCS): Es una agencia de Estados Unidos dedicada a la preservación y manejo sostenible de los recursos naturales y del suelo.

CAPITULO III:

MATERIALES Y MÉTODOS

3.1. UBICACIÓN DE LA ZONA DE ESTUDIO

El lugar en el cual se lleva a cabo la investigación corresponde al sector Adacucho situada al noreste de la zona urbana del distrito de Namora, provincia de Cajamarca.

• Ubicación política

- Departamento : Cajamarca
- Provincia : Cajamarca
- Distrito : Namora
- Sector : Adacucho

• Ubicación hidrográfica

- Unidad hidrográfica : Marañón Cuenca : Rio Crisnejas
- Vertiente : Atlántico

• Ubicación geográfica

Coordenadas: Sistema Universal Transversal Mercator UTM - WGS 84 del punto emisor

Este (X): 795501.92

Norte(Y): 9203494.23

Figura 23 Mapa de ubicación del proyecto.

Nota. Las figuras muestras la ubicación departamental, provincial y distrital en donde se llevó a cabo lainvestigación, elaborado con la ayuda de ArcGis y con datos de shapefile que nos brinda GEOGPS Perú.

Figura 24 Delimitación del sector Adacucho.

Nota: En la figura se observa delimitación tentativa de las zonas en estudio, realizada exclusivamente para esta investigación. Esta delimitación se basa en testimonios de los pobladores locales, ya que la municipalidad del distrito no cuenta con mapas políticos de la localidad. Elaborado en el año 2024.

Accesibilidad

Para llegar al lugar de estudio se viaja desde la ciudad de Cajamarca por vía terrestre hasta la plaza de armas del distrito de Namora, en un tiempo aproximado de 45 minutos. Luego nos dirigimos al punto de aforo, tomando la carreta denominada ojo de agua, a 610 m desde la plaza de armas de Namora, en un tiempo aproximado de 5 minutos en automóvil, donde en la misma carretera encontraremos un puente de alcantarilla como referencia, de coordenadas Este (X): 795501.92; Norte(Y): 9203494.23.

Longitud y área de estudio

La longitud del tramo en estudio es de 460 m, medidos con estación total y un área de influencia de 20.515ha, calculada con fotogrametría.

3.2. MATERIALES Y EQUIPOS

Materiales:

- Modelo digital de elevación (MED) de Alos Palsar
- Información de precipitaciones máximas a 24 horas
- Materiales de escritorio: lapiceros, papel bond, libreta de campo.
- *Materiales de campo:* Cemento, Arena, picota, palana, machete, botas de agua, wincha de 3m, Wincha de 50m, sogas, sprite, esmalte, varillas del fierro

Equipos:

- Dron phantom 4RTK
- Estación total Leica TS09plus 1"
- Prima, Trípode, Jalones
- Teléfono celular
- Laptop Asus Ryzen 5
- Camioneta 4x4

3.3. PROCEDIMIENTO

3.3.1. Recopilación de la Información cartográfica y satelital

La cartografía empleada para caracterizar geomorfológicamente la cuenca fue obtenida a partir de un modelo de elevación digital (MED) con tamaño de celda 12.5 x12.5, descargado del satélite Alos Palsar, proporcionado por la Nasa mediante Earthdata search, que es una herramienta de la NASA que proporciona a los usuarios una amplia variedad de información relacionados con la tierra, como datos de atmosfera, superficie, océanos, criosfera, recopilados por observatorios de la tierra y satélites

Figura 25

Modelo de elevación digital (DEM)

Nota. La figura muestra un modelo de elevacion digital de tamaño 12.5 x12.5 m de tamaño de celda, fue obtenida del satelite Alos Palsar en el año (2024).

3.3.2. Recopilación de la Información Topográfica

La información topográfica está avocada a la obtención de datos batimétricos del cauce en estudio, con la ayuda de la base RTK del dron utilizado, creamos una poligonal abierta con punto de inicio en el lado izquierdo de la quebrada, y avanzamos colocando puntos de la poligonal en ambos márgenes hasta llegar al punto de aforo; Luego con la Estación total (TS09 plus 1") medimos datos batimétricos; las mediciones se hicieron en

secciones transversales, y distancia entre secciones de un mínimo de 5 metros y una máxima de 30 metros según las condiciones del terreno.

<caption><caption>

Nota. La imagen muestra el levantamiento topográfico a la quebrada Sarinmmayo con estacion total, realizado en el mes de octubre de (2023).

3.3.3. Recopilación de la información Fotogramétrica

Para obtener información fotogramétrica se utilizó un dron phantom 4 rtk. En primer lugar, se instaló la base rtk en la plaza de armas del distrito de Namora, luego se programó el vuelo tanto en zona urbana como rural, abarcando un área de 20.515 ha; dicho vuelo tuvo como duración 16.59 minutos, con un traslape entre imágenes del 70% tanto horizontal como vertical, altura de 100 metros, inclinación de cámara a 90°. Recopilando en total 308 imágenes.

Figura 27 *Programación del vuelo*

Nota. La siguiente figura muestra la programacion del vuelo, que abarca la zona en estudio, tanto urbana como rural, el vuelo se realizó en el mes de junio de (2023).

3.3.4. Caracterización del tramo en estudio según la hidráulica fluvial

Para la caracterización del tramo en estudio se realizó un recorrido completo, identificando los materiales existentes en el lecho de la quebrada, así como la morfología de la misma y las zonas de mayor relevancia, que nos permitan caracterizar el tramo en estudio. Para ello, se registraron las siguientes fotografías.

Nota. en la fotografía observamos la formación de meandros en estudio de la quebrada sarinmayo. Fotografia tomada en junio de (2024).

Figura 29 Fotografía del inicio del tramo en estudio

Nota. en la fotografía observamos material fracturado. Fotografía tomada en junio de (2024).

Figura 30 Fotografía del tramo en estudio

Nota. en la fotografía observamos el material fino en el lecho de la quebrada. fotografía tomada en junio de (2024).

Figura 31 Pendiente del tramo en estudio

Nota. La figura muestra una pendiente 2.33% del tramo en estudio, calculada por Taylor Schwuarz

3.3.5. Identificación de áreas inundadas del año 2013

Para determinar las zonas de inundación reportados en el año 2013 utilizamos los métodos geológicos, ya que identifica los depósitos de materiales arrastrados durante y después de la inundación, además de los testimonios orales de pobladores aledaños a la quebrada y así poder identificar las huellas de inundación.

Empezamos midiendo las distancias del margen de la quebrada hacia las huellas de inundación visibles, además de ubicar linealmente las huellas de inundación en ambos márgenes.

Nota. Medición desde la huella de inundación hasta el borde de la quebrada. Fotografía tomada en junio de (2024).

Figura 33 *Medición de longitud de inundación*

Nota. Medición de huella de inundación, Fotografía tomada en junio de (2024).

3.3.6. Recopilación de información Hidrológica

Para la siguiente investigación se utilizó las precipitaciones máximas a 24 horas registradas por la estación meteorológica más cercana al ámbito de influencia, siendo ésta la estación Namora; para saber si los datos son confiables es necesario hacer un análisis de consistencia, por ello que también se ha solicitado registro históricos de datos de las estaciones Augusto Weberbauer y La Encañada, esta información pluviométrica fue solicitada de manera formal, mediante documentos escritos, al Servicio Nacional de Meteorología e Hidrología (Senamhi -Cajamarca), los datos conseguidos son los siguientes:

Estación Meteorológica Namora

Tabla 09

Precipitaciones máximas a 24hr de la estación Namora

UBICACI	ÓN POLÍTICA:	UBICA	ACIÓ	ÓN GEOGRÁFICA:
DEPARTAMENTO	: CAJAMARCA	LATITUD	:	07° 12' 02" Sur
PROVINCIA	: CAJAMARCA	LONGITUD	:	78° 19' 40" Oeste
DISTRITO	: NAMORA	ALTITUD	:	2760 m.

AÑO/MES	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SETIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
1995	S/D	21.9	S/D	12.4	S/D	S/D	S/D	S/D	S/D	16.7	S/D	27.4
1996	S/D	24.2	27.1	S/D	S/D	S/D	S/D	S/D	S/D	11.0	S/D	S/D
1997	S/D	S/D	S/D	15.0	S/D	S/D	S/D	0.8	6.3	S/D	24.7	S/D
1998	32.7	26.2	20.7	49.5	13.3	0.9	0.0	1.8	4.7	19.6	16.7	17.4
1999	16.4	31.9	40.9	15.4	26.1	9.5	2.6	1.0	21.6	13.9	9.7	13.8
2000	10.1	21.2	39.1	15.2	34.8	5.6	1.6	16.4	10.8	11.2	14.8	30.4
2001	23.5	20.1	24.1	12.7	19.5	0.2	2.7	0.0	7.0	27.0	22.8	26.7
2002	13.6	24.0	31.6	24.7	8.1	3.1	6.5	3.5	19.9	25.2	9.9	19.6
2003	16.5	27.0	22.9	16.8	6.8	11.7	2.3	5.4	4.6	15.5	31.0	17.6
2004	25.4	19.4	14.3	14.4	15.4	3.4	3.3	4.6	14.5	15.9	16.7	23.8
2005	33.3	9.5	33.6	22.6	10.7	1.0	1.4	4.4	6.1	16.3	7.3	37.2
2006	33.7	12.6	24.3	20.3	3.5	17.0	2.0	8.7	17.3	22.5	21.8	18.8
2007	29.1	14.0	28.2	18.0	18.0	0.0	3.6	6.9	16.0	24.3	31.9	27.9
2008	30.3	28.9	35.0	22.5	8.6	11.8	1.3	5.0	9.8	20.5	26.3	<mark>9.8</mark>
2009	46.5	11.5	38.6	21.2	27.1	5.9	3.9	2.1	6.5	22.2	17.4	16.6
2010	20.2	42.7	33.6	19.0	9.6	8.9	7.5	0.0	9.4	20.1	17.5	21.5
2011	23.3	25.9	32.9	42.3	2.3	0.3	5.7	1.3	13.7	7.9	10.3	17.6
2012	25.4	19.7	21.0	16.0	10.4	4.5	0.0	3.2	4.4	26.0	28.6	11.6
2013	11.8	19.1	25.5	24.7	14.5	0.4	0.7	5.3	1.1	15.6	7.7	23.9
2014	24.7	36.6	36.4	19.5	14.9	1.0	4.3	0.0	5.8	14.2	24.4	21.7
2015	30.2	19.9	23.7	20.7	31.8	0.2	3.0	0.2	2.7	5.7	23.7	<mark>8.</mark> 6
2016	21.4	26.8	15.7	31.3	8.8	13.3	0.8	3.5	20.0	12.9	8.4	34.5
2017	42.9	11.8	41.0	18.7	12.2	10.6	0.0	4.2	8.2	24.1	18.3	21.9
2018	36.6	30.2	22.8	26.3	23.7	3.5	0.0	2.8	11.8	S/D	26.7	18.5
2019	8.5	24.9	28.7	20.5	12.0	3.5	1.6	0.0	12.0	15.5	13.4	26.7
2020	13.0	14.0	S/D	S/D	S/D	S/D	8.1	1.2	4.0	13.9	17.5	29.6
2021	27.3	30.8	40.2	16.6	12.4	3.9	2.5	11.3	10.0	32.9	24.8	17.7
2022	13.9	25.8	25.0	18.5	9.2	2.1	1.2	6.1	8.9	7.1	6.5	16.4

Nota. La tabla muestra un registro historico de las precipitaciones máximas a 24 hr de la estación Namora, los datos fueron otogados por el Senamhi en el mes de septiembre de 2023

Lorenza Valencia López ESPECIALISTA ADMINISTRATIVO CONTABLE DIRECCION ZONAL 3 SENAMHI - PERÚ D: Pje. Jaén 121-Urb. Ramón Castilla-Cajamarca T: 076-364500 C: 976681616 E: Ivalencia@senamhi.gob.pe W: www.senamhi.gob.pe

Estación Meteorológica Augusto Weberbauer

Tabla 10

Precipitaciones máximas a 24 hr de la estación Augusto Weberbauer

UBICACIÓN	N POLÍTICA	UBICAC	CIÓN	N GEOGRÁFICA
DEPARTAMENTO	: CAJAMARCA	LATITUD	:	07° 10' 03" Sur
PROVINCIA	: CAJAMARCA	LONGITUD	:	78° 29' 35" Oeste
DISTRITO	: CAJAMARCA	ALTITUD	:	2673 m.

AÑO/MES	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SETIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
1990	101.8	68.5	58.3	27.4	39.5	24.6	0.8	7.1	20.1	87.6	99.1	72.3
1991	43.8	90.0	133.7	55.2	17.9	0.7	0.4	0.3	10.2	28.2	55.1	71.9
1992	52.6	31.8	66.6	46.5	18.9	21.2	4.6	10.0	40.8	64.0	32.0	34.1
1993	61.0	106.2	245.0	102.9	30.2	1.9	3.3	2.9	51.4	106.3	71.4	84.1
1994	116.9	103.1	170.2	144.9	35.3	3.3	0.0	0.2	11.9	27.2	89.8	122.6
1995	43.8	108.3	75.7	49.7	20.6	1.7	13.2	10.8	11.5	51.8	50.5	76.4
1996	65.2	124.0	120.1	50.4	7.7	0.8	0.5	15.8	13.9	76.2	68.8	34.1
1997	64.8	152.9	26.5	40.4	17.0	15.4	0.2	0.0	27.4	50.8	119.9	129.4
1998	103.0	116.5	257.0	83.9	19.6	4.8	1.3	4.7	17.8	79.9	29.1	47.9
1999	94.8	242.7	77.5	65.0	53.7	22.8	22.1	1.2	81.4	21.7	77.0	68.9
2000	46.0	162.3	126.3	77.3	40.5	15.6	2.1	13.4	56.6	9.9	44.5	122.3
2001	191.2	100.8	230.2	57.2	48.1	2.3	13.9	0.0	34.4	46.2	93.4	90.9
2002	27.0	60.0	133.1	77.2	23.0	8.8	10.7	3.4	14.6	90.3	99.9	86.1
2003	51.1	61.4	103.5	42.1	30.7	22.3	1.8	10.6	14.8	46.0	63.8	80.7
2004	36.1	102.0	56.9	44.5	42.4	2.1	13.8	29.4	19.0	63.4	92.6	123.7
2005	84.9	53.7	136.6	54.0	7.2	4.5	0.6	3.5	31.2	92.3	30.0	87.8
2006	83.2	101.6	199.3	77.6	7.7	23.9	1.8	6.1	33.6	12.7	60.4	81.7
2007	95.4	17.5	182.4	111.5	29.0	1.4	10.7	6.4	11.6	118.9	97.6	68.8
2008	80.2	133.3	118.4	99.1	22.7	15.4	2.3	11.7	34.7	96.5	72.2	S/D
2009	180.7	74.6	110.5	78.8	42.2	17.9	12.3	3.9	11.8	78.5	109.4	74.2
2010	49.5	112.9	154.0	88.4	31.6	8.6	2.6	1.3	28.9	43.4	52.5	70.8
2011	76.6	73.3	125.2	102.0	16.7	0.4	8.3	0.0	47.1	31.5	24.4	109.7
2012	154.2	134.7	126.4	72.8	51.5	0.8	0.0	2.5	19.1	83.3	120.3	58.3
2013	61.5	98.0	213.6	73.8	62.6	7.5	5.7	8.9	3.7	110.7	17.0	51.9
2014	75.7	67.3	143.2	78.8	26.9	5.0	2.0	3.9	27.7	26.5	45.7	114.9
2015	184.7	55.4	202.2	63.0	75.8	3.0	4.4	0.1	27.8	16.8	99.6	39.5
2016	82.9	85.3	121.3	56.2	7.0	1.6	2.1	1.1	25.1	60.0	16.1	63.1
2017	77.5	72.3	138.9	78.6	47.2	12.0	2.3	20.9	21.2	65.3	63.2	168.1
2018	99.0	126.4	117.3	73.3	50.1	10.8	0.5	0.0	24.4	61.8	97.4	69.4
2019	46.9	107.3	172.7	78.1	37.4	9.1	11.8	0.0	7.6	121.8	60.4	162.7
2020	38.2	31.2	S/D	S/D	S/D	S/D	27.6	0.7	10.6	33.2	58.3	140.4
2021	100.8	54.3	138.6	129.5	38.2	10.5	4.5	12.3	23.7	108.8	58.3	45.7
2022	64.5	177.9	161.2	94.0	52.7	20.2	9.4	21.6	40.9	31.2	6.3	65.0

Nota. La tabla muestra un registro historico de las precipitaciones máximas a 24 hr de la estación Augustowebwebauer, los datos fueron otogados por el Senamhi en el mes de septiembre de 2023

Lorenza Valencia López ESPECIALISTA ADMINISTRATIVO CONTABLE DIRECCION ZONAL 3 SENAMHI - PERÚ D: Pje. Jaén 121-Urb. Ramón Castilla-Cajamarca T: 076-364500 C: 976681616 E: Ivalencia@senamhi.gob.pe W: www.senamhi.gob.pe

Estación Meteorológica La Encañada

Tabla 11

Precipitaciones máximas a 24hr de la estación La Encañada

UBICACIÓN POLÍTICA							
DEPARTAMENTO	: CAJAMARCA						
PROVINCIA	: CAJAMARCA						
DISTRITO	: LA ENCAÑADA						

UBICACIÓN GEOGRÁFICA:								
LATITUD	:	07° 07' 24" Sur						
LONGITUD	:	78° 19' 59" Oeste						
ALTITUD	1	2980 m.						

