UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

TESIS:

"MODELO DE GESTIÓN DE CONSERVACIÓN VIAL PARA REDUCIR LOS COSTOS DE MANTENIMIENTO VIAL Y OPERACIÓN VEHICULAR EN EL CAMINO VECINAL CRUCE SHANANGO-BELLAVISTA, DEL DISTRITO DE BELLAVISTA-JAÉN-CAJAMARCA"

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO CIVIL

PRESENTADO POR EL BACHILLER:

EDUARDO RAFAEL DÁVILA DELGADO

ASESOR:

ING. EVER RODRÍGUEZ GUEVARA

CAJAMARCA – PERÚ

2025

DNI: 26619042

CONSTANCIA DE INFORME DE ORIGINALIDAD FACULTAD DE INGENIERÍA

1.	Investigador: EDUARDO RAFAEL DÁVILA DELGADO DNI: 74255124 Escuela Profesional: INGENIERÍA CIVIL
2.	Asesor: Ing. EVER RODRÍGUEZ GUEVARA Facultad: INGENIERÍA
3.	Grado académico o título profesional
	\square Bachiller \blacksquare Título profesional \square Segunda especialidad
	□ Maestro □ Doctor
4.	Tipo de Investigación:
	■ Tesis □ Trabajo de investigación □ Trabajo de suficiencia profesional
	☐ Trabajo académico
M/ BE	IODELO DE GESTIÓN DE CONSERVACIÓN VIAL PARA REDUCIR LOS COSTOS DE ANTENIMIENTO VIAL Y OPERACIÓN VEHICULAR EN EL CAMINO VECINAL CRUCE SHANANGO-LLAVISTA, DEL DISTRITO DE BELLAVISTA-JAÉN-CAJAMARCA" Fecha de evaluación: 12 setiembre 2025
7.	Software antiplagio: ■ TURNITIN □ URKUND (ORIGINAL) (*)
8. 9.	Porcentaje de Informe de Similitud: 16 % Código Documento: 3117:497812997 Resultado de la Evaluación de Similitud:
	■ APROBADO □ PARA LEVANTAMIENTO DE OBSERVACIONES O DESAPROBADO
	Fecha Emisión: 23 setiembre 2025
omh	FIRMA DEL ASESOR FIRMA DEL ASESOR FIRMA DEL ASESOR THE MODITION OF THE MODEL INVESTIGACIÓN FIRMA DEL ASESOR WINDAD DE INVESTIGACIÓN FIRMA DEL ASESOR THE MODITION OF THE

Universidad Nacional de Cajamarca

"Norte de la Universidad Peruana"

Fundada por Ley 14015 del 13 de Febrero de 1962

FACULTAD DE INGENIERIA

ACTA DE SUSTENTACIÓN PÚBLICA DE TESIS.

TITULO

: MODELO DE GESTIÓN DE CONSERVACIÓN VIAL PARA REDUCIR LOS COSTOS DE MANTENIMIENTO VIAL Y OPERACIÓN VEHICULAR EN EL CAMINO VECINAL CRUCE SHANANGO - BELLAVISTA, DEL DISTRITO DE BELLAVISTA -JAÉN - CAJAMARCA.

ASESOR

: Ing. Ever Rodríguez Guevara.

En la ciudad de Cajamarca, dando cumplimiento a lo dispuesto por el Oficio Múltiple Nº 0696-2025-PUB-SA-FI-UNC, de fecha 20 de octubre de 2025, de la Secretaría Académica de la Facultad de Ingeniería, a los veintidós días del mes de octubre de 2025, siendo las quince horas con treinta minutos(5:30 p.m.) en la Sala de Audiovisuales (Edificio 1A - Segundo Piso), de la Facultad de Ingeniería, se reunieron los Señores Miembros del Jurado Evaluador:

Presidente

: M. en I. Ing. José Benjamín Torres Tafur.

Vocal

: M.Cs. Ing. Sergio Manuel Huamán Sangay.

Secretario

: M.Cs. Ing. Marco Antonio Silva Silva.

Para proceder a escuchar y evaluar la sustentación pública de la tesis titulada MODELO DE GESTIÓN DE CONSERVACIÓN VIAL PARA REDUCIR LOS COSTOS DE MANTENIMIENTO VIAL Y OPERACIÓN VEHICULAR EN EL CAMINO VECINAL CRUCE SHANANGO - BELLAVISTA, DEL DISTRITO DE BELLAVISTA - JAÉN - CAJAMARCA, presentado por el Bachiller en Ingeniería Civil EDUARDO RAFAEL DÁVILA DELGADO, asesorado por el Ing. Ever Rodríguez Guevara, para la obtención del Título Profesional

Los Señores Miembros del Jurado replicaron al sustentante debatieron entre sí en forma libre y reservada y lo evaluaron de la siguiente manera:

En consecuencia, se lo declara DPMBDDO con el calificativo de QUINCE //5 acto seguido, el presidente del jurado hizo saber el resultado de la sustentación, levantándose la presente a las cl./.cc/.sc/.s.. horas del mismo día, con lo cual se dio por terminado el acto, para constancia se firmó por quintuplicado.

M. en I. Ing. José Benjamín Torres Tafur.

Presidente

M.Cs. Ing. Sergio Manuel Huamán Sangay.

Vocal

M.Cs. Ing. Marco Antonio Silva Silva.

Secretario

Rodríguez Guevara. Asesor

Universidad Nacional de Cajamarca

"Norte de la Universidad Peruana"

Fundada por Ley 14015 del 13 de Febrero de 1962

FACULTAD DE INGENIERÍA

Telef. Nº 365976 Anexo Nº 1129-1130

EVALUACIÓN DE LA SUSTENTACIÓN PÚBLICA DE TESIS.

Bachiller en Ingeniería Civil: EDUARDO RAFAEL DÁVILA DELGADO.

	PUNTAJE	
RUBRO	Máximo/Calificación	
2. DE LA SUSTENTACIÓN PÚBLICA		
2.1. Capacidad de síntesis	02	
2.2. Dominio del tema	02	
2.3. Consistencia de las alternativas presentadas	0.3	
2.4. Precisión y seguridad en las respuestas	03	
PUNTAJE TOTAL (MÁXIMO 12 PUNTOS)	10	

Cajamarca, 22 de octubre de 2025

M. en I. Ing. José Benjamín Torres Tafur.

Presidente

M.Cs. Ing. Marco Antonio Silva Silva.

Secretatio

M.Cs. Ing. Sergio Manuel Huamán Sangay. Vocal

Rodríguez Gue

Asesor

Universidad Nacional de Cajamarca

"Norte de la Universidad Peruana"

Fundada por Ley 14015 del 13 de Febrero de 1962

FACULTAD DE INGENIERÍA

Teléf. Nº 365976 Anexo Nº 1129-1130

EVALUACIÓN FINAL DE LA SUSTENTACIÓN DE TESIS.

Bachiller en Ingeniería Civil: EDUARDO RAFAEL DÁVILA DELGADO.

RUBRO	PUNTAJE
A EVALUACIÓN DE LA SUSTENTACIÓN PRIVADA	05
B EVALUACIÓN DE LA SUSTENTACIÓN PÚBLICA	10
EVALUACIÓN FINAL	
EN NÚMEROS (A + B)	15
EN LETRAS (A + B)	QUINCE
- Excelente 20 - 19	
- Muy Bueno 18 - 17	BUENO
- Bueno 16 - 14	BUENO
- Regular 13 a 11	-
- Desaprobado 10 a menos	

Cajamarca, 22 de octubre de 2025

M. en I. Ing. José Benjamín Torres Tafur. Presidente

M.Cs. Ing. Marco/Antonio Silva Silva. Secretario

Ymanau M M.Cs. Ing. Sergio Manuel Huamán Sangay.

Rodríguez Guevara.

Copyright © 2025 by Eduardo Rafael Dávila Delgado Todos los derechos reservados

AGRADECIMIENTO

A Dios, por su guía, sabiduría y fortaleza constante a lo largo de este camino. Su presencia ha sido fundamental en cada paso que he dado.

A la Universidad Nacional de Cajamarca, por brindarme la formación académica y profesional que ha sido base para la realización de esta tesis.

A mis amigos y familiares, por su respaldo emocional, compañía y aliento constante. Su apoyo ha sido fundamental para continuar firmemente en este camino.

A todos, mi más sincero agradecimiento.

Eduardo.

DEDICATORIA

A mi amada Kenia Marleey Quinde Flores, con profundo amor y gratitud, por ser mi compañera de vida en este camino y por recordarme, el verdadero valor del apoyo y la fortaleza. A nuestra hija, Luna Rafaela, mi razón de lucha y la fuente más pura de motivación para seguir creciendo y alcanzar cada meta trazada.

A mis padres, Valentín Dávila y Carmen Delgado, por ser ejemplo de esfuerzo, perseverancia y valores que siempre me han sostenido, y a mis hermanos, Wilson, Franklin y Neyser, por su compañía, aliento y apoyo sincero. A todos ustedes, gracias por estar a mi lado en los momentos más difíciles y por darme la fuerza necesaria para alcanzar esta meta.

Eduardo.

ÍNDICE DE CONTENIDO

AGRADECIMIENTO	iii
DEDICATORIA	iv
ÍNDICE DE TABLAS	ix
ÍNDICE DE FIGURAS	xii
RESUMEN	xiv
ABSTRACT	XV
CAPÍTULO I. INTRODUCCIÓN	1
1.1Planteamiento del problema	1
1.2 Formulación del problema	2
1.3 Hipótesis	2
1.4. Justificación de la investigación	2
1.5. Alcances o delimitación de la investigación.	3
1.5.1 Delimitación metodológica	3
1.5.2 Delimitación espacial	3
1.5.3.Delimitación Temporal	4
1.6 Limitaciones	4
1.7 Objetivos	4
1.7.1 Objetivo general	4
1.7.2 Objetivos específicos	4
1.8 Variables.	5
1.9 Operacionalización de variables	5
1.10 Descripción de contenido de los capítulos	8
CAPÍTULO II. MARCO TEÓRICO	9
2.1. Antacadantes taóricos	0

	2.1.1 Internacionales	9
	2.1.2 Nacionales	10
	2.1.3 Locales	12
2.2	. Bases teóricas	14
	2.2.1 Gestión vial	14
	2.2.2 Conservación vial	14
	2.2.3 Importancia de la conservación vial	15
	2.2.5 Gestión vial para instituciones estatales descentralizadas	17
	2.2.6 Resultados de la descentralización de la gestión vial	18
	2.2.7 Inventario vial	19
	2.2.8 Tráfico vehicular	20
	2.2.9 Índice medio diario anual de tráfico (IMDA)	21
	2.2.10 Factor de corrección estacional	22
	2.2.11 Tránsito proyectado al año	23
	2.2.12 Gastos operativos de los vehículos	23
	2.2.13 Cálculo de los costos de operación de los vehículos	24
	2.2.14 Costos de mantenimiento vial	28
2.3	. Términos básicos	29
	Camino vecinal.	29
	Conservación Vial	29
	Modelo de gestión de conservación vial	29
	Costos de operación vehicular	29
	Inventario vial	30
	Levantamiento topográfico	30
	Tráfico vehicular promedio	30
	Obras de drenaje vial	30

Capa de rodadui	ra	30
Encuestas de ori	gen y destino	30
CAPITULO III. MA	ATERIALES Y MÉTODOS	31
3.1 Localización y ul	bicación	31
3.1.1 Ubicación	política	31
3.1.2 Ubicación	geográfica	33
3.2. Tiempo en que s	e realizó la investigación	34
3.3. Metodología de	la investigación	34
3.3.1 Tipo de inv	estigación	34
3.3.2 Población,	muestra, unidad de análisis y unidad de observación	35
3.3.4 Procedimie	ento	36
3.3.4 Tratamient	o y análisis de datos y presentación de resultados	46
3.3.5 Presentacio	ón de resultados	48
3.3.6 Modelo de	gestión de conservación vial para el tramo Cruce Shanango -	- Bellavista 63
CAPITULO IV: AN	NÁLISIS Y DISCUSIÓN DE RESULTADOS	68
4.1 Diagnóstico de la	as condiciones físicas, geométricas y de tránsito	68
4.2. Identificación y	comparación de modelos de gestión de conservación vial	69
4.3. Análisis de costo	os de mantenimiento vial y operación vehicular	70
4.4. Diseño del mode	elo de gestión de conservación vial propuesto	71
4.5. Evaluación del in	mpacto económico del modelo propuesto	72
CAPÍTULO V. CO	NCLUSIONES Y RECOMENDACIONES	74
5.1 Conclusiones		74
5.2 Recomendacione	·s	75
REFERENCIAS BI	IBLIOGRÁFICAS	76
ANEXOS		81
ANEXOS I. FORMA	ATOS DE INVENTARIO VIAL	82

ANEXO II. FICHA DE ENCUESTA DE ORIGEN Y DESTINO	87
ANEXO III. PLANTILLA DE AFORO VEHICULAR	89
ANEXO IV. LIBRETA DE CAMPO PARA EL LEVANTAMIENTO TOPOGRÁFICO	91
ANEXO V. AFORO VEHICULAR POR 7 DÍAS CONSECUTIVOS	93
ANEXO VI. INVENTARIO VIAL	101
ANEXO VII. ENCUESTAS DE ORIGEN Y DESTINO	110
ANEXO VIII. DATOS DEL LEVANTAMIENTO TOPOGRÁFICO	115
ANEXO IX. COSTOS ESTIMADOS DE MANTENIMIENTO RUTINARIO Y PERIÓ	DICO
	131
ANEXO X. PANEL FOTOGRÁFICO	135
ANEXO XI. PLANOS	140

ÍNDICE DE TABLAS

Tabla 1. Coordenadas UTM y elevación del tramo Cruce Shanango – Bellavista	3
Tabla 2.Operacionalización de variables	6
Tabla 3. Matriz de consistencia	7
Tabla 4. Modalidades de contrato para la ejecución de mantenimiento vial	16
Tabla 5. Jerarquización vial-sistema y competencia	18
Tabla 6. Elementos a inventariar en una vía según el MTC	20
Tabla 7. Gastos operativos de los vehículos	23
Tabla 8. Vinculación entre el estado de la carretera vs IRI	26
Tabla 9. Condición de la carretera vs IRI	26
Tabla 10. Porcentaje de consumo de insumos en relación del costo inicial del vehículo (en la	ıs
vías con mantenimiento)	27
Tabla 11. Ubicación del camino vecinal	31
Tabla 12. Ubicación geográfica del camino vecinal en estudio Cruce Shanango-Bellavista	33
Tabla 13. Flujo vehicular diario por tipo de vehículo y franja horaria de 6:00 am a 6:00pm	49
Tabla 14. Índice medio diario semanal (IMDs) por categoría vehicular.	49
Tabla 15. Factor de corrección del mes de setiembre del año 2023	49
Tabla 16. Principales destinos de viaje	50
Tabla 17. Propósito del viaje (trabajo, estudio, paseo, otros)	51
Tabla 18. Frecuencia de viaje de los usuarios.	51
Tabla 19. Medio de transporte empleado	51
Tabla 20. Datos generales del camino vecinal cruce Shanango-Bellavista	52
Tabla 21. Resumen del inventario topográfico del tramo Cruce Shanango – Bellavista	52
Tabla 22. Resumen de daños en pavimento según tipo y severidad	53

Tabla 23. Resumen de estado de las obras de arte	53
Tabla 24. Comparación de modelos de gestión de conservación vial revisados en los	
antecedentes	54
Tabla 25. Costos estimados de mantenimiento vial en situación actual (estado malo)	56
Tabla 26. Método del Instituto Nacional de Vías (INVIAS)-Ahorro de costos en operación	
vehicular	56
Tabla 27. Método de Lean Ingenieros Consultores Asociados en las carreteras de Chile-Ahorre	О
de costos en operación vehicular.	57
Tabla 28. Comparación de costos de mantenimiento vial (estado actual vs. modelo propuesto) de costos de mantenimiento vial (estado actual vs. modelo propuesto) de costos de mantenimiento vial (estado actual vs. modelo propuesto) de costos de mantenimiento vial (estado actual vs. modelo propuesto) de costos de mantenimiento vial (estado actual vs. modelo propuesto) de costos de mantenimiento vial (estado actual vs. modelo propuesto) de costos de mantenimiento vial (estado actual vs. modelo propuesto) de costos d	51
Tabla 29. Ahorro en costos de operación vehicular – Método INVIAS	52
Tabla 30. Comparación de costos de operación vehicular – Método Lean Ingenieros	52
Tabla 31.Componentes del modelo de gestión de conservación vial	54
Tabla 32. Niveles de intervención del modelo de gestión	55
Tabla 33. Comparación de costos de mantenimiento vial (estado actual vs. modelo propuesto) e	55
Tabla 34. Comparación de costos de operación vehicular (estado actual vs. modelo propuesto) e	56
Tabla 35. Condiciones físicas, geométricas y de tránsito del tramo Cruce Shanango – Bellavista	ì
	58
Tabla 36. Identificación y comparación los modelos de gestión de conservación vial	59
Tabla 37. Comparación de costos de conservación y rehabilitación	70
Tabla 38. Estimación de costos de operación vehicular	71
Tabla 39. Componentes del modelo de gestión de conservación vial propuesto	71
Tabla 40. Impacto económico del modelo	72
Tabla 41. Inventario vial, formato para datos generales	83
Tabla 42. Inventario vial, formato N1° 02-topografia	84

Tabla 43. Inventario vial-formato 3.A-Daños de pavimento	85
Tabla 44. Inventario vial, formato N° 05-Obras de arte y drenaje	86
Tabla 45. Matriz de conteo de trafico	90
Tabla 46. Libreta de campo de levantamiento topográfico	92
Tabla 47. Resultados del día 1 (10/09/2023) del aforo vehicular	94
Tabla 48 Resultados del día 2 (11/09/2023) del aforo vehicular.	95
Tabla 49. Resultados del día 3 (12/09/2023) del aforo vehicular	96
Tabla 50. Resultados del día 4 (13/09/2023) del aforo vehicular	97
Tabla 51. Resultados del día 5 (14/09/2023) del aforo vehicular	98
Tabla 52. Resultados del día 6 (15/09/2023) del aforo vehicular	99
Tabla 53. Resultados del día 7 (16/09/2023) del aforo vehicular	100
Tabla 54. Inventario vial, Formato Nº 1.0-Datos generales de la vía cruce Shanango-I	Bellavista
	102
Tabla 55. Formato N° 2.0-Topografia de la vía cruce Shanango-Bellavista	103
Tabla 56. Continuación del Formato N° 2.0-Topografia	104
Tabla 57. Continuación del Formato Nº 2.0-Topografia	105
	106
Tabla 58. Formato Nº 3.A-Daños de pavimento de la vía cruce Shanango-Bellavista .	100
Tabla 58. Formato N° 3.A-Daños de pavimento de la vía cruce Shanango-Bellavista . Tabla 59. Continuación de Formato N° 3.A-Daños de pavimento	
•	107
Tabla 59. Continuación de Formato Nº 3.A-Daños de pavimento	107
Tabla 59. Continuación de Formato Nº 3.A-Daños de pavimento Tabla 60. Continuación de Formato Nº 3.A-Daños de pavimento	107
Tabla 59. Continuación de Formato N° 3.A-Daños de pavimento Tabla 60. Continuación de Formato N° 3.A-Daños de pavimento Tabla 61. Inventario vial, Formato N° 3.A-Daños de pavimento	107108109
Tabla 59. Continuación de Formato N° 3.A-Daños de pavimento Tabla 60. Continuación de Formato N° 3.A-Daños de pavimento Tabla 61. Inventario vial, Formato N° 3.A-Daños de pavimento Tabla 62. Partidas típicas de mantenimiento rutinario de carreteras	107108109132

ÍNDICE DE FIGURAS

RESUMEN

El camino vecinal Cruce Shanango – Bellavista, en el distrito de Bellavista, provincia de Jaén, presenta deterioro progresivo de la superficie de rodadura, deficiencias en el drenaje, deformaciones en capa de rodadura y escasa limpieza lateral, condiciones que incrementan los costos de operación vehicular, reducen la seguridad y afectan la eficiencia del transporte rural. Ante esta problemática, la investigación tuvo como objetivo elaborar un modelo de gestión de conservación vial que permita reducir los costos de mantenimiento y operación vehicular en el tramo de 7 km. La metodología se desarrolló en cinco etapas: diagnóstico vial mediante inventario, aforo vehicular y encuestas de movilidad; revisión comparativa de modelos de gestión nacionales e internacionales; análisis de costos de mantenimiento y operación; diseño del modelo adaptado al contexto local; y evaluación económica de su implementación. Los resultados evidencian que el tramo registra un IMDA de 267 vehículos diarios, de los cuales el 95 % son livianos, predominando viajes laborales con frecuencia diaria. El costo anual de mantenimiento en el estado actual asciende a S/260,210.00 mientras que la rehabilitación a 10 años alcanza S/2,357,208.00. Con el modelo propuesto, que integra seis componentes (diagnóstico, priorización, niveles de intervención, ejecución, gestión financiera y monitoreo), se proyecta un ahorro de S/2,096,998.00 equivalente a una relación de 9 a 1 a favor del mantenimiento preventivo. Asimismo, la evaluación económica estima ahorros anuales en operación vehicular de USD 59,071.60 (INVIAS) y hasta USD 5,713,696.19 (Lean Ingenieros), confirmando la eficacia del modelo y la sostenibilidad de la transitabilidad rural.

Palabras claves: modelo de gestión vial, conservación vial, costos de mantenimiento, operación vehicular, infraestructura vial.

ABSTRACT

The rural road Cruce Shanango – Bellavista, in the district of Bellavista, province of Jaén, shows progressive deterioration of the pavement surface, drainage deficiencies, pavement layer deformations, and limited lateral cleaning, conditions that increase vehicle operating costs, reduce safety, and affect the efficiency of rural transport. In response to this problem, the research aimed to develop a road maintenance management model to reduce maintenance and vehicle operating costs along the 7 km stretch. The methodology was carried out in five stages: road diagnosis through inventory, traffic counting, and mobility surveys; comparative review of national and international management models; analysis of maintenance and operating costs; design of a model adapted to the local context; and economic evaluation of its implementation. Results indicate that the section records an ADT of 267 vehicles per day, of which 95% are light vehicles, predominantly for work trips with daily frequency. The current annual maintenance cost amounts to S/260,210, while a 10-year rehabilitation would cost S/2,357,208. With the proposed model, which integrates six components (diagnosis, prioritization, levels of intervention, execution, financial management, and monitoring), a saving of S/2,096,998 is projected, representing a 9:1 ratio favoring preventive maintenance. Additionally, the economic evaluation estimates annual vehicle operation savings of USD 59,071.60 (INVIAS) and up to USD 5,713,696.19 (Lean Engineers), confirming the model's effectiveness and ensuring the sustainability of rural road accessibility.

Keywords: road management model, road maintenance, maintenance costs, vehicle operation, road infrastructur

CAPÍTULO I. INTRODUCCIÓN

1.1 Planteamiento del problema

A nivel internacional, la falta de mantenimiento sostenible de la infraestructura vial en países en desarrollo limita el acceso a servicios básicos y puede duplicar los costos de rehabilitación, lo que evidencia la necesidad de sistemas de gestión eficientes (Banco Mundial, 2019).

En el ámbito nacional, la red vial vecinal del Perú supera los 113 900 km, de los cuales solo un 1,7 % está pavimentado y cerca del 50 % corresponde a trochas en condiciones regulares o malas (MTC, 2019). Esta situación, junto con limitaciones presupuestales y la carencia de modelos de gestión territorializados, afecta especialmente a zonas rurales.

En el nivel regional y local, el distrito de Bellavista, en la provincia de Jaén, región Cajamarca, depende del camino vecinal Cruce Shanango – Bellavista para actividades educativas, laborales y comerciales. Sin embargo, este presenta deterioro progresivo de la superficie de rodadura, deficiencias en el drenaje, deformaciones en la capa de rodadura y escasa limpieza lateral. Asimismo, en los alrededores de la vía predominan cultivos de arroz que demandan grandes volúmenes de agua, cuyas descargas, en muchos casos bruscas, generan acumulación de sedimentos en las alcantarillas y aumentan el riesgo de colapso de las estructuras de drenaje. Estas condiciones, sumadas al crecimiento de la maleza, comprometen la seguridad vial, incrementan los costos de operación vehicular y reducen la eficiencia del transporte rural. Frente a ello, se plantea la necesidad de elaborar un modelo de gestión de conservación vial que optimice los recursos públicos y mejore la transitabilidad.

1.2 Formulación del problema

¿De qué manera la implementación de un modelo de gestión de conservación vial permite reducir los costos de mantenimiento vial y de operación vehicular en el camino vecinal Cruce Shanango – Bellavista del distrito de Bellavista, provincia de Jaén, Cajamarca?

1.3 Hipótesis

La aplicación de un modelo de gestión de conservación vial permite reducir significativamente los costos de mantenimiento vial y de operación vehicular en el camino vecinal Cruce Shanango – Bellavista, del distrito Bellavista, provincia de Jaén, región Cajamarca.

1.4. Justificación de la investigación

Esta investigación es relevante porque propone una solución técnica que permite optimizar los recursos públicos invertidos en mantenimiento vial, reducir los costos de operación vehicular para los usuarios y mejorar la seguridad del transporte rural. Además, el modelo planteado puede ser replicable en otras vías vecinales con condiciones similares.

Desde una perspectiva técnica, este trabajo permitirá aportar un modelo replicable para la gestión de caminos vecinales en condiciones similares, con un enfoque sostenible y basado en evidencias. A nivel económico, la optimización de los costos de mantenimiento vial y vehicular podría significar ahorros significativos para las entidades responsables y los usuarios. Por último, en términos sociales, una infraestructura vial adecuada contribuirá al desarrollo de las comunidades y al incremento de la seguridad vial.

1.5. Alcances o delimitación de la investigación.

1.5.1 Delimitación metodológica

El estudio de la investigación utilizó un método mixto, que combina el método cuantitativo con el cualitativo. El método cuantitativo se utilizó para calcular los costos de mantenimiento vial y operación vehicular, así como el estado actual de la vía. El método cualitativo se enfocó en identificar factores subjetivos (no medibles no tangibles) relacionados con la gestión vial, como las opiniones de los usuarios y autoridades.

1.5.2 Delimitación espacial

La investigación se realizó en el camino vecinal cruce Shanango-Bellavista, abarcando los kilómetros 0+000 al 7+000. La ubicación precisa fue en el distrito de Bellavista, provincia de Jaén en el departamento de Cajamarca. Las Coordenadas UTM (Datum WGS84, Zona 17S) de las progresivas del inicio y fin del tramo de estudio.

Tabla 1.Coordenadas UTM y elevación del tramo Cruce Shanango – Bellavista

Vántico	Coorder	adas UTM	Elevación
Vértice	Este (m)	Norte (m)	(ms.n.m)
Progresiva inicial	749826.709	9374759.88	551.382
Progresiva final	756318.461	9373826.76	449.69

1.5.3.Delimitación Temporal

Todos los análisis y recopilaciones de datos se realizaron desde el mes de setiembre del 2023 al mes de agosto del 2024.

1.6 Limitaciones

Una de las principales limitaciones fue la falta de información histórica sobre los costos reales de mantenimiento vial proporcionados por la municipalidad. Por tal motivo, se realizaron estimaciones basadas en el estado actual del tramo y se utilizaron valores referenciales de fuentes técnicas. A pesar de estas limitaciones, los resultados obtenidos permitieron sustentar razonablemente la viabilidad del modelo propuesto.

1.7 Objetivos

1.7.1 Objetivo general

Elaborar un modelo de gestión de conservación vial que permita reducir los costos de mantenimiento vial y operación vehicular en el camino vecinal Cruce Shanango – Bellavista, en el distrito de Bellavista, provincia de Jaén, departamento de Cajamarca.

1.7.2 Objetivos específicos

- Diagnosticar las condiciones físicas, geométricas de la infraestructura vial mediante el levantamiento topográfico, la evaluación del estado de conservación y el análisis del tráfico vehicular y patrones de movilidad.
- ➤ Identificar y comparar modelos de gestión de conservación vial aplicados en contextos similares, con el fin de adaptar buenas prácticas a la realidad local.

Analizar los costos de mantenimiento vial y operación vehicular en el tramo de estudio.

> Diseñar la estructura técnica y operativa del modelo de gestión de conservación vial

adaptado al contexto local.

> Evaluar el impacto económico del modelo de gestión propuesto en los costos de

mantenimiento vial y operación vehicular.

1.8 Variables.

Variable independiente: Modelo de gestión de conservación vial.

Variable dependiente: Costo de mantenimiento vial y operación vehicular.

1.9 Operacionalización de variables

5

Tabla 2.Operacionalización de variables

OPERACIONALIZACIÓN	DE VARIABLES		TD 01 1 1/		
Hipótesis general	Definición conceptual	Variable	Definición opera	acional de las variables Indicador/Unidad	Instrumentos de recolección de datos
La aplicación de un modelo			Variable independiente:	Variable independiente: *Longitud	*Fichas de inventario Vial
de gestión de conservación vial permite reducir			1.Inventario de la condición de la vía.	*Topografía *Sección típica de la vía *Sistema de drenaje	*Matriz de conteo vehicular
significativamente los costos de mantenimiento vial y de operación vehicular en el camino vecinal Cruce Shanango – Bellavista, del distrito Bellavista, provincia de Jaén, región Cajamarca.				*Señalización *Estructuras viales	*Libreta de campo de levantamiento topográfico
	Modelo de gestión de conservación vial: Conjunto de estrategias, procedimientos y herramientas orientadas a planificar, ejecutar y evaluar el mantenimiento de una vía.	Independiente:	2.Condición de la estructura del pavimento.	*Elementos de seguridad	*Encuestas de origen y
		Modelo de gestión de		*Tráfico vehicular *Estructura del pavimento	destino
		conservación vial.	3.Niveles de intervención de la vía	*Condición del pavimento *Mantenimiento Rutinario	*Observación directa
			ue ia via	*Mantenimiento Ruthiario *Mantenimiento Periódico *Rehabilitación *	
	Costo de mantenimiento vial: Gasto asociado a la reparación y conservación de	Dependiente :	Variable dependiente:	Variable dependiente:	
	la infraestructura vial. Costo de operación vehicular: Gastos asociados al uso del vehículo en términos de combustible, repuestos, neumáticos, lubricantes y mantenimiento causado por el estado de la vía.	Costo de mantenimiento vial y de operación vehicular.		1. Equipo y maquinaria	1. Fichas de costos unitarios.
			1. Mantenimiento	2. Mano de obra	2. Manual de rendimiento.3. Cotizaciones
			rutinario	3. Materiales	4. Encuestas de origen y
			2. Mantenimiento periódico	5. Materiales	destino

Tabla 3. Matriz de consistencia

Formulación del problema	Objetivo	Hipótesis	Variables	Dimensiones	Indicadores	Fuentes	Metodología	Población/Muestra
	Objetivo general:				Variable independiente:			
De qué manera la	Elaborar un modelo de gestión de	La aplicación	Independiente:	Variable	Gestión y condición de la vía.		Tipo de investigación:	Población: Todos los
implementación	conservación vial que permita	de un modelo		independiente:	Inventario físico y funcional	*Inventario vial y	Aplicativa, descriptiva,	modelos de gestión de
de un modelo de	reducir los costos de mantenimiento	de gestión de			*Longitud	registro fotográfico de	cuantitativa y cualitativa.	conservación vial
gestión de conservación vial	vial y operación vehicular en el camino vecinal Cruce Shanango –	conservación vial permite	Modelo de	1.Inventario de	*Topografía *Sección típica de la vía	campo.		existentes, considerando
permite reducir	Bellavista, en el distrito de	reducir	gestión de	la condición de	*Sistema de drenaje		Diseño de investigación:	sus diferentes enfoques
los costos de	Bellavista, provincia de Jaén,	significativam	conservación	la vía.	*Señalización	*Levantamiento	No experimental y	y metodologías
mantenimiento	departamento de Cajamarca.	ente los	vial.	10 110	*Estructuras viales	topográfico y	transversal.	aplicadas a nivel
vial y de	departamento de Cajamarea.	costos de	viai.		*Elementos de seguridad	observaciones en	trans versar.	nacional e internacional.
operación	Objetivos específicos	mantenimient			Elementos de seguridad	campo, aplicando	Técnicas e instrumentos	nacional e internacional.
vehicular en el	Object vos especificos	o vial y de		2 (4: -: 4 4 -	Tránsito y uso	normas técnicas de		
camino vecinal	Diagnosticar las condiciones	operación		2.Condición de	*Tráfico vehicular	evaluación vial.	de recolección:	
Cruce Shanango-	físicas, geométricas de la	vehicular en		la estructura del	Transes verneusar	* A 21:-:- 1- 426:	Observación directa,	
Bellavista, del	infraestructura vial mediante el	el camino	Dependiente:	pavimento.	Estado	*Análisis de tráfico y determinación de	encuestas a usuarios,	Muestra: Modelos de
distrito de	levantamiento topográfico, la	vecinal Cruce			*Condición del pavimento	niveles de servicio	fichas de tráfico, fichas de	gestión de conservación
Bellavista	evaluación del estado de	Shanango –			Condicion dei paviniento	según reglamentos y	inventario vial, análisis de	vial que se adaptan a las
provincia de Jaén,	conservación y el análisis del	Bellavista, del			T.4	normas vigentes.	documentos técnicos	características técnicas,
departamento de	tráfico vehicular y patrones de	distrito		3. Niveles de	Intervenciones posibles *Mantenimiento Rutinario	normas vigentes.	(registros de	geográficas y
Cajamarca?	movilidad.	Bellavista,	Costo de	intervención de	*Mantenimiento Rutinario *Mantenimiento Periódico		mantenimiento, costos	económicas del tramo
		provincia de	mantenimiento	la vía	*Rehabilitación		históricos).	Cruce Shanango –
	Identificar y comparar modelos	Jaén, región	vial y		*Reconstrucción			Bellavista.
	de gestión de conservación vial	Cajamarca.	de operación		Reconstruction		Análisis de datos:	Doma (Islan
	aplicados en contextos similares,		vehicular.				Estadística descriptiva y	
	con el fin de adaptar buenas		veniculai.				análisis comparativo de	
	prácticas a la realidad local.					*Encuestas de origen-	•	
	➤ Analizar los costos actuales de					destino, observación	costos antes y después de	
	mantenimiento vial y operación					directa y revisión de	la aplicación del modelo.	
	vehicular en el tramo de estudio.					normativa de		
	veniculai en el tramo de estudio.			Variable		mantenimiento vial.		
	 Diseñar la estructura técnica y 			dependiente:		177 11 1 10		
	operativa del modelo de gestión				Variable dependiente:	*Estudios de tráfico y		
	de conservación vial adaptado al			1.Mantenimient	Costos de mantenimiento	aplicación de criterios		
	contexto local.			o rutinario	de la vía.	establecidos en normas		
					1. Equipo y maquinaria	de gestión vial.		
	 Evaluar el impacto económico 			2.Mantenimient	2. Mano de obra			
	del modelo de gestión propuesto			o periódico	3. Materiales			
	en los costos de mantenimiento			- r	3. Materiales			
	vial y operación vehicular.							

1.10 Descripción de contenido de los capítulos

Capítulo I: Describe el problema de investigación, la formulación de objetivos, hipótesis, justificación, delimitación, limitaciones y tipo de estudio. Presenta el enfoque general del trabajo y establece las bases sobre las que se desarrollará la propuesta del modelo de gestión vial.

Capitulo II: Se presentan investigaciones previas a nivel internacional, nacional y local sobre conservación y gestión vial. Se desarrollan los fundamentos teóricos que sustentan el estudio, incluyendo conceptos de gestión vial, mantenimiento, costos de operación vehicular, evaluación vial y descentralización, definiendo además los términos clave utilizados en la investigación.

Capitulo III: Describe la ubicación del estudio, el diseño metodológico y las fases del procedimiento: diagnóstico vial, aforo vehicular, encuestas de movilidad, revisión de modelos de gestión, análisis de costos, diseño del modelo adaptado y evaluación económica. Presenta los resultados y la propuesta del modelo de gestión vial, destacando su aplicabilidad e impacto económico.

Capítulo IV: Se analizan y discuten los resultados, relacionándolos con antecedentes y evaluando el estado vial, el flujo vehicular, los costos de mantenimiento y operación, y la efectividad del modelo propuesto.

Capitulo V: Se presentan las conclusiones y recomendaciones derivadas del estudio, destacando la eficacia del modelo en la reducción de costos de mantenimiento y operación vehicular, así como su contribución a la sostenibilidad y eficiencia de la transitabilidad rural.

CAPÍTULO II. MARCO TEÓRICO

2.1 Antecedentes teóricos

2.1.1 Internacionales

Carvajal y Muzo, (2020) en su investigación titulada: "Modelo de gestión para la conservación vial. Caso de estudio: vía alternativa Sur Armenia I y conexión puente 8 – peaje de la autopista General Rumiñahui. Tuvieron como objetivo desarrollar un modelo de conservacion vial. El estudio abordó la problemática de un mantenimiento inadecuado que generaba deterioro constante, incrementando los costos de reparación y disminuyendo la eficiencia del tránsito. Mediante un análisis técnico, identificaron que implementar un modelo basado en conservación preventiva, mantenimiento periódico y contratos por niveles de servicio redujo en un 20 % los costos operativos y mejoró en un 15 % la vida útil de la vía. Concluyeron que una gestión planificada optimiza los recursos disponibles y garantiza la sostenibilidad de la infraestructura vial, siendo un modelo replicable en contextos rurales y urbanos.

Calles, (2016) en su investigación titulada: "Modelo de gestión de conservación vial para la red vial rural del Cantón Pastaza", tuvo como objetivo optimizar los procesos de mantenimiento y prolongar la vida útil de las vías. La problemática identificada se centraba en la falta de un enfoque preventivo en la gestión vial, lo que generaba deterioros recurrentes y altos costos de rehabilitación. Como resultado, se propuso un modelo que integraba conservación preventiva y periódica, apoyado en el análisis técnico e institucional de las vías estudiadas. Concluyeron que la implementación de una gestión estructurada mejora significativamente la funcionalidad de las vías, promueve el uso eficiente de recursos y proporciona un enfoque replicable para enfrentar desafíos viales en otros contextos.

Navarro, (2016) en su investigación titulada: "Modelo de gestión de conservación vial para la red vial rural del cantón Santo Domingo", tuvo objetivo de optimizar el mantenimiento y preservar la infraestructura vial. La problemática identificada fue el deterioro prematuro de carreteras secundarias, causado por falta de inventario técnico, insuficiente fiscalización y deficiencias en diseños, lo que generaba reconstrucciones costosas y niveles de servicio por debajo de lo recomendado Como resultado, elaboró un modelo que integra inventario vial, chequeo visual, monitoreo técnico y manejo institucional, orientado a intervenir oportunamente. Concluyó que la implementación de este enfoque planificado permite economizar recursos, evitar reconstrucciones totales y mantener las vías en condiciones óptimas, siendo un modelo adaptable a otros contextos rurales similares.

2.1.2 Nacionales

Zarate, (2016) en su investigación: "Modelo de gestión de conservación vial para reducir costos de mantenimiento vial y operación vehicular del camino vecinal Raypa - Huanchay - Molino, distrito Culebras – Huarmey", tuvo como objetivo proponer un modelo de gestión de conservación vial reduciendo los costos de mantenimiento y la operación vehicular, en el camino vecinal Raypa-Huanchay-Molino, Distrito Culebras. La investigación concluye que la opción más eficiente es el mantenimiento integral, el cual obtuvo la mayor puntuación frente a un modelo combinado de mantenimiento periódico y rutinario. Este enfoque permitió un ahorro anual de 139,116.33 dólares al mantener la vía en óptimas condiciones. El aporte principal de este estudio radica en los dos modelos de gestión propuestos, que permitieron evaluar y cuantificar los ahorros en los costos de operación vehicular.

Montalvo, (2019) en su investigación: "Modelo de gestión de conservación vial, para reducir costos de mantenimiento vial y operación vehicular en la carretera departamental ruta SM

— 104, tramo: Lamas - Emp. PE-5N (puente Bolivia); Km 00+000 al Km 14+180, departamento San Martín, provincia Lamas, distrito Lamas Shango". Tuvo como objetivo principal plantear un modelo de gestión de conservación vial que permita reducir los costos de mantenimiento y operación vehicular de la vía analizada. Como resultado, se elaboró un presupuesto que incluyó partidas para mantenimiento rutinario, así como otro presupuesto referencial para el mantenimiento periódico. Ambos costos se integraron en un cuadro resumen que evidenció los ahorros anuales en costos de mantenimiento, al compararlos con el costo estimado de una eventual rehabilitación de la vía. Para ello, también se desarrolló un presupuesto referencial de rehabilitación. El aporte central del estudio radica en el modelo de gestión propuesto, diseñado para administrar eficientemente las redes viales, garantizar óptimos niveles de servicio, disminuir costos operativos y evitar los gastos asociados al tránsito en vías deterioradas y sin mantenimiento adecuado.

