UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERIA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

TESIS

"INFLUENCIA DE LA CENIZA DEL BAGAZO DE CAÑA DE AZUCAR EN EL CALIFORNIA BEARING RATIO (CBR) DE SUELOS ARCILLOSOS"

PRESENTADO POR:

BACH. EDUARDO ARRIBASPLATA NIMBOMA

ASESOR:

DRA. ING. ROSA LLIQUE MONDRAGON

CAJAMARCA - PERÚ 2024

CONSTANCIA DE INFORME DE ORIGINALIDAD

- FACULTAD DE INGENIERÍA -

1.	DNI: 72551801	EDUARDO ARRIBASPLATA NIMBO ional: INGENIERÍA CIVIL	MA			
2.	Asesor: DRA. F Facultad: INGE	ROSA HAYDEE LLIQUE MONDRA I <mark>NIERÍA</mark>	GÓN			
3.	Grado académ	ico o título profesional				
	□Bachiller	Título profesional	□Segunda especialidad			
	□Maestro	□Doctor				
4.	Tipo de Investi	igación:				
	Tesis	☐ Trabajo de investigación	☐ Trabajo de suficiencia prof	esional		
	☐ Trabajo aca	démico				
5.	Título de Traba	ajo de Investigación:				
		e la ceniza del bagazo de e E suelos arcillosos	caña de azúcar en el calif	ORNIA B	EARING	
6.	Fecha de evalu	ación: 15 DE ENERO DEL 2025				
7.	Software antip	olagio: TURNITIN	☐ URKUND (OURIGIN	اAL) (*)		
8.	Porcentaje de Informe de Similitud: 12 %					
9.		ento: oid:3117: 420191603				
10.	Resultado de l	a Evaluación de Similitud:				
	APROBADO	☐ PARA LEVANTAMIENTO DI	OBSERVACIONES O DESAPROI	BADO		

Fecha Emisión: 16 DE ENERO DEL 2025

FIRMA DIGITAL Firmado digitalmente por: BAZAN DIAZ Laura Sofia FAU 20148258601 soft Motivo: En señal de

conformidad

Fecha: 16/01/2025 00:42:45-0500

ASESOR UNIDAD DE INVESTIGACIÓN FI

FIRMA DEL ASESOR

Nombres y Apellidos: ROSA HAYDEE LLIQUE MONDRAGÓN

DNI: 26621287

Universidad Nacional de Cajamarca

"Norte de la Universidad Peruana"

Fundada por Ley 14015 del 13 de Febrero de 1962

FACULTAD DE INGENIERIA

ACTA DE SUSTENTACIÓN PÚBLICA DE TESIS.

TITULO

: "INFLUENCIA DE LA CENIZA DEL BAGAZO DE CAÑA DE AZÚCAR EN EL CALIFORNIA BEARING RATIO (CBR) DE SUELOS ARCILLOSOS."

ASESORA

: Dra. Ing. Rosa Haydee LLique Mondragón.

En la ciudad de Cajamarca, dando cumplimiento a lo dispuesto por el Oficio Múltiple Nº 0077-2025-PUB-SA-FI-UNC, de fecha 27 de enero de 2025, de la Secretaría Académica de la Facultad de Ingeniería, a los treinta días del mes de enero de 2025, siendo las quince horas (03:00 p.m.) en la Sala de Audiovisuales (Edificio 1A – Segundo Piso), de la Facultad de Ingeniería, se reunieron los Señores Miembros del Jurado Evaluador:

Presidente

: Dr. Ing. Miguel Angel Mosqueira Moreno.

Vocal

: Ing. Marco Wilder Hoyos Saucedo.

Secretario

: M.Cs. Ing. Manuel Lincoln Minchán Pajares.

Para proceder a escuchar y evaluar la sustentación pública de la tesis titulada "INFLUENCIA DE LA CENIZA DEL BAGAZO DE CAÑA DE AZÚCAR EN EL CALIFORNIA BEARING RATIO (CBR) DE SUELOS ARCILLOSOS", presentado por el Bachiller en Ingeniería Civil EDUARDO ARRIBASPLATA NIMBOMA, asesorado por la Dra. Ing. Rosa Haydee LLique Mondragón, para la obtención del Título Profesional.

Los Señores Miembros del Jurado replicaron al sustentante debatieron entre sí en forma libre y reservada y lo evaluaron de la siguiente manera:

EVALUACIÓN FINAL : PTS

...... (En letras)

En consecuencia, se lo declara ... APROS ADO con el calificativo de .1.7... (D.e.crsiete) acto seguido, el presidente del jurado hizo saber el resultado de la sustentación, levantándose la presente a las 4:30 pm... horas del mismo día, con lo cual se dio por terminado el acto, para constancia se firmó por quintuplicado.

Dr. Ing/. Miguel Angel Mosqueira Moreno.

Presidente

Saucedo. Ing. Marco Wilder Hoves

Vocal

M.Cs. Ing. Manuel Lincoln Minchán Pajares.

Secretario

Dra. Ing. Rosa Haydee LLique Mondragón.

Asesora

Universidad Nacional de Cajamarca

"Norte de la Universidad Peruana"

Fundada por Ley 14015 del 13 de Febrero de 1962

FACULTAD DE INGENIERÍA

EVALUACIÓN DE LA SUSTENTACIÓN PÚBLICA DE TESIS.

Bachiller en Ingeniería Civil: EDUARDO ARRIBASPLATA NIMBOMA.

	PUNTAJE	
RUBRO	Máximo/Calificación	
1. DE LA SUSTENTACIÓN PÚBLICA		
1.1. Capacidad de síntesis	03	
1.2. Dominio del tema	03	
1.3. Consistencia de las alternativas presentadas	02	
1.4. Precisión y seguridad en las respuestas	02	
PUNTAJE TOTAL (MÁXIMO 12 PUNTOS)	10	

Cajamarca, 30 de enero de 2025

Dr. Ing. Miguel Angel Mosqueira Moreno.

Presidente

M.Cs. Ing. Manuel Lincoln Minchán Pajares.

Secretario

Ing. Marco Wilder Hoybs Saucedo. Vocal

Dra. Ing. Rosa Haydee LLique Mondragón. Asesora

Universidad Nacional de Cajamarca

"Norte de la Universidad Peruana"

Fundada por Ley 14015 del 13 de Febrero de 1962

FACULTAD DE INGENIERIA

EVALUACIÓN FINAL DE LA SUSTENTACIÓN DE TESIS.

Bachiller en Ingeniería Civil: EDUARDO ARRIBASPLATA NIMBOMA.

	RUBRO	PUNTAJE
A EVALUACIÓN DE LA SUSTENTACIÓN PRIVADA		07
B EVALUACIÓ	10	
E	VALUACIÓN FINAL	
EN NÚMEROS (17	
EN LETRAS (A	+ B)	17 Dieersiele
- Excelente	20 - 19	
- Muy Bueno 18 - 17 - Bueno 16 - 14		
		Muy Bueno
- Regular	13 a 11	
- Desaprobado	10 a menos	

Cajamarca, 30 de enero de 2025

Dr. Ing. Miguel Angel Mosqueira Moreno.

Presidente

Ing. Marco Wilder Hoyos Saucedo.

Vocal

M.Cs. Ing. Manuel Lincoln Minchán Pajares. Secretario

Dra. Ing. Rosa Haydee LLIque Mondragón.

Asesora

AGRADECIMIENTO

A DIOS

Por permitirme aportar algo a la sociedad y a mi Perú.

A MI ASESORA DRA. ING. ROSA LLIQUE MONDRAGON

Por brindarme sus conocimientos y experiencia en el tema investigado, ha sido un privilegio recibir su apoyo.

A MIS PADRES

Por su apoyo durante toda mi existencia. Las palabras no bastan para expresar toda mi gratitud por su apoyo, comprensión y consejos.

A MIS HERMANOS

Por su constante estímulo, confianza y apoyo que me brindaron en todo momento.

DEDICATORIA

A DIOS

Se la dedico a quien me allanó el camino, a quien nunca se separa de mí y me ayuda a levantarme después de todos mis tropiezos.

A MIS PADRES

Este profundo agradecimiento a mis queridos padres, por haberme inculcado el valor del trabajo duro y la educación durante toda su vida. No podré expresar lo mucho que aprecio su inquebrantable empeño en que recibiera una educación de calidad. Esta tesis sirve tanto de homenaje a su amor y sacrificio como de recordatorio continuo del valor de la educación y el trabajo duro en nuestras vidas.

A MIS HERMANOS

A mis hermanos que me han enseñado a salir adelante; gracias por su paciencia y preocupación.

CONTENIDO

AGRA	DEC	IMIENTO	i
DEDIC	ATO	PRIA	ii
RESUN	MEN.		. ix
ABSTI	RACT	T	X
CAPÍT	CULC) I INTRODUCCIÓN	11
1.1.	PL	ANTEAMIENTO DEL PROBLEMA	11
1.2.	FO	RMULACIÓN DEL PROBLEMA	12
1.3.	JUS	STIFICACIÓN DE LA INVESTIGACIÒN	12
1.4.	DE	LIMITACIÓN DE LA INVESTIGACIÒN	12
1.5.	LIN	MITACIONES DE LA INVESTIGACIÓN	12
1.6.	OB	JETIVOS	12
1.7.	HII	PÓTESIS	13
1.8.	VA	RIABLES	13
1.9.	DE	SCRIPCIÓN DE LOS CAPÍTULOS	13
CAPIT	CULC) II MARCO TEÓRICO	14
2.1.	AN	TECEDENTES TEÓRICOS	14
2.	1.1.	A nivel internacional	14
2.	1.2.	A nivel nacional	14
2.	1.3.	A nivel local	14
2.2.	BA	SES TEÓRICAS	15
2.2	2.1.	Suelos	15
2.2	2.2.	Clasificación de suelos	15
2.2	2.3.	Suelo arcilloso	22
2.2	2.4.	Minerales constitutivos de las arcillas	23
2.2	2.5.	Plasticidad de suelos arcillosos	24
2.2	2.6.	Compactación de suelos	25

2.2	2.7.	California Bearing Ratio (CBR)	27
2.2	2.8.	Ceniza de bagazo de caña de azúcar	29
2.3.	DE	FINICIÓN DE TÉRMINOS BÁSICOS	35
CAPÍT	ULO	III: MATERIALES Y MÉTODOS	36
3.1.	UB	ICACIÓN GEOGRÀFICA DE LA ZONA DE ESTUDIO	36
3.2.	ME	TODOLOGÌA DE LA INVESTIGACIÒN	38
3.2	2.1.	Procedimiento de la investigación	38
3.2	2.2.	Tipo y nivel de investigación	39
3.2	2.3.	Diseño de la investigación	39
3.2	2.4.	Método de investigación	39
3.2	2.5.	Población de estudio, muestra y unidad de análisis	39
3.2	2.6.	Técnicas e instrumentos de recolección de datos.	40
3.3.	TR.	ATAMIENTO, ANALISIS DE DATOS Y PRESENTACION DE	
RESU	JLTA	ADOS	40
CAPÍT	ULC	IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS	44
4.1.	AN	ALISIS DE LOS RESULTADOS	44
4.2.	DIS	SCUSION DE LOS RESULTADOS CONTRASTADOS CON LA	
HIPC	TES	IS	47
CAPÍT	ULO	V: CONCLUSIONES Y RECOMENDACIONES	49
5.1.	CO	NCLUSIONES	49
5.2.	RE	COMENDACIONES	49
REFE	REN	CIAS BIBLIOGRÁFICAS	50
ANEXO	OS		54

ÍNDICE DE TABLAS

Tabla 1 Clasificación de un suelo según el tamaño de sus partículas.	16
Tabla 2 Clasificación de un suelo según Índice de Plasticidad.	18
Tabla 3 Propiedades plásticas de algunos minerales arcillosos comunes	18
Tabla 4 Clasificación SUCS de un suelo.	19
Tabla 5 Clasificación de suelos - AASHTO.	21
Tabla 6 Tipos de suelo, tamaño promedio de grano y descripción según AASHTO	22
Tabla 7 Correlación de tipos de suelos SUCS - AASHTO.	22
Tabla 8 Rango de contenido de humedad.	27
Tabla 9 Penetraciones para lecturas de carga	28
Tabla 10 Características de la muestra patrón.	29
Tabla 11 Categorias de subrasante	29
Tabla 12 Resultados de las propiedades físico químicas del BCI y del BCA	32
Tabla 13 Composición química de la CBCA según autores	34
Tabla 14 Resultados de la prueba de CBR con CBCA	35
Tabla 15 Coordenadas UTM de las calicatas realizadas	36
Tabla 16 Coordenadas UTM del molino de caña de azúcar.	37
Tabla 17 Cantidad de especímenes a ensayar.	40
Tabla 18 Clasificación del suelo en estudio	41
Tabla 19 Parámetros de compactación e índice CBR con adición de CBCA	41
Tabla 20 Índice CBR con adición de CBCA	42
Tabla 21 Análisis granulométrico por lavado Calicata 01 – ASTM D422	54
Tabla 22 Límites de Atterberg Calicata 01 – ASTM D4318	55
Tabla 23 Análisis granulométrico por lavado Calicata 02 – ASTM D422	56
Tabla 24 Límites de Atterberg Calicata 02 – ASTM D4318	57
Tabla 25 Análisis granulométrico por lavado Calicata 03 – ASTM D422	58
Tabla 26 Límites de Atterberg Calicata 03 – ASTM D4318	59
Tabla 27 Proctor Modificado de la muestra sin adición de CBCA.	60
Tabla 28 Proctor Modificado de la muestra con 7% de CBCA	61
Tabla 29 Proctor Modificado de la muestra con 10% de CBCA	62
Tabla 30 Proctor Modificado de la muestra con 13% de CBCA	63
Tabla 31 Proctor Modificado de la muestra con 16% de CBCA	64
Tabla 32 Proctor Modificado de la muestra con 19% de CBCA	65
Tabla 33 Compactación para ensayo CBR de muestra sin adición de CBCA	66

Tabla 34 Hinchamiento en ensayo CBR de muestra sin adición de CBCA.	66
Tabla 35 Esfuerzo – Penetración en ensayo CBR de muestra sin adición de CBCA	67
Tabla 36 Valores de CBR corregidos de muestra sin adición de CBCA	69
Tabla 37 Resultados CBR de muestra sin adición de CBCA.	69
Tabla 38 Compactación para ensayo CBR de muestra + 7% CBCA.	70
Tabla 39 Hinchamiento en ensayo CBR de muestra + 7% CBCA	70
Tabla 40 Esfuerzo – Penetración para ensayo CBR de muestra + 7% CBCA	71
Tabla 41 Valores de CBR corregidos de muestra + 7% CBCA.	73
Tabla 42 Resultados CBR de muestra + 7% CBCA.	73
Tabla 43 Compactación para ensayo CBR de muestra + 10% CBCA	74
Tabla 44 Hinchamiento en ensayo CBR de muestra + 10% CBCA	74
Tabla 45 Esfuerzo – Penetración para ensayo CBR de muestra + 10% CBCA	75
Tabla 46 Valores de CBR corregidos de muestra + 10% CBCA.	77
Tabla 47 Resultados CBR de muestra + 10% CBCA	77
Tabla 48 Compactación para ensayo CBR de muestra + 13% CBCA	78
Tabla 49 Hinchamiento en ensayo CBR de muestra + 13% CBCA	78
Tabla 50 Esfuerzo – Penetración para ensayo CBR de muestra + 13% CBCA	79
Tabla 51 Valores de CBR corregidos de muestra + 13% CBCA.	81
Tabla 52 Resultados CBR de muestra + 13% CBCA.	81
Tabla 53 Compactación para ensayo CBR de muestra + 16% CBCA	82
Tabla 54 Hinchamiento en el ensayo CBR de muestra + 16% CBCA	82
Tabla 55 Esfuerzo – Penetración para ensayo CBR de muestra + 16% CBCA	83
Tabla 56 Valores de CBR corregidos de muestra + 16% CBCA.	85
Tabla 57 Resultados CBR de muestra + 16% CBCA	85
Tabla 58 Compactación para ensayo CBR de muestra + 19% CBCA	86
Tabla 59 Hinchamiento en el ensayo CBR de muestra + 19% CBCA	86
Tabla 60 Esfuerzo – Penetración para ensayo CBR de muestra + 19% CBCA	87
Tabla 61 Valores de CBR corregidos de muestra + 19% CBCA.	89
Tabla 62 Resultados CBR de muestra + 19% CBCA.	89

ÍNDICE DE FIGURAS

Figura 1 Carta de Casagrande para suelos cohesivos	20
Figura 2 Sílice tetraédrico.	23
Figura 3 Lamina de aluminio octaédrico.	24
Figura 4 Diagrama de estructuras de la caolinita.	24
Figura 5 Principios de compactación.	26
Figura 6 Gráfica de curva de compactación.	27
Figura 7 Curva Penetración - Presión	28
Figura 8 Superficie cosechada de caña de azúcar en Perú.	30
Figura 9 Sistema de generación de tipos de cenizas de bagazo de caña de azúcar	31
Figura 10 Curva de distribución de tamaño de partículas de la CBCA	33
Figura 11 Ubicación de calicatas realizadas	36
Figura 12 Ubicación de molino artesanal "El Bosque"	37
Figura 13 Diagrama del circuito experimental para la investigación	39
Figura 14 Influencia de la CBCA en la Dsmax.	42
Figura 15 Influencia de la CBCA en contenido óptimo de humedad	42
Figura 16 Influencia de la CBCA en el CBR.	43
Figura 17 Relación entre la Dsmax y la CBCA.	45
Figura 18 Relación entre el contenido óptimo de humedad y la CBCA	45
Figura 19 Relación entre el índice CBR y la CBCA.	46
Figura 20 Curva granulométrica – Muestra M1	54
Figura 21 Curva del límite líquido — Muestra M1	55
Figura 22 Curva granulométrica – Muestra 02	56
Figura 23 Curva del límite líquido — Muestra M2	57
Figura 24 Curva granulométrica – Muestra 03	58
Figura 25 Curva del límite líquido – Muestra M2	59
Figura 26 Curva de compactación de suelo + 0% CBCA.	60
Figura 27 Curva de compactación de suelo + 7% CBCA.	61
Figura 28 Curva de compactación de suelo + 10%CBCA.	62
Figura 29 Curva de compactación de suelo + 13%CBCA.	63
Figura 30 Curva de compactación de suelo + 16%CBCA.	64
Figura 31 Curva de compactación de suelo + 19%CBCA	65
Figura 32 Curva de esfuerzo – deformación de muestra patrón (13 golpes)	67

Figura 33 Curva de esfuerzo – deformación de muestra patrón (27golpes)	68
Figura 34 Curva de esfuerzo – deformación de muestra patrón (56 golpes)	68
Figura 35 Curvas de CBR – densidad seca máxima muestra sin adición de CBCA	69
Figura 36 Curvas de esfuerzo – deformación de muestra + 7% CBCA (13 golpes)	71
Figura 37 Curvas de esfuerzo – deformación de muestra + 7% CBCA (27 golpes)	72
Figura 38 Curvas de esfuerzo – deformación de muestra + 7% CBCA (56 golpes)	72
Figura 39 Curvas de CBR – densidad seca máxima de muestra + 7% CBCA	73
Figura 40 Curvas de esfuerzo – deformación de muestra + 10% CBCA (13 golpes)	75
Figura 41 Curvas de esfuerzo – deformación de muestra + 10% CBCA (27 golpes)	76
Figura 42 Curvas de esfuerzo – deformación de muestra + 10% CBCA (56 golpes)	76
Figura 43 Curvas de CBR – densidad seca máxima de muestra + 10% CBCA	77
Figura 44 Curvas de esfuerzo – deformación de muestra + 13% CBCA (13 golpes)	79
Figura 45 Curvas de esfuerzo – deformación de muestra + 13% CBCA (27 golpes)	80
Figura 46 Curvas de esfuerzo – deformación de muestra + 13% CBCA (56 golpes)	80
Figura 47 Curvas de CBR – densidad seca máxima de muestra + 13% CBCA	81
Figura 48 Curvas de esfuerzo – deformación de muestra + 16% CBCA (13 golpes)	83
Figura 49 Curvas de esfuerzo – deformación de muestra + 16% CBCA (27 golpes)	84
Figura 50 Curvas de esfuerzo – deformación de muestra + 16% CBCA (56 golpes)	84
Figura 51 Curvas de CBR – densidad seca máxima de muestra + 16% CBCA	85
Figura 52 Curvas de esfuerzo – deformación de muestra + 19% CBCA (13 golpes)	87
Figura 53 Curvas de esfuerzo – deformación de muestra + 19% CBCA (27 golpes)	88
Figura 54 Curvas de esfuerzo – deformación de muestra + 19% CBCA (56 golpes)	88
Figura 55 Curvas de CBR – densidad seca máxima de muestra + 19% CBCA	89
Figura 56 Perfil estratigráfico de la calicata 01	90
Figura 57 Perfil estratigráfico de la calicata 02.	91
Figura 58 Perfil estratigráfico de la calicata 03.	92
Figura 59 Ensayo de granulometría en laboratorio "GUERSAN".	93
Figura 60 Ensayo de limite líquido en laboratorio "GUERSAN"	93
Figura 61 Ensayo Proctor modificado realizado en laboratorio "GUERSAN"	94
Figura 62 Ensayo CBR (Compactación) realizado en laboratorio "GUERSAN"	94
Figura 63 Ensayo CBR (Hinchamiento) realizado en laboratorio "GUERSAN"	95
Figura 64 Ensayo CBR (Carga - Penetración) realizado en laboratorio "GUERSAN".	.95

RESUMEN

Los suelos arcillosos usualmente no apropiados para utilizarse en obras de ingeniería, puesto que tiene un bajo índice de CBR; razón por la cual se investigó la adición de ceniza de bagazo de caña de azúcar (CBCA) en suelos arcillosos para determinar en cuanto influye en su índice California Bearing Ratio (CBR), para lo cual se ha clasificado el suelo en estudio a través de su análisis granulométrico y límites de consistencia; posteriormente se ejecutó los ensayos de compactación adicionando las dosificaciones de 0 %, 7 %, 10 %, 13 %, 16% y 19% de CBCA con las cuales se determinaron sus características de compactación para ser utilizadas en el ensayo CBR del suelo con las dosificaciones correspondientes de CBCA. En consecuencia, se determinó que el suelo en estudio está clasificado como CL de acuerdo al sistema SUCS; además se determinó los valores de índice CBR de los porcentajes de adicción de CBCA de 0 %, 7 %, 10 %, 13 %, 16% y 19% los cuales son: 1.60 %, 5.30 %, 6.00 %, 6.80 %, 5.70 % y 5.10 % respectivamente. En conclusión, la dosificación optima de CBCA para el tipo de suelo investigado es 13% con un índice CBR de 6.80%, clasificando dicho suelo como regular según su índice CBR.