AÑO/MES	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SETIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
1997	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	19.3	28.8	19.2
1998	20.2	35.7	27.7	35.3	19.4	4.3	0.4	4.5	18.7	37.3	10.1	25.1
1999	22.5	30.1	39.6	18.7	31.4	18.3	7.3	4.7	22.6	11.1	26.1	17.8
2000	11.2	19.5	30.6	18.3	16.4	8.3	0.5	6.1	14.0	1.6	14.1	24.3
2001	43.8	26.3	24.6	26.2	12.8	0.3	1.4	0.8	11.8	28.0	17.7	17.8
2002	16.7	33.4	36.0	27.1	5.7	5.0	1.9	1.1	13.1	S/D	S/D	S/D
2003	9.4	27.9	28.0	18.6	13.4	18.7	0.0	<mark>6.8</mark>	7.7	21.9	30.5	23.3
2004	27.3	20.9	18.0	23.4	10.9	3.0	9.4	0.5	10.8	42.6	22.5	26.0
2005	20.9	17.4	38.0	13.7	19.8	4.7	1.2	4.7	<mark>4.</mark> 6	28.3	11.1	22.0
2006	35.1	22.2	32.9	47.5	4.8	9.7	8.6	4.9	14.1	20.5	19.7	16.3
2007	20.7	14.6	44.6	18.6	16.0	0.0	8.0	1.7	16.5	26.8	23.7	20.1
2008	29.2	32.5	28.2	30.1	8.3	10.9	5.8	6.7	21.4	32.3	41.3	15.4
2009	27.4	10.0	42.3	24.6	40.2	3.0	4.5	5.4	6.7	16.7	23.7	23.7
2010	19.9	42.3	35.6	37.5	13.2	6.2	4.4	0.0	12.5	31.1	32.8	29.4
2011	17.3	28.9	21.6	25.0	22.2	0.4	7.7	0.0	12.5	10.9	17.9	14.2
2012	28.4	24.0	22.2	17.6	20.4	10.0	0.0	7.5	1.5	21.6	37.2	18.5
2013	14.0	25.5	28.6	12.9	27.2	9.6	2.5	5.2	0.0	36.6	14.1	14.4
2014	22.7	41.1	37.6	19.3	12.6	0.0	0.2	0.4	14.5	23.8	27.7	27.8
2015	31.5	20.5	37.7	20.0	19.0	1.9	5.3	0.0	2.3	6.8	32.8	3.0
2016	21.0	17.0	31.9	21.5	2.1	9.3	0.5	0.6	21.3	24.8	4.8	31.8
2017	19.2	22.5	30.1	24.5	12.5	9.9	3.2	15.7	4.7	22.0	13.2	19.9
2018	17.3	28.3	18.3	21.4	28.7	3.8	0.0	0.0	20.2	21.2	27.0	15.0
2019	12.4	30.4	27.5	30.6	16.3	12.0	3.1	0.0	8.7	17.3	20.9	28.2
2020	14.9	11.4	22.9	17.1	25.8	12.4	17.6	0.9	12.2	26.2	20.8	36.1
2021	19.0	37.0	50.9	19.1	21.2	10.7	0.9	5.2	6.8	33.3	48.0	21.8
2022	17.6	44.6	37.4	28.9	12.2	9.8	3.2	4.6	17.2	21.3	3.5	28.3

Nota. La tabla muestra un registro historico de las precipitaciones máximas a 24 hr de la estación Encañada, los datos fueron otogados por el Senamhi en el mes de septiembre de 2023

Lorenza Valencia López ESPECIALISTA ADMINISTRATIVO CONTABLE DIRECCION ZONAL 3 SENAMHI - PERÚ D: Pje. Jaén 121-Urb. Ramón Castilla-Cajamarca T: 076-364500 C: 976681616 E: Ivalencia@senamhi.gob.pe W: www.senamhi.gob.pe

3.4. TRATAMIENTO, ANÁLISIS DE DATOS Y PRESENTACIÓN DE RESULTADOS

3.4.1. Caracterización geomorfológica de la cuenca

En cuanto a las dimensiones de la cuenca

Con el modelo digital de elevación (DEM) descargado de Alos Palsar, proporcionado por la Nasa, lo procesamos en el programa Arc Gis 10.8, empezando por georreferenciar el área de trabajo y luego cargar el DEM general, seguido a ello generando curvas a nivel fuera de la cuenca de estudio, para luego identificar el divortium aquarum y poder delimitar la cuenca en estudio.

Delimitación de cuenca

Nota. se observa la delimitacion de la cuenca en función al dvotrtim aquarum, a partir de las curvas generadas por un modelo de elevación digital. Elaboración en el año (2023).

finalmente recortamos las curvas y el MED, teniendo como límite al perímetro de la cuenca, y así poder obtener todos los parámetros geomorfológicos de la cuenca.

Figura 35 Cálculo de parámetros geomorfológicos

Nota. La figura muestra la topografia y el perimetro de la cuenca en estudo, necesarios para calcular lo parámetros geomorfológicos. Elabrado por el investigador (2023).

Con esta información obtenida calculamos el área y su perímetro de la cuenca, además con la ayuda de las cartas nacionales e imágenes satelitales identificamos el cauce principal, obteniendo un área de 10.50 Km2, perímetro de 17.09 Km y Longitud del cauce principal de 5.42 Km

En cuanto a los parámetros de forma

a) Factor de forma de Horton.

para hallar este parámetro dividimos el área de la cuenca entre la longitud cuadrada de la cuenca.

Datos:

А	Área de cuenca	10.50	Km ²
L	Longitud de cuenca	6.40	Km ²
Ff =	Factor de forma	0.26	

$$F_f = \frac{l}{L} = \frac{A}{L^2}$$

$$F_f = \frac{10.50 \ Km2}{\left(17.09 \ km\right)^2} = 0.26$$

b) Coeficiente de compacidad o Índice de gravelius

para obtener el índice de Gravelius dividimos el perímetro entre la raíz cuadrada del área, multiplicado por el factor 0.28

Datos:

Р	Perímetro de cuenca		17.09	Km
A	Área de cuenca		10.50	Km ²
Kf	Índice de Gravelius		1.5	
		ת		

$$Kf = 0.28 \frac{P}{\sqrt{A}}$$

$$K = 0.28 * \frac{17.09}{\sqrt{10.50}} = 1.5$$

En cuanto a los parámetros de relieve

a) Pendiente media de la cuenca

El siguiente parámetro lo calculamos por el método de Alvord mencionada en el marco teórico (10), para ello hacemos uso del programa ArcGis 10.8 para para obtener la longitud total de las curvas, por datos previos obtenidos también conocemos la equidistancia entre curvas que es 10 metros y el área de la cuenca y calculamos como sigue.

Datos:

D	Equidistancia entre curvas a nivel	0.01	Km
L	Longitud total de curvas de nivel	251.72	Km
А	Área de cuenca	10.50	Km
S	Pendiente media de cuenca	23.98	%

$$S = \frac{D * L}{A}$$

$$S = \frac{0.01km * 251.72 \ km}{10.50 \ km} = 0.239$$
$$S = 23.98\%$$

b) Longitud del cauce principal

Con la ayuda de AutoCAD Civil 3D trazamos la quebrada que no está definida en las cartas nacionales y medimos su distancia del cauce principal, con el siguiente resultado: Lc = 5.42km

c) Pendiente del cauce principal

La pendiente de la quebrada Sarín Mayo lo hallamos con el método de Taylor Schwarz, para ello utilizamos las curvas a nivel halladas con ArcGis 10.8, luego con ayuda de AutoCAD civil 3D dibujamos el perfil longitudinal de la quebrada, finalmente sacamos los datos de las pendientes por cada curva a nivel, dibujamos y calculamos como mostramos a continuación:

Figura 36

Pendiente de la quebrada Sarinmayo

Nota. Observamos el perfil del cauce principal con una pendiente de 4.76%. Elaborado en el año (2023).

d) Curva Hipsométrica

Para dibujar la Curva Hipsométrica nos apoyamos de ArcGis 10.8, luego con la herramienta reclasificar, dividimos en 10 partes iguales a la cuenca, estas partes tendrán áreas distintas que lo acumularemos como mostramos en la tabla:

Tabla 12

Datos para la cons	trucción de	la Curva H	ipsométrica.
--------------------	-------------	------------	--------------

		Cotas			Áreas		
N° Área	de	Min	Max	Promedio	Área	% De Área	% DE AREA ACUMULAD A
1		2767	2814	2790.5	1.40	13.31	100.00
2		2815	2861	2838	0.80	7.61	86.69
3		2862	2908	2885	0.78	7.46	79.08
4		2909	2955	2932	0.81	7.67	71.62
5		2956	3002	2979	1.19	11.37	63.95
6		3003	3049	3026	1.77	16.89	52.58
7		3050	3096	3073	1.63	15.53	35.69
8		3097	3143	3120	1.18	11.27	20.15
9		3144	3190	3167	0.65	6.15	8.88
10		3191	3238	3214.5	0.29	2.73	2.73
					10.50	100.00	

Nota. La tabla muestra datos de areas entre cotas, de toda la cuenca, obtenida con ArcGis (2023).

Con los datos calculados en la tabla anterior y con la ayuda de Excel dibujamos la curva Hipsométrica, con el porcentaje de área acumulado y las curvas promedio por área, como mostramos a continuación.

Figura 37 *Curva hipsométrica de la cuenca.*

Nota. Curva hipsomeptrica de la cuenca graficado con la alevacion y porcentaje de area acumulada, además muestr la altura media de la cuenca. Elaborado en el año (2023).

e) Altura media

La altura media se puede calcular trazando al 50% del área acumulada y saliendo con la elevación obteniendo un dato de 3030 m.s.n.m.

f) Orden de ríos

Con el apoyo de la cartografía nacional y ArcGis10.8 identificamos el orden de los ríos de la cuenca en estudio, y según el método de Stralher tenemos una cuenca de orden 2, como mostramos a continuación.

Figura 38 Orden de ríos de la cuenca

Nota. según Stralher la cuenca es de orden 2, elaborado en el año (2023).

g) Tiempo de concentración

Para calcular el tiempo de concentración utilizamos la fórmula de Kirpich, dado que esta fórmula se desarrolló en cuencas rurales y con pendientes de cauce entre (3% - 10%), los datos utilizados son los siguientes:

Datos:

L	Longitud del cauce principal	5421	m
S	Pendiente del cauce principal	0.048	m/m

$$T_c = 0.01947 * L^{0.77} * S^{-0.385}$$

 $T_{c} = 47.18 min$

3.4.2. Caracterización fluvial

Por su edad. Decimos que es un rio joven ya que en su mayoría tiene secciones en V (fig. 88), además de contener material fracturado (figura. 29) y varía en su nivel de lecho a lo largo del tramo.

Por su pendiente. La pendiente calculada por el método de Taylor Schwarz es de 2.33%, (figura. 31) siendo un pendiente característico de una quebrada torrencial.

- Por su inundación. Son quebradas inundables ya que se encontraron vestigios de inundaciones pasadas, además de los testimonios de pobladores aledaños
- Por su morfología. Según el recorrido hecho y las fotografías tomadas (Figura. 30), decimos que es recto ya que en su gran mayoría no presentan irregularidades.
- Por sus grados de libertad. La quebrada presenta 3 grados de libertad dado que varía en sus pendientes, tirantes y además se ajusta a la sección del cauce.
- Material del lecho. Según la geología del lugar y el material identificado en campo se observa presencia de arena (figura. 29), así como material fracturado.

3.4.3. Modelamiento Hidrológico

Análisis de consistencia de datos pluviométricos

a) Análisis visual gráfico

Una vez obtenido los datos de precipitaciones máximas a 24h, de las estaciones, Augusto Weber Bauer, Namora y Encañada, con una antigüedad de 28 años, hasta el 2022, nos preguntamos si los datos son confiables o no, para ello Máximo Villon (2007), menciona que para saber si los datos son confiables, se lleva a cabo un análisis de consistencia de la información disponible utilizando tanto criterios físicos como estadísticos, que nos permita identificar, evaluar y corregir posibles errores sistemáticos que puedan haber surgido, debido a causas naturales o intervenciones del hombre, es por ello que en primer lugar se realiza un análisis visual gráfico, para identificar algún tipo de saltos o tendencias, como mostramos a continuación.

Figura 39 Análisis visual gráfico de precipitaciones – Estación Namora

Nota. La Imagen muestra el comportameinto de las precipitaciones máximas en 24hr por cada año, para identificar saltos o tendencias.

Figura 40

Análisis visual gráfico de precipitaciones – Estación La Encañada

Nota. La Imagen muestra el comportameinto de las precipitaciones máximas en 24hr por cada año, para identificar saltos o tendencias.

Figura 41 *Análisis visual gráfico de precipitaciones – Estación Augusto Weberbauer*

Nota. La Imagen muestra el comportameinto de las precipitaciones máximas en 24hr por cada año, para identificar saltos o tendencias.

b) Análisis de doble masa

Es fundamental realizar el análisis de doble masa en el contexto del estudio hidrológico, ya que ayuda a validar series temporales de datos pluviométricos y de escorrentía. Al comparar las dos series, podemos detectar inconsistencias que podrían afectar la estimación de caudales y el modelado de eventos hidrológicos. Es por ello que realizamos el análisis de doble masa para g en la información para garantizar la fiabilidad de la información y elegir la estación más fiable por tener menor cantidad de quiebres, además para conocer la causa de los errores, ya sea por fenómenos naturales o sistemáticos, y finalmente poder corregirlos por métodos estadísticos, es por ellos que realizamos la gráfica de doble masa como mostramos a continuación.

Figura 42 *Análisis de doble masa para elección de la estación base*

Nota. La figura muestra el comportameinto de las precipitaciones máximas en 24hr por cada año, para identificar saltos o tendencias.

Observamos que las tres estaciones no presentan quiebres y podemos elegir cualquiera de las tres estaciones como estación base, en este caso elegimos la estación Augusto Weberbauer y construimos un nuevo diagrama doble masa con la estación base y la estación de estudio, en este caso elegimos la estación cercana al lugar de estudio y es la estación Namora.

Figura 43

Nota. La figura muestra un diagrama de doble masa para analizar la cantidad de quiebres existentes.

Completación y extensión de datos

Para nuestro estudio tomamos los datos de precipitaciones máximas a 24 hr de la estación Namora para los años 1995 – 2022, observando que existen datos faltantes, para ello la integración de datos incompletos fue realizada con el método de relación normalizada, utilizando ambas estaciones cercanas, como son la encañada y Augusto Weberbauer, dado que estas no presentan saltos ni tendencias como se puede observar en el análisis gráfico y doble masa, los datos completados se presentan a continuación.

Tabla 13

Datos de	precipitaciones	completas de l	la estación Namora
----------	-----------------	----------------	--------------------

AÑO/MES	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SETIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
1995	10.2	21.9	17.6	12.4	4.8	0.4	3.1	2.5	2.7	16.7	11.7	27.4
1996	15.2	24.2	27.1	11.7	1.8	0.2	0.1	3.7	3.2	11.0	16.0	7.9
1997	15.1	35.6	6.2	15.0	4.0	3.6	0.0	0.8	6.3	11.8	24.7	30.1
1998	32.7	26.2	20.7	49.5	13.3	0.9	0.0	1.8	4.7	19.6	16.7	17.4
1999	16.4	31.9	40.9	15.4	26.1	9.5	2.6	1.0	21.6	13.9	9.7	13.8
2000	10.1	21.2	39.1	15.2	34.8	5.6	1.6	16.4	10.8	11.2	14.8	30.4
2001	23.5	20.1	24.1	12.7	19.5	0.2	2.7	0.0	7.0	27.0	22.8	26.7
2002	13.6	24.0	31.6	24.7	8.1	3.1	6.5	3.5	19.9	25.2	9.9	19.6
2003	16.5	27.0	22.9	16.8	6.8	11.7	2.3	5.4	4.6	15.5	31.0	17.6
2004	25.4	19.4	14.3	14.4	15.4	3.4	3.3	4.6	14.5	15.9	16.7	23.8
2005	33.3	9.5	33.6	22.6	10.7	1.0	1.4	4.4	6.1	16.3	7.3	37.2
2006	33.7	12.6	24.3	20.3	3.5	17.0	2.0	8.7	17.3	22.5	21.8	18.8
2007	29.1	14.0	28.2	18.0	18.0	0.0	3.6	6.9	16.0	24.3	31.9	27.9
2008	30.3	28.9	35.0	22.5	8.6	11.8	1.3	5.0	9.8	20.5	26.3	9.8
2009	46.5	11.5	38.6	21.2	27.1	5.9	3.9	2.1	6.5	22.2	17.4	16.6
2010	20.2	42.7	33.6	19.0	9.6	8.9	7.5	0.0	9.4	20.1	17.5	21.5
2011	23.3	25.9	32.9	42.3	2.3	0.3	5.7	1.3	13.7	7.9	10.3	17.6
2012	25.4	19.7	21.0	16.0	10.4	4.5	0.0	3.2	4.4	26.0	28.6	11.6
2013	11.8	19.1	25.5	24.7	14.5	0.4	0.7	5.3	1.1	15.6	7.7	23.9
2014	24.7	36.6	36.4	19.5	14.9	1.0	4.3	0.0	5.8	14.2	24.4	21.7
2015	30.2	19.9	23.7	20.7	31.8	0.2	3.0	0.2	2.7	5.7	23.7	8.6
2016	21.4	26.8	15.7	31.3	8.8	13.3	0.8	3.5	20.0	12.9	8.4	34.5
2017	42.9	11.8	41.0	18.7	12.2	10.6	0.0	4.2	8.2	24.1	18.3	21.9
2018	36.6	30.2	22.8	26.3	23.7	3.5	0.0	2.8	11.8	15.1	26.7	18.5
2019	8.5	24.9	28.7	20.5	12.0	3.5	1.6	0.0	12.0	15.5	13.4	26.7
2020	13.0	14.0	17.1	12.8	19.3	9.3	8.1	1.2	4.0	13.9	17.5	29.6
2021	27.3	30.8	40.2	16.6	12.4	3.9	2.5	11.3	10.0	32.9	24.8	17.7
2022	13.9	25.8	25.0	18.5	9.2	2.1	1.2	6.1	8.9	7.1	6.5	16.4

Nota. La tabla presentada muestra las precipitaciones máximas completadas con el método de Relacion Normalizada, lons numeros de rojo son los datos completados.

Cálculo de las curvas IDF

Para el cálculo de las intensidades partimos de las precipitaciones máximas a 24 hr mensuales multianuales para los años 1995 a 2022 de la estación "NAMORA" estos datos se toman de los registros ya completados, luego multiplicamos por un factor de corrección de 1.13. debido a que la medida y reporte de las observaciones analizadas son realizadas en intervalos de tiempo fijo, este valor de corrección fue estimado por Weiss (1964), y también se han encontrado en otros estudios que es necesario el factor de corrección por altitud con referencia al nivel del mar, y corrección por estación del año, siendo en primavera más alto el factor de corrección, en muestro caso utilizaremos el factor de corrección mencionado.

AÑO	PP Máx. 24 hr (mm)	PP *1.13 (mm)
1995	27.40	30.96
1996	27.10	30.62
1997	35.55	40.17
1998	49.50	55.94
1999	40.90	46.22
2000	39.10	44.18
2001	27.00	30.51
2002	31.60	35.71
2003	31.00	35.03
2004	25.40	28.70
2005	37.20	42.04
2006	33.70	38.08
2007	31.90	36.05
2008	35.00	39.55
2009	46.50	52.55
2010	42.70	48.25
2011	42.30	47.80
2012	28.60	32.32
2013	25.50	28.82
2014	36.60	41.36
2015	31.80	35.93
2016	34.50	38.99
2017	42.90	48.48
2018	36.60	41.36
2019	28.70	32.43
2020	29.60	33.45
2021	40.20	45.43
2022	25.80	29.15

Tabla 14			
Precipitaciones	máximas d	a 24 hr	corregidas

Nota. La tabla contiene datos de precipitaciones máximas a 24 hr y sus respectivas correciones por el factor 1.13.

Utilizando la metodología de Dick Peschke calculamos las duraciones de tormentas menores a 1 hora, dado que este método vincula la duración de la tormenta con la precipitación máxima en un periodo de 24 horas.

