UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERIA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM² AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210 Y 280 KG/CM²"

TESIS

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

PRESENTADO POR:

Bach. VILLENA PÉREZ, Moisés II

ASESOR:

Dr. Ing. MOSQUEIRA MORENO, Miguel Angel

CAJAMARCA – PERÚ 2025

CONSTANCIA DE INFORME DE ORIGINALIDAD

- FACULTAD DE INGENIERÍA -

1.	Investigador: MOISÉS II VILLENA PÉREZ DNI: 71707294 Escuela Profesional: INGENIERÍA CIVIL				
2.	Asesor: Dr. Ing. MIGUEL ANGEL MOSQUEIRA MORENO Facultad: DE INGENIERÍA				
3. Grado académico o título profesional					
	□Bachiller □Maestro	■Título profesional	□Segunda especialidad		
4.	Tipo de Invest	igación:			
	Tesis	☐ Trabajo de investigación	☐ Trabajo de suficiencia profesional		
	☐ Trabajo aca	démico			
5.	Título de Traba	Título de Trabajo de Investigación:			
			N DE UN CONCRETO F´C=210 KG/CM² AL 6 POR CONCRETO RECICLADO DE F´C=175,210 Y		
6.	Fecha de evalu	uación: 29/08/2025			
7.	Software antip	olagio: TURNITIN	☐ URKUND (OURIGINAL) (*)		
8. Porcentaje de Informe de Similitud: 25%					
9.	•				
10.	Resultado de la Evaluación de Similitud:				
	■ APROBADO □ PARA LEVANTAMIENTO DE OBSERVACIONES O DESAPROBADO				

Fecha Emisión: 29/08/2025

Adapted 7

FIRMA DEL ASESOR

Dr. Ing. MIGUEL ANGEL MOSQUEIRA MORENO DNI: 26733060

FIRMA DIGITAL

Firmado digitalmente por: BAZAN DIAZ Laura Sofia FAU 20148258601 soft Motivo: En señal de

conformidad

Fecha: 29/08/2025 09:50:03-0500

UNIDAD DE INVESTIGACIÓN FI

Universidad Nacional de Cajamarca

"Norte de la Universidad Peruana"

Fundada por Ley 14015 del 13 de Febrero de 1962

FACULTAD DE INGENIERÍA

ACTA DE SUSTENTACIÓN PÚBLICA DE TESIS.

TITULO

: VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C= 210 KG/CM² AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C= 175, 210 Y 280 KG/CM².

ASESOR

: Dr. Ing. Miguel Angel Mosqueira Moreno.

En la ciudad de Cajamarca, dando cumplimiento a lo dispuesto por el Oficio Múltiple Nº 0580-2025-PUB-SA-FI-UNC, de fecha 05 de setiembre de 2025, de la Secretaría Académica de la Facultad de Ingeniería, a los *diez días del mes de setiembre de 2025*, siendo las Diez horas (10:00 a.m.) en la Sala de Audiovisuales (Edificio 1A – Segundo Piso), de la Facultad de Ingeniería se reunieron los Señores Miembros del Jurado Evaluador:

Presidente

: Dr. Ing. Jaime Octavio Amorós Delgado.

Vocal

: Dr. Ing. Mauro Augusto Centurión Vargas.

Secretario

: Ing. Marco Wilder Hoyos Saucedo.

Para proceder a escuchar y evaluar la sustentación pública de la tesis titulada VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C= 210 KG/CM² AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C= 175, 210 Y 280 KG/CM², presentado por el Bachiller en Ingeniería Civil MOISÉS II VILLENA PÉREZ, asesorado por el Dr. Ing. Miguel Angel Mosqueira Moreno, para la obtención del Título Profesional

Los Señores Miembros del Jurado replicaron al sustentante debatieron entre sí en forma libre y reservada y lo evaluaron de la siguiente manera:

EVALUACIÓN PÚBLICA : PTS.

EVALUACIÓN FINAL :, 1.7....... PTS

DIECISIE/E (En letras)

Dr. Ing. Jaime Octavio Amorós Delgado.

Presidente

Dr. Ing. Mauro Augusto Centurión Vargas.

Vodal

Ing. Marco Wilder Hoyos Saucedo.

Secretario

Dr. Ing. Miguel Angel Mosqueira Moreno.

Asesor

COPYRIGHT © 2025 by MOISES II VILLENA PÉREZ Todos los derechos reservados

AGRADECIMIENTO

A Dios, te agradezco por cada oportunidad de aprendizaje y por cada desafío que me ayuda a crecer. Con humildad y determinación.

A mis padres Moisés y Consuelo, Cada día, ustedes han sido mis guías, mis confidentes y mis mayores defensores. Gracias por creer en mí. No puedo expresar con palabras lo agradecido que estoy por tenerlos como mis padres. Su amor incondicional y dedicación son un tesoro en mi corazón.

A Franmis y Roxana por su cariño y apoyo incondicional, A medida que continuamos nuestro viaje juntos, prometo seguir valorando nuestra relación y cultivando nuestro vínculo.

DEDICATORIA

Al Dr. Ing. Miguel Angel Mosqueira Moreno, por el tiempo y la confianza dedicada, por no ser celoso con sus conocimientos y plasmarlo. A lo largo de este viaje, usted ha sido un mentor que me ha inspirado a alcanzar nuevos niveles de excelencia. Sus comentarios perspicaces, su paciencia y su compromiso con mi éxito han sido una fuente constante de motivación.

.

A mis docentes universitarios, que han sido parte de mi progreso, gracias a todos por ser parte y llenar de valores y conocimientos a mi persona.

A mis compañeros, gracias por compartir y el apoyo que uno siempre necesita. Los procesos siempre se sobrellevan mejor con compañía.

CONTENIDO

AGRADE	ECIMIENTO	İ
DEDICA	TORIA	ii
ÍNDICE I	DE TABLAS	V
ÍNDICE I	DE FIGURAS	V
RESUM	EN	vii
ABSTRA	СТ	viii
CAPITUI	LO I. INTRODUCCIÓN	1
1.1.	Planteamiento del problema	1
1.2.	Formulación del problema	2
1.3.	Hipótesis	2
1.4.	Justificación de la investigación	3
1.5.	Delimitación de la investigación	3
1.6.	Limitaciones	4
1.7.	Objetivos	5
1.7.1.	Objetivo general	5
1.7.2.	Objetivos específicos	5
CAPITUI	LO II. MARCO TEÓRICO	6
2.1.	Antecedentes teóricos	6
2.1.1.	A nivel Internacional	6
2.1.2.	A nivel Nacional	7
2.1.3.	A nivel Local	8
2.2.	BASES TEÓRICAS	9
2.2.1.	El concreto	9
2.2.2.	Componentes del concreto	10
2.2.3.	Concreto con agregados reciclados	13
2.2.4.	La resistencia a compresión	14
2.3.	Definición de términos básicos	15
CAPITUI	LO III. MATERIALES Y MÉTODOS	16
3.1.	Descripción y ubicación geográfica del origen de los agregados	16
3.2.	Ubicación geográfica	17
3.3.	Diseño de investigación	17
3.4.	Método de investigación	17
3.5.	Variables de estudio	18
3.5.1.	Variable Independiente	18
3.5.2.	Variable Dependiente	18
3.6.	Población de estudio	18

3.7.	Muestra	18
3.7.1.	Unidad de análisis y unidad de observación	18
3.8.	Tratamientos de estudio	19
3.9.	Técnicas e instrumentos de recopilación de información	19
3.9.1	Obtención del agregado de concreto reciclado	19
3.9.2	Técnicas de ensayo en laboratorio	20
3.9.3	Instrumento de recolección de información	33
3.10.	Técnicas para el procesamiento y análisis de información	34
3.11.	Resultados estadísticos de la resistencia a compresión	37
3.11.	1. ANOVA de la resistencia a compresión a los 7 días	37
3.11.2	2. ANOVA de la resistencia a compresión a los 14 días	40
3.11.3	3. ANOVA de la resistencia a compresión a los 28 días	42
3.12.	Comparación de los tratamientos en estudio	45
CAPITU	JLO IV. ANÁLISIS Y DISCUSIÓN DE RESULTADOS	48
4.1.	Análisis, interpretación y discusión de resultados	48
4.1.1	Resistencia a compresión a los 7 días	48
4.1.2	Resistencia a compresión a los 14 días	49
4.1.3	Resistencia a compresión a los 28 días	51
4.1.4	Variación del desarrollo a compresión de los tratamientos estudiados	53
4.1.5	Contrastación de la hipótesis	54
CAPITU	JLO V. CONCLUSIONES Y RECOMENDACIONES	55
5.1.	Conclusiones	55
5.2.	Recomendaciones	56
REFER	ENCIAS	57
APÉND	ICES I: FICHAS DE TOMA Y RECOLECCIÓN DE DATOS	61
APÉND	ICE II: FOTOGRAFÍAS	65
APÉND	ICE III: PROPIEDADES FÍSICAS DE LOS AGREGADOS	69
APÉND	ICE IV: DISEÑO DE MEZCLA DEL CONCRETO	88
ANEXO I: FICHA TÉCNICA DEL CEMENTO TIPO I		
ANEXO	II: CONSTANCIA DE PERMISO DE LABORATORIO EXTERNO	92
ANEXO	III: CONSTANCIA DE USO DE LABORATORIO EXTERNO	93

ÍNDICE DE TABLAS

Tabla 1: Coordenadas de la cantera "La Victoria"	16
Tabla 2: Cantidad de probetas para ensayos de resistencia a compresión	18
Tabla 3: Cantidad mínima de muestra a ensayar	26
Tabla 4 : Estándares para el control del concreto para f'c ≤ 35 Mpa	36
Tabla 5: Análisis de la varianza de la resistencia a compresión a los 7 días	37
Tabla 6: Medias de la resistencia a compresión a los 7 días	37
Tabla 7: Información agrupada de resistencia a compresión, con método Tukey	38
Tabla 8: Análisis de la varianza de la resistencia a compresión a los 14 días	40
Tabla 9: Medias de la resistencia a compresión a los 14 días	40
Tabla 10: Información agrupada de resistencia a compresión, con método Tukey	40
Tabla 11: Análisis de la varianza de la resistencia a compresión a los 28 días	42
Tabla 12: Medias de la resistencia a compresión a los 28 días	43
Tabla 13: Información agrupada de resistencia a compresión, con método Tukey	43
Tabla 14: Variación en la resistencia a compresión según tratamientos a 7d.	46
Tabla 15: Variación en la resistencia a compresión según tratamientos a 14d.	46
Tabla 16: Variación en la resistencia a compresión según tratamientos a 28d.	46
Tabla 17: Comparativo de los pesos volumétricos a los 7, 14 y 28 días.	47
Tabla 18: Materiales del diseño patrón y mezcla 20% AGR f'c= 175 kg/cm²	89
Tabla 19: Materiales del diseño patrón y mezcla 20% AGR f'c= 210 kg/cm²	89
Tabla 20: Materiales del diseño patrón y mezcla 20% AGR f'c= 280 kg/cm²	90

ÍNDICE DE FIGURAS

Figura 1: Ubicación geográfica de la cantera "La Victoria"	17
Figura 2: Ficha de toma y recolección de datos	33
Figura 3: Gráfica de intervalos de resistencia a compresión a los 7d.	38
Figura 4: Gráfica de valores individuales de resistencia a compresión a los 7 d.	39
Figura 5: Gráfica de caja de resistencia a compresión a los 7d.	39
Figura 6: Gráfica de intervalos de resistencia a compresión a los 14 d.	41
Figura 7: Gráfica de valores individuales de resistencia a compresión a los 14 d.	41
Figura 8: Gráfica de caja de resistencia a compresión a los 14d.	42
Figura 9: Gráfica de intervalos de resistencia a compresión a los 28d.	44
Figura 10: Gráfica de valores individuales de resistencia a compresión a los 28 d.	44
Figura 11: Gráfica de caja de resistencia a compresión a los 28d.	45
Figura 12: Desarrollo de la resistencia a compresión a los 7d, 14d y 28d.	45
Figura 13: Visita a la cantera La Victoria, para la selección de agregados	65
Figura 14: Selección de probetas para su uso como agregado reciclado	65
Figura 15: Tesista realizando el ensayo de Contenido de Humedad de agregados	66
Figura 16: Tesista realizando el ensayo de granulometría para el agregado fino	66
Figura 17: Tesista realizando el ensayo de peso específico del agregado fino	67
Figura 18: Tesista en la elaboración de probetas.	67
Figura 19: Probetas en estado fresco	68
Figura 20: Tesista y asesor en el ensayo de resistencia a compresión	68

RESUMEN

El objeto del estudio fue determinar la variación de la resistencia a compresión de un concreto f'c=210 kg/cm² al reemplazar agregado grueso en un 20% por agregado de concreto reciclado (AGR) provenientes de concreto de resistencias de f'c=175 kg/cm², f'c= 210 kg/cm² y f'c=280 kg/cm². En el estudio de determinaron las propiedades físicas y mecánicas de los agregados naturales y los agregados del agregado reciclado. Se realizaron 120 probetas de concreto, clasificadas en cuatro tratamientos de estudio cada tratamiento con 30 probetas, comprobando su resistencia a compresión a la edad de 7, 14 y 28 días de curado, el tratamiento I - Patrón, el tratamiento II - 20% de AGR f'c=175 kg/cm², el tratamiento III - 20% de AGR f'c=210 kg/cm² y el tratamiento IV - 20% de AGR f'c=280 kg/cm². A los 28 días, se obtuvo para los ensayos de resistencia a compresión de: Patrón f'c = 250.28 kg/cm² y para los tratamientos con reemplazo de 20% AGR 175 kg/cm² f'c = 263.85 kg/cm², 20% AGR 210 kg/cm² f'c = 276.74 kg/cm² y 20% AGR 280 kg/cm² f'c = 294.61 kg/cm². Concluyendo que todos los tratamientos de reemplazo varían en la resistencia a compresión respecto al tratamiento patrón aumentando en más del 5% para el tratamiento II, en más del 10% para el tratamiento III y en más del 15% para el tratamiento IV.

Palabras clave:

Concreto, variación, resistencia a la compresión, agregados naturales, agregados reciclados

ABSTRACT

The objective of the study was to determine the variation in the compressive strength of a concrete (f'c=210 kg/cm²) by replacing 20% of coarse aggregate with recycled concrete aggregate (RCA) from concrete with strengths of f'c=175 kg/cm², f'c=210 kg/cm², and f'c=280 kg/cm². The study determined the physical and mechanical properties of natural aggregates and recycled aggregates. 120 concrete test specimens were made, classified into four study treatments, each treatment with 30 test specimens, checking their compressive strength at the age of 7, 14 and 28 days of curing, treatment I - Pattern, treatment II - 20% of AGR f'c=175 kg/cm², treatment III - 20% of AGR f'c=210 kg/cm² and treatment IV - 20% of AGR f'c=280 kg/cm². At 28 days, the following were obtained for the compressive strength tests: Pattern f'c = 250.28 kg/cm² and for the treatments with 20% AGR replacement 175 kg/cm² f'c = 263.85 kg/cm², 20% AGR 210 kg/cm^2 f'c = 276.74 kg/cm^2 and 20% AGR 280 kg/cm^2 f'c = 294.61 kg/cm^2 . Concluding that all replacement treatments vary in compressive strength with respect to the standard treatment, increasing by more than 5% for treatment II, by more than 10% for treatment III and by more than 15% for treatment IV.

Keywords:

Concrete, variation, compressive strength, natural aggregates, recycled aggregates

CAPITULO I. INTRODUCCIÓN

1.1. Planteamiento del problema

Al ser la industria de la construcción causante del 23% de la contaminación del aire, el 40% de la contaminación del agua potable y aporta el 50% de los residuos depositados en vertederos, por tanto, contar con la ayuda de los involucrados en las distintas etapas del ciclo de una obra de construcción, desde la extracción de materias primas hasta la demolición de un edificio, crea estrategias para prevenir y minimizar el impacto ambiental. (Granda, C, 2023)

Como el concreto es el material más empleado en proyectos de infraestructura debido a su versatilidad, durabilidad y resistencia, su producción conlleva el consumo intensivo de recursos naturales, especialmente de agregados gruesos.

La reutilización del concreto demolido como agregado grueso reciclado en nuevas mezclas de concreto, reduce la demanda de áridos naturales y contribuye a la gestión responsable de los residuos de concreto.

Cuantificar la calidad del concreto reciclado como agregado no es solo un requisito técnico, sino una garantía de seguridad estructural, sostenibilidad ambiental y cumplimiento normativo (como las ASTM o las NTP), control de durabilidad del concreto nuevo y la optimización del diseño de mezclas. Además, permite aprovechar de forma efectiva los residuos, transformándolos en recursos valiosos para nuevas construcciones. (Silva, R. V., de Brito, J., & Dhir, R. K.. 2019)

Esta investigación propone una opción sustentable e innovadora en los materiales de construcción, reciclando el concreto con diferentes resistencias y reutilizándolo como agregado, el cual tiene que pasar por un proceso de trituración y una debida preparación del material que vaya acorde con la normativa del concreto.

1.2. Formulación del problema

¿En cuánto varía la resistencia a compresión de un concreto de f'c=210 kg/cm² al reemplazar el agregado grueso en un 20% por concreto reciclado de f'c=175 kg/cm², f'c=210 kg/cm² y f'c=280 kg/cm²?

1.3. Hipótesis

La variación de la resistencia a compresión de un concreto de f'c = 210 kg/cm², al reemplazar un 20% del concreto reciclado en el agregado grueso de diferentes f'c, aumenta en más del 5% para el reemplazo del agregado reciclado de un concreto f'c = 175 kg/cm², aumenta en más del 10% para el reemplazo del agregado reciclado de un concreto f'c = 210 kg/cm² y aumenta en más del 15% para el reemplazo del agregado reciclado de un concreto f'c = 280 kg/cm²

1.4. Justificación de la investigación

El estudio aporta conocimiento sobre la relación entre el porcentaje de reemplazo de ARC y la variación de la resistencia a compresión, constituyéndose como referencia para futuras investigaciones sobre resistencia y vida útil del concreto reciclado. De esta manera, se fortalece el campo de la investigación en materiales de construcción y se incentiva la formación de profesionales comprometidos con la innovación y la sostenibilidad.

Además, los resultados pueden servir de base para la actualización de normas técnicas en el Perú y otros países en desarrollo, donde aún existe resistencia al uso de materiales reciclados en estructuras de concreto. Al generar confianza en la ingeniería civil respecto al empleo de agregado reciclado, se promueve la aceptación social de este recurso, reduciendo la percepción de riesgo y aumentando su implementación en proyectos reales.

1.5. Delimitación de la investigación

Se cuantificó la variación de la resistencia a la compresión que tiene el concreto f'c=210 kg/cm² usando un 20% de agregado reciclado en el agregado grueso, con el uso del cemento portland tipo I, agregado fino y agregado grueso (de la cantera La Victoria - Cajamarca) los cuales se usaron para elaborar el diseño del concreto. El concreto reciclado se

trabajó con 3 tipos de resistencias f'c=175 kg/cm², f'c= 210 kg/cm² y f'c= 280 kg/cm².

Para obtener las resistencias del concreto reciclado requeridas, se recolectó probetas ensayadas de distintas investigaciones que se encontraban en el rango del ± 5% del f'c=175 kg/cm², f'c= 210 kg/cm² y f'c= 280 kg/cm², respectivamente; posteriormente trituradas y usadas como sustituto del 20% del agregado grueso para formar el concreto de f'c=210 kg/cm².

Se hizo la selección del 20% de reemplazo del agregado reciclado en el agregado grueso, basado en los antecedentes teóricos que, si bien trabajan con rangos de reemplazo del 0% al 100%; en las recomendaciones sugieren trabajar un porcentaje de reemplazo del 20% al 30%

Se estudió la evolución de la resistencia a la compresión del concreto se realizó a los 7, 14 y 28 días de curado.

1.6. Limitaciones

La investigación no realizó estudios de flexión, ni durabilidad del concreto, ni análisis químicos de los agregados naturales y reciclados.