Palabras clave: Suelo, suelo arcilloso, ceniza de bagazo de caña de azúcar, compactación de suelos, índice CBR.

ABSTRACT

Clay soils are usually not suitable for use in engineering works, since they have a low CBR index; for this reason, the addition of sugarcane bagasse ash (CBCA) in clay soils was investigated to determine how much it influences its California Bearing Ratio (CBR) index, for which the soil under study has been classified through its granulometric analysis and consistency limits; subsequently, the compaction tests were carried out by adding the dosages of 0%, 7%, 10%, 13%, 16% and 19% of CBCA with which its compaction characteristics were determined to be used in the CBR test of the soil with the corresponding dosages of CBCA. Consequently, it was determined that the soil under study is classified as CL according to the SUCS system; In addition, the CBR index values of the CBCA addition percentages of 0%, 7%, 10%, 13%, 16% and 19% were determined, which are: 1.60%, 5.30%, 6.00%, 6.80%, 5.70% and 5.10% respectively. In conclusion, the optimal dosage of CBCA for the type of soil investigated is 13% with a CBR index of 6.80%, classifying said soil as regular according to its CBR index.

Keywords: Soil, clay soil, sugarcane bagasse ash, soil compaction, CBR index.

CAPÍTULO I INTRODUCCIÓN

1.1. PLANTEAMIENTO DEL PROBLEMA

Chindris et al (2017) sostiene que los ingenieros civiles y geomecánicos hoy en día se enfrentan a uno de los problemas más comunes en obras de ingeniería a nivel mundial; puesto que los suelos arcillosos se expanden fácilmente cuando se exponen al agua por lo que no son aptos para ser usados en obras de ingeniería porque tienen un índice de CBR bajo.

De acuerdo con Diaz (2018) a nivel mundial existen miles de kilómetros de carreteras y mal estado de conservación, debido a la presencia de suelos arcillosos. Laos (2022) informa que esta es la razón principal por la que varios países ya investigan acerca del uso de residuos de procesos agrícolas e industriales, mejorando el índice CBR del suelo con la mayoría de estos residuos utilizados.

Perucamaras (2020) revela que en el Perú solamente con el 2.1% de la red vial local está pavimentada, es decir casi la totalidad de las carreteras con poco tráfico tienen mayor probabilidad de deteriorarse, debido a la interacción directa entre la subrasante y el tránsito vehicular; además Ramos (2014) informa que el tipo de suelo predominante en estas vías es arcilloso; por lo tanto, se encuentra categorizado dentro un suelo pobre según su índice CBR, por lo que requiere mejoramiento.

En vista de que los suelos arcillosos son problemáticos para la ingeniería, Chindris et al (2017) informa que existen procedimientos para disminuir o eliminar en su totalidad la expansión de suelos arcillosos y esto repercute fundamentalmente en su índice CBR.

Terrones (2018) menciona que en la búsqueda de nuevos aditivos estabilizadores que aumenten el índice CBR de suelos arcillosos y mejoren su comportamiento en contacto con el agua, se investigó la utilización de ceniza de bagazo de caña de azúcar como una nueva solución potencial a este problema, además es menos costoso en comparación con los métodos tradicionales. De acuerdo con Ojeda et al. (2018) su uso es reciente en el mejoramiento de suelos.

Finalmente es necesario mencionar que en el distrito de Magdalena es común encontrar suelos arcillosos, por esta razón se debe realizar un mejoramiento del suelo para incrementar su índice CBR y así realizar una obra de ingeniería; caso contrario dichas obras presentan fallas, las cuales son más notorias en pavimentos. Asimismo, en el distrito de Magdalena se cultiva la caña de azúcar, observando que en los molinos artesanales se

quema el bagazo y no se le da un segundo uso a la ceniza producida; por lo tanto, en esta investigación se optó por emplear este residuo orgánico para aumentar el índice CBR los suelos arcillosos.

1.2.FORMULACIÓN DEL PROBLEMA

¿En cuánto influye la ceniza de bagazo de caña de azúcar en el índice California Bearing Ratio (CBR) de suelos arcillosos?

1.3.JUSTIFICACIÓN DE LA INVESTIGACIÓN

Con la presente investigación se brinda una solución novedosa a la problemática de bajo índice de CBR en suelos arcillosos de plasticidad baja; dicho suelo predomina en la zona de estudio y no son aptos para ser usados en una subrasante.

Además, esta investigación tiene una justificación técnica, la cual es aportar nuevos conocimientos en ingeniería; puesto que se planteó que adicionando ceniza de bagazo de caña de azúcar puede aumentar el índice CBR de este tipo de suelos.

1.4.DELIMITACIÓN DE LA INVESTIGACIÓN

El estudio se realizó en el caserío La Ista, donde predomina la presencia de suelos arcillosos de baja plasticidad (CL). La muestra ha sido extraída de las calicatas realizadas

A la muestra de suelo estudiado se le agregó ceniza de bagazo de caña de azúcar con partículas que pasan por el tamiz N°200; este material fue extraído del molino artesanal "El Bosque" y se añadió en porcentajes de 7%, 10%, 13%, 16% y 19% para efectuar los ensayos de compactación y CBR, logrando resultados favorables en su índice CBR.

1.5.LIMITACIONES DE LA INVESTIGACIÓN

En esta investigación no se realizaron análisis químicos del suelo ni de la ceniza de bagazo de caña de azúcar.

1.6.OBJETIVOS

1.6.1. Objetivo general

 Determinar en cuanto influye la ceniza de bagazo de caña de azúcar en el índice CBR de suelos arcillosos.

1.6.2. Objetivos específicos

- Calcular el índice CBR del suelo arcilloso sin adición.
- Determinar el índice CBR del suelo arcilloso adicionando 7%, 10%, 13%, 16% y 19% de ceniza de bagazo de caña de azúcar.

 Determinar el óptimo porcentaje de adición de ceniza de bagazo de caña de azúcar para el suelo estudiado.

1.7.HIPÓTESIS

El índice CBR de un suelo arcilloso de baja plasticidad aumenta en más de 5% al añadir ceniza de bagazo de caña de azúcar.

1.8.VARIABLES

1.8.1. Variable independiente

• Ceniza de bagazo de caña de azúcar (CBCA)

1.8.2. Variable dependiente

• Índice CBR

1.9.DESCRIPCIÓN DE LOS CAPÍTULOS

CAPÍTULO I: Planteamiento del problema, formulación del problema, justificación, delimitación, limitaciones, objetivos, hipótesis general y variables del estudio a realizar.

CAPÍTULO II: Antecedentes teóricos del estudio, incluidas las conclusiones principales alcanzadas. Bases teóricas esenciales sobre los que se fundamente la investigación. Definiciones de términos fundamentales usados.

CAPÍTULO III: Se describe la ubicación y el periodo de tiempo de la investigación, así como los pasos a seguir para diseñarla, manejar y analizar los datos que recoge y reportar los resultados.

CAPÍTULO IV: Análisis de los resultados encontrados y la comparación de estos resultados con los de otros estudios pertinentes.

CAPÍTULO V: Se puntualiza las conclusiones más significativas de la investigación, relacionado con los objetivos planteados. Aspectos relevantes a tomar en cuenta que pueden enriquecer y complementar el estudio.

CAPITULO II MARCO TEÓRICO

2.1. ANTECEDENTES TEÓRICOS

2.1.1. A nivel internacional

Amit et al (2014) en su investigación "Effective Utilization of Sugar Industry Waste "Bagasse Ash" in Improving Properties of Black Cotton Soil", realizada en La India, concluye que las propiedades de suelos arcillosos mejoran cuando se sustituye por ceniza del bagazo de caña de azúcar; puesto que los resultados del ensayo CBR, muestran que inicialmente el suelo tenía un valor de CBR de 12.88%, pero adicionándole el 6% de CBCA se obtuvo un índice CBR de 22.04%.

Kumar et al (2017) realizó la investigación "Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads" en La India, y llegó a la conclusión que el suelo aluvial se clasificó como una arcilla plástica intermedia, que al agregarle la ceniza de bagazo de caña de azúcar en varios porcentajes, el valor de CBR aumentó de 3.2% a 5.88% con una dosificación optima de 7.5% de dicha ceniza.

2.1.2. A nivel nacional

Terrones (2018) desarrolló su tesis "Estabilización de suelos arcillosos adicionando cenizas de bagazo de caña para el mejoramiento de subrasante en el sector Barraza, Trujillo – 2018" en la que descubrió que al aplicar CBCA se mejora las propiedades mecánicas del suelo, siendo la dosificación del 15% de CBCA la que presenta mayores valores del índice CBR. Esto se evidenció en los tres puntos analizados a lo largo de la carretera, porque demostraron que el suelo inicialmente era inadecuado con un CBR promedio de 1.823%; sin embargo, luego de la incorporación de CBCA, el CBR promedio aumentó a 22.267%.

Ricra (2022) en su tesis "Adición de ceniza de caña de azúcar en la estabilización de suelos tropicales en el centro poblado Naranjal, Selva Central – 2021" realizada en el Departamento de Junín, revela que la ceniza de bagazo de caña de azúcar tiene un alto contenido puzolánico, lo que permite mejorar el índice CBR del suelo tropical, categorizando a la subrasante como excelente con porcentajes de adición de CBCA de 10% y 15%.

2.1.3. A nivel local

No existen publicaciones hasta la fecha.

2.2.BASES TEÓRICAS

2.2.1. Suelos

Para Diaz (2014), el suelo tradicionalmente se define como materiales terrosos orgánicos e inorgánicos que se hallan en la capa sobre la corteza rocosa del planeta; sin embargo, este autor define al suelo como un material particulado y multifásico, porque está constituido por un sistema de partículas que varían de tamaño y comprende tres fases, sólida, liquida y gaseosa.

K. R. Arora (2014), aclara que el suelo es un material no consolidado, conformado por partículas sólidas que se crean por la descomposición de las rocas. En las partículas sólidas se puede encontrar materia prima orgánica y puede haber agua, aire o ambos en el espacio vacío entre dichas partículas.

Por otra parte, Villalobos (2016) informa que en la formación de suelos intervienen procesos físicos y químicos, reduciendo de esta forma un macizo rocoso en fragmentos más pequeños. Este proceso es conocido como meteorización; sin embargo, también existen procesos más complejos como erosión y tectonismo, los cuales transforman el estado de fuerzas de un macizo rocoso. Además, señala que los suelos se componen de minerales presentes en la corteza terrestre, tanto orgánicos como inorgánicos.

2.2.2. Clasificación de suelos

Budhu (2015), informa que, debido a la amplia variedad de tipos de suelo que se observan en el planeta, la mecánica de suelos establece técnicas específicas para clasificar suelos. Cada uno de ellos tiene su propio ámbito de aplicación basado en la necesidad y aplicación en la que se fundamenta; tal es así que la Asociación Americana de Funcionarios de Carreteras y Transporte (American Association State Higway and Transportation Officials – AASHTO), estableció un sistema para clasificar los suelos en función de su uso previsto, principalmente para carreteras y autopistas, mientras que el Sistema Unificado de Clasificación de Suelos (S.U.C.S) se desarrolló originalmente para ser usado en aeropuertos, pero desde entonces ha sido modificado para su uso general.

Para realizar dicha clasificación, es necesario determinar el tamaño de sus partículas y los límites de consistencia del suelo en estudio.

2.2.2.1. Granulometría del suelo

Villalobos (2016) sostiene que el interés de determinar la granulometría del suelo es porque el tamaño de granos y partículas que lo constituyen está ligado a la resistencia mecánica y al comportamiento hidráulico del mismo; puesto que, si los granos tienen un

mayor tamaño, aumentará la resistencia mecánica del suelo y capacidad de conducir el agua.

El Ministerio de Transportes y Comunicaciones (2014) delimita a la granulometría como la representación de los tamaños de partículas que conforman el suelo, por medio del tamizado según especificación técnica. Según el tamaño de dichas partículas, se establecen tipos de suelos como se muestra en la tabla N°01:

Tabla 1Clasificación de un suelo según el tamaño de sus partículas.

Tipo de	Material	Tamaño de las partículas	
Gr	ava	75 mm – 4.75 mm	
		Arena gruesa: 4.75 mm – 2.00 mm	
Ar	ena	Arena media: 2.00 mm – 0.425 mm	
		Arena fina: 0.425 mm – 0.075 mm	
Material Fino Limo		0.075 mm – 0.005 mm	
	Arcilla	Menor a 0.005 mm	

Fuente: Ministerio de Transportes y Comunicaciones (2014).

2.2.2.2. Límites de consistencia

Según Díaz (2014), la consistencia es el resultado del contenido de agua y la composición mineral de las partículas e indica la resistencia del suelo a cambiar de forma. En ella interviene la fuerza de atracción entre partículas individuales o grupos de partículas.

Verruijit (2018) enfatiza que, para suelos muy finos como limo y arcilla, la consistencia es una característica importante. Determina si el suelo se puede manipular fácilmente con equipo de movimiento de tierras o a mano; además señala que el determinante principal es el contenido de agua del suelo.

Así mismo Verruijit (2018) sostiene que un contenido de agua muy bajo, puede provocar que el suelo se vuelva extremadamente duro, casi como una roca, por eso se dice que está en estado sólido. Agregando agua puede hacer que se vuelva plástica y, con un mayor contenido de agua, el suelo puede incluso volverse casi líquido. Para distinguir entre estos estados (sólido, plástico y líquido), se han acordado dos ensayos estándar para mostrar los límites de consistencia; los cuales son el método de Casagrande y el método del cono.

Verruijit (2018) describe al límite liquido (LL) como el cambio del estado líquido al plástico; significa la cantidad de agua más baja a la cual el suelo permanece esencialmente líquido y es determinado por el ensayo de Casagrande. Durante la prueba, el recipiente vacío que contiene la muestra de suelo se puede subir y bajar girando el eje. El límite líquido es la cantidad de agua al que se cerrará una grieta estándar en forma de V en el suelo después de 25 golpes. Si el lecho se cierra después de menos de 25 golpes, la tierra está demasiado húmeda y se debe dejar que parte del agua se evapore.

Por otra parte, Verruijit (2018) señala que la alternativa al ensayo de Casagrande es el ensayo del cono; donde se coloca un cono de acero de 60 g con un ángulo de punta de 60° sobre la muestra de arcilla con la punta directamente sobre la superficie de la arcilla. Luego se baja el cono y se mide su profundidad de penetración. El límite líquido se define como el agua contenida que corresponde a una penetración precisa de 10 mm y se puede determinar probando con diferentes contenidos de agua. Sin embargo, también se observó que la profundidad de penetración, representada en escala logarítmica, es una función aproximadamente lineal del contenido de agua.

Además, Verruijit (2018) informa que el límite plástico (LP) es la transición del estado plástico al estado sólido y lo describe como la cantidad de humedad al que se puede laminar la arcilla hasta un diámetro de 3 mm. Las arcillas muy húmedas se pueden enrollar formando líneas muy finas, pero las arcillas secas se agrietan cuando se enrollan formando líneas gruesas. En el laboratorio, las pruebas se realizaron comenzando con una muestra de arcilla bastante húmeda en la que se enrollaba fácilmente un alambre de 3 mm. A medida que continúa el enrollado, la arcilla se seca gradualmente, puesto que el agua se evapora hasta que los hilos comienzan a romperse.

El Ministerio de Transportes y Comunicaciones (2014) indica que, entre los límites líquido y plástico, hay una característica indispensable a tener en cuenta que es el índice de plasticidad, que consiste en la diferencia entre LL y LP, este índice nos sirve para observar el intervalo de humedad en el que el suelo tiene un comportamiento plástico y permite la clasificación del suelo.

En ese sentido el MTC (2014), refiere que los suelos tienen relación con su índice de plasticidad, según se detalla en la tabla N°2:

Tabla 2Clasificación de un suelo según Índice de Plasticidad.

Índice de Plasticidad	Plasticidad	Característica	
IP > 20	Alta	Suelo muy arcilloso	
$7 < IP \le 20$	Media	Suelo arcilloso	
IP ≤ 7	Baja	Suelo poco arcilloso	
IP = 0	No Plástico (NP)	Suelo exento de arcilla	

Fuente: Ministerio de Transportes y Comunicaciones (2014).

Finalmente J. A. Knappett y R. F. Craig (2020) informan que existe relación entre los minerales presentes en las arcillas y los límites de consistencia.

Tabla 3 *Propiedades plásticas de algunos minerales arcillosos comunes.*

Grupo mineral	Superficie específica (m2/g)	Actividad	LP (%)	LL (%)
Caolinita	10 - 20	0.3 - 0.5	25 - 40	30 - 110
Ilitas	65 - 100	0.5 - 1.3	35 - 60	60 - 120
Montmorilonita	Hasta 840	4 - 7	50 - 100	100 - 900

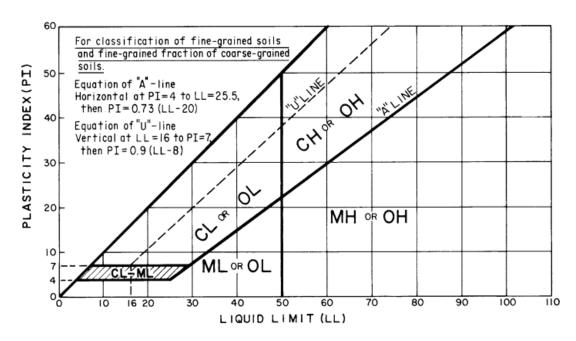
Fuente: J. A. Knappett y R. F. Craig (2020)

2.2.2.3. Sistema unificado de clasificación de suelos

Según Díaz (2014), este método es el más utilizado en ingeniería geotécnica; su fundamento es la idea de que los suelos granulares se clasifican en base a su granulometría, mientras que los suelos finos se distinguen por plasticidad. Los suelos finos pasan más del 50% del tamiz N°200, mientras que los suelos granulares, constituidos por arena y grava, pasan menos del 50% del tamiz N°200.

Además, Diaz (2014) sostiene que para usar el sistema SUCS, es necesario conocer la proporción de grava, la proporción de arena, la proporción de arcilla y limo, así como también el índice de plasticidad y el límite líquido de la porción de suelo que pasa por el tamiz N°40.

Tabla 4 *Clasificación SUCS de un suelo.*


Criterios para asignar sím	bolos de grupo			Símbolo de grupo
Suelos de grano grueso Mas del 50% retenido en el tamiz N°200	Gravas	Gravas Limpias	$Cu \ge 4 \text{ y } 1 \le Cc \le 3$	GW
	Mas del 50% de		Cu < 4 y/o Cc < 1 o Cc > 3	GP
	la fracción gruesa es retenida en el tamiz Nº4	Gravas con finos Mas del 12% de finos	IP < 4 o gráficos debajo de la línea "A"	GM
			IP > 7 y gráficos encima de la línea "A"	GC
	Arena Mas del 50% de la fracción gruesa pasa por el tamiz N°4	Arenas Limpias	$Cu \ge 6 \text{ y } 1 \le Cc \le 3$	SW
		Menos del 5% de finos	Cu < 6 y/o Cc < 1 o Cc > 3	SP
		Arenas con finos Mas del 12% de finos	IP < 4 o gráficos debajo de la línea "A"	SM
			IP > 7 y gráficos encima de la línea "A"	SC
Suelos de grano fino Mas del 50% pasa por el tamiz N°200	Limos y arcillas Limite liquido inferior a 50	Inorgánico	IP > 7 y gráficos encima de la línea "A"	CL
			IP < 4 o gráficos debajo de la línea "A"	ML
		Orgánico	$\frac{limite\ liquido\ -muestra\ seca}{Limite\ liquido\ -muestra\ sin\ secar} < 0.75; zona\ OL$	OL
	Limos y arcillas	Inorgánico	IP traza gráficos encima de la línea "A"	СН
			IP traza gráficos debajo de la línea "A"	MH
	Limite liquido superior a 50	Orgánico	$\frac{limite\ liquido\ -muestra\ seca}{Limite\ liquido\ -muestra\ sin\ secar} < 0.75; zona\ OH$	ОН
Suelos altamente orgánicos		Pt		

Fuente: Braja (2015).

Además, Diaz (2014) refiere que, para suelos arcillosos y limosos, algunas de sus propiedades tienen correlación con los límites de consistencia, para lo cual se hace uso del grafico denominado carta de plasticidad o carta de Casagrande, esta se encuentra divida por regiones delimitadas por dos líneas principales: la línea A que separa arcillas de limos y suelos orgánicos y la línea U que separa a los suelos de alta y baja compresibilidad.

Lìnea A:
$$IP = 0.73(LL - 20)$$

Lìnea U: $IP = 0.9(LL - 8)$

Figura 1Carta de Casagrande para suelos cohesivos.

Fuente: ASTM D 2487.

2.2.2.4. Sistema de clasificación de suelos AASHTO

Budhu (2015) informa que el sistema AASHTO consta de siete grandes grupos para la clasificación de suelos que van desde el grupo A-1 al grupo A-7; de los cuales los grupos A-1, A-2 y A-3 corresponden a suelos gruesos, y los grupos restantes (A-4, A-5, A-6 y A-7) son suelos limosos y arcillosos.