		PRECIPITACION TOTAL (mm): ESTACIÓN NAMORA						
۸ÑO	PP MAX		DURACIÓN EN MINUTOS					
ANU	24 hr	5 min	10 min	15 min	30 min	60 min	120 min	
1995	30.96	7.52	8.94	9.89	11.76	13.99	16.64	
1996	30.62	7.43	8.84	9.78	11.63	13.84	16.45	
1997	40.17	9.75	11.60	12.83	15.26	18.15	21.58	
1998	55.94	13.58	16.15	17.87	21.25	25.27	30.05	
1999	46.22	11.22	13.34	14.77	17.56	20.88	24.83	
2000	44.18	10.73	12.75	14.12	16.79	19.96	23.74	
2001	30.51	7.41	8.81	9.75	11.59	13.78	16.39	
2002	35.71	8.67	10.31	11.41	13.57	16.13	19.19	
2003	35.03	8.50	10.11	11.19	13.31	15.83	18.82	
2004	28.70	6.97	8.29	9.17	10.90	12.97	15.42	
2005	42.04	10.20	12.13	13.43	15.97	18.99	22.59	
2006	38.08	9.24	10.99	12.17	14.47	17.21	20.46	
2007	36.05	8.75	10.41	11.52	13.69	16.29	19.37	
2008	39.55	9.60	11.42	12.64	15.03	17.87	21.25	
2009	52.55	12.76	15.17	16.79	19.96	23.74	28.23	
2010	48.25	11.71	13.93	15.41	18.33	21.80	25.92	
2011	47.80	11.60	13.80	15.27	18.16	21.60	25.68	
2012	32.32	7.85	9.33	10.32	12.28	14.60	17.36	
2013	28.82	6.99	8.32	9.21	10.95	13.02	15.48	
2014	41.36	10.04	11.94	13.21	15.71	18.69	22.22	
2015	35.93	8.72	10.37	11.48	13.65	16.24	19.31	
2016	38.99	9.46	11.25	12.45	14.81	17.61	20.95	
2017	48.48	11.77	13.99	15.49	18.42	21.90	26.05	
2018	41.36	10.04	11.94	13.21	15.71	18.69	22.22	
2019	32.43	7.87	9.36	10.36	12.32	14.65	17.42	
2020	33.45	8.12	9.66	10.69	12.71	15.11	17.97	
2021	45.43	11.03	13.11	14.51	17.26	20.52	24.41	
2022	29.15	7.08	8.42	9.31	11.08	13.17	15.66	

Tabla 15

Datos de precipitación para diferentes duraciones en minutos

Nota. La tabla contiene datos de precipitaciones para diferentes duaraciones en minuto, generadas con la formula de Dick Peschke

Con los datos de precipitación obtenidas en la tabla anterior vamos a calcular las intensidades máximas en mm/hr.

	INTENSIDADES (mm/hr): ESTACIÓN NAMORA							
٨ÑO		Γ	OURACIÓN	EN MINUT	OS			
ANU	5 Min	10 Min	15 Min	30 Min	60 Min	120 Min		
1995	90.19	53.63	39.57	23.53	13.99	8.32		
1996	89.20	53.04	39.13	23.27	13.84	8.23		
1997	117.02	69.58	51.34	30.52	18.15	10.79		
1998	162.94	96.88	71.48	42.50	25.27	15.03		
1999	134.63	80.05	59.06	35.12	20.88	12.42		
2000	128.70	76.53	56.46	33.57	19.96	11.87		
2001	88.87	52.84	38.99	23.18	13.78	8.20		
2002	104.02	61.85	45.63	27.13	16.13	9.59		
2003	102.04	60.67	44.76	26.62	15.83	9.41		
2004	83.61	49.71	36.68	21.81	12.97	7.71		
2005	122.45	72.81	53.72	31.94	18.99	11.29		
2006	110.93	65.96	48.66	28.94	17.21	10.23		
2007	105.00	62.44	46.06	27.39	16.29	9.68		
2008	115.21	68.50	50.54	30.05	17.87	10.62		
2009	153.06	91.01	67.15	39.93	23.74	14.12		
2010	140.55	83.57	61.66	36.66	21.80	12.96		
2011	139.24	82.79	61.08	36.32	21.60	12.84		
2012	94.14	55.98	41.30	24.56	14.60	8.68		
2013	83.94	49.91	36.82	21.89	13.02	7.74		
2014	120.47	71.63	52.85	31.43	18.69	11.11		
2015	104.67	62.24	45.92	27.30	16.24	9.65		
2016	113.56	67.52	49.82	29.62	17.61	10.47		
2017	141.21	83.96	61.95	36.83	21.90	13.02		
2018	120.47	71.63	52.85	31.43	18.69	11.11		
2019	94.47	56.17	41.44	24.64	14.65	8.71		
2020	97.43	57.93	42.74	25.41	15.11	8.99		
2021	132.32	78.68	58.05	34.52	20.52	12.20		
2022	84.92	50.50	37.26	22.15	13.17	7.83		

Tabla 16Datos de Intensidades para diferentes duraciones en minutos

Nota. La tabla contiene datos de Intensidades máximas en mm/hr para duracion de hasta 120 minutos.

Como los datos de intensidades máximas hallados en la tabla anterior (tabla N°16) están a la altura en que se encuentra la estación "LA ENCAÑDA", necesariamente debemos transferirlo a la altura media de la cuenca.

INTENSIDADES TRANSFERIADAS A LA ALTURA MEDIA DE LA CUENCA (mm/hr)							
۸ÑO		Ι	DURACIÓN	EN MINUTO	DS		
ANU	5 min	10 min	15 min	30 min	60 min	120 min	
1995	99.01	58.87	43.44	25.83	15.36	9.13	
1996	97.93	58.23	42.96	25.54	15.19	9.03	
1997	128.47	76.39	56.36	33.51	19.93	11.85	
1998	178.88	106.36	78.47	46.66	27.74	16.50	
1999	147.80	87.88	64.84	38.55	22.92	13.63	
2000	141.29	84.01	61.98	36.86	21.91	13.03	
2001	97.57	58.01	42.80	25.45	15.13	9.00	
2002	114.19	67.90	50.09	29.79	17.71	10.53	
2003	112.02	66.61	49.14	29.22	17.37	10.33	
2004	91.79	54.58	40.27	23.94	14.24	8.46	
2005	134.43	79.93	58.97	35.07	20.85	12.40	
2006	121.78	72.41	53.42	31.77	18.89	11.23	
2007	115.28	68.54	50.57	30.07	17.88	10.63	
2008	126.48	75.20	55.48	32.99	19.62	11.66	
2009	168.03	99.91	73.72	43.83	26.06	15.50	
2010	154.30	91.75	67.69	40.25	23.93	14.23	
2011	152.86	90.89	67.06	39.87	23.71	14.10	
2012	103.35	61.45	45.34	26.96	16.03	9.53	
2013	92.15	54.79	40.42	24.04	14.29	8.50	
2014	132.26	78.64	58.02	34.50	20.51	12.20	
2015	114.91	68.33	50.41	29.97	17.82	10.60	
2016	124.67	74.13	54.69	32.52	19.34	11.50	
2017	155.03	92.18	68.01	40.44	24.04	14.30	
2018	132.26	78.64	58.02	34.50	20.51	12.20	
2019	103.71	61.67	45.50	27.05	16.09	9.56	
2020	106.96	63.60	46.92	27.90	16.59	9.86	
2021	145.27	86.38	63.73	37.89	22.53	13.40	
2022	93.23	55.44	40.90	24.32	14.46	8.60	

Tabla 17Intensidades transferidas a la altura media de la cuenca

Nota. La tabla nos muestra valores de las intensidades máximas transferidas a la altura media de la cuenca de la quebrada Sarinmayo.

Selección del modelo probabilístico

Una vez obtenidos los datos de intensidades máximas a la altura media de la cuenca necesitamos calcularla para diferentes periodos de retorno, que es parte de nuestros objetivos, para ello escogeremos un modelo probabilístico que describa de manera adecuada el comportamiento de los datos, para nuestro caso se ajusta mejor al modelo Gumbel, por ser este modelo que usa datos máximos.

Valores críticos de Δo para el estadístico Smirnov-Kolmogorov correspondientes a N=28 y a un niveles de significancia α =0.05 según la tabla N°06

 Tabla 18

 Valores críticos de Smirnov Kolmogorov

Ν	$\alpha = 0.05$
25	0.27
28	0.25
30	0.24

Nota. en la tabla mostramos una interpolacion para hallar el valor crítico según nuestro tamaño de muestra.

Resumen de pruebas de bondad de ajuste para las intensidades máximas transferidas a la altura media de la cuenca para distintas duraciones. Las pruebas de bondad y ajuste de Smirnov Kolmogorov de las intensidades para diferentes duraciones se presentan en los anexos.

-			
Periodo de	Estadístico	Valor Crítico ∆o	Criterio de
duración	Smirnov-Kolmogorov Δ	Para a = 0,05	Decisión
5	0.093	0.25	se ajusta
10	0.093	0.25	se ajusta
15	0.093	0.25	se ajusta
30	0.093	0.25	se ajusta
60	0.093	0.25	se ajusta
120	0.093	0.25	se ajusta

Tabla 19

Comparación del valor estadístico con el valor crítico

Nota. La tabla muestra el criterio de decision en funcion a la comparacion del valor estadistico con el valor crítico de Smirnov Kolmogorov.

Sabiendo que se ajusta el modelo probabilístico de Gumbel, calculamos los parámetros requeridos para el cálculo de las intensidades.

Tabla 20

m	5 min	10 min	15 min	30 min	60 min	120 min
1	81.23	48.30	35.63	21.19	12.60	7.49
2	81.55	48.49	35.77	21.27	12.65	7.52
3	82.51	49.06	36.19	21.52	12.80	7.61
4	86.34	51.34	37.88	22.52	13.39	7.96
5	86.66	51.53	38.02	22.61	13.44	7.99
6	87.62	52.10	38.44	22.86	13.59	8.08
7	91.46	54.38	40.12	23.86	14.19	8.43
8	91.78	54.57	40.26	23.94	14.24	8.46
9	94.66	56.28	41.53	24.69	14.68	8.73
10	99.14	58.95	43.49	25.86	15.38	9.14
11	101.05	60.09	44.33	26.36	15.67	9.32
12	101.69	60.47	44.61	26.53	15.77	9.38
13	102.01	60.66	44.75	26.61	15.82	9.41
14	107.77	64.08	47.28	28.11	16.72	9.94
15	110.33	65.60	48.40	28.78	17.11	10.17
16	111.93	66.55	49.10	29.20	17.36	10.32
17	113.69	67.60	49.87	29.66	17.63	10.48
18	117.04	69.59	51.35	30.53	18.15	10.79
19	117.04	69.59	51.35	30.53	18.15	10.79
20	118.96	70.74	52.19	31.03	18.45	10.97
21	125.04	74.35	54.85	32.62	19.39	11.53
22	128.56	76.44	56.40	33.53	19.94	11.86
23	130.79	77.77	57.38	34.12	20.29	12.06
24	135.27	80.43	59.34	35.29	20.98	12.48
25	136.55	81.19	59.90	35.62	21.18	12.59
26	137.19	81.57	60.18	35.79	21.28	12.65
27	148.70	88.42	65.23	38.79	23.06	13.71
28	158.30	94.12	69.44	41.29	24.55	14.60
Promedio \bar{x}	110.17	65.51	48.33	28.74	17.09	10.16
Desv.						
Estándar (S)	21.39	12.72	9.39	5.58	3.32	1.97
α	16.68	9.92	7.32	4.35	2.59	1.54
μ	100.55	59.78	44.11	26.23	15.59	9.27

Parámetros del modelo de Gumbel

Nota. La tabla presenta las intensidades máximas ordenadas de manera ascendente y los parámetros que utiliza el modelo de Gumbel para hallar intensidades para distintos periodos de retorno.

Selección del periodo de retorno

Para seleccionar el periodo y posterior cálculo de las intensidades máximas, es fundamental saber con qué riesgo de falla y cuantos años de vida útil serán empleados, Es por ello que analizando el lugar en que se llevó a cabo dicha investigación, en primer lugar observamos que en el punto de aforo existe una alcantarilla importante, ya que por ella es el paso del transporte pesado interprovincial, luego en la misma quebrada en estudio, encontramos dos puentes de madera, además al final del tramo en estudio también hallamos muros de encausamiento y contiguo a ello la zona urbana, es por ello que dadas las circunstancias del lugar y según el MTC elegimos un riesgo admisible de 25% para puentes y vida útil de 40 años, en cuanto a la alcantarilla tenemos un riesgo admisible de 30% y vida útil de 25años, en zona urbana la norma OS060 recomienda utilizar un periodo de retorno de 10 años, entonces los periodos de retorno quedan de la siguiente manera.

Tabla 2	21
---------	----

TR estimados

Estructura	TR (años)
Zona urbana	10
Alcantarilla	100
Puentes y muros de encausamiento	150

Nota.En la tabla observamos el periodo de retorno estimado en funcion a las estructuras halladas en la zona de estudio.

Cálculo de las intensidades máximas para diversos periodos de retorno

Tabla 22

Intensidades máximas en función al tiempo de duración y periodo de retorno

TR (años)	10	100	150
Tiempo (min)	I (mm/hr)	I (mm/hr)	I (mm/hr)
5	156.03	200.33	208.00
10	92.78	119.11	123.68
15	68.45	87.88	91.25
30	40.70	52.25	54.26
60	24.20	31.07	32.26
120	14.39	18.47	19.18

Nota. La tabla muestra las intensidades halladas en con el modelo de Gumbel, en funcion al periodo de retorno y tiempos de duración.

Gráfica de las curvas I-D-F

Figura 44

Curvas IDF para distintos periodos de retorno

Nota. La Imagen muestra las curvas de intensidades vs tiempo en minutos para cada periodo de retorno seleccionado.

Al ajustar cada curva IDF a una ecuación, obtenemos una ecuación potencial para cada periodo de retorno y a partir de ello podemos calcular la intensidad máxima para cualquier duración, en nuestro caso hemos remplazado el tiempo de concentración

Ecuaciones ajustadas a las curvas IDF		
	TR años	Ecuación para cálculo de I máx.
	10	521.73 <i>tc</i> ^- ^{0.75}
_	100	669.83 <i>tc</i> ^-0.75
_	150	695.49 tc^ -0.75

Nota. La tabla muestra las ecuaciones ajustadas a las 5 curvas IDF, éstas fueron halladas en Excel.

Estimación del caudal máximo con HEC HMS

Table 22

Numero de curva

La metodología del número de curva fue hallada con la ayuda de ArcGis, y empezamos cargando los resultados obtenidos por Portuguez y Verano (2016), de la universidad nacional Agraria la Molina y la Autoridad Nacional del Agua respectivamente, finalmente cargamos nuestro mapa de distritos de Cajamarca y ubicamos el distrito de Namora, obteniendo el siguiente mapa:
Figura 45 *Mapa de Número de Curva*

Nota. La imagen muestra el número de curva perteneciente a la cuenca en estudio. Tomado del estudio realizado pop Portuguez y Verano (2016).

Como observamos, para Namora le corresponde un Número de curva comprendido entre 74 - 81 lo cual elegimos N=75 dado que son suelos arenosos según su formación geológica.

Hietograma de Diseño

Usamos la metodología de los bloques alternos para conocer el comportamiento de la precipitación a lo largo del periodo de duración de 24 horas, para periodos de retorno de 10, 100 y 150 años.

Figura 46

Nota. La figura muestra el hietograma de diseño obtenido por la metodologia de bloque alternos, elaborado por el investigador en el año 2024.

Figura 47

Nota. La figura muestra el hietograma de diseño obtenido por la metodologia de bloque alternos, elaborado por el investigador en el año 2024.

Figura 48 *Hietograma para TR=150 años*

Nota. La figura muestra el hietograma de diseño obtenido por la metodologia de bloque alternos, elaborado por el investigador en el año 2024.

Metodología de trabajo con HEC-HMS

Para calcular los caudales de máximas avenidas con HEC-HMS utilizamos sus tres principales componentes

a). Modelo de la cuenca. En este contexto, se representa la cuenca física mediante la conexión de diversos elementos hidrológicos, con el fin de definir su estructura. Para ello, el programa toma en cuenta los siguientes componentes: subcuencas, (basin), tránsito en ríos (reach)y los puntos de salida (sink), después de definir los componentes de la red hídrica se ingresa la información de la cuenca como es el área (10.5km2), luego seleccionamos el método del número de curva de SCS para la separación de la lluvia y el hidrograma unitario para la transformación de lluvia a caudal.

b). Modelo meteorológico. Este modelo se encarga de calcular cantidad de precipitación requerida para la sub cuenca, para ello empezamos introduciendo los datos de precipitación hallados con la metodología de los bloques alternos.

c). Especificaciones de control. En este apartado vamos a definir fechas arbitrarias, duraciones de lluvias e intervalos. Finalmente se seleccionan los componentes anteriores, que incluyen el modelo de cuenca, el modelo meteorológico, y las especificaciones de control deseadas. Luego se a ejecutar el programa para realizar los cálculos correspondientes.

File Edit View Components GIS Parameters Compute Results Tools Help 🗋 🚅 🖪 🎒 [💽 🔍 🔐 😓 🔲 🍄 😴 📇 🕂 --None-- 💥 🖼 🖼 🔤 💷 🖷 🚇 🌐 🌐 Run: Run 1 (1) (1) ▶ || ■ |▶ |▶ Max Min ✿ 100 ☆ --None--📒 para tr=10años Basin Model [cuenca1] Current Run [Run 1] - 0 💦 Basin Models tuenca alta unto de aforo Meteorologic Models ■ ♣ Met 1 ▲ Specified Hyetograph Control Specificatio Time-Series Data Precipitation Gages Pluviografo 🚔 cuenca alta Components Compute Results 👪 Time-Series Gage Time Window Table Graph 25 20 📥 punto de aforo (MM) 15 Precipitation 10 NOTE 42413: Unit hydrograph volume for subbasin "cuenca alta" is 1.0000 mm 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00 NOTE 15302: Fnished computing simulation run "Run 1" at time 13feb.2024, 15:18:05. NOTE 15312: The total runtime for this simulation is 00:00. 13Feb2024

Figura 49

Metodología de trabajo con HEC-HMS

Nota. Interfaz de los procesos fundamentales realizados en HEC-HMS para el calculo de caudales de máximas avenidas. Elaboracion propia, (2024).

Como necesitamos hallar los caudales de máximas avenidas para diversos periodos de retorno realizamos el mismo procedimiento para cada periodo de retorno, lo único que cambia es el hietograma de diseño, entonces lo resultados de los caudales de máximas avenidas son los siguientes:

Figura 50 *Hietograma e Hidrograma para TR=10 años*

Nota. Los resultados obtenidos en el hietograma muestra el tiempo de infiltración (color rojo) y escorrentía (color azul). Ademas del hidrograma con caudal pico de 13.8 m3/s. Elaboracion propia, (2024).

Figura 51

Hietograma e Hidrograma para TR=100 años

Nota. Los resultados obtenidos en el hietograma muestra el tiempo de infiltración (color rojo) y escorrentía (color azul). Ademas del hidrograma con caudal pico de 26.5 m3/s. Elaboracion propia, (2024).

Figura 52 *Hietograma e Hidrograma para TR=150 años*

Nota. Los resultados obtenidos en el hietograma muestra el tiempo de infiltración (color rojo) y escorrentía (color azul). Ademas del hidrograma con caudal pico de 29 m3/s. Elaboracion propia, (2024).

Cálculo del caudal de máximas avenidas para flujos hiperconcentrados

EL comportamiento de los flujos hiperconcentrados está controlado por el agua, razón por la cual se comporta de una manera muy similar a flujo de aguas claras, pero con una cantidad de volumen sólido, entonces para hallar el caudal para flujos hiperconcentrados utilizamos el método de O'brian, además de una evidencia fotográfica de un desborde de la quebrada en estudio. (Suarez, 2001).

Nota. Fotografía tomada durante el desborde de la quebrada Sarinmayo (2023).