1.7. Objetivos

1.7.1. Objetivo general

Determinar la variación de la resistencia a compresión de un concreto f'c=210 kg/cm² al reemplazar agregado grueso en un 20% por concreto reciclado de f'c=175 kg/cm², f'c= 210 kg/cm² y f'c= 280 kg/cm².

1.7.2. Objetivos específicos

- Determinar variación de la resistencia a compresión que tiene el concreto de f'c=210 kg/cm² al reemplazar agregado grueso en un 20% por concreto reciclado de f'c=175 kg/cm²
- Determinar variación de la resistencia a compresión que tiene el concreto de f'c=210 kg/cm² al reemplazar agregado grueso en un 20% por concreto reciclado de f'c=210 kg/cm²
- Determinar variación de la resistencia a compresión que tiene el concreto de f'c=210 kg/cm² al reemplazar agregado grueso en un 20% por concreto reciclado de f'c=280 kg/cm²

CAPITULO II. MARCO TEÓRICO

2.1. Antecedentes teóricos

2.1.1. A nivel Internacional

Cruz y Ramírez (2021) en su tesis "Evaluación de muestras del agregado grueso proveniente de residuos de concreto para producir nuevos concretos" analizan características, diseños de mezcla y resistencia a compresión de probetas elaborados con agregados naturales y agregados gruesos reciclados con una sustitución al 30%, 50% y 100%, conseguidos de muros de mampostería, concreto colado en sitio y elementos prefabricados. Se concluyó que, la resistencia a compresión de las mezclas con 30% de sustitución dieron resultados similares a los resultados con 100% de agregado natural y mientras aumentaba el % de agregado reciclado disminuye la resistencia, pero siempre mayores a la resistencia de 210 kg/cm²

Moreno, J, Ponce, C y Guerra, G (2024) en su investigación "Análisis de resistencia a compresión de concreto con sustitución parcial de agregado grueso por concreto reciclado triturado y plastificante", usaron el agregado producido por concreto demolidos, para reusarlo como agregado grueso en la fabricación de concreto nuevo. Se diseñaron 3 tipos de mezcla con dosificaciones diferentes, con el 100% de agregado grueso natural, con el 40% y con 40% con el aditivo plastificante. Concluyendo que, el concreto con agregado grueso reciclado en las proporciones aplicadas en la prueba incrementan las resistencias requeridas

2.1.2. A nivel Nacional

Alva, L y Asmat, K (2019) en su tesis "Influencia del reemplazo de agregado grueso por concreto reciclado sobre las propiedades de un concreto endurecido f'c = 175 kg/cm²", elaboraron un concreto reemplazando el agregado grueso por trozos de concreto reciclado 0%, 25%, 50%, 75% y 100%. Concluyendo que, es posible usar el agregado reciclado para elaborar concreto f'c=175 kg/cm² y que la mezcla de 50% agregado natural - 50% agregado reciclado es la que mejores propiedades obtuvo con respecto a las demás mezclas.

Alanya, J (2020) investigó sobre la "Elaboración de concreto f'c = 175 kg/cm² utilizando concreto reciclado de vías peatonales como agregado grueso, Huánuco 2019", evaluando con ensayos de laboratorio la calidad del material reciclado para elaborar un concreto f'c = 175 kg/cm², determinando las propiedades físicas de la piedra chancada y del concreto reciclado triturado (provenientes de material reciclado de vías peatonales) como parte del agregado grueso natural en 15%, 30% y 45%, , luego hizo diseños de mezcla y las probetas de concreto. Concluyendo que, los escombros generados en la demolición de vías peatonales en Huánuco pueden ser utilizados como agregado grueso, ya que logran superar su f'c de diseño.

Ramirez, Y. (2022) en su tesis "Resistencia a la compresión en sustitución del agregado grueso por el concreto reciclado en los porcentajes 30% y 40%, Huaraz-2022", utilizó el concreto reciclado de un pavimento rígido, luego procedió a trasladar el concreto a la chancadora y determinar la

resistencia de las probetas realizados con un porcentaje de sustitución de 30% y 40% reemplazando a la piedra chancada de 34", estudiando las propiedades mecánicas de los agregados, diseñando la mezcla para cada porcentaje de sustitución y ensayar las probetas a los 7,14, 21 y 28 días. Se concluye, que el concreto convencional obtuvo altas resistencias de roturas de las probetas superando la resistencia f'c = 210 kg/cm², a los 28 días se obtuvo una resistencia f'c = 395.4 kg/cm², con el reemplazo del 30 % se obtuvo una resistencia f'c = 345.5 kg/cm², y con el reemplazo del 40% se obtuvo un f'c = 258.6 kg/cm²

2.1.3. A nivel Local

Aguilar, D (2019) en su investigación "Variación de la resistencia a compresión de un concreto compactado f'c= 210 kg/cm² al usar agregado grueso reciclado", reemplazó el agregado grueso en 25, 50, 75 y 100% por agregado grueso reciclado para una resistencia f'c=210 kg/cm² y usarlo en pavimentos rígidos. A los 28 días, los concretos compactados con sustitución de 25% y 50% de agregado grueso reciclado aumentaron su resistencia a compresión en 6.04% y 1.47% respecto al concreto elaborado con agregados naturales. Mientras que, los concretos compactados con una sustitución de 75% y 100% de agregado grueso 7.64% 10.98% reciclado disminuyeron en respectivamente. Concluyendo que es posible sustituir el agregado grueso reciclado en un porcentaje de hasta 50% del total del agregado grueso natural para no afectar la resistencia a la compresión.

Cachay, L (2022) realizó la tesis "Variación de la resistencia a compresión de un concreto permeable de f'c = 210 kg/cm² con aditivo plastificante Sikament® 290N al reemplazar en diferentes porcentajes el agregado grueso por agregado de concreto reciclado", para determinar la variación de la resistencia a compresión de un concreto permeable con f'c 210 kg/cm², con aditivo plastificante y reemplazando al 10%, 20% y 30% agregado grueso por agregado de concreto reciclado (ACR). Concluyendo que, el mejor porcentaje de reemplazo es 20% ya que alcanzó una resistencia máxima de 251.61 kg/cm² siendo 15.52 % mayor que la resistencia promedio de las probetas sin ACR.

2.2. BASES TEÓRICAS

2.2.1. El concreto

Matallana, R (2019) define el concreto como la mezcla compuesta de agregados, material cementante, agua, aire y algunas veces aditivos, que, en su estado fresco, admite cualquier forma y, en estado endurecido, resiste esfuerzos mecánicos y es durable frente a diversas acciones Según la Norma E.060 (2019) el Concreto es la mezcla de cemento, agregado fino, agregado grueso y agua, con o sin aditivos.

2.2.2. Componentes del concreto

2.2.2.1. Cemento:

Es un conglomerante hidráulico, que se origina a partir del calcinado y molido de la mezcla de caliza y arcilla, que oportunamente amasado con agua, forma una pasta que fragua y endurece por medio de reacciones y procesos de hidratación y que, una vez endurecido conserva su resistencia y estabilidad a las condiciones ambientales. (OISS, 2019).

Según Cemex (2019) en Perú se fabrican cinco tipos de cemento portland para aplicaciones específicas, siguiendo las especificaciones normativas NTP 334.090 (Cementos Portland. Requisitos), basada en la ASTM C 150: Cemento Tipo I: uso general, Cemento Tipo II y Tipo II(MH): moderada resistencia a sulfatos y al calor de hidratación, Cemento Tipo III: altas resistencias iniciales, Cemento Tipo IV: bajo calor de hidratación y Cemento Tipo V: alta resistencia a sulfatos

2.2.2.2. Agua:

El agua dentro del concreto empieza a intervenir en el proceso de mezclado y termina con su curado. El agua que se usa tendrá que cumplir los requisitos de la NTP 339.088 (2019) que establece el uso de agua limpia y fresca, sin residuos de aceites, ácidos, álcalis, sales, limo, materias orgánicas, arcilla, algas o sustancias dañinas. Si en algunos casos se usa el agua de mezcla combinada, debe cumplir con los límites permisibles señalados en la Norma.

Dentro de la mezcla, el agua es la cantidad que se necesita en el concreto por unidad de volumen para que se hidraten las partículas del cemento y para proporcionar las condiciones de manejabilidad adecuada que permitan la aplicación y el acabado de este en el lugar de la colocación en el estado fresco.

2.2.2.3. Agregados:

Un agregado de construcción es un material granular que se obtiene a partir de la desintegración natural o artificial y que se utiliza para la formación de concreto. (Conar, 2023)

Según la NTP 400.037 (2018) basada en gradaciones, su granulometría se clasifica en agregado fino y agregado grueso

Agregado fino: se obtiene de la desintegración natural o artificial de las rocas. Y deberá retenerse en los tamices 9.5 mm (3/8") y No. 200 respectivamente, también cumplir los límites de la Norma. Su módulo de fineza estará entre el rango de 2.3 a 3.1

Agregado grueso: Se obtiene de piedra partida, grava natural o triturada. Debe retenerse en el tamiz 4.75 mm o N° 4, cumpliendo con los límites de la Norma. Sus fragmentos serán ser angular o semiangular; y para asegurar buena trabajabilidad su granulometría debe ser continua.

2.2.2.3.1 Reemplazos parciales para el agregado grueso: agregado reciclado

Los reemplazos de los agregados se utilizan como sustitutos de los naturales en la elaboración de concreto, mortero, pavimento, bases, elementos prefabricados, entre otros. (Conar, 2023)

Usar reemplazos de agregados es posible porque las propiedades de un tipo de agregado y otro son bastante parecidas en cuanto a la resistencia mecánica, composición y compactación. (Conar, 2023)

Algunos ejemplos de reemplazos son: agregados reciclados, agregados manufacturados, agregados sedimentarios.

La investigación trabajó con los reemplazos de agregados reciclados.

El concreto reciclado se produce rompiendo, removiendo y triturando el concreto existente al tamaño deseado.

El agregado de concreto reciclado (AGR) es el uso como agregado de un concreto que ha sido previamente usado en otra obra que fue demolida y en la industria no serían más que escombros. El concreto reciclado se caracteriza básicamente por contar con agregados de concreto reciclado, que, al mezclarse con cemento, agregados, agua obtienen un concreto de características físicas y mecánicas similares a las del concreto tradicional.

El mundo se produce 1 billón de toneladas de residuos de demolición anualmente y en promedio solo el 8% de estos residuos se reciclan, aunque en países como Alemania, Holanda y Reino Unido cerca del 20% de agregados reciclados se reutilizan.

La obtención de agregados de concreto reciclado se da como fruto de la trituración del concreto proveniente de la demolición de estructuras o del concreto sobrante de algunos procesos en que muchas veces se solidifica y se dispone como escombro.

El agregado de concreto reciclado (AGR) varía según el tipo de estructura de la cual provenga. Para obtener el agregado reciclado se:

- Separa los contaminantes: se extrae todo lo que no sea concreto
- Ruptura y transporte: transportar adecuadamente el concreto que se fragmentará en tamaño adecuados
- Trituración de fragmentos: el tamaño obtenido de la fragmentación dependerá de las maquinarias usadas.

2.2.3. Concreto con agregados reciclados

En la industria de la construcción los retos técnicos son permanentes. Por esto en la actualidad se hace necesario buscar la transformación de operaciones, entre ellas encontrar una materia prima que haga de la construcción una industria amigable ambientalmente generando el menor impacto ambiental posible. En esa línea, se ha encontrado que los agregados reciclados brindan una alternativa a la construcción de nuevas estructuras con la utilización de material de estructuras demolidas.

El concreto con agregados reciclados utiliza residuos de construcción y demolición triturados como sustituto parcial o total de los agregados naturales en la mezcla de concreto. Esto ofrece una opción sostenible para reducir el impacto ambiental de la industria de la construcción, al reutilizar materiales y disminuir la demanda de nuevos agregados.

2.2.4. La resistencia a compresión

La resistencia a la compresión es la principal característica mecánica del concreto. Se define como la capacidad para soportar una carga por unidad de área, y se expresa en términos de esfuerzo, generalmente en kg/cm², MPa y psi. (Cemex, 2019)

Con los resultados de las pruebas de resistencia a la compresión, se determina que la mezcla de concreto suministrada cumpla con los requerimientos de la resistencia de diseño (f'c) para una estructura determinada.

Los resultados de las pruebas de resistencia a partir de la elaboración de probetas, son usados con fines de control de calidad, aceptación del concreto o estimación de la resistencia del concreto en estructuras.

Las probetas, se elaboran y curan siguiendo los procedimientos descritos en probetas curadas de manera estándar según la norma NTP 339.033.

Para estimar la resistencia del concreto in situ, la norma NTP 339.034 fórmula procedimientos para las pruebas de curado en campo. Las probetas cilíndricas se someten a ensayo de acuerdo con el Método Estándar de prueba de resistencia a la compresión de probetas cilíndricas de concreto

Un resultado de prueba es el promedio de por lo menos 2 pruebas de resistencia curadas de manera estándar o convencional, elaboradas con la misma muestra de concreto, y sometidas a ensayo a la misma edad.

2.3. Definición de términos básicos

Agregado natural: material granular que se obtiene a partir de la desintegración natural y que se utiliza para la formación de concreto. (Conar, 2023)

Agregados reciclados: materiales que se obtienen a partir de residuos de construcción y demolición, triturados y procesados para ser utilizados como alternativa a los agregados naturales en la construcción (Conar, 2023)

Concreto: material compuesto por la mezcla de cemento, agregados, agua y a veces aditivos (Norma E.060, 2019)

Resistencia a compresión: es la capacidad para soportar una carga por unidad de área, y se expresa generalmente en kg/cm². (Cemex, 2019)

Variación: es el fenómeno propio de todos los procesos productivos que se observa en el momento de comparar lo real con lo deseado de ciertas características (Economipedia, 2023)

CAPITULO III. MATERIALES Y MÉTODOS

3.1. Descripción y ubicación geográfica del origen de los agregados

El agregado grueso corresponde a piedra chancada de procedencia aluvial, con un tamaño nominal máximo de ¾".

El agregado fino está conformado por arena de origen aluvial, cuyo tamaño nominal máximo es de 4.75 mm.

Los agregados empleados en esta investigación fueron extraídos de la cantera "La Victoria", situada a orillas del río Cajamarquino, en el distrito, provincia y departamento de Cajamarca, cuyas coordenadas son las siguientes:

Tabla 1: Coordenadas de la cantera "La Victoria"

Coordenadas UTM			
Norte	779874.22		
Este	9204998.75		
Zona	17 M		
Coordenadas geográficas			
Latitud	7° 11' 6.87"		
Longitud	78° 27' 57.14"		

Figura 1

Ubicación geográfica de la cantera "La Victoria"

3.2. Ubicación geográfica

La investigación se desarrolló en las instalaciones del laboratorio externo GUERSAN S.R.L., en la ciudad de Cajamarca, provincia de Cajamarca, departamento de Cajamarca.

3.3. Diseño de investigación

El diseño fue experimental porque se reemplazó el agregado grueso en un 20% por concreto reciclado de f'c=175 kg/cm², f'c=210 kg/cm² y f'c=280 kg/cm²; para evaluar la variación de la resistencia a compresión que tiene en un concreto f'c=210 kg/cm²

3.4. Método de investigación

La investigación es de tipo cuantitativo, ya que se prueba la hipótesis planteada midiendo las variables estudiadas.

3.5. Variables de estudio

3.5.1. Variable Independiente

- Agregado reciclado obtenido de un concreto con resistencia a compresión f'c=175 kg/cm².
- Agregado reciclado obtenido de un concreto con resistencia a compresión f'c=210 kg/cm²
- Agregado reciclado obtenido de un concreto con resistencia a compresión f'c=280 kg/cm²

3.5.2. Variable Dependiente

Resistencia a compresión de un concreto f'c=210 kg/cm²

3.6. Población de estudio

Probetas de concreto

3.7. Muestra

La investigación, consideró la siguiente cantidad de probetas para los ensayos:

Tabla 2: Cantidad de probetas para ensayos de resistencia a compresión

Edad de	Mezcla f'c= 210 kg/cm ² con dosificación				Sub
Ensayo	Patrón	20 % de agregado grueso reciclado			total
(días)	ration .	f'c= 175 kg/cm ²	f'c= 210 kg/cm ²	f'c= 280 kg/cm ²	totai
7	10	10	10	10	40
14	10	10	10	10	40
28	10	10	10	10	40
TOTAL				120	

3.7.1. Unidad de análisis y unidad de observación

Cada probeta para ensayar

3.8. Tratamientos de estudio

Los tratamientos que se estudiaron en la investigación fueron:

- I: Diseño patrón, probetas sin reemplazo
- II: mezcla que tiene un reemplazo del 20% de agregado grueso reciclado de un concreto f'c= 175 kg/cm²
- III: mezcla que tiene un reemplazo del 20% de agregado grueso reciclado de un concreto f'c= 210 kg/ cm²
- IV: mezcla que tiene un reemplazo del 20% de agregado grueso reciclado de un concreto f'c= 280 kg/ cm²

3.9. Técnicas e instrumentos de recopilación de información

3.9.1. Obtención del agregado de concreto reciclado

El concreto reciclado se trabajó con 3 tipos de resistencias f'c=175 kg/cm², f'c= 210 kg/cm² y f'c= 280 kg/cm²

- Recolección y clasificación:

Se recolectó probetas previamente ensayadas (a los 28 días); de distintas investigaciones que se encontraban en el rango del ± 5% del f'c=175 kg/cm², f'c= 210 kg/cm² y f'c= 280 kg/cm².

- Trituración:

Posteriormente trituradas, seleccionando las muestras que pasan la malla de 3/4" y usadas como sustituto del 20% del agregado grueso para formar el concreto de f'c=210 kg/cm².

- Propiedades:

Se evalúan las propiedades de los agregados reciclados, para asegurar su idoneidad para su uso en nuevas mezclas.

3.9.2. Técnicas de ensayo en laboratorio

Para los ensayos realizados en el laboratorio, se tomó como guía las NTP y ASTM para su adecuado desarrollo, ya que son la fuente más confiable para investigar el comportamiento que tendrá el concreto. Los ensayos usados, fueron:

1. Peso unitario suelto: NTP 400.017 y NTP 400.037

Método:

- La muestra de agregado se seca en el horno durante 24 h, con una temperatura ± 11 °C. La muestra tendrá mayor volumen que el del recipiente
- Al sacar la muestra del horno, se llenó el recipiente, vertiéndola de una altura de 5 cm sobre el borde superior del recipiente.
- La capa superficial del agregado se niveló con ayuda de una varilla que enrasó el borde superior del recipiente
- Se anota: valor de masa del recipiente + contenido de agregado
- Para calcular el volumen real del recipiente, se usó el volumen de agua del recipiente llenado con agua.

Materiales:

- Muestras de:

agregado grueso.

agregado fino.

agregado reciclado 175 kg/cm²

agregado reciclado 210 kg/cm²

agregado reciclado 280 kg/cm²

Equipo

- Báscula con aproximación de 0.01 gr.
- Cucharón
- Recipiente
- Varillas de apisonado
- Horno 110°C ± 5°C

2. Peso unitario compactado: NTP 400.017 y NTP 400.037

Método:

- La muestra de agregado se seca en el horno durante 24 h, a una temperatura ± 11 °C. La muestra tendrá mayor volumen que el del recipiente
- Sacando la muestra del horno, se llena el recipiente en tres partes, compactando el material con la varilla y con 25 golpes cada capa sin penetrar en la capa previamente compactada.