Chambi, (2021) en su investigación: "Modelo de gestión de conservación vial para reducir costos de mantenimiento vial y operación vehicular en la carretera Juliaca - Lampa, aplicando el programa HDM-4". El objetivo de esta investigación fue implementar un modelo de gestión de conservación vial empleando el programa HDM-4, un sistema diseñado para evaluar estándares de diseño y mantenimiento de carreteras, con el propósito de reducir los costos de mantenimiento vial y operación vehicular. Los resultados concluyeron que el uso del modelo HDM-4 permitió una disminución significativa en estos costos en comparación con la alternativa de no realizar ningún tipo de conservación en la vía. En un periodo de evaluación de 15 años, se logró un ahorro estimado de 9.8 millones de soles en costos de operación vehicular (COV). Asimismo, se cuantificó un ahorro de S/. 977,419.13 en costos de mantenimiento vial al comparar las dos estrategias de mantenimiento propuestas. Este modelo demostró ser una solución eficiente y rentable para la conservación de carreteras.

2.1.3 Locales

Vazallo, (2020) en su investigación titulada: "Modelo de gestión de conservación vial para mantenimiento vial del camino vecinal CA-538 empalme PE-5N San Agustín Huabal, provincia de Jaén, Cajamarca.". Tuvo por objetivo proponer un Modelo de Gestión de Conservación Vial para reducir los costos de mantenimiento y operación vehicular en el camino vecinal CA-538, Empalme PE-5N San Agustín Huabal, en la provincia de Jaén, Cajamarca. Se concluye que, como parte del mantenimiento rutinario, se deben tomar acciones como aislar las zonas de trabajo y limpiar la plataforma, mientras que el mantenimiento periódico debe incluir la limpieza de obras de arte. En el mejoramiento, se deben considerar estructuras como alcantarillas, badenes y cunetas, utilizando materiales que cumplan con las normativas y respeten la mitigación ambiental. Se realizó un presupuesto elaborado de costos por año, se acuerdo a registros históricos de la vía en estudio, donde se logró concluir que, en el horizonte de 10 años, un mantenimiento rutinario es mayor que mantenimiento periódico en 36%.

Ortega (2024), en su investigación titulada Modelo de gestión de conservación vial para minimizar costos de mantenimiento del camino vecinal El Milagro - Utcubamba, desarrollada en el departamento de Amazonas, propuso un modelo orientado a reducir los costos de mantenimiento y operación vehicular en un tramo de 4.1 km. El estudio incluyó el análisis de tráfico mediante aforo vehicular representativo, identificando un flujo promedio de 200 vehículos diarios en el punto de mayor demanda. A partir de la evaluación de la condición vial, se determinó que el 37.50 % del camino presentaba estado regular y el 62.50 % un estado bueno. El modelo concluyó que las actividades de mantenimiento periódico y rutinario eran más factibles para conservar la vía a bajo costo. Asimismo, se compararon metodologías para estimar los costos de operación vehicular, siendo el método del INVIAS el que ofreció mayor precisión y aplicabilidad al contexto local. Este modelo constituye un referente relevante para zonas rurales de

características similares, como la provincia de Jaén, por su enfoque técnico y económico aplicado a caminos vecinales.

Campos (2019), en su estudio titulado Determinación del estado de transitabilidad y nivel de intervención del camino vecinal "Magllanal - Loma Santa", distrito de Jaén - Jaén - Cajamarca 2017, tuvo como objetivo principal evaluar el estado actual del camino vecinal de 7.7 km de longitud, afectado por deterioros producto de factores climáticos y tránsito vehicular constante. La investigación identificó daños como erosión, lodazales y baches, siendo ejecutada bajo los lineamientos del Manual de Inventarios Viales del Ministerio de Transportes y Comunicaciones (MTC). Además, se realizó el inventario de obras de arte y puntos críticos del tramo. Como resultado, se concluyó que el estado de transitabilidad era "bueno", por lo cual el tipo de intervención más adecuado era el mantenimiento rutinario, sin necesidad de una rehabilitación mayor. Este estudio aporta una base técnica valiosa para la toma de decisiones en caminos rurales, siendo pertinente para comparaciones y formulación de modelos en contextos locales como el del camino Cruce Shanango – Bellavista.

2.2. Bases teóricas

La investigación se sustenta en conceptos fundamentales relacionados con la gestión vial, conservación vial, mantenimiento vial, costos de operación vehicular, evaluación del estado de la vía, y planificación de infraestructura. Se detallan a continuación:

2.2.1 Gestión vial

La gestión vial ha sido históricamente conceptualizada como el conjunto de acciones ejecutadas por las entidades responsables para garantizar la conservación y el crecimiento de la red vial a su cargo. Este enfoque tradicional ha llevado a que dichas entidades empleen los recursos disponibles principalmente para solucionar los problemas que ya se han manifestado, funcionando de forma reactiva, es decir, una vez que el daño en las vías es detectable, en lugar de adoptar un enfoque preventivo. (Salomón, 2003)

Conjunto de actividades orientadas a mantener, mejorar y operar la infraestructura vial, garantizando su funcionalidad y sostenibilidad (MTC, 2020).

2.2.2 Conservación vial

La conservación vial se entiende como el conjunto de acciones relacionadas con obras de ingeniería vial que deben ejecutarse de manera preventiva para evitar el desgaste prematuro de los componentes que integran una vía. Por ello, el monitoreo visual diario del camino constituye una actividad rutinaria fundamental dentro del ámbito de la conservación vial. (MTC, 2018)

Según Salomón (2003), el mantenimiento o conservación de las vías comprende una serie de actividades técnicas que se llevan a cabo de forma periódica o rutinaria por la entidad responsable de la gestión de carreteras. Estas acciones tienen como finalidad proteger las vías y

asegurar que se mantengan en condiciones operativas óptimas. El principal objetivo de estas labores es garantizar un flujo continuo de tráfico vehicular a lo largo del año; además, buscan proporcionar confort y seguridad a los usuarios, así como proteger las inversiones realizadas en la construcción o rehabilitación de las carreteras.

Existen dos tipos de conservaciones de vias.

- a) Mantenimiento rutinario: conjunto de actividades preventivas y correctivas de carácter inmediato que se realizan de manera continua a lo largo de la vía. Su objetivo primordial es mantener en condiciones óptimas todos los elementos de la infraestructura vial para preservar el nivel de servicio original después de su construcción o rehabilitación. (MTC, 2018)
- b) Mantenimiento periódico: La conservación periódica abarca aquellas intervenciones visibles que no requieren una reparación inmediata, pero que, basándose en la experiencia y análisis del tráfico, se planifican por segmentos de vía. La priorización de estos trabajos se define sobre el terreno, considerando los registros de deterioro del camino. (MTC, 2018)

2.2.3 Importancia de la conservación vial

Según Menéndez, (2003) a conservación vial desempeña un papel crucial al contribuir significativamente en diversos aspectos fundamentales. Entre ellos, destaca la reducción de los costos operativos de los vehículos, la optimización del tiempo de desplazamiento para los usuarios, la protección de las inversiones realizadas por las instituciones encargadas de la gestión vial y la provisión de condiciones de seguridad, eficiencia y confort para los usuarios.

2.2.4 Modalidades de Contrato

Según Sánchez (2000) para la ejecucion de mantenimiento vial existen varias modalidades de contrato que son utilizados a nivel Institucional en el pais de Colombia, que son las siguientes que aprecian en la tabla 4:

Tabla 4.Modalidades de contrato para la ejecución de mantenimiento vial

Modalidad	Objeto del Contrato	Plazo inicial del contrato	
Administración Directa	Administrar en forma directa la conservación vial, utilizando recursos, personal, maquinaria de la propia Institución.	1 año	
Mantenimiento rutinario con microempresas	Suministro de mano de obra y herramienta menor para ejecutar actividades de mantenimiento rutinario en un sector de carretera, durante un periodo fijo, a cambio de una determinada remuneración por kilómetro atendido.	1 año	
Mantenimiento periódico por precios unitarios	Ejecución de trabajos de mantenimiento periódico en un sector de carretera, a precios unitarios en la cantidad y plazo definidos en el contrato.	Generalmente menor de 1 año	
Mantenimiento integral	Ejecución de obras de mantenimiento periódico y atención de emergencias, pagadas por precio unitario. Actividades de administración y de mantenimiento rutinario que se pagan por cuotas mensuales fijas durante el desarrollo del contrato.	2 años	
Mantenimiento por indicadores de estado	Atención completa de la conservación de un sector de carretera para que siempre permanezca dentro de rangos de estado preestablecidos para cada uno de los elementos que componen el sector, a cambio de un determinado precio mensual.	2 años	
Concesión vial	Contrato a largo termino entre el Estado y un concesionario que asume la responsabilidad del financiamiento, construcción y mantenimiento de una carretera y su operación por peaje, a través del cual recupera parcial o totalmente la deuda y el capital de riesgo invertido en el proyecto.	15 o más años	

Nota: En la tabla muestra las seis modalidades de contrato para el mantenimiento del vial. Tomado de Revista Gestión de carreteras-Instituto Nacional de Vías-Colombia: Fernando Sánchez Sabogal, (2000).

2.2.5 Gestión vial para instituciones estatales descentralizadas

De acuerdo con Salomón (2003), se señala que la gestión vial (incluyendo el desarrollo y la protección de las carreteras) era tradicionalmente responsabilidad del gobierno nacional a través del Ministerio de Transporte y Comunicaciones. Sin embargo, durante la década de los 90, como parte de las reformas estructurales implementadas por los países de la región, se descentralizaron estas responsabilidades. Así, los organismos gubernamentales encargados pasaron a estar parcial o completamente descentralizados, dependiendo de la clasificación de las carreteras, de la siguiente manera:

- a) Red principal o nacional. Comprende las principales rutas que atraviesan el país de un extremo a otro, o que conectan las ciudades más importantes entre sí o con áreas económicas clave del país. También incluye las carreteras que enlazan estas ciudades o regiones con puertos o aeropuertos. Realiza exportaciones internacionales al país. Estas redes suelen estar bajo la gestión de entidades o agencias estatales descentralizadas especializadas, servicios o sistema nacional de transporte de carga. (Salomón, 2003).
- b) Red departamental o Secundaria. Esto abarca las carreteras que enlazan la capital de un departamento (o provincia, según la división política del país) con las principales ciudades o zonas económicamente significativas de ese mismo departamento (o provincia). También incluye proyectos que conectan dos sectores (o provincias) entre sí, aunque no sean de relevancia nacional. Estas vías proporcionan a estas regiones o áreas productivas acceso a la red vial nacional. (Salomón, 2003).
- c) Red vecinal o terciaria. Consiste en caminos locales que conectan pequeños centros de población urbana y/o entre zonas rurales, entre sí o con importantes comunidades

locales o centros de producción. Llamadas también caminos colectores, ya que dan acceso a pequeños pueblos o zonas de producción en dirección a la red secundaria o primaria. (Salomón, 2003).

Tabla 5. Jerarquización vial-sistema y competencia

Sistema vial	Definición Competencia		
Sistema nacional	Carreteras de interés nacional: principales ejes longitudinales y transversales que conectan capitales de departamento, puertos, fronteras, y flujo de cargas nacionales e internacionales. Ministerio de Transp Comunicaciones		
Red vial departamental o regional	Vías que conectan capitales de provincia, distritos y centros de importancia regional; articulan con redes nacional y vecinal	Gobierno Regionales	
Red vial vecinal o rural	Caminos que unen distritos, pueblos, caseríos e integran la red con vías superiores	Gobiernos Locales (municipalidades provinciales y distritales	

Nota. MTC, Reglamento de jerarquizacion vial, (2017)

2.2.6 Resultados de la descentralización de la gestión vial

Según Salomón (2003), señala que, en redes principales, la descentralización ha logrado buenos resultados en la gestión vial, y las organizaciones viales que logran esto a través del cobro de peajes son concesiones privadas. En contraste, la descentralización de las funciones de gestión vial entre los gobiernos regionales y locales ha resultado en que la mayoría de las carreteras permanezcan en condiciones similares o incluso peores, y solo algunas han experimentado mejoras en la accesibilidad vial.

Las causas suelen ser multifactoriales, aunque es posible identificar cómo se produce las más importantes.

- ✓ Falta de normativas jurídicas más claras sobre las responsabilidades que deben asumir las unidades locales o regionales encargadas de las carreteras
- ✓ Falta de comprensión de los principios de gobernanza en los municipios locales o regionales Carreteras y las tareas técnicas a realizar para su protección.
- ✓ Faltan políticas y normas nacionales de mantenimiento de carreteras.
- ✓ La unidad responsable tiene recursos presupuestarios limitados.
- ✓ Priorizar nuevas obras antes que mantener las vías existentes.
- ✓ Falta de infraestructura adecuada y experiencia técnica

2.2.7 Inventario vial

El inventario vial es un instrumento técnico que permite identificar y registrar las características físicas y operativas de una carretera, constituyendo la base para planificar su conservación y garantizar la seguridad del tránsito. Según el MTC, se clasifica en básico, que incluye datos de localización, geometría y estado de la superficie, y en calificado, que agrega información sobre pavimento, drenaje y señalización. Su elaboración comprende fases de recopilación de datos, trabajo de campo y procesamiento en gabinete, lo que facilita obtener un diagnóstico confiable para priorizar inversiones y definir acciones de mantenimiento rutinario, periódico o de rehabilitación (Ministerio de Transportes y Comunicaciones, 2014).

Tabla 6. Elementos a inventariar en una vía según el MTC

Categoría	Elementos a inventariar	
Geometría y trazado	Longitud del tramo, alineamiento horizontal y vertical, ancho de	
Geometria y trazado	calzada y bermas.	
Superficie de	Tipo de superficie (asfalto, afirmado, tierra), estado de	
rodadura	conservación, irregularidades.	
Estructura del	Capas estructurales, fallas visibles (grietas, baches,	
pavimento	ahuellamientos).	
Ohrag da dranaja	Cunetas, alcantarillas, badenes, pontones, drenajes transversales y	
Obras de drenaje	longitudinales.	
Obras de arte	Puentes, pontones, muros de contención y otras estructuras	
Obras de arte	especiales.	
Señalización y	Señales verticales, marcas en el pavimento, defensas metálicas,	
seguridad	tachas reflectivas.	
Accesos y servicios Intersecciones, accesos vehiculares y peatonales, paraderos		
Entorno y	Ubicación GPS, referencias kilométricas, condiciones ambientales	
georreferencia	del entorno.	

Nota. Adaptado del Manual de Inventarios Viales (Ministerio de Transportes y Comunicaciones [MTC], 2014).

2.2.8 Tráfico vehicular

El tráfico vehicular es un factor clave que influye en el diseño de la carretera, la estructura del pavimento y las estrategias de mantenimiento. Para ello, es necesario determinar la cantidad y composición de los vehículos que circulan por una vía mediante conteos vehiculares. La investigación del tráfico es esencial, ya que permite no solo cuantificar y clasificar los vehículos, sino también entender su origen-destino, evaluar aspectos económicos de las vías y determinar características críticas para el diseño vial. (Instituto Nacional de Vias ,2016)

El estudio del tráfico vehicular es fundamental para planificar y diseñar adecuadamente las infraestructuras viales, permitiendo mejorar el mantenimiento y optimizar el diseño según las necesidades reales del flujo vehicular (Instituto Nacional de Vias ,2016).

a) Conteo y clasificación vehicular por día

Se realiza en una estación determinada por el proyectista, de preferencia se toma las progresiva de inicio y la de fin del tramo en estudio, donde se obtendrá la base de aforo correspondiente de volumen vehicular, clasificación diaria por sentido (entrada y salida) donde se la suma de ambos sentidos será el total.

b) Índice medio diario semanal de conteo

Índice medio diario semanal (IMDs) es un indicador que mide el promedio diario del volumen de tráfico diario, durante los siete días de la semana, en un punto específico de la vía en estudio, ahí se registran todos los tipos de vehículos (MTC, 2018).

$$IMDS = \frac{\sum_{i=1}^{7} TP_i}{7} \qquad \dots (1)$$

Donde:

- Índice medio diario semanal (vehículos/día)
- TPi = Tráfico promedio registrado el día i(número de vehículos).
- El denominador 7 es por la cantidad de días de conteo.

2.2.9 Índice medio diario anual de tráfico (IMDA)

Es el valor numérico estimado del tráfico vehicular en un determinado tramo de la red vial en un año, obtenido a partir de conteos semanales ajustados mediante un factor de corrección estacional (Provías, 2018).

$$IMDA = IMDS \times FC$$
(2)

Donde:

- *IMDs* = Índice medio diario semanal.
- FC = Factor de corrección Estacional

2.2.10 Factor de corrección estacional

El factor de corrección estacional se determina a partir de la serie de tráfico anual registrada por la unidad de peaje; el objetivo es realizar ajustes para eliminar las diversas diferencias en la intensidad del tráfico causadas por cambios en los factores recreativos y climáticos estacionales, temporadas de cosecha, festivales, vacaciones escolares, etc. Fluctuaciones, situaciones que se presentan durante el año. (Provías, 2018)

$$FCm = \frac{\text{IMD anual}}{\text{IMD del mes del estudio de la unidad peaje}} \dots (3)$$

Donde:

- FCm = Factor de corrección estacional mensual, por cada tipo de vehículo
- *IMD anual* = Volumen promedio diario anual de la unidad de peaje
- IMD del mes de estudio = Volumen promedio diario del mes en la unidad de peaje

2.2.11 Tránsito proyectado al año

Se calculará con la fórmula. (MTC, 2017)

$$Tn = To + (1+r)^2$$
(4)

Donde:

- To = Tránsito actual (año base) en veh/día
- Tn = Tránsito proyectado al año "n" en veh/día
- n =Año futuro de proyección
- r =Tasa anual de crecimiento de transito

2.2.12 Gastos operativos de los vehículos

Los gastos asociados con el funcionamiento de los vehículos corresponden a los costos generados por su circulación en las vías. Estos dependen, en gran medida, de las características del terreno, el relieve y las condiciones de la carretera. Entre estos costos se incluyen los relacionados con el combustible, los lubricantes, el mantenimiento del vehículo, así como aquellos derivados de las paradas, demoras y accidentes. (Instituto Nacional de Vias ,2016)

Tabla 7. Gastos operativos de los vehículos

	COSTOS DE OPERACIÓN VEHICULAR					
ITEM	1 Variables Fijos Otros					
1.00	Combustible	Seguro	Imprevistos			
2.00	Neumáticos	Salario	Accidente			
3.00	Lubricantes	Matriculas				
4.00	Filtros	Impuestos				
5.00	Reparaciones					

Nota: Instituto Nacional de Vias (2016)

Según Invias, (2016) Se afirma que los costos de operación de un vehículo están relacionados con los gastos generados por su funcionamiento. Estos costos pueden medirse en términos de tiempo y distancia recorrida. Para calcularlos, es necesario establecer el tipo de carretera por donde circula los vehículos, considerando su clasificación, perfil topográfico y condiciones de la vía.

2.2.13 Cálculo de los costos de operación de los vehículos

Hay diversos métodos para calcular el costo de operación de un vehículo, pero todos se centran en los gastos que los conductores enfrentan mientras circulan, considerando factores como el consumo de combustible, lubricantes, neumáticos, repuestos, entre otros. Estos costos están estrechamente ligados a la composición del tráfico y al diseño y características de la carretera, siendo especialmente importante el estado del pavimento. (Instituto Nacional de Vias, 2016)

La cantidad de recursos (COV) que un vehículo consume al transitar por la carretera está determinada por la geometría de la vía, las condiciones del terreno y las características del propio vehículo (MEF, 2007).

Para calcular los costos de operación vehicular se muestra dos metodologías:

a) Metodología del Instituto Nacional de Vías- Colombia

El modelo aplicado por el Instituto Nacional de Vías en Colombia sugiere que las condiciones de las carreteras afectan directamente los costos operativos de los vehículos. Este enfoque se basa en estimaciones sobre el consumo de recursos como combustible, neumáticos y lubricantes, entre otros. A partir de estas estimaciones, se calculan los costos operativos multiplicando los recursos consumidos por los costos unitarios específicos para cada tipo de

vehículo, lo que permite determinar con mayor precisión el impacto de las infraestructuras viales en los gastos de los conductores, de acuerdo a Instituto Nacional de Vias (2016).

El modelo del Instituto Nacional de Vías aplicado en Colombia demuestra que la calidad de las vías influye considerablemente en los costos operativos de los vehículos, los cuales se estiman tomando en cuenta el consumo de diversos recursos y los costos asociados a cada tipo de vehículo. (Instituto Nacional de Vias ,2016)

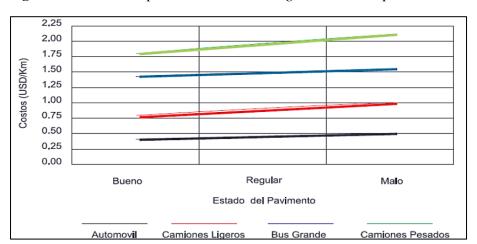


Figura 1. Costos de operación vehicular según estado del pavimento

Nota: Los costos aumentan conforme el pavimento se deteriora. Tomado de Instituto Nacional de Vías-Colombia, (2011)

La figura 1 muestra cómo varía el costo operativo del vehículo (COV) en función del tipo de vehículo y las condiciones de la carretera. Se señala la rugosidad internacional (IRI), evidenciando que, conforme las condiciones de la carretera se deterioran, el costo de operación del vehículo se incrementa.

En 2008, el Instituto Nacional de Investigaciones Viales (INVIAS) lo realizo para vías interurbanas en Bogotá. Los cálculos realizados por el INVIAS respaldan lo mostrado en la figura, evidenciando una relación directa entre el deterioro de la superficie de la carretera y el incremento

de los costos operativos de los vehículos, una tendencia que se mantiene sin importar la topografía del terreno, de acuerdo a Instituto Nacional de Vias (2016). Para tener en cuenta el IRI, éste viene determinado por los siguientes datos:

Tabla 8. Vinculación entre el estado de la carretera vs IRI

CONDICIÓN DE LA CARRETERA vs IRI			
Condición Carretera Asfáltica			
Buena	0 - 4		
Regular	4 - 6		
Mala	6 - 10		

Nota: Instituto Nacional de Vías-Colombia, (2011).

b) Metodología de Lean Asociados Ingenieros Consultores - Chile

Lean y Asociados Ingenieros Consultores Ltda, (2007), en su publicación titulada "*Efectos sobre los usuarios de las obras de Infraestructura Pública Concesionada*", presenta el siguiente análisis: en la sección donde la característica principal es la capa portante, se clasifica en diferentes niveles, que van desde bueno, normal, malo hasta pésimo, y esta clasificación depende del Índice de Rugosidad Internacional (IRI).

Tabla 9. Condición de la carretera vs IRI

CONDICIÓN DE LA CARRETERA VS IRI				
Condición Carretera asfaltada Carretera de tien				
Buena	2	4		
Regular	5	10		
Mala	6	14		
Pésima	10	20		

Nota: Len & Asociados Ingenieros Consultores, (2007).

Posteriormente, examina toda la información relacionada con el cálculo de los costos operativos del vehículo, realizando un análisis del porcentaje que corresponde a cada uno de los

insumos, como combustible, neumáticos, lubricantes, entre otros. En relación al costo de tipo analizado obtenidos en vías chilenas en buena conservación o vías buen mantenimiento . (Lean & Asociados Ingenieros Consultores, 2007.)

Se presentan los porcentajes a continuación.

Tabla 10.Porcentaje de consumo de insumos en relación del costo inicial del vehículo (en las vías con mantenimiento)

TIPO DE VEHÍCULO					
Rubro	Liviano	Pesado			
Combustible	15%	20%			
Repuestos	4%	4%			
Neumáticos	6%	7%			
Lubricantes	2%	2%			
Mantenimiento	5%	5%			

Nota: Len & Asociados Ingenieros Consultores, (2007).

A estos porcentajes, del costo de operación vehicular, la consultora indica parámetros, comparando los costos en vías con capa de rodamiento en buenas y malas condiciones, en las cuales los ahorros de combustibles para los vehículos livianos son significativos, alcanzando hasta un 30%, para los vehículos pesados este ahorro se sitúa entre el 20% y 40%, aun cuando esta cifra máxima es hipotética puesto que en tramos angostos y de gradientes altas suelen registrarse alto flujo de camiones, de acuerdo a Lean y Asociados Ingenieros Consultores Ltda, (2007).

En tramos sin cogestión los vehículos livianos no presentan ahorros de importancia, en cambio el ahorro para los vehículos pesados alcanza el 17%. (Lean y Asociados Ingenieros Consultores Ltda, 2007).

Los demás componentes del costo de operación: (Repuestos, mantenimiento, neumáticos y lubricantes) varían sus ahorros; cuyos porcentajes de afectación o factor de incremento para los

vehículos livianos y vehículos pesados en vías en mal estado o sin mantenimiento según Lean y Asociados Ingenieros Consultores Ltda, (2007).

Tabla 11. Porcentaje de costo de los componentes de operación vehicular en vías sin mantenimiento

TIPO DE VEHÍCULO	LIVIANO	PESADOS
Combustible	0%	17%
Repuestos	26%	49%
Neumáticos	18%	20%
Lubricantes	20%	7%
Mantenimiento	15%	30%

2.2.14 Costos de mantenimiento vial

Los costos asociados al mantenimiento de las vías pavimentadas durante su periodo de operación son asumidos directamente por los encargados de la gestión de las carreteras, y se dividen en mantenimiento rutinario y periódico. (Salomón, 2003).

La planificación del mantenimiento implica entender el proceso de deterioro de la red vial y aplicar las acciones correctivas cuando sea necesario (Rodríguez, 2011).

Toda actividad llevada a cabo en una carretera genera costos, los cuales dependen de la magnitud de la tarea de conservación y del costo de los insumos empleados, como el personal, equipo, maquinaria y materiales (Salomón, 2003).

Para determinar el costo y alcance de las obras, es necesario identificar las tareas asociadas a cada actividad de conservación y tener en cuenta sus especificaciones técnicas y normas de construcción. Luego de la especificación, se realiza un análisis de costos unitarios en base a las unidades de medida definidas para cada actividad. (Salomón, 2003).

Con los precios unitarios de cada actividad de mantenimiento, se podrá elaborar un presupuesto para el mantenimiento vial, que incluirá el rubro, la descripción, la unidad de medida,

la cantidad a realizar, los precios unitarios y los costos totales, según lo indicado por (Salomón, 2003).

2.3. Términos básicos

Camino vecinal

"Es un camino que pertenece al sistema vial vecinal y que es competencia de los Gobiernos Locales. Sirven para dar acceso a los centros poblados, caseríos o predios rurales" (Ministerio de Transportes y Comunicaciones, 2011, p.46)

Conservación Vial

La conservación vial comprende un conjunto de acciones relacionadas con obras de ingeniería que deben llevarse a cabo de manera inmediata al identificar un deterioro en el camino, con *el propósito de corregirlo en el menor tiempo posible desde su detección.* (Condorchoa, 2018)

Modelo de gestión de conservación vial

Un modelo de gestión de conservacion vial es un conjunto de estrategias organizadas para la planificación, mantenimiento y operación eficiente de la infraestructura vial, con el objetivo de optimizar los recursos y mejorar la calidad del servicio (Ministerio de Transportes y Comunicaciones, 2020).

Costos de operación vehicular

Estos costos incluyen el consumo de combustible, mantenimiento del vehículo, depreciación y tiempo de viaje, directamente relacionados con el estado de las vías (Banco Mundial, 2015).

Inventario vial

Es el registro detallado y sistemático de los elementos que componen una vía, como señalización, estructuras de drenaje, y características geométricas (AASHTO, 2019).

Levantamiento topográfico

El levantamiento topográfico consiste en la medición de terrenos para representar gráficamente sus características físicas, esenciales para proyectos viales (Instituto Geográfico Nacional, 2017).

Tráfico vehicular promedio

Es el número medio de vehículos que transitan por una vía en un período determinado, usado para evaluar su capacidad y planeación (Instituto Nacional de Estadística e Informática, 2021).

Obras de drenaje vial

Son estructuras diseñadas para gestionar el flujo de agua en carreteras, previniendo daños por acumulación y garantizando la durabilidad de la vía (Asociación Mundial de la Carretera (PIARC), 2020).

Capa de rodadura

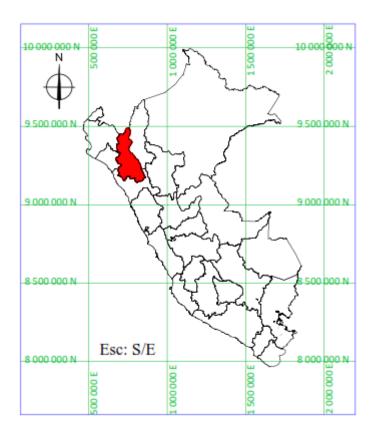
Es la capa superficial de la carretera en contacto directo con los vehículos, diseñada para proporcionar seguridad, comodidad y resistencia (MTC, 2019).

Encuestas de origen y destino

Técnica para recopilar datos sobre los desplazamientos de las personas, incluyendo los puntos de inicio y destino de los viajes, a fin de comprender patrones de movilidad (OPS, 2018).

CAPITULO III. MATERIALES Y MÉTODOS

3.1 Localización y ubicación


3.1.1 Ubicación política

El tramo objeto de estudio se localiza en el distrito de Bellavista, perteneciente a la provincia de Jaén, en el departamento de Cajamarca. Este sector vial presenta una longitud de 7,000 kilómetros y cuenta con una superficie de rodadura a nivel de pavimento asfáltico.

Tabla 11. Ubicación del camino vecinal

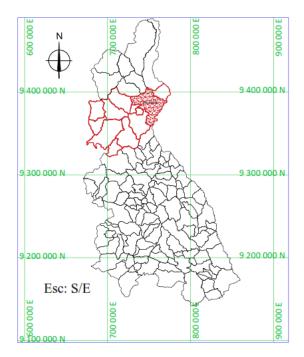

País	Departamento	Provincia	Distrito
Perú	Cajamarca	Jaén	Bellavista

Figura 2. Mapa político del Perú

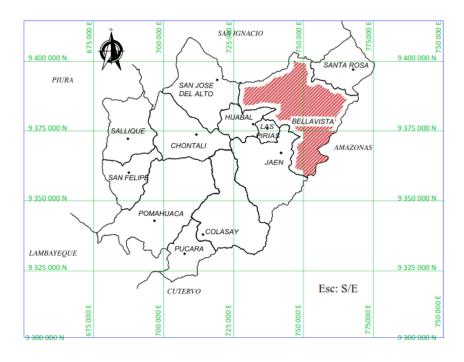

Nota: Ubicación del departamento de Cajamarca en el Perú. Tomado de GEO GPS Perú.

Figura 3. Mapa político del departamento de Cajamarca

Nota: Ubicación de la provincia de Jaén en el departamento Cajamarca. Tomado de GEO GPS Perú.

Figura 4. Mapa político de la provincia de Jaén

Nota: Ubicación del distrito de Bellavista en la provincia de Jaén. Tomado de GEO GPS Perú.

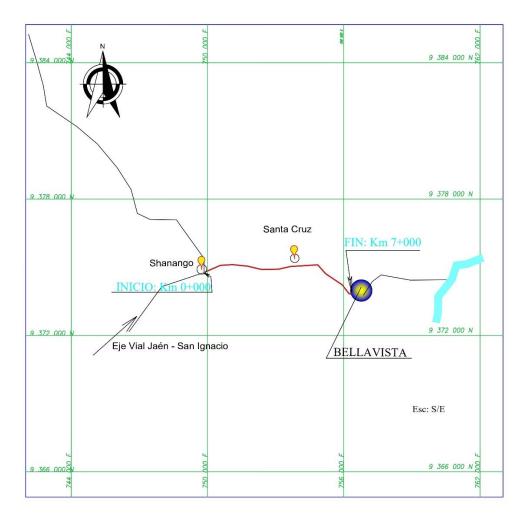


Figura 5. Ubicación del tramo de investigación camino vecinal cruce Shanango-Bellavista

3.1.2 Ubicación geográfica

Como punto de partida, se dispone de la siguiente información.

Tabla 12. Ubicación geográfica del camino vecinal en estudio Cruce Shanango-Bellavista.

PUNTO	LOCALIDAD	PROGRESIVA	COTA	COORDENADA ESTE (m)	COORDENADA NORTE (m)
INICIAL	Cruce Shanango	00+000	551.382 m s. n.m	749826.7090 m	9374759.8760 m
FINAL	Bellavista	07+000	449.690 m s. n.m	756318.4606 m	9373826.7594 m

Nota: Datum WGS-84, ZONA:17M

3.2. Tiempo en que se realizó la investigación

La investigación fue llevada a cabo durante el periodo comprendido entre septiembre de 2023 y agosto del 2024. Durante este tiempo se desarrollaron las actividades de recolección de datos, análisis y elaboración de los resultados finales.

3.3. Metodología de la investigación

3.3.1 Tipo de investigación

La investigación fue de naturaleza aplicada, ya que busco desarrollar un modelo de gestión vial que permita reducir costos de mantenimiento y operación vehicular en el camino vecinal cruce Shanango-Bellavista que abarco desde el km 0+000 al km 7+000, para lograr la optimización de gestión vial.

Enfoque metodológico

Es de enfoque metodológico mixto:

Cuantitativo: mediante técnicas de levantamiento topográfico, aforo vehicular para el estudio de tránsito, inventario vial y análisis de costos, que permitieron recopilar y procesar datos numéricos objetivos para el análisis técnico.

Cualitativo: a través de encuestas de origen y destino, y la revisión y análisis comparativo de modelos de gestión de conservación vial aplicados en contextos similares, lo cual facilitó la identificación de buenas prácticas adaptables a la realidad local.

Alcance de la investigación

Descriptiva: porque identificó las características físicas, geométricas y funcionales de la infraestructura vial, como el estado de conservación, tipo de capa de rodadura, obras de drenaje, y el volumen y tipo de tránsito vehicular.

Explicativa: porque analizó cómo las condiciones actuales de la vía y del tráfico vehicular influyen en los costos de mantenimiento y operación vehicular.

Propositivo: porque diseñó y validó un modelo de gestión de conservación vial adaptado al contexto local, evaluando su impacto económico frente a la situación actual.

El diseño es no experimental y transversal, dado que no se manipularon variables, sino que se observaron y analizaron las condiciones en su estado natural. La recolección de datos se llevó a cabo en un periodo definido (setiembre de 2023 a agosto de 2024).

3.3.2 Población, muestra, unidad de análisis y unidad de observación

Población. La población del presente estudio está conformada por todos los modelos de gestión de conservación vial existentes, considerando sus diversos enfoques, metodologías y estrategias aplicadas tanto a nivel nacional como internacional. Esta delimitación permite contemplar un panorama amplio de alternativas, con el fin de identificar aquellas que puedan ser pertinentes al contexto de la investigación.

Muestra. La muestra está constituida por los modelos de gestión de conservación vial que se adaptan a las características técnicas, geográficas y económicas del tramo Cruce Shanango – Bellavista. La selección se realizó considerando la viabilidad de implementación en la zona de estudio y la disponibilidad de información técnica para su análisis comparativo.

Unidad de análisis. El objeto central de análisis lo constituye el modelo de gestión de conservación vial seleccionado para su adaptación e implementación en el tramo Cruce Shanango – Bellavista.

Unidad de observación. La unidad de observación corresponde a la infraestructura vial del tramo Cruce Shanango – Bellavista, incluyendo su estado físico, funcional, operativo y las condiciones de tránsito que inciden en su conservación.

3.3.4 Procedimiento

La metodología se llevó a cabo en 4 fases.

Fase I. Análisis de documentos, antecedentes y reconocimiento del lugar.

En esta fase se llevó a cabo la revisión documental, la cual incluyó tanto fuentes institucionales como bibliográficas. Se analizaron documentos disponibles en el municipio y normativas técnicas relevantes, tales como el Manual de Carreteras DG-2018, además de tesis y estudios vinculados a la conservación vial en caminos vecinales.

De manera específica, se efectuó el análisis comparativo de ocho antecedentes que contienen modelos de gestión de conservación vial, correspondientes a experiencias internacionales, nacionales y locales. Estos antecedentes aportaron metodologías, enfoques técnicos y criterios de priorización de la conservación, los cuales resultaron de gran utilidad para la elaboración del modelo propuesto en esta investigación. En el caso de los antecedentes locales, se priorizaron aquellos que comparten condiciones técnicas, geográficas y socioeconómicas similares al tramo Cruce Shanango – Bellavista, lo que permitió garantizar la pertinencia y adaptabilidad del modelo de gestión a elaborar.

Posteriormente, se realizó una visita de inspección al tramo vial en estudio, donde se verificaron aspectos tales como:

- El estado general del camino (superficie, drenaje, geometría).
- La accesibilidad y condiciones del terreno.
- La existencia de obras de drenaje, señalización y puntos críticos.
- Posibles interferencias para la ejecución de las siguientes fases (vegetación, falta de visibilidad, entre otros).

La visita de reconocimiento resultó fundamental para delimitar los puntos de inicio y fin del tramo, ubicar estratégicamente los lugares de aplicación de encuestas y ajustar la planificación del trabajo de campo en función de las condiciones reales observadas en el terreno.

Fase II. Desarrollo de los instrumentos para recopilación de datos.

En esta etapa se elaboraron los instrumentos necesarios para la recolección de información técnica y social, de acuerdo con los objetivos de la investigación. Cada uno de estos instrumentos fue diseñado considerando los requerimientos específicos del estudio del camino vecinal Cruce Shanango – Bellavista, y siguiendo lineamientos establecidos en normas técnicas como el Manual de Carreteras DG-2018 y otras fuentes especializadas.

Los instrumentos utilizados fueron los siguientes:

Ficha de inventario vial. Diseñada para registrar datos sobre tipo de superficie, estado de conservación, obras de drenaje, señalización y condiciones generales del camino. Esta ficha permitió organizar la observación directa durante el recorrido. Ver anexo I

Encuesta de origen y destino. Instrumento estructurado con preguntas cerradas, aplicado a conductores para conocer el patrón de movilidad, motivos de viaje, frecuencia de uso del camino y tipo de vehículo. El formato fue elaborado según modelos utilizados en estudios similares. Ver anexo II

Planilla de aforo vehicular. Utilizada para registrar manualmente el número y tipo de vehículos en horarios establecidos. Esta planilla se dividió en franjas horarias y categorías de vehículos para facilitar el posterior procesamiento de datos. Ver anexo III

Libreta de campo de levantamiento topográfico. Formulario técnico donde se registraron los datos obtenidos por estación total y GPS diferencial durante el levantamiento con el método de poligonal cerrada, incluyendo coordenadas, puntos notables, distancias y referencias del terreno. Ver anexo IV

Todos los formatos fueron revisados y adaptados para asegurar su funcionalidad en campo. Se realizó una prueba piloto con la encuesta O/D, cuyos resultados permitieron mejorar el orden de preguntas y los tiempos de aplicación. Los instrumentos definitivos se presentan en los Anexos (I, II, III, IV).

Fase III. Actividades de campo.

Esta fase comprendió el trabajo realizado directamente en el tramo del camino vecinal Cruce Shanango – Bellavista. durante los meses de septiembre a diciembre de 2023, entre las principales actividades ejecutadas se encuentran:

Aforo vehicular. Como parte del diagnóstico del camino vecinal Cruce Shanango – Bellavista, se realizó un aforo vehicular manual con el propósito de determinar el volumen y composición del tránsito que circula por la vía.

El conteo se llevó a cabo en un punto de control fijo, seleccionado estratégicamente por su visibilidad, seguridad y representatividad del flujo. La actividad se realizó durante siete días consecutivos desde el domingo 10 hasta el sábado 16 de septiembre del año 2023, en turnos distribuidos a lo largo del día (mañana, mediodía y tarde), con un registro continuo de los vehículos que transitaban por la vía.

Se utilizaron planillas de aforo vehicular, organizadas por franjas horarias y categorías de vehículos (mototaxis, automóviles, camionetas, camiones, entre otros), en las cuales se registraron los flujos de tránsito durante los siete días de la semana. ver anexo V

Los resultados obtenidos fueron procesados para determinar el tránsito promedio diario (TPD) y la distribución modal. Estos resultados se presentan en capitulo III y se analizan en el capítulo IV. La recolección de datos se desarrolló de manera continua desde el domingo 10 hasta el sábado 16 de septiembre del año 2023, en el horario de 6:00 am a 6:00 pm.

Procedimiento de levantamiento topográfico. El levantamiento topográfico de la vía existente el camino vecinal cruce Shanango-Bellavista, se realizó mediante el método de poligonal cerrada, con la finalidad de obtener información, la cual fue empleada como insumo técnico en la fase de diagnóstico de las condiciones actuales del camino vecinal, pudiendo identificar deformaciones, puntos críticos, ubicación de obras de arte, obtener secciones transversales y la geometría. Dichos datos fueron fundamentales para sustentar la formulación del modelo de gestión de conservación vial orientado a reducir los costos de mantenimiento y de operación vehicular, para lograr dicho procedimiento se desarrollaron ocho apartados:

1. **Equipos y herramientas:** Los equipos y herramientas utilizados fueron los siguientes:

✓ Estación total Topcon modelo OS-105

✓ 2 prismas ópticos

✓ Trípode

✓ GPS Diferencial Trimble R10

✓ Libreta de campo y bolígrafos

✓ Wincha métrica de mano y cinta métrica de 30m

✓ Software de procesamiento topográfico: AutoCAD Civil 3D

✓ Pintura esmalte, pintura spray y corrector.