En la imagen observamos la turbidez del agua, producto del transporte de sedimentos, y en función a ello decimos que la concentración volumétrica es 25% y hallamos el caudal de flujos hiperconcentrados aplicando el método de O'brien, dando como resultado los siguientes caudales

TR	Q máx. de aguas claras (m3/s)	Q máx. con flujos hiperconcentrados (m3/s)		
10	13.8	18.40		
100	26.5	35.33		
150	29	38.67		

Tabla 24Caudales para flujos Hiperconcentrados

Nota. Los caudales máximos con flujos concentrados a parti del caudal de aguas claras. Elaboración propia (2024).

Cálculo del coeficiente de rugosidad de Manning

En el lugar de estudio encontramos diversas zonas dado que el ámbito de influencia alcanza áreas rurales y urbanas es por eso que las rugosidades se asignaron de acuerdo a las zonas encontradas como mostramos en el siguiente mapa.

Rugosidad para la quebrada

Para calcular la rugosidad del lecho se aplicó la metodología de Cowan que menciona Chow en su libro de Hidráulica de canales abiertos, proporcionando tablas con valores para su respectivo cálculo,

Además, para elegir los valores se visitó el lugar y se identificó los factores que modifican la rugosidad como mostramos a continuación.

$$n = (n_0 + n_1 + n_2 + n_3 + n_4) - m_5$$
$$n = (0.028 + 0.005 + 0 + 0.010 + 0.010) * 1.15$$
$$n = 0.061$$

Rugosidad para las zonas aledañas a la quebrada

Utilizando la tabla 07 y observando la zona, obtenemos diversas rugosidades para las áreas aledañas a la quebrada. En estas áreas identificamos praderas con vegetación baja, que presentan una menor resistencia al flujo del agua, y zonas con vegetación alta, que generan mayor fricción y ralentizan el flujo. Además, se encontraron campos de cultivos de maíz y papa. Estos diferentes tipos de uso de suelo y cobertura vegetal son cruciales para una modelación hidráulica precisa, ya que afectan directamente los resultados de las simulaciones de caudal y el comportamiento del agua durante eventos extremos. La siguiente imagen ilustra estas áreas y sus respectivas rugosidades.

Figura 54 *Vista de las praderas de la zona en estudio*

Nota. La fotografía muestra las caracteristicas de la zona en estudio en cuanto a rugosidad nos referimos, como son cultivos, praderas y vegetacion alta. Fotografía tomada en el año (2023).

3.4.4. Modelamiento Hidráulico

Utilizamos el Software Iber V 3.1.0 para el modelamiento hidráulico, siendo este un programa de acceso libre, la metodología del modelamiento consta de tres etapas, pre proceso, procesamiento y post proceso, que describimos de la siguiente manera.

Pre Proceso. Importamos una geometría en formato shapefile, previamente trabajada en ArcGIS, donde se delimitó el lugar de estudio, la zona urbana, la quebrada y las praderas. A las áreas delimitadas se les asignaron las rugosidades de Manning obtenidas (ver Tabla 07): para la quebrada, n=0.061; para las praderas, n=0.03; para la vegetación alta, n=0.2n; y para los cultivos, n=0.045. La distribución se presenta de la siguiente forma:

Figura 55

Nota. Distintos valores de rugosidades asirgandas por cada area encontrada en la zona de estudio. Elaborado en el año (2024).

Luego de ello Asignamos los datos de hidrodinámica como el hidrograma de entrada obtenido con HEC HMS, e identificamos la zona de salida, así como los datos del problema como tiempo de cálculo e intervalos de resultados Construir una malla de cálculo no estructurada, con un tamaño de superficies de 0.5 para la quebrada y 1 para todo lo demás

A toda la malla generada le damos elevaciones a partir de la topografía hecha con dron y estación total

Proceso.

En esta etapa procesamos todos los caudales pico obtenidos para distintos periodos de retorno, las condiciones iniciales del pre proceso serán las mismas.

Durante el procesamiento debemos observar que los caudales de entrada sean iguales a los caudales de salida.

Post-Proceso

Este paso se realiza luego de finalizar el cálculo, nos dirigimos a la ventana de post proceso para visualizar los resultados obtenidos, yendo a la ventana de resultados, vista de resultados por áreas coloreadas y análisis hidráulico, encontramos diversos resultados máximos y mínimos relacionados a la hidráulica como calados, velocidades, caudales, y froude pero para nuestro estudio solo tomamos los datos máximos, así como los mínimos de las velocidades y calados, estos resultados finalmente serán exportados a ArcGis en formato ráster.

Resultados para aguas claras TR = 10 años

Velocidades: Para un escenario con TR de 10 años y caudal Máximo de 13.8 m3/s obtenemos un mapa de velocidades máximas de 6.07 m/s y mínimas de 0.0001 m/s.

Zonas de inundación: En cuanto a cultivos, se inundan 1620 m2, en zonas de pastoreo, 7983m2 en la zona derecha y 2239m2 en la izquierda. Además, inunda de dos puentes de madera y caminos.

Figura 56

Mapa de velocidades para TR=10 años

Nota. Observamos las zonas inundables y la zona de desborde de la quebrada, ademas de máximas y minimas velocidades en toda la zona de influencia. Elaborado en el año (2024).

Calados: Para TR de 10 años y caudal máximos de 13.8 m3/s obtenemos mapa de calados, con un máximo de 2.68m, ubicándose al final del tramo de estudio y mínimo de 0.01 m ubicándose en las llanuras de inundación, además el mapa también muestra las extensiones de inundación.

Figura 57

 $Mapa \ de \ calados \ para \ TR = 10 \ años$

Nota.Los calados máximos se encuentran a lo largo del tramo en estudio, y los mínimos en las llanuras de inundación, Elaborado en el año (2024).

Resultados para aguas claras TR = 100 años

Velocidades: Para un escenario con TR de 100 años y caudal Máximo de 26.5 m3/s obtenemos un mapa de velocidades máximas de 6.32 m/s y mínimas de 0.0002 m/s.

Zonas de inundación: En cuanto a cultivos, se inundan 2259 m2, en zonas de pastoreo, 10125m2 en la zona derecha y 2996m2 en la izquierda. Además, inunda de dos puentes de madera y caminos.

Figura 58

Mapa de velocidades para TR = 100 anos

Nota. Observamos las zonas inundables y la zona de desborde de la quebrada, ademas de máximas y minimas velocidades en toda la zona de influencia. Elaborado en el año (2024).

Calados: Para TR de 100 años y caudal máximos de 26.5 m3/s obtenemos mapa de calados, con un máximo de 3.23, ubicándose al final del tramo de estudio y mínimo de 0.01 m ubicándose en las llanuras de inundación, además el mapa también muestra las extensiones de inundación.

Figura 59

Mapa de calados para TR =100 años

Nota.Los calados máximos se encuentran a lo largo del tramo en estudio, y los mínimos en las llanuras de inundación, Elaborado en el año (2024).

Resultados para aguas claras TR = 150 años

Velocidades: Para un escenario con TR de 150 años y caudal Máximo de 29 m3/s obtenemos un mapa de velocidades máximas de 6.88 m/s y mínimas de 0.0002 m/s.

Zonas de inundación: En cuanto a cultivos, se inundan 2390 m2, en zonas de pastoreo, 10302m2 en la zona derecha y 3168m2 en la izquierda. Además, inunda de dos puentes de madera y caminos.

Figura 60 Mapa de velocidades para TR = 150 años

Nota. Observamos las zonas inundables y la zona de desborde de la quebrada, ademas de máximas y mínimas velocidades en toda la zona de influencia. Elaborado en el año (2024).

Calados: Para TR de 150 años y caudal máximos de 29 m3/s obtenemos mapa de calados, con un máximo de 3.27 m, ubicándose al final del tramo de estudio y mínimo de 0.01 m ubicándose en las llanuras de inundación, además el mapa también muestra las extensiones de inundación.

Figura 61

Mapa de calados para TR = 150 años

Nota. Los calados máximos se encuentran a lo largo del tramo en estudio, y los mínimos en las llanuras de inundación, Elaborado en el año (2024).

Resultados para flujo Hiperconcentrado TR = 10 años

Velocidades: Para un escenario con TR de 10 años y caudal Máximo de 18.40 m3/s obtenemos un mapa de velocidades máximas de 6.72 m/s y mínimas de 0.0002 m/s.

Zonas de inundación: En cuanto a cultivos, se inundan 1718 m2, en zonas de pastoreo, 8398m2 en la zona derecha y 2363m2 en la izquierda. Además, inunda de dos puentes de madera y caminos.

Figura 62

Mapa de velocidades con flujos hiperconcentrados para TR = 10 años

Nota. Observamos las zonas inundables y la zona de desborde de la quebrada, ademas de máximas y minimas velocidades en toda la zona de influencia. Elaborado en el año (2024).

Calados: Para TR de 10 años y caudal máximos de 18.40 m3/s obtenemos mapa de calados, con un máximo de 2.94 m, ubicándose al final del tramo de estudio, y mínimo de 0.01 m ubicándose en las llanuras de inundación, además el mapa también muestra las extensiones de inundación.

Figura 63

Mapa de calados con flujos hiperconcentrados para TR = 10 años

Nota. Los calados máximos se encuentran a lo largo del tramo en estudio, y los mínimos en las llanuras de inundación, Elaborado en el año (2024).

Resultados para flujos hiperconcentrados TR = 100 años

Velocidades: Para un escenario con TR de 100 años y caudal Máximo de 35.33 m3/s obtenemos un mapa de velocidades máximas de 6.32 m/s y mínimas de 0.0002 m/s.

Zonas de inundación: En cuanto a cultivos, se inundan 2381 m2, en zonas de pastoreo, 10892m2 en la zona derecha y 3140m2 en la izquierda. Además, inunda de dos puentes de madera y caminos.

Figura 64

Mapa de velocidades con flujos hiperconcentrados para TR = 100 años

Nota. Observamos las zonas inundables y la zona de desborde de la quebrada, ademas de máximas y minimas velocidades en toda la zona de influencia. Elaborado en el año (2024).

Calados: Para TR de 100 años y caudal máximos de 35.33 m3/s obtenemos mapa de calados, con un máximo de 3.33 m, ubicándose al final del tramo de estudio, y mínimo de 0.01 m ubicándose en las llanuras de inundación, además el mapa también muestra las extensiones de inundación.

Figura 65

Mapa de calados con flujos hiperconcentrados para TR = 100 años

Nota. La imagen muestra la zona de desborde de la quebrada, ademas los calados maximos y minimos en todo la zona de influencia. Elaborado en el año (2024).

Resultados para flujos hiperconcentrados TR = 150 años

Velocidades: Para un escenario con TR de 150 años y caudal Máximo de 38.67 m3/s obtenemos un mapa de velocidades máximas de 6.45 m/s y mínimas de 0.0002 m/s.

Zonas de inundación: En cuanto a cultivos, se inundan 2421 m2, en zonas de pastoreo, 10406m2 en la zona derecha y 3204m2 en la izquierda. Además, inunda de dos puentes de madera y caminos.

Figura 66

Mapa de velocidades con flujos hiperconcentrados para TR = 150 años

Nota. Observamos las zonas inundables y la zona de desborde de la quebrada, ademas de máximas y minimas velocidades en toda la zona de influencia. Elaborado en el año (2024).

Calados: Para TR de 150 años y caudal máximos de 38.67 m3/s obtenemos mapa de calados, con un máximo de 3.39 m, ubicándose al final del tramo de estudio, y mínimo de 0.01 m ubicándose en las llanuras de inundación, además el mapa también muestra las extensiones de las zonas de inundación.

Figura 67

Mapa de calados con flujos hiperconcentrados para TR = 150 años

Nota. La figura muestra la zona de desborde de la quebrada, ademas los calados maximos y minimos en todo la zona de influencia. Elaborado en el año (2024).

3.4.5. Caudal de inundación en el año 2013.

Después de haber identificado las áreas inundables en campo, ubicamos las huellas de inundación en la ortofoto obtenida del levantamiento con dron, como mostramos a continuación.

Figura 68

Ubicación de las Huellas de inundación del año (2013)

Nota. En la figura se observa lineas rojas que son huellas de inundación en el año 2013, los datos fueron tomados en el año (2023).

Finalmente, utilizando la misma metodología para hallar los caudales máximos, hallamos un caudal, que al realizar el modelamiento numérico coincidan con las huellas de inundación, y por ende podemos saber con qué caudal y periodo de retorno se inundó las zonas aledañas a la quebrada Sarinmayo en el año 2013.

El Hidrograma siguiente modelado en HEC HMS, tiene como pico máximo un caudal de 20.2 m3/s y periodo de retorno de 30 años, el cual al modelar cubrió las huellas identificadas.

Figura 69 Hietograma e Hidrograma para la inundación del año (2013)

Nota. Los resultados obtenidos en el hietograma muestra el tiempo de infiltración (color rojo) y escorrentía (color azul). Ademas del hidrograma con caudal pico de 20.2 m3/s. Elaborado en el año (2024).

El modelamiento numérico también fue realizado con Iber obteniendo resultados de zonas inundadas además de mapas de velocidades y calados máximos como se muestra a continuación. *Velocidades:* Para un escenario con TR de 30 años y caudal Máximo de 20.2 m3/s obtenemos un mapa de velocidades máximas de 5.76 m/s y mínimas de 0.001 m/s.

Zonas de inundación: En cuanto a cultivos, se inundan 1930 m2, en zonas de pastoreo, 8444m2 en la zona derecha y 2491m2 en la izquierda. Además, inunda de dos puentes de madera y caminos.

Figura 70

Mapa de velocidades para TR = 30 años

Nota. Los resultados obtenidos muestram una velocidad máxima de 5.76 m/s que se da en el lecho de quebrada, pero el flujo de agua llega hasta las zonas de cultivo y pastoreo, elaborado en (2024).

Calados: Para TR de 30 años y caudal máximos de 20.2 m3/s obtenemos mapa de calados, con un máximo de 2.40 m, ubicándose al final del tramo de estudio, y mínimo de 0.01 m ubicándose en las llanuras de inundación, además el mapa también muestra las extensiones de inundación.

Figura 71

Mapa de calados para TR = 30 años

Nota. Los resultados obtenidos muestram un calado maximo de 2.40m que se da en el lecho de quebrada, y los calados minimos estan en las areas de cultivo y pastoreo. Elaborado en el año (2024).

CAPITULO IV

ANÁLISIS Y DISCUSION DE RESULTADOS

4.1. EN CUANTO A TOPOGRAFÍA

Para la topografía de la cuenca, se trabajó en base a un modelo digital de elevación (DEM) Descargado de la web que proporciona Alos Palsar, con un tamaño de malla de 12.5 x 12.5 m, siendo esta una mejor opción en cuanto a resolución se refiere, frente a las cartas nacionales, como trabajó Aparicio en el rio quinuas en el año 2018, y también Saldaña en el año 2023, en la quebrada Sarinmayo. Luego con ayuda de ArcGis se halló los parámetros geomorfológicos de la cuenca.

En cuanto a la topografía del tramo estudiado de la quebrada Sarinmayo, se utilizó un dron Phantom 4 con posicionamiento RTK. Este dron tiene la ventaja de corregir la posición del vuelo en tiempo real, y, por ende, tomar fotografías más exactas en cuanto a la georreferenciación de las fotografías. Es por ello que se omite el paso de colocar puntos de fotocontrol para la posterior orientación. Saldaña también realiza el levantamiento fotogramétrico con dron, pero en su trabajo no se evidencian los puntos de fotocontrol. Por otro lado, Aparicio utiliza la topografía proporcionada por las cartas nacionales. La desventaja que encontramos en común al realizar el vuelo es que existe mucha vegetación alta en las orillas del cauce, lo cual impide la visibilidad total del cauce. Por ello, utilizamos una estación total TS 09 para detallar el fondo del cauce, así como parte de los márgenes de la quebrada que no se lograron capturar con el dron, coincidiendo con Aparicio que también utilizó una estación total Leica TS02. Saldaña utiliza un GPS diferencial, que tiene la desventaja de que la vegetación existente baja la precisión en el posicionamiento.

Finalmente, se unieron ambas topografías en una sola, y con la ayuda del programa ArcGIS obtuvimos un modelo de elevación digital general mucho más detallado y apegado a la realidad, siendo estos resultados más confiables a la hora de realizar el modelamiento hidráulico.

4.2. EN CUANTO A LA HIDRÁULICA FLUVIAL DEL TRAMO EN ESTUDIO

Para caracterizar la Hidráulica fluvial del tramo en estudio de la quebrada Sarinmayo, se visitó la zona en estudio, posteriormente se realizó su batimetría y se caracterizó la quebrada en cuanto a su geometría hidráulica, además se pudo obtener su ancho medio y altura media, en cuanto al material del lecho se pudo caracterizar en función a la geología de la zona y la presencia de materiales en el lecho. Además, para caracterizar a la quebrada por su edad se hizo un recorrido al

tramo en estudio y se pudo recopilar información fotográfica y observar la forma en V de la quebrada y con deposiciones de material fracturado, y al hacer dicho recorrido observamos que el tramo en estudio presenta tres grados de libertad. Saldaña también caracterizó la quebrada según la hidráulica fluvial, y obtiene resultados similares, en cuanto a la pendiente el obtiene 2.6% en mi caso 2.33%, pero en cuanto a los grados de libertad el menciona que la quebrada tiene 2 grados de libertad y en mi investigación obtengo 3 grados de libertad al igual que Aparicio, ya que la quebrada varía en pendiente, tirantes y la sección del cauce se ajusta a las paredes. Finalmente discrepo con Saldaña ya que el menciona que son ríos maduros, y desde mi análisis no es correcto ya que los ríos maduros tienen pendientes pequeñas y en este caso aún tenemos pendientes fuertes.

4.3. EN CUANTO AL MODELAMIENTO HIDROLÓGICO

Parámetros geomorfológicos de la cuenca

Los parámetros se hallaron con el fin de calcular el caudal de eventos de máximas avenidas y de caracterizar geomorfológicamente a la cuenca de la quebrada Sarinmayo, para ello nos apoyamos del programa ArcGis, resultando una cuenca de forma alargada según el factor de forma de Horton, y según el índice de gravelius es una cuenca oval oblonga a rectangular oblonga presentando peligros torrenciales bajos. La pendiente media de la cuenca fue calculada por el método de Alvord calculando una pendiente media de 23.98%, y según la asociación nacional del agua (ANA) es una cuenca fuertemente accidentada, a continuación, presentamos en resumen de todos los parámetros calculados.

Tabla 25

Parámetros geomorfológicos de la cuenca

Área	(A)	10.50 Km2
Perímetro	(P)	17.09 Km
Longitud del cauce principal	(Lc)	5.42 km
Pendiente del Cauce principal	(S)	4.76%
Factor de Forma	(Ff)	0.26
Índice de gravelius	(Kf)	1.5
Pendiente media de cuenca	(S)	23.98%
Altura media de cuenca	(Hm)	3030 m.s.n.m.

PARÁMETROS GEOMORFOLÓGICOS DE CUENCA DE LA QUEBRADA SARIN MAYO

Orden de ríos		2
Tiempo de concentración	(Tc)	47.18 min

Nota. La tabla muestra un resumen de todos los parámetros geomorfológicos hallados en la investigación. Elaboracion propia (2024).