Tabla 5 *Clasificación de suelos - AASHTO.*

Clasificación general	Material Granular Material limo arcillosos (menos del 35% pasa Tamiz N°200) (más del 35% pasa Tamiz N°20										
	A	A - 1 A - 2					A - 7				
Clasificación de grupo	A - 1a	A - 1b	A - 3	A - 2 - 4	A - 2 - 5	A - 2 - 6	A - 2 -7	A - 4	A - 5	A - 6	A - 7 - 5, A - 7 - 6
			Análi	sis granulo	métrico, %	6 Pasante					
Tamiz No. 10 (2.00mm)	50 max										
Tamiz No. 40 (425µm)	30 max	50 max	51 min								
Tamiz No. 200 (75µm)	15 max	25 max	10 max	35 max	35 max	35 max	35 max	36 min	36 min	36 min	36 min
		Caracter	rísticas del m	aterial que	pasa por e	el tamiz No	o. 40 (425	μm)			
Límite Líquido				40 max	41 min	40 max	41 min	40 max	41 min	40 max	41 min
Índice de Plasticidad	6 max	6 max	NP	10 max	10 max	11 min	11 min	10 max	10 max	11 min	11 min
Tipo habituales de materiales constituyentes	Fragme piedra, ş are	•	Arena fina Gravas y arenas, limosas o arcillosas		Suelos limosos Suelos arcil		s arcillosos				
Calificación general como subrasante		Excelente a bueno			Suelos limosos						

Fuente: Budhu (2015).

Asimismo, Budhu (2015) indica que el sistema de clasificación AASHTO es utilizado para evaluar si un suelo es apto para material de subrasante, terraplenes y movimientos de tierras. El suelo granular es definido por este método de categorización como suelo que es 65% más grueso que el tamiz N° 200 (0,075 mm) y un suelo se clasifica como arcilloso limoso si más del 35% pasa por el tamiz N° 200.

Tabla 6Tipos de suelo, tamaño promedio de grano y descripción según AASHTO

Tipos de suelo	Descripción según AASHTO	
Grava	75 mm a 2 mm (tamiz No. 10)	
Arena	2 mm (tamiz No. 10) a 0.075 mm (tamiz No. 200)	
Limo y arcilla	Limos: IP < 10%	
	Arcillas: IP > 11%	

Fuente: Budhu (2015).

Finalmente, el MTC (2014) fija equivalencias entre los dos sistemas de clasificación anteriormente mencionados.

Tabla 7Correlación de tipos de suelos SUCS - AASHTO.

Clasificación de suelos SUCS ASTM D 2487	Clasificación de suelos AASHTO AASHTO M 145
GW, GP, GM, SW, SP, SM	A-1-a
GM, GP, SM, SP	A-1-b
GM, GC, SM, SC	A-2
SP	A-3
CL, ML	A-4
ML, MH, OH	A-5
CL, CH	A-6
OH, MH, CH	A-7

Fuente: Ministerio de Transportes y Comunicaciones (2014).

2.2.3. Suelo arcilloso

Para Angelone (2020), los suelos arcillosos son sedimentos o depósitos minerales que presentan plasticidad cuando están húmedos y están compuestos por partículas muy pequeñas de tamaño menor a 4 micrómetros y muy finas, compuestos principalmente por silicatos de aluminio hidratado.

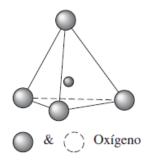
Duque y Escobar (2016) señalan que las estructuras octaédricas y tetraédricas están presentes en las arcillas, que son familias minerales definidas que incluyen caolinita,

illita y montmorillonita. La arcilla posee características coloidales, que son pequeños cristales con átomos organizados en planos según la terminología mineralógica.

Asimismo, Duque y Escobar (2016) sostienen que las arcillas presentan las siguientes características:

- No desprende polvo de la superficie.
- La resistencia seca varia de alta a extremadamente alta.
- La humedad disminuye lentamente.
- Difícilmente desmenuzable con los dedos.

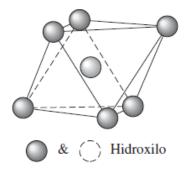
2.2.4. Minerales constitutivos de las arcillas


Budhu (2015) refiere que los minerales son sustancias cristalinas y conforman los sólidos que componen un suelo y se clasifican según su estructura y química; la geotecnia revela que están conformados por dos de los elementos más prevalentes en la tierra que son el oxígeno y el silicio. En suelos finos los minerales son laminares.

Del mismo modo Villalobos (2016) informa que los minerales constitutivos de las arcillas son en su mayoría los silicatos con exfoliación laminar. A diferencia de los suelos granulares, el comportamiento de los suelos arcillosos está estrechamente influenciado por su estructura cristalina en general y su composición mineral en particular. Esto revela que las arcillas no solo se denominan suelos finos por sus tamaños mínimos de partículas, sino que también las arcillas se comportan de manera diferente a un suelo granular debido a sus propiedades mineralógicas; además las arcillas tienen partículas planas en comparación con los suelos granulares.

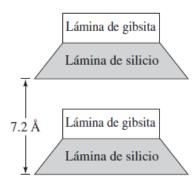
En relación con lo anterior, Braja (2015) afirma que los minerales de arcilla son aluminosilicatos complejos formados por una de las dos unidades fundamentales, aluminio octaédrico o silicio tetraédrico. Un átomo de silicio está rodeado por cuatro átomos de oxígeno para formar una unidad tetraédrica. Una lámina de sílice se crea mediante el ensamblaje de unidades de sílice tetraédricas. Una capa octaédrica, también llamada lámina de gibbsita, se forma por la conjunción de las unidades octaédricas, que son seis grupos hidroxilo alrededor de un átomo de aluminio.

Figura 2


Sílice tetraédrico.

Fuente: Braja M. Das (2015).

Figura 3


Lamina de aluminio octaédrico.

Fuente: Braja M. Das (2015).

Además, según Braja (2015), las láminas de sílice-gigbsita que se repiten en capas constituyen la mayor parte de la composición de las caolinitas; con enlaces de hidrógeno y cada capa es de un grosor promedio de 7,2 Å. Estos tipos de arcilla se fabrican en forma de plaquetas que tienen espesores de 100 a 1000 Å y dimensiones laterales de 1000 a 2000 Å.

Figura 4Diagrama de estructuras de la caolinita.

Fuente: Braja M. Das (2015).

2.2.5. Plasticidad de suelos arcillosos

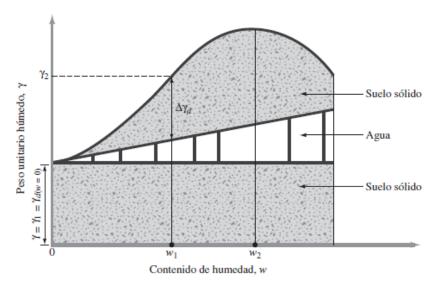
- J. A. Knappett y R. F. Craig (2020) refieren que la plasticidad es una característica de vital importancia para suelos arcillosos y limosos. También informan que el término "plasticidad" detalla la capacidad de un suelo de tolerar una deformación irreversible sin agrietarse ni desmoronarse; por lo general si el porcentaje de agua de un suelo varía, dicho suelo pasará de estado líquido a plástico y semisólido.
- J. A. Knappett y R. F. Craig (2020) revela que la mayor parte de suelos de grano fino se encuentran en estado plástico, esto debido a presencia significativa de los minerales de arcilla. Como los espacios vacíos entres estas partículas es muy pequeño, genera que se mantenga el agua a presión negativa por tensión capilar, lo que concede que el suelo se deforme; es decir, la adsorción de agua sobre las partículas minerales de las arcillas, influye directamente en el comportamiento plástico del suelo.

2.2.6. Compactación de suelos

Según Duque y Escobar (2016), la compactación de suelos es el proceso de densificar mecánicamente a un suelo para aumentar su resistencia y estabilidad volumétrica, lo que altera la permeabilidad en el proceso.

Budhu (2015) define a la compactación del suelo como una reducción de poros en el suelo debido al desplazamiento del aire contenido en ellos. Esto se suele conseguir mediante compactadores mecánicos, rodillos y compactadores con agua añadida. Además, menciona que la compactación de suelos es el procedimiento más económico que lograr mejorar las propiedades físicas y es usado en todos los sistemas constructivos.

Braja (2015) revela que la compactación de un suelo es la consolidación del mismo por la expulsión de aire contenido, para lo cual es necesario una energía mecánica. Durante el proceso de compactación se añade agua al suelo, para suavizar las partículas del suelo.


Para Budhu (2015) la compactación de un suelo mejora su resistencia; por ende, su capacidad de carga aumenta y disminuye la filtración de agua, asentamientos e hinchamiento. Sin embargo, también señala que una compactación inadecuada puede causar daños a estructuras enterradas, grietas en pavimentos y grandes asentamientos diferenciales.

2.2.6.1.Compactación en laboratorio

K. R. Arora (2014) manifiesta que, los ensayos de laboratorio para la compactación de suelos son de gran importancia para determinar la cantidad óptima de agua para la compactación en campo.

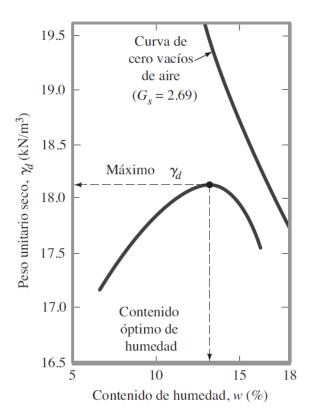
Según Braja (2015), el ensayo de compactación Proctor es una prueba de laboratorio usado para determinar el óptimo contenido de humedad y la densidad seca máxima para la compactación de un suelo; esto se alcanza luego de graficar su curva de compactación.

Figura 5 *Principios de compactación.*

Fuente: Braja M. Das (2015).

Braja (2015) presenta una formula usada para calcular la densidad seca y posteriormente la curva de compactación.

$$Ds_{max} = \frac{Dh}{1 + \omega\%}$$


Donde:

Dh: Densidad húmeda.

Dsmax: Densidad seca máxima.

w: Porcentaje de humedad.

Figura 6Gráfica de curva de compactación.

Fuente: Braja M. Das (2015).

K. R. Arora (2014) a través de sus investigaciones, obtuvo un rango de contenido óptimo de humedad para los diversos tipos de suelos.

Tabla 8Rango de contenido de humedad.

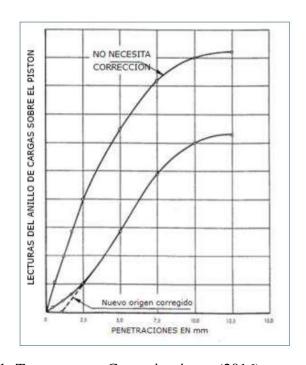
Suelo arenoso	Suelo areno - limoso	Limos	Arcillas
6 a 10%	8 a 12%	12 a 16%	14 a 20%

Fuente: K. R. Arora (2014).

2.2.7. California Bearing Ratio (CBR)

Según el Ministerio de Transportes y Comunicaciones (2016) el CBR de un suelo es el índice de resistencia del mismo, expresado en porcentaje; dicho valor es crucial para el diseño de pavimentos puesto que indica la idoneidad de un suelo para utilizarlo a nivel de subrasante.

Durante el ensayo de penetración, el MTC (2016) establece valores de penetración de la muestra para realizar las lecturas en el deformímetro.


Tabla 9 *Penetraciones para lecturas de carga*

Milímetros	Pulgadas
0.63	0.025
1.27	0.050
1.90	0.075
2.54	0.100
3.17	0.125
3.81	0.150
5.08	0.200
7.62	0.300
10.16	0.400
12.70	0.500

Fuente: Ministerio de Transportes y Comunicaciones (2016).

Luego de realizar estas lecturas, el MTC (2016) especifica que se realice los cálculos correspondientes para dibujar la gráfica de Penetración – Presión como se especifica en la figura N°7:

Figura 7 *Curva Penetración - Presión.*

Fuente: Ministerio de Transportes y Comunicaciones (2016).

No obstante, el MTC (2016) señala que estas lecturas no son indispensables; puesto que el valor del CBR se determina aplicando la siguiente formula:

$$\%CBR = \frac{Presion\ ejercida\ en\ muestra\ de\ suelo}{Presion\ ejercida\ en\ muestra\ patron}*100$$

Además, MTC (2016) cuenta con información de una muestra patrón para valores de penetración de 0.1" y 0.2"; por lo que dispone que las lecturas en las muestras ensayadas se deben realizar para estos valores de penetración.

Tabla 10 Características de la muestra patrón.

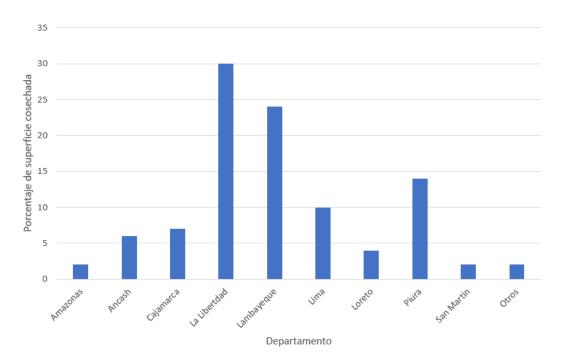
Pene	etración	Presión			
mm	Pulgadas	MN/m2	Kgf/cm2	lb/plg2	
2.54	0.1	6.90	70.31	1.00	
5.08	0.2	10.35	105.46	1.50	

Fuente: Ministerio de Transportes y Comunicaciones (2016).

Finalmente es necesario mencionar que el MTC (2014) considera categorías de subrasante en función al índice CBR alcanzado para cada categoría.

Tabla 11Categorías de Subrasante.

Categorías de subrasante	CBR
S0: Subrasante inadecuada	CBR < 3%
S1: Subrasante pobre	3% < CBR ≤ 6%
S2: Subrasante regular	6% < CBR ≤ 10%
S3: Subrasante buena	$10\% < CBR \le 20\%$
S4: Subrasante muy buena	$20\% < CBR \le 30\%$
S5: Subrasante excelente	30% ≤ CBR

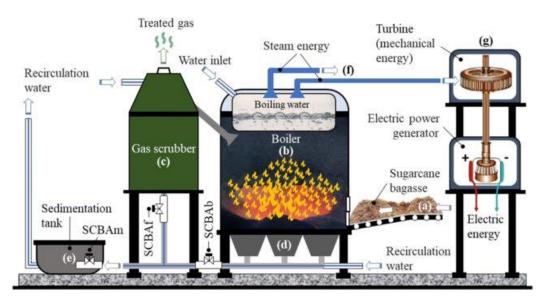

Fuente: Ministerio de Transportes y Comunicaciones (2014).

2.2.8. Ceniza de bagazo de caña de azúcar

La OECD/FAO (2023) informan que Brasil y La India son los principales países en el mundo que producen caña de azúcar, con una proyección para el año 2032 de 45 millones de toneladas y 19 millones de toneladas al año respectivamente; Perú no destaca como una potencia a nivel mundial; sin embargo, MIDAGRI (2021) informa que el Perú produce 121.8 toneladas de caña de azúcar por hectárea, superando en rendimiento a Brasil quienes cuentan con 85.8 toneladas por hectárea. Esta ventaja la otorga el clima y la disponibilidad de agua que el país tiene para riego.

Asimismo, MIDAGRI (2021) también señala que Perú cuenta con 160 mil hectáreas de caña de azúcar, siendo Lima, La Libertad, Lambayeque y Piura los principales departamentos con mayor producción. Este cultivo genera residuos como la fibra resultante de la caña exprimida, conocido como bagazo de caña de azúcar y luego es transformado en ceniza.

Figura 8
Superficie cosechada de caña de azúcar en Perú.



Fuente: MIDAGRI (2021).

Según Amit et al. (2014), el bagazo de caña de azúcar es un residuo celular y fibroso que es el resultado de prensar la caña en los ingenios azucareros artesanales para exprimir el jugo de caña y es utilizado para fabricar celulosa, papel y materiales de construcción, además de biocombustible. También afirma que por cada diez toneladas de caña de azúcar que se procesa se obtiene en promedio tres toneladas de bagazo y como producto final de la combustión de este residuo se obtiene la ceniza de bagazo de caña de azúcar (CBCA).

Molin (2019) observó que la CBCA es conocida por la alta disponibilidad a nivel mundial de caña de azúcar y es producido por la incineración del bagazo en calderas de cogeneración a 600°C. Además, informa que la CBCA tiene características puzolánicas, por lo que son altamente recomendada para su uso como reemplazante del agregado fino en productos de la construcción civil.

Figura 9Sistema de generación de tipos de cenizas de bagazo de caña de azúcar.

Fuente: Molin (2019).

Por su parte Resano et al (2022) describe el procedimiento artesanal para lograr la CBCA, indicando que este es un proceso que se usa en menor proporción al proceso industrial, pero en la actualidad se mantiene vigente en distintos países; en este proceso se hace uso de un molino artesanal de hierro accionado por fuerza animal, hidráulica o energía eléctrica, donde se realiza la molienda de la caña para extraer el jugo de la misma, para ser almacenado en grandes recipientes para su fermentación y luego este jugo se calienta en contenedores grandes para destilar el aguardiente; para realizar todo el proceso, el combustible utilizado es el bagazo de caña de azúcar que luego es transformado en ceniza.

Asimismo, Resano et al (2022) también informa que existen diferencias entre las cenizas industriales y artesanales de bagazo de caña de azúcar, siendo su morfología la más notoria, puesto que la ceniza industrial se compone de fibras mientras que la ceniza artesanal es un conglomerado de fibras, causado fundamentalmente por el tipo de maquinaria usada en cada proceso.

2.2.8.1. Caracterización de ceniza de bagazo de caña de azúcar

Resano et al (2022) indica que, siendo el bagazo de caña la materia prima para obtener CBCA, es necesario conocer sus características fisicoquímicas de dicha materia prima.

Tabla 12Resultados de las propiedades físico químicas del BCI y del BCA.

Parámetros	Unidad	Muestra BCI				Muestra BCA		
1 at affect 05	Cinuau	BS1A	BI1A	BS2A	BI2F	BT1		
Humedad	%	43.94	37.82	39.09	44.42	57.66		
Cenizas	%	15.22	14.22	10.09	12.43	2.14		
Materia insoluble en acido	%	-	-	5.63	5.82	1.29		
Materia orgánica (Aprox 100%ceniza)	%	84.78	85.05	89.91	87.57	97.86		
Fibra cruda	%	-	-	37.71	37.04	-		
°Brix (solidos solubles)	°Bx	-	-	2.00	1.20	6.00		
Fibra detergente acida (FDA)	%	-	-	52.65	-	35.50		
Fibra detergente neutra (FDN)	%	-	-	80.57	-	56.11		
Lignina detergente acida (LDA)	%	-	-	9.74	-	5.70		
Celulosa	%	-	-	42.91	-	29.80		
Hemicelulosa	%	-	-	27.92	-	20.61		

Fuente: Resano et al (2022).

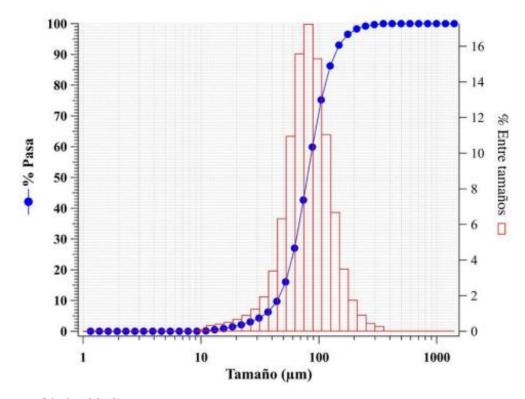
De la tabla N°12 se desprende algunas propiedades fisicoquímicas de la ceniza de bagazo de caña de azúcar artesanal.

Densidad

De acuerdo con Lorca (2014), la densidad volumétrica fluctúa dentro de 1.88 gr/cm3 y 2.84 gr/cm3

Peso especifico

Meneses y Diaz (2019) lo describen como la relación entre el peso y volumen de un material y se expresa como:


$$\gamma = \frac{Peso\ muestra}{Volumen\ muestra}$$

Tamaño de la partícula

Según Ojeda et al. (2018) informa que el tamaño de partículas de la CBCA oscila entre los 10 μ m y 200 μ m, siendo el tamaño promedio 86 μ m, obtenido mediante ensayos de difracción laser.

Figura 10

Curva de distribución de tamaño de partículas de la CBCA.

Fuente: Ojeda (2018).

Color

Duc et al (2018) refiere que esta propiedad está ligado principalmente a la diversidad de la caña y al nivel de incineración de a la materia prima, pero comúnmente resulta un color gris oscuro y negro, es muy poco probable que tenga un color marrón ya que tiene hierro en su estructura.

2.2.8.2. Características químicas

Según Calderón y Martínez (2017), la diversidad de la caña, calidad del suelo, tipo de fertilizante y el tiempo transcurrido hasta su maduración influyen en la constitución química de la ceniza,

Tabla 13Composición química de la CBCA según autores

N°	Autor y Ciudad	SiO2	Fe2O3	AI2O3	CaO	MgO	So3/ SO4	K20	LOI
1	Abdolkarim and Amin, 2013 (Iran)	44.7	2.9	2.4	14.9	3.5	N.A.	4.4	16.7
2	Abdulkadir et al, 2014 (Nigeria)	72.85	6.96	1.08	9.97	6.49	N.A.	6.77	4.23
3	Asma et al 2014 (Sudan)	72.25	4.21	6.37	4.05	2.61	0.11	2.34	1.4
4	George, 2014 (Nigeria)	41.15	2.7	7	3.2	0.12	0.03	8.75	17.7
5	Kawade et al.,2013(India)	66.89	29.	29.18		0.83	0.56	NA	0.72
6	Prashant and Vyawahare, 2013(India)	62.43	6.98	4.28	11.8	2.51	1.48	3.53	4.73
7	Sagar et al., 2015 (India)	87.59	0.67	0.51	2.59	1.65	0.03	3.64	NA
9	Lathamaheswari R, Kalaiyaras an, VanMohan kuma, G	67.82	2.56	6.3	1.54	2.03	-	2.87	2.31
10	Flyash. F. (Mettur, India)	54.4	11.32	25.6	2.03	0.92	1.7	0.73	1.32
	Flyash- C (NLC, India)	47.6	7.8	21.4	11.9	1.8	2.8	0.82	3.3
11	Cement	20.24	4.61	2.89	66.7	1.63	2.31	0.29	1.43

Fuente: Lathamaheswari et al (2017).