- Se niveló la capa superficial del agregado enrasando el borde superior del recipiente con una varilla
- Se anota el valor: masa del recipiente + contenido de agregado
- Para calcular el volumen real del recipiente, se usa el volumen de agua del recipiente llenado con agua

Materiales:

- Muestras de:

agregado grueso.

agregado fino.

agregado reciclado 175 kg/cm²

agregado reciclado 210 kg/cm²

agregado reciclado 280 kg/cm²

Equipo

- Báscula con aproximación de 0.01 gr.
- Cucharón
- Recipiente
- Varillas de apisonado
- Horno 110°C ± 5°C
- 3. Peso específico y absorción (%): NTP 400.021

Método realizado para el agregado grueso:

- La muestra se secó en un horno a temperatura 110 ± 5 °C, y se enfrió a temperatura ambiente por 1 h.
- La muestra se sumerge en agua por 24 ± 4 h, y luego a retirar

- Se coloca un trapo absorbente bajo la muestra y con otro trapo se secó el material hasta tener un estado SSS y se halló la masa.
- Dentro de la canastilla se vierte la muestra para calcular la masa aparente de muestra sumergida en el agua, agitando el recipiente sumergido.
- La muestra se secó a una temperatura de 110 ± 5°C por 24 ± 4
 h., y se puso a enfriar entre 1 h a 3 h., para el cálculo de la masa.

Materiales:

- Muestras de:

agregado grueso.

agregado reciclado 175 kg/cm²

agregado reciclado 210 kg/cm²

agregado reciclado 280 kg/cm²

Equipo

- Báscula con aproximación de 0.01 gr.
- Juego de tamices
- Canastilla de alambre de 3.5 mm.
- Horno 110°C ± 5°C

Método realizado para el agregado fino:

 La muestra se secó en horno a temperatura 110 ± 5 °C, y se enfrió a temperatura ambiente por 1 h.

- La muestra sumergida en agua durante 24 ± 4 h, luego la retirarla
- Se vació el exceso de agua, cuidando la pérdida de finos.
- Se pone la muestra sobre una superficie no absorbente a temperatura ambiente, hasta lograr su flujo libre.
- Se hizo la prueba de humedad superficial: Se coloca el molde en una superficie no absorbente suave con el diámetro mayor hacia abajo y se agregó una porción de agregado fino suelto parcialmente hasta el ras y se amontonó material adicional encima de la parte superior del molde. Luego, se apisonó el agregado fino en el molde con 25 golpes con la barra compactadora, cada golpe se hizo aprox. a 5 mm por encima de la superficie superior del agregado fino. Ajustando la altura inicial de la nueva elevación de la superficie después de cada golpe distribuidos sobre la superficie. Se retiró la arena suelta de la base y se levantó el molde verticalmente. (Si hubiese humedad en la superficie, el agregado fino conservará la forma moldeada), la ligera caída del agregado fino moldeado indica que se ha llegado a un estado de superficie seca y se continúa el ensayo.
- Se llena la fiola parcialmente con agua, introduciendo 500±10g
 de agregado fino SSS, adicionando agua al 90% de capacidad,
 agitando la fiola para eliminar las burbujas de aire visibles.
- Se llevó el nivel de agua de fiola a su capacidad de calibración.
- Se determina la masa total de la fiola, la muestra y el agua.
- La muestra de la fiola se secará en el horno a (t) 110 ± 5°C, y se dejó enfriar en aire a (t) ambiente por 1 ± ½ h, y se halló la masa.

- Finalmente, se calculó la masa de la fiola llena con agua.

Materiales:

- Muestras de agregado fino.

Equipo

- Báscula con aproximación de 0.01 g
- Fiola
- Molde y barra compactadora.
- Horno 110°C ± 5°C

4. Contenido de humedad (%): NTP 339.185

Método:

Se procedió a registrar el peso de la tara, luego se midió el peso de la muestra húmeda junto con esta. Posteriormente, la muestra fue sometida a secado en una estufa a una temperatura de 105 °C durante un periodo de 24 horas. Una vez transcurrido este tiempo, se realizó el pesaje de la muestra seca con la tara, lo que permitió obtener el peso del agua evaporada y del material seco. Finalmente, con estos datos se determinó el contenido de humedad.

Materiales:

Muestras de:

agregado grueso.

agregado fino.

agregado reciclado 175 kg/cm²

agregado reciclado 210 kg/cm²

agregado reciclado 280 kg/cm²

Equipo

- Báscula con aproximación de 0.01 gr.
- Taras
- Horno 110°C ± 5°C
- 5. Material más fino que pasa el tamiz N°200: NTP 400.018

Método:

- Las muestras fueron previamente secadas por 24 h, a una temperatura constante de 110 ± 5°C
- Se pesó la cantidad a ensayar, tomando de referencia la tabla.

Tabla 3: Cantidad mínima de muestra a ensayar

T.M.N. del agregado	Cantidad mínima (g)
4.75 mm (N°4) o más pequeño	300
Mayor que 4.75 mm (N°4) a 9.5 mm (³/8")	1000
Mayor que 9.5 mm (3/8") a 19 mm (3/4")	2500
Mayor a 19 mm (¾")	5000

Fuente: NTP 400.018:2018

 Luego, se colocaron en un recipiente y se les añadió la cantidad de agua necesaria para permitir su agitación y así lograr la separación de las partículas finas. Finalmente, el material retenido en los tamices se volvió a someter a un secado de 24 horas a 110 ± 5 °C, para posteriormente determinar su masa.

Materiales:

- Muestras de:

agregado grueso.

agregado fino.

agregado reciclado 175 kg/cm²

agregado reciclado 210 kg/cm²

agregado reciclado 280 kg/cm²

Equipo

- Báscula con aproximación de 0.01 g
- Taras
- Horno 110°C ± 5°C
- Tamices (No. 200 y No. 16)
- 6. Ensayo de abrasión: NTP 400.019

Método:

 La muestra para ensayar se coloca junto a la carga dentro de la Máquina "Los Ángeles", rotándola 500 revoluciones a una velocidad de 33 rpm

- Se descargó el material de la máquina y se separó preliminarmente la muestra sobre un tamiz de mayor al No. 12.
- La porción fina fue tamizada por el tamiz 1,70 mm.
- El material más grueso se lavó usando la malla No 12 y secó al horno a 110 ± 5°C, y se determinó la masa con una aproximación a 1g

Materiales:

- Muestras de:

agregado grueso.

agregado reciclado 175 kg/cm²

agregado reciclado 210 kg/cm²

agregado reciclado 280 kg/cm²

Equipo

- Báscula con aproximación de 0.01 g
- Tamices
- Máquina de Los ángeles
- Esferas de acero

7. Análisis granulométrico de agregado grueso: NTP 400.012

Procedimiento:

Las muestras se sometieron a un secado a una temperatura de 110 ± 5 °C. Posteriormente, los tamices fueron colocados en el orden correspondiente y se agitaron al incorporar la muestra. El ensayo finalizó cuando, transcurrido un minuto, el material retenido no presentó un pasante superior al 1% en peso. Finalmente, el material retenido en cada tamiz y en la cazoleta fue pesado, procediéndose luego al procesamiento de los datos.

Materiales:

Muestras de:

agregado grueso.

agregado fino.

agregado reciclado 175 kg/cm²

agregado reciclado 210 kg/cm²

agregado reciclado 280 kg/cm²

Equipo

- Balanza con aproximación de 0.01 gr.
- Horno 110°C ± 5°C
- Juego de tamices.

Elaboración y curado de probetas de concreto en laboratorio:
 NTP 339.183

Método para elaborar la mezcla:

El concreto fue mezclado en un trompo, considerando tandas para la elaboración de seis probetas y un 10% adicional como exceso. Con la mezcla obtenida se realizó la prueba de asentamiento correspondiente a un diseño de concreto con *slump* de 3" a 4", registrándose además la temperatura de cada tanda. Las probetas fueron elaboradas en el mismo lugar destinado para su almacenamiento, colocando los moldes sobre una superficie rígida y nivelada. La mezcla se vació en tres capas, aplicando 25 golpes de compactación por cada una, y tras la consolidación del concreto se procedió al enrasado o nivelado de la superficie, finalizando el proceso con el acabado mediante el uso de una plancha.

Procedimiento para elaborar las probetas:

- Se almacenaron las probetas.
- Se las desencofra pasadas 24 ± 8 h después del vaciado
- Las probetas fueron colocadas en un cilindro con agua a (t) de
 23 ± 2°C, para curarlas en las edades de 7, 14 y 28 días

Materiales:

- Agregado grueso.
- Agregado fino.
- 20% de agregado reciclado f'c=75 kg/cm²
- 20% de agregado reciclado f´c=210 kg/cm²
- 20% de agregado reciclado f'c=280 kg/cm²
- Cemento
- Agua

Equipo

- Báscula con aproximación de 0.01 g
- Trompo
- Varilla compactadora
- Moldes cilíndricos.
- Cono de Abrams
- Herramientas pequeñas.
- Martillo de goma
- Método de ensayo para determinar la densidad, rendimiento y contenido de aire del concreto: NTP 339.046

Método:

Se obtuvo la mezcla de concreto en estado fresco y posteriormente se vertió en moldes cilíndricos que sirvieron como recipientes de conformación. Una vez elaboradas las probetas, conforme a lo indicado en el ítem (8), y tras la limpieza externa de los moldes, se procedió a su pesaje con el fin de determinar con precisión la masa, descontando el peso del molde. Finalmente, una vez endurecido el concreto, cada probeta fue nuevamente pesada para establecer su masa correspondiente.

Materiales:

Mezcla de concreto

Equipo

- Báscula con aproximación de 45 g
- Mazo
- Varilla compactadora
- Moldes cilíndricos
- Herramientas pequeñas
- Cucharón.

10. Ensayo para la resistencia a compresión del concreto, en muestras cilíndricas: NTP 339.034

Método:

Las probetas fueron retiradas de los cilindros en los que se encontraban en proceso de curado y trasladadas a la máquina de ensayo, donde se alinearon sus ejes con el centro de aplicación de la carga en el bloque de rotura. Previamente, se verificó que el indicador de carga estuviera en cero. Luego, se aplicó una carga continua y sin interrupciones, la cual fue

incrementándose hasta que el indicador mostró una disminución constante y las probetas evidenciaron el patrón característico de fractura. Finalmente, se registró la carga máxima alcanzada por cada probeta durante el ensayo.

Material:

- Probetas (30) con tratamiento I
- Probetas (30) con tratamiento II
- Probetas (30) con tratamiento III
- Probetas (30) con tratamiento IV
 Equipo
 - Máquina de compresión uniaxial

3.9.3. Instrumento de recolección de información

Figura 2
Ficha de toma y recolección de datos

FICHA DE TOMA Y RECOLECCIÓN DE DATOS

Tesis: VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR AGREGADO GRUESO EN UN 20%

Tesista: Bach. Villena Pérez, Moisés II

Asesor: Dr. Ing. Mosqueira Moreno, Miguel Angel

Datos para el cálculo de la resistencia a compresión (ASTM C39/NTP 339.034) por probeta

	TIPO : A							
DESCRIPCIÓN	EDAD (Días)	Øinf (mm)	Øsup (mm)	Øpromedi o (cm)	ÁREA (cm²)	PESO (g)	CARGA ÚLTIMA (kN)	fc (kg/cm²)
В	C	D	E	F	G	Н	I	J
			<u> </u>					

La "Ficha de toma y recolección de datos", es un instrumento de recolección de información de manera secuencial que ayudaron para calcular la resistencia a compresión. Su llenado fue así:

- A. "Tipo": se llena con el tratamiento trabajado.
- B. "Descripción", se llena con la codificación usada por cada probeta.
- C. "Edad (días)", puede ser 7, 14 o 28 días.
- D. "Φ inf (mm)", fue la medida promedio de 4 lecturas del diámetro inferior de la probeta en estado endurecido.
- E. "Φ sup (mm)", fue la medida promedio de 4 lecturas del diámetro superior de la probeta en estado endurecido.
- F. "Φ promedio (cm)", fue la medida promedio del diámetro inferior y superior de la probeta en estado endurecido
- G. "Área (cm²)", el área de la probeta se calculó este valor con la fórmula:

$$A_p(cm^2) = \frac{\pi \times (\emptyset cm)^2}{4}$$

- H. "Peso (g)", se pesó al concreto en estado endurecido, cuando ya estaba desencofrado.
- I. "Carga última (kN)", este valor lo da la Máquina de compresión uniaxial, al ensayar cada probeta aplicando una carga.
- J. "f'c (kg/cm²)" se consideró el diseñado, f'c=210 kg/cm²

$$f'c\ (kg/cm^2) = \frac{\textit{Carga máxima de rotura (kN)} \times 101.972}{\textit{A}_p(\textit{cm}^2)}$$

3.10. Técnicas para el procesamiento y análisis de información

Con el ANOVA se realizó el procesamiento de la información cuantitativa, de un factor por ser un método estadístico que analiza la diferencia de las medias de los cuatros tratamiento estudiados.

Se usó la prueba de rango Tukey y se analizó las gráficas de datos. Usando el programa Minitab 18, se procesó la información

Se usó el método de Tukey, ya que crea intervalos de confianza para cada una de las diferencias en parejas entre las medias de los niveles de los factores mientras controla la tasa de error por familia en un nivel especificado. (Soporte de Minitab 18, 2022)

Se trabajó con las gráficas de datos para el ANOVA de un solo factor:

- Gráfica de cajas

El uso de esta gráfica proporciona un resumen gráfico de la distribución de cada muestra. Permite comparar de manera sencilla la forma, tendencia central y variabilidad de las muestras. También, identifica cualquier posible valor atípico. (Soporte de Minitab 18, 2022)

Como en la investigación se trabajó con 120 probetas, usar el gráfico de cajas representa un beneficio ya que estas gráficas funcionan mucho mejor cuando el tamaño de la muestra es mayor a 20

Gráfica de valores individuales

El uso de esta gráfica nos enseñó los valores individuales en cada muestra, haciendo fácil compararlos, analizando en cada círculo los valores típicos y atípicos. Estas gráficas funcionan mejor cuando el tamaño de la muestra es menor que 50. (Soporte de Minitab 18, 2022)

- Gráfica de intervalo

Esta gráfica de intervalo nos ayudó mostrando la media y el intervalo de confianza para cada grupo. Las gráficas de intervalo evidencian:

Cada punto representa una media de muestra.

Cada intervalo es un IC individual de 95% de la media de un grupo

Es importante mencionar que esta gráfica no determina si las diferencias son estadísticamente significativas, para determinar esto, se evaluó los IC de las diferencias de las medias.

Los resultados obtenidos, fueron recopilados y analizados con la Guía para la evaluación de resultados de ensayos de resistencia del concreto (ACI 214 RS-11, 2017), porque proporciona los estándares de control de un concreto f'c ≤ 350 kg/cm².

Tabla 4: Estándares para el control del concreto para f'c ≤ 35 Mpa

Clase de	Desviación estándar para los diferentes estándares de control, (kg/cm²)				
operación	Excelente	Muy bueno	Bueno	Regular	Malo
Tandas de ensayo	Menor a	14.1 a 17.6	17.6 a	21.1 a 24.6	Mayor a
de laboratorio	14.1	14.1 a 17.0	21.1	21.1 d 24.0	24.6

Fuente: ACI 214-77 (2017)

Se hizo el ANOVA para:

Resistencia a compresión:

Trabajando con el Factor: resistencia a la compresión y los tratamientos juntos: 0% reemplazo., 20% reemplazo AG 175 kg/cm², 20% reemplazo

AG 210 kg/cm², 20% reemplazo AG 280 kg/cm²; se optó por procesar los datos por cada edad de ensayo: 7 días, 14 días y 28 días. Obteniendo así tres análisis ANOVA con una muestra de 40 probetas para cada análisis.

El método utilizado ANOVA, consideró:

Hipótesis nula Todas las medias son iguales

Hipótesis alterna No todas las medias son iguales

Nivel de significancia $\alpha = 0.05$

3.11. Resultados estadísticos de la resistencia a compresión

3.11.1. ANOVA de la resistencia a compresión a los 7 días

Tabla 5: Análisis de la varianza de la resistencia a compresión a los 7 días

Fuente de	GL	SC	MC	Valor	Valor
variabilidad		Ajust.	Ajust.	F	Р
Tratamiento	3	9335	3111.69	92.34	0.000
Error	36	1213	33.70		
Total	39	10548			

Si el Valor P (valor de probabilidad) es:

(0.01<P<0.05) = significación estadística

(P<0.01) = alta significación estadística

(P>0.05) no hay diferencia estadística

Tabla 6: Medias de la resistencia a compresión a los 7 días

Tratamiento	No.	Media	Desv.	IC de 95%
		(kg/cm²)	Est.	
Patrón	10	191.63	5.98	(187.91; 195.35)
20% AGR 175 kg/cm²	10	202.71	3.41	(198.99; 206.44)
20% AGR 210 kg/cm²	10	222.21	7.39	(218.48; 225.93)
20% AGR 280 kg/cm²	10	230.13	5.73	(226.41; 233.85)
Destries	-iántá	nder earlines	la - E 00.4	02

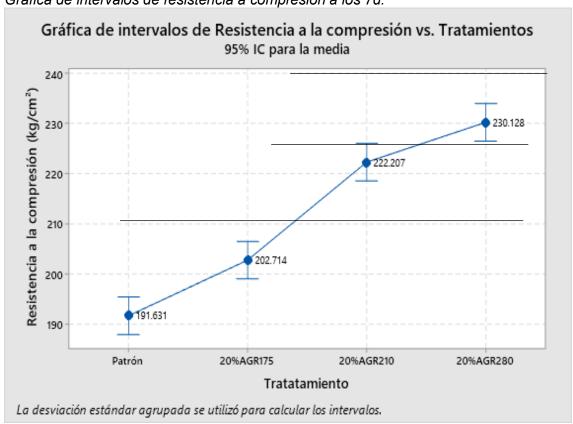
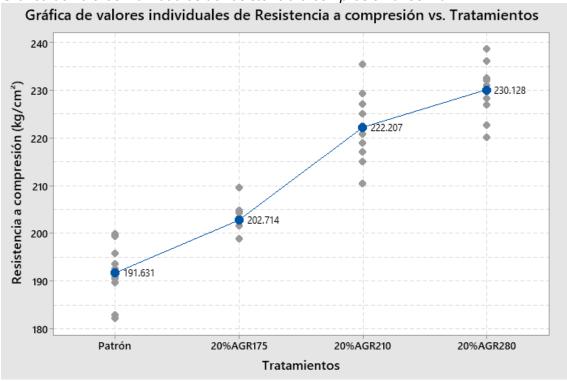

Desviación estándar agrupada = 5.80493

Tabla 7: Información agrupada de resistencia a compresión, con método Tukey


Tratamiento	No.	Media	Agrupación
(orden de mérito)		(kg/cm²)	
20% AGR 280 kg/cm ²	10	230.13	Α
20% AGR 210 kg/cm²	10	222.21	В
20% AGR 175 kg/cm²	10	202.71	С
Patrón	10	191.63	D

Las medias que no comparten una letra son significativamente diferentes.

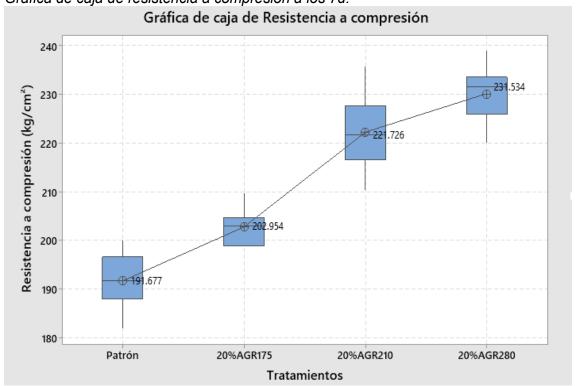

Figura 3Gráfica de intervalos de resistencia a compresión a los 7d.

Figura 4Gráfica de valores individuales de resistencia a compresión a los 7 d.