Intensidades máximas

Los datos Hidrológicos Históricos que registró la estación Namora de precipitaciones máximas a 24 hr, son desde el año 1995 hasta el 2022, siendo estos datos más actualizados y con menos datos faltantes, con los datos obtenidos tenemos una ventaja, ya que la estación meteorológica se encuentra a pocos metros de la cuenca y a la quebrada en estudio, para saber si los datos son consistentes debemos analizar los saltos y tendencias y observamos que no presentan saltos ni tendencias y podemos decir que los datos si son consistentes y proseguimos a completar datos faltantes por el método de la relación Normalizada, con las estaciones Augusto Weberbauer y La Encañada ya que estas dos estaciones tampoco presentan saltos o tendencias. En el caso de Saldaña solo trabajó con la estación Namora, y no se observa las evidencias de los análisis visuales gráficos y tampoco la completación de datos faltantes, conllevando a obtener resultados más alejados de la realidad.

Para estimar el período de retorno, lo calculamos en función del riesgo admisible y la vida útil de las estructuras halladas en el cauce, como puentes, alcantarillas y muros de contención; además, identificamos los cultivos agrícolas fundamentales, como la papa y el maíz, esenciales para la alimentación de la población aledaña que podría ser afectada por un eventual desborde de la quebrada, como ocurrió en 2013. Obtuvimos períodos de retorno de 10, 100 y 150 años, y las curvas IDF nos proporcionaron una ecuación de ajuste para cada período de retorno; al remplazar el tiempo de concentración de la cuenca, obtuvimos la intensidad máxima, que se utilizará para hallar el caudal de máxima avenida. En la tesis de Saldaña, se obtienen períodos de retorno de 50, 70 y 200 años, pero no se indica el criterio utilizado, mientras que Aparicio coincide con mi investigación al estimar en función de las estructuras halladas en el cauce, su vida útil y el riesgo de falla. No obstante, Aparicio no menciona las estructuras halladas ni el riesgo de falla específico, y propone períodos de retorno de 15, 25 y 40 años.

En cuanto a la construcción de curvas IDF, Saldaña utilizó el programa de acceso libre Hidroesta, mientras que Aparicio no elaboró curvas IDF; en su lugar, calculó las intensidades mediante una fórmula proporcionada para el método racional modificado, según lo establecido por el MTC

Caudales de máximas avenidas

Para calcular los caudales máximos se utilizó el programa HEC-HMS. Saldaña coincide con mi investigación en el proceso de cálculo de caudales, ya que también utiliza el mismo software, con un número de curva NC = 72, mientras que en mi caso es NC = 75. Los resultados de caudales no coinciden porque el tamaño de su cuenca es mayor, lo que implica un mayor tiempo de concentración. Para calcular los caudales máximos en el río Quinuas, Aparicio utilizó el método racional modificado, con un número de curva NC = 92.1, lo que sugiere que una mayor cantidad de agua de lluvia se convierte en escorrentía superficial. Sin embargo, esto es incorrecto, ya que en la zona hay una gran cantidad de terreno destinado a cultivos.

4.4. EN CUANTO AL CAUDAL QUE DESBORDÓ E INUNDÓ EN EL AÑO 2013

Para estimar el caudal que desbordó la quebrada Sarinmayo y su posterior inundación en 2013, hemos identificado en el campo varias evidencias que indican la extensión de las zonas inundables. Estas incluyen huellas de inundación, testimonios de los pobladores y el reporte de INDECI, los cuales se plasmaron en la ortofoto. El caudal necesario para el modelamiento numérico se estimó utilizando HEC-HMS, aplicando la misma metodología que para los demás caudales máximos. Finalmente, para modelar en Iber, elegimos un caudal con un determinado período de retorno que cubriera las huellas de inundación identificadas en el campo.

Saldaña y Aparicio coinciden con mi investigación en cuanto al proceso de campo y gabinete para estimar el caudal de inundación histórico, ya que ambos recopilaron huellas de inundación y testimonios de pobladores aledaños. A través de sus cálculos, lograron determinar un caudal que cubriera las huellas de inundación. En mi caso, obtengo un caudal de 20.2 m³/s con un período de retorno de 30 años, que inunda 1,930 m² de cultivos agrícolas y 10,935 m² en zonas de pastoreo. Aparicio, por su parte, calculó un caudal de inundación de 73 m³/s que se produjo en 2018. En cuanto a Saldaña, calculó un caudal de inundación en 2013, que resultó en 32.1 m³/s y un período de retorno de 70 años, afectando un área de 18,119 m².

4.5. EN CUANTO AL MODELAMIENTO HIDRÁULICO

Para realizar el modelamiento hidráulico e identificar las zonas inundables por máximas avenidas, utilizamos el software Iber, un programa gratuito que incluye un módulo hidrodinámico para la simulación de cauces naturales. Este software es especialmente útil debido a su capacidad para manejar una variedad de datos y parámetros necesarios para obtener resultados precisos y detallados. Los parámetros más importantes que necesita Iber son los hidrogramas resultantes del modelamiento hidráulico realizado con HEC-HMS, la rugosidad del terreno y un modelo de elevación digital, entre otros parámetros específicos del programa. Los resultados obtenidos incluyen valores máximos y mínimos de calados y velocidades, así como las áreas afectadas por inundación y la extensión de las zonas inundables.

Saldaña también realiza el modelamiento hidráulico en Iber. Los hidrogramas necesarios para el modelamiento fueron calculados con HEC-HMS. En cuanto a la rugosidad, se asignaron valores de Manning propuestos por French, según las condiciones del terreno encontrado en el lugar, incluida la quebrada. Además, Aparicio, en su investigación, también asignó rugosidades de manera general a sus superficies. En mi caso, se utilizaron valores propuestos por Chow para los materiales aledaños a la quebrada, y para la quebrada se aplicó el método de Cowan, que es un método más detallado y, por ende, permite estimar la rugosidad con mayor precisión.

En cuanto a los resultados de velocidades y calados, mis hallazgos se basan en dos escenarios: flujo con aguas claras y flujo hiperconcentrados. En cambio, Saldaña y Aparicio modelaron únicamente el flujo con aguas claras. Por esta razón, mis resultados de velocidades en aguas claras son 6.07 m/s, 6.32 m/s y 6.88 m/s, con calados de 2.68 m, 3.23 m y 3.27 m, así como zonas inundadas entre cultivos y zonas de pastoreo son 11842m2, 15380m2 y 15860m2, para períodos de retorno de 10, 100 y 150 años, respectivamente. En contraste, Saldaña reporta velocidades de 7.3 m/s, 7.35 m/s, 7.44 m/s y 7.58 m/s, con calados de 2.81 m, 3 m, 3.11 m y 3.28 m, para períodos de retorno de 50, 70, 100 y 200 años, respectivamente. Dado que Saldaña investigó la misma quebrada, los resultados presentan una ligera variación, ya que él calcula una mayor área de cuenca, por ende, los demás parámetros geomorfológicos son distintos, además de que los períodos de retorno son diferentes.

CAPITULO V

CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

- Se recopiló la información topográfica de la zona en estudio, para dicha información se utilizó un dron phantom4rtk, obteniendo información en tiempo real de la zona en estudio, recolectando un total de 308 imágenes, abarcando un área total de 20.51 Ha, dado que las imágenes satelitales solo se visualizan hasta el espejo de agua además de existir vegetación alta en todas la orilla de la quebrada, para detallar la zona de la quebrada fue necesario utilizar una estación total, y finalmente unir ambas topografías, obteniendo una topografía confiable que fue usada en esta investigación así como para posteriores investigaciones.
- Se caracterizó geomorfológicamente la cuenca de la quebrada Sarinmayo, para ello utilizamos un modelo de elevación digital con tamaños de celda 12.5 x 12.5 m proporcionado por el satélite Alos palsar y con la ayuda del programa ArcGIS calculamos los parámetros geomorfológicos, para la delimitación de la cuenca tomamos como punto de aforo un puente ubicado en la carretera al ojo de agua. la cuenca tiene un área de 10.5 Km2, perímetro de 17.09 Km, en cuanto a los parámetros de forma tenemos un factor de forma de Horton con un valor de 0.26 que nos indica que es una cuenca de forma alargada, también un índice de gravelius de 1.5, con este valor podemos decir que es una cuenca oval oblonga a rectangular oblonga, en cuanto a los parámetros de relieve tenemos la pendiente media de la cuenca, hallada por el método de Alvord, con un valor de 23.98% siendo una cuenca fuertemente accidentada según las clasificaciones del ANA, con longitud del cauce principal de 5.42 Km, para la pendiente del cauce principal hallado por Taylor Schwars nos dio un valor de 4.76%, hallamos también la curva hipsométrica de la cuenca, y decimos que la cuenca en equilibrio y con ríos maduros, con la misma curva hipsométrica hallamos la altura media de la cuenca medido al 50% del área acumulada, resultando una altura media de 3030 m.s.n.m. la cuenca tiene un orden de ríos de 2 según Straller, finalmente tenemos el tiempo de concentración hallado por Kirpich con un valor de 47.18 minutos.

- Se caracterizó el tramo de la quebrada en estudio según la hidráulica fluvial, dando los siguientes resultados. En cuanto a la geometría hidráulica de la quebrada, muestra un ancho promedio de 5.5 metros y una altura promedio de 1.80 metros, con una relación B/y de 3.05, lo que indica una mayor presencia de material fino. Es una quebrada torrencial ya que tiene 2.3% de pendiente. También presenta áreas de inundación, porque existen huellas halladas en campo y testigos. Además, se trata de una quebrada joven, dado que su sección transversal es en forma de V y de morfología recta en su mayoría, con presencia de material aluvial. También se observa la formación de meandros, aunque en menor cantidad. Finalmente, la quebrada en estudio presenta tres grados de libertad, ya que varía la pendiente y los tirantes, además de ajustarse a la sección del cauce.
- Se recopiló y procesó la información Hidrológica que registró la estación Namora (precipitaciones máximas a 24 hr), estos datos fueron transformados a intensidades máximas y transpuestos a la altura media de la cuenca, para luego modelar hidrológicamente la precipitación escorrentía con el programa HEC-HMS, calculando caudales de 13.8 m3/s, 26.5m3/s y 29m3/s para periodos de retorno de 10 años, 100 años y 150 años respectivamente.
- Se estimó el caudal que desbordó la quebrada Sarinmayo en 2013, obteniendo un caudal de 20.2 m³/s con un período de retorno de 30 años. Este caudal se ajusta a los datos de huellas de inundación identificadas en la zona, lo que proporciona una validación importante de los modelos utilizados. La inundación resultante afectó una amplia área, incluyendo 1,930 m² de cultivos de papa y maíz, que son esenciales para la economía local y la seguridad alimentaria de la comunidad. Además, se inundaron 8,444 m² en zonas de pastoreo en el margen derecho y 2,491 m² en el margen izquierdo, afectando la producción ganadera. La inundación no solo impactó la agricultura y la ganadería, sino que también dañó infraestructuras clave, como caminos de herradura, un puente de madera crucial para el transporte local, y parte de las instalaciones de piscicultura, vitales para la economía local y la biodiversidad acuática de la zona. Estos daños subrayan la importancia de implementar medidas de gestión del riesgo de inundaciones para proteger tanto los medios de vida como las infraestructuras críticas en la región.

Se modeló hidráulicamente la quebrada Sarinmayo considerando tanto el flujo de aguas claras como flujos hiperconcentrados, partiendo del punto de aforo de la cuenca ya que es este un punto crítico por inundación y finalizando también por otro punto crítico, ubicado en la zona de la piscicultura, Para cada caudal máximo simulado se obtuvieron resultados detallados de velocidades y calados máximos se ha obtenido resultados de velocidades y calados máximos, que son fundamentales para entender el impacto potencial de inundación en la zonas. Los resultados obtenidos para ambos escenarios son mostramos a continuación.

Tabla 26

Aguas claras			Hiperconcentrados			
TR	Caudal máximo	Velocidad Máxima (m/s)	Calados máximos (m)	Caudal máximo	Velocidad Máxima (m/s)	Calados máximos (m)
10	13.8	6.07	2.68	18.40	6.12	2.94
100	26.5	6.32	3.23	35.33	6.32	3.33
150	29	6.88	3.27	38.67	6.45	3.39

Resultados del modelamiento hidráulico

Nota. La tabla muestra los resultados de velocidades y calados maximos, a partir del modelamiento con caudales de flujos de aguas claras. Elaborado en el año (2024).

Se elaboraron mapas de zonas inundables para distintos periodos de retorno de 10, 100 y 150 años como se muestra en los resultados, considerando dos escenarios: con aguas claras y con flujos hiperconcentrados. Ambos escenarios arrojan resultados distintos en cuanto a las áreas inundadas. Los resultados se presentan a continuación.

Tabla 27

Resultados de áreas de inundación

Aguas claras			Hiperconcentrados			
		praderas	praderas		praderas	praderas
TR	Cultivos	margen derecho	margen izquierdo	Cultivos	margen	margen izquierdo
	(m2)	(m2)	(m2)	(m2)	derecho (m2)	(m2)
10	1260	7983	2239	1718	8398	2363
100	2259	10125	2996	2381	10892	3140
150	2390	10302	3168	2421	10406	3204

Nota. La tabla muestra los resultados de velocidades y calados maximos, a partir del modelamiento con caudales de flujos hiperconcentrados. Elaborado en el año (2024).

5.2. RECOMENDACIONES

- Dado que el estudio se realizó a escasos metros del distrito de Namora y además teniendo en cuenta que la quebrada atraviesa dicho distrito, se recomienda sensibilizar a la población para estar preparados en caso de una próxima inundación por máxima avenida de la quebrada Sarinmayo.
- A los futuros investigadores se recomienda llevar a cabo un estudio de rugosidad en la quebrada, para obtener datos reales en futuras investigaciones.
- Por la zona de desborde se recomienda a las autoridades construir defensas ribereñas en l ya que las inundaciones acarrean pérdidas económicas y sociales.
- A las autoridades competentes, se recomienda la instalación de una estación hidrométrica, ya sea en la quebrada Sarinmayo o en el Rio Namora.
- A la población se recomienda evitar sembrar cerca a la rivera de la quebrada, así como contriciones de viviendas, dado que es cuestión de tiempo que se presente fenómenos extraordinarios.
- Se recomienda a las autoridades locales delimitar las fajas marginales de la quebrada, ya que en la investigación se observa que hay cultivos aledaños a la quebrada, así como pastoreo.
BIBLIOGRAFÍA

- Aparicio Mijares, F. J. (1989). *Fundamentos de Hidrología de Superficie* (1^ª ed.). México: Limusa Noriega. ISBN 978-968-18-3014-4
- Baldeon, L. C. (2016). *Modelamiento Hidrológico de la sub cuenca del rio Achamayo [Tesis de posgrado]*. Universidad del centro del Perú, Huncayo, Perú.
- Cachicatari, L. (2023). Analisis comparativo del modelamiento hidráulico utilizando IBER y HEC -RAS pra determinar areas inundables en la quebrada del diablo, region Tacna [Tesis de pregrado]. Universidad Nacional Jorge Basader Grohmann, Tacna, Perú.
- Castillo, L. (2006). Aplicación de un modelo numeerico de flujos de escobros y lodos en una quebra en el Perú [Tesis de pregrado]. Universidad Nacional de Ingeniería, Lima, Perú.
- Cea Gomez, L. (2005). An unstructured finite volume model for unsteady turbulent shallow water flow with wet-dry fronts [Tesis doctoral]. Universidad de a Coruña, Coruña.
- CEDEX, G., & FLUMEN, C. (2012). *Modelización bidimensional del flujo en lámina libre en aguas poco profundas:* Manual de referencia hidráulico. Ministerio de Fomento, Centro de Estudios y Experimentación de Obras Públicas. ISBN 978-84-7790-553-4.
- Chow, V. T., Maidment, D. R., & Mays, L. W. (1994). *Hidrología Aplicada* (1a ed.). Bogotá: Martha Edna Suárez R. ISBN:0-07-010810-2
- Chow, V. (1994). *Hidraulica de canales abiertos (2da ed.*). Bogotá: McGraw-Hill Interamericana.ISBN:07-010776-9
- Daza, D. (2016). Aplicación del enfoque no estacionario para la estimacion de areas inundables en la cuenca del rio Tanjuelo [Tesis de Post grado]. Universidad Nacional de Colombia, Bogotá, Colombia.
- Diez Herrero A., L. H. (2009). A handbook on Flood Hazard Mapping Metodologies. (T. G. Spain, Ed.) Madrid: planetearth. p.190:ISBN 978-84-7840-813-9
- Escusa, E. (2016). Análisis y modelamiento de flujosde escombros en la zona de Maranura La Convención - Cusco [tesis de licenciatura]. Universidad Católica del Perú, Lima, Perú.
- Fernandez, Y. (2013). Análisis de riesgo por inundacion en la zona de Fontibon-barrio Casandra [tesis de pregrado]. Universidad Católica de Colombia, Bogotá, Colombia.
- Galeno, C. H. (2014). modelación de areas de afectación por desbordamiento de rios en zonas de transición fluvail. caso rio la antigua, veracruz.[Tesis de posgrado] Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico.

- Li, Z., Zhu, Q., & Gold, C. (2004). Digital Terrain Modeling Priciples and Methodology.(1^a ed.).Boca Raton. ISBN: 9780429205071.
- Manchemo, A., Vásconez, M., & Araque, M. (2018). *Hidraulica y Ambiente*. Universidad Politécnica Salesiana, Cuenca, Ecuador.
- Martinez Amaya, J. D., & Rubio Nieto, A. I. (2018). modelo de inundación mediante el uso de vehículos aéreos no tripulados en la cuenca media del rio madgalena, en el municipio de la dorada, caldas [Tesis de pregrado]. Universidad Santo Tomás, Colombia.
- Martinez, D., & Solano, H. (2020). *Determinación del coeficiente de rugosidad del rio Tomebamba mediante fórmulas empíricas [tesis de pregrado]*. Universidad del Azuay facultad de ciencia y tecnología escuela de ingenieria civil, Azuay, Ecuador.
- Maza Álvarez, J. A., & García Flores, M. (1996). *Transporte de sedimentos (6a ed.) : capítulo 10 del manual de Ingeniería de ríos.* Instituto de Ingeniería UNAM, México.
- Monsalve Saenz, G. (1999). *Hidrología en la Ingeniería* (2da ed.). Colombia: Alfa Omega. ISBN:970-15-0404-6. p38.
- Ortiz, S. O. (2016). Similitud hidráulica de sistemas hidrológicos altoandinos y transferencia de información hidrometeorológica. Universidad Nacional Agraria La Molina, Lima, Perú.
- Perez Morales, B., Rodriguez Castro, A., & Molina Aguilar, P. (2018). *Ingeniería de Rios*. Universidad Michoacana de San Nicolas de Hidalgo, Morelia, México.
- Rivas, L., & Carrera, J. (2015). Zonificación de la amenaza por inundaciónes en la planicie aluvial del rio Borburata, estado Carabobo, Venezuela [Tesis de pregrado]. Universidad Pedágogica Experimental Libertador, Caracas.
- Rocha Felices, A. (1998). *Introducción a la Hidráulica Fluvial (1a. ed.).*. Universidad Nacional de Ingeniería, Lima, Perú. p.179.
- Saldaña, C. (2023). Zonificación de áreas inundables por máximas avenidas de la quebrada sarin mayo en la localidad de Namora. *[Tesdid de pregrado]*. Universidad Nacional de Cajamarca.
- Sequeiros Cuba, M. N., & Farfan Encalada, S. L. (2019). Evaluación hidrológico e hidráulico con el modelo Iber para determinar el riesgo por inundación en la población ribereña al rio Qochoq, provincia Calca - región Cusco 2017. [Tesis de pregrado]. Universidad Nacional de San Antonio Abad del Cusco, Cusco - Perú.
- Valle, G. (2019). Estudio Hidrológico e Hidraúlico del río Corbones a su paso por la zona urbana de la puebla de Cazalla [Tesis de Grado]. Universidad de Sevilla, Sevilla.