En relación a la tabla N°13, Millones (2023) deduce que la CBCA está compuesta principalmente por sílice; esto puede aumentar el índice CBR de suelos finos para ser usado en una pavimentación. Además, menciona que, en investigaciones de otros autores los efectos de agregar CBCA en suelos arcillosos son favorables.

Tabla 14Resultados de la prueba de CBR con CBCA.

Referencia	%Reemplazo	Suelo arcilloso estabilizado + %CBCA Valores de CBR
(Awoyera, Mansouri, & Viloria, 2021)	0 a 25	7.1% a 11.5%
(Jinmiao, Han, Ge, Bian, & Li, 2021)	8	25
(Ferreira, y otros, 2016)	10	3.7
(Jinmiao, Han, Ge, Bian, & Li, 2021)	28	9
(Cai, Issakhoy, Roco-Videla, & Agdas, 2021)	83	25%

Fuente: Millones (2023).

2.3.DEFINICIÓN DE TÉRMINOS BÁSICOS

- **Suelo:** Material no consolidado, conformado de partículas sólidas producidas por la desintegración de rocas.
- **Suelo arcilloso:** Suelo fino conformado por partículas menor a 5 micrómetros que tienen un comportamiento plástico al adicionarle agua.
- Compactación de suelos: Es la densificación de un suelo a través procesos mecánicos.
- California Bearing Ratio: Es el índice utilizado para determinar la capacidad portante de suelos compactado.
- Ceniza de bagazo de caña de azúcar: Debido a su alta concentración de SiO2, se le considera un material puzolánico; su particularidad son las partículas ultrafinas producidas por la molienda.
- Suelo mejorado con ceniza de bagazo de caña de azúcar: Mezcla de suelo y
 CBCA, añadida con el propósito de aumentar el valor de su índice CBR.

CAPÍTULO III: MATERIALES Y MÉTODOS

3.1. UBICACIÓN GEOGRÀFICA DE LA ZONA DE ESTUDIO

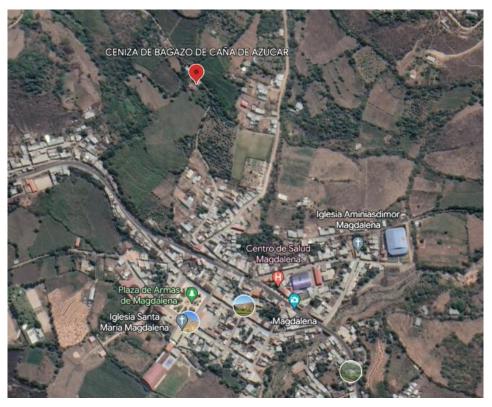
La investigación tuvo lugar en el Caserío La Ista, Distrito de Magdalena, Provincia de Cajamarca, Departamento de Cajamarca; entre los meses de marzo del año 2023 a marzo del año 2024; sin embargo, es necesario mencionar que la recolección de muestras se realizó en el mes de mayo del 2023.

Figura 11

Ubicación de calicatas realizadas.

Fuente: Google Maps.

En la tabla N°15, se presentan las coordenadas de las calicatas realizadas, así como también la profundidad a la que se excavaron, teniendo referencia a las investigaciones que se mencionan en los antecedentes de esta investigación.


Tabla 15Coordenadas UTM de las calicatas realizadas

Calicata	Profundidad	Coordenadas UTM			
Cancata	(m)	Este	Norte		
C – 01	1.50	765846.975	9195048.559		
C - 02	1.50	766006.956	9195021.086		
C – 03	1.50	765869.138	9194963.528		

Además, para la presente tesis, se ha extraído la ceniza de bagazo de caña de azúcar del molino de caña artesanal "El Bosque", propiedad del señor Teodoro Valqui Godoy, ubicado en el distrito de Magdalena.

Figura 12

Ubicación de molino artesanal "El Bosque"

Fuente: Google Maps.

Las coordenadas del molino artesanal del cual se ha extraído se muestran en la tabla $N^{\circ}16$:

Tabla 16Coordenadas UTM del molino de caña de azúcar.

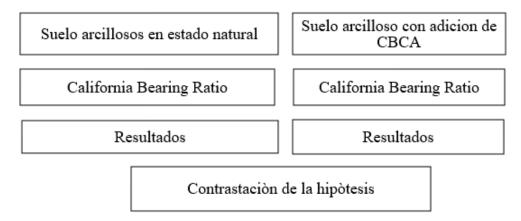
Dunto	Coordenadas UTM				
Punto	Este	Norte			
Molino de	758482.535	9198278.768			
caña de azúcar	130402.333	91962/8./08			

3.2. METODOLOGÌA DE LA INVESTIGACIÓN

3.2.1. Procedimiento de la investigación

3.2.1.1.Obtención y preparación de las muestras de suelo.

- Se determinó el lugar con mayor presencia de arcilla para realizar las calicatas para el presente estudio.
- Se realiza la lectura de las coordenadas UTM de las calicatas realizadas usando el GPS navegador.
- Se excavaron tres calicatas de 1.50 m. de profundidad.
- En el lugar se observó las características fundamentales del suelo como son: altura de cada uno de los estratos, olor, humedad, color del suelo, entre otros, como se indica en la Norma ASTM D2488.
- Se recogió y transportó la muestra representativa de cada una de las calicatas realizadas, de acuerdo a la Norma E 104.


3.2.1.2. Obtención de la ceniza de bagazo de caña de azúcar.

- Se obtuvo las coordenadas UTM del lugar, usando el GPS navegador.
- Se recogió y transportó la ceniza de bagazo de caña de azúcar.

3.2.1.3. Ensayos de laboratorio

- Se transportó las muestras al laboratorio de mecánica de suelos "GUERSAN" para determinar el contenido de humedad natural.
- Se efectuaron ensayos de granulometría y límites de consistencia, para clasificar al suelo en estudio.
- Se especificó el tipo de suelo estudiado utilizando el método SUCS (ASTM D 2487 – 11)
- Se llevó a cabo el ensayo de Proctor modificado para la muestra patrón de suelo y para las adiciones de CBCA en porcentajes de 7%, 10%, 13%, 16% y 19% del peso seco de la muestra.
- Finalmente se ejecutó el ensayo de CBR para las muestras de suelo con las adiciones de 0%, 7%, 10%, 13%, 16% y 19% de CBCA con respecto al peso seco de la muestra del suelo.

Figura 13Diagrama del circuito experimental para la investigación.

3.2.2. Tipo y nivel de investigación.

Tipo de investigación: Es de tipo aplicada, porque soluciona el problema de bajo valor de CBR de suelos arcilloso mediante la adición de CBCA logrando una clasificación de suelo regular según CBR.

Nivel de investigación: Es de nivel correlacional, puesto que determina y mide la relación entre el índice CBR y el porcentaje de CBCA.

3.2.3. Diseño de la investigación

La investigación tiene un diseño experimental, porque se utilizó diferentes porcentajes de CBCA para determinar su influencia en el valor de CBR del suelo en estudio.

3.2.4. Método de investigación

A. Método lógico: Hipotético - deductivo

Se formuló la hipótesis considerando que el incremento del valor del índice CBR se da agregando CBCA.

B. Método empírico: Experimental

Se utiliza distintos porcentajes de CBCA para calcular en cuanto influye en el valor del índice CBR.

3.2.5. Población de estudio, muestra y unidad de análisis.

a. Población

Está conformada por suelos arcillosos de baja plasticidad del caserío La Ista del Distrito de Magdalena, Provincia de Cajamarca, Departamento de Cajamarca.

b. Muestra

Se determinó la cantidad de especímenes en base a los antecedentes de esta investigación; en la tabla N°17 se presenta la cantidad de especímenes por ensayo a realizar con los distintos porcentajes de CBCA en el suelo arcilloso más desfavorable.

Tabla 17Cantidad de especímenes a ensayar.

Ensayos	Porce	ntajes d		de ceniza azúcar	de bagazo	de caña	Parcial
	0%	7%	10%	13%	16%	19%	
Especímenes Proctor Modificado	5	5	5	5	5	5	30
Especímenes CBR	3	3	3	3	3	3	18
Total de ensayos							48

c. Unidad de análisis

La influencia de la ceniza de bagazo de caña de azúcar en el CBR de suelo arcilloso.

d. Unidad de observación

Espécimen de suelo arcilloso con porcentaje de ceniza de bagazo de caña de azúcar.

3.2.6. Técnicas e instrumentos de recolección de datos.

3.2.6.1. Técnicas de recolección de datos.

Las técnicas empleadas en la presente investigación son los estudios experimentales; por medio de los ensayos de Proctor modificado y CBR.

3.2.6.2.Instrumentos de recolección de datos.

Los instrumentos utilizados en la presente investigación fueron los equipos de laboratorio necesarios para cada ensayo y los formatos elaborados para registrar los datos para los ensayos, respetando lo establecido en las normas mencionadas anteriormente.

3.3.TRATAMIENTO, ANALISIS DE DATOS Y PRESENTACION DE RESULTADOS

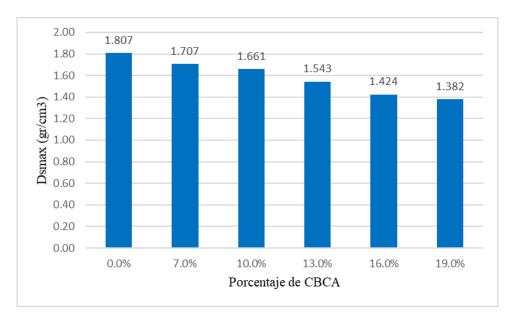
3.3.1. Tratamiento y análisis de datos.

Se empleó la estadística inferencial como método de análisis de datos porque se ocupa de deducir el comportamiento de una población a partir de los datos obtenidos de los experimentos realizados con una muestra; en este caso, a partir de los ensayos realizados, podemos deducir una solución para todos los suelos arcillosos de baja plasticidad.

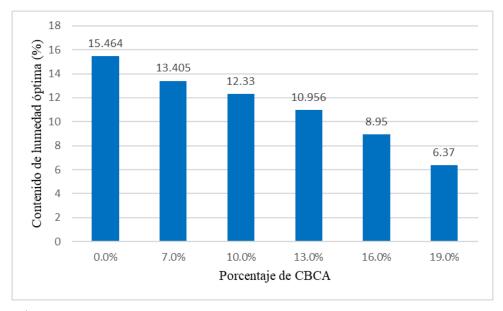
3.3.2. Presentación de resultados.

3.3.2.1. Clasificación del suelo en estudio.

Tabla 18Clasificación del suelo en estudio


Nº	Análisis Granulométrico			Límites de consistencia			Clasificación SUCS
Calicata	%Pasa Tamiz Nº 10	%Pasa Tamiz Nº 40	%Pasa Tamiz N° 200	L.L.	L.P.	I.P.	-
C – 01	94.06	79.46	71.86	38	24	14	CL
C-02	85.37	76.22	65.48	35	26	9	ML
C-03	81.76	74.59	59.85	28	22	6	ML

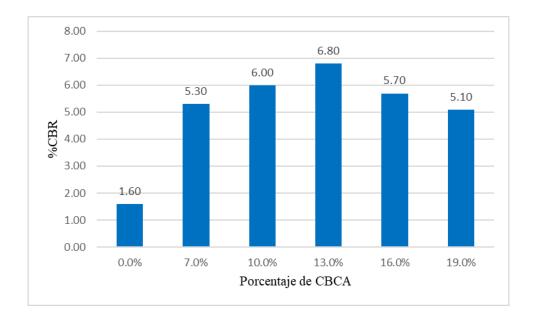
3.3.2.2. Parámetros de compactación de suelos


Tabla 19Parámetros de compactación e índice CBR con adición de CBCA

Ítem	Porcentaje de CBCA						
item	0%	7%	10%	13%	16%	19%	
Contenido óptimo de humedad (%)	15.464	13.405	12.33	10.956	8.95	6.37	
Densidad seca máxima (gr/cm3)	1.807	1.707	1.661	1.543	1.424	1.382	

Figura 14 *Influencia de la CBCA en la Dsmax.*

Figura 15 *Influencia de la CBCA en contenido óptimo de humedad.*



3.3.2.3. Índice CBR con adición de CBCA.

Tabla 20 *Índice CBR con adición de CBCA*

Ítam		Porcentaje de CBCA						
Item	0%	7%	10%	13%	16%	19%		
CBR (100% Dsm)	2.50	10.90	9.70	11.40	8.90	8.00		
CBR (95% Dsm)	1.60	5.30	6.00	6.80	5.70	5.10		

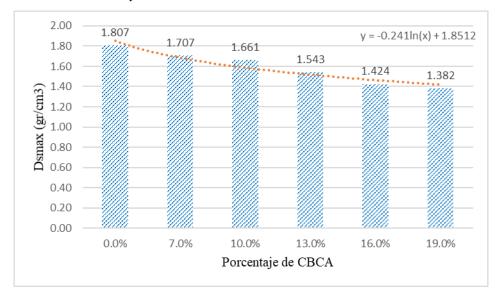
Figura 16 *Influencia de la CBCA en el CBR*.

CAPÍTULO IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1. ANALISIS DE LOS RESULTADOS

4.1.1. Clasificación del suelo en estudio.

De acuerdo con la Tabla $N^{\circ}18$, donde se expone los resultados obtenidos del ensayo de granulometría, la muestra extraída de la calicata C-01 es un suelo arcilloso de baja plasticidad (CL); sin embargo, en comparación con las otras muestras presenta un índice de plasticidad más alto.

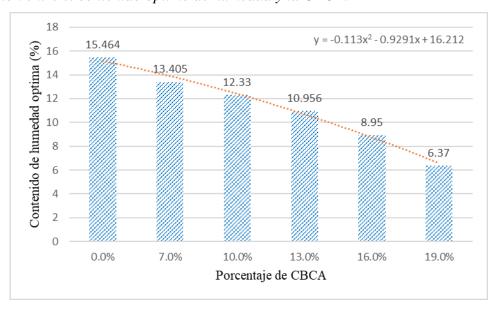

Si tomamos como referencia las investigaciones anteriores, este es el suelo más desfavorable y en cual se realizó la presente investigación.

4.1.2. Parámetros de compactación con adición de ceniza de bagazo de caña de azúcar.

En la Tabla N°19 se puede apreciar la densidad seca máxima para la muestra patrón del suelo estudiado y con las distintas proporciones adicionadas de ceniza de bagazo de caña de azúcar (CBCA) obtenido mediante el ensayo de Proctor Modificado; y se percibe que la densidad seca máxima del suelo disminuye con el porcentaje de adición de CBCA; es decir se mantiene una relación inversamente proporcional entre el suelo en estudio y los porcentajes de adición de CBCA.

Por consiguiente, a partir de los resultados observados en la Tabla N°19 y Figura N°14, se puede inferir que existe una relación inversamente proporcional entre la densidad seca máxima y el porcentaje de adición de CBCA.

Figura 17 *Relación entre la Dsmax y la CBCA.*



En la Figura N°17 se analiza la variación de la densidad seca máxima y resulta un comportamiento logarítmico, para suelos de tipo CL y está en función de la siguiente ecuación:

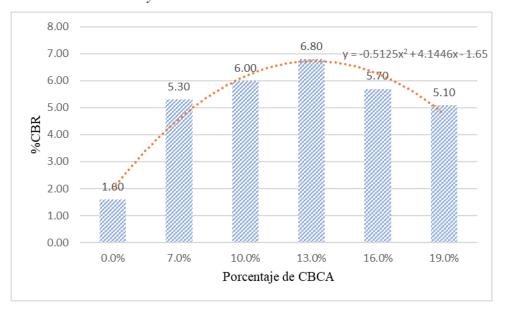
$$Dsmax(gr/cm3) = -0.24 \ln(\%CBCA) + 1.8512$$

Por otra parte, en la Tabla N°19 también se muestra los contenidos óptimos de humedad para la muestra patrón y las muestras con adición de CBCA en distintos porcentajes. Se observa que el contenido de humedad óptimo disminuye a medida que el porcentaje de adición de CBCA aumenta; es decir mantienen una relación inversamente proporcional.

Figura 18Relación entre el contenido óptimo de humedad y la CBCA.

En la Figura N°18 se aprecia un comportamiento polinómico para la alteración del contenido óptimo de humedad, para suelos de tipo CL y está dado por la siguiente función:

$$W_{opt} = -0.113(\%CBCA)^2 - 0.9291(\%CBCA) + 16.212$$


4.1.3. Índice CBR con adición de ceniza de bagazo de caña de azúcar.

En la Tabla N°20 se observa los valores de índice CBR de la muestra patrón del suelo estudiado y con las diferentes proporciones adicionadas de CBCA. Donde se puede apreciar que el suelo en estudio (CL) tiene un valor de índice de CBR de 1.60%; el cual esta categorizado como suelo pobre para subrasante según el Ministerio de Transportes y Comunicaciones; por lo tanto, no es apto para ser empleado en obras viales.

Por consiguiente, en busca de mejorar el índice de CBR del suelo en estudio se agregó ceniza de bagazo de caña de azúcar en diversos porcentajes, tal como se muestra en la Tabla N°20, donde se muestra cierta mejora en el índice CBR del suelo de tipo CL, logrando un pico máximo en dicho índice con la dosificación de 13% de CBCA con un valor de índice de CBR de 6.80%, el cual categoriza al suelo como regular para ser usado en una subrasante.

Sin embargo, también se puede notar que para porcentajes de CBCA mayores a 13% el suelo estudiado tiene un comportamiento distinto y su índice CBR va disminuyendo a medida que la proporción de adición de CBCA sea cada vez mayor.

Figura 19 *Relación entre el índice CBR y la CBCA.*

Finalmente, en la Figura 19, se puede constatar lo descrito en el párrafo anterior y además se puede establecer que la relación existente entre el valor de índice CBR y el

porcentaje de adición de CBCA, es de tipo polinómica y se puede expresar en función de la siguiente ecuación, la cual puede ser usada suelos de características similares al de la presente investigación.

Indice CBR (%) = $-0.5125(\%CBCA)^2 + 4.1446(\%CBCA) - 1.65$

4.2. DISCUSION DE LOS RESULTADOS CONTRASTADOS CON LA HIPOTESIS

Después de realizados los ensayos respectivos y obtener los resultados para esta investigación, se realiza la contrastación de los mismos con las investigaciones mencionadas en los antecedentes.

En el ámbito internacional se tiene ah Amit et al (2014) con su investigación "Effective Utilization of Sugar Industry Waste "Bagasse Ash" in Improving Properties of Black Cotton Soil" en la cual estudió un suelo arcilloso, con características de alta expansión y adiciones a ceniza de bagazo de caña de azúcar de 3%, 6%, 9%, 12% y 15%; concluye que el suelo estudiado tiene un índice de CBR de 12.88% y con la dosificación de 6% de CBCA se obtienen mejores valores para el índice CBR siendo 22.04%. Realizando la comparación de estos resultados con los del presente estudio, se tiene como resultado una menor variación del índice CBR del suelo estudiado, siendo 1.60% el índice CBR de la muestra patrón y el mejor resultado se da con 13% de adición de CBCA, obteniendo un índice CBR de 6.80%; esto se puede sustentar en que el suelo estudiado en la presente investigación tiene características de baja expansión.

También a nivel internacional se tiene a Kumar et al (2017) con su investigación "Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads", en la cual estudia suelos plásticos intermedios con índice CBR inicial de 3.2% y obtuvo que para lograr el índice CBR más alto (5.88%), la dosificación optima de CBCA es de 7.5%. Si contrastamos este resultado con los de la presente investigación, de acuerdo a la Tabla N°20 y Figura N°19 se percibe una variación del índice CBR similar en ambas investigaciones, pero con dosificación distintas de CBCA; esto se explica por qué los niveles de plasticidad de los suelos estudiados en ambas investigaciones, no son los mismos.

A nivel nacional se tiene como antecedente a la tesis "Estabilización de suelos arcillosos adicionando cenizas de bagazo de caña para el mejoramiento de subrasante en el sector Barraza, Trujillo – 2018" desarrollada por Terrones (2018), en la que estudia un suelo arcilloso de plasticidad baja, con índice CBR inicial de 1.823% y con una dosificación optima de CBCA de 15% para logar un índice CBR de 22.267%.

Comparando resultados con la presente investigación, se nota que se tiene porcentajes óptimos de adición de CBCA cercanos.

Asimismo, a nivel nacional también se menciona a Ricra (2022) con su tesis "Adición de ceniza de caña de azúcar en la estabilización de suelos tropicales en el centro poblado Naranjal, Selva Central – 2021" en donde estudió un suelo tropical arcilloso, con un índice CBR de 11% y logra aumentar el índice CBR a 48.4% con una dosificación optima de CBCA de 15%. Al comparar este resultado con los de la presente investigación, se puede notar que se tiene similares porcentajes óptimos de CBCA.

Finalmente, de los resultados mostrados se observa que la proporción óptima de ceniza de bagazo de caña de azúcar es 13%, funciona como un aditivo estabilizador para un suelo arcilloso de plasticidad baja (CL), pues incrementó su índice CBR en 5.2%; por consiguiente, se acepta la hipótesis planteada inicialmente en la investigación.

CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

- De acuerdo con los resultados logrados, se determinó que la adición de la ceniza de bagazo de caña de azúcar en un suelo arcilloso de baja plasticidad (CL) incrementa en 5.2% su índice CBR, afirmando la hipótesis planteada inicialmente.
- Según los ensayos realizados, se obtuvo un valor de índice CBR de 1.60% para la muestra de suelo arcilloso de plasticidad baja (CL); el cual no satisface los estándares del Ministerio de Transportes y Comunicaciones para ser utilizado en una subrasante.
- Las distintas dosificaciones de ceniza de bagazo de caña de azúcar, incrementan el índice CBR de la muestra patrón, la cual es conformada por un suelo tipo CL.
- La dosificación óptima de ceniza de bagazo de caña de azúcar para un suelo arcilloso de baja plasticidad (CL) es 13%, logrando un índice CBR de 6.80%; dicho valor categoriza al suelo como regular para ser usado en subrasante de acuerdo a lo establecido por el Ministerio de Transportes y Comunicaciones.

5.2.RECOMENDACIONES

- Investigar con suelos arcillosos de alta plasticidad, con el fin de analizar si tienen el mismo comportamiento.
- Investigar con adiciones de cenizas de otros residuos orgánicos cercanos a la zona donde se realizó el estudio, con la finalidad de contrastar su influencia con la ceniza de bagazo de caña de azúcar.

REFERENCIAS BIBLIOGRÁFICAS

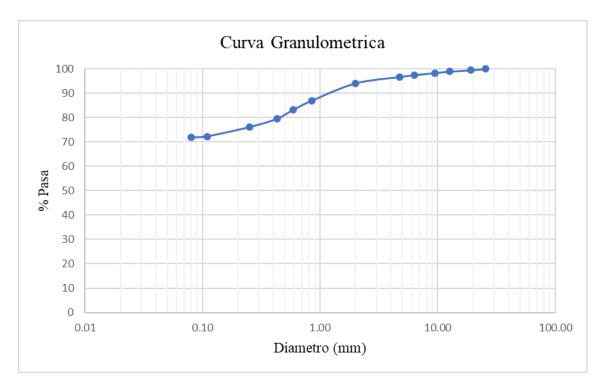
- Amit S. Kharade, Suhas K. Salunke, Mahesh D. Dadage. (2014). Effective Utilization of Sugar Industry Waste "Bagasse Ash" in Improving Properties of Black Cotton Soil. International Journal of Engineering Research & Technology (Volumen 3).
- Angelone, Silvia María (2020). Geología y geotecnia, tipos de suelos: Arcillas (Sexta Edición).
- Araujo Navarro, William. (2014). Ecuaciones de correlación del CBR con propiedades índice de suelos para la ciudad de Piura. Universidad de Piura, Perú.
- Arora K.R. (2014). Soil Mechanics and foundation engineering (7ma Ed.). Standard Publisher Distributors.
- ASTM (American Society for Testing and Materials, Estados Unidos de América).

 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). Designation D 2487 11.
- Benavides, G., Luna, G. y Montenegro, L. (2015). Efecto de la sustitución de agregado fino por la ceniza proveniente del proceso de incineración en bruto de residuos sólidos industriales en la elaboración de hormigón de baja Resistencia. España: Revista Politécnica.
- Braja M. Das (2015). Fundamentos de ingeniería geotécnica (Cuarta Edición). CENGAGE Learning Editores.
- Budhu Muni. (2015). Soil mechanics fundamentals (Imperial Versión). Editorial John Wiley & Sons, Inc.
- Calderón Peláez, Luis Fernando y Martínez Cabrera, Sara Isabel (2017). Influencia del tamaño de partícula y del porcentaje de reemplazo de ceniza de bagazo de caña de azúcar (CBCA) por cemento portland tipo I sobre la resistencia a la compresión, actividad puzolánica, y reactividad álcali-sílice en morteros modificados / Tesis de Grado. Universidad Nacional de Trujillo.
- Chindris, L., Stefanescuu, D. P., Radermacher, L., Radeanu, C., y Popa, C. (2017). Expansive soil stabilization General considerations. 17th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management (SGEM). Volumen 17 (32).

- Diaz Rodríguez, Abraham (2014). Mecánica de suelos: Naturales y propiedades. Editorial Trillas.
- Diaz Vásquez, Fernando (2018). Mejoramiento de la subrasante mediante ceniza de cáscara de arroz en la carretera Dv San Martin Lonya Grande, Amazonas 2018 / Tesis de Grado. Universidad Cesar Vallejo.
- Duc, H., Yeong, N., y My Ngoc, T. (2018). Fresh and hardened properties of self-compacting concrete with sugarcane bagasse ash-slag blended cement.

 Construction and Building Materials (Volumen 185).
- Duque Escobar, G. y Escobar Potes, C. (2016). Geomecánica. Universidad Nacional de Colombia.
- J. A. Knappett y R. F. Craig (2020). Craig's soil mechanics (9na. Ed.). Editorial Spon Press.
- Kumar Yadav, A., Kumar Gaurav, Roop Kishor, S. K. Huaman. (2017). Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads. International Journal of Pavement Research and Technology.
- Laos Elera, Claudia Gabriela (2022). Efectos de la ceniza de biomasa de palma aceitera en la estabilización de suelos arcillosos a nivel de subrasante, Huánuco 2022 / Tesis de Grado. Universidad Nacional Hermilio Valdizan.
- Lathamaheswari, Kalaiyarasan, V. y Mohankumar, G. (2017). Study on bagasse ash partial replacement of cement in concreto. International Journal of Engineering Research and Development (Volumen 13).
- Lorca Aranda, P. (2014). Efecto de la adición de hidróxido de calcico sobre mezclas con alta sustitución de cemento por ceniza volante / Tesis Doctoral. Universidad Politécnica de Valencia.
- Meneses Suarez, L. y Diaz Pardo, W. (2019). Efecto de la adición de ceniza volante en las propiedades mecánicas y de resistencia a la penetración del ion cloruro en el mortero / Tesis de Grado. Universidad Católica de Colombia.
- Millones Chapoñan, Mario, Muñoz Pérez, Sócrates P. y Villanueva Meza, Cristian D. (2023). La ceniza de bagazo de caña de azúcar como aditivo estabilizador en

- suelos arcillosos con fines de pavimentación: una Revisión Literaria. Ingeniería Y Competitividad. Volumen 25(1).
- Ministerio de Desarrollo Agrario y Riego. (2021). Observatorio de Commodities Azúcar. Repositorio del Ministerio de Desarrollo Agrario y Riego.
- Ministerio de Transportes y Comunicaciones (2014). Manual de Carreteras: Suelos, Geología, Geotecnia y Pavimentos. Sección Suelos y Pavimentos. Lima, Perú.
- Ministerio de Transportes y Comunicaciones (2016). Manual de ensayo de materiales. Lima, Perú.
- Molin Filho, R.G.D., Colpini, L.M.S., Ferrer, M.M., Nagano, M.F., Rosso, J.M., Volnistem, E.A., Paraiso, P.R. y Matos Jorge, L.M. (2019). Characterization of different sugarcane bagasse ashes generated for preparation and application as green products in civil construction. Clean Techn Environ Policy. Volumen 21, Pág. 1687–1698.
- OECD/ FAO (2023). OCDE-FAO Perspectivas agrícolas 2023-2032. OECD Publishing, Paris.
- Ojeda Farias, Omar Farid, Baltazar Zamora, Miguel Ángel y Mendoza Rangel, José Manuel (2018). Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Revista ALCONPAT, Volumen 8(2). Pág. 194-208.
- Perucámaras (2020). "El 84.2% de carreteras en la Macro Región Norte no está pavimentada". Perú.
- Ramos Hinojosa, Gabriel Paul (2014). Mejoramiento de subrasantes de baja capacidad portante mediante el uso de polímeros reciclados en carreteras, Paucará Huancavelica / Tesis de Grado. Universidad Nacional del Centro del Perú.
- Resano, David, Guillen, Oscar W., Ubillús, Fabiola D.R. y Barranzuela, José L. (2022). Caracterización fisicoquímica del bagazo de caña de azúcar industrial y artesanal como material de construcción. Información tecnológica, Volumen 33(2). Pag 247-258.


- Ricra Huamán, C. (2022). Adición de ceniza de caña de azúcar en la estabilización de suelos tropicales en el centro poblado Naranjal, Selva Central 2021. Huancayo, Perú / Tesis de Grado. Universidad Continental.
- Terrones Cruz, A. (2018). Estabilización de Suelos Arcillosos Adicionando Cenizas de Bagazo de Caña para el Mejoramiento de Subrasante en el Sector Barraza, Trujillo 2018. Trujillo, Perú / Tesis de Grado. Universidad Privada del Norte.
- Villalobos Jara, Felipe. (2016). Mecánica de Suelos (Segunda Edición). Editorial UCSC.
- Verruijit, Arnold (2018). An Introduction to Soil Mechanics (Volumen 30). Editorial Springer.

ANEXOS

Tabla 21Análisis granulométrico por lavado Calicata 01 – ASTM D422

Tamiz Numero	Abertura (mm)	Peso Retenido Parcial (gr)	Porcentaje Retenido Parcial (%)	Porcentaje Retenido Acumulado (%)	Porcentaje que Pasa (%)
1"	25.40	0	0	0	100
3/4"	19.05	5.3	0.53	0.53	99.47
1/2"	12.70	5.4	0.54	1.07	98.93
3/8"	9.50	5.9	0.59	1.66	98.34
1/4"	6.30	8.9	0.89	2.55	97.45
N° 4	4.75	7.5	0.75	3.3	96.7
10	2.00	26.44	2.644	5.944	94.056
20	0.85	71.52	7.152	13.096	86.904
30	0.59	37.92	3.792	16.888	83.112
40	0.43	36.56	3.656	20.544	79.456
60	0.25	34.44	3.444	23.988	76.012
140	0.11	37.44	3.744	27.732	72.268
200	0.08	4.05	0.405	28.137	71.863
Pérdida p	or lavado	718.63	71.863	100	0
Peso seco inicial de la muestra (gr):				1000	

Figura 20Curva granulométrica – Muestra M1

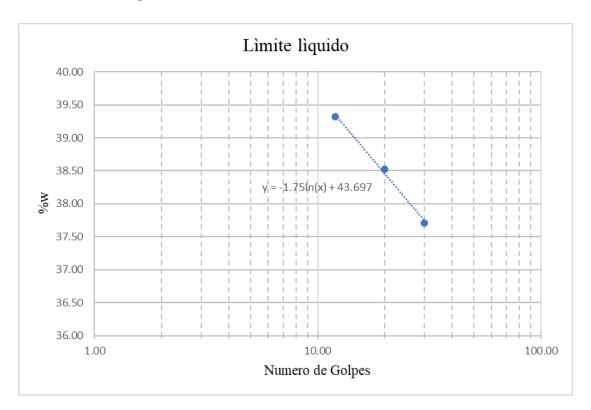


Tabla 22 *Límites de Atterberg Calicata 01 – ASTM D4318.*

]	Límite liquid	Límite plástico		
Ensayo N°	1	2	3	1	2
Peso (t + mh)	39.88	35	38.97	15.6	15.42
Peso (t + ms)	31.91	28.39	31.04	14.73	14.49
Peso del Agua	7.97	6.61	7.93	0.87	0.93
Peso Tara	11.64	11.23	10.01	11.05	10.68
Peso del suelo	20.27	17.16	21.03	3.68	3.81
Numero de golpes	12	20	30		
Cont. Humedad (%)	39.32	38.52	37.71	23.64	24.41

LL =	38				
LP =	24				
IP=	14				
Tipo de s	suelo:				
CL: Arcilla inorgánica de baja plasticidad					
Muestra utilizada en la investigación					

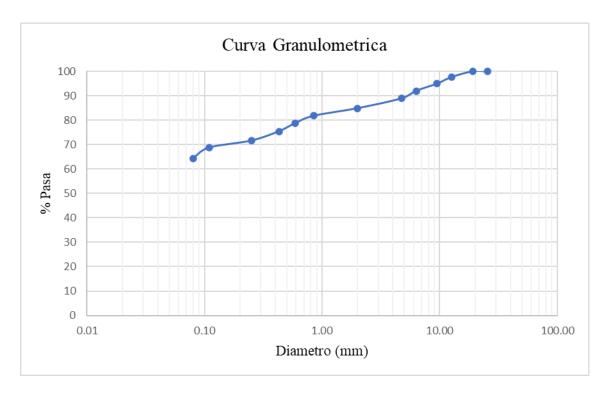
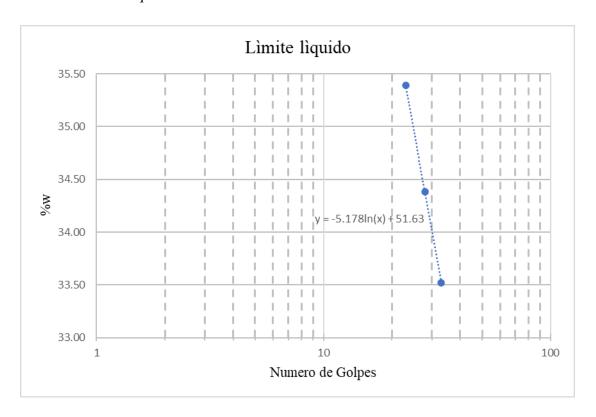

Figura 21Curva del límite líquido – Muestra M1

Tabla 23Análisis granulométrico por lavado Calicata 02 – ASTM D422

Tamiz Numero	Abertura (mm)	Peso Retenido Parcial (gr)	Porcentaje Retenido Parcial (%)	Porcentaje Retenido Acumulado (%)	Porcentaje que Pasa (%)
1"	25.40	0	0	0	100
3/4"	19.05	0	0	0	100
1/2"	12.70	11.43	2.29	2.29	97.71
3/8"	9.50	13.67	2.73	5.02	94.98
1/4"	6.30	14.83	2.97	7.99	92.01
N° 4	4.75	15.32	3.06	11.05	88.95
10	2.00	20.30	4.06	15.11	84.89
20	0.85	15.45	3.09	18.20	81.80
30	0.59	15.23	3.05	21.25	78.75
40	0.43	16.55	3.31	24.56	75.44
60	0.25	19.09	3.82	28.38	71.62
140	0.11	14.19	2.84	31.21	68.79
200	0.08	22.17	4.43	35.65	64.35
Pérdida p	Pérdida por lavado 321.77		64.35	100.00	0.00
Peso seco inicial de la muestra (gr):				500	_

Figura 22Curva granulométrica – Muestra 02


Tabla 24 *Límites de Atterberg Calicata 02 – ASTM D4318.*

	I	Límite líquid	Límite plástico		
Ensayo N°	1	2	3	1	2
Peso (t + mh)	42.48	42.99	31.18	29.45	31.72
Peso (t + ms)	35.25	36	26.96	26.31	27.93
Peso del Agua	7.226912	6.989454	4.218488	3.135393	3.78595
Peso Tara	13.69	15.67	15.04	14.42	13.43
Peso del suelo	21.56	20.33	11.92	11.89	14.5
Numero de golpes	33	28	23		
Cont. Humedad (%)	33.52	34.38	35.39	26.37	26.11

LL =	35				
LP =	26				
IP=	9				
Tipo de	e suelo:				
ML: Limo inorgánico de baja plasticidad					
No se usó la muestra para la investigación					

Figura 23

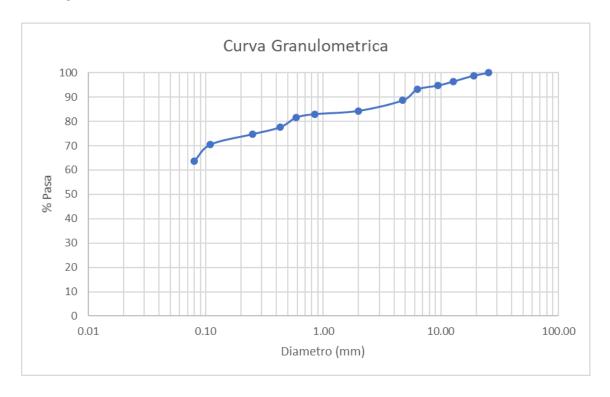

Curva del límite líquido – Muestra M2

Tabla 25Análisis granulométrico por lavado Calicata 03 – ASTM D422

Tamiz Numero	Abertura (mm)	Peso Retenido Parcial (gr)	Porcentaje Retenido Parcial (%)	Porcentaje Retenido Acumulado (%)	Porcentaje que Pasa (%)
1"	25.40	0	0	0	100
3/4"	19.05	11.517	1.1517	1.1517	98.8483
1/2"	12.70	24.38	2.44	3.59	96.41
3/8"	9.50	16.31	1.63	5.22	94.78
1/4"	6.30	15.61	1.56	6.78	93.22
N° 4	4.75	45.29	4.53	11.31	88.69
10	2.00	43.21	4.32	15.63	84.37
20	0.85	13.60	1.36	16.99	83.01
30	0.59	13.61	1.36	18.35	81.65
40	0.43	40.21	4.02	22.37	77.63
60	0.25	28.67	2.87	25.24	74.76
140	0.11	42.32	4.23	29.47	70.53
200	0.08	67.67	6.77	36.24	63.76
Pérdida p	Pérdida por lavado 637.63		63.76	100.00	0.00
Peso seco inicial de la muestra (gr):				1000	

Figura 24Curva granulométrica – Muestra 03

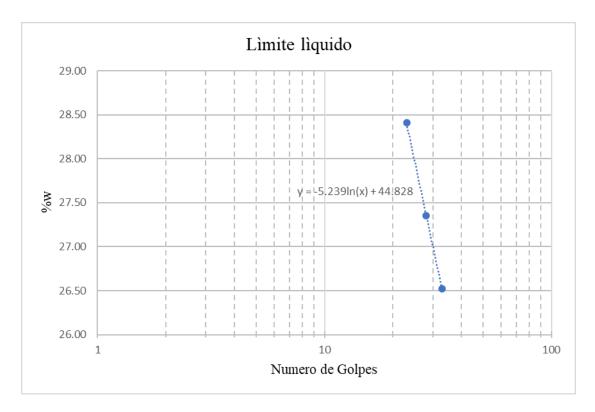


Tabla 26 *Límites de Atterberg Calicata 03 – ASTM D4318.*

	I	Límite líquid	Límite plástico		
Ensayo N°	1	2	3	1	2
Peso (t + mh)	35.42	38.10	45.01	31.90	24.87
Peso (t + ms)	31.19	32.71	37.95	28.61	22.82
Peso del Agua	4.23	5.39	7.06	3.29	2.05
Peso Tara	15.24	13	13.09	13.7	13.44
Peso del suelo	15.95	19.71	24.86	14.91	9.38
Numero de golpes	33	28	23		
Cont. Humedad (%)	26.52	27.35	28.41	22.05	21.83

LL =	28				
LP =	22				
IP=	6				
Tipo de	e suelo:				
ML: Limo inorgánico de baja plasticidad					
No se usó la muestra para la investigación					

Figura 25Curva del límite líquido – Muestra M2

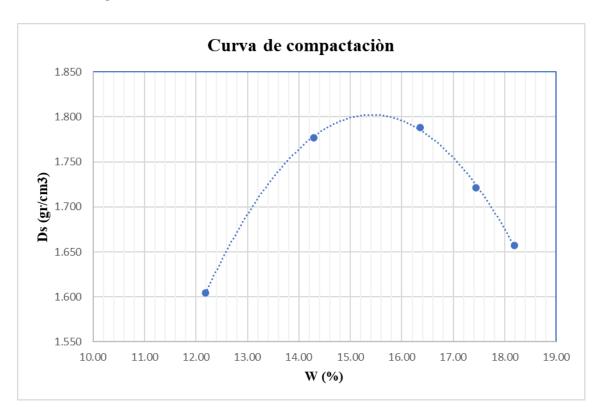


Tabla 27Proctor Modificado de la muestra sin adición de CBCA.

Molde N°	1	l	2	2	3		4		5	
P. Molde (gr)	17	92	17	92	17	1792		92	1792	
Pmh + Molde (gr)	35	32	37	55	38	03	37	46	3685	
Pmh (gr)	17	40	19	63	20	11	19	54	18	93
Vmh (cm3)	966	.546	966	.546	966	.546	966	.546	966	.546
Dh (gr/cm3)	1.8	300	2.0)31	2.0)81	2.0)22	1.9	59
Tara N°	a	b	a	b	С	d	e	f	g	h
Pt (gr)	49.93	49.58	52.21	54.39	54.74	50.46	52.48	50.61	54.74	56
Pmh + Pt (gr)	457.89	428.16	441.09	404.56	489.36	523.81	538.84	544.81	494.55	559.05
Pms + Pt (gr)	413.54	387.06	390.57	362.53	427.79	457.82	465.27	472.79	428.97	479.26
Pw (gr)	44.35	41.1	50.52	42.03	61.57	65.99	73.57	72.02	65.58	79.79
Pms (gr)	363.61	337.48	338.36	308.14	373.05	407.36	412.79	422.18	374.23	423.26
Pmh (gr)	407.96	378.58	388.88	350.17	434.62	473.35	486.36	494.2	439.81	503.05
w%	12.20	12.18	14.93	13.64	16.50	16.20	17.82	17.06	17.52	18.85
w% (prom)	12	.19	14.	.29	16	.35	17.	.44	18	.19
Ds. (gr/cm3)	1.6	505	1.7	777	1.7	788	1.7	21	1.6	557

Contenido óptimo de humedad (%)	15.429
Densidad seca máxima (gr/cm3)	1.807

Figura 26Curva de compactación de suelo + 0%CBCA.

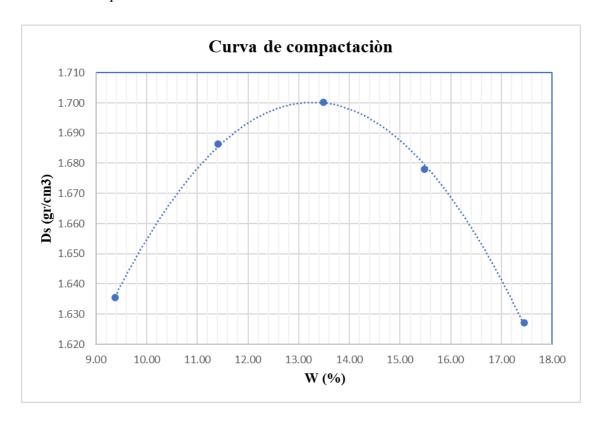
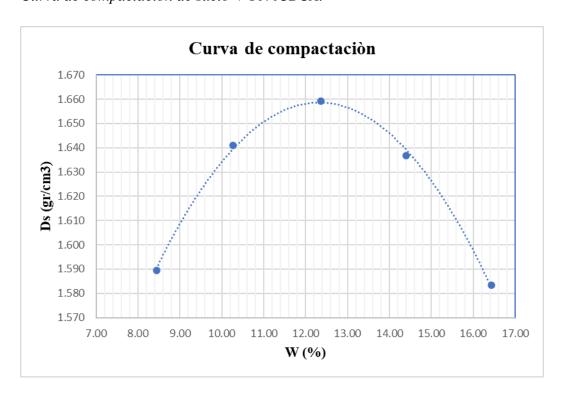


Tabla 28Proctor Modificado de la muestra con 7% de CBCA.