Figura 5 *Gráfica de caja de resistencia a compresión a los 7d.*

3.11.2. ANOVA de la resistencia a compresión a los 14 días

Tabla 8: Análisis de la varianza de la resistencia a compresión a los 14 días

Fuente de	GL	SC	МС	Valor	Valor
variabilidad		Ajust.	Ajust.	F	Р
Tratamiento	3	14068	4689.34	113.47	0.000
Error	36	1488	41.33		
Total	39	15556			

Si el Valor P (valor de probabilidad) es:

(0.01<P<0.05) = significación estadística

(P<0.01) = alta significación estadística

(P>0.05) no hay diferencia estadística

Tabla 9: Medias de la resistencia a compresión a los 14 días

Tratamiento	No.	Media	Desv.	IC de 95%	
		(kg/cm²)	Est.		
Patrón	10	222.41	5.37	(218.29; 226.53)	
20% AGR 175 kg/cm ²	10	235.56	7.30	(231.43; 239.68)	
20% AGR 210 kg/cm ²	10	250.27	8.16	(246.15; 254.39)	
20% AGR 280 kg/cm ²	10	272.93	4.06	(268.80; 277.05)	
Desviación estándar agrupada = 6.42871					

Tabla 10: Información agrupada de resistencia a compresión, con método Tukey

Tratamiento	No.	Media	Agrupación
(orden de mérito)		(kg/cm²)	
20% AGR 280 kg/cm²	10	272.93	Α
20% AGR 210 kg/cm²	10	250.27	В
20% AGR 175 kg/cm²	10	235.56	С
Patrón	10	222.41	D

Las medias que no comparten una letra son significativamente diferentes.

Figura 6Gráfica de intervalos de resistencia a compresión a los 14 d.

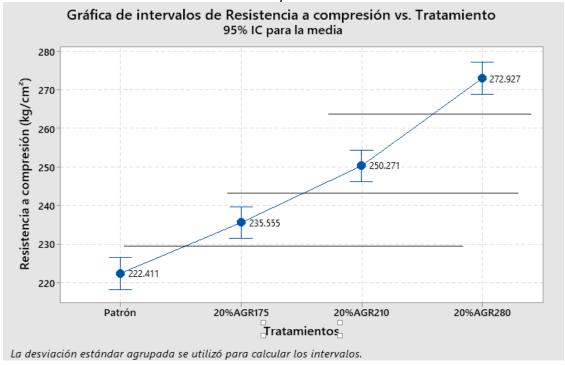


Figura 7

Gráfica de valores individuales de resistencia a compresión a los 14 d.

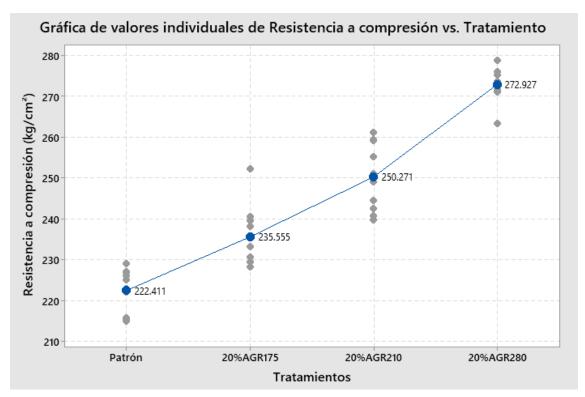
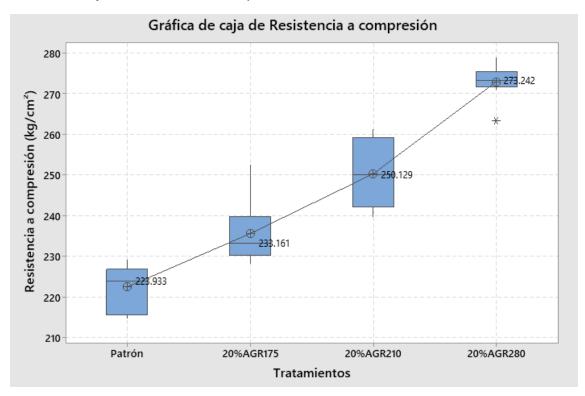



Figura 8

Gráfica de caja de resistencia a compresión a los 14d.

3.11.3. ANOVA de la resistencia a compresión a los 28 días

Tabla 11: Análisis de la varianza de la resistencia a compresión a los 28 días

Fuente de	GL	SC	MC	Valor	Valor
variabilidad		Ajust.	Ajust.	F	Р
Tratamiento	3	10702	3567.17	63.71	0.000
Error	36	2016	55.99		
Total	39	12717			

Si el Valor P (valor de probabilidad) es:

(0.01<P<0.05) = significación estadística

(P<0.01) = alta significación estadística

(P>0.05) no hay diferencia estadística

Tabla 12: Medias de la resistencia a compresión a los 28 días

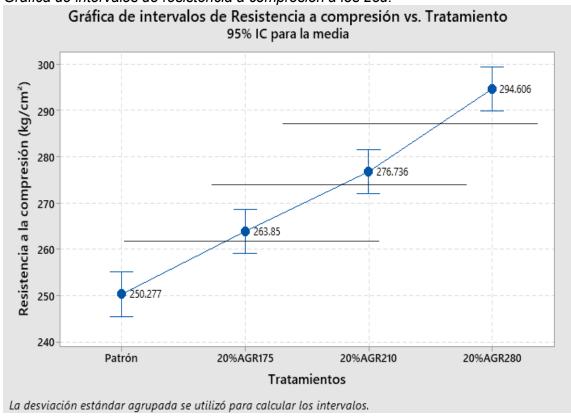

Tratamiento	No.	Media	Desv.	IC de 95%	
		(kg/cm²)	Est.		
Patrón	10	250.28	6.62	(245.48; 255.08)	
20% AGR 175 kg/cm²	10	263.85	6.38	(259.05; 268.65)	
20% AGR 210 kg/cm²	10	276.74	10.46	(271.94; 281.54)	
20% AGR 280 kg/cm²	10	294.61	5.48	(289.81; 299.41)	
Desviación estándar agrupada = 7.48293					

Tabla 13: Información agrupada de resistencia a compresión, con método Tukey

Tratamiento	No.	Media	Agrupación
(orden de mérito)		(kg/cm²)	
20% AGR 280 kg/cm²	10	294.61	А
20% AGR 210 kg/cm²	10	276.74	В
20% AGR 175 kg/cm²	10	263.85	С
Patrón	10	250.28	D

Las medias que no comparten una letra son significativamente diferentes.

Figura 9: Gráfica de intervalos de resistencia a compresión a los 28d.

Figura 10: Gráfica de valores individuales de resistencia a compresión a los 28 d.

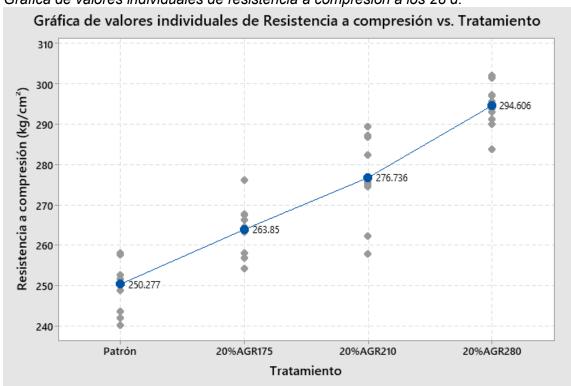
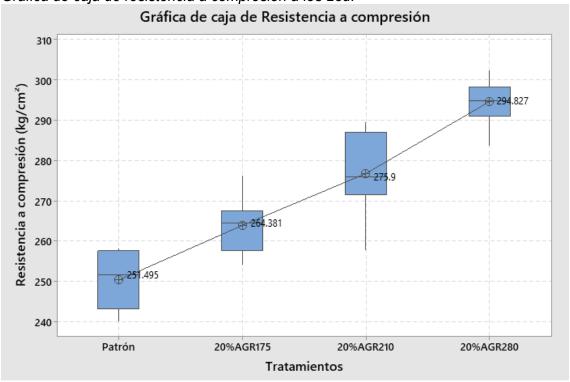



Figura 11: Gráfica de caja de resistencia a compresión a los 28d. Gráfica de caja de Resistencia a c

3.12. Comparación de los tratamientos en estudio

Figura 12Desarrollo de la resistencia a compresión a los 7d, 14d y 28d.

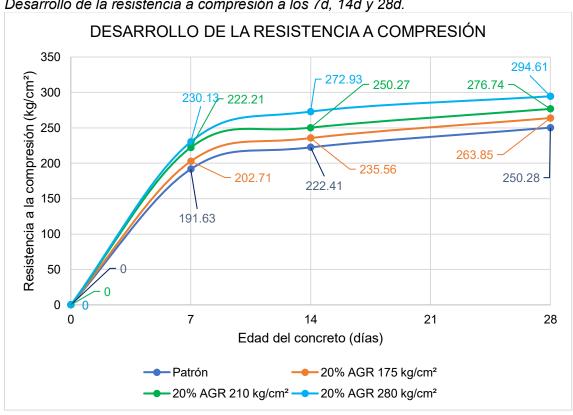


Tabla 14: Variación en la resistencia a compresión según tratamientos a 7d.

	I	II	III	IV
Tratamiento	Patrón	20% AGR	20% AGR	20% AGR
		175 kg/cm²	210 kg/cm ²	280 kg/cm²
Media (kg/cm²)	191.63	202.71	222.21	230.13
Variación (%)		+5.78	+15.96	+20.09

⁽⁺⁾ Aumento en la resistencia respecto al tratamiento I.

Tabla 15: Variación en la resistencia a compresión según tratamientos a 14d.

	I	II	III	IV
Tratamiento	Patrón	20% AGR	20% AGR	20% AGR
		175 kg/cm²	210 kg/cm ²	280 kg/cm ²
Media (kg/cm²)	222.41	235.56	250.27	272.93
Variación (%)		+5.91	+12.53	+22.71

⁽⁺⁾ Aumento en la resistencia respecto al tratamiento I

Tabla 16: Variación en la resistencia a compresión según tratamientos a 28d.

	I	II	III	IV
Tratamiento	Patrón	20% AGR	20% AGR	20% AGR
		175 kg/cm²	210 kg/cm ²	280 kg/cm ²
Media (kg/cm²)	250.28	263.85	276.74	294.61
Variación (%)		+5.42	+10.57	+17.71

⁽⁺⁾ Aumento en la resistencia respecto al tratamiento I

Tabla 17: Comparativo de los pesos volumétricos a los 7, 14 y 28 días.

	I	II	III	IV
Edad	Patrón	20% AGR	20% AGR	20% AGR
		175 kg/cm²	210 kg/cm ²	280 kg/cm ²
7 días	12488.90	12397.40	12488.10	12496.00
14 días	12528.30	12465.60	12575.10	12602.30
28 días	12551.50	12559.70	12624.80	12608.00

CAPITULO IV. ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1. Análisis, interpretación y discusión de resultados

4.1.1. Resistencia a compresión a los 7 días

La **tabla 5** tiene el valor P 0.000, significando que hay una alta significación estadística, por tanto, se acepta la hipótesis alternativa. Por lo que, los tratamientos tuvieron un efecto significativo en la resistencia a compresión a los 7 días

De acuerdo con la **tabla 6** que muestra la desviación estándar de los tratamientos y la **tabla 4**, que muestra los estándares de control para la desviación estándar, se tiene:

Para los tratamientos Patrón, 20% AGR 175 kg/cm², 20% AGR 210 kg/cm² y 20% AGR 280 kg/cm², las desviaciones estándar son 5.80, 3.41, 7.39 y 5.73 respectivamente, datos que se encuentran dentro del rango de "< a 14.1", considerando estos resultados como Excelentes

Con la **tabla 7** y la **figura 3**, se determinó que las diferencias de medias entre los tratamientos son:

El grupo A se conforma por 20% AGR 280 kg/cm² con una media de 230.13 kg/cm², el grupo B se conforma por 20% AGR 210 kg/cm² con una media de 222.21 kg/cm², el grupo C se conforma por 20% AGR 175 kg/cm² con una media de 202.71 kg/cm² y el grupo D se conforma por diseño Patrón con una media de 191.63 kg/cm², siendo significativamente diferentes entre sí. Para verificar, se dibujó en la **figura 3**, líneas horizontales que no se interceptan los tratamientos.

Comparando la **figura 4** y **figura 5**, de los tratamientos se encontró:

Patrón: como la media 191.63 < mediana 191.67, la distribución es asimétrica negativa; y su rango intercuartil de 8.71

20% AGR 175 kg/cm²: como la media 202.71 < mediana 202.954, la distribución es asimétrica negativa; y su rango intercuartil de 5.90

20% AGR 210 kg/cm²: como la media 222.20 > mediana 221.72, la distribución es asimétrica positiva; y rango intercuartil de 11.13

20% AGR 280 kg/cm²: como la media 230.13 < mediana 231.53, la distribución es asimétrica negativa; y su rango intercuartil de 7.61

Dado que todos los tratamientos tienen distribución asimétrica y muestras pequeñas, se verificó herramientas como la mediana y el rango intercuartílico:

Como la variable medida implica que valores más altos son deseables, el aumento en la mediana de 20% AGR 280 kg/cm² tiene mejores resultados.

4.1.2. Resistencia a compresión a los 14 días

La **tabla 8** tiene el valor P 0.000, significando que hay una alta significación estadística, por tanto, se acepta la hipótesis alternativa. Significa que, los tratamientos tuvieron un efecto significativo en la resistencia a compresión a los 14 días

De acuerdo con la **tabla 9** que muestra la desviación estándar de los tratamientos y la **tabla 4**, que muestra los estándares de control para la desviación estándar, se tiene:

Para los tratamientos Patrón, 20% AGR 175 kg/cm², 20% AGR 210 kg/cm² y 20% AGR 280 kg/cm², las desviaciones estándar son 5.37, 7.30, 8.16 y 4.06 respectivamente, datos que se encuentran dentro del rango de "< a 14.1", considerando estos resultados como Excelentes

Con la **tabla 10** y la **figura 6**, se determinó que las diferencias de medias entre los tratamientos son:

El grupo A se conforma por 20% AGR 280 kg/cm² con una media de 272.93 kg/cm², el grupo B se conforma por 20% AGR 210 kg/cm² con una media de 250.27 kg/cm², el grupo C se conforma por 20% AGR 175 kg/cm² con una media de 235.56 kg/cm² y el grupo D se conforma por diseño Patrón con una media de 222.41 kg/cm², siendo significativamente diferentes entre sí. Para verificar, se dibujó en la **figura 6**, líneas horizontales que no se interceptan los tratamientos.

Comparando la **figura 7** y **figura 8**, de los tratamientos se encontró:

Patrón: como la media 222.41 < mediana 223.93, la distribución es asimétrica negativa; y su rango intercuartil de 11.23

20% AGR 175 kg/cm²: como la media 235.56 > mediana 233.16, la distribución es asimétrica positiva; y su rango intercuartil de 9.45

20% AGR 210 kg/cm²: como la media 250.27 > mediana 250.13, la distribución es asimétrica positiva; y rango intercuartil de 17.09

20% AGR 280 kg/cm²: como la media 272.93 < mediana 273.24, la distribución es asimétrica negativa; y su rango intercuartil de 3.84

Dado que todos los tratamientos tienen distribuciones asimétricas y muestras pequeñas, se verificó herramientas como la mediana y el rango intercuartílico:

Como la variable medida implica que valores más altos son deseables, el aumento en la mediana de 20% AGR 280 kg/cm² tiene mejores resultados

4.1.3. Resistencia a compresión a los 28 días

La **tabla 11** tiene el valor P 0.000, significando que hay una alta significación estadística, por tanto, se acepta la hipótesis alternativa. Significa que, los tratamientos tuvieron un efecto significativo en la resistencia a compresión a los 28 días

De acuerdo con la **tabla 12** que muestra la desviación estándar de los tratamientos y la **tabla 4**, que muestra los estándares de control para la desviación estándar, se tiene:

Para los tratamientos Patrón, 20% AGR 175 kg/cm², 20% AGR 210 kg/cm² y 20% AGR 280 kg/cm², las desviaciones estándar son 6.62, 6.38, 10.46 y 5.48 respectivamente, datos que se encuentran dentro del rango de "< a 14.1", considerando estos resultados como Excelentes

Con la **tabla 13** y la **figura 9**, se determinó que las diferencias de medias entre los tratamientos son:

El grupo A se conforma por 20% AGR 280 kg/cm² con una media de 294.61 kg/cm², el grupo B se conforma por 20% AGR 210 kg/cm² con una media de 276.74 kg/cm², el grupo C se conforma por 20% AGR 175 kg/cm² con una media de 263.85 kg/cm² y el grupo D se conforma por diseño Patrón con una media de 250.28 kg/cm², siendo significativamente diferentes entre sí. Para verificar, se dibujó en la **figura 9**, líneas horizontales que no se interceptan los tratamientos.

Comparando la **figura 10** y **figura 11**, de los tratamientos se encontró:

Patrón: como la media 250.28 < mediana 251.50, la distribución es asimétrica negativa; y su rango intercuartil de 14.42

20% AGR 175 kg/cm²: como la media 263.85 < mediana 264.38 la distribución es asimétrica negativa; y su rango intercuartil de 9.86

20% AGR 210 kg/cm²: como la media 276.74 > mediana 275.90, la distribución es asimétrica positiva; y rango intercuartil de 15.51

20% AGR 280 kg/cm²: como la media 294.61 < mediana 294.83, la distribución es asimétrica negativa; y su rango intercuartil de 7.29

Dado que todos los tratamientos tienen distribuciones asimétricas y muestras pequeñas, se verificó herramientas como la mediana y el rango intercuartílico:

Como la variable medida implica que valores más altos son deseables, el aumento en la mediana de 20% AGR 280 kg/cm² tiene mejores resultados

4.1.4. Variación del desarrollo a compresión de los tratamientos estudiados

Los resultados de la **figura 12**, que muestran las medias de los tratamientos, se analiza que:

A los 7 días, el valor de los ensayos de resistencia a compresión debe ser el 70% del f'c= 147 kg/cm², como se aprecia en la gráfica, el mínimo valor lo tiene el tratamiento de 20% AGR 175 kg/cm² con f'c= 202.71 kg/cm² y el mayor valor lo tiene el tratamiento de 20% AGR 280 kg/cm² con f'c= 230.13 kg/cm².

A los 14 días, el valor de los ensayos de resistencia a compresión debe ser el 90% del f'c=189 kg/cm², como se aprecia en la gráfica, el mínimo valor lo tiene el tratamiento de 20% AGR 175 kg/cm² con f'c= 235.56 kg/cm² y el mayor valor lo tiene el tratamiento de 20% AGR 280 kg/cm² con f'c= 272.93 kg/cm²

A los 28 días, el valor de los ensayos de resistencia a compresión debe ser el 100% del f'c= 210 kg/cm², como se aprecia en la gráfica, el mínimo valor lo tiene el tratamiento de 20% AGR 175 kg/cm² con f'c= 263.85 kg/cm² y el mayor valor lo tiene el tratamiento de 20% AGR 280 kg/cm² con f'c= 294.61 kg/cm²

La **tabla 14,** muestra que respecto al tratamiento patrón I, hubo variación en la Resistencia a compresión, en los tratamientos de reemplazo de agregado reciclado II, III, IV con un aumento de 5.78%; 15.96% y 20.09% respectivamente a la edad de 7 días.

La **tabla 15**, muestra que respecto al tratamiento patrón I, hubo variación en la Resistencia a compresión, en los tratamientos de reemplazo de agregado reciclado II, III, IV con un aumento de 5.91%; 12.53% y 22.71% respectivamente a la edad de 14 días.

La **tabla 16**, muestra que respecto al tratamiento patrón I, hubo variación en la Resistencia a compresión, en los tratamientos de reemplazo de agregado reciclado II, III, IV con un aumento de 5.42%; 10.57% y 17.71% respectivamente a la edad de 28 días, por lo tanto, todos los tratamientos superaron el f'c= 210 kg/cm² de diseño.