Vide Martin, J. (2002). Ingeniería de Rios. Universidad Politecnica de Catalunya, Barcelona, España

Alfa & Omega. Edicions UPC. ISBN: 84-8301-563-3. p.25.

- Villena Idrogo, K. J. (2018). Identificación de áreas inundables mediante modelamiento hidráulico del rio Chonta tramo de la alameda la chonta distrito de los Baños del Inca. *[tesis de pregrado]*. Universidad Nacional de Cajamarca, Cajamarca Perú.
- Villón , M. (2006). *Hidrología Estadística. (1^a ed.)*. Cartago, Costa Rica. Editorial Tecnológica de costa rica. ISBN:9977-66-178-8
- Villón, M. (2002). Hidrología (1a ed.). Lima, Perú: Villón.Editorial Villón

LINKOGRAFÍA

- ANA. (2010). Estudio de máximas avenidas en las cuencas de la zona centro de la vertiente del Pacífico. Autoridad Nacional del Agua, Lima, Perú. Recuperado de: https://repositorio.ana.gob.pe/bitstream/handle/20.500.12543/796/ANA0000602.pdf?sequenc e=1&isAllowed=y.
- ANA. (2017). Complementación de identificación de poblaciones vulnerables por activacion de quebradas 2016-2017 80pp. Autoridad Nacional del Agua, Lima, Perú. Recuperado de: https://repositorio.ana.gob.pe/handle/20.500.12543/491.
- Ferraro, P. (2018). *Drones: nuevas tecnologias y vacios legales ¿ un problema en puerta ?* Universidad de San Andrés, Buenos Aires, Argentina. Recuperado de: https://n9.cl/qnbyw
- George, S., & Nielsen, E. (2000). "Signatures of high-magnitude 19th-century floods in Quercus macrocarpa tree rings along the Red River, Manitoba, Canada." Geology, 28(10), 899-902. Recuperado de:https://manitoba.ca/iem/geo/pflood/p_pdfs/signatures_highmag.pdf
- Haltas, I., Yildirim, E., Oztas, F., & Ibrahim, D. (2021). A comprehensive flood event specification and inventory: 1930-2020 Turkey case study. Intenational Journal of Disaster Risk Reduction, Volume 56. Recuperado de: https://acortar.link/c0aeyc
- IDEAM. (2014). Instituto de Hidrología, Meteorología y Estudios Ambientales. *Modelación Hidrológica*. Recuperado de: http://www.ideam.gov.co/web/agua/modelacion-hidrologica
- Lyon, J. G. (2001). "GIS for Water Resource and Watershed Management." CRC Press. Recuperado de: https://acortar.link/BRaiP8
- Lux, B. (2016). *Conceptos básicos de Morfometría de Cuencas Hidrográficas*. Recuperado de: http://www.repositorio.usac.edu.gt/4482/
- MTC. (2012). Manual de Hidrología, Hidráulica y Drenaje. Ministerio de Transportes y Comunicaciones, Lima, Perú. Recuperado de: https://spij.minjus.gob.pe/Graficos/Peru/2011/Octubre/10/RD-20-2011-MTC-14.pdf
- Portuguez, M., & Verano, C. (2016). *Genereación de mapa de número de curva con sistema de información geográfica*. Uiversidad Agraria la Molina, Autoridad Nacional del Agua (Perú). Recuperado de: https://journals.continental.edu.pe/index.php/apuntes/article/view/544
- Preciado J, M., Mejía Z, R., Arganis J, M., & Ocón G, A. (2011). *Análisis y aplicación de métodos temporales para completar registros faltantes de lluvia en la cuenca del rio bolaños.* xx Congreso Mexicano de Meteorología. Instituto Mexicano de Tecnología del Agua Morelos México, Instituto de Ingeniería de la UNAM, México. Recuperado de: https://es.scribd.com/document/222999415/Res2011050-docx

- Pilán, M., Fernandez, H., & Pilán, T. (2007). *Glosario de INgeniería Hidráulica y Limnología*. UNT UNSE. Recuperado de: https://acortar.link/Mq3x4j
- Sánchez, J. (2013). *Tránsito de Hidrogramas*. Universidad de Salamanca, España. Recuperado de: https://hidrologia.usal.es/temas/Transito_Hidrogramas.pdf
- Suarez, J. (2001). *Control de erosión en zonas tropicales*. Universidad Industrial de Santander. Recuperado de: https://ediciones.uis.edu.co/index.php/publicacionesuis/catalog/book/124

ANEXOS

Anexo 01: Reporte de inundación (2013) de INDECI

Link: https: //portal.indeci.gob.pe/emergencias/cajamarca-cajamarca-namora-inundacion-rep-03/

Instituto Nacional de Defensa Civil

EVALUACIÓN PRELIMINAR DE DAÑOS:

Daños personales

- ✓ 05 familias damnificadas
- ✓ 28 familias afectadas

Daños materiales

- ✓ 05 viviendas inhabitables
- ✓ 28 viviendas afectadas
- ✓ 20 has de cultivo afectado (en proceso evaluación)
- Carretera distrital afectado (en proceso evaluación)

Fuente: Municipalidad Distrital de Namora

V. ACCIONES DE RESPUESTA:

- Personal del Centro de Operaciones de Emergencia del Gobierno Regional de Cajamarca, se movilizan a la zona afectada, a fin de realizar la evaluación de daños y análisis de necesidades complementarias.
- El Jefe de la Oficina de Defensa Civil de la Municipalidad Provincial de Cajamarca, informó que, se realiza trabajos de reforzamiento de defensa ribereña y encauzamiento de rio con apoyo de maquinaria pesada, 01 cargador frontal y 01 moto niveladora de la Municipalidad Distrital de Namora.
- Personal de la Oficina de Defensa Civil de la Municipalidad Distrital de Namora, informó que:
 - Personal de la Oficina de Defensa Civil de la provincia de Cajamarca, se encuentran en la zona afectada realizando trabajos de drenaje de las viviendas anegadas.
 - Realizó la evaluación de daños y análisis de necesidades de la zona afectada
 - Las familias afectadas y damnificadas fueron albergadas en el Salón Municipal del distrito de Namora.
- El Centro de Operaciones de Emergencia Nacional COEN, continúa con el seguimiento de la emergencia.

FUENTES:

- Centro de Operaciones de Emergencia Regional de Cajamarca.
- Oficina de Defensa Civil de la Municipalidad Provincial de Cajamarca.
- Oficina de Defensa Civil de la Municipalidad Distrital de Namora.

San Borja, 04 de abril de 2013 COEN - INDECI

Lic.Adm. Nelson Renachi Valle Evaluador - COEN Centro de Operaciones de Emergencia Nacional

Distribución: PCM INDECI Fuente: COEN - Instituto Nacional de Defensa Civil www.indeci.gob.pe

Figura 73 *Anexo 02: Mapa de riesgo de inundación – CENEPRED*

Link https://sigrid.cenepred.gob.pe/sigridv3/mapa

Figura 74 *Anexo 03: Ficha de identificación de punto crítico*

PERÚ	VERÚ Ministerio de Agricultura y Riego							
	FICHA TECNICA REFERENCIAL DE IDENTIFICAC	ION PUNTO CRIT DEPAR	TICO DEL SECTO RTAMENTO DE CA	R ADACUCHO , DI AJAMARCA	STRITO DE NAMORA, PRO	OVINCIA DE CAJAMAR	RCA,	
PROPUESTA: DESCO	LMATACIÓN Y CONFORMACIÓN DE DIQUE CON MURO DE GAVION	NES EN LA MARGE	N DERECHA DE LA	QUEBRADA SARINM	AYO, SECTOR ADACUCHO, D	ISTRITO NAMORA , PROV	INCIA , REGION (CAJAMARCA
I UBICACIÓN:								
RÍO			QUEBRADA	SARINMA	YO SECTOR	ADACUC	НО	
DEPARTAMENTO	CAJAMARCA		PROVINCIA		CAJAMARCA	DISTRITO	NAM	DRA
	AUTORIDAD ADMINISTRATIVA DEL AGUA		MAR	AÑON	ADMINISTRACIÓN	LOCAL DE AGUA	CAJAM	ARCA
II UBICACIÓN GEO	GRÁFICA EN COORDENADAS UTM - DATUM: WGS 84:							
	TRAMO I: DESCOLMATACIÓN	_		7		-	_	
		ESTE INICIAL	794,922 m	NORTE INICIA	AL 9,204,015 m	_	ZONA	17S
		ESTE FINAL	795,859 m	NORTE FINA	AL 9,202,872 m			
		LONGITUD	1,750 m					
	GAVIONES: Margen Derecha							
		ESTE INICIAL	795,493 m	NORTE INICIA	AL 9,203,477 m]	ZONA	17S
		ESTE FINAL	795,734 m	NORTE FINA	AL 9,203,168 m]		
		LONGITUD	425 m	-		-		
				-				
III LVALUACION D	E LA ZONA EAF OLGTA A INONDACIONES.							
3.1 GEOLOGIA								
Alexandria and a second	las zonas altas de las quebradas). Si se han presentado caida de rocas RFOLÒGICOS: netro 20,48 km, altitud media de la cuenca 3040 msnm, la pendiente de indice de gravelius 1.58, factor de forma 0.12, densidad de drenaje 1.7 es una quebrada seca solo se activa en epoca de lluvias, no existe una rir un caudal de màximas avendias de 3.0 m3/s aproximadamente. Se as aproximadamente, a consecuencia de las fuertes precipitaciones pluv	en laderas de cerro: e la cuenca es de 19 6 km/km2, coeficien estación hidrométric gún la información d nales, se produjo el i	 .07 %, la pendiente e te orográfico 0.69 y r a que registre los cau ada por el Ing. Wiint ncremento y desbord 	Jel rio de maximo recor elación de confluencias dales históricos de dici on Castillo Cueva del á e de quebradas, inundi	rrido es 4.86%, y la longitud de r 10.98. ha quebrada, sin embargo de ac rea de Defensa Civid e la naca Civid e la nac ando viviendas, áreas de cultivo	naximo recorrido es de 10.3 uerdo a la huella en el cauc zpalidad distrital de Namor y carretera en la localidad y	67 km., tiempo de e de la quebrada a , el día miércole distrito de Namor	Sarinmayo s 03 de abril a, provincia
3.3 AREAS PRODUC	TIVAS:							
En la zona intervenida d	e la quebrada Sarinmayo, se ha identificado las siguientes areas produc	tivas e infraestructu	as relacionadas:					
Area Total (Has)	Cultivos	Area (Has)	Total Cabezas de Ganado	Clase Nº	Infraestructur	a afeotada Non	nbre Cantid	a Longitud (m)
	Рара	2		Vacunos 20	Bocato	mas	-	-
e por /IGO er FAU	Pastos	2		Ovinos - Camelidos -	Puent	es		-
5 hard 6.00	Avena Forrajera	-	20	Equinos -	Carrete	eras		-
	Alfalfa	-		Porcinos -	Redes Ele	ectricas	· -	-
	otros			otros -	Servicios de agu	a y desague	-	-
3.4 POBLACIÓN EX	PUESTA:							
En la zona intervenida	quebrada Sarinmayo, se identífico la afectacion de entidades en be	neficio de la poblac	ion afectada:					
N° de Familias		N° de Vivienda Tip Mat	N° de I.E.P/I.E.S.	Nombre	Postas Medicas	Nombre	Otro	Nombre
		rust	IC					
IV EVALUACION E	CONOMICA							
Evaluacion de daños e	impactos probables se obtuvo la siguiente informacion:							
		N* DE FAMILIAS AFECTADAS SE ELE AFE SI SI SI SI SI 30 X	NO SI - X	ADO NO EDUCATIVA	ITUCIONES CENTROS DE SALUD TO			
	CULTIVOS AFECTADOS	POBLACION GANADERA AFECTAL	AFECTADIO (9)	ROCATORINA	INFRAESTRUCTURA HIDRAULICA AFECT	лда		VIAL AFECTADA
Cultive Papa	Area (ha) 2	Ganado de Vacunos 20	AFECTADAS (RM)	(Und) CANALES (Kr	m) DIQUES (Km) DRENES (Km)	ACEQUIAS (Km) OTROS	(Km) (Km)	(Und) OTROS
Pastos	2	Ovinos -	1					
Maiz Avena Forrajera	2	Carnelidos - Equinos -						
Alfalfa	-	Porcinos -]					
otros	0	otros -						

Figura 75 Anexo 04: Dron Phantom 4rtk

Nota. La fotografía muestra el equipo a utilizar para el levantamiento fotogramétrico, tomada en el año (2024).

Anexo 05: Programación del vuelo

Nota. La fotografía muestra el estacionamiento del dron Phantom4 rtk. Tomada en el año (2023).

Anexo 06: Procesamiento de imágenes en AgisoftMetashape

fotogrametria.osx* — Agisoft Metashage	Professional													12	Ø	×
Archivo Edición Ver Flujo de trabajo	Modelo Imagen	Orto Herramientz	as Ayuda													
0 0 0 0 N 0 + A +	/ 💊 - 💽 🏈 (e 11 Q Q 💀	🔕 • 🖾 🛍 🏴	1												
Espacio de trabajo 🛛 🕅 🛪	Modelo Orto															
5 9 Pt 1 0 0 X	Imágenes															ð x
Reacio de trabajo (1 bloque, 298 cáma	OOX SN /	- 10 - 10 -														
Chunk 1 (298 cámaras, 318,099 pt)	H THE REAL	100	MALE MAL	THE LEW	1 4 64	2.4 444		79-54		ALL COLUMN			STAN .	All and		^
 Camaras (298/298 Orientadas) Componentes de conectividad 		121	N. 145		The state		8 18 C 8	-	76		and the second		Carl more			
Formas (110270 Cadena de líne)	an deal	Partil	Jun h			ALLE ALL	1 22 200	5 1 200			74-1		A State			
🧐 Contours (23130 Cadena de	100 0020 0211	100 0020 0212	100 0020 0213	100 0020 0214	100 0020 0215	100 0020 0216	100 0020 0217	100 0020 0218	100 0020 0219	100 0020 0220	100 0020 0221	100 0020 0222	100 0020 0223	100 0020 0224		
Contours (3306 Cadena de l	100,0020,0211							no jucio jucio	Internet internet	The state of the s						
Contours (27818 Cadena de	-	100 100 100	State of Street		1. 199.	and a seal	52.		177 Barris 1	Carl State	Contract 20	The Party Co		1 ALLER		
Contours (27818 Cadena de	alle .			and a strength	1. 1. 1.	12 14	No to Pi	he I'	. : 04		the second second	5. The				
88 Puntos de paso (318,099 puntos				1000	100	1 - 2 - A	and the		P.	2. 97				0.00		
Mapas de profundidad (298, Ca	100 0020 0225	100 0020 0226	100 0020 0227	100 0020 0228	100 0020 0229	100 0020 0230	100 0020 0231	100 0020 0232	100 0020 0233	100 0020 0234	100 0020 0235	100 0020 0236	100 0020 0237	100 0020 0228		
MDE (10063x12250, 10.8 cm/pix	The second second	The other other	The state of the s	100_0010_0110	The other other	100_00L0_0L50	100_0020_0251	100_0020_0252	100_0020_0255	100_0020_0254	100_0000_0055	100_0020_0250	100_0020_0257	100_0420_0250		
K Ortomosaico (28244x 38824, 2.7	Carl B 1		Constant and	ALL THE CAN	THE ELLINE		Tit. Call	CON LAR	HATTA MAN		1 SATE	1144	AN SKI	10 35 -		
					A F I TO	1 2 2		20 10			NHE COL	THE THE	St Con	1960 34 L		
						The start of the		ATT	A DECEMP			19 TA		Jer Intel 1		
	100_0020_0239	100_0020_0240	100_0020_0241	100_0020_0242	100_0020_0243	100_0020_0244	100_0020_0245	100_0020_0246	100_0020_0247	100_0020_0248	100_0020_0249	100_0020_0250	100_0020_0251	100_0020_0252		
					B		E .		II .	m.,		-				
					100	and the second			14 194		to a set		and the second	and the second s		
					and the second	AL	and the second	1			100	No all		-		
د >	U.S.F.	Vertical astron	C el barre -			key in the	Aller	Come to A					1000 C	and the second		
	100_0020_0253	100_0020_0254	100_0020_0255	100_0020_0256	100_0020_0257	100_0020_0258	100_0020_0259	100_0020_0260	100_0020_0261	100_0020_0262	100_0020_0263	100_0020_0264	100_0020_0265	100_0020_0266		
	-					E 4	-					E.V.	E.			
	1					1	T SPIL	1 7 61	C. A. C. C.	O.man	1 Anno 1					
	and the second	and the second second							1 State			SF IS /	3100			
	A 1999					AND A SPACE			A SOLAR	STOTE Y AND THE		0.418		INTERNA THE SHORE		
	100_0020_0267	100_0020_0268	100_0020_0269	100_0020_0270	100_0020_0271	100_0020_0272	100_0020_0273	100_0020_0274	100_0020_0275	100_0020_0276	100_0020_0277	100_0020_0278	100_0020_0279	100_0020_0280		
			EV PART			MARCHINE MILLIN	HAR STREET					- Fired				
	12 24		7700	A TANK	10 PANO	2 4 4 1	the art is		In Acade	1000	3 2 2	2. 5 . 5		2023		
Emarin da Irabain Beferencia				States 1		- ALLE	今日 日子 日子	E THE PARTY	6-14 (P. 1)	ALL PARTY	Con Con	-		1		
Línea de tiempo de X					A CONTRACTOR		NAME OF TAXABLE PARTY.	Concentra Seco	COMPANY & LTA	Sector and a sec				A CONTRACTOR OF		
0008	100_0020_0281	100_0020_0282	100_0020_0283	100_0020_0284	100_0020_0285	100_0021_0001	100_0021_0002	100_0021_0003	100_0021_0004	100_0021_0005	100_0021_0006	100_0021_0007	100_0021_0008	100_0021_0009		
		SALE AND		CALL NO.												
Oundray 1/1	1. 1. 2	S Los Ma														
summer of a	1	C Start	Card A	1000												
	100,0001,0010	100 0001 0011	100 0031 0013	100 0001 0010												
	100_0021_0010	100_0021_0011	100_0021_0012	100_0021_0013												~
													WGS 84 (EPSC	S::4326) 7"12'20.71" S 7	3°19'27.98"	0 10

Nota. La figura muestra el Procesamiento en AgisoftMetashape de las fotografias tomadas en el año (2023).

Figura 78 Anexo 07: Ortofoto final

Nota. La figura muestra la ortofoto que es el resultado final del levantamiento fotogrmétrico. Elaborado en el año (2023).

Figura 79 *Anexo 08: Levantamiento topográfico tramo inicial*

Nota. La figuraa muestra el levantamiento topográfico con estación total en al punto de aforo, tomada en el año (2023).