Molde N°	1	1	2	2	3		4		5	
P. Molde (gr)	17	92	17	92	17	1792		92	1792	
Pmh + Molde (gr)	35	21	36	08	3657		3665		36	39
Pmh (gr)	17	29	18	16	18	65	18	73	18	47
Vmh (cm3)	966	.546	966	.546	966	.546	966.	.546	966.	546
Dh (gr/cm3)	1.7	'89	1.8	379	1.9	930	1.9	38	1.911	
Tara N°	a	b	c	d	e	f	50	h	i	j
Pt (gr)	51.2	57.08	49.93	54.74	51.17	52.33	54.74	52.21	49.93	54.74
Pmh + Pt (gr)	540.06	545.9	500.05	557.74	445.42	443.58	465.86	464.28	502.3	485.25
Pms + Pt (gr)	498.36	503.73	453.91	506.29	398.61	397.05	410.63	409.18	435.21	421.21
Pw (gr)	41.7	42.17	46.14	51.45	46.81	46.53	55.23	55.1	67.09	64.04
Pms (gr)	447.16	446.65	403.98	451.55	347.44	344.72	355.89	356.97	385.28	366.47
Pmh (gr)	488.86	488.82	450.12	503	394.25	391.25	411.12	412.07	452.37	430.51
w%	9.33	9.44	11.42	11.39	13.47	13.50	15.52	15.44	17.41	17.47
w% (prom)	9.:	38	11.41		13.49		15.48		17.44	
Ds. (gr/cm3)	1.6	535	1.6	586	1.7	'00	1.6	578	1.6	27

Contenido óptimo de humedad (%)	13.405
Densidad seca máxima (gr/cm3)	1.707

Figura 27Curva de compactación de suelo + 7%CBCA.


Tabla 29Proctor Modificado de la muestra con 10% de CBCA.

Molde N°	1	1	2	2	3		4		5	
P. Molde (gr)	17	92	17	92	1792		1792		1792	
Pmh + Molde (gr)	34	58	35	41	3594		36	02	35	74
Pmh (gr)	16	66	17	49	18	02	18	10	17	82
Vmh (cm3)	966	.546	966	.546	966	.546	966	.546	966.	546
Dh (gr/cm3)	1.7	24	1.8	310	1.8	364	1.8	373	1.8	44
Tara N°	a	b	c	d	e	f	50	h	i	j
Pt (gr)	50.15	52.21	57.91	50.39	49.67	53.19	51.18	57.88	50.07	50.36
Pmh + Pt (gr)	535.45	519.09	498.76	454.97	519.69	486.27	452.27	500.48	557.88	548.21
Pms + Pt (gr)	497.72	482.7	457.65	417.35	467.91	438.67	401.65	444.87	486.16	477.96
Pw (gr)	37.73	36.39	41.11	37.62	51.78	47.6	50.62	55.61	71.72	70.25
Pms (gr)	447.57	430.49	399.74	366.96	418.24	385.48	350.47	386.99	436.09	427.6
Pmh (gr)	485.3	466.88	440.85	404.58	470.02	433.08	401.09	442.6	507.81	497.85
w%	8.43	8.45	10.28	10.25	12.38	12.35	14.44	14.37	16.45	16.43
w% (prom)	8.4	44	10.	.27	12.	.36	14.	.41	16.	44
Ds. (gr/cm3)	1.5	89	1.6	541	1.6	559	1.6	37	1.58	334

Contenido óptimo de humedad (%)	12.367
Densidad seca máxima (gr/cm3)	1.661

Figura 28

Curva de compactación de suelo + 10%CBCA.

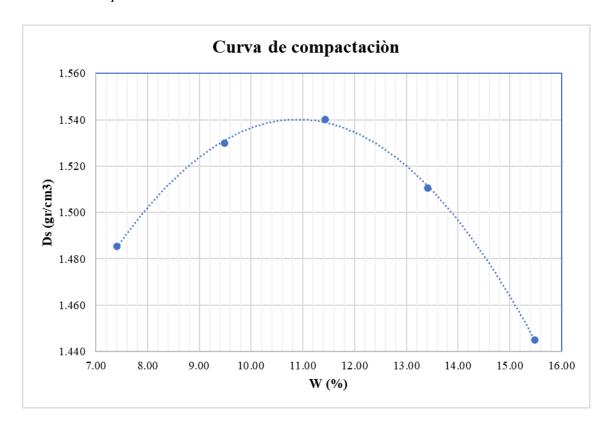


Tabla 30Proctor Modificado de la muestra con 13% de CBCA.

Molde N°	1		2		3		4		5	
P. Molde (gr)	17	92	1792		1792		1792		1792	
Pmh + Molde (gr)	33	34	3411		3451		3448		3405	
Pmh (gr)	15	42	16	19	1659		1656		1613	
Vmh (cm3)	966	.546	966.546		966.546		966.546		966.546	
Dh (gr/cm3)	1.595		1.675		1.716		1.713		1.669	
Tara N°	a	b	c	d	e	f	g	h	i	j
Pt (gr)	50.11	49.57	51.27	53.19	54.55	50.26	55.84	50.55	53.18	52.33
Pmh + Pt (gr)	440.86	476.25	508.23	509.8	483.37	502.49	504.53	504.68	517.5	507.36
Pms + Pt (gr)	414.09	446.63	468.38	470.51	439.15	456.3	451.3	451.11	455.38	446.23
Pw (gr)	26.77	29.62	39.85	39.29	44.22	46.19	53.23	53.57	62.12	61.13
Pms (gr)	363.98	397.06	417.11	417.32	384.6	406.04	395.46	400.56	402.2	393.9
Pmh (gr)	390.75	426.68	456.96	456.61	428.82	452.23	448.69	454.13	464.32	455.03
w%	7.35	7.46	9.55	9.41	11.50	11.38	13.46	13.37	15.45	15.52
w% (prom)	7.41		9.48		11.44		13.42		15.48	
Ds. (gr/cm3)	1.4	1.485		1.530		540	1.511		1.445	

Contenido óptimo de humedad (%)	10.956
Densidad seca máxima (gr/cm3)	1.543

Figura 29Curva de compactación de suelo + 13%CBCA.

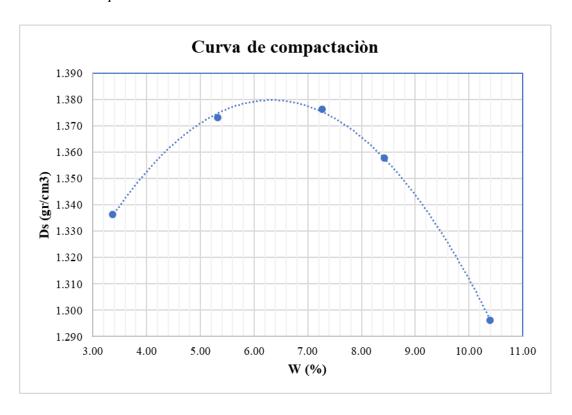
Tabla 31Proctor Modificado de la muestra con 16% de CBCA.

Molde N°	1		2		3		4		5		
P. Molde (gr)	17	92	1792		1792		1792		1792		
Pmh + Molde (gr)	30	85	3208		3278		3301		3267		
Pmh (gr)	12	93	14	16	1486		1509		1475		
Vmh (cm3)	966	.546	966.546		966.546		966.546		966.546		
Dh (gr/cm3)	1.338		1.465		1.537		1.561		1.526		
Tara N°	a	b	c	d	e	f	g	h	i	j	
Pt (gr)	50.07	50.36	50.11	49.57	50.35	54.75	49.57	51.29	55.83	52.31	
Pmh + Pt (gr)	489.61	482.49	495.63	486.79	531	535.46	439.17	515.23	450.09	505.29	
Pms + Pt (gr)	472.14	465.23	469.09	461.63	493.92	498.61	402.55	471.75	407.17	456.05	
Pw (gr)	17.47	17.26	26.54	25.16	37.08	36.85	36.62	43.48	42.92	49.24	
Pms (gr)	422.07	414.87	418.98	412.06	443.57	443.86	352.98	420.46	351.34	403.74	
Pmh (gr)	439.54	432.13	445.52	437.22	480.65	480.71	389.6	463.94	394.26	452.98	
w%	4.14	4.16	6.33	6.11	8.36	8.30	10.37	10.34	12.22	12.20	
w% (prom)	4.15		6.22		8.33		10.36		12.21		
Ds. (gr/cm3)	1.2	1.284		1.379		1.419		1.415		1.360	

Contenido óptimo de humedad (%)	8.975
Densidad seca máxima (gr/cm3)	1.424

Figura 30

Curva de compactación de suelo + 16%CBCA.


Tabla 32Proctor Modificado de la muestra con 19% de CBCA.

Molde N°	1		2		3		4		5	
P. Molde (gr)	17	92	1792		1792		1792		1792	
Pmh + Molde										
(gr)	31	27	31	90	32	19	32	15	3175	
Pmh (gr)	13	35	13	98	14	1427		23	1383	
Vmh (cm3)	966	.546	966	.546	966.546		966.546		966.546	
Dh (gr/cm3)	1.3	381	1.446		1.476		1.472		1.431	
Tara N°	a	b	c	d	a	b	g	h	i	j
Pt (gr)	50.11	49.57	53.2	50.57	53.03	50.42	49.58	55.89	53.23	50.12
Pmh + Pt (gr)	495.63	486.79	480.28	503.72	464.08	502.03	503.18	520.32	425.84	471.61
Pms + Pt (gr)	481.09	472.63	458.92	480.61	436.09	471.63	468.17	483.98	390.85	431.85
Pw (gr)	14.54	14.16	21.36	23.11	27.99	30.4	35.01	36.34	34.99	39.76
Pms (gr)	430.98	423.06	405.72	430.04	383.06	421.21	418.59	428.09	337.62	381.73
Pmh (gr)	445.52	437.22	427.08	453.15	411.05	451.61	453.6	464.43	372.61	421.49
w%	3.37	3.35	5.26	5.37	7.31	7.22	8.36	8.49	10.36	10.42
w% (prom)	3.36		5.32		7.26		8.43		10.39	
Ds. (gr/cm3)	1.336		1.373		1.376		1.358		1.296	

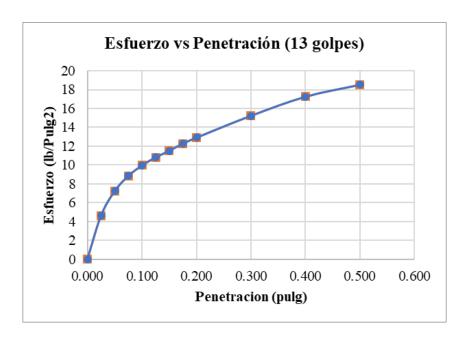
Contenido óptimo de humedad (%)	6.370
Densidad seca máxima (gr/cm3)	1.382

Figura 31

Curva de compactación de suelo + 19%CBCA

Tabla 33Compactación para ensayo CBR de muestra sin adición de CBCA.

Profundidad de es	Profundidad de estrato: 0.30m - 1.50m										
Fecha de ensayo: Agosto de 2023											
Molde N°	1		2		3						
Golpes por Capa	13		27		56						
Condición de la muestra	Antes de saturar	Después	Antes de saturar	Después	Antes de saturar	Después					
P. Molde (gr)	4752		4473		4647						
Pmh + Molde (gr)	8784	9251	8895	9248	9117	9356					
Pmh (gr)	4032	4499	4422	4775	4470	4709					
Vmh (cm3)	2132.85	2132.85	2124.33	2124.33	2121.68	2121.68					
Dh (gr/cm3)	1.89	2.11	2.08	2.25	2.11	2.22					
N° Ensayo	1-A	1-B	2-A	2-B	3-A	3-B					
Pt (gr)	49.54	51.18	54.59	52.26	50.59	53.2					
Pmh + Pt (gr)	470.52	481.78	513.73	487.75	522.31	479.22					
Pms + Pt (gr)	414.95	389.45	452.89	406	460.16	415.42					
Pmh (gr)	420.98	430.6	459.14	435.49	471.72	426.02					
Pms (gr)	365.41	338.27	398.3	353.74	409.57	362.22					
W %	15.21	27.29	15.27	23.11	15.17	17.61					
Ds max. (gr/cm3)	1.64	1.658	1.804	1.828	1.832	1.888					


Tabla 34 *Hinchamiento en ensayo CBR de muestra sin adición de CBCA.*

	Hinchamiento											
Tiempo		N	Iolde 01		N	Molde 02		Molde 03				
		Lect.	Deformación		Lect.	Deformación		Lect. Defo		rmación		
Horas	Días	Deform.	mm	%	Deform.	mm	%	Deform.	mm	%		
0	0	16.05	0	0	16.9	0	0	21.97	0	0		
24	1	17.8	1.75	14.58	20.30	3.40	28.31	24.64	2.67	22.25		
48	2	17.96	1.91	15.92	20.52	3.62	30.17	25.86	3.89	32.42		
72	3	18.07	2.02	16.83	20.7	3.80	31.67	26.65	4.68	39.00		
96	4	18.12	2.07	17.25	20.77	3.87	32.25	27.05	5.08	42.33		

Tabla 35Esfuerzo – Penetración en ensayo CBR de muestra sin adición de CBCA.

	Esfuerzo - Penetración											
Donot	ración		Molde 0	1		Molde 0)2	Molde 03				
1 eneu	acion	Carga	Esf	Esfuerzo		Esfuerzo		Carga	Esf	uerzo		
mm	pulg	(Kg)	Kg/cm2	Lb/pulg2	Carga (Kg)	Kg/cm2	Lb/pulg2	(Kg)	Kg/cm2	Lb/pulg2		
0.00	0.000	0	0	0	0	0	0	0	0	0		
0.64	0.025	6.6	0.33	4.63	12.6	0.62	8.84	24.1	1.19	16.91		
1.27	0.050	10.3	0.51	7.23	22.8	1.12	16	40.5	2	28.42		
1.91	0.075	12.6	0.62	8.84	30.3	1.49	21.26	53.7	2.65	37.68		
2.54	0.100	14.2	0.7	9.96	35.2	1.74	24.7	63.2	3.12	44.35		
3.18	0.125	15.4	0.76	10.81	38.2	1.88	26.81	71.8	3.54	50.39		
3.81	0.150	16.4	0.81	11.51	41.2	2.03	28.91	78.4	3.87	55.02		
4.45	0.175	17.5	0.86	12.28	43.3	2.14	30.39	84.6	4.17	59.37		
5.08	0.200	18.4	0.91	12.91	44.7	2.21	31.37	89.4	4.41	62.74		
7.62	0.300	21.7	1.07	15.23	50.7	2.5	35.58	107.4	5.3	75.37		
10.16	0.400	24.6	1.21	17.26	56.6	2.79	39.72	119.2	5.88	83.65		
12.70	0.500	26.4	1.3	18.53	61.5	3.03	43.16	129	6.36	90.53		

Figura 32Curva de esfuerzo – deformación de muestra patrón (13 golpes).

Figura 33Curva de esfuerzo – deformación de muestra patrón (27golpes).

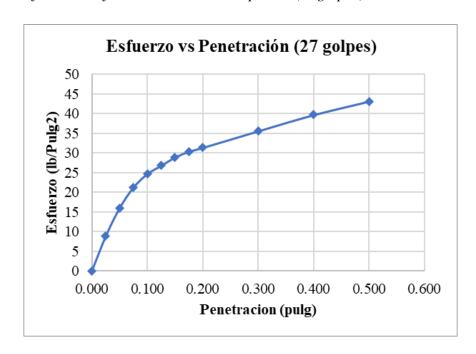
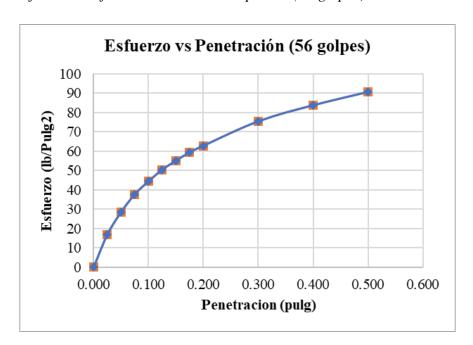



Figura 34

Curva de esfuerzo – deformación de muestra patrón (56 golpes).

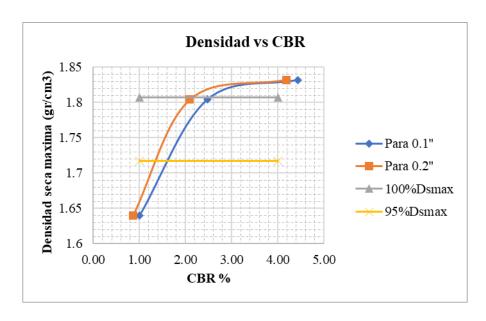


Tabla 36Valores de CBR corregidos de muestra sin adición de CBCA.

	Valores de CBR corregidos								
Núm. Golpes	0.1"	0.2"	Ds	CBR (0.1)	CBR (0.2)				
13	9.96	12.91	1.64	1.00	0.86				
27	24.7	31.37	1.804	2.47	2.09				
56	44.35	62.74	1.832	4.44	4.18				

Figura 35

Curvas de CBR – densidad seca máxima muestra sin adición de CBCA.

Tabla 37 *Resultados CBR de muestra sin adición de CBCA.*

Resultados CBR								
	0.1"	0.2"						
CBR % (100% Dsmax)	1.807	2.5	2.1					
CBR % (95% Dsmax)	1.717	1.6	1.3					
CBR % (Diseño)	1.60							

Tabla 38Compactación para ensayo CBR de muestra + 7% CBCA.

Profundidad de e	estrato: 0.30m -	1.50m				
Fecha de ensayo:	Agosto de 2023	ı				
Molde N°	1		2		3	
Golpes por Capa	13		27		56	
Condición de la muestra	Antes de saturar	Después	Antes de saturar	Después	Antes de saturar	Después
P. Molde (gr)	4746		4680		4737	
Pmh + Molde (gr)	8598	9082	8754	9151	8897	9245
Pmh (gr)	3852	4336	4074	4471	4160	4508
Vmh (cm3)	2131.75	2131.75	2124.33	2124.33	2126.51	2126.51
Dh (gr/cm3)	1.81	2.03	1.92	2.1	1.96	2.12
N° Ensayo	1-A	1-B	2-A	2-B	3-A	3-B
Pt (gr)	54.58	50.29	53.2	50.57	50.33	53.2
Pmh + Pt (gr)	483.67	476.96	490.61	495.88	495.53	501.38
Pms + Pt (gr)	433.17	386.69	439.51	413.12	443.04	420.14
Pmh (gr)	429.09	426.67	437.41	445.31	445.2	448.18
Pms (gr)	378.59	336.4	386.31	362.55	392.71	366.94
W %	13.34	26.83	13.23	22.83	13.37	22.14
Ds max. (gr/cm3)	1.597	1.601	1.696	1.710	1.729	1.736

Tabla 39 *Hinchamiento en ensayo CBR de muestra* + 7% *CBCA*.

	Hinchamiento									
Tion	Tiempo Molde 01			Molde 02			Molde 03			
Tien	ipo	Lect.	Defor	mación	Lect.	Lect. Deformación		Lect.	Defor	mación
Horas	Días	Deform.	mm	%	Deform.	mm	%	Deform.	mm	%
0	0	17.98	0	0	16.24	0	0	16.56	0	0
24	1	20.39	2.41	20.08	19.93	3.69	30.75	18.93	2.37	19.75
48	2	20.49	2.51	20.92	20.06	3.82	31.83	19.07	2.51	20.92
72	3	20.54	2.56	21.33	20.16	3.92	32.67	19.18	2.62	21.83
96	4	20.58	2.60	21.67	20.27	4.03	33.58	19.24	2.68	22.33

Tabla 40Esfuerzo – Penetración para ensayo CBR de muestra + 7% CBCA.

				Esfu	erzo - Po	enetració	n				
Donot	ración		Molde 0	1		Molde 0	2	Molde 03			
1 enet	acion	Carga	Esf	uerzo	Carga	Esfu	uerzo	Carga	Esfu	uerzo	
mm	pulg	(Kg)	Kg/cm2	Lb/pulg2	(Kg)	Kg/cm2	Lb/pulg2	(Kg)	Kg/cm2	Lb/pulg2	
0.00	0.000	0	0	0	0	0	0	0	0	0	
0.64	0.025	19.7	0.97	13.82	43.4	2.14	30.46	56.8	2.8	39.86	
1.27	0.050	34.7	1.71	24.35	81.6	4.03	57.26	110.2	5.44	77.33	
1.91	0.075	46.8	2.31	32.84	117.5	5.8	82.46	154.9	7.64	108.7	
2.54	0.100	55.3	2.73	38.81	142.8	7.05	100.21	192.7	9.51	135.23	
3.18	0.125	61.4	3.03	43.09	159.3	7.86	111.79	216.6	10.69	152	
3.81	0.150	65.9	3.25	46.25	171.8	8.48	120.56	235.3	11.61	165.12	
4.45	0.175	69.9	3.45	49.05	184.1	9.08	129.19	250.7	12.37	175.93	
5.08	0.200	72.3	3.57	50.74	193.4	9.54	135.72	267.3	13.19	187.58	
7.62	0.300	82.3	4.06	57.75	225.8	11.14	158.45	319.8	15.78	224.42	
10.16	0.400	91.9	4.53	64.49	258.3	12.74	181.26	365.3	18.02	256.35	
12.70	0.500	99.2	4.89	69.61	284.7	14.05	199.79	402.6	19.86	282.52	

Figura 36

Curvas de esfuerzo – deformación de muestra + 7%CBCA (13 golpes).