✓ Pinceles y brocha

2. Georreferenciación: La Georreferenciación del levantamiento topográfico de la vía existente

se realizó con la colocación de dos puntos conocidos (PG-1 y PG-2) al inicio y al final del

proyecto en mención, los cuales fueron obtenidos mediante un GPS Diferencial Trimble R10.

Son puntos geodésicos de orden C, que se establecen con una precisión de nivel máximo de

10 mm, según la normativa peruana. El Instituto Geográfico Nacional (IGN) es la entidad

encargada de validar la información de estos puntos y asegurar la fiabilidad de las coordenadas

obtenidas. Con estos dos puntos y apoyados en el sistema de referencia WGS84 (Sistema

Geodésico Mundial 1984, es un estándar global para definir la posición de puntos en la Tierra

utilizando coordenadas tridimensionales), estos puntos fueren lecturados como referencia o

utilizados como puntos de estación. Esto fue suficiente para establecer la orientación global

del levantamiento.

Punto inicial (PG-1):

Norte: 749826.7090 m Este:

Este: 9374759.8760 m Cota: 551.382 m.s.n.m

Punto final (PG-2):

• Norte: 756318.4606 m Este: 9373826.7594 m Cota: 449.690 m.s.n.m

3. Desarrollo del levantamiento: Los trabajos de campo fueron divididos en cinco etapas:

a) Reconocimiento del eje.

Previamente se realizó un recorrido de reconocimiento del eje de la vía, para identificar los puntos de cambio de dirección, zonas de difícil acceso, áreas de visibilidad reducida y elementos significativos del entorno. Este reconocimiento permitió planificar adecuadamente la ubicación de las estaciones (poligonal de apoyo).

b) Colocación de puntos Geodésicos.

Utilizando un GPS Diferencial Trimble R10, se colocó dos puntos Geodésicos de orden C, ubicados estratégicamente tanto al inicio como al final de la vía, dichos puntos son los que nos dieron la orientación del proyecto.

c) Estacado de progresivas y kilometraje.

Para contar con una referencia durante el levantamiento topográfico, fue necesario establecer progresivas desde el punto inicial hasta el final del tramo. Estas progresivas se marcaron cada 20 metros en tramos rectos (línea tangente) y cada 10 metros en curvas, lo que facilitó el proceso de radiación y permitió obtener un seccionamiento más preciso durante el levantamiento topográfico.

d) Levantamiento por método de radiación y poligonal de apoyo

Utilizando la Estación Total OS-105 y partiendo de un punto conocido (PG-1), se procedió a realizar el levantamiento topográfico tomando como referencia el estacado de progresivas.

41

Mediante el método de radiación, se registraron los datos de Punto Este (PE), Punto Norte (PN), elevación y descripción. Asimismo, se instalaron estratégicamente estaciones de la poligonal de apoyo a intervalos promedio de 300 a 500 metros, en función de la visibilidad que permitiera el avance del levantamiento. Este procedimiento se repitió en cada estación hasta alcanzar el final de la vía, obteniendo así información planimétrica y altimétrica precisa para el proyecto.

Procesamiento de datos y elaboración de planos e informes.

En gabinete, los datos obtenidos en campo fueron descargados y procesados empleando los softwares Microsoft Excel, AutoCAD Civil 3D, AutoCAD 2D y Microsoft Word. La estación total, gracias a su libreta electrónica integrada, procesó internamente los ángulos y distancias medidos en campo, generando y almacenando en su memoria interna un listado de puntos con sus respectivas coordenadas (X, Y, Z) y códigos asignados.

Posteriormente, esta información fue transferida a un ordenador mediante conexión USB ("Universal Serial Bus"), sistema de transmisión de datos en serie que permitió la comunicación entre dispositivos externos y equipos de cómputo. Los datos se exportaron en formatos como DXF, TXT y CSV, los cuales se incorporaron al software AutoCAD Civil 3D 2018, donde se elaboraron los planos base en formato DWG.

Finalmente, una vez completada la representación gráfica y consolidados los datos obtenidos en campo, se procedió a la elaboración de los planos y a la redacción de los informes técnicos, integrando y detallando toda la información relevante del proyecto.

Inventario vial. Con la finalidad de obtener información estructurada y detallada sobre las condiciones físicas del camino vecinal Cruce Shanango – Bellavista, se realizó un inventario vial de campo. Para ello, se tomó los formatos del DG-2018 (Formato Nº 1, formato Nº 2, formato

N°3.A, formato N° 5) para realizar el levantamiento que incluyó parámetros como tipo topografía, estado de conservación, drenaje, señalización y presencia de estructuras especiales.

El recorrido se efectuó de manera lineal a lo largo del eje del camino, registrando manualmente los datos por tramos definidos según homogeneidad física. Los datos fueron georreferenciados utilizando GPS portátil y posteriormente sistematizados en gabinete para su análisis.

La recolección de datos del inventario vial se presenta en el anexo (VI). Los resultados obtenidos durante este levantamiento se presentan el capítulo III y analizan en el capítulo IV.

• Encuestas de origen y destino

Para conocer los patrones de movilidad de los usuarios, se aplicó una encuesta de origen y destino, cuyo formato se presenta en el anexo II y las encuestas tomadas en el anexo VII.

Esta encuesta fue aplicada en el punto cruce Shanango y paradero de trasporte de Bellavista, durante tres días consecutivos. Los resultados obtenidos se presentan y analizan en el Capítulo IV. Las encuestas fueron aplicadas de forma presencial mediante un formato estandarizado que incluyó preguntas sobre el lugar de origen, destino, motivo del viaje, frecuencia, tipo de vehículo y número de ocupantes. La recolección de datos se llevó a cabo, entre el lunes 18 de setiembre y el miércoles 20 de setiembre, se tomó una muestra representativa de 70 encuestas, y la información obtenida fue registrada manualmente y luego digitalizada para su análisis.

La información recopilada en campo fue registrada manualmente en formatos estandarizados y, posteriormente, se procedió a su digitalización, garantizando la integridad y consistencia de los datos para su análisis estadístico y cualitativo.

Fase IV. Elaboración del modelo de gestión de conservación vial.

La cuarta fase se centró en la construcción del modelo de gestión de conservación vial aplicado al tramo Cruce Shanango – Bellavista, constituyendo el producto principal de la investigación. Este modelo fue elaborado sobre la base de los insumos obtenidos en las fases previas: la revisión documental donde destaca la revisión de los modelos existentes aplicados en a nivel internacional y local (fase I), el diseño de instrumentos de recolección (fase II) y las actividades de campo (fase III). Asimismo, se integraron los criterios técnicos, sociales y económicos establecidos en los objetivos de la investigación.

El proceso de elaboración comprendió los siguientes pasos secuenciales:

Síntesis de antecedentes y diagnóstico inicial. Se sistematizó la información recopilada en la fase de análisis documental y de campo, identificando las principales deficiencias de la vía, el nivel de transitabilidad, el flujo vehicular y los costos de operación. Este diagnóstico permitió establecer la necesidad de un modelo que garantice la conservación sistemática y sostenible de la infraestructura vial.

Revisión de modelos gestión de conservación vial. Como parte de este proceso, se revisaron modelos de gestión y conservación vial aplicados en ámbitos internacional, nacional y local. Dichos modelos brindaron lineamientos y experiencias relevantes respecto a la organización de las intervenciones, los criterios de priorización y los mecanismos de control. Sin embargo, no se trató de replicarlos de manera literal, sino de analizar sus aportes y rescatar aquellos elementos pertinentes que pudieran integrarse al contexto de la investigación. Esta revisión permitió enriquecer el modelo propuesto y dotarlo de mayor consistencia, asegurando su alineación con buenas prácticas reconocidas, pero adaptadas a la realidad del tramo en estudio.

Definición de los componentes del modelo. El modelo se estructuró en cinco ejes funcionales:

- **Diagnóstico vial permanente:** comprende la identificación del estado físico de la carretera, inventario de daños, determinación de la transitabilidad y niveles de servicio.
- Priorización de intervenciones: establece criterios técnicos y económicos para definir qué tramos deben atenderse con mayor urgencia, considerando variables como intensidad de tránsito, costos de operación vehicular y beneficio social.
- Niveles de intervención: corresponden a la clasificación de las acciones de conservación vial en tres categorías: rutinarias, periódicas y de rehabilitación. Esta diferenciación permite atender de forma adecuada los distintos grados de deterioro identificados en la vía.
- **Ejecución de mantenimiento:** se refiere a la implementación de las actividades planificadas de conservación vial, asegurando que se cumplan las especificaciones técnicas, los plazos establecidos y la adecuada utilización de los recursos disponibles.
- Gestión económica y financiera: comprende la organización y control de los recursos económicos asignados al mantenimiento vial, a través de presupuestos, evaluación costobeneficio y fuentes de financiamiento, buscando eficiencia y sostenibilidad.
- Monitoreo y sostenibilidad: implica el seguimiento permanente del estado de la vía y la
 verificación de los resultados obtenidos con las intervenciones, promoviendo además
 prácticas sostenibles que garanticen la continuidad del modelo en el tiempo.

Adaptación al contexto local El modelo fue diseñado tomando en cuenta las particularidades del tramo en estudio: la topografía, las condiciones climáticas, el tipo de tránsito predominante y la disponibilidad presupuestal de la municipalidad. Esta adaptación asegura la

pertinencia y aplicabilidad del modelo, evitando la simple réplica de experiencias ajenas al contexto.

Validación frente a los objetivos de la investigación. Finalmente, se contrastó la estructura del modelo con los objetivos específicos de la investigación, verificando que:

- Permite identificar el estado actual de la vía.
- Integra criterios técnicos y socioeconómicos para la toma de decisiones.
- Propone mecanismos de programación, ejecución y evaluación sostenibles.
- Justifica la pertinencia de implementar el modelo para mejorar la gestión vial del tramo
 Cruce Shanango Bellavista.

En síntesis, la elaboración del modelo de gestión no se limitó a un diseño teórico, sino que se fundamentó en datos reales, en la revisión de experiencias previas y en la problemática particular de la zona de estudio. Su finalidad es ofrecer a las autoridades locales una herramienta técnica y práctica para la conservación vial, contribuyendo a la reducción de los costos de operación vehicular y a la mejora de la conectividad en beneficio de la población.

3.3.4 Tratamiento y análisis de datos y presentación de resultados

La información recopilada en las fases previas fue organizada y procesada en función de cada variable de estudio. El tratamiento consistió en la sistematización de datos en hojas de cálculo, la codificación de respuestas y la agrupación por categorías, de manera que se facilite el análisis y la comparación de resultados.

a) Tratamiento de datos

• Aforo vehicular:

Los registros obtenidos en campo se agruparon por tipo de vehículo (mototaxi, automóvil, camioneta, camión, entre otros), día de la semana y franja horaria. A partir de esta información se calculó el Tránsito Promedio Diario (TPD), así como la distribución porcentual de participación de cada categoría vehicular.

• Encuestas a usuarios:

Las respuestas de los usuarios se codificaron y organizaron en variables categóricas: destino del viaje, propósito del viaje, frecuencia de viaje y medio de transporte utilizado. Los resultados se expresaron en frecuencias absolutas (n) y relativas (%), permitiendo identificar tendencias en el comportamiento de la población usuaria.

• Inventario vial:

El registro de daños en la superficie de rodadura se clasificó de acuerdo con el tipo de deterioro (baches, fisuras, ahuellamientos, entre otros), cuantificándose la extensión afectada y su porcentaje respecto del total del tramo. Estos datos fueron resumidos en cuadros que facilitan la identificación de los principales problemas viales.

• Costos de operación vehicular (COV):

Los costos se estimaron considerando las condiciones de una vía en buen estado y en mal estado, a fin de establecer una comparación económica. Los valores fueron expresados en unidades monetarias y presentados en tablas comparativas, con su respectiva representación gráfica.

b) Tipo de análisis

El análisis aplicado fue descriptivo, orientado a caracterizar el comportamiento del tránsito, el perfil del usuario, el estado de la infraestructura vial y los costos de operación vehicular. Se emplearon medidas de frecuencia y representación porcentual para variables categóricas, mientras que para los COV se realizó un análisis comparativo entre escenarios de conservación y deterioro, evidenciando las diferencias económicas que justifican la implementación de un modelo de gestión.

3.3.5 Presentación de resultados

Los resultados obtenidos del tratamiento y análisis de datos se presentan a continuación, de acuerdo al orden de objetivos específicos planteados. Para facilitar la interpretación, la información se muestra en tablas, gráficos y figuras según corresponda.

a) Resultados del objetivo específico 1: Resultados del diagnóstico vial: características geométricas, estado de conservación y tráfico vehicular.

Resultados de Aforo vehicular

Se obtuvo el flujo vehicular diario en el tramo Cruce Shanango – Bellavista, clasificado por tipo de vehículo y franja horaria. A partir de estos datos se calculó el Índice Medio Diario Anual (IMDA).

Tabla 13. Flujo vehicular diario por tipo de vehículo y franja horaria de 6:00 am a 6:00pm

CONTEO DE TRÁFICO Este conteo realizado durante el periodo del 10 al 16 de setiembre del 2023 TRAMO DE LA CARRETERA: Shanango-Bellavista UBICACIÓN: ESTACIÓN: depatamento : Cajam progresiva 0+200 Provincia: Jaén SENTIDO. Ida y Vuelta CAMIÓN SEMITRAYLER BUS CAMIONETAS MOTO TAXI STATION WAGON AUTO RURAL PICK UP PANEL 2E 2E 3E 4E 2S1 HORA Combi -00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 10 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24

Tabla 14. Índice medio diario semanal (IMDs) por categoría vehicular.

Tipo de	Tráfico vehicular durante los 7 días de la semana en ambos sentidos-Setiembre 2023								Categoría
vehículos	Do-10	Lun-11	Mart-12	Mie-13	Juve-14	Vier-16	Sab-17	IMDs	de vehículos
Moto taxi	59	54	62	54	64	49	84	_	
auto	70	58	71	67	74	57	49		
Station Wagon	33	30	27	33	35	33	33		LI
Pick Up	56	47	50	61	59	44	46	256	LIVIANOS
Panel	2	0	2	0	3	0	0	_	
Combi rural	45	43	52	54	56	45	27	_	
Micro	0	0	0	2	2	0	0	_	
Bus 2E	1	0	4	2	1	0	0		
Bus 3E	0	0	0	4	0	0	0		PESADOS
Camión 2E	8	5	11	9	11	5	2	-	
Camión 3E	2	2	3	5	2	1	0	14	
Camión 4E	1	0	0	1	0	1	0		
Semi tráiler 2S1/2S1	2	2	2	2	3	3	0		
Total	279	241	284	294	310	238	241		

Tabla 15. Factor de corrección del mes de setiembre del año 2023

PUNTO DE	UNIDAD DE PEAJE	MES	F. C. VEH.	F. C.VEH.
CONTROL	ASUMIDA		LIGEROS	PESADOS
Carretera Olmos- Jaén	Pomahuaca	Set-23	0,9921	0,9596

Nota: Provías descentralizado

Haciendo uso del factor de corrección (Fc) correspondiente al mes de septiembre de 2023, proporcionado por el peaje de Pomahuaca, cuyo valor es de 0,9921 para vehículos ligeros y de 0,9596 para vehículos pesados, se procedió a calcular el Índice Medio Diario Anual (IMDA). Como resultado, se obtuvo un IMDA de 253 vehículos ligeros y 13 vehículos pesados.

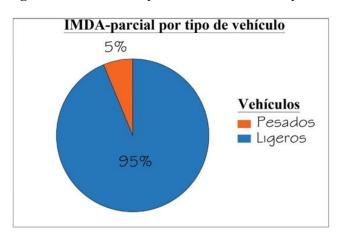


Figura 6. Distribución porcentual de vehículos por categoría en el tramo vial.

Resultados de encuestas de origen y destino

Las encuestas a usuarios permitieron identificar los principales destinos de viaje, los motivos, la frecuencia y los medios de transporte más utilizados.

Tabla 16. Principales destinos de viaje

Destino principal	Número de viajes (encuestas)	Porcentaje (%)
Jaén	28	40.00%
Santa Cruz	15	21.43%
Bellavista	10	14.29%
San Bimera	6	8.57%
Guayaba	4	5.71%
El Palto	2	2.86%
Huallape	5	7.14%
Total	70	100%

Tabla 17. Propósito del viaje (trabajo, estudio, paseo, otros)

Propósito del viaje	Número de encuestados	Porcentaje (%)
Trabajo	48	68.57%
Estudio	11	15.71%
Paseo	7	10.00%
Otros	4	5.71%
Total	70	100%

Tabla 18. Frecuencia de viaje de los usuarios.

Frecuencia de viaje	Número de encuestados	Porcentaje (%)
Diario	42	60.00%
Semanal	18	25.71%
Ocasional	10	14.29%
Total	70	100%

Tabla 19. *Medio de transporte empleado.*

Medio de transporte	Clasificación	Número de encuestados	Porcentaje (%)	Observación principal
Mototaxi	Liviano	22	31.43%	Alta frecuencia en viajes cortos y accesibles.
Auto	Liviano	12	17.14%	Uso individual y familiar, flexibilidad de rutas.
Pick-up	Liviano	8	11.43%	Transporte mixto (personas + carga ligera).
Combi rural	Liviano	18	25.71%	Menor frecuencia que el mototaxi, pero moviliza mayor número de pasajeros.
Vehículo pesado de carga	Pesado	10	14.29%	Baja frecuencia, pero esencial en transporte de productos agrícolas.
Total	_	70	100%	-

Resultados de inventario vial

El inventario vial permitió identificar los daños existentes, clasificándolos por tipo, severidad y extensión.

Tabla 20. Datos generales del camino vecinal cruce Shanango-Bellavista

Ítem	Detalle			
Nombre de la vía	Cruce Shanango – Bellavista			
	Departamento: Cajamarca			
Ubicación política	Provincia: Jaén			
	Distrito: Bellavista			
Ubicación geográfica	Coordenadas inicio: E: 749826.7090 m, N: 9374759.8760 m			
	Coordenadas fin: E: 756318.4606 m, N: 9373826.7594 m			
Longitud total del tramo	7.00 km			
Categoría funcional	Vecinal			
Jerarquía vial	Terciaria			
Tipo de superficie	Pavimento flexible			
Ancho promedio de calzada	8.40 m			
Cruce con centros poblados	Santa Cruz, San Bimera, Huallape, Guayaba			
Tiempo promedio de recorrido	00 horas 11 minutos			
Velocidad promedio	46 km/h			
Tránsito promedio diario anual	267 vah/día (sagún afora vahigular)			
(IMDA)	267 veh/día (según aforo vehicular)			
Principales destinos	Jaén, Bellavista, San Bimera, Huallape, Guayaba)			
Condiciones climáticas	Tropical lluvioso			
Observaciones relevantes	Tramos con pendientes no considerables, problemas de			
	drenaje.			

Tabla 21. Resumen del inventario topográfico del tramo Cruce Shanango – Bellavista

Característica evaluada	Valor mínimo	Valor máximo	Promedio	Predominancia
Tipo de terreno	Plano, ondulado, accidentado	_	_	Plano (71%)
Ancho de superficie de rodadura (m)	8.2 m	8.5 m	8.4 m	8.4 m
Pendiente (%)	1	7	3	Sueve (0–3%) en 70%

Nota. Los valores se obtuvieron del levantamiento de campo realizado cada 100 metros a lo largo del tramo de 7 km.

Tabla 22. Resumen de daños en pavimento según tipo y severidad

Tipo de daño	Leve (n / %)	Moderada (n / %)	Severa (n / %)	Total (n / %)
Deformación	56 / 80.0%	11 / 15.71%	3 / 4.29%	70 / 100%
Erosión	0 / 0.0%	0 / 0.0%	0 / 0.0%	0 / 0.0%
Baches	0 / 0.0%	0 / 0.0%	0 / 0.0%	0 / 0.0%
Encaminado	0 / 0.0%	0 / 0.0%	0 / 0.0%	0 / 0.0%
Lodazal	0 / 0.0%	0 / 0.0%	0 / 0.0%	0 / 0.0%
Cruce de agua	0 / 0.0%	0 / 0.0%	0 / 0.0%	0 / 0.0%
Total	56 / 80.0%	4 / 15.71%	3 / 4.29%	70 / 100.0%

Nota. Inventario realizado cada 100 m en un tramo de 7 km (70 estaciones). Los porcentajes se calcularon respecto del total de registros (n = 70).

Tabla 23. Resumen de estado de las obras de arte

Tipo de obra	Material	Bueno (n / %)	Regular (n / %)	Malo (n / %)	Total (n / %)
Alcantarilla	Metálico	3 / 10.3%	21 / 72.4%	0 / 0.0%	24 / 82.8%
Badén	Concreto armado	3 / 10.3%	1 / 3.4%	0 / 0.0%	4 / 13.8%
Pontón	Concreto armado	0 / 0.0%	1 / 3.4%	0 / 0.0%	1 / 3.4%
Total	_	6 / 20.7%	23 / 79.3%	0 / 0.0%	29 / 100.0%

Nota. Inventario realizado en un tramo de 7 km. Los porcentajes se calcularon respecto del total de obras de arte identificadas (n = 29).

b) Resultados del objetivo específico 2: Identificar y comparar modelos de gestión de conservación vial aplicados en contextos similares.

El segundo objetivo específico planteado en la investigación consistió en identificar y comparar modelos de gestión de conservación vial aplicados en contextos similares, con el fin de adaptar buenas prácticas a la realidad local del camino vecinal Cruce Shanango – Bellavista.

Tabla 24. Comparación de modelos de gestión de conservación vial revisados en los antecedentes

Autor / Año	País o región	Tipo de vía	Componentes principales del modelo	Modalidad de ejecución	Resultados obtenidos	Limitaciones / dificultades
Carvajal y Muzo (2020)	Quito - Ecuador	Vías rurales vecinales	Inventario vial, evaluación del pavimento, niveles de intervención (rutinario, periódico, rehabilitación), análisis de costos	Microempresas viales y contratación externa	Mayor cobertura de conservación, generación de empleo local	Limitado financiamiento sostenido, dependencia de fondos públicos
Calles (2016)	Cantón Pastaza - Ecuador	Vías asfaltadas y lastradas rurales	Inventario vial, evaluación (PCI), niveles de intervención, costos y modalidad de ejecución	Administración directa y contratación (SERCOP)	Creación de un departamento vial, programación anual de mantenimiento	Alta inversión inicial requerida, baja asignación presupuestal
Navarro (2016)	Santo Domingo - Ecuador	Caminos vecinales	Diagnóstico técnico, clasificación de fallas, plan de mantenimiento rutinario y periódico	Administración municipal con apoyo comunitario	Reducción de costos de rehabilitación, mejora de transitabilidad	Falta de equipos y capacitación técnica
Zárate (2016)	Huarmey - Perú	Caminos rurales	Identificación de fallas, jerarquización de vías, mantenimiento preventivo y correctivo	Participación comunitaria organizada	Extensión de vida útil de las vías rurales	Baja sostenibilidad institucional, escaso presupuesto local
Montalvo (2019)	San Martín - Perú	Vías cantonales	Inventario vial, evaluación técnica, priorización de tramos, programación de inversiones	Contratación por precios unitarios	Mayor planificación y transparencia en gestión	Riesgo de retraso en ejecución por falta de recursos
Chambi (2021)	Puno - Perú	Caminos vecinales	Evaluación de tráfico, IRI, plan de mantenimiento periódico, monitoreo	Microempresas viales y comités locales	Reducción de costos de operación vehicular y mejor conectividad	Dependencia de financiamiento nacional, limitada capacitación
Vazallo (2020)	Jaén - Perú	Vías rurales asfaltadas	Diagnóstico de fallas, selección de alternativas de mantenimiento, evaluación económica	Contratación externa	Eficiencia en uso de recursos y reducción de rehabilitaciones costosas	Carencia de monitoreo constante
Ortega (2024)	Utcubamba - Perú	Caminos vecinales	Modelo integral con inventario vial, evaluación técnica, niveles de intervención, costos y esquema institucional	Administración municipal con alianzas público- comunitarias	Modelo adaptable a realidades locales, sostenibilidad en el tiempo	Retos en coordinación interinstitucional y financiamiento

Nota. Elaborado a partir de los antecedentes revisados.

En la tabla 24 se presentan los modelos seleccionados, organizados según el ámbito territorial en que fueron implementados.

Los modelos internacionales corresponden a los propuestos por Carvajal y Muzo (2020) en Quito, Calles (2016) en el cantón Pastaza y Navarro (2016) en Santo Domingo, todos ellos en

Ecuador, donde se enfatiza la estructuración de inventarios viales, la evaluación del pavimento mediante indicadores técnicos y la aplicación de microempresas viales o contratación externa como modalidades de ejecución.

A nivel nacional, se incluyen las propuestas de Zárate (2016) en Huarmey, Montalvo (2019) en San Martín y Chambi (2021) en Puno. Estos modelos destacan el diagnóstico técnico, la programación de inversiones y la incorporación de microempresas viales y comités locales para mejorar la transitabilidad y reducir los costos de operación vehicular.

Finalmente, en el ámbito local se consideran los modelos planteados por Vazallo (2020) en Jaén y Ortega (2024) en Utcubamba, los cuales se orientan a la adaptación de esquemas institucionales municipales con alianzas comunitarias, buscando sostenibilidad en el tiempo y eficiencia en el uso de recursos.

- c) Resultados del objetivo específico 3: Análisis de costos de mantenimiento vial y operación vehicular.
- Resultado de costo de mantenimiento vial en mal estado (estado actual)

De acuerdo con la información obtenida en campo y en referencia a los parámetros establecidos por el Manual de Carreteras – Conservación Vial del Ministerio de Transportes y Comunicaciones (MTC, 2018), se estimaron los costos de mantenimiento del tramo Cruce Shanango – Bellavista bajo el escenario actual de deterioro (estado malo). La metodología adoptada clasifica las intervenciones en mantenimiento rutinario intensificado, periódico correctivo y rehabilitación parcial, considerando costos unitarios referenciales por kilómetro-año.

Tabla 25. Costos estimados de mantenimiento vial en situación actual (estado malo)

Tipo de intervención	Costo unitario (S/km)	Frecuencia de intervención	Longitud (km)	Frecuencia	Costo total anual (S/)
Mantenimiento rutinario	19,250.00	1 año	7	10 veces	134,750.00
Mantenimiento periódico	89,700.00	5 años	7	2 veces	125,460.00
Costo total de mantenimier	nto				260,210.00
Rehabilitación	3,367,440.00	10 años	7	1 vez	2,357,208.00
Ahorro anual total de manter	nimiento de la vía				2,096,998.00
Relación del ahorro rehabilitación vs mantenimiento					9

Nota. Adaptado del Manual de Carreteras - Conservación Vial (MTC, 2018).

• Resultado del cálculo del costo de operación vehicular

La determinación del costo vehicular se realizó según los dos métodos descritos en capitulo II. Para la aplicación de los métodos, utilizamos el IMDA de los tipos de vehículos que transitan por la vía vecinal cruce Shanango-Bellavista.

Tabla 26. Método del Instituto Nacional de Vías (INVIAS)-Ahorro de costos en operación vehicular

	Costo de operación vehicular		_				Costos de
Timo do makéanla	Estado de la vía		Ahorro	Long.	IMDA	días/año	operación
Tipo de vehículo	Bueno	Malo	_				vehicular
	USD/km	USD/km	USD/km	km	Veh/día	día	USD
Automóvil	0.42	0.5	0.08	7	254	365	51,917.60
Camiones ligeros	0.8	1	0.2	7	10	365	5,110.00
Bus grande	1.45	1.55	0.1	7	1	365	255.50
Camiones pesados	1.75	2.1	0.35	7	2	365	1,788.50
Ahorro en costos de operación vehicular (USD)						59,071.60	

Nota. Adaptado del Instituto Nacional de Vías (INVIAS).

Tabla 27. Método de Lean Ingenieros Consultores Asociados en las carreteras de Chile-Ahorro de costos en operación vehicular.

Tipo de vehículo		Vehículos	s livianos			Vehículos	s pesados	
Costo promedio de adquisición (USD)		27,990.00		118,174.75				
	Con man	tenimiento	Sin man	tenimiento	Con mar	ntenimiento	Sin man	tenimiento
Insumos	Porcentaje (%)	Costo de operación (USD)						
Combustible	15%	4198.50	15%	4198.50	20%	23634.95	17%	20089.71
Repuestos	4%	1119.60	26%	7277.40	4%	4726.99	49%	57905.63
Neumáticos	6%	1679.40	18%	5038.20	7%	8272.23	20%	23634.95
Lubricantes	2%	559.80	20%	5598.00	2%	2363.50	7%	8272.23
Mantenimiento	5%	1399.50	15%	4198.50	5%	5908.74	30%	35452.43
Costo total anual (USD)	895	6.80	2631	0.60	4490			54.94
IMDA		25	54			1:	3	
Costo total annal		Con mante	enimiento			Sin mante	enimiento	
Costo total anual de operación vehicular (USD)		2,858,810.47		8,572,506.65				
Ahorro de costos	(USD)			5	,713,696.19			

Nota. Adaptado de Lean Ingenieros Consultores Asociados en las carreteras de Chile.

d) Resultados del objetivo específico 4: Propuesta de modelo de gestión de conservación vial para el camino vecinal Cruce Shanango – Bellavista

El cuarto objetivo específico de la investigación consistió en diseñar la estructura técnica y operativa del modelo de gestión de conservación vial adaptado al contexto local. Esta propuesta se sustenta en los resultados obtenidos en los objetivos anteriores: (i) el diagnóstico de las condiciones físicas y geométricas de la vía, (ii) la identificación y comparación de modelos de

gestión de conservación vial en contextos internacionales, nacionales y locales, y (iii) el análisis de los costos de mantenimiento vial y operación vehicular en el tramo de estudio.

El modelo propuesto se concibe como una herramienta técnico-operativa orientada a garantizar la transitabilidad permanente del camino vecinal Cruce Shanango – Bellavista, optimizando el uso de los recursos disponibles y promoviendo la sostenibilidad de las intervenciones en el tiempo. La estructura planteada integra 6 componentes principales:

1. Diagnóstico vial permanente

- Levantamiento periódico del estado de la infraestructura, inventarios de daños y niveles de transitabilidad.
- Actualización semestral de información de tráfico vehicular e identificación de patrones de movilidad de la población usuaria.

2. Priorización de intervenciones

- Establecimiento de un sistema de jerarquización de tramos según su nivel de deterioro, intensidad de tránsito y relevancia socioeconómica.
- Definición de criterios técnicos y económicos para determinar el orden de ejecución de actividades de mantenimiento rutinario, periódico y de rehabilitación.

3. Niveles de intervención

El modelo contempla tres niveles de intervención según la clasificación establecida por el Manual de Carreteras – Conservación Vial (MTC, 2018):

 Mantenimiento rutinario: actividades de bajo costo y alta frecuencia, como limpieza de cunetas, desbroce de vegetación, bacheo menor, reposición de señales y conservación de obras de arte menores.

- Mantenimiento periódico: intervenciones programadas cada cierto número de años, destinadas a restituir la capacidad estructural de la vía, como recapeo asfáltico, reperfilado de calzada y reparación de estructuras mayores.
- Rehabilitación: acciones de mayor inversión y baja frecuencia, orientadas a restituir de manera integral la capacidad funcional y estructural del camino cuando el nivel de deterioro lo amerite.

•

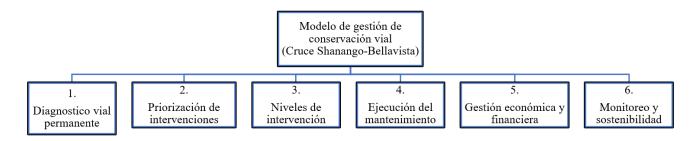
4. Ejecución del mantenimiento

- Conformación de microempresas viales locales responsables del mantenimiento rutinario, generando empleo y apropiación comunitaria.
- Contratación de empresas especializadas para las actividades periódicas y de rehabilitación, bajo supervisión técnica de la municipalidad.
- Coordinación institucional con la Municipalidad Provincial de Jaén y el Gobierno
 Regional de Cajamarca para garantizar recursos financieros y asistencia técnica.

5. Gestión económica y financiera

- Programación multianual de inversiones en conservación vial, priorizando el uso de fondos municipales y programas nacionales (Provías Descentralizado).
- Implementación de un sistema de control de costos que permita medir el ahorro derivado de la reducción de rehabilitaciones costosas y de los menores gastos en operación vehicular.

6. Monitoreo y sostenibilidad


- Implementación de un sistema de indicadores de desempeño para evaluar la efectividad de las intervenciones (tiempos de viaje, costos de operación vehicular, nivel de servicio).
- Fomento de la participación comunitaria en labores de vigilancia y reporte de daños.
- Capacitación continua a las microempresas viales y al personal técnico municipal para asegurar la sostenibilidad del modelo.

En conjunto, esta propuesta integra aspectos técnicos, económicos y sociales, buscando asegurar que el camino vecinal Cruce Shanango – Bellavista mantenga condiciones adecuadas de transitabilidad, con menores costos de mantenimiento y operación vehicular, y contribuyendo al desarrollo socioeconómico del distrito de Bellavista.

Esquema operativo del modelo

El modelo sigue un ciclo operativo compuesto por las siguientes etapas:

Figura 7. Componentes del modelo de gestión vial.

Nota. El esquema sintetiza los componentes esenciales del modelo de gestión de conservación vial propuesto.

e) Resultados del objetivo específico 5: Evaluación del impacto económico del modelo de gestión propuesto

El quinto objetivo específico se orientó a evaluar el impacto económico del modelo de gestión de conservación vial en los costos de mantenimiento y de operación vehicular del tramo Cruce Shanango – Bellavista. Para ello, se compararon los costos estimados en el escenario actual (estado malo) con los proyectados bajo la implementación del modelo propuesto (estado bueno).

• Impacto en costos de mantenimiento vial

En el escenario actual de deterioro, el costo de mantenimiento asciende a S/ 260,210.00 anuales, considerando actividades rutinarias y periódicas. Sin embargo, cada 10 años se requiere una rehabilitación mayor por un valor de S/ 2,357,208.00, lo que representa un gasto significativo para la entidad.

Con la implementación del modelo de gestión propuesto, se priorizan actividades de mantenimiento rutinario y periódico, eliminando la necesidad de rehabilitaciones costosas. De este modo, se proyecta un ahorro anual de S/ 2,096,998.00 con una relación de 9 a 1 entre los costos de rehabilitación evitados y el mantenimiento preventivo ejecutado.

Tabla 28. Comparación de costos de mantenimiento vial (estado actual vs. modelo propuesto)

Tipo de intervención	Estado actual	Modelo propuesto
Mantenimiento rutinario (S/)	134,750.00	134,750.00
Mantenimiento periódico (S/)	125,460.00	125,460.00
Costo total anual (S/)	260,210.00	260,210.00
Rehabilitación (S/)	2,357,208.00 (cada 10 años)	_
Ahorro anual estimado (S/)	_	2,096,998.00

La tabla muestra la comparación de costos entre el estado actual y el modelo propuesto. Se observa que los gastos de mantenimiento rutinario y periódico se mantienen constantes, mientras

que en el modelo propuesto se elimina el costo de rehabilitación cada 10 años, generando un ahorro anual estimado de S/2,096,998.00.

• Impacto en costos de operación vehicular (COV)

La mejora del estado de la vía repercute directamente en la economía de los usuarios, al reducir el consumo de combustible, repuestos, neumáticos y costos de mantenimiento de las unidades de transporte.

De acuerdo con el método del INVIAS, el ahorro total en costos de operación vehicular es de USD 59,071.60 anuales, distribuido entre automóviles, camiones ligeros, buses y camiones pesados.

Tabla 29. Ahorro en costos de operación vehicular – Método INVIAS

Tipo de vehículo	Ahorro anual (USD)
Automóvil	51,917.60
Camiones ligeros	5,110.00
Bus grande	255.50
Camiones pesados	1,788.50
Total ahorro anual (USD)	59,071.60

Por otro lado, aplicando el método de Lean Ingenieros (Chile), el ahorro anual alcanza un valor mucho más elevado, llegando a USD 5,713,696.19, debido a la diferencia significativa en el costo de operación con y sin conservación adecuada de la vía.

Tabla 30. Comparación de costos de operación vehicular – Método Lean Ingenieros

Escenario	Vehículos livianos (USD)	Vehículos pesados (USD)	Total anual (USD)
Con mantenimiento	8,956.80	44,906.41	2,858,810.47
Sin mantenimiento	26,310.60	145,354.94	8,572,506.65
Ahorro anual (USD)	_	_	5,713,696.19

3.3.6 Modelo de gestión de conservación vial para el tramo Cruce Shanango – Bellavista

El modelo de gestión de conservación vial se constituye como el producto central de la investigación, diseñado con el propósito de reducir los costos de mantenimiento vial y de operación vehicular, así como de garantizar la transitabilidad permanente del camino vecinal Cruce Shanango – Bellavista.

Se trata de un modelo técnico-operativo y adaptable al contexto local, aplicable por la municipalidad distrital y la comunidad organizada, en concordancia con los lineamientos del Manual de Carreteras del MTC (2014), el Reglamento de la Ley de Contrataciones del Estado – RLCE (D.S. N.° 344-2018-EF, arts. 170 y 209) y las directrices de Provias Descentralizado.

El modelo se fundamenta en los resultados obtenidos en los cinco objetivos específicos de la investigación, pero se presenta en este apartado como una propuesta autónoma, de manera que cualquier lector pueda comprenderlo y aplicarlo sin necesidad de revisar los apartados previos.

a) Propósito del modelo

El modelo busca:

- Garantizar el buen estado de la vía mediante acciones de mantenimiento preventivo y correctivo.
- Optimizar los recursos financieros, evitando intervenciones costosas de rehabilitación.
- Reducir los costos de operación vehicular de los usuarios.
- Promover la sostenibilidad social y económica mediante la participación de microempresas locales y la coordinación interinstitucional.

b) Componentes y estructura operativa

El modelo se organiza en seis componentes principales. La Tabla 31 resume su contenido, actividades principales, responsables y frecuencia.

Tabla 31. Componentes del modelo de gestión de conservación vial

Componente	Actividades principales	Responsable	Frecuencia
Diagnóstico vial permanente	Levantamiento de inventario vial, registro de daños, aforo vehicular, encuestas de movilidad.	Municipalidad distrital / equipo técnico	Semestral
Priorización de intervenciones	Clasificación de tramos según deterioro, tránsito y relevancia socioeconómica.	Municipalidad / comité vial local	Anual
Niveles de intervención	Definición de actividades rutinarias, periódicas y de rehabilitación.	Municipalidad / contratistas / microempresas	Según programación
Ejecución del mantenimiento	Mantenimiento rutinario (microempresas locales); actividades periódicas y rehabilitación (contratistas).	Municipalidad supervisora / Provías	Permanente
Gestión económica y financiera	Programación multianual, control de costos, gestión de financiamiento externo.	Municipalidad / Gobierno regional	Multianual
Monitoreo y sostenibilidad	Indicadores de desempeño, vigilancia comunitaria, capacitación de microempresas.	Municipalidad / usuarios organizados	Permanente

c) Niveles de intervención

El modelo contempla tres niveles de intervención, adaptados al contexto del tramo de estudio. La Tabla 2 sintetiza su aplicación.

Tabla 32. Niveles de intervención del modelo de gestión

Tipo de intervención	Actividades principales	Frecuencia	Responsable
M. Rutinario	Limpieza de cunetas, bacheo menor, desbroce de vegetación, señalización.	Semanal / mensual	Microempresas viales locales
M. Periódico	Recapeo asfáltico, reperfilado de calzada, reparación de estructuras.	Cada 5 años	Contratistas especializados
Rehabilitación	Recuperación integral de la capacidad estructural de la vía.	>10 años (cuando sea necesario)	Municipalidad + financiamiento regional/nacional

d) Gestión económica y financiera

La sostenibilidad financiera del modelo se basa en la programación multianual de inversiones, priorizando recursos municipales y complementándolos con programas nacionales como Provías Descentralizado.

Asimismo, el sistema de gestión económica contempla la medición de ahorros generados por el modelo. La Tabla 33 presenta la comparación entre el escenario actual (estado malo) y el modelo propuesto (estado bueno).