Anexo 09: Levantamiento topográfico tramo intermedio

Nota. La figura muestra el levantamiento topográfico con estación total en la parte intermedia de la zona en estudio, tomada en el año (2023).

Figura 81 Anexo 10: Levantamiento topográfico tramo final

Nota. La fotografía muestra el levantamiento topográfico con estación total en la parte final de la zona en estudio, tomada en el año (2023).

Figura 82

Anexo 11: Inundación del mes de febrero de (2024)

Nota. La fotografía muestra una máxima avenida en el tramo en estudio de la quebrada Sarinmayo, ademas se observa gran cantidad de sedimentos que transporta, La fotografía fue tomada en febrero de (2024).

Anexo 12: Identificación de Huellas de inundación

Nota. La fotografía muestra el proceso de medicion de las extensiones de huellas de inundación de la margen izquierda. La fotografía fue tomada en el año (2024).

Figura 84

Anexo 13: Identificación de Huellas de inundación

Nota. La fotografía muestra el proceso de medicion de las extensiones de huellas de inundación de la margen derecha. La fotografía fue tomada en el año (2024).

Figura 85 Anexo 14: Zonas de pastoreo

Nota. La fotografía muestra las zonas de pastoreo en zonas inundables. La fotografía fue tomada en el año (2024).

Figura 86 Anexo 15: Quebrada Sarinmayo

Nota. La fotografía muestra viviendas aledañas a la quebrada, asi como la vegetacion y la morfologia de la quebrada en estudio, la fotografía fue tomada en el año (2024).

Figura 87 Anexo 16: Morfología en quebrada Sarinmayo tramo inicial

Nota. La fotografía muestra la morfología de la quebrada en estudio. Tomada en el año (2024).

Anexo 17: Medición de ancho y altura promedio

Nota. La fotografía muestra el proceso para caracterizar la quebrada en funcion a la hidraulica fluvial. Tomada en el año (2024).

PLANO TOPOGRÁFICO DEL TRAMO EN ESTUDIO DE LA QUEBRADA SARINMAYO

Nota. El plano topografico levantado con estación total corresponde al los calados de la qebrada y los margenes donde impide la visibilidad de las imágenes tomadas con Dron, la toma de datos fue en el año (2023).

Anexo 19: Plano topográfico General

Nota. En el plano se muestra la Ortofoto y las curvas a nivel obtenidas del levantamiento fotogramétrico de la zona en estudio, el vuelo se realizó en el año (2023).

Anexo 20: Modelo de elevación (DEM) resultante

Nota. En el plano se muestra el modelo de elevació digital (DEM) resultante de unir ambas topografías, que se usará para el modelamiento numerico. Elaborado en (2024).

					Pendiente	
Tramo		Cota	Desnivel	Longitud	(S)	1/(S^0.5)
1	2767.0	2770.0	1.30	115.62	0.01	9.43
2	2770.0	2780.0	10.00	383.49	0.03	6.19
3	2780.0	2790.0	10.00	444.84	0.02	6.67
4	2790.0	2800.0	10.00	583.23	0.02	7.64
5	2800.0	2810.0	10.00	365.07	0.03	6.04
6	2810.0	2820.0	10.00	259.4	0.04	5.09
7	2820.0	2830.0	10.00	364.05	0.03	6.03
8	2830.0	2840.0	10.00	263.25	0.04	5.13
9	2840.0	2850.0	10.00	200.51	0.05	4.48
10	2850.0	2860.0	10.00	144.81	0.07	3.81
11	2860.0	2870.0	10.00	170.4	0.06	4.13
12	2870.0	2880.0	10.00	53.21	0.19	2.31
13	2880.0	2890.0	10.00	96.29	0.10	3.10
14	2890.0	2900.0	10.00	156.33	0.06	3.95
15	2900.0	2910.0	10.00	272.66	0.04	5.22
16	2910.0	2920.0	10.00	79.18	0.13	2.81
17	2920.0	2930.0	10.00	79.45	0.13	2.82
18	2930.0	2940.0	10.00	102.5	0.10	3.20
19	2940.0	2950.0	10.00	113.61	0.09	3.37
20	2950.0	2960.0	10.00	104.3	0.10	3.23
21	2960.0	2970.0	10.00	238.61	0.04	4.88
22	2970.0	2980.0	10.00	108.53	0.09	3.29
23	2980.0	2990.0	10.00	48.02	0.21	2.19
24	2990.0	3000.0	10.00	171.49	0.06	4.14
25	3000.0	3010.0	10.00	274.98	0.04	5.24
26	3010.0	3019.97	9.97	227.09	0.04	4.77
					Σ	119.19

 Tabla 28

 Anexo 21: Datos para el cálculo de la pendiente del cauce principal

N°	I (5 min)	WEIBLILL P(X)	GUMBEL $F(X)$	$\Delta = P(X) - F(X) $
1	91 79	0.03	0.041	0.007
2	92.15	0.03	0.041	0.025
3	93.23	0.10	0.052	0.023
<u>3</u>	97.57	0.10	0.092	0.051
5	97.93	0.14	0.000	0.042
6	99.01	0.21	0.114	0.093
7	103 35	0.24	0.174	0.053
8	103.33	0.24	0.184	0.092
9	106.96	0.31	0.241	0.069
10	112.02	0.34	0.337	0.008
11	112.02	0.38	0.379	0.000
12	114 91	0.41	0.393	0.021
13	115.28	0.45	0.400	0.048
14	121.78	0.48	0.523	0.040
15	124.67	0.52	0.573	0.056
16	126.48	0.55	0.603	0.052
17	128.47	0.59	0.635	0.048
18	132.26	0.62	0.689	0.069
19	132.26	0.66	0.689	0.034
20	134.43	0.69	0.718	0.028
21	141.29	0.72	0.794	0.070
22	145.27	0.76	0.830	0.071
23	147.80	0.79	0.850	0.056
24	152.86	0.83	0.883	0.055
25	154.30	0.86	0.891	0.029
26	155.03	0.90	0.895	0.002
27	168.03	0.93	0.946	0.015
28	178.88	0.97	0.969	0.004

 Tabla 29

 Anexo 22: Prueba de bondad y ajuste para intensidades máximas en 5 minutos.

N°	I (10 min)	WEIBULL P(X)	GUMBEL F(X)	$\Delta = P(X) - F(X) $
1	54.58	0.03	0.041	0.007
2	54.79	0.07	0.044	0.025
3	55.44	0.10	0.052	0.051
4	58.01	0.14	0.096	0.042
5	58.23	0.17	0.100	0.072
6	58.87	0.21	0.114	0.093
7	61.45	0.24	0.178	0.063
8	61.67	0.28	0.184	0.092
9	63.60	0.31	0.241	0.069
10	66.61	0.34	0.337	0.008
11	67.90	0.38	0.379	0.000
12	68.33	0.41	0.393	0.021
13	68.54	0.45	0.400	0.048
14	72.41	0.48	0.523	0.040
15	74.13	0.52	0.573	0.056
16	75.20	0.55	0.603	0.052
17	76.39	0.59	0.635	0.048
18	78.64	0.62	0.689	0.069
19	78.64	0.66	0.689	0.034
20	79.93	0.69	0.718	0.028
21	84.01	0.72	0.794	0.070
22	86.38	0.76	0.830	0.071
23	87.88	0.79	0.850	0.056
24	90.89	0.83	0.883	0.055
25	91.75	0.86	0.891	0.029
26	92.18	0.90	0.895	0.002
27	99.91	0.93	0.946	0.015
28	106.36	0.97	0.969	0.004

 Tabla 30

 Anexo 23: Prueba de bondad y ajuste para intensidades máximas en 10 minutos.

	1			
N°	I (15 min)	WEIBULL P(X)	GUMBEL F(X)	$\Delta = P(X) - F(X) $
1	40.27	0.03	0.041	0.007
2	40.42	0.07	0.044	0.025
3	40.90	0.10	0.052	0.051
4	42.80	0.14	0.096	0.042
5	42.96	0.17	0.100	0.072
6	43.44	0.21	0.114	0.093
7	45.34	0.24	0.178	0.063
8	45.50	0.28	0.184	0.092
9	46.92	0.31	0.241	0.069
10	49.14	0.34	0.337	0.008
11	50.09	0.38	0.379	0.000
12	50.41	0.41	0.393	0.021
13	50.57	0.45	0.400	0.048
14	53.42	0.48	0.523	0.040
15	54.69	0.52	0.573	0.056
16	55.48	0.55	0.603	0.052
17	56.36	0.59	0.635	0.048
18	58.02	0.62	0.689	0.069
19	58.02	0.66	0.689	0.034
20	58.97	0.69	0.718	0.028
21	61.98	0.72	0.794	0.070
22	63.73	0.76	0.830	0.071
23	64.84	0.79	0.850	0.056
24	67.06	0.83	0.883	0.055
25	67.69	0.86	0.891	0.029
26	68.01	0.90	0.895	0.002
27	73.72	0.93	0.946	0.015
28	78.47	0.97	0.969	0.004

 Tabla 31

 Anexo 24: Prueba de bondad y ajuste para intensidades máximas en 15 minutos.

N°	I (30 min)	WEIBULL P(X)	GUMBEL F(X)	$\Delta = P(X) - F(X) $
1	23.94	0.03	0.041	0.007
2	24.04	0.07	0.044	0.025
3	24.32	0.10	0.052	0.051
4	25.45	0.14	0.096	0.042
5	25.54	0.17	0.100	0.072
6	25.83	0.21	0.114	0.093
7	26.96	0.24	0.178	0.063
8	27.05	0.28	0.184	0.092
9	27.90	0.31	0.241	0.069
10	29.22	0.34	0.337	0.008
11	29.79	0.38	0.379	0.000
12	29.97	0.41	0.393	0.021
13	30.07	0.45	0.400	0.048
14	31.77	0.48	0.523	0.040
15	32.52	0.52	0.573	0.056
16	32.99	0.55	0.603	0.052
17	33.51	0.59	0.635	0.048
18	34.50	0.62	0.689	0.069
19	34.50	0.66	0.689	0.034
20	35.07	0.69	0.718	0.028
21	36.86	0.72	0.794	0.070
22	37.89	0.76	0.830	0.071
23	38.55	0.79	0.850	0.056
24	39.87	0.83	0.883	0.055
25	40.25	0.86	0.891	0.029
26	40.44	0.90	0.895	0.002
27	43.83	0.93	0.946	0.015
28	46.66	0.97	0.969	0.004

 Tabla 32

 Anexo 25: Prueba de bondad y ajuste para intensidades máximas en 30 minutos.

N°	1 (60 min)	WEIBULL P(X)	GUMBEL F(X)	$\Delta = P(X) - F(X) $
1	14.24	0.03	0.041	0.007
2	14.29	0.07	0.044	0.025
3	15.13	0.10	0.096	0.007
4	15.19	0.14	0.100	0.038
5	15.36	0.17	0.114	0.058
6	16.03	0.21	0.178	0.029
7	16.09	0.24	0.184	0.057
8	16.59	0.28	0.241	0.035
9	17.37	0.31	0.337	0.026
10	17.71	0.34	0.379	0.034
11	17.82	0.38	0.393	0.014
12	17.88	0.41	0.400	0.014
13	18.89	0.45	0.523	0.075
14	19.34	0.48	0.573	0.091
15	19.62	0.52	0.603	0.086
16	19.93	0.55	0.635	0.083
17	20.51	0.59	0.689	0.103
18	20.51	0.62	0.689	0.069
19	20.85	0.66	0.718	0.063
20	21.91	0.69	0.794	0.105
21	22.53	0.72	0.830	0.106
22	22.92	0.76	0.850	0.091
23	23.71	0.79	0.883	0.090
24	23.93	0.83	0.891	0.063
25	24.04	0.86	0.895	0.033
26	26.06	0.90	0.946	0.049
27	27.74	0.93	0.969	0.038
28	14.46	0.97	0.052	0.913

 Tabla 33

 Anexo 26: Prueba de bondad y ajuste para intensidades máximas en 60 minutos.

N°	I (120 min)	WEIBULL P(X)	GUMBEL F(X)	$\Delta = P(X) - F(X) $
1	8.46	0.03	0.041	0.007
2	8.50	0.07	0.044	0.025
3	8.60	0.10	0.052	0.051
4	9.00	0.14	0.096	0.042
5	9.03	0.17	0.100	0.072
6	9.13	0.21	0.114	0.093
7	9.53	0.24	0.178	0.063
8	9.56	0.28	0.184	0.092
9	9.86	0.31	0.241	0.069
10	10.33	0.34	0.337	0.008
11	10.53	0.38	0.379	0.000
12	10.60	0.41	0.393	0.021
13	10.63	0.45	0.400	0.048
14	11.23	0.48	0.523	0.040
15	11.50	0.52	0.573	0.056
16	11.66	0.55	0.603	0.052
17	11.85	0.59	0.635	0.048
18	12.20	0.62	0.689	0.069
19	12.20	0.66	0.689	0.034
20	12.40	0.69	0.718	0.028
21	13.03	0.72	0.794	0.070
22	13.40	0.76	0.830	0.071
23	13.63	0.79	0.850	0.056
24	14.10	0.83	0.883	0.055
25	14.23	0.86	0.891	0.029
26	14.30	0.90	0.895	0.002
27	15.50	0.93	0.946	0.015
28	16.50	0.97	0.969	0.004

Tabla 34Anexo 27: Prueba de bondad y ajuste para intensidades máximas en 120 minutos.

Tabla 35

Anexo 28: Datos par	a Hietograma	TR=10 años.
---------------------	--------------	-------------

Duración (min)	Intensidad	pp (mm)aaumulada	nn Inoromontol	Tiompo (min)	nn (mm)
		(IIIII)acumulada	pp incrementar		pp (mm)
60	24.20	24.20	24.20	0-60	0.59
120	14.39	28.78	4.58	60-120	0.63
180	10.62	31.85	3.07	120-180	0.68
240	8.56	34.23	2.38	180-240	0.74
300	7.24	36.19	1.96	240-300	0.81
360	6.31	37.88	1.69	300-360	0.91
420	5.62	39.36	1.49	360-420	1.04
480	5.09	40.70	1.34	420-480	1.22
540	4.66	41.92	1.22	480-540	1.49
600	4.30	43.04	1.12	540-600	1.96
660	4.01	44.07	1.04	600-660	3.07
720	3.75	45.04	0.97	660-720	24.20
780	3.53	45.95	0.91	720-780	4.58
840	3.34	46.81	0.86	780-840	2.38
900	3.18	47.63	0.81	840-900	1.69
960	3.03	48.40	0.77	900-960	1.34
1020	2.89	49.14	0.74	960-1020	1.12
1080	2.77	49.85	0.71	1020-1080	0.97
1140	2.66	50.53	0.68	1080-1140	0.86
1200	2.56	51.18	0.65	1140-1200	0.77
1260	2.47	51.81	0.63	1200-1260	0.71
1320	2.38	52.41	0.61	1260-1320	0.65
1380	2.30	53.00	0.59	1320-1380	0.61
1440	2.23	53.57	0.57	1380-1440	0.57

1	Duración	Intensidad	nn			
	(min)	(mm/hr)	(mm)acumulada	pp Incremental	Tiempo (min)	pp (mm)
	60	31.07	31.07	31.07	0-60	0.75
	120	18.47	36.95	5.88	60-120	0.81
	180	13.63	40.89	3.94	120-180	0.87
	240	10.99	43.94	3.05	180-240	0.95
	300	9.29	46.46	2.52	240-300	1.05
	360	8.10	48.63	2.17	300-360	1.17
	420	7.22	50.54	1.91	360-420	1.33
	480	6.53	52.25	1.72	420-480	1.56
	540	5.98	53.82	1.56	480-540	1.91
	600	5.53	55.25	1.44	540-600	2.52
	660	5.14	56.58	1.33	600-660	3.94
	720	4.82	57.83	1.24	660-720	31.07
	780	4.54	59.00	1.17	720-780	5.88
	840	4.29	60.10	1.10	780-840	3.05
	900	4.08	61.15	1.05	840-900	2.17
	960	3.88	62.14	0.99	900-960	1.72
	1020	3.71	63.09	0.95	960-1020	1.44
	1080	3.56	64.00	0.91	1020-1080	1.24
	1140	3.41	64.87	0.87	1080-1140	1.10
	1200	3.29	65.71	0.84	1140-1200	0.99
	1260	3.17	66.51	0.81	1200-1260	0.91
	1320	3.06	67.29	0.78	1260-1320	0.84
	1380	2.96	68.04	0.75	1320-1380	0.78
	1440	2.87	68.77	0.73	1380-1440	0.73

Tabla 36Anexo 29: Datos para Hietograma TR=100 años.

Tabla 37

Duración (min)	Intensidad	pp (mm)acumulada	nn Incremental	Tiempo (min)	pp (mm)
60	(11111/11)	32.26	32.26	0_60	0.78
120	19.18	38.36	6.10	60-120	0.73
120	14.15	42.46	4 09	120-180	0.90
240	11.41	45.62	3.17	180-240	0.99
300	9.65	48.24	2.62	240-300	1.09
360	8.42	50.49	2.25	300-360	1.21
420	7.50	52.47	1.98	360-420	1.38
480	6.78	54.26	1.78	420-480	1.62
540	6.21	55.88	1.62	480-540	1.98
600	5.74	57.37	1.49	540-600	2.62
660	5.34	58.75	1.38	600-660	4.09
720	5.00	60.04	1.29	660-720	32.26
780	4.71	61.26	1.21	720-780	6.10
840	4.46	62.40	1.15	780-840	3.17
900	4.23	63.49	1.09	840-900	2.25
960	4.03	64.52	1.03	900-960	1.78
1020	3.85	65.51	0.99	960-1020	1.49
1080	3.69	66.45	0.94	1020-1080	1.29
1140	3.54	67.35	0.90	1080-1140	1.15
1200	3.41	68.22	0.87	1140-1200	1.03
1260	3.29	69.06	0.84	1200-1260	0.94
1320	3.18	69.87	0.81	1260-1320	0.87
1380	3.07	70.65	0.78	1320-1380	0.81
1440	2.98	71.41	0.76	1380-1440	0.76

Anexo 30: Datos para Hietograma TR=150 años.