La **tabla 17,** el tratamiento II tuvo el menor peso volumétrico a los 7, 14 y 28 días de ensayo, el tratamiento IV tuvo el mayor peso volumétrico a los 7 y 14 días, el tratamiento III tuvo el mayor peso volumétrico a los 28 días. Según el peso, se trata para todos los tratamientos de un concreto normal

4.1.5. Contrastación de la hipótesis

La hipótesis dice que "La variación de la resistencia a compresión de un concreto de f'c = 210 kg/cm², al reemplazar un 20% del concreto reciclado en el agregado grueso de diferentes f'c, aumenta en más del 5% para el reemplazo del agregado reciclado de un concreto f'c = 175 kg/cm², aumenta en más del 10% para el reemplazo del agregado reciclado de un concreto f'c = 210 kg/cm² y aumenta en más del 15% para el reemplazo del agregado reciclado de un concreto f'c = 280 kg/cm²", por lo que se acepta la hipótesis ya que los resultados muestran el aumento en más del 5%, 10% y 15% en los tratamientos II, III y IV respectivamente

CAPITULO V. CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

A los 28 días, se obtuvo para los ensayos de Resistencia a compresión de: Patrón f'c = 250.28 kg/cm² y para los tratamientos con reemplazo de 20% AGR 175 kg/cm² f'c = 263.85 kg/cm², 20% AGR 210 kg/cm² f'c = 276.74 kg/cm² y 20% AGR 280 kg/cm² f'c = 294.61 kg/cm².

La variación de la resistencia a compresión que tiene el concreto de f'c=210 kg/cm² al reemplazar agregado grueso en un 20% por concreto reciclado de f'c=175 kg/cm², aumenta en 5.78%, 5.91% y 5.42% a los 7, 14 y 28 días respectivamente, respecto al tratamiento patrón.

La variación de la resistencia a compresión que tiene el concreto de f'c=210 kg/cm² al reemplazar agregado grueso en un 20% por concreto reciclado de f'c=210 kg/cm², aumenta en 15.96%, 12.53% y 10.57% a los 7, 14 y 28 días respectivamente, respecto al tratamiento patrón.

La variación de la resistencia a compresión que tiene el concreto de f'c=210 kg/cm² al reemplazar agregado grueso en un 20% por concreto reciclado de f'c=280 kg/cm², aumenta en 20.09%, 22.71% y 17.71% a los 7, 14 y 28 días respectivamente, respecto al tratamiento patrón.

Todos los tratamientos de reemplazo varían en la resistencia a compresión aumentando en más del 5%, 10% y 15% en los tratamientos II, III y IV respectivamente, para cada edad de ensayo.

5.2. Recomendaciones

- Se recomienda realizar estudios de flexión, durabilidad del concreto y análisis químicos de los agregados naturales y reciclados.

REFERENCIAS

- Aguilar, D (2019). Variación de la resistencia a compresión de un concreto compactado f´c= 210 kg/cm² al usar agregado grueso reciclado. [tesis de pregrado, Universidad Nacional de Cajamarca]. Repositorio Institucional UNC. http://hdl.handle.net/20.500.14074/3487
- Alanya, J L (2020). Elaboración de concreto f'c = 175 kg/cm2 utilizando concreto reciclado de vías peatonales como agregado grueso, Huánuco 2019. [tesis de pregrado, Universidad de Huánuco]. Repositorio Institucional UDH. http://repositorio.udh.edu.pe/123456789/2447
- Alva, L y Asmat, K (2019). Influencia del reemplazo de agregado grueso por concreto reciclado sobre las propiedades de un concreto endurecido f'c 175 kg/cm². [tesis de pregrado, Universidad Católica de Trujillo]. Repositorio Institucional UCT http://repositorio.uct.edu.pe/handle/123456789/542
- Banco Mundial. (2018). Los desechos 2.0: Un panorama mundial de la gestión de desechos sólidos hasta 2050.
- Cachay, L (2022). Variación de la resistencia a compresión de un concreto permeable de f'c = 210 kg/cm² con aditivo plastificante Sikament® 290N al reemplazar en diferentes porcentajes el agregado grueso por agregado de concreto reciclado. [tesis de pregrado, Universidad Nacional de Cajamarca], Repositorio Institucional UNC. http://hdl.handle.net/20.500.14074/4761

Cemex (2019, 19 de junio). *Artículos de construcción*. https://n9.cl/knyqn
Conar (2023, 2 de mayo). *Descubre los tipos de agregados de construcción*. https://n9.cl/6iwa5

- Cruz, N. & Ramírez, D. (2021). Evaluación de muestras del agregado grueso proveniente de residuos de concreto para producir nuevos concretos".

 Universidad de Costa Rica, San José, Costa Rica.
- Granda, C (2023, 3 de agosto). Impacto ambiental en la construcción. https://n9.cl/jdgyu
- INACAL. (2020, 07 de diciembre). NTP 334.090:2020 CEMENTOS. Cementos hidráulicos adicionados. Requisitos. Lima, Perú.
- INACAL. (2020, 26 de noviembre) NTP 400.019:2014 (revisada el 2019)
 AGREGADOS. Método de ensayo normalizado para determinar la resistencia a la degradación en agregados gruesos de tamaños menores por abrasión e impacto en la máquina de Los Ángeles. Lima, Perú.
- INACAL. (2019, 28 de junio). NTP 339.088:2014 CONCRETO. Agua de mezcla utilizada en la producción de concreto de cemento Portland. Requisitos. Lima, Perú.
- INACAL. (2018, 30 de enero). NTP 400.037:2018 AGREGADOS. Agregados para concreto. Requisitos. Lima, Perú.
- INACAL. (2018, 27 de junio). NTP 400.021:2013 AGREGADOS. Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado grueso. Lima, Perú.
- INACAL. (2018, 27 de junio). NTP 400.012:2013 AGREGADOS. Análisis granulométrico del agregado fino, grueso y global. Lima, Perú.
- INACAL. (2018, 13 de julio). NTP 339.183:2013 CONCRETO. Práctica normalizada para la elaboración y curado de especímenes de concreto en el laboratorio. Lima, Perú.

- INACAL. (2018, 26 de diciembre). NTP 339.046:2013 Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del concreto. Lima, Perú.
- INACAL. (2018, 12 de diciembre). NTP 400.018:2013 AGREGADOS. Método de ensayo normalizado para determinar materiales más finos que pasan por el tamiz normalizado 75 µm (N° 200) por lavado en agregados. Lima, Perú.
- INACAL. (2018, 27 de junio). NTP 339.185:2013 AGREGADOS. Método de ensayo normalizado para contenido de humedad total evaporable de agregados pro secado. Lima, Perú.
- INACAL. (2016, 02 de agosto). NTP 400.017:2011 AGREGADOS. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados. Lima, Perú.
- INACAL. (2015, 22 de diciembre). NTP 339.034:2015 CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a la compresión del concreto en muestras cilíndricas. Lima, Perú.
- Matallana, R (2019). El concreto: fundamentos y nuevas tecnologías. Medellín, Colombia
- Moreno, J, Ponce, C y Guerra, G (2024). Análisis de resistencia a compresión de concreto con sustitución parcial de agregado grueso por concreto reciclado triturado y plastificante. Ciencia Latina, 8(6). https://doi.org/10.37811/cl_rcm.v8i6.15673
- Organización Iberoamericana de Seguridad Social OISS (2019). Cemento

- Ramirez, Y. (2022). Resistencia a la compresión en sustitución del agregado grueso por el concreto reciclado en los porcentajes 30% y 40%, Huaraz-2022. [tesis de pregrado, Universidad César Vallejo. Repositorio Institucional UCV. https://hdl.handle.net/20.500.12692/115658
- Reglamento Nacional de Edificaciones. (2019). Norma E.060 Concreto Armado. Lima, Perú.
- Yachachi-Elguera, A. I., Segovia-Luna, G. J. S. L., Orosco-Chiclla, N. y Iannacone, J. (2022). Impacto de los residuos de construcción y demolición en la zona de reglamentación especial de los pantanos de villa de lima, Perú. Paideia XXI, 12(2), Art. 2. https://doi.org/10.31381/paideia.v12i2.5033

APÉNDICES I: FICHAS DE TOMA Y RECOLECCIÓN DE DATOS

- Tratamiento I: diseño patrón

FICHA DE TOMA Y RECOLECCIÓN DE DATOS

VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 Tesis:

AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE

F'C=175,210 Y 280 KG/CM2

Tesista: Bach. Villena Pérez, Moisés II

Asesor: Dr. Ing. Mosqueira Moreno, Miguel Angel

Datos para el cálculo de la resistencia a compresión (ASTM C39/NTP 339.034) de cada probeta

			I: D	ISEÑO PAT	RÓN			
DESCRIPCIÓN	EDAD (Días)	Øinf (mm)	Øsup (mm)	Øpromedio (cm)	ÁREA (cm²)	PESO (g)	CARGA ÚLTIMA (kN)	f'c (kg/cm²)
M - 01	7	1505	1517	15.11	179.32	12645	320.12	182.04
M - 02	7	1504	1518	15.11	179.32	12547	335.56	190.82
M - 03	7	1510	1512	15.11	179.32	12478	338.56	192.53
M - 04	7	1518	1504	15.11	179.32	12348	340.15	193.43
M - 05	7	1512	1509	15.11	179.20	12378	350.12	199.24
M - 06	7	1514	1506	15.10	179.08	12374	350.88	199.80
M - 07	7	1515	1504	15.10	178.96	12479	320.78	182.78
M - 08	7	1506	1502	15.04	177.66	12574	340.88	195.66
M - 09	7	1504	1507	15.06	178.01	12621	330.86	189.53
M - 10	7	1505	1503	15.04	177.66	12445	331.85	190.47
M - 11	14	1515	1512	15.14	179.91	12544	380.52	215.68
M - 12	14	1514	1515	15.15	180.15	12611	400.51	226.71
M - 13	14	1518	1505	15.12	179.43	12744	390.62	221.99
M - 14	14	1518	1504	15.11	179.32	12611	397.42	226.00
M - 15	14	1519	1519	15.19	181.22	12574	396.02	222.84
M - 16	14	1521	1518	15.20	181.34	12633	400.17	225.03
M - 17	14	1517	1514	15.16	180.39	12642	405.16	229.04
M - 18	14	1514	1512	15.13	179.79	12251	400.12	226.94
M - 19	14	1511	1521	15.16	180.50	12352	380.77	215.11
M - 20	14	1508	1511	15.10	178.96	12321	376.96	214.79
M - 21	28	1512	1508	15.10	179.08	12605	452.22	257.51
M - 22	28	1514	1521	15.18	180.86	12588	441.15	248.73
M - 23	28	1511	1514	15.13	179.67	12547	443.21	251.54
M - 24	28	1521	1511	15.16	180.50	12547	445.10	251.45
M - 25	28	1512	1512	15.12	179.55	12454	422.80	240.12
M - 26	28	1513	1512	15.13	179.67	12522	444.86	252.48
M - 27	28	1514	1511	15.13	179.67	12574	454.60	258.01
M - 28	28	1511	1515	15.13	179.79	12588	454.11	257.56
M - 29	28	1521	1521	15.21	181.70	12566	433.87	243.50
M - 30	28	1515	1512	15.14	179.91	12524	426.78	241.90

- Tratamiento II: 20% de agregado grueso reciclado de concreto f'c= 175 kg/cm²

FICHA DE TOMA Y RECOLECCIÓN DE DATOS

VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR

CONCRETO RECICLADO DE F'C=175,210 Y 280 KG/CM2

Tesista: Bach. Villena Pérez, Moisés II

Tesis:

Asesor: Dr. Ing. Mosqueira Moreno, Miguel Angel

Datos para el cálculo de la resistencia a compresión (ASTM C39/NTP 339.034) de cada probeta

II: DI	SEÑO C	ON 209	6 DE C	ONCRETO R	ECICLAI	OO f'c=1	75 kg/cm²	
DESCRIPCIÓN	EDAD (Días)	Øinf (mm)	Øsup (mm)	Øpromedio (cm)	ÁREA (cm²)	PESO (g)	CARGA ÚLTIMA (kN)	f'c (kg/cm²)
M - 01	7	1513	1516	15.15	180.15	12455	370.11	209.50
M - 02	7	1512	1515	15.14	179.91	12366	360.51	204.34
M - 03	7	1514	1512	15.13	179.79	12278	358.20	203.16
M - 04	7	1512	1514	15.13	179.79	12544	350.47	198.78
M - 05	7	1521	1512	15.17	180.62	12364	352.12	198.79
M - 06	7	1515	1515	15.15	180.27	12487	358.42	202.75
M - 07	7	1514	1515	15.15	180.15	12344	356.12	201.58
M - 08	7	1512	1514	15.13	179.79	12366	350.48	198.78
M - 09	7	1513	1512	15.13	179.67	12374	360.59	204.65
M - 10	7	1514	1512	15.13	179.79	12396	361.12	204.82
M - 11	14	1511	1516	15.14	179.91	12633	420.11	238.12
M - 12	14	1512	1506	15.09	178.84	12578	408.89	233.14
M - 13	14	1508	1512	15.10	179.08	12474	443.12	252.32
M - 14	14	1504	1508	15.06	178.13	12423	420.15	240.52
M - 15	14	1507	1515	15.11	179.32	12378	421.10	239.47
M - 16	14	1504	1514	15.09	178.84	12477	408.96	233.18
M - 17	14	1507	1518	15.13	179.67	12389	406.32	230.60
M - 18	14	1504	1514	15.09	178.84	12302	402.15	229.30
M - 19	14	1508	1521	15.15	180.15	12455	403.30	228.29
M - 20	14	1506	1517	15.12	179.43	12547	405.80	230.61
M - 21	28	1530	1514	15.22	181.94	12504	471.67	264.36
M - 22	28	1510	1502	15.06	178.13	12597	461.87	264.40
M - 23	28	1532	1516	15.24	182.41	12519	476.35	266.29
M - 24	28	1533	1509	15.21	181.70	12642	469.06	263.25
M - 25	28	1518	1512	15.15	180.27	12648	455.93	257.91
M - 26	28	1512	1502	15.07	178.37	12504	467.78	267.43
M - 27	28	1522	1516	15.19	181.22	12545	456.40	256.82
M - 28	28	1514	1498	15.06	178.13	12566	467.65	267.71
M - 29	28	1527	1509	15.18	180.98	12470	451.05	254.14
M - 30	28	1522	1504	15.13	179.79	12602	487.00	276.21

- Tratamiento II: 20% de agregado grueso reciclado de concreto f'c= 210 kg/cm²

FICHA DE TOMA Y RECOLECCIÓN DE DATOS

VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210

Y 280 KG/CM2

Tesista: Bach. Villena Pérez, Moisés II

Asesor: Dr. Ing. Mosqueira Moreno, Miguel Angel

Datos para el cálculo de la resistencia a compresión (ASTM C39/NTP 339.034) de cada

probeta

Tesis:

II: DI	SEÑO C	ON 209	6 DE C	ONCRETO R	ECICLAI	OO f'c=2	10 kg/cm²	
DESCRIPCIÓN	EDAD (Días)	Øinf (mm)	Øsup (mm)	Øpromedio (cm)	ÁREA (cm²)	PESO (g)	CARGA ÚLTIMA (kN)	f'c (kg/cm²)
M - 01	7	1512	1513	15.13	179.67	12511	400.15	227.10
M - 02	7	1515	1514	15.15	180.15	12568	405.16	229.34
M - 03	7	1513	1512	15.13	179.67	12516	415.12	235.60
M - 04	7	1515	1516	15.16	180.39	12478	380.52	215.11
M - 05	7	1514	1515	15.15	180.15	12433	390.12	220.83
M - 06	7	1512	1514	15.13	179.79	12314	392.52	222.63
M - 07	7	1514	1512	15.13	179.79	12517	386.04	218.95
M - 08	7	1512	1508	15.10	179.08	12514	381.09	217.00
M - 09	7	1512	1512	15.12	179.55	12516	370.52	210.43
M - 10	7	1508	1515	15.12	179.43	12514	396.08	225.09
M - 11	14	1512	1512	15.12	179.55	12654	442.22	251.15
M - 12	14	1508	1508	15.08	178.60	12651	421.78	240.81
M - 13	14	1501	1507	15.04	177.66	12608	444.55	255.16
M - 14	14	1504	1501	15.03	177.30	12578	450.62	259.16
M - 15	14	1506	1519	15.13	179.67	12548	460.11	261.13
M - 16	14	1502	1518	15.10	179.08	12574	420.96	239.71
M - 17	14	1518	1519	15.19	181.10	12501	430.78	242.56
M - 18	14	1517	1514	15.16	180.39	12602	432.58	244.54
M - 19	14	1508	1521	15.15	180.15	12574	440.09	249.11
M - 20	14	1509	1518	15.14	179.91	12461	457.63	259.38
M - 21	28	1530	1514	15.22	181.94	12713	467.89	262.24
M - 22	28	1510	1502	15.06	178.13	12625	481.81	275.81
M - 23	28	1532	1516	15.24	182.41	12696	461.11	257.77
M - 24	28	1533	1509	15.21	181.70	12588	490.24	275.13
M - 25	28	1518	1512	15.15	180.27	12541	487.89	275.99
M - 26	28	1512	1502	15.07	178.37	12638	501.81	286.88
M - 27	28	1522	1516	15.19	181.22	12523	487.89	274.53
M - 28	28	1514	1498	15.06	178.13	12677	501.81	287.26
M - 29	28	1527	1509	15.18	180.98	12505	501.11	282.35
M - 30	28	1522	1504	15.13	179.79	12742	510.24	289.39

- Tratamiento II: 20% de agregado grueso reciclado de concreto f'c= 280 kg/cm²

FICHA DE TOMA Y RECOLECCIÓN DE DATOS

VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210

Y 280 KG/CM2

Tesista: Bach. Villena Pérez, Moisés II

Asesor: Dr. Ing. Mosqueira Moreno, Miguel Angel

Datos para el cálculo de la resistencia a compresión (ASTM C39/NTP 339.034) de cada

probeta

Tesis:

II: DI	SEÑO C	ON 20%	6 DE CO	ONCRETO R	ECICLAI	OO f'c=2	80 kg/cm²	
DESCRIPCIÓN	EDAD (Días)	Øinf (mm)	Øsup (mm)	Øpromedio (cm)	ÁREA (cm²)	PESO (g)	CARGA ÚLTIMA (kN)	f'c (kg/cm²)
M - 01	7	1511	1512	15.12	179.43	12541	420.17	238.78
M - 02	7	1512	1508	15.10	179.08	12622	400.89	228.28
M - 03	7	1513	1508	15.11	179.20	12745	415.12	236.22
M - 04	7	1512	1507	15.10	178.96	12684	390.86	222.71
M - 05	7	1511	1505	15.08	178.60	12357	397.58	226.99
M - 06	7	1518	1509	15.14	179.91	12471	388.45	220.17
M - 07	7	1519	1512	15.16	180.39	12386	408.63	231.00
M - 08	7	1502	1515	15.09	178.72	12395	407.75	232.65
M - 09	7	1512	1512	15.12	179.55	12388	408.63	232.07
M - 10	7	1508	1523	15.16	180.39	12371	411.12	232.41
M - 11	14	1505	1505	15.05	177.89	12566	480.12	275.21
M - 12	14	1514	1504	15.09	178.84	12578	475.50	271.12
M - 13	14	1515	1503	15.09	178.84	12574	478.20	272.66
M - 14	14	1513	1502	15.08	178.49	12577	460.90	263.32
M - 15	14	1514	1505	15.10	178.96	12574	480.50	273.79
M - 16	14	1515	1508	15.12	179.43	12478	490.60	278.81
M - 17	14	1512	1507	15.10	178.96	12744	480.52	273.80
M - 18	14	1521	1508	15.15	180.15	12643	481.75	272.69
M - 19	14	1515	1509	15.12	179.55	12648	478.50	271.75
M - 20	14	1515	1521	15.18	180.98	12641	490.05	276.11
M - 21	28	1515	1497	15.06	178.13	12620	513.36	293.88
M - 22	28	1515	1491	15.03	177.42	12537	514.63	295.78
M - 23	28	1508	1500	15.04	177.66	12525	525.36	301.55
M - 24	28	1519	1497	15.08	178.60	12672	529.32	302.21
M - 25	28	1519	1505	15.12	179.55	12645	523.38	297.24
M - 26	28	1512	1508	15.10	179.08	12634	511.63	291.34
M - 27	28	1543	1537	15.40	186.27	12661	542.67	297.09
M - 28	28	1524	1520	15.22	181.94	12605	522.86	293.05
M - 29	28	1510	1494	15.02	177.19	12621	504.10	290.11
M - 30	28	1516	1494	15.05	177.89	12560	495.14	283.82

APÉNDICE II: FOTOGRAFÍAS

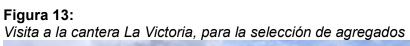


Figura 14: Selección de probetas para su uso como agregado reciclado

Figura 15

Figura 16 *Tesista realizando el ensayo de granulometría para el agregado fino*

Figura 17

Figura 18 *Tesista en la elaboración de probetas.*

Figura 19 Probetas en estado fresco

Figura 20: Tesista y asesor en el ensayo de resistencia a compresión

APÉNDICE III: PROPIEDADES FÍSICAS DE LOS AGREGADOS

- PROPIEDADES FÍSICAS DEL AGREGADO GRUESO

PROPIEDADES FÍSICAS DE AGREGADOS PARA CONCRETO / A.S.T.M.C -33

Tesis: "VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR

AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F´C=175,210 Y 280 KG/CM2"

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA.