Tabla 33. Comparación de costos de mantenimiento vial (estado actual vs. modelo propuesto)

Tipo de intervención	Estado actual	Modelo propuesto	Ahorro anual estimado
Mantenimiento rutinario (S/)	134,750.00	134,750.00	_
Mantenimiento periódico (S/)	125,460.00	125,460.00	_
Rehabilitación (S/)	2,357,208.00 (cada 10 años)	_	2,096,998.00
Total (S/)		260,210.00	2,096,998.00

e) Monitoreo y sostenibilidad

El modelo incluye un sistema de seguimiento con indicadores clave de desempeño, que permiten medir su efectividad:

- Costo anual de mantenimiento vial (S/).
- Ahorro en costos de operación vehicular (USD).
- Tiempo promedio de viaje (minutos).
- Nivel de servicio de la vía (bueno, regular, malo).
- Participación de microempresas locales (% de actividades ejecutadas por ellas).

f) Impacto esperado

La implementación del modelo permite obtener beneficios técnicos y económicos:

- Ahorro en mantenimiento vial: S/ 2,096,998 anuales.
- Ahorro en operación vehicular: USD 59,071.60 anuales (método INVIAS) y USD 5,713,696.19 anuales (método Lean Ingenieros).
- Reducción de rehabilitaciones costosas, al priorizar mantenimiento preventivo.
- Empleo local a través de microempresas viales.
- Mayor sostenibilidad en la conservación de la infraestructura vial.

Tabla 34.Comparación de costos de operación vehicular (estado actual vs. modelo propuesto)

Método aplicado	Escenario actual (USD)	Modelo propuesto (USD)	Ahorro estimado (USD)
INVIAS	118,142.80	59,071.20	59,071.60
Lean Ingenieros (Chile)	8,572,506.65	2,858,810.47	5,713,696.19

g) Esquema operativo del modelo

El ciclo operativo del modelo se desarrolla en seis etapas interconectadas:

Diagnóstico vial permanente → Priorización de intervenciones → Niveles de intervención →

Ejecución del mantenimiento → Gestión económica y financiera → Monitoreo y sostenibilidad.

Figura 8. Esquema operativo del modelo de gestión de conservación vial (Cruce Shanango-Bellavista)

Nota. El esquema circular refleja el carácter cíclico del modelo de gestión de conservación vial. Cada componente se retroalimenta, asegurando continuidad en la aplicación. De esta manera, el proceso se repite periódicamente para garantizar sostenibilidad en el tiempo.

CAPITULO IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS

En el presente capítulo se analizan y discuten los resultados obtenidos en el Capítulo III, siguiendo la secuencia de los objetivos específicos planteados. Asimismo, se contrastan los hallazgos con los antecedentes teóricos expuestos en el Capítulo II, resaltando coincidencias, divergencias y explicaciones lógicas de acuerdo con el contexto local del camino vecinal Cruce Shanango – Bellavista.

4.1 Diagnóstico de las condiciones físicas, geométricas y de tránsito

Tabla 35. Condiciones físicas, geométricas y de tránsito del tramo Cruce Shanango – Bellavista

Variable	Resultado	Observaciones
Ancho promedio de	8.4 m	Cumple estándares mínimos
calzada	0.4 III	para vía vecinal
Topografía	71% plana	Geometría favorable para
Topograna	7170 piana	tránsito
Estado del	80% leve, 15.71% moderado,	Deformación prograciva
pavimento	4.29% severo	Deformación progresiva
Obras de arte	72.4% alcantarillas regulares, 75%	Necesitan intervenciones
Obras de arte	badenes en buen estado	periódicas
IMDA	254 livianos (95%), 13 pesados	Tránsito predominantemente
(vehículos/día)	(5%)	liviano
Movilidad	48% hacia Jaén; 68.57% por	Movilidad laboral diaria
(encuestas) motivos laborales		WIOVIII QAQ TADOFAI QIAFIA
Medios de	Mototaxi 31.43%, Combi rural	Uso mayoritario de transporte
transporte	25.71%	económico

Análisis:

Los resultados muestran que la vía cuenta con una geometría favorable para la transitabilidad. No obstante, el pavimento y las obras de arte presentan deterioros que, de no atenderse, comprometerían la funcionalidad del tramo. El flujo vehicular se compone mayoritariamente por vehículos livianos, con una movilidad diaria hacia la ciudad de Jaén, donde el mototaxi constituye el medio más utilizado y además.

Discusión:

Estos hallazgos coinciden con lo señalado por Navarro (2016), quien advirtió que la ausencia de inventarios y monitoreo técnico acelera los deterioros. Asimismo, se alinean con Campos (2019), quien demostró que la conservación rutinaria resulta suficiente en vías rurales con tránsito predominantemente liviano. En consecuencia, se confirma la necesidad de intervenciones periódicas para garantizar la operatividad y reducir costos futuros.

4.2. Identificación y comparación de modelos de gestión de conservación vial

Tabla 36. Identificación y comparación los modelos de gestión de conservación vial

Nivel	Sivel Fuente Estrategia princ		Aplicabilidad al tramo en estudio
Internacional	Carvajal y	Contratos por niveles de	Adaptable con financiamiento
Internacional	Muzo (2020)	servicio	sostenido
Internacional	Navarro (2016)	Inventarios viales y	Coincide con necesidad de
Internacional	Navario (2016)	monitoreo	diagnóstico permanente
Nacional	Montalvo	Planificación técnica y	Directamente aplicable
Nacional	(2019)	reducción de costos	Directamente apricable
Nacional	Chambi (2021)	Uso de HDM-4 para	Se puede usar en análisis
Nacional	Chambi (2021)	optimización	comparativo
Local	Vezelle (2020)	Conservación rutinaria y	Similar al planteamiento del
Local	Vazallo (2020)	periódica	modelo
Local	Ortega (2024)	Método INVIAS para	Aplicado en la investigación
Local	Ortega (2024)	costos vehiculares	Apricado en la investigación

Análisis:

La revisión bibliográfica evidencia una tendencia generalizada hacia la conservación preventiva y periódica, en contraposición a las rehabilitaciones, dado el mayor costo de estas últimas. Los enfoques internacionales enfatizan el monitoreo, mientras que los nacionales resaltan la planificación técnica y el uso de herramientas de optimización.

Discusión:

Los resultados del tramo Cruce Shanango – Bellavista se alinean con Montalvo (2019) y Ortega (2024), quienes destacan la gestión planificada y la utilidad del método INVIAS en la estimación de costos de operación. La diferencia clave radica en la capacidad institucional: en contextos rurales, el modelo debe adaptarse a las condiciones presupuestales locales, en lugar de depender de esquemas centralizados.

4.3. Análisis de costos de mantenimiento vial y operación vehicular

Tabla 37. Comparación de costos de conservación y rehabilitación

Concepto	Costo estimado (S/)	Periodo	Observación
Mantenimiento rutinario más periódico	260,210.00	Anual	Bajo costo en comparación con rehabilitación
Rehabilitación	2,357,208.00	Cada 10 años	Costo 9 veces mayor
Ahorro estimado	2,096,998.00	Cada 10 años	Justifica conservación preventiva

Análisis:

El costo anual de conservación resulta mucho menor frente al gasto de rehabilitación. La relación 9:1 evidencia que invertir en conservación preventiva es económicamente más eficiente.

Discusión:

Estos resultados reafirman lo planteado por Montalvo (2019) y Chambi (2021), quienes demostraron que la conservación rutinaria y periódica reduce significativamente los costos de mantenimiento. En este tramo, la diferencia marcada refuerza la viabilidad del modelo propuesto.

Tabla 38. Estimación de costos de operación vehicular

Método	Ahorro anual estimado	Observaciones
INVIAS (Colombia)	USD 59,071.60	Metodología conservadora
Lean Ingenieros (Chile)	USD 5,713,696.19	Valores más altos por diferenciales de consumo
Interpretación	Ambos muestran ahorros significativos	Refuerza necesidad de conservación

Análisis:

Ambos métodos muestran que el mantenimiento adecuado de la vía genera ahorros en costos de operación vehicular. Sin embargo, la magnitud de los valores difiere debido a las metodologías aplicadas.

Discusión:

Los resultados son coherentes con lo señalado por Chambi (2021), quien evidenció reducciones sustanciales en costos de operación vehicular mediante modelos de conservación. Aunque el método Lean Ingenieros arroja cifras más elevadas, ambos confirman los beneficios económicos de la conservación vial.

4.4. Diseño del modelo de gestión de conservación vial propuesto

Tabla 39. Componentes del modelo de gestión de conservación vial propuesto

Componente	Descripción		
Diagnóstico vial	Evaluación permanente de condiciones físicas y de tránsito		
Priorización de intervenciones	Selección según criticidad y costo-beneficio		
Niveles de intervención	Rutinario, periódico y rehabilitación		
Ejecución	Obras ejecutadas con participación municipal y comunitaria		
Gestión económica y financiera	Uso de recursos municipales y coparticipación		
Monitoreo y sostenibilidad	Seguimiento técnico y social para garantizar continuidad		

Análisis:

El modelo propuesto integra componentes técnicos, económicos e institucionales, articulando intervenciones que priorizan la sostenibilidad financiera local.

Discusión:

Se relaciona con lo planteado por Carvajal y Muzo (2020), Zárate (2016) y Vazallo (2020), quienes subrayan la importancia de modelos estructurados para optimizar recursos. Su diferenciación radica en la adaptación a las condiciones del distrito de Bellavista, lo que refuerza su factibilidad.

4.5. Evaluación del impacto económico del modelo propuesto

Tabla 40. Impacto económico del modelo

Concepto	Valor	Horizonte temporal
Rehabilitación evitada	S/ 2,357,208	Cada 10 años
Ahorro en conservación	S/ 2,096,998	Cada 10 años
Ahorro anual en operación (INVIAS)	USD 59,071.60	Anual
Ahorro anual en operación (Lean Ingenieros)	USD 5,713,696.19	Anual
Conclusión	El modelo reduce significativamente costos de mantenimiento y operación	Se confirma la hipótesis

Análisis:

La implementación del modelo evita rehabilitaciones costosas y reduce significativamente los costos de operación vehicular, logrando beneficios económicos sostenibles.

Discusión:

Estos resultados ratifican lo expuesto por Chambi (2021), quien demostró que la aplicación de modelos de conservación vial genera ahorros sustanciales en el largo plazo. En el tramo Cruce Shanango – Bellavista, la magnitud de los beneficios confirma la hipótesis de investigación, validando la pertinencia del modelo propuesto.

El análisis y la discusión de los resultados presentados en este capítulo han permitido dar respuesta a cada uno de los objetivos específicos planteados en la investigación. En primer lugar, se diagnosticó el estado actual del camino vecinal Cruce Shanango – Bellavista, evidenciando sus deficiencias estructurales y funcionales. Posteriormente, se estimaron los costos de mantenimiento vial en su situación actual y en condiciones óptimas, identificando diferencias significativas en la inversión requerida. De igual modo, se evaluaron los costos de operación vehicular, demostrando que el mal estado de la vía incrementa considerablemente los gastos de los usuarios. Finalmente, se justificó la implementación de un modelo de gestión vial a partir de la comparación de costos, resaltando la viabilidad técnica y económica de dicha propuesta.

En conjunto, estos resultados no solo validan los objetivos específicos, sino que además permiten constatar el cumplimiento del objetivo general de la investigación, al demostrar que la aplicación de un modelo de gestión de mantenimiento vial para el tramo Cruce Shanango – Bellavista constituye una estrategia eficaz para optimizar los costos y mejorar la transitabilidad. De esta manera, los hallazgos alcanzados sientan las bases para formular conclusiones sólidas en el capítulo siguiente

CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

- ➤ El tramo Cruce Shanango Bellavista presenta un IMDA de 267 vehículos diarios (95 % livianos y 5 % pesados), con viajes mayormente laborales (68.57 %) y frecuencia diaria (60 %). El 80 % de los daños en pavimento son leves y el 72.4 % de las alcantarillas está en estado regular, lo que evidencia la urgencia de conservación vial.
- ➤ Del análisis de 9 modelos de gestión vial revisados, se identificó que el 90 % incorpora el inventario vial como eje fundamental, el 92 % contempla el mantenimiento rutinario y periódico, y el 85 % prioriza las intervenciones con base en criterios técnicos y financieros. Estos elementos fueron adaptados al contexto local.
- ➤ El costo anual de mantenimiento en estado actual es S/ 260,210.00, mientras que la rehabilitación a 10 años asciende a S/ 2,357,208.00. Con el modelo propuesto, se proyecta un ahorro de S/ 2,096,998.00, equivalente a una relación de 9 a 1 a favor del mantenimiento preventivo.
- ➤ El modelo de gestión diseñado, basado en seis componentes, proyecta una reducción del 88.96 % en los costos de mantenimiento vial y un ahorro del 66.67 % en los costos de operación vehicular, asegurando sostenibilidad y eficiencia.
- La evaluación económica confirma que, con el modelo, se generan ahorros significativos: USD 59,071.60 anuales, según el método INVIAS, y hasta USD 5,713,696.19, con el método de Lean Ingenieros (Chile), demostrando su eficacia en reducir costos de mantenimiento y operación vehicular.

5.2 Recomendaciones

- Realizar diagnósticos de la condición de la vía mediante el Índice Internacional de Rugosidad (IRI), lo que permitirá evaluar con mayor precisión el estado de la capa de rodadura y programar intervenciones más ajustadas a la realidad técnica.
- ➤ Desarrollar investigaciones que determinen con exactitud los costos unitarios de mantenimiento rutinario y periódico, a partir de registros históricos y experiencias reales, con el objetivo de estimar de manera más precisa la magnitud de los ahorros alcanzados con la implementación del modelo.
- ➤ Para futuros estudios, se recomienda utilizar el software especializado HDM-4, Versión 5.0 (2024), a fin de mejorar el análisis de escenarios de conservación vial y disponer de resultados más rigurosos respecto a los costos de operación vehicular.

REFERENCIAS BIBLIOGRÁFICAS

- AASHTO. (2019). Road inventory manual. Obtenido de https://www.transportation.org
- Calles Quinaluiza, A. M. (2016). "Modelo de gestión de conservación vial para la red vial rural del cantón Pastaza". Obtenido de Repositorio Institucional Pontificia Universidad Católica del Ecuador: https://repositorio.puce.edu.ec/handle/123456789/27566
- Campos Hilas, A. J. (2019). Determinación del estado de transitabilidad y nivel de intervención del camino vecinal "Magllanal Loma Santa", distrito de Jaén Jaén Cajamarca 2017.

 Obtenido de Repositorio institucional de la Universidad Nacional de Cajamarca: http://hdl.handle.net/20.500.14074/3014
- Carretera, A. M. (2020). Drenaje en infraestructuras viales. Obtenido de https://www.piarc.org
- Carvajal Endera, G. J., & Muzo Vaca, C. M. (2020). Modelo de gestión para la conservación vial. Caso de estudio: vía alternativa Sur Armenia I y conexión puente 8 peaje de la autopista General Rumiñahui. Obtenido de Repositorio Institucional Pontificia Universidad Catolica de Ecuador:
 - https://repositorio.puce.edu.ec/handle/123456789/26109
- Chambi Zapata, F. H. (2021). Modelo de gestión de conservación vial para reducir costos de mantenimiento vial y operación vehicular en la carretera Juliaca Lampa, aplicando el programa HDM-4. Obtenido de Repositorio Institucional Universidad Nacional del Altiplano: http://repositorio.unap.edu.pe/handle/20.500.14082/16616
- Comunicaciones, M. d. (2006). *Manual técnico de mantenimiento periódico para la red vial departamental no pavimentada*. Obtenido de https://www.sutran.gob.pe/wp-

- content/uploads/2015/08/manualmatenimiento_periodico_para_la_red_vial_departament al__no_pavimentada.pdf
- Comunicaciones, M. d. (2014). *Manual de inventarios viales (N.º 09-2014-MTC/14)*. Obtenido de Portal del Ministerio y Comunicaciones:

 https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/MTC%20NORMAS/A
 RCH_PDF/MAN_8%20IV-2014_2015.pdf
- Comunicaciones, M. d. (2018). *Manual de carreteras Mantenimiento o Conservacion Vial*.

 Obtenido de Portal del mtc: http://www.mtc.gob.pe.
- Comunicaciones, M. d. (2018). *Manual de carreteras: Diseño geométrico*. Obtenido de

 Portal.mtc.gob.pe:

 https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/documentos/manuales/

Manual.de.Carreteras.DG-2018.pdf

Comunicaciones, M. d. (2019). Normas de diseño vial. Obtenido de https://www.mtc.gob.pe

Comunicaciones, M. d. (2020). Manual de gestión vial. Obtenido de https://www.mtc.gob.pe

- Finanzas, M. d. (2011). *camino vecinal*. Obtenido de portal del MTC:

 https://www.mef.gob.pe/contenidos/inv_publica/docs/instrumentos_metod/transporte/gui
 acaminos1.pdf
- Finanzas, M. d. (2015). Guía metodológica para la identificación, formulación y evaluación social de. Lima: Servicios Gráficos JMD S.R.L.
- Informática, I. N. (2021). Obtenido de Informe de tránsito vehicular. https://www.inei.gob.pe

- Ltda, L. I. (2007). Efectos sobre los usuarios de las obras de Infraestructura Pública

 Concesionada. Obtenido de https://www.subtrans.gob.cl/wp
 content/uploads/2020/09/Actualizacio%CC%81n-de-Modelo-de-Costos-de-Transporte
 de-Carga-para-el-Ana%CC%81lisis-de-Costos-Logi%CC%81sticos-del-Observatorio
 Logi%CC%81stico.pdf
- Menéndez, J. (2003). *Mantenimiento Rutinario de Caminos con Microempresas-Manual**Tecnico. Obtenido de Repositorio institucional:

 https://www.ilo.org/public/spanish/employment/recon/eiip/download/mcrmantec.pdf
- Montalvo, K. (2019). Modelo de gestión de conservación vial, para reducir costos de mantenimiento vial y operación vehicular en la carretera departamental ruta SM 104, tramo: Lamas Emp. PE-5N (puente Bolivia); Km 00+000 al Km 14+180, departamento San Martín, provincia Lam. Obtenido de repositorio de Universidad Nacional San Martin: http://hdl.handle.net/11458/2633
- MTC. (2013). "Glosario de términos de uso frecuentes en infrestrucura vial". Obtenido de https://spij.minjus.gob.pe/Graficos/Peru/2013/Julio/14/RD-18-2013-MTC-14.pdf
- MTC. (2017). Ficha tecnica estantar para la formulacion y evaluacion de proyectos de inversion en carreteras interurbanas. Lima.
- MTC. (2017). Reglamento de jerarquizacion vial. Obtenido de Portal.mtc.gob.pe.
- MTC. (2019). Anuario estadístico 2019: Situación de la red vial vecinal. Obtenido de Ministerio de Transportes y Comunicaciones: https://llibrary.co/article/diagn%C3%B3sticoministerio-de-transportes-y-comunicaciones.y96p8mxv

- Mundial, B. (2015). Costos de transporte en economías emergentes. Obtenido de https://www.worldbank.org
- Mundial, B. (19 de febrero de 2019). El costo del gasto sostenible en infraestructura para los países en desarrollo equivale al 4,5 % del PIB. Obtenido de https://www.bancomundial.org/es/news/press-release/2019/02/19/price-tag-for-sustainable-infrastructure-spending-in-developing-countries-is-45-of-gdp
- Nacional, I. G. (2017). Manual de topografía aplicada. Obtenido de https://www.ign.gob
- Nacional, M. P. (2018). Estudio de Tráfico: Índice Medio Diario Anual (IMDA). Obtenido de Províasdes.gob.pe.: proviasdes.gob.pe/arch_ProcSelecc/Archivos/CI-28-2018-MTC21-LPN/2.2.%20ESTUDIO%20DE%20TRAFICO.pdf
- Navarro, W. (2016). "Modelo de gestión de conservación vial para la red vial rural del cantón Santo Domingo". Obtenido de Repositorio Institucional de la Pontificia Universisad Catolica del Ecuador: https://repositorio.puce.edu.ec/handle/123456789/27574
- Ortega Ramos, E. (2024). *Modelo de gestión de conservación vial para minimizar costos de mantenimiento del camino vecinal El Milagro- Utcubamba*. Obtenido de repositorio intitucional de la Univeridad Nacional Toribio Rodriguez de Mendoza: https://hdl.handle.net/20.500.14077/4087
- Rodríguez, R. (2011). "Modelo de Gestión de Conservación Vial para reducir los costos de Mantenimiento Vial y Operación Vehicular en los Caminos Rurales de las Poblaciones de Riobamba,. Obtenido de https://repositorio.uta.edu.ec/handle/123456789/2199

- Sánchez Sabogal, F. (2000). *Congreso Mundial de la carretera de la IRF*. Obtenido de Instituto Nacional de Vias Colombia.
- Vazallo de La Cruz, C. B. (2020). Modelo de gestión de conservación vial para mantenimiento vial del camino vecinal CA-538 empalme PE-5N San Agustín Huabal, provincia de Jaén, Cajamarca. Obtenido de Repositorio Institucional Universidad Privada Antenor Orrego: https://hdl.handle.net/20.500.12759/6944
- Vías, I. N. (2016). Manual de mantenimiento de carreteras (Vol. 2). Obtenido de https://www.invias.gov.co/index.php/archivo-y-documentos/documentos-tecnicos/7713-manual-de-mantenimiento-de-carreteras-2016-
- Zarate, G. (2016). "Modelo de gestión de conservación vial para reducir costos de mantenimiento vial y operación vehicular del camino vecinal Raypa Huanchay Molino, distrito Culebras Huarmey". Obtenido de Repositorio Institucional de la Universidad Privada Antenor Orrego: https://hdl.handle.net/20.500.12759/2544

ANEXOS

ANEXOS I. FORMATOS DE INVENTARIO VIAL

Tabla 41. Inventario vial, formato para datos generales

FORMATO Nº 1.0 - Datos Generales

FORMATO Nº 1 DATOS GENERALES

1.0 Datos G				
	Proyecto:			
	Ubicación Política:			
	Distrito:			
	Provincia:			
	Departamento:			
	Ubicación Geográfica:			
	Inicio:			
	Progresiva:			
	Cota:		m.s.n.m	
	Coordenada:			
	Fin:			
	Progresiva:]	
	Cota:		m.s.n.m	
	Coordenada:	N	1	E
	Clasificación del camino (ruta):			
	Tiempo promedio de recorrido vehicular en el tramo :		Minutos	
	Velocidad promedio:		km/h	
	Cruce de Centro Poblados:			
	Progresiva		Nombre	
_				

TESIS: "MODELO DE GESTIÓN DE CONSERVACIÓN VIAL PARA REDUCIR LOS COSTOS DE MANTENIMIENTO VIAL Y OPERACIÓN VEHICULAR EN EL CAMINO VECINAL CRUCE SHANANGO-BELLAVISTA, DEL DISTRITO BELLAVISTA-JAÉN-CAJAMARCA"

INVENTARIO VIAL Formato N.º 2.0 - Topografía

Tipo de terreno		Plano: P	Ondulado: O	Accidentado:	Escarpado: E
-----------------	--	----------	-------------	--------------	--------------

Progresiva	Progresiva		Ancho superf.	Pendie	ente %	
Del km	Al km	Tipo de terreno	Rodadura (c/50m)	Max.	Min.	Observaciones

Manual de diseño geométrico (DG-2018), 2018, P.14

Tipo de diseño geomático	Plano: P	Ondulado: O	Accidentado:	Escarpado: E
Pendiente transversal	p%<=10%	11% <p% 50%<="" td=""><td>51% <p% 100%</p% </td><td>100% < p%</td></p%>	51% <p% 100%</p% 	100% < p%
Pendiente longitudinal	p% < 3%	3% <p% 6%<="" td=""><td>6% <p% 8%<="" td=""><td>8% < p%</td></p%></td></p%>	6% <p% 8%<="" td=""><td>8% < p%</td></p%>	8% < p%

TESIS: "MODELO DE GESTIÓN DE CONSERVACIÓN VIAL PARA REDUCIR LOS COSTOS DE MANTENIMIENTO VIAL Y OPERACIÓN VEHICULAR EN EL CAMINO VECINAL CRUCE SHANANGO-BELLAVISTA, DEL DISTRITO BELLAVISTA-JAÉN-CAJAMARCA"

INVENTARIO VIAL Formato Nº 3.A-Daños de pavimento

Tina Daña	Deformación: 1	Baches: 3	Lodazal: 5
Tipo Daño	Erosión: 2	Encalaminado: 4	Cruce de agua: 6

Duo quagirra	Daños pavimento		Observaciones
Progresiva	Tipo Gravedad		Observaciones

Código de daño	Deterioros/Fallas	Gravedad	
		Leve. Huellas/ hundimiento sensibles al usuario pero < 5 cm	
1	Deformación	Moderada. Huellas/ Hundimiento entre 5 cm y 10 cm	
		Severa. Huellas/ hundimiento >=10 cm	
		Leve Huellas/ hundimiento sensibles al usuario pero < 5 cm	
2	Erosión	Moderada. Huellas/ Hundimiento entre 5 cm y 10 cm	
		Severa. Huellas/ hundimiento >=10 cm	
		Leve. Pueden recuperarse en conservación rutinaria	
3	Baches	Moderada Se necesita una capa de material adicional	
		Severa. Se necesita una reconstrucción	
		Leve Sensibles al usuario, pero < 5 cm	
4	Encalaminado	Moderada. Huellas/ Hundimiento entre 5 cm y 10 cm	
		Severa. Huellas/ hundimiento >=10 cm	

Tabla 44. Inventario vial, formato N^o 05-Obras de arte y drenaje

INVENTARIO VIAL Formato Nº 5.0 -Obras de arte y Drenaje

Tipo		Mat. Obra Drena	•	Estado	Operatividad
	Puente:		Madera:		
Alcantarilla: A	P	Tierra: T	Mad	Bueno: B	Limpia: L
	Pontón:	Mamp.			
Tajea: T	Ptn	Piedra: M	Piedra: P	Regular: R	Semi Obstr: S
Cunetas: C	Baden: B	C° Simple: C	TCM	Malo: M	Obstruida: O
		C° Armado:	Metálico:		
Muro: M		CA	Met		

Progresiva	Tipo	Material	Estado	Operativ.	Dimens. Daño	Observaciones

ANEXO II. FICHA DE ENCUESTA DE ORIGEN Y DESTINO

UNIVERSIDAD NACIONAL DE CAJAMARCA Facultad de Ingeniería Civil

ENCUESTA DE ORIGEN Y DESTINO

Tesis:

"Modelo de gestión de conservación vial para reducir los costos de mantenimiento vial y operación vehicular en el camino vecinal Cruce Shanango - Bellavista, distrito Bellavista, provincia de Jaén, departamento Cajamarca".

DATOS GENERALES DEL ENTREVISTADO

 2. Hora de la entrevista: : 3. Lugar de entrevista:	
4. Tipo de entrevistado:	
□ Conductor □ Pasajero □ Peatón	
SECCIÓN I: INFORMACIÓN DEL VIAJE	
6 - 6 0 - 1 - 1 - 1 - 1 - 1 - 1	
 ¿Cuál es su lugar de origen del viaje actual? (Nombre del centro poblado, caserío o distrito) 	
(Nombre dei Centro poblado, Caserio o distrito)	
6. ¿Cuál es su destino en este viaje?	
,	
7. ¿Cuál es el motivo principal de su viaje?	
☐ Trabajo ☐ Estudio	
☐ Comercio ☐ Servicios de salud	
☐ Visita familiar / social	
□ Otro:	
8. Frecuencia con la que realiza este viaje:	
☐ Diario ☐ 2-3 veces/semana ☐ Semanal ☐ Ocasional	
SECCIÓN II: INFORMACIÓN DEL VEHÍCULO	
SECCION II: INFORMACION DEL VEHICULO	
9. Tipo de vehículo en el que viaja:	
☐ Motocicleta ☐ Mototaxi	
☐ Auto particular ☐ Camioneta rural	
☐ Camión ☐ Bus / minivan	
☐ Bicicleta	
□ Otro:	
10. Número total de ocupantes en el vehículo (incluyéndolo	o a usted):
□ 1 □ 2 □ 3 □ 4 □ Más de 4	
11. ¿Transporta carga?	
□ Sí □ No	
G' 1'/ HG/H 'C' 1.' 1	
Si respondió "Sí", especifique el tipo de carga:	
Si respondió "Si", especifique el tipo de carga: 12. ¿Cuál considera que es el estado de la vía en este tramo Bueno Regular Malo	0?

SECCIÓN III: COMENTARIOS ADICIONALES

13. ¿Qué mejoras considera prioritarias para este camino?

ANEXO III. PLANTILLA DE AFORO VEHICULAR

Tabla 45. Matriz de conteo de trafico

Este conteo realizado durante el periodo del XX al XX de XXXX del XXXX

TRAMO DE LA CARRETERA:

UBICACIÓN: depatamento : Provincia: Distrito
ESTACIÓN: SENTIDO. FECHA:

	мото		STATION	C	AMIONETA	S			BUS			CAMIÓN			S	EMITRAYLI	R	
HORA	TAXI	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2E	3E	4E	2E	3E	4E	2S1	2S2	2S3	3S1	3S2
			-	0	00	0 0 =		6-6	0 00	1000	-		4	- · · · ·	4	0 000	6-00-0	6 00 00
00-01																		
01-02					ļ.													
02-03	- 9			9	7													9
03-04			ĵ.															
04-05																		
05-06																		
06-07			Ž.															
07-08			0												1			1
08-09	6	,	21							,								
09-10	ĵ.																	
10-11			i.	Ĭ.														
11-12			ĵ.	į.														
12-13																		
13-14	- 1		Ï.	Ů		ž		Ï									Ü	
14-15			Į.				Ö											
15-16		3		(da
16-17																		
17-18																		
18-19							i s					,						
19-20																		
20-21			Ĭ.															
21-22			Č.															
22-23																	0	
23-24																		
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 0

ANEXO IV.	LIBRETA DE CAI	MPO PARA EL LEV	VANTAMIENTO TOP	POGRÁFICO

Tabla 46. Libreta de campo de levantamiento topográfico

PUNTO		COORDENADAS		DESCRIPCIÓN
PUNIO	NORTE	ESTE	COTA	DESCRIPCION
			-	
			v	
-	 			
		E	(a)	
23				
		*		
2				
	100		A	
	<u> </u>			

ANEXO V. AFORO VEHICULAR POR 7 DÍAS CONSECUTIVOS

Tabla 47. Resultados del día 1 (10/09/2023) del aforo vehicular

Este conteo realizado durante el periodo del 10 al 16 de setiembre del 2023

TRAMO DE LA CARRETERA: Shanango-Bellavista

 UBICACIÓN:
 departamento : Cajamarca
 Provincia:
 Jaén
 Distrito
 Bellavista

 ESTACIÓN:
 progresiva 0+200
 SENTIDO.
 Ida y Vuelta
 FECHA:
 10/09/2023

	мото		STATION	(CAMIONETA				BUS			CAMIÓN			S	EMITRAYLE	ER	
HORA	TAXI	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2E	3E	4E	2E	3E	4E	2S1	2S2	253	3S1	3S2
				0	000	0.3		6.0	000		-	1		63m, 8		6 800	6	6-1-00 S
00-01				ĵ														
01-02		9															Į,	1
02-03																		
03-04				İ	40			ž.										
04-05					0													
05-06								r.										
06-07	4	3	1	2		1												
07-08	7	5	2	3		5					3							
08-09	6	10	3	8	4	8	,				1							
09-10	5	6	3	4	1	9							1					
10-11	4	8	4	3		2					2	1						i
11-12	6	3	2	6		1		1						1				
12-13	7	8	3	5		3					1							a s
13-14	6	10	4	5		7								1				
14-15	3	5	5	6	1	6						1						
15-16	4	4	3	10		1					1						4	
16-17	3	5	2	2		1												
17-18	4	3	1	2		1												
18-19				Ĵ.	i.			·										
19-20	8		0		A.	2	ē	3	8									
20-21						2		ii .										
21-22					0												j.	
22-23																		
23-24																		
TOTAL	59	70	33	56	2	45	0	1	0	0	I 8	2	1	1 2	I 0	0	0	T 0
	2,7												1					27

Tabla 48 Resultados del día 2 (11/09/2023) del aforo vehicular.

Este conteo realizado durante el periodo del 10 al 16 de setiembre del 2023

TRAMO DE LA CARRETERA: Shanango-Bellavista

 UBICACIÓN:
 depatamento : Cajamarca
 Provincia:
 Jaén
 Distrito
 Bellavista

 ESTACIÓN:
 progresiva 0+200
 SENTIDO.
 Ida y Vuelta
 FECHA:
 11/09/2023

	мото		STATION	(CAMIONETA	S			BUS			CAMIÓN			S	EMITRAYLE	ER	
HORA	TAXI	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2E	3E	4E	2E	3E	4E	2S1	2S2	253	3S1	3S2
					000	100		6 6	0 00	1	-			- B	4	9 000	- oo o	9-00-00
00-01											00							
01-02														Š				
02-03												_						
03-04										r i	0	i i						
04-05																		
05-06																		
06-07	3	2	1	1		1												
07-08	7	5	2	3		5				ii.	Ü							
08-09	5	6	4	2		8												
09-10	5	6	3	5		9				Į.	2							
10-11	3	8	4	3		2					1	Ť.		2				
11-12	3	3	2	7		1												
12-13	8	7	3	4		3					1	1	_					
13-14	7	8	2	5		7												
14-15	3	5	3	7		6					1							
15-16	3	4	1	6		1						1						
16-17	3	3	2	2		1								o.				
17-18	4	1	3	2		1			8		0							
18-19																		
19-20											4	~				-	ė	
20-21																		
21-22	2																	
22-23																		
23-24	6										8							
TOTAL	54	58	30	47	0	45	0	1 0	0	0	1 5	1 2	0	0	0	0	0	T 0
IUIAL	24	20	30	7/	U	43	U	0	U	U	3	- 2	U	0	U	U U	0	24

Tabla 49. Resultados del día 3 (12/09/2023) del aforo vehicular

Este conteo realizado durante el periodo del 10 al 16 de setiembre del 2023

TRAMO DE LA CARRETERA: Shanango-Bellavista

 UBICACIÓN:
 depatamento : Cajamarca
 Provincia:
 Jaén
 Distrito
 Bellavista

 ESTACIÓN:
 progresiva 0+200
 SENTIDO.
 Ida y Vuelta
 FECHA:
 12/09/2023

	мото	100000000000000000000000000000000000000	STATION		CAMIONETA				BUS	56		CAMIÓN	ő.		S	EMITRAYL	ER	736
HORA	TAXI	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2E	3E	4E	2E	3E	4E	2S1	2S2	253	3S1	3S2
					-	0		6.0	0 00				4	d	1	5	6 00 · C	9-30 50
00-01								9										
01-02										0				1				I
02-03																		
03-04																		
04-05								ì									1	
05-06								Ĭ.										II .
06-07	3	2	1	1		2												
07-08	5	7	1	3		5		1			1							
08-09	9	9	3	6		8	ĵ.				2							
09-10	7	6	3	4	1	9		1			3	Į.		1				
10-11	6	8	1	3		3						1						
11-12	5	4	2	5		1		1			1							
12-13	7	7	2	4		3						1						
13-14	8	9	4	5		6					1							
14-15	5	5	4	6		8		1			1	1		1				
15-16	4	6	3	8	1	3	1											
16-17	2	5	2	3		3					2							
17-18	1	3	1	2		1	Į.	2										
18-19	2						16	î										
19-20																		
20-21							· v	Ţ,		i i								
21-22																		
22-23				Ĭ														
23-24										6 6								~
TOTAL	62	71	27	50	2	52	0	4	0	0	11	3	1 0	1 2	0	0	0	0
A STATE OF THE STA	0029734	1000b	20000		A=8	1 25	0.57	1.000		3/23	10000				1	38.77		2

Tabla 50. Resultados del día 4 (13/09/2023) del aforo vehicular

CONTEO DE TRÁFICO
Este conteo realizado durante el periodo del 10 al 17 de setiembre del 2023

TRAMO DE LA CARRETERA: Shanango-Bellavista

UBICACIÓN: depatamento : Cajamarca Provincia: Jaén Distrito Bellavista ESTACIÓN: progresiva 0+200 SENTIDO. Ida y Vuelta FECHA: 13/09/2023

	мото		STATION		CAMIONETA				BUS	3		CAMIÓN	455	e.	S	EMITRAYLI	ER	
HORA	TAXI	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2E	3E	4E	2E	3E	4E	281	2S2	2S3	381	3S2
				0	Sug -			6 .	0 00		-	1		0 0 0	4		6	9-00 50
00-01								2	2						9			
01-02					į į						Č.	7.						
02-03				,					23	Į.								
03-04																		
04-05																		
05-06																		
06-07	3	3	2	2		1												
07-08	7	5	2	5		5			f	î	3							
08-09	4	8	4	7		8			1	Ĭ.	1							
09-10	5	6	3	4		9	1						1					
10-11	4	8	2	5		6			1	1	4	1						
11-12	6	3	4	9		6		1	1	Ī				1				
12-13	4	8	3	6		3			1		1							
13-14	7	9	2	4		7		1		4	1			1				
14-15	3	5	5	6		6	1		1	4		1		1				
15-16	4	4	3	9		1					1							
16-17	3	5	2	3		1			Į.	(
17-18	4	3	1	1		1												
18-19																		
19-20												is a second						
20-21								0	0.	5	ű:		e e		0			
21-22										ĵ								
22-23																		
23-24											5				Y			
TOTAL	54	67	33	61	0	54	2	2	4	1	11	2	1	2	0	0	0	0

Tabla 51. Resultados del día 5 (14/09/2023) del aforo vehicular

Este conteo realizado durante el periodo del 10 al 16 de setiembre del 2023

TRAMO DE LA CARRETERA: Shanango-Bellavista

 UBICACIÓN:
 departamento : Cajamarca
 Provincia:
 Jaén
 Distrito
 Bellavista

 ESTACIÓN:
 progresiva 0+200
 SENTIDO.
 Ida y Vuelta
 FECHA:
 14/09/2023

10	мото	1727200000000	STATION	(CAMIONETA				BUS		1	CAMIÓN			S	EMITRAYLI	ER	
HORA	TAXI	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2E	3E	4E	2E	3E	4E	2S1	2S2	253	3S1	3S2
200000000000000000000000000000000000000					- A	0.3		6.0	0 00	The same	-				4		6-00-0	6 m s
00-01				J				0										
01-02																		
02-03						Ĭ	ij	3										
03-04		,					j.											
04-05																		
05-06								£.(-			-						
06-07	3	3	1	3		2												
07-08	7	5	3	3		3					1							
08-09	6	7	3	7		8					2	1						
09-10	5	6	5	4		9	1											
10-11	8	8	4	5	1	5					1							
11-12	6	6	2	6	1	4								1				
12-13	7	8	5	5		3					2	1						
13-14	7	9	4	5	1	9	1	1						1				
14-15	5	5	2	6		7					3							
15-16	4	8	3	11		3					2			1				
16-17	2	5	2	2		2		*										
17-18	4	4	1	2		1				1								
18-19																		
19-20																		
20-21	9					ĵ		ů,		8								
21-22									0									
22-23																		
23-24								3										
TOTAL	64	74	35	59	3	56	2	1 1	I 0	1 0	11	1 2	1 0] 3	1 0	I 0	0	1 0

Tabla 52. Resultados del día 6 (15/09/2023) del aforo vehicular

Este conteo realizado durante el periodo del 10 al 17 de setiembre del 2023

TRAMO DE LA CARRETERA: Shanango-Bellavista

 UBICACIÓN:
 departamento : Cajamarca
 Provincia:
 Jaén
 Distrito
 Bellavista

 ESTACIÓN:
 progresiva 0+200
 SENTIDO.
 Ida y Vuelta
 FECHA:
 15/09/2023

	мото		STATION	(CAMIONETA	S			BUS		- 8	CAMIÓN	200		S	EMITRAYLE	ER	.002
HORA	TAXI	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2E	3E	4E	2E	3E	4E	281	2S2	253	3S1	3S2
				0	00	0.3		6 6	0 00		-			63-01 8	4		6 00 0	9 30 50
00-01		2											(2)		8		Q.	
01-02														3				Ī.
02-03														22				
03-04																		
04-05													Ď.	A.	i.			
05-06		8																
06-07	3	3	2	1		1				,								
07-08	6	2	3	3		5								Î				
08-09	3	6	4	7		8					1							
09-10	2	9	3	4		9							1					
10-11	4	8	4	2		2					1	1						
11-12	6	3	2	5		1							Ü					
12-13	4	8	1	4		3												
13-14	3	4	4	3		7				-			0	1			8	
14-15	5	5	4	6		6					2	1	10					
15-16	7	3	3	7		1					1							
16-17	4	5	2	2		1												
17-18	2	1	1	1		1												
18-19																		
19-20																		
20-21		8		2						-	8	8	8	e	45		8	
21-22				1					i i								×	
22-23																		
23-24																		
TOTAL	49	57	33	45	0	45	0	0	0	0	5	2	1	1	0	0	0	T 0
· OTFIL				10.00														⊢ ×