Tabla 38

Anexo 31: Datos	, para	Hietograma	TR=30	años.
-----------------	--------	------------	-------	-------

Duracion	Intensidad	pp	рр		
(min)	(mm/hr)	(mm)acumulada	Incremental	Tiempo (min)	pp (mm)
60	27.52	27.52	27.52	0-60	0.67
120	16.36	32.72	5.21	60-120	0.71
180	12.07	36.21	3.49	120-180	0.77
240	9.73	38.91	2.70	180-240	0.84
300	8.23	41.15	2.23	240-300	0.93
360	7.18	43.07	1.92	300-360	1.04
420	6.39	44.76	1.69	360-420	1.18
480	5.78	46.28	1.52	420-480	1.38
540	5.30	47.66	1.38	480-540	1.69
600	4.89	48.93	1.27	540-600	2.23
660	4.56	50.11	1.18	600-660	3.49
720	4.27	51.21	1.10	660-720	27.52
780	4.02	52.25	1.04	720-780	5.21
840	3.80	53.23	0.98	780-840	2.70
900	3.61	54.15	0.93	840-900	1.92
960	3.44	55.03	0.88	900-960	1.52
1020	3.29	55.87	0.84	960-1020	1.27
1080	3.15	56.68	0.80	1020-1080	1.10
1140	3.02	57.45	0.77	1080-1140	0.98
1200	2.91	58.19	0.74	1140-1200	0.88
1260	2.80	58.90	0.71	1200-1260	0.80
1320	2.71	59.59	0.69	1260-1320	0.74
1380	2.62	60.26	0.67	1320-1380	0.69
1440	2.54	60.90	0.64	1380-1440	0.64

CUADRO DE COORDENADAS				
COORDENADAS UTM, DATUM WGS84, 17S				
PUNTO	ESTE (X)	NORTE (Y)	COTA	DESCRIPCIÓN
1	795746.7674	9203104.396	2748.043836	R
2	795744.5806	9203103.866	2747.774927	R
3	795740.0147	9203112.577	2748.469424	EJE
4	795742.5721	9203131.066	2747.641519	R
5	795752.3959	9203107.192	2752.541489	R
6	795750.4922	9203107.335	2751.084232	R
7	795743.5211	9203108.263	2747.870344	R
8	795741.8677	9203109.19	2748.001265	R
9	795740.7307	9203109.299	2748.86666	EJE
10	795739.2405	9203108.261	2749.530349	R
11	795736.2662	9203107.448	2750.376718	R
12	795743.0266	9203106.464	2747.747028	R
13	795743.2293	9203104.43	2747.702662	R
14	795743.3144	9203101.871	2747.632405	EJE
15	795741.4329	9203105.315	2749.313209	R
16	795738.0925	9203099.848	2749.81566	R
17	795749.4385	9203115.113	2752.575955	R
18	795743.6676	9203113.56	2749.937625	R
19	795743.2982	9203113.461	2748.204785	R
20	795741.708	9203113.033	2748.097192	R
21	795738.8985	9203111.555	2748.497656	EJE
22	795737.396	9203110.246	2748.895613	R
23	795735.7548	9203108.548	2750.24033	R
24	795731.1794	9203107.227	2751.137619	R
25	795730.8466	9203108.825	2748.852859	R
26	795730.9398	9203110.402	2748.909542	R
27	795732.8603	9203111.607	2748.56556	EJE
28	795732.1001	9203112.806	2748.630271	R
29	795723.5323	9203112.199	2748.800654	R
30	795732.8676	9203121.707	2752.714724	R
31	795730.1869	9203115.085	2750.282427	R
32	795728.4043	9203113.336	2749.792036	R
33	795728.0654	9203112.564	2748.941541	R
34	795728.0816	9203111.137	2748.814166	EJE
35	795727.0242	9203109.304	2748.803622	R
36	795737.3131	9203113.349	2748.471967	R
37	795734.5762	9203116.685	2750.498137	R
38	795737.3679	9203120.298	2752.46762	R
39	795728.001	9203128.422	2754.022656	R

 Tabla 39
 Anexo 32: Coordenadas del cauce Obtenidas con estación total

40	795723.0497	9203114.485	2750.161932	R
41	795722.1102	9203113.314	2748.790779	R
42	795721.654	9203112.338	2748.734176	EJE
43	795721.3275	9203111.249	2748.796852	R
44	795718.8978	9203111.044	2751.922773	R
45	795718.849	9203111.32	2749.675309	R
46	795719.8878	9203112.179	2748.798556	R
47	795720.4592	9203112.76	2748.798705	R
48	795721.1706	9203114.532	2749.301972	R
49	795721.9945	9203114.971	2750.419947	R
50	795714.0348	9203114.891	2752.126727	R
51	795714.0158	9203114.91	2749.766684	R
52	795713.5476	9203116.078	2748.879019	R
53	795719.3817	9203114.278	2749.288262	EJE
54	795713.1027	9203117.559	2748.85566	R
55	795724.2456	9203121.247	2748.776668	R
56	795712.9642	9203116.164	2752.099855	R
57	795713.3621	9203116.512	2748.826126	R
58	795713.9365	9203116.939	2748.747493	EJE
59	795715.5561	9203118.594	2750.065548	R
60	795710.3071	9203120.158	2752.192524	R
61	795711.5331	9203120.087	2749.394935	R
62	795712.8806	9203119.978	2748.842964	R
63	795713.9345	9203120.33	2748.831653	R
64	795715.0542	9203120.126	2750.071414	R
65	795710.5614	9203122.342	2752.190985	R
66	795711.0469	9203122.583	2749.505385	R
67	795712.4718	9203121.674	2748.860262	EJE
68	795713.577	9203121.827	2748.81118	R
69	795712.7173	9203125.841	2752.219894	R
70	795712.7457	9203125.234	2749.32005	R
71	795715.6987	9203124.555	2749.101052	R
72	795715.6987	9203124.554	2749.100864	R
73	795715.3702	9203124.673	2748.978989	R
74	795717.9091	9203128.169	2752.756181	R
75	795717.9564	9203128.139	2750.531856	R
76	795716.1292	9203128.019	2749.41644	R
77	795715.7363	9203127.608	2749.147231	EJE
78	795714.9732	9203127.713	2749.209136	R
79	795715.6023	9203130.858	2753.007748	R
80	795715.2574	9203130.621	2750.093396	R
81	795713.7811	9203129.695	2749.4013	EJE
82	795713.1949	9203129.629	2749.680183	R
83	795711.2498	9203128.087	2752.429455	R
84	795707.7675	9203133.522	2752.663255	R
85	795710.0863	9203133.263	2749.696716	R

86	795710.0638	9203134.08	2749.470358	EJE
87	795710.654	9203134.75	2749.460779	R
88	795712.3921	9203134.493	2750.62249	R
89	795713.0026	9203133.763	2752.575603	R
90	795706.5603	9203139.855	2753.291231	R
91	795707.6022	9203138.065	2750.019356	R
92	795706.0709	9203137.014	2749.58201	EJE
93	795714.1264	9203144.459	2749.475094	R
94	795704.4795	9203134.792	2752.730248	R
95	795704.3666	9203138.77	2751.168641	R
96	795705.6517	9203141.095	2751.369235	R
97	795698.2436	9203140.711	2751.709305	R
98	795698.1507	9203137.281	2751.085733	R
99	795697.6149	9203136.101	2749.584327	EJE
100	795697.6609	9203135.045	2750.024282	R
101	795692.7843	9203135.865	2750.023613	R
102	795694.8122	9203139.096	2751.361179	R
103	795694.56	9203145.189	2751.858823	R
104	795706.546	9203152.69	2749.604722	R
105	795702.2172	9203136 249	2749 312967	R
106	795701 8584	9203137 133	2749 568246	EIE
107	795701 4285	9203137.815	2750 512498	R
108	795696 9764	9203136 57	2749 701409	R
109	795690.7546	9203137.849	2750.06582	R
110	795691.1711	9203138.35	2750.880279	R
111	795684.7975	9203138.496	2750.311672	R
112	795685.9271	9203139.339	2749.974944	EJE
113	795686.688	9203140.093	2750.042508	R
114	795682.6325	9203144.14	2750.60749	R
115	795683.8013	9203144.302	2750.135279	EJE
116	795685.8241	9203144.162	2751.378493	R
117	795684.3909	9203150.639	2751.887269	R
118	795684.8838	9203150.496	2750.800191	R
119	795685 9005	9203149 522	2750 089794	EIE
120	795686.685	9203148.755	2750.213403	R
121	795686.9672	9203148.428	2751.04819	R
122	795688.4462	9203151.434	2751.329213	EJE
123	795688 7874	9203151 197	2750 463139	R
123	795689 4431	9203150.452	2750 340289	R
125	795690 6039	9203149 629	2750 761836	R
125	795680 6945	9203137 318	2753 681184	R
120	795682 2053	9203137.518	2753 683003	R
127	795704 6762	92031/17 813	2752 405662	P
120	795600 300	9203147.013	2752.403002	P
129	705702 1517	9203101.171	2755 202040	D
130	705706 /125	0202161 020	2753.323749	D
151	175100.4125	7203101.038	2134.14103/	Л

132	795708.4412	9203154.581	2754.77891	R
133	795692.951	9203168.728	2755.506549	R
134	795678.5153	9203187.389	2751.864609	R
135	795690.7843	9203153.843	2750.657957	EJE
136	795693.1401	9203157.634	2751.524673	R
137	795689.7924	9203154.983	2750.937962	R
138	795685.2785	9203158.805	2753.786518	R
139	795687.2859	9203164.219	2753.152821	R
140	795690.1652	9203166.162	2752.583036	R
141	795692.0892	9203167.877	2755.120371	R
142	795686.169	9203168.168	2750.948548	R
143	795686.6295	9203168.888	2751.613728	R
144	795685.4065	9203167.458	2751.236477	EJE
145	795684.2385	9203178.184	2757.286945	R
146	795674.189	9203184.457	2758.443162	R
147	795671.7163	9203178.436	2756.699476	R
148	795674.1702	9203172.582	2751.676741	EJE
149	795670.7395	9203174.077	2751.651142	R
150	795671.5083	9203173.435	2751.544192	R
151	795682.9957	9203164.273	2754.23745	R
152	795678.0267	9203169.194	2754.933907	R
153	795692.9514	9203168.728	2755.516881	R
154	795668.7871	9203171.468	2752.646759	R
155	795664.0611	9203165.727	2754.641327	R
156	795668.636	9203161.005	2754.583404	R
157	795663.916	9203150.423	2754.084109	R
158	795659.3129	9203170.223	2751.588334	EJE
159	795659.6492	9203169.618	2751.681536	R
160	795660.2328	9203168.645	2751.888638	R
161	795651.5902	9203167.961	2752.089982	EJE
162	795651.7988	9203166.564	2751.725111	R
163	795651.2082	9203165.824	2752.336137	R
164	795643.063	9203169.104	2752.05397	R
165	795644.2156	9203169.908	2751.898932	EJE
166	795645.1315	9203170.494	2751.993402	R
167	795652.1374	9203162.134	2754.525555	R
168	795639.5369	9203162.35	2754.757098	R
169	795642.4425	9203166.821	2754.800648	R
170	795633.8251	9203169.415	2755.888998	R
171	795639.3305	9203172.137	2754.741088	R
172	795641.863	9203173.716	2752.247213	EJE
173	795643.8705	9203175.257	2752.055658	R
174	795647.1548	9203175.586	2753.9064	R
175	795639.1614	9203183.353	2754.588854	R
176	795648.6146	9203180.692	2754.974131	R
177	795652.8423	9203184.576	2756.515476	R

178	795609.966	9203201.962	2755.209135	R
179	795563.8049	9203196.2	2754.098755	R
180	795646.1628	9203215.133	2759.030465	R
181	795641.6927	9203212.934	2755.627363	R
182	795630.6998	9203202.711	2754.594787	R
183	795626.3114	9203201.998	2753.031041	EJE
184	795625.4388	9203200.874	2753.575815	R
185	795626.4354	9203202.736	2753.550794	R
186	795623.6738	9203199.231	2754.786505	R
187	795617.8948	9203193.513	2755.097124	R
188	795625.6298	9203223.622	2757.482614	R
189	795613.6693	9203207.084	2755.211933	R
190	795613.0163	9203206.181	2754.191463	R
191	795612.4949	9203205.913	2753.922018	EJE
192	795611.426	9203204.243	2754.967461	R
193	795605.2911	9203194.301	2756.788533	R
194	795579.1317	9203206.607	2757.39419	R
195	795572.0278	9203201.051	2760.408569	R
196	795598.1632	9203213.545	2755.489033	R
197	795599.0074	9203216.546	2755.048306	EJE
198	795596.0082	9203221.129	2754.245242	R
199	795596.5806	9203221.3	2754.235978	R
200	795605.9981	9203217.374	2755.784508	R
201	795611.9942	9203224.857	2758.625362	R
202	795655.9693	9203227.303	2763.111455	R
203	795601.4116	9203222.603	2756.888996	R
204	795600.3974	9203221.189	2755.269505	R
205	795597.0115	9203222.722	2754.156925	R
206	795595.1247	9203222.053	2754.303465	EJE
207	795592.9204	9203221.286	2755.490614	R
208	795594.1567	9203235.172	2754.252378	EJE
209	795594.8636	9203234.897	2754.620839	R
210	795593.3568	9203234.885	2754.681358	R
211	795606.8837	9203257.189	2757.630857	R
212	795600.2719	9203248.378	2754.641914	R
213	795601.0869	9203249.137	2755.270504	R
214	795598.7977	9203247.807	2755.252396	EJE
215	795595.4033	9203245.51	2755.925424	R
216	795583.3329	9203237.053	2756.390955	R
217	795575.0484	9203231.507	2757.02247	R
218	795594.1619	9203261.076	2756.628232	EJE
219	795560.3719	9203255.95	2756.724528	R
220	795588.4376	9203250.972	2757.057375	R
221	795589.3354	9203253.114	2755.657265	R
222	795586.686	9203253.143	2755.126224	EJE
223	795587.813	9203254.457	2754,9397	R
223	, , , , , , , , , , , , , , , , , , , ,	/200207.407	2101.7571	11

224	705500 072	0202250.000	2756 060272	Б
224	795590.073	9203258.068	2756.960372	R D
225	795592.4854	9203259.843	2757,922061	
220	795604.7927	9203263.237	2757.832001	
227	795580.0397	9203256.622	2755.065955	
228	795583.9049	9203267.367	2757.324139	
229	795591.9278	9203265.912	2753.076757	EJE
230	795594.7177	9203264.858	2757.035786	R D
231	795599.4654	9203269.283	2759.833142	R D
232	795591.1492	9203278.772	2/58.6/5522	R
233	795590.3599	9203285.52	2/58.860841	R
234	795591.0104	9203291.175	2758.895916	K
235	795588.6202	9203295.025	2758.976848	R
236	795580.7457	9203301.764	2759.142856	R
237	795571.2911	9203306.081	2759.33119	EJE
238	795558.8608	9203321.801	2759.647084	R
239	795553.6576	9203327.019	2759.833893	R
240	795595.7802	9203364.1	2768.267392	R
241	795578.3909	9203317.185	2758.810023	R
242	795571.8734	9203302.709	2757.911805	R
243	795562.2797	9203297.912	2758.556036	R
244	795541.5782	9203320.349	2759.381031	R
245	795560.3398	9203310.475	2758.461257	R
246	795553.6171	9203334.577	2761.288044	R
247	795552.2397	9203329.824	2758.573543	R
248	795554.1755	9203328.016	2757.163879	R
249	795553.7421	9203326.036	2756.936782	R
250	795545.5725	9203324.69	2757.006446	R
251	795542.0814	9203328.809	2757.438749	EJE
252	795543.8581	9203328.857	2757.178421	R
253	795536.2152	9203344.893	2759.308566	R
254	795481.05	9203315.206	2757.752428	R
255	795526.2147	9203311.762	2759.005396	R
256	795532.3491	9203314.621	2758.738707	R
257	795541.3764	9203321.851	2758.414265	R
258	795543.4848	9203331.274	2757.102691	R
259	795542.8231	9203331.507	2757.285325	EJE
260	795543.8454	9203330.674	2757.3672	R
261	795547.0263	9203347.275	2757.465678	R
262	795546.3023	9203347.616	2757.684477	EJE
263	795548 0997	9203347 505	2757 620583	R
264	795550 4271	9203340 128	2762.071683	R
265	795536 9865	9203343 621	2759 233856	R
265	795550 8037	9203357 295	2757 702596	R
260	795549 9526	9203356 878	2757 846511	R
267	795549 5130	9203350.020	2757 77/112	R
260	705550 4589	9203361.523	2757 848274	P
209	175550.4500	7203301.042	2131.040214	K
270	795548.6092	9203360.923	2758.006131	EJE
-----	-------------	-------------	-------------	-----
271	795524.9138	9203351.186	2759.893843	R
272	795502.237	9203346.597	2760.978051	R
273	795537.6006	9203358.016	2759.515375	R
274	795541.6939	9203362.81	2759.622158	R
275	795545.513	9203373.447	2758.066145	R
276	795544.7449	9203372.889	2758.067883	EJE
277	795546.4375	9203373.463	2758.130231	R
278	795538.9454	9203378.935	2758.325121	R
279	795539.0236	9203378.143	2758.758322	EJE
280	795538.6191	9203379.448	2758.469932	R
281	795532.7613	9203377.996	2758.900591	R
282	795532.655	9203377.196	2759.220983	R
283	795532.4132	9203376.539	2760.004028	R
284	795532.6869	9203379.106	2759.129315	EJE
285	795532.3427	9203380.331	2759.866762	R
286	795552.2414	9203352.894	2762.694978	R
287	795551.5111	9203351.09	2759.170363	R
288	795528.2851	9203380.775	2758.971321	EJE
289	795527.3043	9203380.193	2759.411463	R
290	795526.3956	9203379.556	2759.986882	R
291	795528.8976	9203381.462	2759.276896	R
292	795567.2447	9203392.386	2769.82532	R
293	795522.446	9203392.152	2759.185741	R
294	795523.2625	9203392.537	2759.43565	R
295	795521.2185	9203391.674	2759.716617	EJE
296	795548.8878	9203419.445	2769.713895	R
297	795540.812	9203388.778	2764.976108	R
298	795483.6382	9203365.551	2763.6476	R
299	795447.681	9203368.676	2769.168735	R
300	795492.6264	9203423	2763.200248	R
301	795431.4522	9203488.25	2759.317613	R
302	795515.8699	9203418.452	2760.936055	R
303	795510.6636	9203417.521	2759.899215	EJE
304	795508.4894	9203417.324	2760.767362	R
305	795496.8786	9203415.252	2762.351048	R
306	795485.1735	9203412.561	2765.916203	R
307	795482.4165	9203416.692	2766.559677	R
308	795501.5047	9203434.276	2760.239045	EJE
309	795501.1744	9203434.149	2760.328955	R
310	795502.0873	9203434.59	2760.313329	R
311	795500.4005	9203437.018	2760.386277	EJE
312	795501.432	9203437.353	2760.51728	R
313	795514.9143	9203436.521	2765.919267	R
314	795507.3504	9203451.416	2765.976114	R
315	795491.9364	9203458.945	2760.916578	R

316	795491.3084	9203458.98	2761.039058	EJE
317	795492.785	9203459.103	2760.971721	R
318	795490.1799	9203458.862	2761.753541	R
319	795489.7291	9203465.345	2761.706173	R
320	795490.0743	9203466.173	2761.23037	EJE
321	795490.2418	9203466.941	2761.1252	R
322	795490.4362	9203467.988	2761.175032	R
323	795490.1202	9203469.837	2762.145023	R
324	795483.0032	9203466.618	2761.179622	EJE
325	795483.0455	9203467.263	2761.432155	R
326	795477.32	9203464.744	2762.584844	R
327	795476.9048	9203467.255	2762.275104	R
328	795478.3359	9203469.099	2761.342263	EJE
329	795479.5701	9203470.503	2761.840576	R
330	795464.7563	9203455.76	2767.088485	R
331	795460.9311	9203462.539	2766.91829	R
332	795478.3175	9203488.672	2767.425766	R
333	795485.7203	9203482.349	2767.350079	R

MAPA DE INUNDACIÓN PRODUCIDO EN EL AÑO 2013 TR=30 AÑOS Q=20.2 m3/s

MAPA DE ZONAS INUNDABLES PARA TR=100 AÑOS Q=35.33 m3/s