Fecha: 29 DE MARZO DEL 2025.

MATERIAL: AGREGADO GRUESO - PIEDRA CHANCADA

A) CALCULO DEL PESO ESPECIFICO DEL AGUA

Peso de la fiola en (g)	164.12
Peso de la fiola +agua (g)	661.18
Volumen de la fiola (cm³)	500.00
Peso especifico (g/cm³)	0.99412
P.e en (kg/m³)	994.12

B) CALCULO DEL Factor f

Peso del Molde (g) =	4223.00
Peso del Molde +Agua (g) =	13772.00
Peso Agua (kg) =	9.5490
f (1/m³) =	104.107

1.00 Peso Unitario Suelto (NTP 400.017, NTP 400.037 /A.S.T.M.C -29 / MTC E 205)

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
1.01	Peso del recipiente	g	4223.00	4223.00	4223.00	
1.03	Peso de muestra suelta + recipiente	g	17852.00	17758.00	17689.00	
1.04	Peso de la muestra suelta	g	13629.00	13535.00	13466.00	
1.05	Factor (f)	1/m3	104.107	104.107	104.107	
1.06	Peso Unitario Suelto	g/cm ³	1.419	1.409	1.402	1.410
	Peso Unitario Suelto	kg/m ³	1419	1409	1402	1410

2.00 Peso Unitario Compactado (NTP 400.017, NTP 400.037 /A.S.T.M.C -29 / MTC E 205)

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedic
2.01	Peso del recipiente	g	4223.00	4223.00	4223.00	
2.02	Peso de muestra Compactada + recipiente	g	18869.00	18911.00	18867.00	
2.03	Peso de la muestra suelta	g	14646.00	14688.00	14644.00	
2.04	Factor (f)		104.107	104.107	104.107	
2.05	Peso Unitario Compactado	g/cm ³	1.525	1.529	1.525	1.526
	Peso Unitario Compactado	kg/m ³	1525	1529	1525	1526

PROPIEDADES FÍSICAS DE AGREGADOS PARA CONCRETO / A.S.T.M.C -33

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F´C=210 KG/CM2 AL REEMPLAZAR Tesis:

AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210 Y 280 KG/CM2"

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

LA VICTORIA - CAJAMARCA. Cantera: Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO GRUESO - PIEDRA CHANCADA

3.00 Peso Específico - ASTM C -127 / MTC E 204 / NTP 400.021

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
3.01	Peso de muestra SSS + canastilla sumergida	g	2743.63	2743.81	2743.92	
3.02	Peso de canastilla sumergida	g	875.00	875.00	875.00	
3.03	Peso de la muestra superficialmente Seca	g	3000.00	3000.00	3000.00	
3.04	Peso de la muestra secada al horno	g	2965.79	2966.17	2966.38	
3.05	Peso de la muestra sumergida en el agua	g	1868.63	1868.81	1868.92	
	Peso Específico de Masa	g/cm ³	2.621	2.622	2.623	2.620
	Peso Específico de Masa Saturado Superficialment	g/cm ³	2.652	2.652	2.652	2.650
	Peso Específico de Aparente	g/cm ³	2.703	2.703	2.703	2.700

4.00 Absorción (%) ASTM C -127 / MTC E 204 / NTP 400.021

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
4.01	Peso de la muestra Superficialmente Seca	g	3000.00	3000.00	3000.00	
4.02	Peso de la muestra secada al horno	g	2965.79	2966.17	2966.38	
	Absorción (%)	%	1.153	1.141	1.133	1.100

5.00 Contenido de Humedad (%) A.S.T.M.C -566 / MTC E 118 / NTP 339.185

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
5.01	Peso del Recipiente	g	358.00	359.00	360.00	
5.02	Peso del Recipiente + muestra Humeda	g	1515.00	2124.00	1916.00	
5.03	Peso del Recipiente + muestra seca	g	1501.00	2101.00	1897.00	
	Contenido de Humedad	W %	1.22	1.32	1.24	1.26

MATERIAL MÁS FINO QUE PASA EL TAMIZ N°200 (ASTM.C -117 / NTP 400.018)

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL

REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F´C=175,210 Y

280 KG/CM2"

Tesis:

Tesis:

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA. Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO GRUESO

1.00 Ensayo Particulas < N° 200 para el Agregado Grueso

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
1.01	Peso de Muestra Original	g	3000.00	3000.00	3000.00	
1.02	Peso de la muestra Lavada	g	2993.10	2993.40	2993.70	
1.03	Peso del Material que pasa el Tamiz N° 200	g	6.90	6.60	6.30	
	% de Material que Pasa el Tamiz N° 200	%	0.230%	0.220%	0.210%	0.20%

ENSAYO DE ABRASIÓN / NTP 400.019 / ASTM C 702 / MTC E 207

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F´C=210 KG/CM2 AL

REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE

F´C=175,210 Y 280 KG/CM2"

Tesista: Bach. VILLENA PÉREZ, Moisés II.

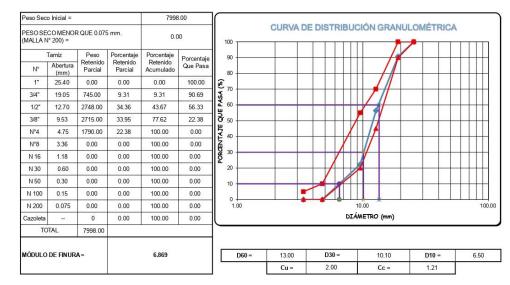
Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA.

Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO GRUESO

Gradación	Equipo Mecánico	N° de Esferas	Velocidad (rev./mim)	N° de Revoluciones	Tamaño Máx. Nominal	Peso de la Muestra en (g.)
В	Máquina de los Ángeles	11	30 - 33	500.00	3/4"	5000.00
N° DE ENSAYOS				1°	2°	3°
Peso Inicial de la	muestra seca al horno	(g.)		5000	5000	5000
Peso retenido er	n la malla N° 12 Lavado	y secado	al horno en (g	3711	3742	3728
% Desg. =((Pi -Pf) / Pi) x 100			25.78	25.16	25.44	
Α	Abrasión % Desgaste Promedio				25.00	


ANÁLISIS GRANULOMÉTRICO DE AGREGADO GRUESO: A.S.T.M. C 136 / NTP 400.012 /AASHTO T- 27/ MTC E 202

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210 Y 280 KG/CM2" Tesis:

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL. Asesor:

Cantera: LA VICTORIA - CAJAMARCA. Fecha: 29 DE MARZO DEL 2025.

OBSERVACIONES LA CURVA GRANULOMÉTRICA DEL AGREGADO GRUESO CUMPLE EL USO GRANULOMETRICO Nº 67 DE LA NORMA A.S.T.M. C 33M-16.

EL MÓDULO DE FINURA DEL AGREGADO GRUESO ESTUDIADO ES DE 6.869.

- PROPIEDADES FÍSICAS DEL AGREGADO FINO

PROPIEDADES FÍSICAS DE AGREGADO FINO

"VARIACION DE LA RESISTENCIA A COMPRESION DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210

Y 280 KG/CM2"

Tesis:

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA.

Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO FINO DE RÍO

A) CALCULO DEL PESO ESPECIFICO DEL AGUA

Peso de la fiola en (g) =	164.12
Peso de la fiola en (g) =	661.18
Volumen de la fiola (cm3) =	500
Peso especifico (g/cm3) =	0.99412
P.e en (Kg/m3) =	994.12

B) CALCULO DEL Factor f

Peso del Molde (g) =	1997
Peso del Molde +Agua (g) =	4867
Peso Agua (Kg) =	2.87
f (1/m3) =	346.38

1.00 Peso Unitario Suelto (NTP 400.017, NTP 400.037 /A.S.T.M.C -29 / MTC E 205)

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
1.01	Peso del recipiente	g	1997.00	1997.00	1997.00	
1.03	Peso de muestra suelta + recipiente	g	6685.00	6745.00	6715.00	
1.04	Peso de la muestra suelta	g	4688.00	4748.00	4718.00	
1.05	Factor (f)		346.383	346.383	346.383	
1.06	Peso Unitario Suelto	g/cm ³	1.624	1.645	1.634	1.634
	Peso Unitario Suelto	Kg/m ³	1623.84	1644.63	1634.24	1634

2 .00 Peso Unitario Compactado (NTP 400.017, NTP 400.037 /A.S.T.M.C -29 / MTC E 205)

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
2.01	Peso del recipiente	g	1997.00	1997.00	1997.00	
2.02	Peso de muestra Compactada + recipiente	g	7011.00	7033.00	7026.00	
2.03	Peso de la muestra suelta	g	5014.00	5036.00	5029.00	
2.04	Factor (f)	1/m3	346.383	346.383	346.383	
2.05	Peso Unitario Compactado	g/cm ³	1.737	1.744	1.742	1.741
	Peso Unitario Compactado	Kg/m ³	1736.77	1744.39	1741.96	1741

PROPIEDADES FÍSICAS DE AGREGADO FINO

"VARIACION DE LA RESISTENCIA A COMPRESION DE UN CONCRETO F'C=210 KG/CM2 AL

REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210

Y 280 KG/CM2"

Tesis:

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA.

Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO FINO DE RÍO

3.00 Peso Específico / NTP 400.022 / A.S.T.M.C -128 / AASHTO T84 / MTC E 203.

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
3.01	Peso de fiola	g	164.12	164.12	164.12	
3.02	Peso de la fiola +agua hasta menizco	g	661.18	661.18	661.18	
3.03	peso de la fiola +agua + muestra	g	975.10	975.42	975.32	
3.04	Peso de la muestra superficialmente Seca	g	500.00	500.00	500.00	
3.05	Peso de la muestra secada al horno	g	493.65	493.61	493.52	
3.06	volumen de agua añadida al frasco (g)	g	310.98	311.30	311.20	
	Peso Específico de Masa	g/m ³	2.612	2.616	2.614	2.610
	Peso Específico de Masa Saturado Superficialmente Seco	g/m ³	2.645	2.650	2.648	2.650
	Peso Específico de Aparente	g/m ³	2.702	2.708	2.707	2.710

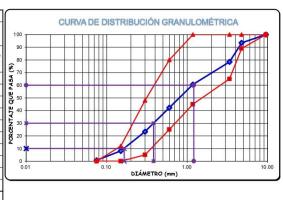
4.00 Absorción (%) / NTP 400.022 / A.S.T.M.C -128 / AASHTO T84 / MTC E 203.

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
4.01	Peso de la muestra Superficialmente Seca	g	500.00	500.00	500.00	
4.02	Peso de la muestra secada al horno	g	493.65	493.61	493.52	
	Absorción (%)	%	1.286	1.295	1.313	1.300

5.00 Contenido de Humedad (%) A.S.T.M.C -566 / MTC E 118 / NTP 339.185

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
5.01	Peso del Recipiente	g	358.00	357.00	355.00	
5.02	Peso del Recipiente + muestra Humeda	g	1495.00	1795.00	1582.00	
5.03	Peso del Recipiente + muestra seca	g	1439.00	1722.00	1522.00	
	Contenido de Humedad	W %	5.18	5.35	5.14	5.22

ANÁLISIS GRANULOMÉTRICO DE AGREGADO FINO: A.S.T.M. C 136 / NTP 400.012/AASHTO T- 27/ MTC E 202


"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210 Y 280 KG/CM2" Tesis:

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL. Asesor:

LA VICTORIA - CAJAMARCA Cantera: 29 DE MARZO DEL 2025. Fecha:

PESO SECO MENOR QUE 0.075 mm. (MALLA Nº 200) =				11.00		
1	amiz	Peso	Porcentaje	Porcentaje	Porcentaje	
N°	Abertura (mm)	Retenido Parcial	Retenido Parcial	Retenido Acumulado	Que Pasa	
3/8"	9.53	0.00	0.00	0.00	100.00	
N°4	4.75	98.00	6.53	6.53	93.47	
N°8	3.36	225.00	15.00	21.53	78.47	
N 16	1.18	268.00	17.87	39.40	60.60	
N 30	0.60	275.00	18.33	57.73	42.27	
N 50	0.30	284.00	18.93	76.67	23.33	
N 100	0.15	228.00	15.20	91.87	8.13	
N 200	0.075	111.00	7.40	99.27	0.73	
Cazoleta	177.0	11.00	0.73	100.00	0.00	
TO	TAL	1500.0			•	
	DE FINUI			2.937		

D60 =	1.21	D30 =	0.382	D10 =	0.165
	Cu=	7.33	Cc =	0.73	

OBSERVACIONES:

LA CURVA GRANULOMÉTRICA DEL AGREGADO FINO CUMPLE EL HUSO GRANULOMETRICO "M" DE LA NORMA N.T.P. 400.037 - ATMC-33

EL MÓDULO DE FINURA DEL AGREGADO FINO ESTUDIADO ES DE 2.937.

MATERIAL MÁS FINO QUE PASA EL TAMIZ N°200 (ASTM.C -117 / NTP 400.018)

"VARIACION DE LA RESISTENCIA A COMPRESION DE UN CONCRETO F'C=210 KG/CM2 AL

REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F´C=175,210 Y Tesis:

280 KG/CM2"

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL. Asesor:

LA VICTORIA - CAJAMARCA. Cantera: 29 DE MARZO DEL 2025. Fecha:

MATERIAL : AGREGADO FINO DE RÍO

1.00 Ensayo Particulas < N° 200 para el Agregado Fino

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
1.01	Peso de Muestra Original	g	500.00	500.00	500.00	
1.02	Peso de la muestra Lavada	g	485.50	486.80	486.85	
1.03	1.03 Peso del Material que pasa el Tamiz N° 20		14.50	13.20	13.15	
Material que Pasa el Tamiz N° 200			2.90%	2.64%	2.63%	2.70%

- PROPIEDADES FÍSICAS DEL AGREGADO FINO DE CONCRETO RECICLADO f'c= 175 kg/cm²

PROPIEDADES FÍSICAS DE AGREGADOS PARA CONCRETO / A.S.T.M.C -33

"COMPARACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F´C=210 KG/CM2 AL USAR

COMO AGREGADO CONCRETO RECICLADO CON F´C=175,210 Y 280 KG/CM2"

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA.

Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO GRUESO - PIEDRA CHANCADA

A) CALCULO DEL PESO ESPECIFICO DEL AGUA

Peso de la fiola en (g) =	164.12
Peso de la fiola +agua (g) =	661.18
Volumen de la fiola (cm3) =	500.00
Peso especifico (g/cm3) =	0.99412
P.e en (Kg/m3) =	994.12

B) CALCULO DEL Factor f

Peso del Molde (g) =	4223.00
Peso del Molde +Agua (g) =	13772.00
Peso Agua (Kg) =	9.5490
f (1/m3) =	104.107

1.00 Peso Unitario Suelto (NTP 400.017, NTP 400.037 /A.S.T.M.C -29 / MTC E 205)

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
1.01	Peso del recipiente	g	4223.00	4223.00	4223.00	
1.03	Peso de muestra suelta + recipiente	g	16855.00	16811.00	16814.00	
1.04	Peso de la muestra suelta	g	12632.00	12588.00	12591.00	
1.05	Factor (f)	1/m3	104.107	104.107	104.107	
1.06	Peso Unitario Suelto	g/cm ³	1.315	1.311	1.311	1.312
	Peso Unitario Suelto	Kg/m ³	1315	1311	1311	1312

2 .00 Peso Unitario Compactado (NTP 400.017, NTP 400.037 /A.S.T.M.C -29 / MTC E 205)

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedic
2.01	Peso del recipiente	g	4223.00	4223.00	4223.00	
2.02	Peso de muestra Compactada + recipiente	g	17851.00	17925.00	17963.00	
2.03	Peso de la muestra suelta	g	13628.00	13702.00	13740.00	
2.04	Factor (f)		104.107	104.107	104.107	
2.05	Peso Unitario Compactado	g/cm ³	1.419	1.426	1.430	1.425
	Peso Unitario Compactado	Kg/m ³	1419	1426	1430	1425

PROPIEDADES FÍSICAS DE AGREGADOS PARA CONCRETO / A.S.T.M.C -33

Tesis: "COMPARACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL USAR

COMO AGREGADO CONCRETO RECICLADO CON F´C=175,210 Y 280 KG/CM2"

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA.

Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO GRUESO - PIEDRA CHANCADA

3 .00 Peso Específico - ASTM C -127 / MTC E 204 / NTP 400.021

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
3.01	Peso de muestra SSS + canastilla sumergida	g	2731.22	2732.12	2733.52	
3.02	Peso de canastilla sumergida	g	875.00	875.00	875.00	
3.03	Peso de la muestra superficialmente Seca	g	3000.00	3000.00	3000.00	
3.04	Peso de la muestra secada al horno	g	2921.32	2922.33	2923.45	
3.05	Peso de la muestra sumergida en el agua	g	1856.22	1857.12	1858.52	
	Peso Específico de Masa	g/cm ³	2.554	2.557	2.561	2.560
	Peso Específico de Masa Saturado Superficialmente S	g/cm ³	2.623	2.625	2.628	2.630
	Peso Específico de Aparente	g/cm ³	2.743	2.743	2.745	2.740

4 .00 Absorción (%) ASTM C -127 / MTC E 204 / NTP 400.021

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
4.01	Peso de la muestra Superficialmente Seca	g	3000.00	3000.00	3000.00	
4.02	Peso de la muestra secada al horno	g	2921.32	2922.33	2923.45	
	Absorción (%)	%	2.693	2.658	2.618	2.700

5 .00 Contenido de Humedad (%) A.S.T.M.C -566 / MTC E 118 / NTP 339.185

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
5.01	Peso del Recipiente	g	355.00	351.00	354.00	
5.02	Peso del Recipiente + muestra Humeda	g	1652.00	1458.00	1785.00	
5.03	Peso del Recipiente + muestra seca	g	1648.00	1454.00	1781.00	
	Contenido de Humedad	w %	0.31	0.36	0.28	0.32

MATERIAL MÁS FINO QUE PASA EL TAMIZ N°200 (ASTM.C -117 / NTP 400.018)

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL

REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210 Y

280 KG/CM2"

Tesis:

Tesis:

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA. Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO GRUESO

1.00 Ensayo Particulas < N° 200 para el Agregado Grueso

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
1.01	Peso de Muestra Original	g	3000.00	3000.00	3000.00	
1.02	Peso de la muestra Lavada	g	2975.50	2976.30	2976.80	
1.03	Peso del Material que pasa el Tamiz N° 200	g	24.50	23.70	23.20	
	% de Material que Pasa el Tamiz Nº 200	%	0.817%	0.790%	0.773%	0.80%

ENSAYO DE ABRASIÓN / NTP 400.019 / ASTM C 702 / MTC E 207

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F´C=210 KG/CM2 AL

REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE

F'C=175,210 Y 280 KG/CM2"

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA.

Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO GRUESO

Gradación	Equipo Mecánico	N° de Esferas	Velocidad (rev./mim)	N° de Revoluciones	Tamaño Máx. Nominal	Peso de la Muestra en (g.)
В	Máquina de los Ángeles	11	30 - 33	500.00	3/4"	5000.00
	N° DE ENSAYOS			1°	2°	3°
Peso Inicial de la	muestra seca al horno	(g.)		5000	5000	5000
Peso retenido en	la malla N° 12 Lavado	y secado a	al horno en (g	3251	3239	3246
% Desg. =((Pi -F	Pf) / Pi) x 100	34.98	35.22	35.08		
Alt	orasión % Desgaste P		35.00			

ANÁLISIS GRANULOMÉTRICO DE AGREGADO GRUESO: A.S.T.M. C 136 / NTP 400.012 /AASHTO T- 27/ MTC E 202

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210 Y 280 KG/CM2" Tesis:

Bach. VILLENA PÉREZ, Moisés II. Tesista:

Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL. Asesor:

LA VICTORIA - CAJAMARCA. Cantera: 29 DE MARZO DEL 2025. Fecha:

Peso Seco	Inicial =			8000	0.00	l(CURVA	DE DIST	DIBLICI	ÓN GRANL	II OMÉTR	ICA	
PESO SEC (MALLA N'		QUE 0.075	mm.	0.0	00	100	CURVA	DE DIST	NIBOCI	ON GRANC	LOWETK	IOA	
Ţ	amiz	Peso	Porcentaje	Porcentaje	Porcentaje	90				- / /	100		+++
N°	Abertura (mm)	Retenido Parcial	Retenido Parcial	Retenido Acumulado	Que Pasa	80				_///		+	
1"	25.40	0.00	0.00	0.00	100.00	€ ₇₀							
3/4"	19.05	542.00	6.78	6.78	93.23	X							
1/2"	12.70	2695.00	33.69	40.46	59.54	QUE PA						\top	++
3/8"	9.53	2846.00	35.58	76.04	23.96				H /	//			+++-
N°4	4.75	1917.00	23.96	100.00	0.00	<u>اک</u> ے ا				/ f			
N°8	3.36	0.00	0.00	100.00	0.00	90RCENTAJE				//			
N 16	1.18	0.00	0.00	100.00	0.00	0 30 H				7			
N 30	0.60	0.00	0.00	100.00	0.00	20 —		/				+	+++
N 50	0.30	0.00	0.00	100.00	0.00	10							
N 100	0.15	0.00	0.00	100.00	0.00	0			1				
N 200	0.075	0.00	0.00	100.00	0.00	1.00				.00	30 20	900 - 000	100
Cazoleta	-	0	0.00	100.00	0.00	l			DIÁM	ETRO (mm)			
тот	TAL	8000.00											
MÓDULO	DE FINUR	1 =		6.828		D60 =	13.00	D30) =	9.98	D10 =		6.40
							Cu=	2.0	3	Cc =	1.20		

OBSERVACIONES LA CURVA GRANULOMÉTRICA DEL AGREGADO GRUESO CUMPLE EL USO GRANULOMETRICO Nº 67 DE LA NORMA A.S.T.M. C 33M-16.

EL MÓDULO DE FINURA DEL AGREGADO GRUESO ESTUDIADO ES DE 6.828.

- PROPIEDADES FÍSICAS DEL AGREGADO DE CONCRETO RECICLADO f'c= 210 kg/cm²

PROPIEDADES FÍSICAS DE AGREGADOS PARA CONCRETO / A.S.T.M.C -33

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR Tesis:

AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210 Y 280 KG/CM2"

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL. Asesor:

LA VICTORIA - CAJAMARCA. Cantera: 29 DE MARZO DEL 2025. Fecha:

MATERIAL : AGREGADO GRUESO - PIEDRA CHANCADA

A) CALCULO DEL PESO ESPECIFICO DEL AGUA

Peso de la fiola en (g) =	164.12
Peso de la fiola +agua (g) =	661.18
Volumen de la fiola (cm3) =	500.00
Peso especifico (g/cm3) =	0.99412
P.e en (Ka/m3) =	994.12

B) CALCULO DEL Factor f

Peso del Molde (g) =	4223.00
Peso del Molde +Agua (g) =	13772.00
Peso Agua (Kg) =	9.5490
f (1/m3) =	104.107

1.00 Peso Unitario Suelto (NTP 400.017, NTP 400.037 /A.S.T.M.C -29 / MTC E 205)

İtem	Descripción	Und.	M-1	M-2	M-3	Promedio
1.01	Peso del recipiente	g	4223.00	4223.00	4223.00	
1.03	Peso de muestra suelta + recipiente	g	16985.00	16978.00	16973.00	
1.04	Peso de la muestra suelta	g	12762.00	12755.00	12750.00	
1.05	Factor (f)	1/m3	104.107	104.107	104.107	
1.06	Peso Unitario Suelto	g/cm ³	1.329	1.328	1.327	1.328
	Peso Unitario Suelto	kg/m ³	1329	1328	1327	1328

2.00 Peso Unitario Compactado (NTP 400.017, NTP 400.037 /A.S.T.M.C -29 / MTC E 205)

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedic
2.01	Peso del recipiente	g	4223.00	4223.00	4223.00	
2.02	Peso de muestra Compactada + recipiente	g	17966.00	17953.00	17995.00	
2.03	Peso de la muestra suelta	g	13743.00	13730.00	13772.00	
2.04	Factor (f)		104.107	104.107	104.107	
2.05	Peso Unitario Compactado	g/cm ³	1.431	1.429	1.434	1.431
	Peso Unitario Compactado	Kg/m ³	1431	1429	1434	1431

PROPIEDADES FÍSICAS DE AGREGADOS PARA CONCRETO / A.S.T.M.C -33

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR

Tesis:

ACRECADO CRUSES EN UN 2004 POR CONCRETO PECICIADO DE E'C=475 240 Y 200 KG/CM2"

AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F´C=175,210 Y 280 KG/CM2"

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA.

Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO GRUESO - PIEDRA CHANCADA

3 .00 Peso Específico - ASTM C -127 / MTC E 204 / NTP 400.021

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
3.01	Peso de muestra SSS + canastilla sumergida	g	2737.85	2739.63	2738.38	
3.02	Peso de canastilla sumergida	g	875.00	875.00	875.00	
3.03	Peso de la muestra superficialmente Seca	g	3000.00	3000.00	3000.00	
3.04	Peso de la muestra secada al horno	g	2927.45	2928.63	2928.95	
3.05	Peso de la muestra sumergida en el agua	g	1862.85	1864.63	1863.38	
	Peso Específico de Masa	g/cm ³	2.574	2.579	2.577	2.580
	Peso Específico de Masa Saturado Superficialmente Seco	g/cm ³	2.638	2.642	2.639	2.640
	Peso Específico de Aparente	g/cm ³	2.750	2.752	2.749	2.750

4 .00 Absorción (%) ASTM C -127 / MTC E 204 / NTP 400.021

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
4.01	Peso de la muestra Superficialmente Seca	g	3000.00	3000.00	3000.00	
4.02	Peso de la muestra secada al horno	g	2927.45	2928.63	2928.95	
	Absorción (%)	%	2.478	2.437	2.426	2.400

5.00 Contenido de Humedad (%) A.S.T.M.C -566 / MTC E 118 / NTP 339.185

İtem	Descripción	Und.	M-1	M-2	M-3	Promedio
5.01	Peso del Recipiente	g	358.00	359.00	360.00	
5.02	Peso del Recipiente + muestra Humeda	g	1242.00	1474.00	1584.00	
5.03	Peso del Recipiente + muestra seca	g	1237.00	1468.00	1579.00	
	Contenido de Humedad	W %	0.57	0.54	0.41	0.51

MATERIAL MÁS FINO QUE PASA EL TAMIZ N°200 (ASTM.C -117 / NTP 400.018)

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL Tesis:

REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F´C=175,210 Y

280 KG/CM2"

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

LA VICTORIA - CAJAMARCA. Cantera: Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO GRUESO R-210

1.00 Ensayo Particulas < N° 200 para el Agregado Grueso

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
1.01	Peso de Muestra Original	g	3000.00	3000.00	3000.00	
1.02	Peso de la muestra Lavada	g	2978.20	2980.30	2980.63	
1.03	Peso del Material que pasa el Tamiz N° 200	g	21.80	19.70	19.37	
	% de Material que Pasa el Tamiz Nº 200	%	0.727%	0.657%	0.646%	0.70%

ENSAYO DE ABRASIÓN / NTP 400.019 / ASTM C 702 / MTC E 207

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F´C=210 KG/CM2 AL

REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE

F'C=175,210 Y 280 KG/CM2"

Bach. VILLENA PÉREZ, Moisés II. Tesista:

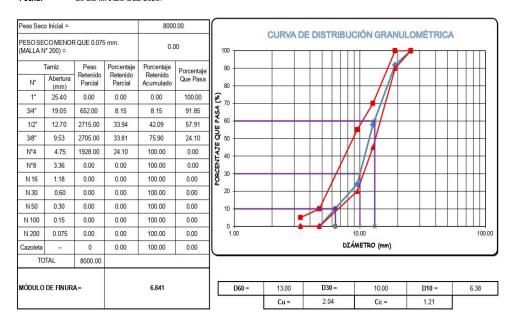
Tesis:

Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL. Asesor:

Cantera: LA VICTORIA - CAJAMARCA. Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO GRUESO R-210

Gradación	Equipo Mecánico	N° de Esferas	Velocidad (rev./mim)	N° de Revoluciones	Tamaño Máx. Nominal	Peso de la Muestra en (g.)
В	Máquina de los Ángeles	11	30 - 33	500.00	3/4"	5000.00
	N° DE ENSAYOS			1°	2°	3°
Peso Inicial de la	muestra seca al horno	(g.)		5000	5000	5000
Peso retenido er	n la malla N° 12 Lavado	y secado :	al horno en (g	3302	3309	3297
% Desg. =((Pi -Pf) / Pi) x 100				33.96	33.82	34.06
Abrasión % Desgaste Promedio					34.00	•


ANÁLISIS GRANULOMÉTRICO DE AGREGADO GRUESO: A.S.T.M. C 136 / NTP 400.012 /AASHTO T- 27/ MTC E 202

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210 Y 280 KG/CM2" Tesis:

Bach. VILLENA PÉREZ, Moisés II. Tesista:

Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL. Asesor:

Cantera: LA VICTORIA - CAJAMARCA. Fecha: 29 DE MARZO DEL 2025.

OBSERVACIONES LA CURVA GRANULOMÉTRICA DEL AGREGADO GRUESO CUMPLE EL USO GRANULOMETRICO Nº 67 DE LA NORMA A.S.T.M. C 33M-16.

EL MÓDULO DE FINURA DEL AGREGADO GRUESO ESTUDIADO ES DE 6.841.

- PROPIEDADES FÍSICAS DEL AGREGADO DE CONCRETO RECICLADO f'c= 280 kg/cm²

PROPIEDADES FÍSICAS DE AGREGADOS PARA CONCRETO / A.S.T.M.C -33

Tesis: "VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR

AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210 Y 280 KG/CM2"

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA.

Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO GRUESO - RECICLADO 280

A) CALCULO DEL PESO ESPECIFICO DEL AGUA

Peso de la fiola en (g) =	164.12
Peso de la fiola +agua (g) =	661.18
Volumen de la fiola (cm3) =	500.00
Peso especifico (g/cm3) =	0.99412
P.e en (Kg/m3) =	994.12

B) CALCULO DEL Factor f

Peso del Molde (g) =	4223.00
Peso del Molde +Agua (g) =	13772.00
Peso Agua (Kg) =	9.5490
f (1/m3) =	104.107

1.00 Peso Unitario Suelto (NTP 400.017, NTP 400.037 /A.S.T.M.C -29 / MTC E 205)

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
1.01	Peso del recipiente	g	4223.00	4223.00	4223.00	
1.03	Peso de muestra suelta + recipiente	g	17125.00	17158.00	17169.00	
1.04	Peso de la muestra suelta	g	12902.00	12935.00	12946.00	
1.05	Factor (f)	1/m3	104.107	104.107	104.107	
1.06	Peso Unitario Suelto	g/cm ³	1.343	1.347	1.348	1.346
	Peso Unitario Suelto	kg/m ³	1343	1347	1348	1346

2 .00 Peso Unitario Compactado (NTP 400.017, NTP 400.037 /A.S.T.M.C -29 / MTC E 205)

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
2.01	Peso del recipiente	g	4223.00	4223.00	4223.00	
2.02	Peso de muestra Compactada + recipiente	g	18245.00	18262.00	18215.00	
2.03	Peso de la muestra suelta	g	14022.00	14039.00	13992.00	
2.04	Factor (f)		104.107	104.107	104.107	
2.05	Peso Unitario Compactado	g/cm ³	1.460	1.462	1.457	1.459
	Peso Unitario Compactado	kg/m ³	1460	1462	1457	1459

PROPIEDADES FÍSICAS DE AGREGADOS PARA CONCRETO / A.S.T.M.C -33

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR

Tesis:

AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F´C=175,210 Y 280 KG/CM2"

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA.

Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO GRUESO - RECICLADO 280

3 .00 Peso Específico - ASTM C -127 / MTC E 204 / NTP 400.021

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
3.01	Peso de muestra SSS + canastilla sumergida	g	2741.20	2741.60	2741.30	
3.02	Peso de canastilla sumergida	g	875.00	875.00	875.00	
3.03	Peso de la muestra superficialmente Seca	g	3000.00	3000.00	3000.00	
3.04	Peso de la muestra secada al horno	g	2936.60	2935.50	2938.60	
3.05	Peso de la muestra sumergida en el agua	g	1866.20	1866.60	1866.30	
	Peso Específico de Masa	g/cm ³	2.590	2.590	2.592	2.590
	Peso Específico de Masa Saturado Superficialmente S	g/cm ³	2.646	2.647	2.646	2.650
	Peso Específico de Aparente	g/cm ³	2.743	2.746	2.740	2.740

4 .00 Absorción (%) ASTM C -127 / MTC E 204 / NTP 400.021

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
4.01	Peso de la muestra Superficialmente Seca	g	3000.00	3000.00	3000.00	
4.02	Peso de la muestra secada al horno	g	2936.60	2935.50	2938.60	
	Absorción (%)	%	2.159	2.197	2.089	2.100

5 .00 Contenido de Humedad (%) A.S.T.M.C -566 / MTC E 118 / NTP 339.185

İtem	Descripción	Und.	M-1	M-2	M-3	Promedio
5.01	Peso del Recipiente	g	362.00	360.00	358.00	
5.02	Peso del Recipiente + muestra Humeda	g	1551.00	1568.00	1674.00	
5.03	Peso del Recipiente + muestra seca	g	1548.00	1564.00	1669.00	Ĺ
	Contenido de Humedad	W %	0.25	0.33	0.38	0.32

MATERIAL MÁS FINO QUE PASA EL TAMIZ N°200 (ASTM.C -117 / NTP 400.018)

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F´C=210 KG/CM2 AL

Tesis: REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F´C=175,210 Y

280 KG/CM2"

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA. Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO GRUESO RECICLADO 280

1.00 Ensayo Particulas < N° 200 para el Agregado Grueso

Ítem	Descripción	Und.	M-1	M-2	M-3	Promedio
1.01	Peso de Muestra Original	g	3000.00	3000.00	3000.00	
1.02	Peso de la muestra Lavada	g	2985.63	2984.67	2985.16	
1.03	Peso del Material que pasa el Tamiz N° 200	g	14.37	15.33	14.84	
	% de Material que Pasa el Tamiz Nº 200	%	0.479%	0.511%	0.495%	0.50%

ENSAYO DE ABRASIÓN / NTP 400.019 / ASTM C 702 / MTC E 207

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F´C=210 KG/CM2 AL

REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE

F'C=175,210 Y 280 KG/CM2"

Tesista: Bach. VILLENA PÉREZ, Moisés II.

Tesis:

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA.

Fecha: 29 DE MARZO DEL 2025.

MATERIAL : AGREGADO GRUESO RECICLADO 280

Gradación	Equipo Mecánico	N° de Esferas	Velocidad (rev./mim)	N° de Revoluciones	Tamaño Máx. Nominal	Peso de la Muestra en (g.)
В	Máquina de los Ángeles	11	30 - 33	500.00	3/4"	5000.00
	N° DE ENSAYOS	1°	2°	3°		
Peso Inicial de la	muestra seca al horno	5000	5000	5000		
Peso retenido en (g)	la malla N° 12 Lavado	3612	3619	3618		
% Desg. =((Pi -P	f) / Pi) x 100	27.76	27.62	27.64		
Ab	rasión % Desgaste P		28.00			

ANÁLISIS GRANULOMÉTRICO DE AGREGADO GRUESO RECICLADO 280: A.S.T.M. C 136 / NTP 400.012 /AASHTO T- 27/ MTC E 202

"VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210 Y 280 KG/CM2" Tesis:

Bach. VILLENA PÉREZ, Moisés II. Tesista:

Asesor: Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.

Cantera: LA VICTORIA - CAJAMARCA. Fecha: 29 DE MARZO DEL 2025.

Peso Seco II	nicial =			8000	0.00		CURVA D	E DISTRIBU	CION GRAN	ULOMETRI	CA
PESO SECO 200) =	MENOR QUE	0.075 mm.	MALLA N°	0.0	00	100			1	•	
1	Tamiz	Peso	Porcentaje	Porcentaje	Porcentaje	90			//		
N°	Abertura (mm)	Retenido Parcial	Retenido Parcial	Retenido Acumulado	Que Pasa	80 E 70					
1"	25.40	0.00	0.00	0.00	100.00	70		1 1 1 1 1 1	 		++++
3/4"	19.05	795.00	9.94	9.94	90.06	PASA 08 0					\perp
1/2"	12.70	2612.00	32.65	42.59	57.41	S OF			F 7V		
3/8"	9.53	2689.00	33.61	76.20	23.80				/4		
N°4	4.75	1904.00	23.80	100.00	0.00	k 40		 	1//		++++
Nº8	3.36	0.00	0.00	100.00	0.00	30 00 00 00 00 00 00 00 00 00 00 00 00 0			//		
N 16	1.18	0.00	0.00	100.00	0.00				A		
N 30	0.60	0.00	0.00	100.00	0.00	20			4		
N 50	0.30	0.00	0.00	100.00	0.00	10			+		++++
N 100	0.15	0.00	0.00	100.00	0.00	0					
N 200	0.075	0.00	0.00	100.00	0.00	1.00			0.00		100.0
Cazoleta		0	0.00	100.00	0.00			DIÁ	METRO (mm)		
ТО	TAL	8000.00		20							
NÓDULO D	DE FINURA =			6.861		D60 =	13.00	D30 =	10.08	D10 =	6.43
							Cu =	2.02	Cc =	1.22	

OBSERVACIONES:

LA CURVA GRANULOMÉTRICA DEL AGREGADO GRUESO CUMPLE EL USO GRANULOMETRICO Nº 67 DE LA NORMA A.S.T.M. C 33M-16.

EL MÓDULO DE FINURA DEL AGREGADO GRUESO ESTUDIADO ES DE 6.861.