Tabla 53. Resultados del día 7 (16/09/2023) del aforo vehicular

Este conteo realizado durante el periodo del 10 al 17 de setiembre del 2023

TRAMO DE LA CARRETERA: Shanango-Bellavista

 UBICACIÓN:
 departamento : Cajamarca
 Provincia:
 Jaén
 Distrito
 Bellavista

 ESTACIÓN:
 progresiva 0+200
 SENTIDO.
 Ida y Vuelta
 FECHA:
 17/09/2023

	мото		STATION		CAMIONETA				BUS			CAMIÓN			S	EMITRAYLI	ER	
HORA	TAXI	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	2E	3E	4E	2E	3E	4E	2S1	2S2	253	3S1	3S2
				0	-	0		-	0 00	1	-			4	4		6-100 C	9 m m
00-01															12			
01-02																		
02-03																	-	
03-04																		
04-05																	5	
05-06		8										1	8		6		*	
06-07	5	3	1	2		1							ij.		Ü.			
07-08	8	5	2	3		2												
08-09	9	3	3	5		3					1							
09-10	7	6	3	4		4						(T(
10-11	8	4	4	3		2							0					
11-12	10	3	2	6		1							N.					
12-13	5	3	3	5		3					1		1					
13-14	6	5	4	5		4							j.		i i			
14-15	9	5	5	6		3												
15-16	5	4	3	4		1												
16-17	8	5	2	1		2												
17-18	4	3	1	2		1												
18-19				3									8					
19-20													1		-			
20-21																Ì		
21-22																		
22-23																		
23-24																		
TOTAL	84	49	33	46	0	27	0	0	0	0	2	0	0	0	0	0	0	T 0

ANEXO VI. INVENTARIO VIAL

FORMATO Nº 1.0 - Datos Generales

FORMATO N° 1 DATOS GENERALES

1.0 Datos C	Generales:		
]	Proyecto:		
	Ubicación Politica:		
	Distrito:	Bella	ıvista
	Provincia:	Ja	én
	Departamento:	Caja	marca
	Ubicación Geográfia:		
	Inicio:		
	Progresiva:	0+000	
	Cota:	551.696 m.s.n.m	
	Coordenada:	N: 9374765.464	E: 749838.150
	Fin:		
342.8571429	Progresiva:	7+000	
	Cota:	445.399 m.s.n.m	
	Coordenada:	N	E
		9373436.868	756678.501
	Clasificacion del camino (ruta):		
	Tiempo promedio de recorrido	11 Minutos	
	Velocidad promedio:	40 km/h	
	Cruce de Centro Poblados:		
	Progresiva	Noi	nbre
	4+800	Santa	cruz

Tabla 55. Formato N^{o} 2.0-Topografia de la vía cruce Shanango-Bellavista

INVENTARIO VIAL Formato Nº 2.0 - Topografía

Tipo de terreno	Plano: P	Ondulado: O	Accidentado: A	Escarpado: E
-----------------	----------	-------------	----------------	--------------

Prog	resiva	Tipo de	Ancho superf.	Pendi	ente %	
Del km	Al km	terreno	Rodadura (c/50m)	Max.	Min.	Observaciones
0+000	0+100	A	8.4	7%	4%	
0+100	0+200	О	8.4	4%	1%	Taludes inestables
0+200	0+300	P	8.4	1%	1%	1.5.5.5.5.5
0+300	0+400	P	8.4	1%	2%	
0+400	0+500	P	8.4	1%	1%	
0+500	0+600	P	8.3	1%	1%	[]
0+600	0+700	P	8.4	2%	1%	1.5
0+700	0+800	P	8.4	2%	0%	<u> </u>
0+800	0+900	P	8.4	2%	2%	3.025.020.02
0+900	1+000	P	8.4	1%	1%	:=====
1+000	1+100	P	8.4	1%	1%	[]
1+100	1+200	P	8.4	1%	1%	
1+200	1+300	О	8.5	4%	1%	Augustania in
1+300	1+400	О	8.5	4%	3%	
1+400	1+500	P	8.4	3%	1%	1
1+500	1+600	P	8.4	1%	1%	1
1+600	1+700	A	8.4	7%	1%	<u> 1000 2000 00</u>
1+700	1+800	A	8.4	7%	4%	
1+800	1+900	О	8.4	5%	3%	()
1+900	2+000	P	8.4	3%	3%	()
2+000	2+100	P	8.5	3%	2%	1.33333
2+100	2+200	P	8.4	3%	2%	
2+200	2+300	О	8.4	4%	3%	3. 22.242.25
2+300	2+400	О	8.4	4%	4%	:
2+400	2+500	О	8.4	5%	4%	
2+500	2+600	О	8.4	5%	2%	
2+600	2+700	P	8.4	3%	2%	(China and the first of the fir
2+700	2+800	P	8.4	2%	2%	(
2+800	2+900	P	8.4	3%	2%	
2+900	3+000	P	8.4	3%	2%	1.150 April 100 April
3+000	3+100	P	8.4	2%	2%	1 No. (1970 No.
3+100	3+200	P	8.4	2%	2%	(COMPANIE)
3+200	3+300	P	8.4	2%	2%	
3+400	3+500	P	8.4	2%	2%	Control of the Contro

Manual de diseño geométrico (DG-2018), 2018, P.14

Tipo de diseño geométrico	Plano: P	Ondulado: O	Accidentado: A	Escarpado: E
diente transversal	p%<=10%	11% <p% 50%<="" td=""><td>51% <p% 100%<="" td=""><td>100% < p%</td></p%></td></p%>	51% <p% 100%<="" td=""><td>100% < p%</td></p%>	100% < p%
iente longitudinal	p% < 3%	3% <p% 6%<="" td=""><td>6% <p% 8%<="" td=""><td>8% < p%</td></p%></td></p%>	6% <p% 8%<="" td=""><td>8% < p%</td></p%>	8% < p%

INVENTARIO VIAL Formato Nº 2.0 - Topografía

Progresiva		Tipo de	Ancho superf.	Pendi	ente %	Observaciones
Del km	Al km	terreno	Rodadura (c/50m)	Max.	Min.	Observaciones
3+500	3+600	О	8.4	5%	1%	
3+600	3+700	P	8.4	1%	1%	
3+700	3+800	P	8.4	1%	1%	200420
3+800	3+900	P	8.4	1%	1%	222
3+900	4+000	P	8.4	1%	1%	
4+000	4+100	P	8.3	1%	1%	
4+100	4+200	P	8.4	1%	1%	<u> </u>
4+200	4+300	P	8.4	1%	1%	2000.200
4+300	4+400	P	8.4	1%	1%	
4+400	4+500	P	8.4	1%	1%	
4+500	4+600	P	8.4	1%	1%	
4+600	4+700	P	8.4	2%	1%	
4+700	4+800	P	8.5	2%	2%	
4+800	4+900	P	8.5	3%	2%	
4+900	5+000	P	8.4	3%	2%	
5+000	5+100	P	8.4	3%	1%	5.55
4+600	4+700	P	8.4	3%	1%	===
4+700	4+800	P	8.4	2%	2%	
4+800	4+900	P	8.4	2%	1%	
4+900	5+000	P	8.4	1%	1%	===
5+000	5+100	P	8.5	1%	1%	100
5+100	5+200	P	8.2	1%	1%	
5+200	5+300	P	8.2	2%	1%	
5+300	5+400	P	8.2	2%	2%	
5+400	5+500	0	8.2	4%	2%	
5+500	5+600	О	8.2	4%	4%	2000.00
5+600	5+700	О	8.2	4%	1%	
5+700	5+800	P	8.4	3%	1%	
5+800	5+900	О	8.4	4%	1%	
5+900	6+000	P	8.4	1%	1%	###
6+000	6+100	P	8.4	1%	1%	222
6+100	6+200	P	8.4	1%	1%	
6+200	6+300	P	8.4	1%	1%	
6+300	6+400	O	8.4	5%	1%	

Manual de diseño geométrico (DG-2018), 2018, P.14

Tipo de diseño geométrico	Plano: P	Ondulado: O	Accidentado: A	Escarpado: E
Pendiente transversal	p%<=10%	11% <p% 50%<="" td=""><td>51% <p% 100%<="" td=""><td>100% < p%</td></p%></td></p%>	51% <p% 100%<="" td=""><td>100% < p%</td></p%>	100% < p%
Pendiente longitudinal	p% < 3%	3% <p% 6%<="" td=""><td>6% <p% 8%<="" td=""><td>8% < p%</td></p%></td></p%>	6% <p% 8%<="" td=""><td>8% < p%</td></p%>	8% < p%

INVENTARIO VIAL Formato Nº 2.0 - Topografía

Progresiva		Tipo de Ancho súper.		Pendiente %		Ob
Del km	Al km	terreno	Rodadura (c/50m)	Max.	Min.	Observaciones
6+400	6+500	О	8.4	5%	5%	(===)
6+500	6+600	О	8.4	5%	3%	E==0
6+600	6+700	P	8.4	3%	3%	
6+700	6+800	P	8.4	3%	3%	
6+800	6+900	P	8.5	3%	2%	
6+900	6+800	P	8.5	3%	1%	(===)
6+800	6+900	0	8.4	4%	3%	
6+900	7+000	P	8.4	1%	0%	
7						
.7						
- 1						
,						
0		7			-	
3		<u> </u>				

Manual de diseño geométrico (DG-2018), 2018, P.14

Tipo de diseño geométrico	Plano: P	Ondulado: O	Accidentado: A	Escarpado: E
diente transversal	p%<=10%	11% <p% 50%<="" th=""><th>51% <p% 100%<="" th=""><th>100% < p%</th></p%></th></p%>	51% <p% 100%<="" th=""><th>100% < p%</th></p%>	100% < p%
iente longitudinal	p% < 3%	3% <p% 6%<="" th=""><th>6% <p% 8%<="" th=""><th>8% < p%</th></p%></th></p%>	6% <p% 8%<="" th=""><th>8% < p%</th></p%>	8% < p%

Tabla 58. Formato Nº 3.A-Daños de pavimento de la vía cruce Shanango-Bellavista

${\bf INVENTARIO\ VIAL}$ Formato No 3.A-Daños de pavimento

Tipo Daño	Deformacion: 1	Baches: 3	Lodazal: 5
Tipo Dano	Erosion: 2	Encalaminado: 4	Cruce de agua: 6

Duoguosiva	Daños pavimento		Observaciones
Progresiva –	Tipo	Gravedad	Observaciones
0+000	1	Leve	Desgaste y acumulación de agua
0+100	1	Leve	
0+200	1	Leve	
0+300	1	Leve	
0+400	3	Leve	Desborde de la cunetas a las calzadas
0+500	1	Leve	
0+600	1	Leve	
0+700	2	Leve	Desgaste y acumulación de agua
0+800	1	Leve	1.000000000
0+900	1	Leve	(=====================================
1+100	1	Leve	
1+200	2	Leve	Desgaste y acumulación de agua
1+300	1	Leve	Parameter.
1+400	1	Leve	Lancon
1+500	1	Leve	
1+600	1	Leve	Desgaste y acumulación de agua
1+700	1	Leve	
1+800	1	Leve	
1+900	1	Leve	(
2+000	1	Leve	
2+100	2	Leve	Desgaste y acumulación de agua
2+200	1	Leve	(
2+300	1	Leve	
2+400	1	Leve	0000000
2+500	1	Leve	:
2+600	3	Leve	Desborde de la cunetas a las calzadas
2+700	1	Leve	1
2+800	1	Leve	
2+900	1	Leve	

Código de daño	Deterioros/Fallas	Gravedad	
1	Deformación	Leve. Huellas/ hundimiento sensibles al usuario pero < 5 cm Moderada. Huellas/ Hundimiento entre 5 cm y 10 cm Severa. Huellas/ hundimiento >=10 cm	
2	Erosión	Leve. Huellas/ hundimiento sensibles al usuario pero < 5 cm Moderada. Huellas/ Hundimiento entre 5 cm y 10 cm Severa. Huellas/ hundimiento >=10 cm	
3	Baches	Leve. Pueden recuperarse en conservación rutinaria Moderada. Se necesita una capa de material adicional Severa. Se necesita una reconstrucción	
4	Encala minado	Leve Sensibles al usuario pero < 5 cm Moderada. Huellas/ Hundimiento entre 5 cm y 10 cm Severa. Huellas/ hundimiento >=10 cm	

Tabla 59. Continuación de Formato Nº 3.A-Daños de pavimento

INVENTARIO VIAL Formato Nº 3.A-Daños de pavimento

Tipo Daño	Deformación: 1	Baches: 3	Lodazal: 5
Tipo Dano	Erosión: 2	Encala minado: 4	Cruce de agua: 6

Duaguasir	Daños pavimento		Olemen in a		
Progresiva -	Tipo	Gravedad	Observaciones		
3+000	1	Leve	Desborde de la cunetas a las calzadas		
3+100	1	Leve			
3+200	1	Leve			
3+300	1	Leve			
3+400	3	Leve	Desborde de la cunetas a las calzadas		
3+500	1	Leve			
3+600	1	Leve			
3+700	1	Leve			
3+800	1	Leve			
3+900	1	Leve			
4+000	1	Leve	Desgaste y acumulación de agua		
4+100	1	Leve			
4+200	1	Leve			
4+300	1	Leve			
4+400	1	Leve	Desgaste y acumulación de agua		
4+500	1	Leve			
4+600	1	Leve	00 D 00 00 00 00		
4+700	2	Leve	Desgaste y acumulación de agua		
4+800	1	Leve			
4+900	1	Leve			
5+000	1	Leve			
5+100	1	Leve	Desgaste y acumulación de agua		
5+200	1	Leve			
5+300	1	Leve			
5+400	1	Leve			
5+500	2	Leve	Desgaste y acumulación de agua		
5+600	1	Leve			
5+700	1	Leve			
5+800	1	Leve			

Código de daño	Deterioros/Fallas	Gravedad	
1	Deformación	Leve. Huellas/ hundimiento sensibles al usuario pero < 5 cm Moderada. Huellas/ Hundimiento entre 5 cm y 10 cm Severa. Huellas/ hundimiento >=10 cm	
2	Erosión	Leve. Huellas/ hundimiento sensibles al usuario pero < 5 cm Moderada. Huellas/ Hundimiento entre 5 cm y 10 cm Severa. Huellas/ hundimiento ≔10 cm	
3	Baches	Leve. Pueden recuperarse en conservación rutinaria Moderada Se necesita una capa de material adicional Severa. Se necesita una reconstrucción	
4	Encalaminado	Leve Sensibles al usuario pero < 5 cm Moderada. Huellas/ Hundimiento entre 5 cm y 10 cm Severa. Huellas/ hundimiento >=10 cm	

INVENTARIO VIAL Formato Nº 3.A-Daños de pavimento

Tino Daño	Deformación: 1	Baches: 3	Lodazal: 5
ттро Бано	Erosión: 2	Encalaminado: 4	Cruce de agua: 6

Due sure sieve	Daños pavimento		Observaciones			
Progresiva -	Tipo	Gravedad	Observaciones			
5+800	3	Leve				
5+900	1	Leve				
6+000	1	Leve				
6+100	1	Leve				
6+200	1	Leve				
6+300	2	Leve	Desgaste y acumulación de agua			
6+400	1	Leve				
6+500	1	Leve				
6+600	1	Leve				
6+700	1	Leve				
6+800	2	Leve	Desgaste y acumulación de agua			
6+900	1	Leve				
7+000	1	Leve				

Código de daño	Deterioros/Fallas	Gravedad	
		Leve. Huellas/ hundimiento sensibles al usuario pero < 5 cm	
1	Deformación	Moderada. Huellas/ Hundimiento entre 5 cm y 10 cm	
0		Severa. Huellas/ hundimiento >=10 cm	
70		Leve. Huellas/ hundimiento sensibles al usuario pero < 5 cm	
2	Erosión	Moderada. Huellas/ Hundimiento entre 5 cm y 10 cm	
		Severa. Huellas/ hundimiento >=10 cm	
		Leve. Pueden recuperarse en conservación rutinaria	
3	Baches	Moderada. Se necesita una capa de material adicional	
		Severa. Se necesita una reconstrucción	
		Leve Sensibles al usuario pero < 5 cm	
4	Encalaminado	Moderada. Huellas/ Hundimiento entre 5 cm y 10 cm	
		Severa. Huellas/ hundimiento >=10 cm	

Tabla 61. Inventario vial, Formato Nº 3.A-Daños de pavimento

INVENTARIO VIAL Formato Nº 5.0 -Obras de arte y Drenaje

Operatividad	Estado	te y Drenaje	Mat. Obras Art	Tipo		
Limpia: L	Bueno: B	Madera: Mad	Tierra: T	Puente: P	Alcantarilla: \mathbf{A}	
Semi Obstr: S	Regular: R	Piedra: P	Mamp. Piedra: M	Pontón: Ptn	Tajea: T	
Obstruida: O	Malo: M	TCM	C⁰ Simple: C	Baden: B	Cunetas: C	
		Metálico: Met	Cº Armado: CA		Muro: M	

Progresiva	Tipo	Material	Estado	Operativo	Dimens. Daño	Observaciones
00+259.00	A	Met	R	S		Semicolmatada con tierra y piedras
00+661.00	A	Met	В	L		Limpia
00+850.00	В	CA	В	L		Limpia
01+100.00	A	Met	В	L		Limpia
01+310.00	A	Met	В	L		Limpia
01+347.00	В	CA	В	L		Limpia
01+386.00	A	Met	R	S		Semicolmatada con tierra y piedra
01+576.00	A	Met	R	S		Semicolmatada con tierra y piedra
01+686.00	A	Met	R	S		Semicolmatada con tierra y piedra
01+970.00	В	CA	В	L		Limpia
02+207.00	A	Met	R	S		Semicolmatada con tierra y piedra
02+447.00	A	Met	R	S		Semicolmatada con tierra y piedra
02+685.00	A	Met	R	S		Semicolmatada con tierra y piedra
02+970.00	A	Met	R	S		Semicolmatada con tierra y piedra
03+317.00	A	Met	R	S		Semicolmatada con tierra y piedra
03+412.00	В	CA	R	S		Semicolmatada con tierra y piedra
03+660.00	A	Met	R	L		Limpia
04+108.00	A	Met	R	S		Semicolmatada con tierra y piedra
04+288.00	A	Met	R	S		Semicolmatada con tierra y piedra
04+480.00	A	Met	R	S		Semicolmatada con tierra y piedra
04+982.00	A	Met	R	L		Limpia
05+109.00	A	Met	R	S		Semicolmatada con tierra y piedra
05+200.00	A	Met	R	S		Semicolmatada con tierra y piedra
05+731.00	A	Met	R	S		Semicolmatada con tierra y piedra
06+000.00	A	Met	R	S		Semicolmatada con tierra y piedra
06+282.00	A	Met	R	S		Semicolmatada con tierra y piedra
06+620.00	A	Met	R	S		Semicolmatada con tierra y piedra
06+900.00	P	CA	В	L		Limpia
07+098.00	A	Met	R	S		Semicolmatada con tierra y piedra

ANEXO VII. ENCUESTAS DE ORIGEN Y DESTINO

UNIVERSIDAD NACIONAL DE CAJAMARCA Facultad de Ingeniería Civil

ENCUESTA DE ORIGEN Y DESTINO

Tesis:
"Modelo de gestión de conservación vial para reducir los costos de mantenimiento vial y operación vehicular en el camino vecinal Cruce Shanango - Bellavista, distrito Bellavista, provincia de Jaén,

depar	tamento Cajamarca".
DAT	OS GENERALES DEL ENTREVISTADO
1. 2. 3. 4.	Fecha: Lunes 18 /09/2023 Hora de la entrevista: 7:00 am Lugar de entrevista: Cruce Shonango Tipo de entrevistado: Conductor Pasajero Peatón
SECO	CIÓN I: INFORMACIÓN DEL VIAJE
5.	¿Cuál es su lugar de origen del viaje actual? (Nombre del centro poblado, caserío o distrito)
	Bellausta
6.	¿Cuál es su destino en este viaje?
	Jain
7.	¿Cuál es el motivo principal de su viaje? ☐ Trabajo ☐ Estudio ☐ Comercio ☐ Servicios de salud ☐ Visita familiar / social ☐ Otro:
8.	Frecuencia con la que realiza este viaje:
	☑ Diario ☐ 2-3 veces/semana ☐ Semanal ☐ Ocasional
SECC	IÓN II: INFORMACIÓN DEL VEHÍCULO
9.	- For the training of the que viaja.
	☐ Motocicleta
	☐ Auto particular ☐ Camioneta rural
	☐ Camión ☐ Bus / minivan
	□ Bicicleta
10	☐ Otro:
10.	□ 1 №2 □ 3 □ 4 □ Más de 4
11.	¿Transporta carga?
	□ Sí
12	Si respondió "Sí", especifique el tipo de carga:
12.	¿Cuál considera que es el estado de la vía en este tramo? Bueno Regular Malo
	⊭Bueno □ Regular □ Malo
SECC	IÓN III: COMENTARIOS ADICIONALES
13.	¿Qué mejoras considera prioritarias para este camino?
	L'impuzer de malega de la laterale de la via

UNIVERSIDAD NACIONAL DE CAJAMARCA Facultad de Ingeniería Civil

ENCUESTA DE ORIGEN Y DESTINO

"Modelo de gestión de conservación vial para reducir los costos de mantenimiento vial y operación vehicular en el camino vecinal Cruce Shanango - Bellavista, distrito Bellavista, provincia de Jaén, departamento Cajamarca".
DATOS GENERALES DEL ENTREVISTADO
 Fecha: 19-09-23 Hora de la entrevista: 2:00 pm Lugar de entrevista: Paradero de Bellavista Tipo de entrevistado: \[\times \text{Conductor} \text{Pasajero} \text{Peatón} \]
SECCIÓN I: INFORMACIÓN DEL VIAJE
 ¿Cuál es su lugar de origen del viaje actual? (Nombre del centro poblado, caserío o distrito)
Ballavista
6. ¿Cuál es su destino en este viaje?
Jaén
7. ¿Cuál es el motivo principal de su viaje? Trabajo Estudio Comercio Servicios de salud Visita familiar / social Otro:
8. Frecuencia con la que realiza este viaje: ⊠ Diario □ 2-3 veces/semana □ Semanal □ Ocasional
SECCIÓN II: INFORMACIÓN DEL VEHÍCULO
9. Tipo de vehículo en el que viaja:
☐ Motocicleta ☐ Mototaxi
☐ Auto particular ☐ Camioneta rural
☐ Camión ☑ Bus / minivan
□ Bicicleta □ Otro:Comp' Fures
10. Número total de ocupantes en el vehículo (incluyéndolo a usted):
□ 1 □ 2 □ 3 □ 4 ☒ Más de 4
11. ¿Transporta carga?
□ Sí ⊠,No
Si respondió "Sí", especifique el tipo de carga:
☐ Bueno ☑ Regular ☐ Malo
SECCIÓN III: COMENTARIOS ADICIONALES
13. ¿Qué mejoras considera prioritarias para este camino?
Rollonar los baches que la via,

UNIVERSIDAD NACIONAL DE CAJAMARCA Facultad de Ingeniería Civil

ENCUESTA DE ORIGEN Y DESTINO

Tesis: "Modelo de gestión de conservación vial para reducir los costos de mantenimiento vial y operación vehicular en el camino vecinal Cruce Shanango - Bellavista, distrito Bellavista, provincia de Jaén,
departamento Cajamarca".
DATOS GENERALES DEL ENTREVISTADO
1. Fecha: 19-09 - 2023
2. Hora de la entrevista: : 10 com
3. Lugar de entrevista: Bellavista 4. Tipo de entrevistado:
4. Tipo de entrevistado: □ Conductor □ Peatón □ Peatón
SECCIÓN I: INFORMACIÓN DEL VIAJE
SECTION IN INFORMACION DEL VIAJE
5. ¿Cuál es su lugar de origen del viaje actual?
(Nombre del centro poblado, caserío o distrito)
Jaen
6. ¿Cuál es su destino en este viaje?
San Bimera
7. ¿Cuál es el motivo principal de su viaje?
□ Trabajo □ Estudio
☐ Comercio
☐ Visita familiar / social
Otro:
8. Frecuencia con la que realiza este viaje:
☐ Diario ☐ 2-3 veces/semana Semanal ☐ Ocasional
SECCIÓN II: INFORMACIÓN DEL VEHÍCULO
9. Tipo de vehículo en el que viaja:
☐ Motocicleta ☐ Mototaxi
☐ Auto particular
☐ Camión ☐ Bus / minivan
☐ Bicicleta
□ Otro:
10. Número total de ocupantes en el vehículo (incluyéndolo a usted):
□ 1 □ 2 ⋈-3 □ 4 □ Más de 4
11. ¿Transporta carga?
□ Sí ⊠-No
Si respondió "Sí", especifique el tipo de carga:
12. ¿Cuál considera que es el estado de la vía en este tramo?
□ Bueno ☑ Regular □ Malo
SECCIÓN III: COMENTARIOS ADICIONALES

13. ¿Qué mejoras considera prioritarias para este camino?

Mayorar la limpiera de molera y desmoto.

UNIVERSIDAD NACIONAL DE CAJAMARCA Facultad de Ingeniería Civil

ENCUESTA DE ORIGEN Y DESTINO

Tesis: "Modelo de gestión de conservación vial para reducir los costos de mantenimiento vial y operación vehicular en el camino vecinal Cruce Shanango - Bellavista, distrito Bellavista, provincia de Jaén, departamento Cajamarca".
DATOS GENERALES DEL ENTREVISTADO
 Fecha: 18 /09/2023 Hora de la entrevista: 2:10 am Lugar de entrevista: Crace shanange Tipo de entrevistado: □ Conductor
SECCIÓN I: INFORMACIÓN DEL VIAJE
 ¿Cuál es su lugar de origen del viaje actual? (Nombre del centro poblado, caserío o distrito)
Jain
6. ¿Cuál es su destino en este viaje?
Bellausta
7. ¿Cuál es el motivo principal de su viaje? ☐ Trabajo ☐ Estudio ☐ Comercio ☐ Servicios de salud ☐ Visita familiar / social
Otro: 8. Frecuencia con la que realiza este viaje:
☐ Diario ☐ 2-3 veces/semana ☐ Semanal ☐ Ocasional
SECCIÓN II: INFORMACIÓN DEL VEHÍCULO
9. Tipo de vehículo en el que viaja:
☐ Motocicleta ☐ Mototaxi
Auto particular Camioneta rural
☐ Camión ☐ Bus / minivan
☐ Bicicleta
□ Otro:
10. Número total de ocupantes en el vehículo (incluyéndolo a usted):
☐ 1 ☐ 2 -3 ☐ 4 ☐ Más de 4 11. ¿Transporta carga?
□ Sí ☑ No
Si respondió "Sí", especifique el tipo de carga:
12. ¿Cuál considera que es el estado de la vía en este tramo?
☐ Bueno ☐ Regular ☐ Malo
SECCIÓN III: COMENTARIOS ADICIONALES
13. ¿Qué mejoras considera prioritarias para este camino?
Laparor la fisure y priotos para existor dems mayoro a fatoro.