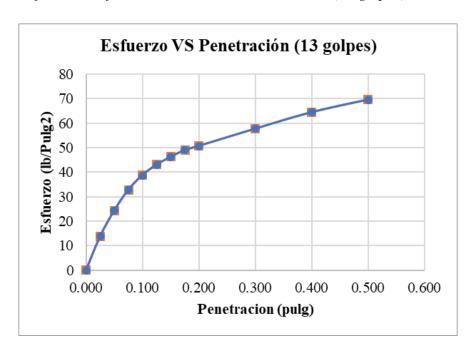


Figura 37

Curvas de esfuerzo – deformación de muestra + 7%CBCA (27 golpes).

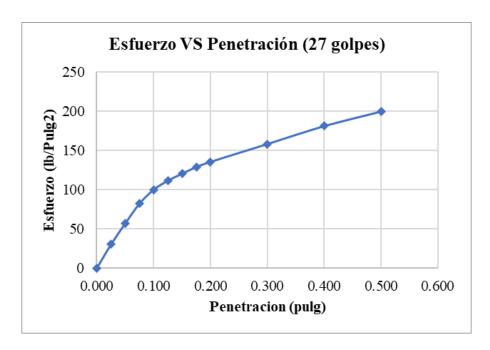
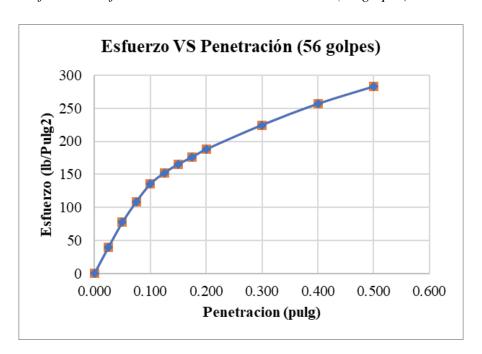



Figura 38

Curvas de esfuerzo – deformación de muestra + 7%CBCA (56 golpes).

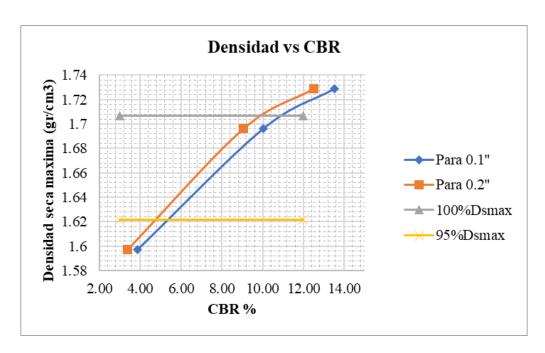


Tabla 41Valores de CBR corregidos de muestra + 7% CBCA.

	Valores de CBR corregidos									
Núm. Golpes	0.1"	0.2"	Ds	CBR (0.1)	CBR (0.2)					
13	38.81	50.74	1.597	3.88	3.38					
27	100.21	135.72	1.696	10.02	9.05					
56	135.23	187.58	1.729	13.52	12.51					

Figura 39

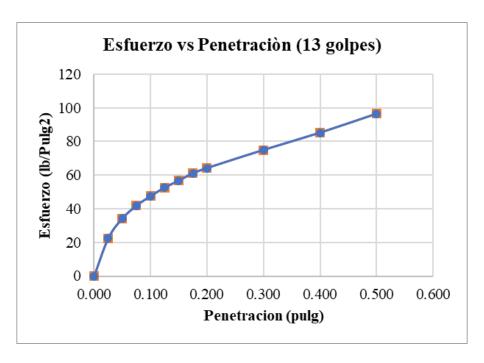
Curvas de CBR – densidad seca máxima de muestra + 7% CBCA.

Tabla 42Resultados CBR de muestra + 7% CBCA.

Resultados CBR								
		0.1''	0.2"					
CBR % (100% Dsmax)	1.707	10.9	10					
CBR % (95% Dsmax)	1.622	5.3	4.8					
CBR % (Diseño)		5.30						

Tabla 43Compactación para ensayo CBR de muestra + 10% CBCA.

Profundidad de e	estrato: 0.30m - 1	1.50m						
Fecha de ensayo:	Agosto de 2023							
Molde N°	1		2		3			
Golpes por Capa	13		27		56			
Condición de la muestra	Antes de saturar	Después	Antes de saturar	Después	Antes de saturar	Después		
P. Molde (gr)	4685		4570		4717			
Pmh + Molde (gr)	8360	8972	8452	9090	8818	9222		
Pmh (gr)	3675	4287	3882	4520	4101	4505		
Vmh (cm3)	2128.1	2128.1	2119.86	2119.86	2119.92	2119.92		
Dh (gr/cm3)	1.73	2.01	1.83	2.13	1.93	2.13		
N° Ensayo	1-A	1-B	2-A	2-B	3-A	3-B		
Pt (gr)	50.44	54.63	55.83	50.41	57.67	56.06		
Pmh + Pt (gr)	514.11	533.93	501.19	522.4	504.55	530.76		
Pms + Pt (gr)	463.44	425.17	453.01	414.73	455.84	445.16		
Pmh (gr)	463.67	479.3	445.36	471.99	446.88	474.7		
Pms (gr)	413	370.54	397.18	364.32	398.17	389.1		
W %	12.27	29.35	12.13	29.55	12.23	22		
Ds max. (gr/cm3)	1.541	1.554	1.632	1.644	1.72	1.746		


Tabla 44 *Hinchamiento en ensayo CBR de muestra* + 10% CBCA.

	Hinchamiento									
Tior	Tiempo Molde 01			M	olde 02		M	olde 03		
1 161	про	Lect.	Deform	nación	Lect.	Lect. Deformación		Lect.	Deform	nación
Horas	Días	Deform.	mm	%	Deform.	mm	%	Deform.	mm	%
0	0	21.227	0	0	16.98	0	0	5.36	0	0
24	1	23.72	2.493	20.78	19.87	2.89	24.08	10.88	5.52	46.00
48	2	23.8	2.573	21.44	19.95	2.97	24.75	11.04	5.68	47.33
72	3	23.84	2.613	21.78	20	3.02	25.17	11.09	5.73	47.75
96	4	23.87	2.643	22.03	20.03	3.05	25.42	11.13	5.77	48.08

Tabla 45Esfuerzo – Penetración para ensayo CBR de muestra + 10% CBCA.

				Esfu	erzo - Po	enetració	n				
Donat	ración		Molde 0	1		Molde 0)2	Molde 03			
renet	racion	Carga	Esf	uerzo	Carga	Esfu	uerzo	Carga	Esf	uerzo	
mm	pulg	(Kg)	Kg/cm2	Lb/pulg2	(Kg)	Kg/cm2	Lb/pulg2	(Kg)	Kg/cm2	Lb/pulg2	
0.00	0.000	0	0	0	0	0	0	0	0	0	
0.64	0.025	31.9	1.57	22.39	44.6	2.2	31.3	53.4	2.63	37.47	
1.27	0.050	48.8	2.41	34.25	76.3	3.76	53.54	106.1	5.23	74.46	
1.91	0.075	59.6	2.94	41.82	97.9	4.83	68.7	155.3	7.66	108.98	
2.54	0.100	67.7	3.34	47.51	114.9	5.67	80.63	193.6	9.55	135.86	
3.18	0.125	74.9	3.7	52.56	126.6	6.25	88.84	220.1	10.86	154.45	
3.81	0.150	80.8	3.99	56.7	135.6	6.69	95.16	244.4	12.06	171.51	
4.45	0.175	87	4.29	61.05	143.7	7.09	100.84	264.5	13.05	185.61	
5.08	0.200	91.4	4.51	64.14	151.4	7.47	106.24	281.5	13.89	197.54	
7.62	0.300	106.7	5.26	74.88	177.4	8.75	124.49	329.5	16.26	231.23	
10.16	0.400	121.3	5.98	85.12	201.9	9.96	141.68	368	18.16	258.24	
12.70	0.500	137.3	6.77	96.35	220.7	10.89	154.88	393	19.39	275.79	

Figura 40Curvas de esfuerzo – deformación de muestra + 10%CBCA (13 golpes).

Figura 41Curvas de esfuerzo – deformación de muestra + 10%CBCA (27 golpes).

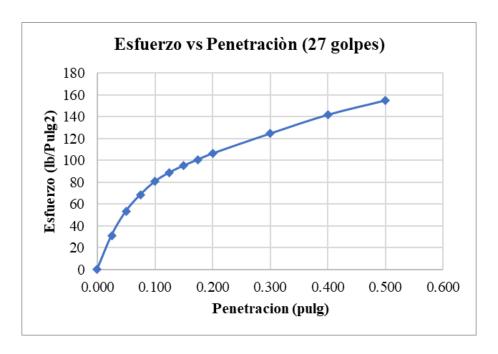
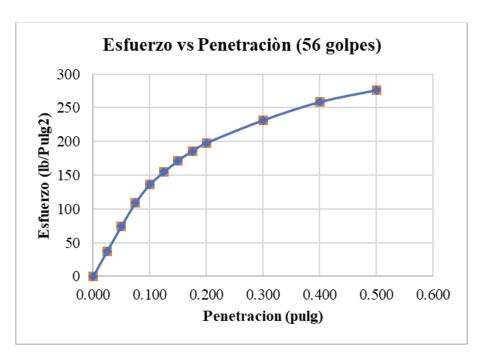



Figura 42

Curvas de esfuerzo – deformación de muestra + 10%CBCA (56 golpes).

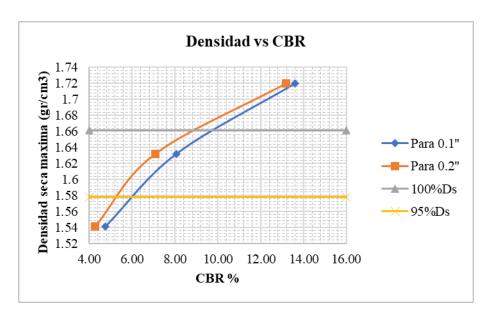


Tabla 46Valores de CBR corregidos de muestra + 10% CBCA.

	Valores de CBR corregidos								
Núm. Golpes									
13	47.51	64.14	1.541	4.75	4.28				
27	80.63	106.24	1.632	8.06	7.08				
56	135.86	197.54	1.72	13.59	13.17				

Figura 43

Curvas de CBR – densidad seca máxima de muestra + 10% CBCA.

Tabla 47Resultados CBR de muestra + 10% CBCA.

Resultados CBR								
0.1" 0.2"								
CBR % (100% Dsmax)	1.661	9.7	8.8					
CBR % (95% Dsmax)	1.578	6	5.2					
CBR % (Diseño)	6.00							

Tabla 48Compactación para ensayo CBR de muestra + 13% CBCA.

Profundidad de e	strato: 0.30m -	1.50m					
Fecha de ensayo:	Agosto de 2023	3					
Molde N°	1		2		3		
Golpes por Capa	Antes de saturar Después Antes de saturar		27		56		
Condición de la muestra			Después	Antes de saturar	Después		
P. Molde (gr)	4757	1	4691		4758	}	
Pmh + Molde (gr)	8144	8810	8285	8873	8450	8953	
Pmh (gr)	3387	4053	3594	4182	3692	4195	
Vmh (cm3)	2132.85	2132.85	2124.3	2124.3	2131.75	2131.75	
Dh (gr/cm3)	1.59	1.9	1.69	1.97	1.73	1.97	
N° Ensayo	1-A	1-B	2-A	2-B	3-A	3-B	
Pt (gr)	50.44	54.51	53.05	50.15	57.67	50.57	
Pmh + Pt (gr)	505.14	533.93	499.09	543.35	504.55	530.76	
Pms + Pt (gr)	460.94	425.17	455.63	432.39	461.04	445.16	
Pmh (gr)	454.7	479.42	446.04	493.2	446.88	480.19	
Pms (gr)	410.5	370.66	402.58	382.24	403.37	394.59	
W %	10.77	29.34	10.8	29.03	10.79	21.69	
Ds max. (gr/cm3)	1.435	1.469	1.525	1.527	1.562	1.619	

Tabla 49Hinchamiento en ensayo CBR de muestra + 13% CBCA.

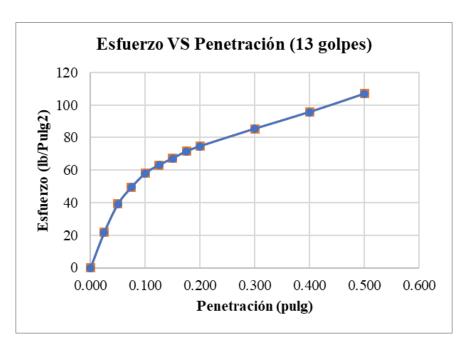

	Hinchamiento												
Tiempo Molde 01				M	olde 02		M	olde 03					
Tier	про	Lect.	Deform	nación	Lect.	Deformación		Lect.	Lect. Deforma				
Horas	Días	Deform.	mm	%	Deform.	mm	%	Deform.	mm	%			
0	0	16.09	0	0	10.31	0	0	17.75	0	0			
24	1	18.10	2.01	16.75	11.20	0.89	7.42	19.69	1.94	16.17			
48	2	18.22	2.13	17.75	11.31	1.00	8.33	19.82	2.07	17.25			
72	3	18.31	2.22	18.50	11.39	1.08	9.00	19.91	2.16	18.00			
96	4	18.37	2.28	19.00	11.44	1.13	9.42	19.96	2.21	18.42			

Tabla 50Esfuerzo – Penetración para ensayo CBR de muestra + 13% CBCA.

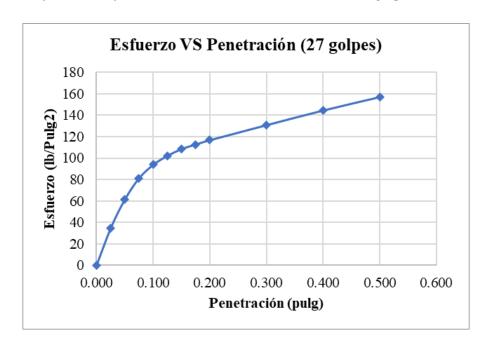

	ESFUERZO - PENETRACION											
DENIETI	ACION		MOLDE	01		MOLDE	03	MOLDE 03				
PENEIL	PENETRACION Ca		ESFU	ERZO	Carga	Carga ESFUERZO		Carga	ESFUERZO			
mm	pulg	(Kg)	Kg/cm2	Lb/pulg2	(Kg)	Kg/cm2	Lb/pulg2	(Kg)	Kg/cm2	Lb/pulg2		
0.00	0.000	0	0	0	0	0	0	0	0	0		
0.64	0.025	30.9	1.52	21.68	46.4	2.29	32.56	55.8	2.75	39.16		
1.27	0.050	55.8	2.75	39.16	80.7	3.98	56.63	99.3	4.9	69.68		
1.91	0.075	70.6	3.48	49.54	105.8	5.22	74.24	139.3	6.87	97.75		
2.54	0.100	82.7	4.08	58.03	123.7	6.1	86.81	179.6	8.86	126.03		
3.18	0.125	89.9	4.44	63.09	138.6	6.84	97.26	222.1	10.96	155.86		
3.81	0.150	95.8	4.73	67.23	149.6	7.38	104.98	256.4	12.65	179.93		
4.45	0.175	102	5.03	71.58	160.7	7.93	112.77	288.5	14.23	202.45		
5.08	0.200	106.4	5.25	74.67	169.4	8.36	118.88	316.5	15.62	222.1		
7.62	0.300	121.7	6	85.4	197.4	9.74	138.52	378.5	18.67	265.61		
10.16	0.400	136.3	6.72	95.65	223.9	11.05	157.12	415	20.48	291.22		
12.70	0.500	152.3	7.51	106.88	243.7	12.02	171.02	457	22.55	320.7		

Figura 44

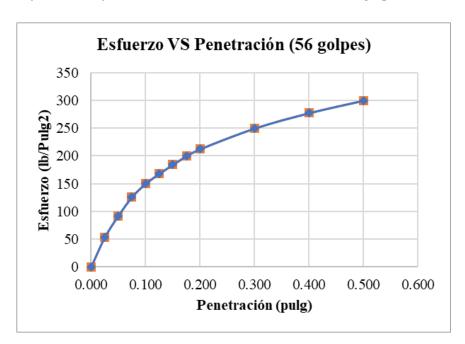

Curvas de esfuerzo – deformación de muestra + 13%CBCA (13 golpes).

Figura 45Curvas de esfuerzo – deformación de muestra + 13%CBCA (27 golpes).

Figura 46Curvas de esfuerzo – deformación de muestra + 13%CBCA (56 golpes).

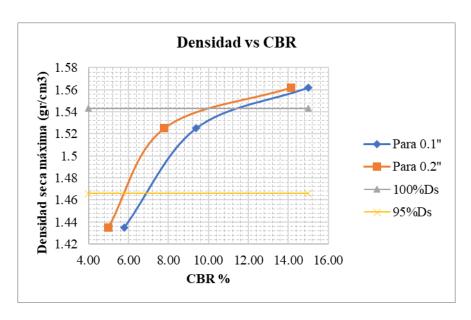


Tabla 51Valores de CBR corregidos de muestra + 13% CBCA.

	Valores de CBR corregidos										
Núm. Golpes											
13	58.03	74.67	1.435	5.80	4.98						
27	93.82	116.77	1.525	9.38	7.78						
56	149.89	212.28	1.562	14.99	14.15						

Figura 47

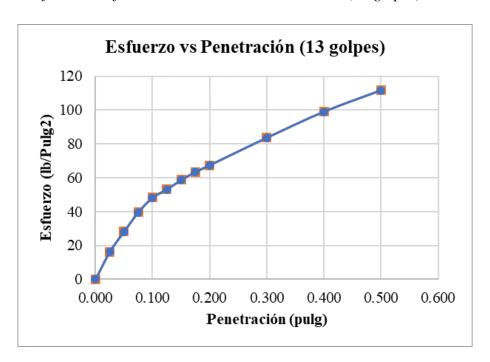
Curvas de CBR – densidad seca máxima de muestra + 13% CBCA.

Tabla 52Resultados CBR de muestra + 13% CBCA.

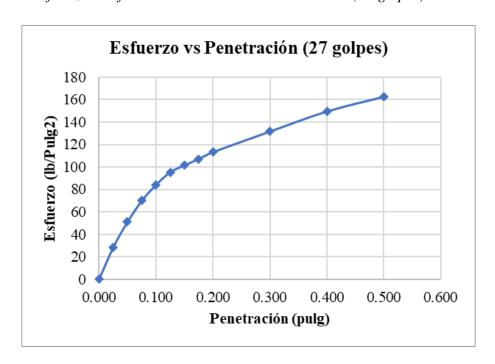
Resultados CBR									
0.1" 0.2"									
CBR % (100% Dsmax)	1.543	11.4	10.2						
CBR % (95% Dsmax)	1.466	6.8	5.7						
CBR % (Diseño)		6.80							

Tabla 53Compactación para ensayo CBR de muestra + 16% CBCA.

Profundidad de es	strato: 0.30m - 1.5	50m					
Fecha de ensayo:		V					
Molde N°	1		2		3		
Golpes por Capa	13		27		56		
Condición de la muestra	Antes de saturar	Después	Antes de saturar	Después	Antes de saturar	Después	
P. Molde (gr)	4650		4678		4728		
Pmh + Molde (gr)	7735	8507	7879	8578	8097	8721	
Pmh (gr)	3085	3857	3201	3900	3369	3993	
Vmh (cm3)	2121.68	2121.68	2075.31	2075.31	2119.92	2119.92	
Dh (gr/cm3)	1.45	1.82	1.54	1.88	1.59	1.88	
N° Ensayo	1-A	1-B	2-A	2-B	3-A	3-B	
Pt (gr)	52.9	51.14	49.45	53.32	57.65	57.62	
Pmh + Pt (gr)	432.34	517.87	438.86	483.5	516.12	540.62	
Pms + Pt (gr)	401.57	422.07	406.99	402.07	479.18	476.38	
Pmh (gr)	379.44	466.73	389.41	430.18	458.47	483	
Pms (gr)	348.67	370.93	357.54	348.75	421.53	418.76	
W %	8.82	25.83	8.91	23.35	8.76	15.34	
Ds max. (gr/cm3)	1.332	1.446	1.414	1.524	1.462	1.630	


Tabla 54 *Hinchamiento en el ensayo CBR de muestra* + 16% CBCA.

	Hinchamiento												
Tiempo Molde 01				Mo	olde 02		Molde 03						
Tien	ıpo	Lect.	Deformación		Lect.	Defor	mación	Lect.	Defor	mación			
Horas	Días	Deform.	mm	%	Deform.	mm	%	Deform.	mm	%			
0	0	11.6	0	0	3.68	0	0	18.87	0	0			
24	1	13.96	2.36	19.67	6.68	3.00	25.00	21.61	2.74	22.83			
48	2	14.09	2.49	20.75	6.73	3.05	25.42	21.73	2.86	23.83			
72	3	14.13	2.53	21.08	6.79	3.11	25.92	21.8	2.93	24.42			
96	4	14.17	2.57	21.42	6.84	3.16	26.33	21.84	2.97	24.75			


Tabla 55Esfuerzo – Penetración para ensayo CBR de muestra + 16% CBCA.