APÉNDICE IV: DISEÑO DE MEZCLA DEL CONCRETO

- DISEÑO DE MEZCLA DEL CONCRETO f'c= 210 kg/cm²

	DISEÑO DE	MEZCLA [DE CONCRETO	O PATRÓN					
	E LA RESISTENCIA A (reemplazar ag	REGADO			
GRUESO EN U	GRUESO EN UN 20% POR CONCRETO RECICLADO DE F´C=175,210 Y 280 KG/CM2"								
	Bach. VILLENA PÉREZ, Moisés II.								
	Dr. Ing. MOSQUEIRA MORENO, MIGUEL ANGEL.								
Fecha: 29 DE MARZO	DEL 2025.								
CEMENTO: PORTLAND F	PACASMAYO TIPO I - A	.S.T.M.C - 150	PESO ESPECIFICO) =	3.140	g/cm³			
DDOCEDENCIA DE ACDECADOS.			1 no	010	ka/cm²				
PROCEDENCIA DE AGREGADOS : Agreg. fino	A VICTORIA - CAJAMAI	DCA	Pc =		kg/cm²				
	A VICTORIA - CAJAMAI		-	= 210	kg/cm				
Adried. dilocoo	1 VIOTOTIIA - OAGAIVIAI	10/1.				_			
CARACTERISTICAS FÍSICAS DE LO	IS AGREGADOS	Bs.							
TAMAÑO MAVIMO NOMINAL		AGREGADO F	INO	AGREGADO GRUE	30	7			
TAMAÑO MAXIMO NOMINAL		0.040	g/am²	3/4"	alam?	-			
PESO ESPECIFICO DE MASA	DEDELOTAL PARTIES CO.	2.610	g/cm³	2.620	g/cm³	-			
PESO ESPECIFICO SATURADO SU	PERFICIALMENTE SEC		g/cm³	2.650	g/cm ³	4			
PESO ESPECIFICO APARENTE		2.710	g/cm³	2.700	g/cm ³	-			
PESO UNITARIO SUELTO		1634	kg/m³	1410	kg/m³	4			
PESO UNITARIO COMPACTADO		1741	kg/m³	1526	kg/m³	-			
CONTENIDO DE HUMEDAD (%)		5.223		1.260		-			
ABSORCION (%)		1.300		1.100		4			
MODULO DE FINURA		2.937		6.869		-			
ABRASION (%) % Que pasa malla nº 200		2.70		25.00 0.20		-			
ASENTAMIENTO = Cantidad de agua de Mezclad	0 =	3" - 4" 205.0	lt/m³	VACIOS POR CORE	regir =	41.7 6.7			
AIRE TOTAL (%) =		2.0		FCORR	. MC=	0.1			
RELACION A/Mc =		0.684							
O FRAFRITO		299.71	kg/m³	7.05	Bolsas/m³	7			
CEMENIO =			g	7.00		J			
	S :		7	MODULO DE COM	BINACION :	5.044			
CEMENTO = METODO VOLUMENES ABSOLUTO CEMENTO =	S : 0.095448	m³]	94		5.044 4.908			
METODO VOLUMENES ABSOLUTO CEMENTO =		m³ m³		MODULO DE COM	BINACION:				
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO =	0.095448]	MODULO DE COM	BINACION :) =	4.908			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO =	0.095448 0.205	m³		MODULO DE COM MODULO DE COM % AGREGADO FINO	BINACION :) =	4.908 49.87			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) = SUMA =	0.095448 0.205 0.02	m³ m³		MODULO DE COM MODULO DE COM % AGREGADO FINO	BINACION :) = JESO =	4.908 49.87			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) = SUMA =	0.095448 0.205 0.02 0.320448	m³ m³ m³		MODULO DE COM MODULO DE COM % AGREGADO FINO % AGREGADO GRO	BINACION :) = JESO =	4.908 49.87			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) = SUMA = VOLUMEN DE AGREGADOS =	0.095448 0.205 0.02 0.320448	m³ m³ m³		MODULO DE COM MODULO DE COM % AGREGADO FINO % AGREGADO GRU	BINACION : 0 = JESO = AD AGREGADOS	4.908 49.87			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) = SUMA = VOLUMEN DE AGREGADOS = AGREGADO FINO SECO =	0.095448 0.205 0.02 0.320448 0.679552	m³ m³ m³		MODULO DE COM MODULO DE COM % AGREGADO FINO % AGREGADO GRU APORTE HUMED APORTE AF =	BINACION :) = JESO = AD AGREGADOS 34.68	4.908 49.87			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) = SUMA = VOLUMEN DE AGREGADOS = AGREGADO FINO SECO = AGREGADO GRUESO SECO =	0.095448 0.205 0.02 0.320448 0.679552	m³ m³ m³ m³		MODULO DE COM MODULO DE COM % AGREGADO FINO % AGREGADO GRO APORTE HUMED APORTE AF = APORTE AG =	BINACION: 0 = UESO = AD AGREGADOS 34.68 1.43 36.11	4.908 49.87			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) = SUMA = VOLUMEN DE AGREGADOS = AGREGADO FINO SECO = AGREGADO GRUESO SECO = MATERIALES DE DISEÑO	0.095448 0.205 0.02 0.320448 0.679552	m³ m³ m³ m³		MODULO DE COM MODULO DE COM % AGREGADO FIN % AGREGADO GRI APORTE HUMED APORTE AF = APORTE AG = TOTAL =	BINACION: 0 = UESO = AD AGREGADOS 34.68 1.43 36.11	4.908 49.87			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) = SUMA = VOLUMEN DE AGREGADOS = AGREGADO FINO SECO = AGREGADO GRUESO SECO = MATERIALES DE DISEÑO CEMENTO	0.095448 0.205 0.02 0.320448 0.679552 884.00 893.00	m³ m³ m³ m³ kg/m³	MATERIALES COR	MODULO DE COM MODULO DE COM % AGREGADO FIN % AGREGADO GRI APORTE HUMED APORTE AF = APORTE AG = TOTAL =	BINACION: O = JESO = AD AGREGADOS 34.68 1.43 36.11	4.908 49.87 50.13			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) = SUMA = VOLUMEN DE AGREGADOS = AGREGADO FINO SECO = AGREGADO GRUESO SECO = MATERIALES DE DISEÑO CEMENTO AGUA DE DISEÑO	0.095448 0.205 0.02 0.320448 0.679552 884.00 893.00	m³ m³ m³ m³ m³ kg/m³ kg/m³	MATERIALES COR	MODULO DE COM MODULO DE COM % AGREGADO FINI % AGREGADO GRI APORTE HUMED APORTE AF = APORTE AG = TOTAL = RREGIDOS POR HUM	BINACION: 0 = 0 = 0 = 0 = 0 = 0 AD AGREGADOS 0 34.68 0 1.43 0 36.11 0 EDAD 0 299.7	4.908 49.87 50.13			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) = SUMA = VOLUMEN DE AGREGADOS = AGREGADO FINO SECO = AGREGADO GRUESO SECO = MATERIALES DE DISEÑO CEMENTO AGUA DE DISEÑO AGREGADO FINO SECO	0.095448 0.205 0.02 0.320448 0.679552 884.00 893.00 299.7 205.00 884.00 893.00	m³ m³ m³ m³ m³ kg/m³ kg/m³ kg/ms kg	MATERIALES COR CEMENTO AGUA EFECTIVA	MODULO DE COM MODULO DE COM MODULO DE COM % AGREGADO FINI % AGREGADO GRI APORTE HUMED APORTE AF = APORTE AG = TOTAL = RREGIDOS POR HUM HUMEDO	BINACION: 0 = JESO = AD AGREGADOS 34.68 1.43 36.11 EDAD 299.7 168.9 930.00 904.00	4.908 49.87 50.13			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) = SUMA = VOLUMEN DE AGREGADOS = AGREGADO FINO SECO = AGREGADO GRUESO SECO = MATERIALES DE DISEÑO CEMENTO AGUA DE DISEÑO AGREGADO FINO SECO AGREGADO GRUESO SECO AGREGADO GRUESO SECO	0.095448 0.205 0.02 0.320448 0.679552 884.00 893.00 299.7 205.00 884.00	m³ m³ m³ m³ m³ m³ kg/m³ kg/m³ kg	MATERIALES COR CEMENTO AGUA EFECTIVA AGREGADO FINO	MODULO DE COM MODULO DE COM MODULO DE COM % AGREGADO FINI % AGREGADO GRI APORTE HUMED APORTE AF = APORTE AG = TOTAL = RREGIDOS POR HUM HUMEDO	BINACION: 0 = 0 = 0 = 0 0 = 0 0 0 0 0 0 0 0 0 0	4.908 49.87 50.13			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) = SUMA = VOLUMEN DE AGREGADOS = AGREGADO FINO SECO = AGREGADO GRUESO SECO = MATERIALES DE DISEÑO CEMENTO AGUA DE DISEÑO AGREGADO GRUESO SECO AGREGADO GRUESO SECO AGREGADO GRUESO SECO AGREGADO GRUESO SECO AGREGADO GRUESO SECO AIRE TOTAL	0.095448 0.205 0.02 0.320448 0.679552 884.00 893.00 299.7 205.00 884.00 893.00	m³ m³ m³ m³ m³ kg/m³ kg/m³ kg/ms kg	MATERIALES COR CEMENTO AGUA EFECTIVA AGREGADO FINO AGREGADO GRUE	MODULO DE COM MODULO DE COM MODULO DE COM % AGREGADO FIN % AGREGADO GRI APORTE HUMED APORTE AF = APORTE AG = TOTAL = RREGIDOS POR HUM HUMEDO SO HUMEDO	BINACION: 0 = JESO = AD AGREGADOS 34.68 1.43 36.11 EDAD 299.7 168.9 930.00 904.00	4.908 49.87 50.13			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) =	0.095448 0.205 0.02 0.320448 0.679552 884.00 893.00 299.7 205.00 884.00 893.00	m³ m³ m³ m³ m³ kg/m³ kg/m³ kg/ms kg	MATERIALES COR CEMENTO AGUA EFECTIVA AGREGADO FINO AGREGADO GRUE AIRE TOTAL	MODULO DE COM MODULO DE COM MODULO DE COM % AGREGADO FIN % AGREGADO GRI APORTE HUMED APORTE AF = APORTE AG = TOTAL = RREGIDOS POR HUM HUMEDO SO HUMEDO	BINACION: 0 = JESO = AD AGREGADOS 34.68 1.43 36.11 EDAD 299.7 168.9 930.00 904.00	4.908 49.87 50.13			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) = SUMA = VOLUMEN DE AGREGADOS = AGREGADO FINO SECO = AGREGADO GRUESO SECO = MATERIALES DE DISEÑO CEMENTO AGUA DE DISEÑO AGREGADO FINO SECO AGREGADO GRUESO SECO AIRE TOTAL PROPORCION EN PESO CEMENTO = 1	0.095448 0.205 0.02 0.320448 0.679552 884.00 893.00 299.7 205.00 884.00 893.00	m³ m³ m³ m³ m³ kg/m³ kg/m³ kg/ms kg	MATERIALES COR CEMENTO AGUA EFECTIVA AGREGADO FINO AGREGADO GRUE AIRE TOTAL PROPORCION EN	MODULO DE COM MODULO DE COM MODULO DE COM % AGREGADO FIN % AGREGADO GRI APORTE HUMED APORTE AG = TOTAL = RREGIDOS POR HUM HUMEDO SO HUMEDO	BINACION: 0 = JESO = AD AGREGADOS 34.68 1.43 36.11 EDAD 299.7 168.9 930.00 904.00	4.908 49.87 50.13			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) = SUMA = VOLUMEN DE AGREGADOS = AGREGADO FINO SECO = AGREGADO GRUESO SECO = MATERIALES DE DISEÑO CEMENTO AGUA DE DISEÑO AGREGADO FINO SECO AGREGADO GRUESO SECO AIRE TOTAL PROPORCION EN PESO CEMENTO = 1 A. FINO = 3.10	0.095448 0.205 0.02 0.320448 0.679552 884.00 893.00 299.7 205.00 884.00 893.00	m³ m³ m³ m³ m³ kg/m³ kg/m³ kg/ms kg	MATERIALES COR CEMENTO AGUA EFECTIVA AGREGADO FINO I AGREGADO GRUE AIRE TOTAL PROPORCION EN CEMENTO =	MODULO DE COM MODULO DE COM MODULO DE COM % AGREGADO FINI % AGREGADO GRI APORTE HUMED APORTE AG = TOTAL = REGIDOS POR HUM HUMEDO SO HUMEDO VOLUMEN 1	BINACION: 0 = 0 = 0 = 0 0 = 0 0 0 0 0 0 0 0 0 0	4.908 49.87 50.13			
METODO VOLUMENES ABSOLUTO CEMENTO = AGUA DE MEZCLADO = AIRE (%) = SUMA = VOLUMEN DE AGREGADOS = AGREGADO FINO SECO = AGREGADO GRUESO SECO = MATERIALES DE DISEÑO CEMENTO AGUA DE DISEÑO AGREGADO FINO SECO AGREGADO GRUESO SECO AIRE TOTAL PROPORCION EN PESO CEMENTO = 1 A. HNO = 3.10	0.095448 0.205 0.02 0.320448 0.679552 884.00 893.00 299.7 205.00 884.00 893.00	m³ m³ m³ m³ m³ kg/m³ kg/m³ kg/ms kg	MATERIALES COR CEMENTO AGUA EFECTIVA AGREGADO FINO AGREGADO GRUE AIRE TOTAL PROPORCION EN CEMENTO = A. FINO =	MODULO DE COM MODULO DE COM MODULO DE COM % AGREGADO FINI % AGREGADO GRI APORTE HUMED APORTE AG = TOTAL = REGIDOS POR HUM HUMEDO SO HUMEDO VOLUMEN 1 2.710	BINACION: 0 = UESO = AD AGREGADOS 34.68 1.43 36.11 EDAD 299.7 168.9 930.00 904.00 2.00	4.908 49.87 50.13 kg lt kg kg			

- MEZCLA DEL CONCRETO CON 20% DE AGREGADO RECICLADO DE UN CONCRETO f'c= 175 kg/cm²

Tabla 18: Materiales del diseño patrón y mezcla 20% AGR f'c= 175 kg/cm²

Materiales usados en el c	diseño patrón – 0 % de reemplazo
Cemento	299.70 kg
Agua efectiva	168.90 lt
Agregado fino	930.00 kg
Agregado grueso	904.00 kg
Aire total	2.00 %
Materiales usados en la mez	cla con 20% AGR f'c= 175 kg/cm²
Cemento	299.70 kg
Agua efectiva	168.90 lt
Agregado fino	930.00 kg
Agregado grueso	723.20 kg
Agregado grueso 175 kg/cm	180.80 kg
Aire total	2.00 %

- MEZCLA DEL CONCRETO CON 20% DE AGREGADO RECICLADO DE UN CONCRETO f'c= 210 kg/cm²

Tabla 19: Materiales del diseño patrón y mezcla 20% AGR f'c= 210 kg/cm²

diseño patrón – 0 % de reemplazo
299.70 kg
168.90 lt
930.00 kg
904.00 kg
2.00 %
cla con 20% AGR f'c= 210 kg/cm²
299.70 kg
168.90 lt
930.00 kg
723.20 kg
180.80 kg
2.00 %

- DISEÑO DE MEZCLA DEL CONCRETO CON 20% DE AGREGADO RECICLADO DE UN CONCRETO f'c= 280 kg/cm²

Tabla 20: Materiales del diseño patrón y mezcla 20% AGR f'c= 280 kg/cm²

Materiales usados en el c	diseño patrón – 0 % de reemplazo
Cemento	299.70 kg
Agua efectiva	168.90 lt
Agregado fino	930.00 kg
Agregado grueso	904.00 kg
Aire total	2.00 %
Materiales usados en la mez	cla con 20% AGR f'c= 280 kg/cm²
Cemento	299.70 kg
Agua efectiva	168.90 lt
Agregado fino	930.00 kg
Agregado grueso	723.20 kg
Agregado grueso 175 kg/cm	180.80 kg
Aire total	2.00 %

ANEXO I: FICHA TÉCNICA DEL CEMENTO TIPO I

CEMENTOS PACASMAYO S.A.A.

Calle La Colonia Nro. 150 Urb. El Vivero de Monterrico Santiago de Surco - Lima Carretera Panamericana Norte Km. 666 Pacasmayo - La Libertad Teléfono 317 - 6000

Planta: Pacasmayo

Cemento Pórtland Tipo I

11 de febrero de 2021 Periodo de despacho 01 de enero de 2021 - 31 de enero de 2021

REQUISITOS NORMALIZADOS

NTP 334.009 Tablas 1 y 3

QUÍMICOS

Requisitos	Especificación	Resultado de ensayos	
MgO (%)	6 máx.	2	
SO3 (%)	3.0 máx.	2.8	
Pérdida por ignición (%)	3.5 máx.	2.9	
Residuo insoluble (%)	1.5 máx.	0.6	

FÍSICOS

Requisitos	Especificación	Resultado de ensayos	
Contenido de aire del mortero (volumen %)	12 máx.		
Superficie específica (cm2/g)	2600 mín.	3970	
Expansión en autoclave (%)	0.80 máx.	0.05	
Densidad (g/cm3)	A	3.11	
Resistencia a la compresión (MPa)			
1 día	A	14.7	
3 días	12.0 min.	27.4	
7 días	19.0 mín.	34.4	
28 días *	28.0 mín.	42.7	
Tiempo de fraguado Vicat (minutos)			
Inicial	45 mín.	131	
Final	375 máx.	240	

A No especifica

El (la) RC 28 días corresponde al mes de diciembre del 2020

Certificamos que el cemento descrito arriba, al tiempo de envío, cumple con los requisitos químicos y físicos de la NTP 334.009.2016.

Ing. Dennis R. Rodas Lavado

Superintendente de Control de Calidad

Solicitado por:

Distribuidora Norte Pacasmayo S. R. L.

Está prohibida la reproducción total o parcial de este documento sin la autorización de Cementos Pacasmayo S. A. A.

^{*} Requisito opcional

ANEXO II: CONSTANCIA DE PERMISO DE LABORATORIO EXTERNO

Universidad Nacional de Cajamarca

FACULTAD DE INGENIERIA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVII Teléfono № 341518, Anexo 1217-Edificio 1C-106 Caj∋marca - Perú

"Año de la Recuperación y Consolidación de la Economía Peruana"

Cajamarca, 11 de marzo de 2025.

OFICIO Nº 186-2025-EPIC-FI-UNC

Señor:

Moises II Villena Perez

Egresado de la Facultad de Ingeniería - UNC

PRESENTE:

De mi consideración:

Es grato dirigirme a usted, para saludarle cordialmente y, al mismo tiempo, autorizar el uso del Laboratorio externo GUERSAN INGENIEROS; para que Usted realice sus respectivos ensayos de su tesis titulado: "VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM² AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C= 175, 210 Y 280 KG/CM²".

Sin otro particular, hago propicia la ocasión para testimoniarle las muestras de mi especial deferencia.

Atentamente,

B. en T. Ing José Benjamin Torres Tahu

Cc. - Archivo

JBTT/yvette

ANEXO III: CONSTANCIA DE USO DE LABORATORIO EXTERNO

SUPERVISIÓN Y EJECUCIÓN DE OBRAS DE INGENIERÍA ELABORACIÓN DE PERFILES Y EXPEDIENTES TÉCNICOS ESTUDIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS SERVICIO DE TOPOGRAFÍA Y ESTUDIOS TOPOGRÁFICOS CEL. 939291809 / TEL. 076 633319

El que subscribe, LEINER GUERRERO GONZÁLES, identificado con DNI 45567546, gerente general de GUERSAN INGENIEROS S.R.L., con ruc 20602101488. Deja:

CONSTANCIA

Que el bachiller VILLENA PÉREZ MOISÉS II, durante el año 2025, ha realizado los trabajos necesarios en el laboratorio GUERSAN INGENIEROS S.R.L., para su tesis de pregrado de la Universidad Nacional de Cajamarca, denominada "VARIACIÓN DE LA RESISTENCIA A COMPRESIÓN DE UN CONCRETO F'C=210 KG/CM2 AL REEMPLAZAR AGREGADO GRUESO EN UN 20% POR CONCRETO RECICLADO DE F'C=175,210 Y 280 KG/CM²". Estos trabajos fueron:

Ensayos:

- Peso específico de masa
- Peso específico aparente
- Peso unitario compactado
- Módulo de finura
- % de material que pasa el tamiz nº200
- Resistencia a compresión
- Peso específico de masa S.S.S.
- Peso unitario suelto
- Contenido de humedad
- Abrasión
- Absorción
- Peso volumétrico.

Diseños de mezcla:

Tratamiento I Diseño patrón.

Tratamiento II 20% de AGR f'c=175 kg/cm² Tratamiento III 20% de AGR f'c=210 kg/cm²

Tratamiento IV 20% de AGR f'c=280 kg/cm²

Se expide la presente, para los fines que estime conveniente,

Cajamarca, 30 de mayo de 2025

GUERSAN INGENIEROS S.R.L.

LEINER GWERRERO GONZALES GERENTE GENERAL DNI N° 45567546

Psj. Diego Ferre N° 295 – Barrio San Martín – Cajamarca Celular: 939291809

Email: <u>guersanIngenieros@gmail.com</u> RUC: 20602101488