ANEXO VIII. DATOS DEL LEVANTAMIENTO TOPOGRÁFICO

P_0001 749826,709 9374759,880 551,382 P_0044 750048,605 9374727,985 54 P_0002 749831,869 9374759,138 551,301 P_0045 750058,926 937472,243 54 P_0004 749842,190 9374756,55 551,139 P_0047 750064,086 9374725,760 54 P_0006 749847,351 9374756,913 551,059 P_0048 750069,247 9374725,760 54 P_0006 749857,671 9374755,403 550,978 P_0049 750074,407 9374723,534 54 P_0007 749867,902 9374755,408 550,837 P_0051 750084,728 9374723,534 54 P_0010 749873,152 9374753,204 550,654 P_0051 75008,888 9374722,051 54 P_0011 749878,313 9374752,463 550,574 P_0052 75008,888 9374722,051 54 P_0012 74988,8634 9374759,037 550,493 P_0053 750105,309 9374719,056 54	evación
P_0002 749831.869 9374759.138 551.301 P_0045 750053.766 9374727.243 547 P_0003 749837.030 9374758.397 551.220 P_0046 750058.926 9374726.501 547 P_0004 749842.130 9374756.913 551.059 P_0048 750069.247 9374725.701 547 P_0006 749847.351 9374756.913 551.059 P_0048 750069.247 9374725.1018 547 P_0007 749857.671 9374755.430 550.897 P_0049 750074.407 9374723.534 547 P_0008 749867.992 9374753.946 550.816 P_0051 750089.888 9374722.793 547 P_0011 749873.152 9374752.463 550.735 P_0052 750100.209 9374721.309 547 P_0012 749883.343 9374751.721 550.493 P_0054 750100.209 9374712.567 547 P_0013 749888.634 9374750.975 550.412 P_0054 75010.530 9374719.826 547	ns.n.m)
P_0003 749837.030 9374758.397 551.220 P_0046 750058.926 9374726.501 54 P_0004 749842.190 9374757.655 551.139 P_0047 750064.086 9374725.760 54 P_0005 749847.351 9374756.913 551.059 P_0049 750069.247 9374725.760 54 P_0006 749852.511 9374755.430 550.978 P_0049 750074.407 9374723.534 54 P_0008 749862.832 9374753.946 550.735 P_0050 750084.728 9374722.051 54 P_0010 749873.152 9374753.204 550.654 P_0051 750084.728 9374722.051 54 P_0011 749873.132 9374753.204 550.654 P_0054 750105.369 9374712.056 54 P_0012 749883.473 9374750.979 550.412 P_0054 750105.369 9374719.826 54 P_0013 749898.954 9374748.012 550.331 P_0057 750115.609 9374719.826 54	47.906
P_0004 749842.190 9374757.655 551.139 P_0047 750064.086 9374725.760 54 P_0005 749847.351 9374756.913 551.059 P_0048 750069.247 9374725.018 54 P_0006 749852.511 9374755.430 550.897 P_0049 750074.407 9374724.276 54 P_0009 749867.832 9374754.688 550.816 P_0051 750084.728 9374722.093 54 P_0010 749873.152 9374753.406 550.735 P_0052 750089.888 9374722.051 54 P_0011 749878.313 9374752.463 550.654 P_0053 750095.049 9374712.309 54 P_0012 749883.473 9374751.721 550.493 P_0055 750105.369 9374719.826 54 P_0014 749893.794 9374750.237 550.493 P_0055 750105.369 9374719.826 54 P_0015 749898.954 9374748.750.979 550.412 P_0058 750115.699 9374718.342 54 <	47.825
P_0005 749847.351 9374756.913 551.059 P_0048 750069.247 9374725.018 54 P_0006 749852.511 9374756.171 550.978 P_0049 750074.407 9374724.276 54 P_0007 749857.671 9374754.688 550.816 P_0050 750079.567 9374723.534 54 P_0009 749867.922 9374753.946 550.735 P_0051 750084.728 9374722.051 54 P_0010 749878.313 9374753.946 550.654 P_0053 750095.049 9374721.309 54 P_0011 749878.313 9374750.795 550.493 P_0054 750100.209 9374719.826 54 P_0012 749883.473 9374750.979 550.412 P_0055 750105.369 9374719.826 54 P_0013 749888.634 9374750.297 550.31 P_0057 750115.690 9374718.342 540 P_0016 749893.794 9374748.754 550.250 P_0058 750120.830 9374716.859 540	47.744
P_0006 749852.511 9374756.171 550.978 P_0049 750074.407 9374724.276 54 P_0007 749857.671 9374755.430 550.897 P_0050 750079.567 9374723.534 54 P_0009 749867.992 9374753.204 550.816 P_0051 750084.728 9374721.309 54 P_0010 749873.152 9374753.204 550.654 P_0052 750089.888 9374722.051 54 P_0011 749878.313 9374752.463 550.574 P_0054 750100.209 9374719.826 54 P_0012 749883.473 9374750.975 550.493 P_0055 750100.209 9374719.826 54 P_0013 749893.94 9374750.237 550.331 P_0055 750110.530 9374719.846 54 P_0014 749893.954 9374749.496 550.250 P_0057 750110.509 9374718.342 54 P_0016 749904.115 9374748.754 550.169 P_0058 750126.011 9374716.859 54	47.664
P_0007 749857.671 9374755.430 550.897 P_0050 750079.567 9374723.534 54 P_0008 749862.832 9374754.688 550.816 P_0051 750084.728 9374722.793 54 P_0009 749867.992 9374753.946 550.735 P_0052 750089.888 9374722.051 54 P_0010 749878.313 9374752.463 550.574 P_0053 750095.049 9374721.309 54 P_0012 749888.473 9374751.721 550.493 P_0055 750100.209 9374719.826 54 P_0013 749888.634 9374750.979 550.412 P_0056 750110.530 9374719.826 54 P_0014 749893.794 9374745.0237 550.331 P_0057 750115.690 9374718.342 54 P_0015 749898.954 9374748.754 550.169 P_0057 750126.011 9374716.117 54 P_0016 749904.115 9374748.752 550.089 P_0060 750126.011 9374716.117 54	47.583
P_0008 749862.832 9374754.688 550.816 P_0051 750084.728 9374722.793 54 P_0009 749867.992 9374753.946 550.735 P_0052 750089.888 9374722.051 54 P_0010 749873.152 9374753.204 550.654 P_0053 750095.049 9374721.309 54 P_0011 749883.313 9374752.463 550.574 P_0054 750100.209 9374719.086 54 P_0012 749883.473 9374750.979 550.412 P_0055 750105.369 9374719.086 54 P_0014 749893.794 9374750.979 550.412 P_0055 750115.690 9374719.084 54 P_0015 749898.954 9374748.754 550.169 P_0058 750126.011 9374716.685 54 P_0016 749909.275 9374748.754 550.089 P_0060 75013.1.171 9374715.385 54 P_0017 749909.275 9374746.529 549.927 P_0061 750126.011 9374715.375 540	47.502
P_0009 749867.992 9374753.946 550.735 P_0052 750089.888 9374722.051 543 P_0010 749873.152 9374753.204 550.654 P_0053 750095.049 9374721.309 543 P_0011 749878.313 9374752.463 550.574 P_0054 750100.209 9374720.567 544 P_0012 749883.473 9374750.237 550.493 P_0055 750105.369 9374719.826 54 P_0014 749893.794 9374750.237 550.311 P_0056 750110.530 9374719.845 544 P_0015 749898.954 9374749.496 550.250 P_0058 750126.011 9374716.800 544 P_0016 749904.115 9374748.754 550.169 P_0059 750126.011 9374716.859 546 P_0017 749909.275 9374748.012 550.089 P_0060 750131.171 9374716.650 546 P_0018 749914.435 9374745.652 549.927 P_0062 750141.492 9374714.633 546	47.421
P_0010 749873.152 9374753.204 550.654 P_0053 750095.049 9374721.309 547 P_0011 749878.313 9374752.463 550.574 P_0054 750100.209 9374720.567 547 P_0012 749883.473 9374751.721 550.493 P_0055 750105.369 9374719.826 547 P_0013 749888.634 9374750.979 550.412 P_0056 750110.530 9374719.084 544 P_0014 749893.794 9374749.496 550.250 P_0057 750115.690 9374718.342 544 P_0015 749989.54 9374748.754 550.169 P_0058 750120.850 9374716.6859 544 P_0016 749904.115 9374748.754 550.169 P_0069 750136.011 9374716.6859 544 P_0018 749919.596 9374745.727 550.008 P_0061 750136.332 9374716.335 544 P_0020 749924.756 9374745.787 549.846 P_0062 750141.492 9374713.892 540	47.340
P_0011 749878.313 9374752.463 550.574 P_0054 750100.209 9374720.567 547 P_0012 749883.473 9374751.721 550.493 P_0055 750105.369 9374719.826 547 P_0013 749888.634 9374750.237 550.331 P_0056 750110.530 9374719.084 546 P_0015 749898.954 9374750.237 550.331 P_0057 750115.690 9374718.342 544 P_0016 749909.215 9374748.754 550.169 P_0058 750120.850 9374716.605 546 P_0017 749909.275 9374748.754 550.089 P_0060 750131.171 9374716.859 546 P_0019 749919.596 9374745.707 550.089 P_0060 750131.171 9374716.315 544 P_0020 749924.756 9374745.787 549.846 P_0062 75014.492 9374713.892 546 P_0021 749929.917 9374743.562 549.664 P_0063 75016.593 9374711.666 544	47.259
P_0012 749883.473 9374751.721 550.493 P_0055 750105.369 9374719.826 543 P_0013 749888.634 9374750.979 550.412 P_0056 750110.530 9374719.084 546 P_0014 749893.794 9374750.237 550.331 P_0057 750115.690 9374718.342 546 P_0015 749898.954 9374748.754 550.169 P_0058 750120.850 9374716.605 546 P_0016 749990.275 9374748.754 550.169 P_0059 750126.011 9374716.859 544 P_0017 749909.275 9374745.727 550.008 P_0061 750136.332 9374715.655 546 P_0018 749914.435 9374745.787 549.927 P_0062 750141.492 9374714.633 546 P_0020 749924.756 9374745.045 549.927 P_0062 750146.652 9374713.892 546 P_0021 749929.917 9374744.303 549.684 P_0063 75015.1813 9374712.408 544	47.179
P_0013 749888.634 9374750.979 550.412 P_0056 750110.530 9374719.084 540 P_0014 749893.794 9374750.237 550.331 P_0057 750115.690 9374718.342 540 P_0015 749898.954 9374749.496 550.250 P_0058 750120.850 9374716.600 540 P_0016 749904.115 9374748.754 550.169 P_0059 750126.011 9374716.859 540 P_0017 749909.275 9374748.012 550.089 P_0060 750136.332 9374716.117 540 P_0018 749914.435 9374745.787 549.8927 P_0061 750136.332 9374715.375 540 P_0021 749919.596 9374745.787 549.846 P_0063 750151.813 9374713.892 540 P_0021 749929.917 9374745.045 549.765 P_0064 750151.813 9374713.150 540 P_0023 749940.237 9374744.336 549.664 P_0065 750162.133 9374710.815 540	47.098
P_0014 749893.794 9374750.237 550.331 P_0057 750115.690 9374718.342 544 P_0015 749898.954 9374749.496 550.250 P_0058 750120.850 9374717.600 546 P_0016 749904.115 9374748.754 550.169 P_0059 750126.011 9374716.859 546 P_0017 749909.275 9374748.012 550.089 P_0060 750131.171 9374716.117 546 P_0018 749919.596 9374746.529 549.927 P_0061 750136.332 9374714.633 546 P_0020 749919.596 9374745.787 549.846 P_0062 750144.492 9374713.892 546 P_0021 749929.917 9374745.045 549.765 P_0063 750156.973 9374713.150 544 P_0022 749935.077 9374743.562 549.684 P_0065 750166.973 9374712.408 544 P_0024 749945.398 9374742.820 549.523 P_0067 750167.294 9374710.183 542	47.017
P_0015 749898.954 9374749.496 550.250 P_0058 750120.850 9374717.600 544 P_0016 749904.115 9374748.754 550.169 P_0059 750126.011 9374716.859 540 P_0017 749909.275 9374748.012 550.089 P_0060 750131.171 9374716.117 540 P_0018 749914.435 9374745.270 550.008 P_0061 750136.332 9374715.375 540 P_0019 749919.596 9374745.787 549.846 P_0062 750141.492 9374716.633 540 P_0021 749929.917 9374745.045 549.765 P_0064 750151.813 9374713.150 540 P_0022 749935.077 9374743.562 549.664 P_0065 750150.973 9374712.408 544 P_0023 749945.398 9374742.820 549.523 P_0066 750167.294 9374710.925 540 P_0025 749950.558 9374740.595 549.280 P_0067 750167.294 9374710.183 542	46.936
P_0016 749904.115 9374748.754 550.169 P_0059 750126.011 9374716.859 544 P_0017 749909.275 9374748.012 550.089 P_0060 750131.171 9374716.117 546 P_0018 749914.435 937474.270 550.008 P_0061 750136.332 9374715.375 546 P_0019 749919.596 9374745.787 549.846 P_0062 750141.492 9374714.633 546 P_0021 749929.917 9374745.045 549.765 P_0064 750151.813 9374713.892 546 P_0022 749935.077 9374744.303 549.684 P_0065 750156.973 9374712.408 546 P_0023 749940.237 9374742.820 549.523 P_0066 750167.294 9374710.925 546 P_0024 749945.398 9374742.078 549.442 P_0068 750172.454 937470.183 542 P_0027 749960.879 9374740.595 549.280 P_0070 750182.775 9374708.699 542	46.855
P_0017 749909.275 9374748.012 550.089 P_0060 750131.171 9374716.117 544 P_0018 749914.435 9374747.270 550.008 P_0061 750136.332 9374715.375 544 P_0019 749919.596 9374745.787 549.846 P_0062 750141.492 9374714.633 544 P_0021 749929.917 9374745.045 549.765 P_0064 750151.813 9374713.150 546 P_0022 749935.077 9374743.562 549.664 P_0065 750156.973 9374712.408 546 P_0023 749940.237 9374742.820 549.523 P_0066 750167.294 9374710.925 546 P_0024 749950.558 9374742.078 549.442 P_0068 750177.615 937470.441 549 P_0026 749950.5718 9374740.595 549.280 P_0069 750177.615 937470.441 549 P_0027 749960.879 9374739.853 549.199 P_0071 750187.935 9374707.216 549	46.774
P_0018 749914.435 9374747.270 550.008 P_0061 750136.332 9374715.375 544 P_0019 749919.596 9374746.529 549.927 P_0062 750141.492 9374714.633 544 P_0020 749924.756 9374745.045 549.846 P_0063 750146.652 9374713.892 546 P_0021 749929.917 9374744.303 549.684 P_0064 750151.813 9374713.150 546 P_0023 749940.237 9374743.062 549.604 P_0065 750156.973 9374712.408 546 P_0024 749945.398 9374742.820 549.523 P_0066 750162.133 9374710.925 546 P_0025 749950.558 9374742.078 549.422 P_0068 750172.454 9374710.183 542 P_0026 749955.718 9374740.595 549.280 P_0069 750177.615 9374709.441 542 P_0027 749960.879 9374739.853 549.199 P_0070 750182.775 9374708.699 542	46.693
P_0019 749919.596 9374746.529 549.927 P_0062 750141.492 9374714.633 544 P_0020 749924.756 9374745.787 549.846 P_0063 750146.652 9374713.892 544 P_0021 749929.917 9374745.045 549.765 P_0064 750151.813 9374713.150 544 P_0022 749935.077 9374744.303 549.684 P_0065 750156.973 9374712.408 544 P_0023 749940.237 9374743.562 549.604 P_0066 750162.133 9374710.925 544 P_0024 749945.398 9374742.820 549.523 P_0067 750167.294 9374710.925 544 P_0025 749950.558 9374742.078 549.442 P_0068 750172.454 9374710.183 545 P_0026 749955.718 9374740.595 549.280 P_0079 750187.7615 9374709.441 545 P_0027 749960.879 9374740.595 549.280 P_0070 750187.935 9374707.8699 545	46.613
P_0020 749924.756 9374745.787 549.846 P_0063 750146.652 9374713.892 544 P_0021 749929.917 9374745.045 549.765 P_0064 750151.813 9374713.150 546 P_0022 749935.077 9374744.303 549.684 P_0065 750156.973 9374712.408 546 P_0023 749940.237 9374742.820 549.604 P_0066 750162.133 9374710.925 546 P_0024 749945.398 9374742.820 549.523 P_0067 750167.294 9374710.183 543 P_0025 749950.558 9374741.336 549.442 P_0068 750177.615 937470.441 543 P_0027 749960.879 9374740.595 549.280 P_0070 750182.775 9374708.699 543 P_0028 749960.039 9374739.853 549.199 P_0071 750187.935 9374707.216 543 P_0030 749971.200 9374738.369 549.038 P_0072 750193.096 9374706.474 543	46.532
P_0021 749929.917 9374745.045 549.765 P_0064 750151.813 9374713.150 544 P_0022 749935.077 9374744.303 549.684 P_0065 750156.973 9374712.408 546 P_0023 749940.237 9374742.820 549.604 P_0066 750162.133 9374710.925 546 P_0024 749945.398 9374742.820 549.523 P_0067 750167.294 9374710.925 546 P_0025 749950.558 9374742.078 549.442 P_0068 750177.615 937470.183 545 P_0026 749955.718 9374740.595 549.280 P_0069 750177.615 9374709.441 545 P_0027 749960.879 9374739.853 549.199 P_0070 750187.935 937470.958 545 P_0029 749971.200 9374739.811 549.119 P_0071 750187.935 9374707.216 545 P_0031 749981.520 9374736.28 548.957 P_0074 750203.416 9374706.474 545	46.451
P_0022 749935.077 9374744.303 549.684 P_0065 750156.973 9374712.408 546 P_0023 749940.237 9374743.562 549.604 P_0066 750162.133 9374711.666 546 P_0024 749945.398 9374742.820 549.523 P_0067 750167.294 9374710.925 546 P_0025 749950.558 9374742.078 549.442 P_0068 750172.454 9374710.183 545 P_0026 749955.718 9374740.595 549.361 P_0069 750177.615 9374709.441 545 P_0027 749960.879 9374739.853 549.199 P_0070 750182.775 9374708.699 545 P_0028 749960.039 9374739.853 549.199 P_0071 750187.935 9374707.216 545 P_0030 749971.200 9374738.369 549.038 P_0072 750193.096 9374706.474 545 P_0031 749981.520 9374736.886 548.957 P_0074 750203.416 9374704.991 545	46.370
P_0023 749940.237 9374743.562 549.604 P_0066 750162.133 9374711.666 546 P_0024 749945.398 9374742.820 549.523 P_0067 750167.294 9374710.925 546 P_0025 749950.558 9374742.078 549.442 P_0068 750172.454 9374710.183 542 P_0026 749955.718 9374740.595 549.361 P_0069 750177.615 9374709.441 543 P_0027 749960.879 9374740.595 549.280 P_0070 750182.775 9374708.699 543 P_0028 749960.039 9374739.853 549.199 P_0071 750187.935 9374707.958 543 P_0030 749976.360 9374738.369 549.038 P_0072 750193.096 9374706.474 543 P_0031 749981.520 9374736.28 548.957 P_0074 750203.416 9374705.732 543 P_0032 749986.681 9374736.886 548.876 P_0075 750208.577 9374704.991 543	46.289
P_0024 749945.398 9374742.820 549.523 P_0067 750167.294 9374710.925 540 P_0025 749950.558 9374742.078 549.442 P_0068 750172.454 9374710.183 542 P_0026 749955.718 9374741.336 549.361 P_0069 750177.615 9374709.441 543 P_0027 749960.879 9374740.595 549.280 P_0070 750182.775 9374708.699 543 P_0028 749960.039 9374739.853 549.199 P_0071 750187.935 9374707.958 543 P_0030 749971.200 9374738.369 549.038 P_0072 750193.096 9374707.216 543 P_0031 749981.520 9374736.688 548.957 P_0074 750203.416 9374704.491 543 P_0032 749986.681 9374736.184 548.795 P_0075 750208.577 9374704.249 543 P_0034 749997.001 9374735.402 548.714 P_0076 750218.898 9374703.507 543	46.208
P_0025 749950.558 9374742.078 549.442 P_0068 750172.454 9374710.183 549.442 P_0026 749955.718 9374741.336 549.361 P_0069 750177.615 9374709.441 549.454 P_0027 749960.879 9374740.595 549.280 P_0070 750182.775 9374708.699 549.454 P_0028 749966.039 9374739.853 549.199 P_0071 750187.935 9374707.958 549.454 P_0030 749976.360 9374739.811 549.119 P_0072 750193.096 9374706.474 549.454 P_0031 749981.520 9374736.886 548.957 P_0074 750203.416 9374705.732 549.454 P_0032 749986.681 9374736.886 548.876 P_0075 750208.577 9374704.991 549.454 P_0034 749997.001 9374735.402 548.714 P_0076 750218.898 9374703.507 549.454 P_0035 750002.162 9374733.919 548.634 P_0079 750229.218 9374702.765	46.128
P_0026 749955.718 9374741.336 549.361 P_0069 750177.615 9374709.441 545 P_0027 749960.879 9374740.595 549.280 P_0070 750182.775 9374708.699 545 P_0028 749966.039 9374739.853 549.199 P_0071 750187.935 9374707.958 545 P_0030 749971.200 9374739.111 549.119 P_0072 750193.096 9374706.474 545 P_0031 749981.520 9374736.886 548.957 P_0074 750203.416 9374705.732 545 P_0032 749986.681 9374736.886 548.876 P_0075 750208.577 9374704.991 545 P_0034 749997.001 9374735.402 548.714 P_0076 750218.898 9374703.507 545 P_0035 750002.162 9374733.919 548.553 P_0078 750224.058 9374702.765 545 P_0036 750012.483 9374733.177 548.472 P_0080 750234.379 9374701.282 544	46.047
P_0027 749960.879 9374740.595 549.280 P_0070 750182.775 9374708.699 549.280 P_0028 749966.039 9374739.853 549.199 P_0071 750187.935 9374707.958 549.280 P_0029 749971.200 9374739.111 549.119 P_0072 750193.096 9374707.216 549.280 P_0030 749976.360 9374738.369 549.038 P_0073 750198.256 9374706.474 549.280 P_0031 749981.520 9374736.886 548.957 P_0074 750203.416 9374705.732 549.280 P_0032 749986.681 9374736.886 548.876 P_0075 750208.577 9374704.991 549.280 P_0034 749997.001 9374735.402 548.714 P_0076 750218.898 9374703.507 549.280 P_0035 750002.162 9374733.919 548.634 P_0078 750224.058 9374702.024 549.280 P_0036 750012.483 9374733.177 548.472 P_0080 750234.379 9374701.282	45.966
P_0028 749966.039 9374739.853 549.199 P_0071 750187.935 9374707.958 549.199 P_0029 749971.200 9374739.111 549.119 P_0072 750193.096 9374707.216 549.119 P_0030 749976.360 9374738.369 549.038 P_0073 750198.256 9374706.474 549.119 P_0031 749981.520 9374737.628 548.957 P_0074 750203.416 9374705.732 549.119 P_0032 749986.681 9374736.886 548.876 P_0075 750208.577 9374704.4991 549.119 P_0034 749997.001 9374735.402 548.714 P_0076 750218.898 9374703.507 549.129 P_0035 750002.162 9374733.919 548.634 P_0078 750224.058 9374702.765 549.129 P_0036 750012.483 9374733.177 548.472 P_0080 750234.379 9374701.282 544.129 P_0038 750017.643 9374732.435 548.391 P_0081 750239.539 9374700.540	45.885
P_0029 749971.200 9374739.111 549.119 P_0072 750193.096 9374707.216 545 P_0030 749976.360 9374738.369 549.038 P_0073 750198.256 9374706.474 545 P_0031 749981.520 9374737.628 548.957 P_0074 750203.416 9374705.732 545 P_0032 749986.681 9374736.886 548.876 P_0075 750208.577 9374704.991 545 P_0034 749997.001 9374735.402 548.714 P_0076 750218.898 9374703.507 545 P_0035 750002.162 9374734.661 548.634 P_0078 750224.058 9374702.765 545 P_0036 750007.322 9374733.919 548.553 P_0079 750229.218 9374702.024 545 P_0038 750012.483 9374733.177 548.472 P_0080 750234.379 9374700.540 544 P_0038 750017.643 9374732.435 548.391 P_0081 750239.539 9374700.540 544 <	45.804
P_0030 749976.360 9374738.369 549.038 P_0073 750198.256 9374706.474 545 P_0031 749981.520 9374737.628 548.957 P_0074 750203.416 9374705.732 545 P_0032 749986.681 9374736.886 548.876 P_0075 750208.577 9374704.991 545 P_0034 749997.001 9374735.402 548.714 P_0077 750218.898 9374703.507 545 P_0035 750002.162 9374734.661 548.634 P_0078 750224.058 9374702.765 545 P_0036 750007.322 9374733.919 548.553 P_0079 750229.218 9374702.024 545 P_0037 750012.483 9374733.177 548.472 P_0080 750234.379 9374701.282 544 P_0038 750017.643 9374732.435 548.391 P_0081 750239.539 9374700.540 544	45.723
P_0031 749981.520 9374737.628 548.957 P_0074 750203.416 9374705.732 548.754 P_0032 749986.681 9374736.886 548.876 P_0075 750208.577 9374704.991 548.714 P_0033 749991.841 9374736.144 548.795 P_0076 750213.737 9374704.249 548.714 P_0034 749997.001 9374735.402 548.714 P_0077 750218.898 9374703.507 548.714 P_0035 750002.162 9374734.661 548.634 P_0078 750224.058 9374702.765 548.714 P_0036 750007.322 9374733.919 548.553 P_0079 750229.218 9374702.024 548.714 P_0037 750012.483 9374733.177 548.472 P_0080 750234.379 9374701.282 548.714 P_0038 750017.643 9374732.435 548.391 P_0081 750239.539 9374700.540 548.714	45.643
P_0032 749986.681 9374736.886 548.876 P_0075 750208.577 9374704.991 545 P_0033 749991.841 9374736.144 548.795 P_0076 750213.737 9374704.249 545 P_0034 749997.001 9374735.402 548.714 P_0077 750218.898 9374703.507 545 P_0035 750002.162 9374734.661 548.634 P_0078 750224.058 9374702.765 545 P_0036 750007.322 9374733.919 548.553 P_0079 750229.218 9374702.024 545 P_0037 750012.483 9374733.177 548.472 P_0080 750234.379 9374701.282 546 P_0038 750017.643 9374732.435 548.391 P_0081 750239.539 9374700.540 546	45.562
P_0033 749991.841 9374736.144 548.795 P_0076 750213.737 9374704.249 548.795 P_0034 749997.001 9374735.402 548.714 P_0077 750218.898 9374703.507 548.795 P_0035 750002.162 9374734.661 548.634 P_0078 750224.058 9374702.765 548.795 P_0036 750007.322 9374733.919 548.553 P_0079 750229.218 9374702.024 548.795 P_0037 750012.483 9374733.177 548.472 P_0080 750234.379 9374701.282 544.795 P_0038 750017.643 9374732.435 548.391 P_0081 750239.539 9374700.540 544.795	45.481
P_0034 749997.001 9374735.402 548.714 P_0077 750218.898 9374703.507 545 P_0035 750002.162 9374734.661 548.634 P_0078 750224.058 9374702.765 545 P_0036 750007.322 9374733.919 548.553 P_0079 750229.218 9374702.024 545 P_0037 750012.483 9374733.177 548.472 P_0080 750234.379 9374701.282 544 P_0038 750017.643 9374732.435 548.391 P_0081 750239.539 9374700.540 544	45.400
P_0035 750002.162 9374734.661 548.634 P_0078 750224.058 9374702.765 548.54 P_0036 750007.322 9374733.919 548.553 P_0079 750229.218 9374702.024 548.54 P_0037 750012.483 9374733.177 548.472 P_0080 750234.379 9374701.282 548.472 P_0038 750017.643 9374732.435 548.391 P_0081 750239.539 9374700.540 548.472	45.319
P_0036 750007.322 9374733.919 548.553 P_0079 750229.218 9374702.024 548.553 P_0037 750012.483 9374733.177 548.472 P_0080 750234.379 9374701.282 544.72 P_0038 750017.643 9374732.435 548.391 P_0081 750239.539 9374700.540 544.72	45.238
P_0037 750012.483 9374733.177 548.472 P_0080 750234.379 9374701.282 544 P_0038 750017.643 9374732.435 548.391 P_0081 750239.539 9374700.540 544	45.158
P_0038 750017.643 9374732.435 548.391 P_0081 750239.539 9374700.540 544	45.077
<u>-</u>	44.996
P 0039 750022.803 9374731.694 548.310 P 0082 750244.699 9374699.798 544	44.915
<u>-</u>	44.834
	44.753
	44.673
<u> </u>	44.592
P_0043 750043.445 9374728.727 547.987 P_0086 750265.341 9374696.831 544	44.511

	COORDEN	ADAS UTM	Elevación
PUNTO	Norte (m)	Este (m)	(ms.n.m)
P 0087	750270.501	9374696.090	544,430
P 0088	750275.662	9374695.348	544.349
P 0089	750280.822	9374694.606	544.268
P 0090	750285.982	9374693.864	544.188
P 0091	750291.143	9374693.123	544.107
P 0092	750296.303	9374692.381	544.026
P 0093	750301.464	9374691.639	543,945
P 0094	750306.624	9374690,897	543,864
P 0095	750311.784	9374690.156	543.783
P 0096	750316.945	9374689.414	543,703
P 0097	750322.105	9374688.672	543.622
P 0098	750327.265	9374687.930	543.541
P 0099	750332.426	9374687.189	543.460
P 0100	750337.586	9374686.447	543.379
P 0101	750342.747	9374685.705	543.298
P 0102	750347.907	9374684.963	543.218
P 0103	750353.067	9374684.222	543.137
P 0104	750358.228	9374683.480	543.056
P 0105	750363.388	9374682.738	542.975
P 0106	750368.548	9374681.996	542.894
P_0107	750373.709	9374681.255	542.813
P 0108	750378.869	9374680.513	542.733
P_0109	750384.030	9374679.771	542.652
P 0110	750389.190	9374679.029	542.571
P_0111	750394.350	9374678.288	542.490
P_0112	750399.511	9374677.546	542.409
P_0113	750404.671	9374676.804	542.328
P_0114	750409.831	9374676.062	542.248
P_0115	750414.992	9374675.321	542.167
P_0116	750420.152	9374674.579	542.086
P_0117	750425.313	9374673.837	542.005
P_0118	750430.473	9374673.095	541.924
P_0119	750435.633	9374672.354	541.843
P_0120	750440.794	9374671.612	541.762
P_0121	750445.954	9374670.870	541.682
P_0122	750451.114	9374670.128	541.601
P_0123	750456.275	9374669.387	541.520
P_0124	750461.435	9374668.645	541.439
P_0125	750466.596	9374667.903	541.358
P_0126	750471.756	9374667.161	541.277
P_0127	750476.916	9374666.420	541.197
P_0128	750482.077	9374665.678	541.116
P_0129	750487.237	9374664.936	541.035

	COORDEN	ADAS UTM	Florensión
PUNTO			Elevación (ms.n.m)
P 0130	Norte (m) 750492.397	9374664.194	540.954
P 0131	750492.597	9374663.453	540.934
P 0132	750502.718	9374662.711	540.792
	750502.718	9374661.969	540.792
_	750513.039		
P_0134		9374661.227	540.631
P_0135	750518.199	9374660.486	540.550
P_0136	750523.360	9374659.744	540.469
P_0137	750528.520	9374659.002	540.388
P_0138	750533.680	9374658.260	540.307
P_0139	750538.841	9374657.519	540.227
P_0140	750544.001	9374656.777	540.146
P_0141	750549.162	9374656.035	540.065
P_0142	750554.322	9374655.293	539.984
P_0143	750559.482	9374654.552	539.903
P_0144	750564.643	9374653.810	539.822
P_0145	750569.803	9374653.068	539.742
P_0146	750574.963	9374652.326	539.661
P_0147	750580.124	9374651.585	539.580
P_0148	750585.284	9374650.843	539.499
P_0149	750590.445	9374650.101	539.418
P_0150	750595.605	9374649.359	539.337
P_0151	750600.765	9374648.618	539.257
P_0152	750605.926	9374647.876	539.176
P_0153	750611.086	9374647.134	539.095
P_0154	750616.246	9374646.392	539.014
P_0155	750621.407	9374645.651	538.933
P_0156	750626.567	9374644.909	538.852
P_0157	750631.728	9374644.167	538.772
P_0158	750636.888	9374643.425	538.691
P_0159	750642.048	9374642.684	538.610
P_0160	750647.209	9374641.942	538.529
P_0161	750652.369	9374641.200	538.448
P_0162	750657.529	9374640.458	538.367
P_0163	750662.690	9374639.717	538.287
P_0164	750667.850	9374638.975	538.206
P_0165	750673.011	9374638.233	538.125
P_0166	750678.171	9374637.491	538.044
P_0167	750683.331	9374636.750	537.963
P_0168	750688.492	9374636.008	537.882
P_0169	750693.652	9374635.266	537.802
P_0170	750698.812	9374634.524	537.721
P_0171	750703.973	9374633.783	537.640
P_0172	750709.133	9374633.041	537.559

	COORDEN	ADAS UTM	Elevación
PUNTO	Norte (m)	Este (m)	(ms.n.m)
P 0173	750714.294	9374632.299	537.478
P 0174	750719.454	9374631.557	537.397
P 0175	750724.614	9374630.816	537.316
P 0176	750729.775	9374630.074	537.236
P 0177	750734.935	9374629.332	537.155
P 0178	750740.095	9374628.590	537.074
P 0179	750745.256	9374627.849	536.993
P 0180	750750.416	9374627.107	536.912
P 0181	750755.577	9374626.365	536.831
P 0182	750760.737	9374625.623	536.751
P_0183	750765.897	9374624.882	536.670
P_0184	750771.058	9374624.140	536.589
P_0185	750776.218	9374623.398	536.508
P_0186	750781.378	9374622.656	536.427
P_0187	750786.539	9374621.915	536.346
P_0188	750791.699	9374621.173	536.266
P_0189	750796.860	9374620.431	536.185
P_0190	750802.020	9374619.689	536.104
P_0191	750807.180	9374618.948	536.023
P_0192	750812.341	9374618.206	535.942
P_0193	750817.501	9374617.464	535.861
P_0194	750822.661	9374616.722	535.781
P_0195	750827.822	9374615.981	535.700
P_0196	750832.982	9374615.239	535.619
P_0197	750838.143	9374614.497	535.538
P_0198	750843.303	9374613.755	535.457
P_0199	750848.463	9374613.014	535.376
P_0200	750853.624	9374612.272	535.296
P_0201	750858.784	9374611.530	535.215
P_0202	750863.944	9374610.788	535.134
P_0203	750869.105	9374610.047	535.053
P_0204	750874.265	9374609.305	534.972
P_0205	750879.426	9374608.563	534.891
P_0206	750884.586	9374607.821	534.811
P_0207	750889.746	9374607.080	534.730
P_0208	750894.907	9374606.338	534.649
P_0209	750900.067	9374605.596	534.568
P_0210	750905.227	9374604.854	534.487
P_0211	750910.388	9374604.113	534.406
P_0212	750915.548	9374603.371	534.326
P_0213	750920.709	9374602.629	534.245
P_0214	750925.869	9374601.888	534.164
P_0215	750931.029	9374601.146	534.083

PUNTO		ADAS UTM	Elevación
	Norte (m)	Este (m)	(ms.n.m)
P_0216	750936.190	9374600.404	534.002
P_0217	750941.350	9374599.662	533.921
P_0218	750946.510	9374598.921	533.841
P_0219	750951.671	9374598.179	533.760
P_0220	750956.831	9374597.437	533.679
P_0221	750961.992	9374596.695	533.598
P_0222	750967.152	9374595.954	533.517
P_0223	750972.312	9374595.212	533.436
P_0224	750977.473	9374594.470	533.356
P_0225	750982.633	9374593.728	533.275
P_0226	750987.793	9374592.987	533.194
P_0227	750992.954	9374592.245	533.113
P_0228	750998.114	9374591.503	533.032
P_0229	751003.275	9374590.761	532.951
P_0230	751008.435	9374590.020	532.870
P_0231	751013.595	9374589.278	532.790
P_0232	751018.756	9374588.536	532.709
P_0233	751023.916	9374587.794	532.628
P_0234	751029.076	9374587.053	532.547
P_0235	751034.237	9374586.311	532.466
P_0236	751039.397	9374585.569	532.385
P_0237	751044.558	9374584.827	532.305
P_0238	751049.718	9374584.086	532.224
P_0239	751054.878	9374583.344	532.143
P_0240	751060.039	9374582.602	532.062
P_0241	751065.199	9374581.860	531.981
P_0242	751070.359	9374581.119	531.900
P_0243	751075.520	9374580.377	531.820
P_0244	751080.680	9374579.635	531.739
P_0245	751085.841	9374578.893	531.658
P_0246	751091.001	9374578.152	531.577
P_0247	751096.161	9374577.410	531.496
P_0248	751101.322	9374576.668	531.415
P_0249	751106.482	9374575.926	531.335
P_0250	751111.642	9374575.185	531.254
P_0251	751116.803	9374574.443	531.173
P_0252	751121.963	9374573.701	531.092
P_0253	751127.124	9374572.959	531.011
P_0254	751132.284	9374572.218	530.930
P_0255	751137.444	9374571.476	530.850
P_0256	751142.605	9374570.734	530.769
P_0257	751147.765	9374569.992	530.688
P_0258	751152.925	9374569.251	530.607

	COORDEN	ADAS UTM	Elevación		COORDEN	ADAS UTM	Elevación
PUNTO	Norte (m)	Este (m)	(ms.n.m)	PUNTO	Norte (m)	Este (m)	(ms.n.m)
P 0259	751158.086	9374568.509	530.526	P 0302	751379.982	9374536.614	527.050
P_0260	751163.246	9374567.767	530.445	P_0303	751385.142	9374535.872	526.969
P 0261	751168.407	9374567.025	530.365	P 0304	751390.303	9374535.130	526.889
P 0262	751173.567	9374566.284	530.284	P 0305	751395.463	9374534.388	526.808
P 0263	751178.727	9374565.542	530.203	P 0306	751400.623	9374533.647	526.727
P 0264	751183.888	9374564.800	530.122	P 0307	751405.784	9374532.905	526.646
P 0265	751189.048	9374564.058	530.041	P 0308	751410.944	9374532.163	526.565
P 0266	751194.208	9374563.317	529.960	P 0309	751416.105	9374531.421	526.484
P 0267	751199.369	9374562.575	529.880	P 0310	751421.265	9374530.680	526.404
P 0268	751204.529	9374561.833	529.799	P 0311	751426.425	9374529.938	526.323
P 0269	751209.690	9374561.091	529.718	P 0312	751431.586	9374529.196	526.242
P 0270	751214.850	9374560.350	529.637	P 0313	751436.746	9374528.454	526.161
P 0271	751220.010	9374559.608	529.556	P 0314	751441.906	9374527.713	526.080
P_0272	751225.171	9374558.866	529.475	P_0315	751447.067	9374526.971	525.999
P 0273	751230.331	9374558.124	529.395	P_0316	751452.227	9374526.229	525.919
P_0274	751235.491	9374557.383	529.314	P_0317	751457.388	9374525.487	525.838
P_0275	751240.652	9374556.641	529.233	P_0318	751462.548	9374524.746	525.757
P_0276	751245.812	9374555.899	529.152	P_0319	751467.708	9374524.004	525.676
P_0277	751250.973	9374555.157	529.071	P_0320	751472.869	9374523.262	525.595
P_0278	751256.133	9374554.416	528.990	P_0321	751478.029	9374522.520	525.514
P_0279	751261.293	9374553.674	528.910	P_0322	751483.189	9374521.779	525.434
P_0280	751266.454	9374552.932	528.829	P_0323	751488.350	9374521.037	525.353
P_0281	751271.614	9374552.190	528.748	P_0324	751493.510	9374520.295	525.272
P_0282	751276.774	9374551.449	528.667	P_0325	751498.671	9374519.553	525.191
P_0283	751281.935	9374550.707	528.586	P_0326	751503.831	9374518.812	525.110
P_0284	751287.095	9374549.965	528.505	P_0327	751508.991	9374518.070	525.029
P_0285	751292.256	9374549.223	528.425	P_0328	751514.152	9374517.328	524.949
P_0286	751297.416	9374548.482	528.344	P_0329	751519.312	9374516.586	524.868
P_0287	751302.576	9374547.740	528.263	P_0330	751524.472	9374515.845	524.787
P_0288	751307.737	9374546.998	528.182	P_0331	751529.633	9374515.103	524.706
P_0289	751312.897	9374546.256	528.101	P_0332	751534.793	9374514.361	524.625
P_0290	751318.057	9374545.515	528.020	P_0333	751539.954	9374513.619	524.544
P_0291	751323.218	9374544.773	527.939	P_0334	751545.114	9374512.878	524.464
P_0292	751328.378	9374544.031	527.859	P_0335	751550.274	9374512.136	524.383
P_0293	751333.539	9374543.289	527.778	P_0336	751555.435	9374511.394	524.302
P_0294	751338.699	9374542.548	527.697	P_0337	751560.595	9374510.652	524.221
P_0295	751343.859	9374541.806	527.616	P_0338	751565.755	9374509.911	524.140
P_0296	751349.020	9374541.064	527.535	P_0339	751570.916	9374509.169	524.059
P_0297	751354.180	9374540.322	527.454	P_0340	751576.076	9374508.427	523.979
P_0298	751359.340	9374539.581	527.374	P_0341	751581.237	9374507.685	523.898
P_0299	751364.501	9374538.839	527.293	P_0342	751586.397	9374506.944	523.817
P_0300	751369.661	9374538.097	527.212	P_0343	751591.557	9374506.202	523.736
P_0301	751374.822	9374537.355	527.131	P_0344	751596.718	9374505.460	523.655

	COORDEN	ADAS UTM	Elevación	
PUNTO	Norte (m)	Este (m)	(ms.n.m)	PU
P_0345	751601.878	9374504.718	523.574	P_(
P_0346	751607.038	9374503.977	523.493	P_(
P_0347	751612.199	9374503.235	523.413	P_(
P_0348	751617.359	9374502.493	523.332	P_(
P_0349	751622.520	9374501.751	523.251	P_(
P_0350	751627.680	9374501.010	523.170	P_(
P_0351	751632.840	9374500.268	523.089	P_(
P_0352	751638.001	9374499.526	523.008	P_(
P_0353	751643.161	9374498.784	522.928	P_(
P_0354	751648.321	9374498.043	522.847	P_(
P_0355	751653.482	9374497.301	522.766	P_(
P_0356	751658.642	9374496.559	522.685	P_(
P_0357	751663.803	9374495.817	522.604	P_(
P_0358	751668.963	9374495.076	522.523	P_(
P_0359	751674.123	9374494.334	522.443	P_(
P_0360	751679.284	9374493.592	522.362	P_(
P_0361	751684.444	9374492.850	522.281	P_(
P_0362	751689.604	9374492.109	522.200	P_(
P_0363	751694.765	9374491.367	522.119	P_(
P_0364	751699.925	9374490.625	522.038	P_(
P_0365	751705.086	9374489.883	521.958	P_(
P_0366	751710.246	9374489.142	521.877	P_(
P_0367	751715.406	9374488.400	521.796	P_(
P_0368	751720.567	9374487.658	521.715	P_(
P_0369	751725.727	9374486.916	521.634	P_(
P_0370	751730.887	9374486.175	521.553	P_(
P_0371	751736.048	9374485.433	521.473	P_(
P_0372	751741.208	9374484.691	521.392	P_(
P_0373	751746.369	9374483.949	521.311	P_(
P_0374	751751.529	9374483.208	521.230	P_(
P_0375	751756.689	9374482.466	521.149	P_(
P_0376	751761.850	9374481.724	521.068	P_(
P_0377	751767.010	9374480.982	520.988	P_(
P_0378	751772.170	9374480.241	520.907	P_(
P_0379	751777.331	9374479.499	520.826	P_(
P_0380	751782.491	9374478.757	520.745	P_(
P_0381	751787.652	9374478.015	520.664	P_(
P_0382	751792.812	9374477.274	520.583	P_(
P_0383	751797.972	9374476.532	520.503	P_(
P_0384	751803.133	9374475.790	520.422	P_(
P_0385	751808.293	9374475.048	520.341	P_(
P_0386	751813.453	9374474.307	520.260	P_(
P_0387	751818.614	9374473.565	520.179	P_(

PUNTO		ADAS UTM	Elevación
	Norte (m)	Este (m)	(ms.n.m)
P_0388	751823.774	9374472.823	520.098
P_0389	751828.935	9374472.081	520.018
P_0390	751834.095	9374471.340	519.937
P_0391	751839.255	9374470.598	519.856
P_0392	751844.416	9374469.856	519.775
P_0393	751849.576	9374469.114	519.694
P_0394	751854.736	9374468.373	519.613
P_0395	751859.897	9374467.631	519.533
P_0396	751865.057	9374466.889	519.452
P_0397	751870.218	9374466.147	519.371
P_0398	751875.378	9374465.406	519.290
P_0399	751880.538	9374464.664	519.209
P_0400	751885.699	9374463.922	519.128
P_0401	751890.859	9374463.180	519.048
P_0402	751896.019	9374462.439	518.967
P_0403	751901.180	9374461.697	518.886
P_0404	751906.340	9374460.955	518.805
P_0405	751911.501	9374460.213	518.724
P_0406	751916.661	9374459.472	518.643
P_0407	751921.821	9374458.730	518.562
P_0408	751926.982	9374457.988	518.482
P_0409	751932.142	9374457.246	518.401
P_0410	751937.302	9374456.505	518.320
P_0411	751942.463	9374455.763	518.239
P_0412	751947.623	9374455.021	518.158
P_0413	751952.784	9374454.279	518.077
P_0414	751957.944	9374453.538	517.997
P_0415	751963.104	9374452.796	517.916
P_0416	751968.265	9374452.054	517.835
P_0417	751973.425	9374451.312	517.754
P_0418	751978.585	9374450.571	517.673
P_0419	751983.746	9374449.829	517.592
P_0420	751988.906	9374449.087	517.512
P_0421	751994.067	9374448.346	517.431
P_0422	751999.227	9374447.604	517.350
P_0423	752004.387	9374446.862	517.269
P_0424	752009.548	9374446.120	517.188
P_0425	752014.708	9374445.379	517.107
P_0426	752019.868	9374444.637	517.027
P_0427	752025.029	9374443.895	516.946
P_0428	752030.189	9374443.153	516.865
P_0429	752035.350	9374442.412	516.784
P_0430	752040.510	9374441.670	516.703

	COORDEN	Elevación	
PUNTO	Norte (m)	Este (m)	(ms.n.m)
P 0431	752045,670	9374440.928	516,622
P 0432	752050.831	9374440.186	516.542
P 0433	752055.991	9374439.445	516.461
P 0434	752061.151	9374438.703	516.380
P 0435	752066.312	9374437,961	516.299
P 0436	752071.472	9374437.219	516.218
P 0437	752076.633	9374436.478	516.137
P 0438	752081.793	9374435.736	516.057
P 0439	752086.953	9374434.994	515.976
P 0440	752092.114	9374434.252	515.895
P 0441	752097.274	9374433.511	515.814
P 0442	752102.434	9374432.769	515.733
P_0443	752107.595	9374432.027	515.652
P 0444	752112.755	9374431.285	515.572
P 0445	752117.916	9374430.544	515.491
P_0446	752123.076	9374429.802	515.410
P 0447	752128.236	9374429.060	515.329
P 0448	752133.397	9374428.318	515.248
P 0449	752138.557	9374427.577	515.167
P 0450	752143.717	9374426.835	515.087
P_0451	752148.878	9374426.093	515.006
P_0452	752154.038	9374425.351	514.925
P_0453	752159.199	9374424.610	514.844
P_0454	752164.359	9374423.868	514.763
P_0455	752169.519	9374423.126	514.682
P_0456	752174.680	9374422.384	514.602
P_0457	752179.840	9374421.643	514.521
P_0458	752185.000	9374420.901	514.440
P_0459	752190.161	9374420.159	514.359
P_0460	752195.321	9374419.417	514.278
P_0461	752200.482	9374418.676	514.197
P_0462	752205.642	9374417.934	514.116
P_0463	752210.802	9374417.192	514.036
P_0464	752215.963	9374416.450	513.955
P_0465	752221.123	9374415.709	513.874
P_0466	752226.283	9374414.967	513.793
P_0467	752231.444	9374414.225	513.712
P_0468	752236.604	9374413.483	513.631
P_0469	752241.765	9374412.742	513.551
P_0470	752246.925	9374412.000	513.470
P_0471	752252.085	9374411.258	513.389
P_0472	752257.246	9374410.516	513.308
P_0473	752262.406	9374409.775	513.227

	COORDEN	ADAGERRA	Florentia
PUNTO	Norte (m)	ADAS UTM Este (m)	Elevación (ms.n.m)
P 0474	752267.566	9374409.033	513.146
P 0475	752272.727	9374408.291	513.066
P 0476	752277.887	9374407.549	512.985
P 0477	752283.048	9374406.808	512.904
P 0478	752288.208	9374406.066	512.823
P 0479	752293.368	9374405.324	512.742
P 0480	752298.529	9374404.582	512.742
P 0481	752303.689	9374403.841	512.581
	752308.849	9374403.041	512.500
	752314.010	9374403.099	
P_0483	752314.010	9374402.337	512.419
P_0484			
P_0485	752324.331	9374400.874	512.257
P_0486	752329.491	9374400.132	512.176
P_0487	752334.651	9374399.390	512.096
P_0488	752339.812	9374398.648	512.015
P_0489	752344.972	9374397.907	511.934
P_0490	752350.132	9374397.165	511.853
P_0491	752355.293	9374396.423	511.772
P_0492	752360.453	9374395.681	511.691
P_0493	752365.614	9374394.940	511.611
P_0494	752370.774	9374394.198	511.530
P_0495	752375.934	9374393.456	511.449
P_0496	752381.095	9374392.714	511.368
P_0497	752386.255	9374391.973	511.287
P_0498	752391.415	9374391.231	511.206
P_0499	752396.576	9374390.489	511.126
P_0500	752401.736	9374389.747	511.045
P_0501	752406.897	9374389.006	510.964
P_0502	752412.057	9374388.264	510.883
P_0503	752417.217	9374387.522	510.802
P_0504	752422.378	9374386.780	510.721
P_0505	752427.538	9374386.039	510.641
P_0506	752432.698	9374385.297	510.560
P_0507	752437.859	9374384.555	510.479
P_0508	752443.019	9374383.813	510.398
P 0509	752448.180	9374383.072	510.317
P_0510	752453.340	9374382.330	510.236
P 0511	752458.500	9374381.588	510.156
P_0512	752463.661	9374380.846	510.075
P 0513	752468.821	9374380.105	509.994
P 0514	752473.981	9374379.363	509.913
P 0515	752479.142	9374378.621	509.832
P 0516	752484.302	9374377.879	509.751

	COORDEN	Elevación		
PUNTO	Norte (m)	Este (m)	(ms.n.m)	
P 0517	752489.463	9374377.138	509.670	
P 0518	752494.623	9374376.396	509.590	
P 0519	752499.783	9374375.654	509.509	
P 0520	752504.944	9374374.912	509.428	
P 0521	752510.104	9374374.171	509.347	
P 0522	752515.264	9374373.429	509.266	
P 0523	752520.425	9374372.687	509.185	
P 0524	752525.585	9374371.945	509.105	
P 0525	752530.746	9374371.204	509.024	
P 0526	752535.906	9374370.462	508.943	
P 0527	752541.066	9374369.720	508.862	
P 0528	752546.227	9374368.978	508.781	
P 0529	752551.387	9374368.237	508.700	
P 0530	752556.547	9374367.495	508.620	
P 0531	752561.708	9374366.753	508.539	
P 0532	752566.868	9374366.011	508.458	
P 0533	752572.029	9374365.270	508.377	
P 0534	752577.189	9374364.528	508.296	
P 0535	752582.349	9374363.786	508.215	
P 0536	752587.510	9374363.044	508.135	
P_0537	752592.670	9374362.303	508.054	
P 0538	752597.830	9374361.561	507.973	
P 0539	752602.991	9374360.819	507.892	
P 0540	752608.151	9374360.077	507.811	
P 0541	752613.312	9374359.336	507.730	
P_0542	752618.472	9374358.594	507.650	
P_0543	752623.632	9374357.852	507.569	
P_0544	752628.793	9374357.110	507.488	
P_0545	752633.953	9374356.369	507.407	
P_0546	752639.113	9374355.627	507.326	
P_0547	752644.274	9374354.885	507.245	
P_0548	752649.434	9374354.143	507.165	
P_0549	752654.595	9374353.402	507.084	
P_0550	752659.755	9374352.660	507.003	
P_0551	752664.915	9374351.918	506.922	
P_0552	752670.076	9374351.176	506.841	
P_0553	752675.236	9374350.435	506.760	
P_0554	752680.396	9374349.693	506.680	
P_0555	752685.557	9374348.951	506.599	
P_0556	752690.717	9374348.209	506.518	
P_0557	752695.878	9374347.468	506.437	
P_0558	752701.038	9374346.726	506.356	
P_0559	752706.198	9374345.984	506.275	