	Esfuerzo - Penetración											
Donot	ración		Molde 0	1		Molde 0	2		Molde 03			
renet	racion	Carga	Esfu	uerzo	Carga	Esfuerzo		Carga	Esfuerzo			
mm	pulg	(Kg)	Kg/cm2	Lb/pulg2	(Kg)	Kg/cm2	Lb/pulg2	(Kg)	Kg/cm2	Lb/pulg2		
0.00	0.000	0	0	0	0	0	0	0	0	0		
0.64	0.025	23.2	1.14	16.28	40.6	2	28.49	47.3	2.33	33.19		
1.27	0.050	40.2	1.98	28.21	72.8	3.59	51.09	92.4	4.56	64.84		
1.91	0.075	56.5	2.79	39.65	99.6	4.91	69.89	136.2	6.72	95.58		
2.54	0.100	68.8	3.39	48.28	119.8	5.91	84.07	169.5	8.36	118.95		
3.18	0.125	75.6	3.73	53.05	135.9	6.71	95.37	191.2	9.43	134.17		
3.81	0.150	83.6	4.12	58.67	144.6	7.13	101.47	210.7	10.4	147.86		
4.45	0.175	90.3	4.46	63.37	152.7	7.53	107.16	229.6	11.33	161.12		
5.08	0.200	96	4.74	67.37	161.3	7.96	113.19	243.4	12.01	170.8		
7.62	0.300	119.1	5.88	83.58	187.5	9.25	131.58	289.7	14.29	203.3		
10.16	0.400	141	6.96	98.95	213	10.51	149.47	336.2	16.59	235.93		
12.70	0.500	159	7.84	111.58	231.7	11.43	162.59	378.6	18.68	265.68		

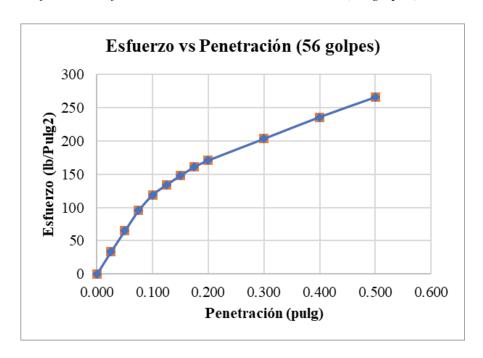

Figura 48Curvas de esfuerzo – deformación de muestra + 16%CBCA (13 golpes).

Figura 49Curvas de esfuerzo – deformación de muestra + 16%CBCA (27 golpes).

Figura 50Curvas de esfuerzo – deformación de muestra + 16%CBCA (56 golpes).

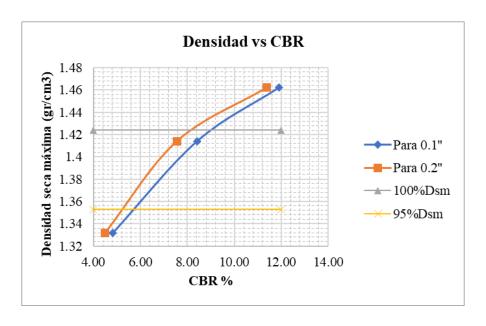


Tabla 56Valores de CBR corregidos de muestra + 16% CBCA.

	Valores de CBR corregidos											
Núm. Golpes	Núm. Golpes 0.1" 0.2" Ds CBR (0.1) CBR (0.2)											
13	48.28	67.37	1.332	4.83	4.49							
27	84.07	113.19	1.414	8.41	7.55							
56	118.95	170.8	1.462	11.90	11.39							

Figura 51

Curvas de CBR – densidad seca máxima de muestra + 16% CBCA.

Tabla 57Resultados CBR de muestra + 16% CBCA.

Resultados CBR								
		0.1"	0.2"					
CBR % (100% Dsmax)	1.424	8.9	8.1					
CBR % (95% Dsmax)	1.353	5.7	5.2					
CBR % (Diseño)		5.70						

Tabla 58Compactación para ensayo CBR de muestra + 19% CBCA.

Profundidad de es	strato: 0.30m - 1.	50m					
Fecha de ensayo:	Agosto de 2023						
Molde N°	1		2		3		
Golpes por Capa	13		27		56		
Condición de la muestra	Antes de saturar	Después	Antes de saturar	Después	Antes de saturar	Después	
P. Molde (gr)	3854		4477		4748		
Pmh + Molde (gr)	6756	8342	7543	8329	8000	8735	
Pmh (gr)	2902	4488	3066	3852	3252	3987	
Vmh (cm3)	2119.86	2119.86	2124.33	2124.33	2126.51	2126.51	
Dh (gr/cm3)	1.37	2.12	1.44	1.81	1.53	1.87	
N° Ensayo	1-A	1-B	2-A	2-B	3-A	3-B	
Pt (gr)	54.39	56.03	50.46	50.35	51.14	50.24	
Pmh + Pt (gr)	398.38	472.8	537.21	502.33	503.87	510.48	
Pms + Pt (gr)	378.09	422.07	508.69	402.39	476.92	476.38	
Pmh (gr)	343.99	416.77	486.75	451.98	452.73	460.24	
Pms (gr)	323.7	366.04	458.23	352.04	425.78	426.14	
W %	6.27	13.86	6.22	28.39	6.33	8	
Ds max. (gr/cm3)	1.289	1.862	1.356	1.410	1.439	1.731	

Tabla 59Hinchamiento en el ensayo CBR de muestra + 19% CBCA.

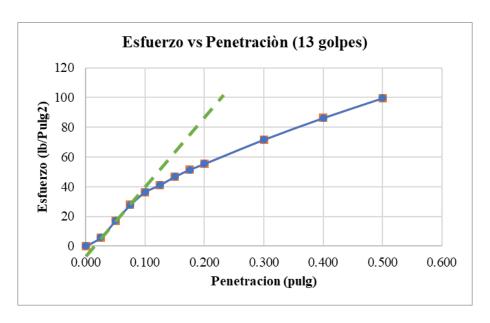

	Hinchamiento											
Tion	Tiempo		Molde 01			olde 02		Molde 03				
1 len	ipo	Lect.	Defor	mación	Lect.	Defor	mación	Lect.	Defor	mación		
Horas	Días	Deform.	mm	%	Deform. mm %		Deform.	mm	%			
0	0	2.78	0	0	15.92	0	0	9.11	0	0		
24	1	6.53	3.75	31.25	19.01	3.09	25.75	15.26	6.15	51.25		
48	2	6.61	3.83	31.92	19.12	3.20	26.67	15.3	6.19	51.58		
72	3	6.65	3.87	32.25	19.18	3.26	27.17	15.33	6.22	51.83		
96	4	6.68	3.90	32.50	19.22	3.30	27.50	15.35	6.24	52.00		

Tabla 60Esfuerzo – Penetración para ensayo CBR de muestra + 19% CBCA.

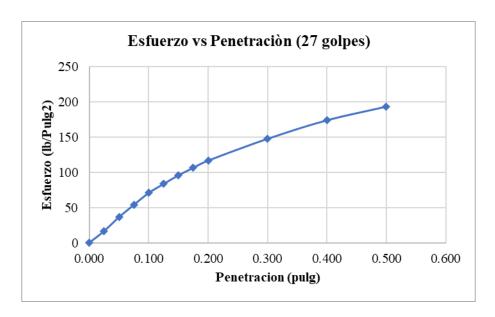

	Esfuerzo - Penetración									
Donat	Penetración		Molde 01			Molde 02		Molde 03		
renet	racion	Carga	Esfu	uerzo	Carga	Esfu	uerzo	Carga	Esfu	uerzo
mm	pulg	(Kg)	Kg/cm2	Lb/pulg2	(Kg)	Kg/cm2	Lb/pulg2	(Kg)	Kg/cm2	Lb/pulg2
0.00	0.000	0	0	0	0	0	0	0	0	0
0.64	0.025	8.2	0.4	5.75	23.6	1.16	16.56	22.3	1.1	15.65
1.27	0.050	24.2	1.19	16.98	51.8	2.56	36.35	53.4	2.63	37.47
1.91	0.075	39.5	1.95	27.72	76.6	3.78	53.75	89.2	4.4	62.6
2.54	0.100	51.8	2.56	36.35	100.8	4.97	70.74	124.5	6.14	87.37
3.18	0.125	58.6	2.89	41.12	118.9	5.87	83.44	156.2	7.71	109.61
3.81	0.150	66.6	3.29	46.74	136.6	6.74	95.86	189.7	9.36	133.12
4.45	0.175	73.3	3.62	51.44	151.7	7.48	106.45	210.5	10.39	147.72
5.08	0.200	79	3.9	55.44	166.3	8.2	116.7	228.4	11.27	160.28
7.62	0.300	102.1	5.04	71.65	210.5	10.39	147.72	286.7	14.15	201.19
10.16	0.400	123	6.07	86.31	248.1	12.24	174.1	349.3	17.23	245.12
12.70	0.500	142	7.01	99.65	275.7	13.6	193.47	403.6	19.91	283.22

Figura 52

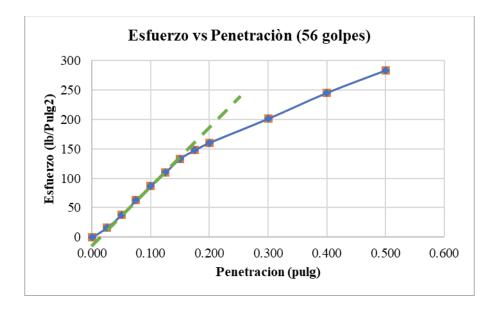

Curvas de esfuerzo – deformación de muestra + 19%CBCA (13 golpes).

Figura 53Curvas de esfuerzo – deformación de muestra + 19%CBCA (27 golpes).

Figura 54Curvas de esfuerzo – deformación de muestra + 19%CBCA (56 golpes).

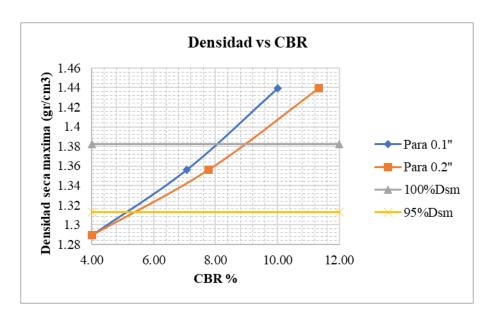


Tabla 61Valores de CBR corregidos de muestra + 19% CBCA.

	Valores de CBR corregidos						
Núm. Golpes	0.1"	0.2"	Ds	CBR (0.1)	CBR (0.2)		
13	40	60	1.289	4.00	4		
27	70.74	116.7	1.356	7.07	7.78		
56	100	170	1.439	10.00	11.33		

Figura 55

Curvas de CBR – densidad seca máxima de muestra + 19% CBCA.

Tabla 62Resultados CBR de muestra + 19% CBCA.

Resultados CBR					
		0.1"	0.2"		
CBR % (100% Dsmax)	1.382	8	9		
CBR % (95% Dsmax)	1.313	5.1	5.3		
CBR % (Diseño)		5.10			

Figura 56Perfil estratigráfico de la calicata 01.

PERFIL ESTRATIGRÁFICO CALICATA C - 01					
Ubicación	La Ista - Magdalena - Cajamarca	Coordenadas UTM			
Prof:	0.00 m - 1.50 m	Este	Norte		
Fecha:	Mayo - 2023	765846.975	9195048.559		

Profund.	Clasificación SUCS (Símbolo	Descripción del material	Muestra	Límites del consistencia		
(m)	gráfico)	•		LL	LP	IP
_		Limos inorgánicos de baja plasticidad y es de un color marrón claro.	S/M	-	-	-
0.50 —		Desde los 0.30 m hasta 1.50 m se encontró un estrato constituido por una arcilla inorgánica de baja plasticidad, de color pardo oscuro.		38	24	14

Figura 57 *Perfil estratigráfico de la calicata 02.*

PERFIL ESTRATIGRÁFICO CALICATA C - 02					
Ubicación	La Ista - Magdalena - Cajamarca	Coordenadas UTM			
Prof:	f: 0.00 m - 1.50 m		Norte		
Fecha:	Mayo - 2023	766006.956	9195021.086		

Profund.	Clasificación SUCS (Símbolo gráfico)	Descripción del material	Muestra	Límites	del cons	sistencia IP
0.50 —	ML	En la calicata realizada se observó un solo estrato de un suelo color marrón claro con una profundidad de 1.50 m y conformado por limos inorgánicos de baja plasticidad, con pequeñas presencias de arenas.	M - 02	35	26	9

Figura 58 *Perfil estratigráfico de la calicata 03.*

PERFIL ESTRATIGRÁFICO CALICATA C - 03					
Ubicación	La Ista - Magdalena - Cajamarca	Coordenadas UTM			
Prof:	0.00 m - 1.50 m	Este	Norte		
Fecha:	Mayo - 2023	765869.138	9194963.528		

Profund.	Clasificación SUCS (Símbolo gráfico)	Descripción del material	Muestra	Límites	del cons	sistencia IP
0.50 —	ML	En la calicata realizada se observó un solo estrato de un suelo color marrón claro con una profundidad de 1.50 m y conformado por limos inorgánicos de baja plasticidad, con pequeñas presencias de arenas.	M - 03	28	22	06

Figura 59

Ensayo de granulometría en laboratorio "GUERSAN".

Figura 60

Ensayo de limite líquido en laboratorio "GUERSAN".

Figura 61

Ensayo Proctor modificado realizado en laboratorio "GUERSAN".

Figura 62
Ensayo CBR (Compactación) realizado en laboratorio "GUERSAN"

Figura 63
Ensayo CBR (Hinchamiento) realizado en laboratorio "GUERSAN".

Figura 64

Ensayo CBR (Carga - Penetración) realizado en laboratorio "GUERSAN".

Universidad Nacional de Cajamarca

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

Teléfono № 341518, Anexo 1217-Edificio 1C-106 Cajamarca - Perú

"AÑO DEL FORTALECIMIENTO DE LA SOBERANIA NACIONAL"

Cajamarca, 24 de mayo de 2023.

OFICIO Nº 462-2023-EAPIC-FI-UNC

Señor:

Eduardo Arribasplata Nimboma

PRESENTE:

De mi consideración:

Es grato dirigirme a usted, para saludarle cordialmente y, al mismo tiempo, autorizar el uso del Laboratorio "GUERSAN INGENIEROS SRL"; para que realice sus respectivos ensayos de su tesis titulado: "INFLUENCIA DE LA CENIZA DEL BAGAZO DE CAÑA DE AZÚCAR EN EL CALIFORNIA BEARING RATIO (CBR) DE SUELOS ARCILLOSOS", asesorado por la Dra. Rosa Haydee Llique Mondragón.

Sin otro particular, hago propicia la ocasión para testimoniarle las muestras de mi especial deferencia.

Atentamente,

UNIVERSIDAD NACIONAL DE CAJAMARC FACULTAD DE INSENIERIA Escueia Académica Profesional de Ingenieria Ch

BIRECTOR

Cc. - Archivo

SUPERVISIÓN Y EJECUCIÓN DE OBRAS DE INGENIERÍA ELABORACIÓN DE PERFILES Y EXPEDIENTES TÉCNICOS ESTUDIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS SERVICIO DE TOPOGRAFÍA Y ESTUDIOS TOPOGRÁFICOS CEL. 939291809 / TEL. 076 633319

CONSTANCIA DE ENSAYO DE MECANICA DE SUELOS

El que subscribe, **Leiner Guerrero Gonzáles**, identificado con DNI **45567546**, gerente general de **GUERSAN INGENIEROS S.R.L.**, con ruc **20602101488**.

CERTIFICA:

Que, el Sr. Eduardo Arribasplata Nimboma, identificado con DNI Nº 72551801, bachiller de Ingeniería Civil de la Universidad Nacional de Cajamarca ha realizado los ensayos de mecánica de suelos: Granulometría, Limites de consistencia, Proctor Modificado y California Bearing Ratio (CBR), correspondientes a su tesis titulada "INFLUENCIA DE LA CENIZA DEL BAGAZO DE CAÑA DE AZUCAR EN EL CALIFORNIA BEARING RATIO (CBR) DE SUELOS ARCILLOSOS" durante los meses de julio y agosto del 2023, el mismo que durante su permanencia en este laboratorio demostró eficiencia y responsabilidad en los ensayos realizados.

Se expide este documento a solicitud del interesado para los fines que vea pertinentes.

Cajamarca, 4 de setiembre del 2023.

Email: guersaningenieros@gmail.com

Psj. Diego Ferre N° 295 – Barrio San Martín – Cajamarca Celular: 939291809

RUC: 20602101488

METROLOGÍA & CALIBRACIÓN S.A.C

CERTIFICADO DE CALIBRACIÓN MC027 - T - 2022

Metrología & calibración Laboratorio de Temperatura

220108 1. Expediente

GUERSAN INGENIEROS S.R.L. 2. Solicitante

Pj. Diego Ferre Nº 295 Br. San Martin de 3. Dirección

Porres, Cajamarca - Cajamarca -

CAJAMARCA

HORNO 4. Equipo

Alcance Máximo De 0 °C a 300 °C

Marca **PYS EQUIPOS**

Modelo STHX-2A

Número de Serie 190334

Procedencia CHINA

Identificación NO INDICA

LABORATORIO MECANICA DE SUELOS, Ubicación CONCRETO Y PAVIMENTOS.

Descripción	Controlador / Selector	Instrumento de medición
Alcance	0 °C a 300 °C	0 °C a 300 °C
División de escala / Resolución	0,1 °C	0,1 °C
Tipo	CONTROLADOR DIGITAL	TERMÓMETRO DIGITAL

5. Fecha de Calibración 2022-08-03

6. Fecha de Emisión 2022-08-15

certificado calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Página 1 de 6

Los resultados son válidos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

METROLOGÍA & CALIBRACIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

JEFE DE LABORATORIO

Firmado digitalmente por Angel Perez Fecha: 2022.08.15

09:26:21 -05'00'

Sello

VENTAS@METCAL.PE ADMINISTRACION@METCAL.PE

WWW.METCAL.PE

CERTIFICADO DE CALIBRACIÓN MC034 - F - 2022

Metrología & calibración

Laboratorio de Fuerza

Página 1 de 3

	000400
1. Expediente	220108

GUERSAN INGENIEROS S.R.L. 2. Solicitante

Pj. Diego Ferre N° 295 Br. San Martín de 3. Dirección

Porres, Cajamarca - Cajamarca -

CAJAMARCA

4. Equipo PRENSA CBR

Capacidad 5000 kgf

TECNICAS Marca

TCP051 Modelo

Número de Serie 0167

PERÚ Procedencia

NO INDICA Identificación

Indicación DIGITAL Marca HIWEIGH Modelo X8

18H0902014 Número de Serie 0,1 kgf Resolución

LABORATORIO MECANICA DE SUELOS. Ubicación

CONCRETO Y PAVIMENTOS.

5. Fecha de Calibración 2022-08-03

6. Fecha de Emisión 2022-08-15 Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración, Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

METROLOGÍA & CALIBRACIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

JEFE DE LABORATORIO

Firmado digitalmente por Angel Perez Fecha: 2022.08.15

09:15:51 -05'00'

Sello

METROLOGÍA & CALIBRACIÓN S.A.C AV. PALMERAS 5535 - LOS OLIVOS - LIMA DEL.: 955 730 951; 913 190 274

EMAIL: VENTAS@METCAL.PE ADMINISTRACION@METCAL.PE

WEB: WWW.METCAL.PE

METROLOGÍA & CALIBRACIÓN S.A.C Galebradión y Mantenimiento de Equipos e Instrumentos de Medición Industriales.

Metrología & calibración

Laboratorio de Masa

CERTIFICADO DE CALIBRACIÓN MC055 - M - 2022

Dágina 1 da 2

1. Expediente 220108

2. Solicitante GUERSAN INGENIEROS S.R.L.

3. Dirección Pj. Diego Ferre N° 295 Br. San Martín de

Porres, Cajamarca - Cajamarca -

CAJAMARCA

4. Equipo de medición BALANZA ELECTRÓNICA

Capacidad Máxima 30 000 g

División de escala (d) 1 g

Div. de verificación (e) 10 g

Clase de exactitud III

Marca OHAUS

Modelo R31P30

Número de Serie 8340410359

Capacidad mínima 20 g

Procedencia U.S.A.

Identificación NO INDICA

Ubicación LABORATORIO MECANICA DE SUELOS.

CONCRETO Y PAVIMENTOS.

5. Fecha de Calibración 2022-08-02

6. Fecha de Emisión 2022-08-15

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son válidos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

METROLOGÍA & CALIBRACIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

Sello

JEFE DE LABORATORIO

Firmado digitalmente por Angel Perez Fecha: 2022.08.15 08:50:18 -05'00'

LABORATORIO

METROLOGÍA & CALIBRACIÓN S.A.C AV. PALMERAS 5535 - LOS DLIVOS - LIMA CEL.: 955 730 951: 913 190 274 EMAILI

VENTAB@METCAL.PE ADMINISTRACION@METCAL.PE

WEB;

WWW, METCAL, PE

METROLOGÍA & CALIBRACIÓN S.A.C CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE MEDICIÓN INDUSTRIALES.

Metrología & calibración

Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN MC062 - M - 2022

Página 1 de «

1. Expediente 220108

2. Solicitante GUERSAN INGENIEROS S.R.L.

3. Dirección Pj. Diego Ferre N° 295 Br. San Martín de

Porres, Cajamarca - Cajamarca -

CAJAMARCA

4. Equipo de medición BALANZA ELECTRÓNICA

Capacidad Máxima 620 g

División de escala (d) 0,01 g

Div. de verificación (e) 0,01 g

Clase de exactitud II

Marca OHAUS

Modelo SIX622/E

Número de Serie C048581168

Capacidad mínima 0,2 g

Procedencia U.S.A.

Identificación NO INDICA

Ubicación LABORATORIO MECANICA DE SUELOS,

CONCRETO Y PAVIMENTOS.

5. Fecha de Calibración 2022-08-03

6. Fecha de Emisión 2022-08-15

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema internacional de Unidades (SI).

Los resultados son válidos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

METROLOGÍA & CALIBRACIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

JEFE DE LABORATORIO

Firmado digitalmente por Angel Perez Fecha: 2022.08.15

08:59:26 -05'00'

Sello

EMAIL:

VENTAB@METCAL.PE ADMINISTRACION@METCAL.PE

WEB:

WWW.METGAL.PE