PUNTO Norte (m) Este (m) (ms.n.m) P_0560 752711.359 9374345.242 506.195 P_0561 752716.519 9374344.501 506.114 P_0562 752721.679 9374343.759 506.033 P_0563 752726.840 9374343.017 505.952 P_0564 752732.000 9374342.275 505.871 P_0566 752747.481 9374340.792 505.710 P_0567 752747.481 9374340.050 505.629 P_0568 752752.642 9374339.308 505.548 P_0569 752757.802 9374337.825 505.386 P_0570 752762.962 9374337.835 505.305 P_0571 752768.123 9374337.083 505.225 P_0572 752773.283 9374333.6341 505.225 P_0573 752783.604 9374334.858 505.063 P_0574 752783.604 9374333.435 504.93 P_0575 752788.764 9374333.435 504.901 P_0576 752				
P_0560 752711.359 9374345.242 506.195 P_0561 752716.519 9374344.501 506.114 P_0562 752721.679 9374343.759 506.033 P_0563 752726.840 9374343.017 505.952 P_0564 752732.000 9374342.275 505.871 P_0565 752737.161 9374341.534 505.790 P_0566 752742.321 9374340.792 505.710 P_0567 752747.481 9374340.050 505.629 P_0568 752752.642 9374339.308 505.548 P_0569 752752.642 9374339.308 505.548 P_0570 752762.962 9374337.825 505.386 P_0571 752768.123 9374337.083 505.305 P_0572 752773.283 9374336.341 505.225 P_0573 752778.444 9374335.600 505.144 P_0574 752783.604 9374334.858 505.063 P_0575 752788.764 9374334.116 504.982 P_0576 752793.925 9374333.374 504.901 P_0577 752799.085 9374332.633 504.820 P_0578 752804.245 9374331.891 504.739 P_0579 752809.406 9374331.149 504.659 P_0580 752814.566 9374330.407 504.578 P_0581 752819.727 9374329.666 504.497 P_0582 752824.887 9374328.182 504.335 P_0584 752835.208 937432.639 504.416 P_0585 752840.368 937432.440 504.254 P_0586 752855.849 937432.7440 504.254 P_0587 752850.689 937432.7440 504.254 P_0588 752855.849 937432.7440 504.254 P_0589 752866.170 937432.990 503.769 P_0590 752809.293 937432.2990 503.769 P_0591 752809.293 937432.2990 503.769 P_0593 752891.972 937432.990 503.769 P_0594 752886.811 937432.023 503.689 P_0595 752891.972 937432.003 503.646 P_0595 752891.972 937432.990 503.769 P_0590 752866.170 937432.248 503.689 P_0591 752871.330 937432.248 503.689 P_0592 752876.491 937432.023 503.446 P_0593 752886.811 937432.023 503.646 P_0595 752891.972 937431.506 503.608 P_0597 752902.293 9374317.798 503.204 P_0599 752902.293 9374317.798 503.204 P_0599 752912.613 9374316.314 503.042 P_0599 752912.613 9374316.314 503.042 P_0599 752912.613 9374315.572 502.961	PUNTO			Elevación (ms.n.m)
P_0561 752716.519 9374344.501 506.114 P_0562 752721.679 9374343.759 506.033 P_0563 752726.840 9374343.017 505.952 P_0564 752732.000 9374342.275 505.871 P_0565 752737.161 9374340.792 505.710 P_0566 752747.481 9374340.050 505.629 P_0568 752752.642 9374339.308 505.548 P_0569 752757.802 9374337.825 505.386 P_0570 752762.962 9374337.825 505.386 P_0571 752768.123 9374337.083 505.225 P_0571 752768.123 9374337.083 505.225 P_0572 752778.444 9374334.858 505.063 P_0573 752788.044 9374334.858 505.063 P_0574 752783.604 9374334.858 505.0467 P_0575 752788.764 9374333.374 504.982 P_0576 752799.085 9374333.337 504.992 P_0577 <t< th=""><th></th><th></th><th></th><th></th></t<>				
P_0562 752721.679 9374343.759 506.033 P_0563 752726.840 9374343.017 505.952 P_0564 752732.000 9374342.275 505.871 P_0565 752737.161 9374341.534 505.790 P_0566 752742.321 9374340.050 505.629 P_0567 752747.481 9374340.050 505.629 P_0569 752752.642 9374339.308 505.548 P_0570 752762.962 9374337.825 505.386 P_0571 752768.123 9374337.083 505.305 P_0572 752768.123 9374337.083 505.305 P_0573 752768.123 9374337.083 505.225 P_0574 752783.604 9374334.858 505.063 P_0575 752783.604 9374334.858 505.063 P_0575 752788.764 9374333.374 504.992 P_0576 752793.925 9374333.337 504.992 P_0577 752799.085 9374333.149 504.739 P_0578 <th< th=""><th>_</th><th></th><th></th><th></th></th<>	_			
P_0563 752726.840 9374343.017 505.952 P_0564 752732.000 9374342.275 505.871 P_0565 752737.161 9374341.534 505.790 P_0566 752742.321 9374340.050 505.629 P_0567 752747.481 9374340.050 505.629 P_0568 752752.642 9374339.308 505.5467 P_0569 752757.802 9374337.825 505.386 P_0570 752762.962 9374337.083 505.305 P_0571 752768.123 9374337.083 505.305 P_0572 752773.283 9374335.600 505.144 P_0573 752788.444 9374334.858 505.063 P_0574 752783.604 9374333.374 504.982 P_0575 752788.764 9374333.374 504.991 P_0576 752793.925 9374333.374 504.901 P_0577 752799.085 9374332.633 504.820 P_0579 752804.245 9374333.149 504.739 P_0580 <t< th=""><th></th><th></th><th></th><th></th></t<>				
P_0564 752732.000 9374342.275 505.871 P_0565 752737.161 9374341.534 505.790 P_0566 752742.321 9374340.792 505.710 P_0567 752742.321 9374340.050 505.629 P_0568 752752.642 9374339.308 505.548 P_0569 752752.642 9374337.825 505.366 P_0570 752762.962 9374337.825 505.386 P_0571 752768.123 9374336.341 505.225 P_0572 752773.283 9374336.341 505.225 P_0573 752778.444 9374334.858 505.063 P_0574 752783.604 9374334.116 504.982 P_0575 752788.764 9374333.374 504.901 P_0576 752793.925 9374333.374 504.901 P_0577 752799.085 9374331.49 504.739 P_0578 752804.245 9374331.49 504.659 P_0579 752809.406 9374329.666 504.497 P_0581 7				
P_0565 752737.161 9374341.534 505.790 P_0566 752742.321 9374340.792 505.710 P_0567 752747.481 9374340.050 505.629 P_0568 752752.642 9374339.308 505.548 P_0569 752752.642 9374337.825 505.366 P_0570 752762.962 9374337.083 505.305 P_0571 752768.123 9374337.083 505.305 P_0572 752773.283 9374335.600 505.144 P_0574 752783.604 9374334.858 505.063 P_0575 752788.764 9374333.374 504.982 P_0576 752793.925 9374333.374 504.901 P_0577 752799.085 9374331.891 504.739 P_0578 752804.245 9374331.49 504.659 P_0580 752814.566 9374330.407 504.578 P_0581 752819.727 9374329.666 504.497 P_0582 752824.887 9374322.945 504.116 P_0583				
P_0566 752742.321 9374340.792 505.710 P_0567 752747.481 9374340.050 505.629 P_0568 752752.642 9374339.308 505.548 P_0569 752752.642 9374337.825 505.366 P_0570 752762.962 9374337.083 505.305 P_0571 752768.123 9374336.341 505.225 P_0572 752773.283 9374335.600 505.144 P_0574 752783.604 9374334.858 505.063 P_0575 752788.764 9374333.374 504.901 P_0576 752793.925 9374332.633 504.820 P_0577 752799.085 9374331.891 504.739 P_0579 752809.406 9374331.491 504.659 P_0580 752814.566 9374330.407 504.578 P_0581 752819.727 9374328.924 504.416 P_0582 752824.887 9374328.924 504.416 P_0583 752830.047 9374328.182 504.93 P_0584				
P_0567 752747.481 9374340.050 505.629 P_0568 752752.642 9374339.308 505.548 P_0569 752752.6292 9374338.567 505.467 P_0570 752762.962 9374337.825 505.386 P_0571 752768.123 9374337.083 505.305 P_0572 752773.283 9374336.341 505.225 P_0573 752778.444 9374335.600 505.144 P_0574 752783.604 9374334.858 505.063 P_0575 752788.764 9374333.374 504.901 P_0576 752793.925 9374332.633 504.820 P_0577 752799.085 9374331.891 504.739 P_0578 752804.245 9374331.49 504.659 P_0580 752814.566 9374330.407 504.578 P_0581 752819.727 9374328.182 504.416 P_0582 752840.368 9374328.182 504.416 P_0583 752850.689 9374327.440 504.254 P_0584 <th< th=""><th></th><th></th><th></th><th></th></th<>				
P_0568 752752.642 9374339.308 505.548 P_0569 752757.802 9374338.567 505.467 P_0570 752762.962 9374337.825 505.386 P_0571 752768.123 9374337.083 505.305 P_0572 752773.283 9374336.341 505.225 P_0573 752778.444 9374334.858 505.063 P_0574 752783.604 9374334.858 505.063 P_0575 752788.764 9374334.116 504.982 P_0576 752793.925 9374332.633 504.820 P_0577 752799.085 9374332.633 504.820 P_0578 752804.245 9374331.891 504.739 P_0579 752809.406 9374331.149 504.659 P_0580 752814.566 9374329.666 504.497 P_0581 752819.727 9374328.924 504.416 P_0582 752824.887 9374327.440 504.254 P_0584 752855.289 9374322.447 504.093 P_0587 <th< th=""><th>_</th><th></th><th></th><th></th></th<>	_			
P_0569 752757.802 9374338.567 505.467 P_0570 752762.962 9374337.825 505.386 P_0571 752768.123 9374337.083 505.305 P_0572 752773.283 9374336.341 505.225 P_0573 752778.444 9374334.858 505.063 P_0574 752783.604 9374334.116 504.982 P_0575 752788.764 9374333.374 504.901 P_0576 752793.925 9374332.633 504.820 P_0577 752799.085 9374331.891 504.739 P_0579 752804.245 9374331.149 504.659 P_0580 752814.566 9374330.407 504.578 P_0581 752819.727 9374328.182 504.335 P_0582 752824.887 9374328.182 504.335 P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374325.215 504.012 P_0586 752850.689 9374322.995 504.012 P_0587 <th< th=""><th></th><th></th><th></th><th></th></th<>				
P_0570 752762.962 9374337.825 505.386 P_0571 752768.123 9374337.083 505.305 P_0572 752773.283 9374336.341 505.225 P_0573 752778.444 9374335.600 505.144 P_0574 752783.604 9374334.858 505.063 P_0575 752788.764 9374334.116 504.982 P_0576 752793.925 9374332.633 504.820 P_0577 752799.085 9374332.633 504.820 P_0578 752804.245 9374331.891 504.739 P_0579 752809.406 9374331.149 504.659 P_0580 752814.566 9374329.666 504.497 P_0581 752819.727 9374328.182 504.335 P_0582 752824.887 9374328.182 504.335 P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374325.215 504.012 P_0586 752850.689 9374322.473 504.012 P_0589 <th< th=""><th>P_0568</th><th></th><th></th><th></th></th<>	P_0568			
P_0571 752768.123 9374337.083 505.305 P_0572 752773.283 9374336.341 505.225 P_0573 752778.444 9374335.600 505.144 P_0574 752783.604 9374334.858 505.063 P_0575 752788.764 9374334.116 504.982 P_0576 752793.925 9374333.374 504.901 P_0577 752799.085 9374332.633 504.820 P_0578 752804.245 9374331.891 504.739 P_0579 752809.406 9374331.149 504.659 P_0580 752814.566 9374330.407 504.578 P_0581 752819.727 9374328.924 504.416 P_0582 7528244.887 9374328.182 504.335 P_0583 752830.047 9374328.182 504.335 P_0584 752855.208 9374327.440 504.254 P_0585 752840.368 9374325.957 504.093 P_0586 752855.849 9374322.740 504.012 P_0589 <t< th=""><th></th><th></th><th></th><th></th></t<>				
P_0572 752773.283 9374336.341 505.225 P_0573 752778.444 9374335.600 505.144 P_0574 752783.604 9374334.858 505.063 P_0575 752788.764 9374334.116 504.982 P_0576 752793.925 9374332.633 504.820 P_0577 752799.085 9374331.891 504.739 P_0578 752804.245 9374331.891 504.739 P_0579 752809.406 9374331.149 504.659 P_0580 752814.566 9374329.666 504.497 P_0581 752819.727 9374328.924 504.416 P_0582 752824.887 9374328.924 504.416 P_0583 752830.047 9374328.182 504.335 P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374325.957 504.093 P_0586 752850.689 9374325.215 504.012 P_0587 752850.689 9374322.4473 503.931 P_0589 <t< th=""><th>P_0570</th><th></th><th></th><th></th></t<>	P_0570			
P_0573 752778.444 9374335.600 505.144 P_0574 752783.604 9374334.858 505.063 P_0575 752788.764 9374334.116 504.982 P_0576 752793.925 9374333.374 504.901 P_0577 752799.085 9374331.891 504.739 P_0578 752804.245 9374331.149 504.659 P_0579 752809.406 9374330.407 504.578 P_0580 752814.566 9374329.666 504.497 P_0581 752819.727 9374328.924 504.416 P_0582 752824.887 9374328.182 504.335 P_0583 752830.047 9374328.182 504.335 P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374325.957 504.093 P_0586 752850.689 9374324.473 503.931 P_0589 752850.689 9374322.215 504.012 P_0590 752861.010 9374322.3732 503.850 P_0591 <t< th=""><th>P_0571</th><th></th><th></th><th></th></t<>	P_0571			
P_0574 752783.604 9374334.858 505.063 P_0575 752788.764 9374334.116 504.982 P_0576 752793.925 9374333.374 504.901 P_0577 752799.085 9374332.633 504.820 P_0578 752804.245 9374331.891 504.739 P_0579 752809.406 9374331.149 504.659 P_0580 752814.566 9374329.666 504.497 P_0581 752819.727 9374329.666 504.497 P_0582 752824.887 9374328.924 504.416 P_0583 752830.047 9374328.182 504.335 P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374325.957 504.093 P_0586 752845.528 9374325.957 504.093 P_0587 752850.689 9374322.990 503.769 P_0589 752861.010 9374322.990 503.769 P_0591 752871.330 9374322.248 503.608 P_0592 <th< th=""><th>P_0572</th><th></th><th>9374336.341</th><th></th></th<>	P_0572		9374336.341	
P_0575 752788.764 9374334.116 504.982 P_0576 752793.925 9374333.374 504.901 P_0577 752799.085 9374332.633 504.820 P_0578 752804.245 9374331.891 504.739 P_0579 752809.406 9374331.149 504.659 P_0580 752814.566 9374330.407 504.578 P_0581 752819.727 9374329.666 504.497 P_0582 752824.887 9374328.182 504.335 P_0583 752830.047 9374328.182 504.335 P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374325.957 504.093 P_0586 752850.689 9374325.215 504.012 P_0587 752850.689 9374322.215 504.012 P_0588 752850.689 9374322.248 503.850 P_0590 752861.010 9374322.248 503.689 P_0591 752871.330 9374322.248 503.608 P_0592 <th< th=""><th>P_0573</th><th>752778.444</th><th>9374335.600</th><th>505.144</th></th<>	P_0573	752778.444	9374335.600	505.144
P_0576 752793.925 9374333.374 504.901 P_0577 752799.085 9374332.633 504.820 P_0578 752804.245 9374331.891 504.739 P_0579 752809.406 9374331.149 504.659 P_0580 752814.566 9374330.407 504.578 P_0581 752819.727 9374329.666 504.497 P_0582 752824.887 9374328.924 504.416 P_0583 752830.047 9374328.182 504.335 P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374325.957 504.093 P_0586 752850.689 9374325.957 504.093 P_0587 752850.689 9374324.473 503.931 P_0589 752861.010 9374322.248 503.689 P_0590 752871.330 9374322.248 503.689 P_0591 752871.330 9374320.023 503.527 P_0594 752886.811 9374320.023 503.527 P_0595 <th< th=""><th>P_0574</th><th>752783.604</th><th>9374334.858</th><th>505.063</th></th<>	P_0574	752783.604	9374334.858	505.063
P_0577 752799.085 9374332.633 504.820 P_0578 752804.245 9374331.891 504.739 P_0579 752809.406 9374331.149 504.659 P_0580 752814.566 9374330.407 504.578 P_0581 752819.727 9374329.666 504.497 P_0582 752824.887 9374328.924 504.416 P_0583 752830.047 9374328.182 504.335 P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374325.957 504.093 P_0586 752850.689 9374325.957 504.093 P_0587 752850.689 9374325.215 504.012 P_0588 752850.689 9374322.3732 503.850 P_0590 752861.010 9374322.390 503.769 P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374320.023 503.608 P_0593 752881.651 9374320.023 503.446 P_0595 <t< th=""><th>P_0575</th><th>752788.764</th><th>9374334.116</th><th>504.982</th></t<>	P_0575	752788.764	9374334.116	504.982
P_0578 752804.245 9374331.891 504.739 P_0579 752809.406 9374331.149 504.659 P_0580 752814.566 9374330.407 504.578 P_0581 752819.727 9374329.666 504.497 P_0582 752824.887 9374328.924 504.416 P_0583 752830.047 9374328.182 504.335 P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374326.699 504.174 P_0586 752845.528 9374325.957 504.093 P_0587 752850.689 9374325.215 504.012 P_0588 752850.689 9374324.473 503.931 P_0589 752861.010 9374322.290 503.769 P_0590 752866.170 9374322.290 503.769 P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374320.023 503.446 P_0593 752881.651 9374320.023 503.446 P_0595 <th< th=""><th>P_0576</th><th>752793.925</th><th>9374333.374</th><th>504.901</th></th<>	P_0576	752793.925	9374333.374	504.901
P_0579 752809.406 9374331.149 504.659 P_0580 752814.566 9374330.407 504.578 P_0581 752819.727 9374329.666 504.497 P_0582 752824.887 9374328.924 504.416 P_0583 752830.047 9374328.182 504.335 P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374326.699 504.174 P_0586 752845.528 9374325.957 504.093 P_0587 752850.689 9374325.215 504.012 P_0588 752850.689 9374324.473 503.931 P_0589 752861.010 9374322.215 503.850 P_0590 752866.170 9374322.990 503.769 P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374320.023 503.608 P_0593 752881.651 9374320.023 503.446 P_0594 752891.972 9374319.281 503.284 P_0596 <th< th=""><th>P_0577</th><th>752799.085</th><th>9374332.633</th><th>504.820</th></th<>	P_0577	752799.085	9374332.633	504.820
P_0580 752814.566 9374330.407 504.578 P_0581 752819.727 9374329.666 504.497 P_0582 752824.887 9374328.924 504.416 P_0583 752830.047 9374328.182 504.335 P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374326.699 504.174 P_0586 752845.528 9374325.957 504.093 P_0587 752850.689 9374325.215 504.012 P_0588 752855.849 9374324.473 503.931 P_0589 752861.010 9374323.732 503.850 P_0590 752866.170 9374322.990 503.769 P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374320.765 503.527 P_0594 752886.811 9374320.023 503.446 P_0595 752891.972 9374319.281 503.284 P_0596 752902.293 9374317.798 503.204 P_0599 <th< th=""><th>P_0578</th><th>752804.245</th><th>9374331.891</th><th>504.739</th></th<>	P_0578	752804.245	9374331.891	504.739
P_0581 752819.727 9374329.666 504.497 P_0582 752824.887 9374328.924 504.416 P_0583 752830.047 9374328.182 504.335 P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374326.699 504.174 P_0586 752845.528 9374325.957 504.093 P_0587 752850.689 9374325.215 504.012 P_0588 752855.849 9374324.473 503.931 P_0589 752861.010 9374322.732 503.850 P_0590 752866.170 9374322.990 503.769 P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374321.506 503.608 P_0593 752881.651 9374320.023 503.446 P_0594 752886.811 9374319.281 503.365 P_0595 752891.972 9374318.539 503.284 P_0596 752902.293 9374317.798 503.204 P_0599 <th< th=""><th>P_0579</th><th>752809.406</th><th>9374331.149</th><th>504.659</th></th<>	P_0579	752809.406	9374331.149	504.659
P_0582 752824.887 9374328.924 504.416 P_0583 752830.047 9374328.182 504.335 P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374326.699 504.174 P_0586 752845.528 9374325.957 504.093 P_0587 752850.689 9374325.215 504.012 P_0588 752855.849 9374324.473 503.931 P_0589 752861.010 9374323.732 503.850 P_0590 752866.170 9374322.990 503.769 P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374321.506 503.608 P_0593 752881.651 9374320.023 503.446 P_0594 752886.811 9374319.281 503.365 P_0595 752891.972 9374318.539 503.284 P_0596 752897.132 9374317.798 503.204 P_0598 752902.293 9374317.056 503.123 P_0599 <th< th=""><th>P_0580</th><th>752814.566</th><th>9374330.407</th><th>504.578</th></th<>	P_0580	752814.566	9374330.407	504.578
P_0583 752830.047 9374328.182 504.335 P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374326.699 504.174 P_0586 752845.528 9374325.957 504.093 P_0587 752850.689 9374325.215 504.012 P_0588 752855.849 9374324.473 503.931 P_0589 752861.010 9374322.990 503.769 P_0590 752871.330 9374322.248 503.689 P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374320.765 503.527 P_0593 752881.651 9374320.023 503.446 P_0594 752886.811 9374319.281 503.365 P_0595 752891.972 9374319.281 503.284 P_0596 752897.132 9374317.798 503.204 P_0598 752902.293 9374317.056 503.123 P_0599 752912.613 9374316.314 503.042 P_0600 <th< th=""><th>P_0581</th><th>752819.727</th><th>9374329.666</th><th>504.497</th></th<>	P_0581	752819.727	9374329.666	504.497
P_0584 752835.208 9374327.440 504.254 P_0585 752840.368 9374326.699 504.174 P_0586 752845.528 9374325.957 504.093 P_0587 752850.689 9374325.215 504.012 P_0588 752855.849 9374324.473 503.931 P_0589 752861.010 9374323.732 503.850 P_0590 752866.170 9374322.990 503.769 P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374321.506 503.608 P_0593 752881.651 9374320.765 503.527 P_0594 752886.811 9374320.023 503.446 P_0595 752891.972 9374319.281 503.365 P_0596 752897.132 9374318.539 503.284 P_0597 752902.293 9374317.798 503.204 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P_0582	752824.887	9374328.924	504.416
P_0585 752840.368 9374326.699 504.174 P_0586 752845.528 9374325.957 504.093 P_0587 752850.689 9374325.215 504.012 P_0588 752855.849 9374324.473 503.931 P_0589 752861.010 9374323.732 503.850 P_0590 752866.170 9374322.990 503.769 P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374321.506 503.608 P_0593 752881.651 9374320.765 503.527 P_0594 752886.811 9374320.023 503.446 P_0595 752891.972 9374319.281 503.365 P_0596 752897.132 9374318.539 503.284 P_0597 752902.293 9374317.798 503.204 P_0598 752907.453 9374316.314 503.042 P_0599 752912.613 9374315.572 502.961	P_0583	752830.047	9374328.182	504.335
P_0586 752845.528 9374325.957 504.093 P_0587 752850.689 9374325.215 504.012 P_0588 752855.849 9374324.473 503.931 P_0589 752861.010 9374323.732 503.850 P_0590 752866.170 9374322.990 503.769 P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374321.506 503.608 P_0593 752881.651 9374320.765 503.527 P_0594 752886.811 9374320.023 503.446 P_0595 752891.972 9374319.281 503.365 P_0596 752897.132 9374318.539 503.284 P_0597 752902.293 9374317.798 503.204 P_0598 752907.453 9374316.314 503.042 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P_0584	752835.208	9374327.440	504.254
P_0587 752850.689 9374325.215 504.012 P_0588 752855.849 9374324.473 503.931 P_0589 752861.010 9374323.732 503.850 P_0590 752866.170 9374322.990 503.769 P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374321.506 503.608 P_0593 752881.651 9374320.765 503.527 P_0594 752886.811 9374320.023 503.446 P_0595 752891.972 9374319.281 503.365 P_0596 752897.132 9374318.539 503.284 P_0597 752902.293 9374317.798 503.204 P_0598 752907.453 9374317.056 503.123 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P_0585	752840.368	9374326.699	504.174
P_0588 752855.849 9374324.473 503.931 P_0589 752861.010 9374323.732 503.850 P_0590 752866.170 9374322.990 503.769 P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374321.506 503.608 P_0593 752881.651 9374320.765 503.527 P_0594 752886.811 9374320.023 503.446 P_0595 752891.972 9374319.281 503.365 P_0596 752897.132 9374318.539 503.284 P_0597 752902.293 9374317.798 503.204 P_0598 752907.453 9374317.056 503.123 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P_0586	752845.528	9374325.957	504.093
P_0589 752861.010 9374323.732 503.850 P_0590 752866.170 9374322.990 503.769 P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374321.506 503.608 P_0593 752881.651 9374320.765 503.527 P_0594 752886.811 9374320.023 503.446 P_0595 752891.972 9374319.281 503.365 P_0596 752897.132 9374318.539 503.284 P_0597 752902.293 9374317.798 503.204 P_0598 752907.453 9374317.056 503.123 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P_0587	752850.689	9374325.215	504.012
P_0590 752866.170 9374322.990 503.769 P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374321.506 503.608 P_0593 752881.651 9374320.765 503.527 P_0594 752886.811 9374320.023 503.446 P_0595 752891.972 9374319.281 503.365 P_0596 752897.132 9374318.539 503.284 P_0597 752902.293 9374317.798 503.204 P_0598 752907.453 9374317.056 503.123 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P_0588	752855.849	9374324.473	503.931
P_0591 752871.330 9374322.248 503.689 P_0592 752876.491 9374321.506 503.608 P_0593 752881.651 9374320.765 503.527 P_0594 752886.811 9374320.023 503.446 P_0595 752891.972 9374319.281 503.365 P_0596 752897.132 9374318.539 503.284 P_0597 752902.293 9374317.798 503.204 P_0598 752907.453 9374317.056 503.123 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P_0589	752861.010	9374323.732	503.850
P_0592 752876.491 9374321.506 503.608 P_0593 752881.651 9374320.765 503.527 P_0594 752886.811 9374320.023 503.446 P_0595 752891.972 9374319.281 503.365 P_0596 752897.132 9374318.539 503.284 P_0597 752902.293 9374317.798 503.204 P_0598 752907.453 9374317.056 503.123 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P_0590	752866.170	9374322.990	503.769
P_0593 752881.651 9374320.765 503.527 P_0594 752886.811 9374320.023 503.446 P_0595 752891.972 9374319.281 503.365 P_0596 752897.132 9374318.539 503.284 P_0597 752902.293 9374317.798 503.204 P_0598 752907.453 9374317.056 503.123 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P_0591	752871.330	9374322.248	503.689
P_0594 752886.811 9374320.023 503.446 P_0595 752891.972 9374319.281 503.365 P_0596 752897.132 9374318.539 503.284 P_0597 752902.293 9374317.798 503.204 P_0598 752907.453 9374317.056 503.123 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P_0592	752876.491	9374321.506	503.608
P_0595 752891.972 9374319.281 503.365 P_0596 752897.132 9374318.539 503.284 P_0597 752902.293 9374317.798 503.204 P_0598 752907.453 9374317.056 503.123 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P_0593	752881.651	9374320.765	503.527
P_0596 752897.132 9374318.539 503.284 P_0597 752902.293 9374317.798 503.204 P_0598 752907.453 9374317.056 503.123 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P 0594	752886.811	9374320.023	503.446
P_0597 752902.293 9374317.798 503.204 P_0598 752907.453 9374317.056 503.123 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P 0595	752891.972	9374319.281	503.365
P_0598 752907.453 9374317.056 503.123 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P 0596	752897.132	9374318.539	503.284
P_0598 752907.453 9374317.056 503.123 P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P 0597	752902.293	9374317.798	503.204
P_0599 752912.613 9374316.314 503.042 P_0600 752917.774 9374315.572 502.961	P 0598		9374317.056	
P_0600 752917.774 9374315.572 502.961	P 0599			
	P 0600			
P 0601 752922.934 9374314.831 502.880	_			
P 0602 752928.094 9374314.089 502.799	_			

	COORDEN	ADAS UTM	Elevación		COORDEN	ADAS UTM	Elevación
PUNTO	Norte (m)	Este (m)	(ms.n.m)	PUNTO	Norte (m)	Este (m)	(ms.n.m)
P 0603	752933.255	9374313.347	502.719	P_0646	753155.151	9374281.452	499.243
P_0604	752938.415	9374312.605	502.638	P_0647	753160.311	9374280.710	499.162
P 0605	752943.576	9374311.864	502.557	P_0648	753165.472	9374279.969	499.081
P 0606	752948.736	9374311.122	502.476	P_0649	753170.632	9374279.227	499.000
P 0607	752953.896	9374310.380	502.395	P_0650	753175.793	9374278.485	498.919
P_0608	752959.057	9374309.638	502.314	P_0651	753180.953	9374277.743	498.838
P_0609	752964.217	9374308.897	502.234	P_0652	753186.113	9374277.002	498.758
P_0610	752969.377	9374308.155	502.153	P_0653	753191.274	9374276.260	498.677
P_0611	752974.538	9374307.413	502.072	P_0654	753196.434	9374275.518	498.596
P_0612	752979.698	9374306.671	501.991	P_0655	753201.594	9374274.776	498.515
P_0613	752984.859	9374305.930	501.910	P_0656	753206.755	9374274.035	498.434
P_0614	752990.019	9374305.188	501.829	P_0657	753211.915	9374273.293	498.353
P_0615	752995.179	9374304.446	501.749	P_0658	753217.076	9374272.551	498.273
P_0616	753000.340	9374303.704	501.668	P_0659	753222.236	9374271.809	498.192
P_0617	753005.500	9374302.963	501.587	P_0660	753227.396	9374271.068	498.111
P_0618	753010.660	9374302.221	501.506	P_0661	753232.557	9374270.326	498.030
P_0619	753015.821	9374301.479	501.425	P_0662	753237.717	9374269.584	497.949
P_0620	753020.981	9374300.737	501.344	P_0663	753242.877	9374268.842	497.868
P_0621	753026.142	9374299.996	501.264	P_0664	753248.038	9374268.101	497.788
P_0622	753031.302	9374299.254	501.183	P_0665	753253.198	9374267.359	497.707
P_0623	753036.462	9374298.512	501.102	P_0666	753258.359	9374266.617	497.626
P_0624	753041.623	9374297.770	501.021	P_0667	753263.519	9374265.875	497.545
P_0625	753046.783	9374297.029	500.940	P_0668	753268.679	9374265.134	497.464
P_0626	753051.943	9374296.287	500.859	P_0669	753273.840	9374264.392	497.383
P_0627	753057.104	9374295.545	500.779	P_0670	753279.000	9374263.650	497.303
P_0628	753062.264	9374294.803	500.698	P_0671	753284.160	9374262.908	497.222
P_0629	753067.425	9374294.062	500.617	P_0672	753289.321	9374262.167	497.141
P_0630	753072.585	9374293.320	500.536	P_0673	753294.481	9374261.425	497.060
P_0631	753077.745	9374292.578	500.455	P_0674	753299.642	9374260.683	496.979
P_0632	753082.906	9374291.837	500.374	P_0675	753304.802	9374259.941	496.898
P_0633	753088.066	9374291.095	500.293	P_0676	753309.962	9374259.200	496.818
P_0634	753093.227	9374290.353	500.213	P_0677	753315.123	9374258.458	496.737
P_0635	753098.387	9374289.611	500.132	P_0678	753320.283	9374257.716	496.656
P_0636	753103.547	9374288.870	500.051	P_0679	753325.443	9374256.974	496.575
P_0637	753108.708	9374288.128	499.970	P_0680	753330.604	9374256.233	496.494
P_0638	753113.868	9374287.386	499.889	P_0681	753335.764	9374255.491	496.413
P_0639	753119.028	9374286.644	499.808	P_0682	753340.925	9374254.749	496.333
P_0640	753124.189	9374285.903	499.728	P_0683	753346.085	9374254.007	496.252
P_0641	753129.349	9374285.161	499.647	P_0684	753351.245	9374253.266	496.171
P_0642	753134.510	9374284.419	499.566	P_0685	753356.406	9374252.524	496.090
P_0643	753139.670	9374283.677	499.485	P_0686	753361.566	9374251.782	496.009
P_0644	753144.830	9374282.936	499.404	P_0687	753366.726	9374251.040	495.928
P_0645	753149.991	9374282.194	499.323	P_0688	753371.887	9374250.299	495.847

COORDENADAS	ADAS UTM	Elevación	
PUNTO	Norte (m)	Este (m)	(ms.n.m)
P 0689	753377.047	9374249.557	495,767
P 0690	753382.208	9374248.815	495,686
P 0691	753387.368	9374248.073	495,605
P 0692	753392.528	9374247.332	495,524
P 0693	753397.689	9374246,590	495,443
P 0694	753402.849	9374245.848	495,362
P 0695	753408.009	9374245.106	495,282
P 0696	753413.170	9374244,365	495.201
P 0697	753418.330	9374243.623	495,120
P 0698	753423,491	9374242.881	495,039
P 0699	753428.651	9374242.139	494.958
P 0700	753433.811	9374241.398	494.877
P 0701	753438.972	9374240.656	494.797
P 0702	753444.132	9374239.914	494.716
P 0703	753449.292	9374239.172	494.635
P 0704	753454.453	9374238.431	494.554
P 0705	753459.613	9374237.689	494.473
P 0706	753464.774	9374236.947	494.392
P 0707	753469.934	9374236.205	494.312
P 0708	753475.094	9374235.464	494.231
P_0709	753480.255	9374234.722	494.150
P_0710	753485.415	9374233.980	494.069
P_0711	753490.575	9374233.238	493.988
P_0712	753495.736	9374232.497	493.907
P_0713	753500.896	9374231.755	493.827
P_0714	753506.057	9374231.013	493.746
P_0715	753511.217	9374230.271	493.665
P_0716	753516.377	9374229.530	493.584
P_0717	753521.538	9374228.788	493.503
P_0718	753526.698	9374228.046	493.422
P_0719	753531.858	9374227.304	493.342
P_0720	753537.019	9374226.563	493.261
P_0721	753542.179	9374225.821	493.180
P_0722	753547.340	9374225.079	493.099
P_0723	753552.500	9374224.337	493.018
P_0724	753557.660	9374223.596	492.937
P_0725	753562.821	9374222.854	492.857
P_0726	753567.981	9374222.112	492.776
P_0727	753573.141	9374221.370	492.695
P_0728	753578.302	9374220.629	492.614
P_0729	753583.462	9374219.887	492.533
P_0730	753588.623	9374219.145	492.452
P_0731	753593.783	9374218.403	492.372

	COORDENADAS UTM		Elevación
PUNTO	Norte (m)	Este (m)	(ms.n.m)
P 0732	753598,943	9374217.662	492.291
P 0733	753604.104	9374216.920	492,210
P 0734	753609.264	9374216.178	492.129
P 0735	753614.424	9374215.436	492,048
P 0736	753619.585	9374214.695	491.967
P 0737	753624,745	9374213.953	491.887
P 0738	753629.906	9374213.211	491.806
P 0739	753635.066	9374212.469	491.725
P 0740	753640.226	9374211.728	491.644
P 0741	753645.387	9374210.986	491.563
P_0742	753650.547	9374210.244	491.482
P_0743	753655.707	9374209.502	491.402
P_0744	753660.868	9374208.761	491.321
P_0745	753666.028	9374208.019	491.240
P 0746	753671.189	9374207.277	491.159
P_0747	753676.349	9374206.535	491.078
P_0748	753681.509	9374205.794	490.997
P_0749	753686.670	9374205.052	490.916
P_0750	753691.830	9374204.310	490.836
P_0751	753696.990	9374203.568	490.755
P_0752	753702.151	9374202.827	490.674
P_0753	753707.311	9374202.085	490.593
P_0754	753712.472	9374201.343	490.512
P_0755	753717.632	9374200.601	490.431
P_0756	753722.792	9374199.860	490.351
P_0757	753727.953	9374199.118	490.270
P_0758	753733.113	9374198.376	490.189
P_0759	753738.273	9374197.634	490.108
P_0760	753743.434	9374196.893	490.027
P_0761	753748.594	9374196.151	489.946
P_0762	753753.755	9374195.409	489.866
P_0763	753758.915	9374194.667	489.785
P_0764	753764.075	9374193.926	489.704
P_0765	753769.236	9374193.184	489.623
P_0766	753774.396	9374192.442	489.542
P_0767	753779.556	9374191.700	489.461
P_0768	753784.717	9374190.959	489.381
P_0769	753789.877	9374190.217	489.300
P_0770	753795.038	9374189.475	489.219
P_0771	753800.198	9374188.733	489.138
P_0772	753805.358	9374187.992	489.057
P_0773	753810.519	9374187.250	488.976
P_0774	753815.679	9374186.508	488.896

P_0775 753820.839 9374185.766 488.815 P_0818 754042.736 9374153.871 488 P_0776 753826.000 9374185.025 488.734 P_0819 754047.896 9374153.129 488 P_0777 753831.160 9374184.283 488.653 P_0820 754053.056 9374153.129 488 P_0778 75386.321 9374182.799 488.491 P_0822 754063.377 9374150.904 488 P_0780 753851.802 9374181.316 488.330 P_0824 754073.698 9374149.421 488 P_0781 753855.962 9374179.932 488.168 P_0824 754078.858 9374149.421 488 P_0783 753867.283 9374179.932 488.168 P_0825 754084.019 9374147.1937 488 P_0784 753877.604 9374176.865 487.926 P_0829 754089.179 9374144.919 488 P_0785 753877.604 9374175.865 487.845 P_0830 754104.660 9374144.970 488	.n.m)
P_0776 753826.000 9374185.025 488.734 P_0819 754047.896 9374153.129 488 P_0777 753831.160 9374184.283 488.653 P_0820 754053.056 9374152.388 488 P_0778 753836.321 9374183.541 488.572 P_0821 754058.217 9374150.904 488 P_0780 753846.641 9374182.058 488.491 P_0822 754068.337 9374150.904 488 P_0781 753856.962 9374180.164 488.330 P_0824 754073.698 9374144.9421 488 P_0783 753866.962 9374178.316 488.249 P_0825 754078.858 9374147.937 488 P_0784 753867.283 9374179.931 488.087 P_0826 754084.019 9374147.195 488 P_0785 753875.604 9374176.865 487.845 P_0829 754099.500 9374144.7195 488 P_0787 753893.085 9374175.382 487.662 P_0829 754099.500 9374144.970 488	220
P_0777 753831.160 9374184.283 488.653 P_0820 754053.056 9374152.388 48: P_0778 753836.321 9374183.541 488.572 P_0821 754058.217 9374151.646 48: P_0779 753841.481 9374182.058 488.491 P_0822 754068.537 9374150.904 48: P_0781 753851.802 9374181.316 488.330 P_0823 754068.537 9374149.421 48: P_0782 753856.962 9374180.574 488.249 P_0825 754078.858 9374149.421 48: P_0783 753867.283 9374179.832 488.168 P_0826 754084.019 9374147.937 48: P_0784 753867.243 9374176.07 487.926 P_0827 754089.179 9374147.195 48: P_0785 753877.604 9374176.865 487.845 P_0829 754099.300 9374144.970 48: P_0787 753893.085 9374175.382 487.683 P_0830 754109.820 9374144.970 48:	.559
P_0778 753836.321 9374183.541 488.572 P_0821 754058.217 9374151.646 483 P_0779 753841.481 9374182.799 488.491 P_0822 754063.377 9374150.904 483 P_0781 753851.802 9374181.316 488.330 P_0823 754068.537 937419.421 488 P_0782 753856.962 9374180.574 488.249 P_0825 754078.858 9374148.679 488 P_0783 753862.122 9374179.832 488.168 P_0826 754084.019 9374147.195 488 P_0785 753872.443 9374176.805 487.926 P_0827 754084.019 9374147.195 488 P_0786 753877.604 9374176.865 487.845 P_0829 754099.500 9374145.712 484 P_0787 753882.764 9374176.865 487.845 P_0830 754109.820 9374142.28 48 P_0789 753893.085 9374175.824 487.683 P_0830 754109.820 9374142.344 48 <	.258
P_0779 753841.481 9374182.799 488.491 P_0822 754063.377 9374150.904 483 P_0780 753846.641 9374182.058 488.411 P_0823 754068.537 9374150.162 484 P_0781 753851.802 9374180.574 488.330 P_0824 754073.698 9374140.421 484 P_0782 753856.962 9374180.574 488.249 P_0825 754078.858 9374148.679 484 P_0783 753862.122 9374179.832 488.087 P_0826 754084.019 9374147.937 484 P_0784 753867.283 9374178.349 488.086 P_0827 754089.179 9374147.195 484 P_0785 753872.443 9374176.667 487.926 P_0829 754094.339 9374144.195 484 P_0787 753882.764 9374176.865 487.845 P_0830 754104.660 937414.4970 484 P_0789 753893.085 9374173.898 487.521 P_0831 754109.800 9374144.228 484	.177
P_0780 753846.641 9374182.058 488.411 P_0823 754068.537 9374150.162 488 P_0781 753851.802 9374181.316 488.330 P_0824 754073.698 9374149.421 488 P_0782 753856.962 9374180.574 488.249 P_0825 754078.858 9374148.679 486 P_0783 753862.122 9374179.091 488.087 P_0826 754089.119 9374147.937 488 P_0785 753872.443 9374178.349 488.006 P_0828 754089.179 9374147.195 488 P_0786 753876.04 9374177.607 487.926 P_0829 754089.179 9374145.145 488 P_0787 753882.764 937417.607 487.926 P_0829 754089.139 9374144.970 488 P_0788 75387.924 9374176.124 487.644 P_0831 754109.820 9374144.970 488 P_0789 753893.085 9374175.382 487.602 P_0831 754109.820 9374144.228 488	.096
P_0781 753851.802 9374181.316 488.330 P_0824 754073.698 9374149.421 488 P_0782 753856.962 9374180.574 488.249 P_0825 754078.858 9374148.679 488 P_0783 753862.122 9374179.832 488.168 P_0826 754084.019 9374147.937 484 P_0784 753867.283 9374179.091 488.087 P_0827 754089.179 9374147.195 484 P_0785 753872.443 9374176.07 487.926 P_0829 754099.500 9374145.712 484 P_0787 753882.764 9374176.865 487.845 P_0830 754104.660 9374144.970 484 P_0789 753893.085 9374176.124 487.664 P_0831 754109.820 9374144.228 484 P_0789 753893.085 9374174.640 487.602 P_0831 754109.820 9374142.745 484 P_0791 753903.405 9374173.898 487.521 P_0833 754120.141 9374142.03 48	.015
P_0782 753856,962 9374180.574 488.249 P_0825 754078.858 9374148.679 482 P_0783 753862,122 9374179.832 488.168 P_0826 754084.019 9374147.937 484 P_0784 753867,283 9374179.091 488.087 P_0827 754089.179 9374147.195 484 P_0785 753872.443 9374176.007 487.926 P_0828 754099.500 9374145.712 484 P_0787 753882.764 9374176.865 487.845 P_0830 754104.660 9374144.228 484 P_0788 753893.085 9374175.382 487.683 P_0831 754109.820 9374143.487 484 P_0790 753898.245 9374173.898 487.521 P_0831 754114.981 9374142.745 484 P_0792 753993.456 9374173.157 487.441 P_0835 754125.302 9374142.003 484 P_0793 753918.887 9374170.91 487.198 P_0835 754130.462 9374140.520 483	.935
P_0783 753862.122 9374179.832 488.168 P_0826 754084.019 9374147.937 488 P_0784 753867.283 9374179.091 488.087 P_0827 754089.179 9374147.195 488 P_0785 753872.443 9374176.07 487.926 P_0828 754094.339 9374146.454 484 P_0787 753882.764 9374176.065 487.845 P_0830 754104.660 9374144.970 484 P_0788 753882.764 9374175.382 487.683 P_0831 754109.820 9374143.487 484 P_0789 753893.085 9374173.898 487.521 P_0832 754114.981 9374142.245 484 P_0791 753903.405 9374173.898 487.521 P_0833 754120.141 9374142.003 484 P_0792 753998.566 9374172.415 487.441 P_0835 754130.462 9374140.520 483 P_0793 753918.887 9374170.931 487.198 P_0836 754130.462 9374140.520 483	.854
P_0784 753867.283 9374179.091 488.087 P_0827 754089.179 9374147.195 488 P_0785 753872.443 9374178.349 488.006 P_0828 754099.339 9374146.454 486 P_0786 753877.604 9374176.607 487.926 P_0829 754099.500 9374145.712 486 P_0787 753882.764 9374176.124 487.764 P_0830 754104.660 9374144.278 486 P_0789 753893.085 9374175.382 487.683 P_0831 754109.820 9374143.487 486 P_0790 753898.245 9374174.640 487.602 P_0833 754120.141 937412.003 488 P_0791 753903.405 9374173.157 487.441 P_0835 754130.462 9374140.03 488 P_0792 753908.566 9374172.415 487.360 P_0836 754130.462 9374140.520 483 P_0793 753918.887 9374170.931 487.198 P_0836 754140.783 9374139.778 483	.773
P_0785 753872.443 9374178.349 488.006 P_0828 754094.339 9374146.454 488 P_0786 753877.604 9374177.607 487.926 P_0829 754099.500 9374145.712 488 P_0787 753882.764 9374176.865 487.845 P_0830 754104.660 9374144.970 488 P_0788 753887.924 9374175.382 487.644 P_0831 754109.820 9374143.487 486 P_0790 753898.245 9374174.640 487.602 P_0832 754114.981 9374142.745 486 P_0791 753903.405 9374173.898 487.521 P_0834 754125.302 9374142.003 486 P_0792 753908.566 9374172.415 487.360 P_0835 754130.462 9374140.520 483 P_0794 753918.887 9374170.931 487.279 P_0836 754140.783 9374139.036 483 P_0795 753924.047 9374170.190 487.117 P_0839 754151.103 9374139.036 483	.692
P_0786 753877.604 9374177.607 487.926 P_0829 754099.500 9374145.712 488 P_0787 753882.764 9374176.865 487.845 P_0830 754104.660 9374144.970 488 P_0788 753887.924 9374176.124 487.644 P_0831 754109.820 9374144.228 488 P_0789 753893.085 9374175.382 487.683 P_0832 754114.981 9374142.745 484 P_0790 753898.245 9374173.898 487.521 P_0834 754125.302 9374142.003 484 P_0792 753908.566 9374173.157 487.441 P_0835 754130.462 9374141.261 483 P_0793 753918.887 9374171.673 487.279 P_0836 754135.622 9374140.520 483 P_0795 753924.047 9374170.190 487.117 P_0839 75415.043 9374139.036 483 P_0797 753934.368 9374169.448 487.036 P_0840 75415.244 9374136.811 483	.611
P_0787 753882.764 9374176.865 487.845 P_0830 754104.660 9374144.970 488 P_0788 753887.924 9374176.124 487.764 P_0831 754109.820 9374144.228 484 P_0789 753893.085 9374175.382 487.683 P_0832 754114.981 9374143.487 484 P_0790 753898.245 9374174.640 487.602 P_0833 754120.141 9374142.043 484 P_0791 753903.405 9374173.898 487.521 P_0834 754125.302 9374142.003 484 P_0792 753908.566 9374172.415 487.441 P_0835 754130.462 9374140.520 483 P_0793 753913.726 9374170.415 487.360 P_0836 754130.462 9374140.520 483 P_0794 753918.887 9374170.931 487.279 P_0837 754140.783 9374139.078 483 P_0795 753924.047 9374170.931 487.198 P_0838 754151.103 9374138.294 483	.530
P_0788 753887.924 9374176.124 487.764 P_0831 754109.820 9374144.228 488 P_0789 753893.085 9374175.382 487.683 P_0832 754114.981 9374143.487 488 P_0790 753898.245 9374174.640 487.602 P_0833 754120.141 9374142.745 488 P_0791 753903.405 9374173.157 487.441 P_0835 754130.462 9374141.261 483 P_0793 753913.726 9374172.415 487.360 P_0836 754135.622 9374140.520 483 P_0794 753918.887 9374171.673 487.279 P_0836 754140.783 9374139.778 483 P_0795 753924.047 9374170.931 487.198 P_0838 754145.943 9374139.036 483 P_0796 753929.207 9374170.190 487.117 P_0839 754151.103 9374138.294 483 P_0797 753934.368 9374169.448 487.036 P_0840 754166.264 9374135.811 483	.450
P_0789 753893.085 9374175.382 487.683 P_0832 754114.981 9374143.487 484 P_0790 753898.245 9374174.640 487.602 P_0833 754120.141 9374142.745 484 P_0791 753903.405 9374173.898 487.521 P_0834 754125.302 9374142.003 484 P_0792 753908.566 9374172.415 487.360 P_0835 754130.462 9374140.520 483 P_0794 753918.887 9374170.673 487.279 P_0836 754135.622 9374139.078 483 P_0795 753924.047 9374170.190 487.117 P_0839 754151.103 9374139.036 483 P_0796 753934.368 9374169.448 487.036 P_0840 754156.264 9374137.553 483 P_0798 753934.688 9374167.964 486.875 P_0840 754166.585 9374136.811 483 P_0801 753955.009 9374166.481 486.713 P_0844 754176.905 9374135.328 483	.369
P_0790 753898.245 9374174,640 487.602 P_0833 754120.141 9374142.745 484 P_0791 753903.405 9374173.898 487.521 P_0834 754125.302 9374142.003 482 P_0792 753908.566 9374173.157 487.441 P_0835 754130.462 9374141.261 483 P_0793 753913.726 9374170.415 487.360 P_0836 754135.622 9374140.520 483 P_0794 753918.887 9374170.673 487.279 P_0837 754140.783 9374139.778 483 P_0795 753924.047 9374170.190 487.117 P_0839 754151.103 9374138.294 483 P_0797 753934.368 9374169.448 487.036 P_0840 754156.264 9374135.532 483 P_0798 753939.528 9374167.964 486.875 P_0841 754166.585 9374136.811 483 P_0800 753949.849 9374167.223 486.794 P_0843 754171.745 9374135.328 483	.288
P_0791 753903.405 9374173.898 487.521 P_0834 754125.302 9374142.003 487.441 P_0792 753908.566 9374173.157 487.441 P_0835 754130.462 9374141.261 483.436 P_0793 753913.726 9374171.673 487.360 P_0836 754135.622 9374140.520 483.436 P_0794 753918.887 9374170.931 487.198 P_0837 754140.783 9374139.036 483.436 P_0795 753924.047 9374170.190 487.117 P_0839 754151.103 9374138.294 483.436 P_0796 753934.368 9374168.706 486.956 P_0840 754156.264 9374137.553 483.436 P_0798 753939.528 9374168.706 486.956 P_0840 754161.424 9374136.811 483.436 P_0799 753944.688 9374167.964 486.956 P_0841 754161.424 9374136.069 483.436 P_0800 753949.849 9374166.481 486.713 P_0842 754166.585 9374134.586	.207
P_0792 753908.566 9374173.157 487.441 P_0835 754130.462 9374141.261 483 P_0793 753913.726 9374172.415 487.360 P_0836 754135.622 9374140.520 483 P_0794 753918.887 9374170.931 487.198 P_0837 754140.783 9374139.036 483 P_0795 753924.047 9374170.190 487.117 P_0838 754151.103 9374138.294 483 P_0796 753934.368 9374169.448 487.036 P_0840 754156.264 9374137.553 483 P_0797 753934.368 9374168.706 486.956 P_0840 754161.424 9374136.811 483 P_0799 753944.688 9374167.964 486.875 P_0841 754161.424 9374136.069 483 P_0800 753949.849 9374166.481 486.713 P_0843 754171.745 9374135.328 483 P_0801 753955.009 9374165.739 486.632 P_0844 754176.905 9374133.844 483	.126
P_0793 753913.726 9374172.415 487.360 P_0836 754135.622 9374140.520 483 P_0794 753918.887 9374171.673 487.279 P_0837 754140.783 9374139.778 483 P_0795 753924.047 9374170.931 487.198 P_0838 754145.943 9374139.036 483 P_0796 753929.207 9374170.190 487.117 P_0839 754151.103 9374138.294 483 P_0797 753934.368 9374168.706 486.956 P_0840 754156.264 9374137.553 483 P_0798 753939.528 9374168.706 486.956 P_0841 754161.424 9374136.811 483 P_0800 753949.849 9374167.223 486.794 P_0842 754166.585 9374136.069 483 P_0801 753955.009 9374166.481 486.713 P_0844 754176.905 9374134.586 483 P_0802 753960.170 9374164.256 486.632 P_0845 754182.066 9374133.844 483	.045
P_0794 753918.887 9374171.673 487.279 P_0837 754140.783 9374139.778 483 P_0795 753924.047 9374170.931 487.198 P_0838 754145.943 9374139.036 483 P_0796 753929.207 9374170.190 487.117 P_0839 754151.103 9374138.294 483 P_0797 753934.368 9374169.448 487.036 P_0840 754156.264 9374137.553 483 P_0798 753939.528 9374168.706 486.956 P_0841 754161.424 9374136.811 483 P_0800 753944.688 9374167.964 486.875 P_0842 754166.585 9374136.069 483 P_0801 753955.009 9374166.481 486.713 P_0843 75417.745 9374135.328 483 P_0802 753960.170 9374165.739 486.632 P_0845 754182.066 9374133.844 483 P_0804 753975.651 9374163.514 486.390 P_0847 754192.386 9374132.361 483	.965
P_0795 753924.047 9374170.931 487.198 P_0838 754145.943 9374139.036 483 P_0796 753929.207 9374170.190 487.117 P_0839 754151.103 9374138.294 483 P_0797 753934.368 9374169.448 487.036 P_0840 754156.264 9374137.553 483 P_0798 753939.528 9374168.706 486.956 P_0841 754161.424 9374136.811 483 P_0800 753944.688 9374167.223 486.794 P_0842 754166.585 9374135.328 483 P_0801 753955.009 9374166.481 486.713 P_0844 754176.905 9374134.586 483 P_0802 753960.170 9374165.739 486.632 P_0845 754182.066 9374133.844 483 P_0804 753970.490 9374164.256 486.470 P_0846 754187.226 9374132.361 483 P_0805 753985.971 9374162.772 486.309 P_0849 754202.707 9374130.877 482	.884
P_0796 753929.207 9374170.190 487.117 P_0839 754151.103 9374138.294 483 P_0797 753934.368 9374169.448 487.036 P_0840 754156.264 9374137.553 483 P_0798 753939.528 9374168.706 486.956 P_0841 754161.424 9374136.811 483 P_0799 753944.688 9374167.964 486.875 P_0842 754166.585 9374136.069 483 P_0800 753949.849 9374167.223 486.794 P_0843 754177.745 9374135.328 483 P_0801 753955.009 9374166.481 486.713 P_0844 754176.905 9374134.586 483 P_0802 753960.170 9374165.739 486.632 P_0845 754182.066 9374133.844 483 P_0803 753970.490 9374164.256 486.470 P_0846 754187.226 9374132.361 483 P_0805 753975.651 9374163.514 486.390 P_0848 754192.386 9374130.877 483	.803
P_0797 753934.368 9374169.448 487.036 P_0840 754156.264 9374137.553 483 P_0798 753939.528 9374168.706 486.956 P_0841 754161.424 9374136.811 483 P_0799 753944.688 9374167.964 486.875 P_0842 754166.585 9374136.069 483 P_0800 753949.849 9374167.223 486.794 P_0843 754171.745 9374135.328 483 P_0801 753955.009 9374166.481 486.713 P_0844 754176.905 9374134.586 483 P_0802 753960.170 9374165.739 486.632 P_0845 754182.066 9374133.844 483 P_0803 753970.490 9374164.256 486.470 P_0846 754187.226 9374132.361 483 P_0805 753975.651 9374163.514 486.390 P_0848 754192.386 9374130.877 483 P_0807 753985.971 9374162.030 486.228 P_0850 754207.868 9374130.135 483	.722
P_0798 753939.528 9374168.706 486.956 P_0841 754161.424 9374136.811 483 P_0799 753944.688 9374167.964 486.875 P_0842 754166.585 9374136.069 483 P_0800 753949.849 9374167.223 486.794 P_0843 754171.745 9374135.328 483 P_0801 753955.009 9374166.481 486.713 P_0844 754176.905 9374134.586 483 P_0802 753960.170 9374165.739 486.632 P_0845 754182.066 9374133.844 483 P_0803 753965.330 9374164.997 486.551 P_0846 754187.226 9374133.102 483 P_0804 753970.490 9374164.256 486.470 P_0847 754192.386 9374132.361 483 P_0805 753980.811 9374162.772 486.309 P_0848 754202.707 9374130.877 483 P_0807 753985.971 9374162.030 486.228 P_0850 754207.868 9374130.135 483 <	.641
P_0799 753944.688 9374167.964 486.875 P_0842 754166.585 9374136.069 483 P_0800 753949.849 9374167.223 486.794 P_0843 754171.745 9374135.328 483 P_0801 753955.009 9374166.481 486.713 P_0844 754176.905 9374134.586 483 P_0802 753960.170 9374165.739 486.632 P_0845 754182.066 9374133.844 483 P_0803 753965.330 9374164.997 486.551 P_0846 754187.226 9374133.102 483 P_0804 753970.490 9374164.256 486.470 P_0847 754192.386 9374132.361 483 P_0805 753975.651 9374163.514 486.390 P_0848 754197.547 9374131.619 483 P_0806 753980.811 9374162.072 486.309 P_0849 754202.707 9374130.877 483 P_0807 753985.971 9374162.030 486.228 P_0850 754207.868 9374130.135 483 <	.560
P_0800 753949.849 9374167.223 486.794 P_0843 754171.745 9374135.328 483 P_0801 753955.009 9374166.481 486.713 P_0844 754176.905 9374134.586 483 P_0802 753960.170 9374165.739 486.632 P_0845 754182.066 9374133.844 483 P_0803 753965.330 9374164.997 486.551 P_0846 754187.226 9374133.102 483 P_0804 753970.490 9374164.256 486.470 P_0847 754192.386 9374132.361 483 P_0805 753975.651 9374163.514 486.390 P_0848 754197.547 9374131.619 483 P_0806 753980.811 9374162.772 486.309 P_0849 754202.707 9374130.877 483 P_0807 753985.971 9374162.030 486.228 P_0850 754207.868 9374130.135 483	.480
P_0801 753955.009 9374166.481 486.713 P_0844 754176.905 9374134.586 483 P_0802 753960.170 9374165.739 486.632 P_0845 754182.066 9374133.844 483 P_0803 753965.330 9374164.997 486.551 P_0846 754187.226 9374133.102 483 P_0804 753970.490 9374164.256 486.470 P_0847 754192.386 9374132.361 483 P_0805 753975.651 9374163.514 486.390 P_0848 754197.547 9374131.619 483 P_0806 753980.811 9374162.772 486.309 P_0849 754202.707 9374130.877 483 P_0807 753985.971 9374162.030 486.228 P_0850 754207.868 9374130.135 483	.399
P_0802 753960.170 9374165.739 486.632 P_0845 754182.066 9374133.844 483 P_0803 753965.330 9374164.997 486.551 P_0846 754187.226 9374133.102 483 P_0804 753970.490 9374164.256 486.470 P_0847 754192.386 9374132.361 483 P_0805 753975.651 9374163.514 486.390 P_0848 754197.547 9374131.619 483 P_0806 753980.811 9374162.772 486.309 P_0849 754202.707 9374130.877 483 P_0807 753985.971 9374162.030 486.228 P_0850 754207.868 9374130.135 483	.318
P_0803 753965.330 9374164.997 486.551 P_0846 754187.226 9374133.102 483 P_0804 753970.490 9374164.256 486.470 P_0847 754192.386 9374132.361 483 P_0805 753975.651 9374163.514 486.390 P_0848 754197.547 9374131.619 483 P_0806 753980.811 9374162.772 486.309 P_0849 754202.707 9374130.877 483 P_0807 753985.971 9374162.030 486.228 P_0850 754207.868 9374130.135 483	3.237
P_0804 753970.490 9374164.256 486.470 P_0847 754192.386 9374132.361 482 P_0805 753975.651 9374163.514 486.390 P_0848 754197.547 9374131.619 482 P_0806 753980.811 9374162.772 486.309 P_0849 754202.707 9374130.877 482 P_0807 753985.971 9374162.030 486.228 P_0850 754207.868 9374130.135 482	.156
P_0805 753975.651 9374163.514 486.390 P_0848 754197.547 9374131.619 482 P_0806 753980.811 9374162.772 486.309 P_0849 754202.707 9374130.877 482 P_0807 753985.971 9374162.030 486.228 P_0850 754207.868 9374130.135 482	.075
P_0806 753980.811 9374162.772 486.309 P_0849 754202.707 9374130.877 482 P_0807 753985.971 9374162.030 486.228 P_0850 754207.868 9374130.135 482	.995
P_0807 753985.971 9374162.030 486.228 P_0850 754207.868 9374130.135 482	.914
	833
P 0909 752001 122 0274161 290 496 147 P 0951 754213 028 0374120 304 482	.752
<u>-</u>	.671
<u> </u>	590
<u> </u>	2.510
<u> </u>	.429
	.348
<u>-</u>	267
<u>-</u>	2.186
	2.105
<u>-</u>	2.024
P_0817 754037.575 9374154.613 485.420 P_0860 754259.471 9374122.718 485	.944

	COORDENADAS UTM Elevación COORDENADAS UTM Elev		Elevación				
PUNTO	Norte (m)	Este (m)	(ms.n.m)	PUNTO	Norte (m)	Este (m)	(ms.n.m)
P 0861	754264.632	9374121.976	481.863	P 0904	754486.528	9374090.081	478.387
P 0862	754269.792	9374121.234	481.782	P 0905	754491.688	9374089.339	478.306
P 0863	754274.952	9374120.493	481.701	P 0906	754496.849	9374088.597	478.225
P 0864	754280.113	9374119.751	481.620	P 0907	754502.009	9374087.856	478.144
P 0865	754285.273	9374119.009	481.539	P 0908	754507.169	9374087.114	478.064
P 0866	754290.434	9374118.267	481.459	P 0909	754512.330	9374086.372	477.983
P 0867	754295.594	9374117.526	481.378	P 0910	754517.490	9374085.630	477.902
P 0868	754300.754	9374116.784	481.297	P 0911	754522.650	9374084.889	477.821
P 0869	754305.915	9374116.042	481.216	P 0912	754527.811	9374084.147	477.740
P 0870	754311.075	9374115.300	481.135	P 0913	754532.971	9374083.405	477.659
P 0871	754316.235	9374114.559	481.054	P 0914	754538.132	9374082.663	477.579
P_0872	754321.396	9374113.817	480.974	P_0915	754543.292	9374081.922	477.498
P_0873	754326.556	9374113.075	480.893	P_0916	754548.452	9374081.180	477.417
P_0874	754331.717	9374112.333	480.812	P_0917	754553.613	9374080.438	477.336
P_0875	754336.877	9374111.592	480.731	P_0918	754558.773	9374079.696	477.255
P_0876	754342.037	9374110.850	480.650	P_0919	754563.933	9374078.955	477.174
P_0877	754347.198	9374110.108	480.569	P_0920	754569.094	9374078.213	477.093
P_0878	754352.358	9374109.366	480.489	P_0921	754574.254	9374077.471	477.013
P_0879	754357.518	9374108.625	480.408	P_0922	754579.415	9374076.729	476.932
P_0880	754362.679	9374107.883	480.327	P_0923	754584.575	9374075.988	476.851
P_0881	754367.839	9374107.141	480.246	P_0924	754589.735	9374075.246	476.770
P_0882	754373.000	9374106.399	480.165	P_0925	754594.896	9374074.504	476.689
P_0883	754378.160	9374105.658	480.084	P_0926	754600.056	9374073.762	476.608
P_0884	754383.320	9374104.916	480.004	P_0927	754605.216	9374073.021	476.528
P_0885	754388.481	9374104.174	479.923	P_0928	754610.377	9374072.279	476.447
P_0886	754393.641	9374103.432	479.842	P_0929	754615.537	9374071.537	476.366
P_0887	754398.801	9374102.691	479.761	P_0930	754620.698	9374070.795	476.285
P_0888	754403.962	9374101.949	479.680	P_0931	754625.858	9374070.054	476.204
P_0889	754409.122	9374101.207	479.599	P_0932	754631.018	9374069.312	476.123
P_0890	754414.283	9374100.465	479.519	P_0933	754636.179	9374068.570	476.043
P_0891	754419.443	9374099.724	479.438	P_0934	754641.339	9374067.828	475.962
P_0892	754424.603	9374098.982	479.357	P_0935	754646.499	9374067.087	475.881
P_0893	754429.764	9374098.240	479.276	P_0936	754651.660	9374066.345	475.800
P_0894	754434.924	9374097.498	479.195	P_0937	754656.820	9374065.603	475.719
P_0895	754440.084	9374096.757	479.114	P_0938	754661.981	9374064.861	475.638
P_0896	754445.245	9374096.015	479.034	P_0939	754667.141	9374064.120	475.558
P_0897	754450.405	9374095.273	478.953	P_0940	754672.301	9374063.378	475.477
P_0898	754455.566	9374094.531	478.872	P_0941	754677.462	9374062.636	475.396
P_0899	754460.726	9374093.790	478.791	P_0942	754682.622	9374061.894	475.315
P_0900	754465.886	9374093.048	478.710	P_0943	754687.782	9374061.153	475.234
P_0901	754471.047	9374092.306	478.629	P_0944	754692.943	9374060.411	475.153
P_0902	754476.207	9374091.564	478.549	P_0945	754698.103	9374059.669	475.073
P_0903	754481.367	9374090.823	478.468	P_0946	754703.264	9374058.927	474.992

	COORDEN	COORDENADAS UTM			
PUNTO	Norte (m)	Este (m)	Elevación (ms.n.m)		
P 0947	754708.424	9374058.186	474.911		
P 0948	754713.584	9374057.444	474.830		
P 0949	754718.745	9374056,702	474,749		
P 0950	754723.905	9374055,960	474.668		
P 0951	754729.065	9374055.219	474.588		
P 0952	754734.226	9374054.477	474.507		
P 0953	754739.386	9374053.735	474.426		
P 0954	754744.547	9374052.993	474.345		
P 0955	754749.707	9374052.252	474.264		
P 0956	754754.867	9374051.510	474.183		
P 0957	754760.028	9374050.768	474.103		
P 0958	754765.188	9374050.026	474.022		
P 0959	754770.348	9374049.285	473.941		
P 0960	754775.509	9374048.543	473.860		
P 0961	754780.669	9374047.801	473.779		
P 0962	754785.830	9374047.059	473.698		
P 0963	754790.990	9374046.318	473.618		
P 0964	754796.150	9374045.576	473.537		
P 0965	754801.311	9374044.834	473.456		
P 0966	754806.471	9374044.092	473.375		
P_0967	754811.631	9374043.351	473.294		
P 0968	754816.792	9374042.609	473.213		
P 0969	754821.952	9374041.867	473.133		
P 0970	754827.113	9374041.125	473.052		
P_0971	754832.273	9374040.384	472.971		
P_0972	754837.433	9374039.642	472.890		
P_0973	754842.594	9374038.900	472.809		
P_0974	754847.754	9374038.158	472.728		
P_0975	754852.914	9374037.417	472.647		
P_0976	754858.075	9374036.675	472.567		
P_0977	754863.235	9374035.933	472.486		
P_0978	754868.396	9374035.191	472.405		
P_0979	754873.556	9374034.450	472.324		
P_0980	754878.716	9374033.708	472.243		
P_0981	754883.877	9374032.966	472.162		
P_0982	754889.037	9374032.224	472.082		
P_0983	754894.197	9374031.483	472.001		
P_0984	754899.358	9374030.741	471.920		
P_0985	754904.518	9374029.999	471.839		
P_0986	754909.679	9374029.257	471.758		
P_0987	754914.839	9374028.516	471.677		
P_0988	754919.999	9374027.774	471.597		
P_0989	754925.160	9374027.032	471.516		

	COOPDEN	ADAS UTM	Elevación
PUNTO	Norte (m)	Este (m)	(ms.n.m)
P 0990	754930.320	9374026.290	471.435
P 0991	754935.480	9374025.549	471.354
P 0992	754940,641	9374024.807	471.273
P 0993	754945.801	9374024.065	471.192
P 0994	754950.962	9374023.323	471.112
P 0995	754956.122	9374022.582	471.031
P 0996	754961.282	9374021.840	470,950
P 0997	754966.443	9374021.098	470,869
P 0998	754971.603	9374020.356	470.788
P 0999	754976.763	9374019.615	470.707
P 1000	754981.924	9374018.873	470.627
P 1001	754987.084	9374018.131	470.546
P 1002	754992.245	9374017.389	470.465
P 1003	754997.405	9374016.648	470.384
P 1004	755002.565	9374015.906	470,303
P 1005	755007.726	9374015.164	470.222
P 1006	755012.886	9374014.422	470.142
P 1007	755018.046	9374013.681	470.061
P 1008	755023.207	9374012.939	469.980
P 1009	755028.367	9374012.197	469.899
P 1010	755033.528	9374011.455	469.818
P 1011	755038.688	9374010.714	469.737
P 1012	755043.848	9374009.972	469.657
P 1013	755049.009	9374009.230	469.576
P_1014	755054.169	9374008.488	469.495
P_1015	755059.329	9374007.747	469.414
P_1016	755064.490	9374007.005	469.333
P_1017	755069.650	9374006.263	469.252
P_1018	755074.811	9374005.521	469.172
P_1019	755079.971	9374004.780	469.091
P_1020	755085.131	9374004.038	469.010
P_1021	755090.292	9374003.296	468.929
P_1022	755095.452	9374002.554	468.848
P_1023	755100.612	9374001.813	468.767
P_1024	755105.773	9374001.071	468.687
P_1025	755110.933	9374000.329	468.606
P_1026	755116.094	9373999.587	468.525
P_1027	755121.254	9373998.846	468.444
P_1028	755126.414	9373998.104	468.363
P_1029	755131.575	9373997.362	468.282
P_1030	755136.735	9373996.620	468.202
P_1031	755141.895	9373995.879	468.121
P_1032	755147.056	9373995.137	468.040

	COORDEN	ADAS UTM	Elevación
PUNTO	Norte (m)	Este (m)	(ms.n.m)
P 1033	755152.216	9373994.395	467.959
P_1034	755157.377	9373993.653	467.878
P_1035	755162.537	9373992.912	467.797
P_1036	755167.697	9373992.170	467.716
P_1037	755172.858	9373991.428	467.636
P_1038	755178.018	9373990.686	467.555
P_1039	755183.178	9373989.945	467.474
P_1040	755188.339	9373989.203	467.393
P_1041	755193.499	9373988.461	467.312
P_1042	755198.660	9373987.719	467.231
P_1043	755203.820	9373986.978	467.151
P_1044	755208.980	9373986.236	467.070
P_1045	755214.141	9373985.494	466.989
P_1046	755219.301	9373984.752	466.908
P_1047	755224.461	9373984.011	466.827
P_1048	755229.622	9373983.269	466.746
P_1049	755234.782	9373982.527	466.666
P_1050	755239.943	9373981.786	466.585
P_1051	755245.103	9373981.044	466.504
P_1052	755250.263	9373980.302	466.423
P_1053	755255.424	9373979.560	466.342
P_1054	755260.584	9373978.819	466.261
P_1055	755265.744	9373978.077	466.181
P_1056	755270.905	9373977.335	466.100
P_1057	755276.065	9373976.593	466.019
P_1058	755281.226	9373975.852	465.938
P_1059	755286.386	9373975.110	465.857
P_1060	755291.546	9373974.368	465.776
P_1061	755296.707	9373973.626	465.696
P_1062	755301.867	9373972.885	465.615
P_1063	755307.027	9373972.143	465.534
P_1064	755312.188	9373971.401	465.453
P_1065	755317.348	9373970.659	465.372
P_1066	755322.509	9373969.918	465.291
P_1067	755327.669	9373969.176	465.211
P_1068	755332.829	9373968.434	465.130
P_1069	755337.990	9373967.692	465.049
P_1070	755343.150	9373966.951	464.968
P_1071	755348.310	9373966.209	464.887
P_1072	755353.471	9373965.467	464.806
P_1073	755358.631	9373964.725	464.726
P_1074	755363.792	9373963.984	464.645
P_1075	755368.952	9373963.242	464.564

PUNTO		ADAS UTM	Elevación (ms.n.m)	
D 1076	Norte (m)	Este (m)		
P_1076	755374.112	9373962.500	464.483 464.402	
P_1077	755379.273	9373961.758		
P_1078	755384.433	9373961.017	464.321	
P_1079	755389.593	9373960.275	464.241	
P_1080	755394.754	9373959.533	464.160	
P_1081	755399.914	9373958.791	464.079	
P_1082	755405.075	9373958.050	463.998	
P_1083	755410.235	9373957.308	463.917	
P_1084	755415.395	9373956.566	463.836	
P_1085	755420.556	9373955.824	463.756	
P_1086	755425.716	9373955.083	463.675	
P_1087	755430.876	9373954.341	463.594	
P_1088	755436.037	9373953.599	463.513	
P_1089	755441.197	9373952.857	463.432	
P_1090	755446.358	9373952.116	463.351	
P_1091	755451.518	9373951.374	463.270	
P_1092	755456.678	9373950.632	463.190	
P_1093	755461.839	9373949.890	463.109	
P_1094	755466.999	9373949.149	463.028	
P_1095	755472.159	9373948.407	462.947	
P_1096	755477.320	9373947.665	462.866	
P_1097	755482.480	9373946.923	462.785	
P_1098	755487.641	9373946.182	462.705	
P_1099	755492.801	9373945.440	462.624	
P_1100	755497.961	9373944.698	462.543	
P_1101	755503.122	9373943.956	462.462	
P_1102	755508.282	9373943.215	462.381	
P_1103	755513.442	9373942.473	462.300	
P_1104	755518.603	9373941.731	462.220	
P_1105	755523.763	9373940.989	462.139	
P_1106	755528.924	9373940.248	462.058	
P_1107	755534.084	9373939.506	461.977	
P_1108	755539.244	9373938.764	461.896	
P_1109	755544.405	9373938.022	461.815	
P_1110	755549.565	9373937.281	461.735	
P_1111	755554.725	9373936.539	461.654	
P 1112	755559.886	9373935.797	461.573	
P_1113	755565.046	9373935.055	461.492	
P_1114	755570.207	9373934.314	461.411	
P_1115	755575.367	9373933.572	461.330	
P_1116	755580.527	9373932.830	461.250	
P_1117	755585.688	9373932.088	461.169	
P 1118	755590.848	9373931.347	461.088	

	COORDEN	Elevación	
PUNTO	Norte (m)	Este (m)	(ms.n.m)
P 1119	755596.008	9373930.605	461.007
P_1120	755601.169	9373929.863	460.926
P_1121	755606.329	9373929.121	460.845
P_1122	755611.490	9373928.380	460.765
P_1123	755616.650	9373927.638	460.684
P_1124	755621.810	9373926.896	460.603
P_1125	755626.971	9373926.154	460.522
P_1126	755632.131	9373925.413	460.441
P_1127	755637.291	9373924.671	460.360
P_1128	755642.452	9373923.929	460.280
P_1129	755647.612	9373923.187	460.199
P_1130	755652.773	9373922.446	460.118
P_1131	755657.933	9373921.704	460.037
P_1132	755663.093	9373920.962	459.956
P_1133	755668.254	9373920.220	459.875
P_1134	755673.414	9373919.479	459.795
P_1135	755678.574	9373918.737	459.714
P_1136	755683.735	9373917.995	459.633
P_1137	755688.895	9373917.253	459.552
P_1138	755694.056	9373916.512	459.471
P_1139	755699.216	9373915.770	459.390
P_1140	755704.376	9373915.028	459.310
P_1141	755709.537	9373914.286	459.229
P_1142	755714.697	9373913.545	459.148
P_1143	755719.857	9373912.803	459.067
P_1144	755725.018	9373912.061	458.986
P_1145	755730.178	9373911.319	458.905
P_1146	755735.339	9373910.578	458.824
P_1147	755740.499	9373909.836	458.744
P_1148	755745.659	9373909.094	458.663
P_1149	755750.820	9373908.352	458.582
P_1150	755755.980	9373907.611	458.501
P_1151	755761.140	9373906.869	458.420
P_1152	755766.301	9373906.127	458.339
P_1153	755771.461	9373905.385	458.259
P_1154	755776.622	9373904.644	458.178
P_1155	755781.782	9373903.902	458.097
P_1156	755786.942	9373903.160	458.016
P_1157	755792.103	9373902.418	457.935
P_1158	755797.263	9373901.677	457.854
P_1159	755802.423	9373900.935	457.774
P_1160	755807.584	9373900.193	457.693
P_1161	755812.744	9373899.451	457.612

	COOPPE		***
PUNTO		ADAS UTM	Elevación (ms.n.m)
D 1163	Norte (m) 755817.905	Este (m)	, ,
P_1162 P_1163	755823.065	9373898.710 9373897.968	457.531 457.450
P 1164	755828.225	9373897.906	457.369
	755833.386	9373897.220	457.289
P_1165 P_1166	755838.546	9373895.743	457.208
	755843.706	9373895.001	457.127
P_1167 P_1168	755848.867	9373895.001	457.127
_	755854.027	9373894.239	456.965
P_1169	755859.188		1201302
P_1170	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9373892.776	456.884
P_1171	755864.348	9373892.034 9373891.292	456.804
P_1172	755869.508		456.723
P_1173	755874.669	9373890.550	456.642
P_1174	755879.829	9373889.809	456.561
P_1175	755884.989	9373889.067	456.480
P_1176	755890.150 755895.310	9373888.325	456.399 456.319
P_1177		9373887.583	
P_1178	755900.471	9373886.842	456.238
P_1179	755905.631	9373886.100	456.157
P_1180	755910.791	9373885.358	456.076
P_1181	755915.952	9373884.616	455.995
P_1182	755921.112	9373883.875	455.914
P_1183 P_1184	755926.272 755931.433	9373883.133 9373882.391	455.834 455.753
	755936,593	9373881.649	455.672
P_1185	755941.754	9373880.908	455.591
P_1186 P 1187	755946.914	9373880.908	455.510
P 1188	755952.074	9373879,424	455.429
P 1189	755957.235	9373878.682	455.349
P 1190	755962.395	9373877.941	455.268
P 1191	755967.555	9373877.199	455.187
P 1192	755972.716	9373876.457	455.106
P_1193	755977.876	9373876.437	455.025
P 1194	755983.037	9373874.974	454.944
P 1195	755988.197	9373874.232	454.864
P 1196	755993.357	9373874.252	454.783
P 1197	755998.518	9373872.748	454.702
P 1198	756003.678	9373872.007	454.621
P 1199	756008.838	9373872.007	454.540
P 1200	756013.999	9373870.523	454.459
P 1201	756019.159	9373869.781	454.379
P 1202	756024.320	9373869.040	454.298
P 1203	756029.480	9373868.298	454.217
P 1204	756034.640	9373867.556	454.136
	. 200211010	22120011220	12 11120

	COORDEN	ADAS UTM	Elevación
PUNTO	Norte (m)	Este (m)	(ms.n.m)
P 1205	756039.801	9373866.814	454.055
P_1206	756044.961	9373866.073	453.974
P_1207	756050.121	9373865.331	453.893
P_1208	756055.282	9373864.589	453.813
P_1209	756060.442	9373863.847	453.732
P_1210	756065.603	9373863.106	453.651
P_1211	756070.763	9373862.364	453.570
P_1212	756075.923	9373861.622	453.489
P_1213	756081.084	9373860.880	453.408
P_1214	756086.244	9373860.139	453.328
P_1215	756091.404	9373859.397	453.247
P_1216	756096.565	9373858.655	453.166
P_1217	756101.725	9373857.913	453.085
P_1218	756106.886	9373857.172	453.004
P_1219	756112.046	9373856.430	452.923
P_1220	756117.206	9373855.688	452.843
P_1221	756122.367	9373854.946	452.762
P_1222	756127.527	9373854.205	452.681
P_1223	756132.687	9373853.463	452.600
P_1224	756137.848	9373852.721	452.519
P_1225	756143.008	9373851.979	452.438
P_1226	756148.169	9373851.238	452.358
P_1227	756153.329	9373850.496	452.277
P_1228	756158.489	9373849.754	452.196
P_1229	756163.650	9373849.012	452.115
P_1230	756168.810	9373848.271	452.034
P_1231	756173.970	9373847.529	451.953
P_1232	756179.131	9373846.787	451.873
P_1233	756184.291	9373846.045	451.792
P_1234	756189.452	9373845.304	451.711
P_1235	756194.612	9373844.562	451.630
P_1236	756199.772	9373843.820	451.549
P_1237	756204.933	9373843.078	451.468
P_1238	756210.093	9373842.337	451.388
P_1239	756215.253	9373841.595	451.307
P_1240	756220.414	9373840.853	451.226
P_1241	756225.574	9373840.111	451.145
P_1242	756230.735	9373839.370	451.064
P_1243	756235.895	9373838.628	450.983
P_1244	756241.055	9373837.886	450.903
P_1245	756246.216	9373837.144	450.822
P_1246	756251.376	9373836.403	450.741
P_1247	756256.536	9373835.661	450.660

DEDITO	COORDEN	COORDENADAS UTM			
PUNTO	Norte (m)	Este (m)	(ms.n.m)		
P_1248	756261.697	9373834.919	450.579		
P_1249	756266.857	9373834.177	450.498		
P_1250	756272.018	9373833.436	450.418		
P_1251	756277.178	9373832.694	450.337		
P_1252	756282.338	9373831.952	450.256		
P_1253	756287.499	9373831.210	450.175		
P_1254	756292.659	9373830.469	450.094		
P_1255	756297.819	9373829.727	450.013		
P_1256	756302.980	9373828.985	449.933		
P_1257	756308.140	9373828.243	449.852		
P_1258	756313.301	9373827.502	449.771		
P_1259	756318.461	9373826.760	449.690		

ANEXO IX. COSTOS ESTIMADOS DE MANTENIMIENTO RUTINARIO Y PERIÓDICO

Tabla 62. Partidas típicas de mantenimiento rutinario de carreteras

Código	Partida	Descripción	Unidad	Precio unitario (S/.)*
01	Limpieza de	Retiro de material suelto, polvo,	m²	0.50 - 1.00
	calzada	basura y vegetación sobre la vía		
02	Limpieza de	Descolmatación de cunetas	m	2.50 - 5.00
	cunetas	laterales para garantizar drenaje		
03	Limpieza de	Retiro de sedimentos y desechos en	ud	30 - 50
	alcantarillas	estructuras transversales		
04	Desbroce de	Corte de maleza en fajas laterales	m²	0.40 - 0.80
	vegetación	de la vía		
05	Bacheo superficial	Reposición de material granular en	m^3	35 - 50
	en afirmado	baches menores		
06	Reposición de	Pintura o reposición de señales	ud / m²	25 - 40
	señalización	verticales y horizontales		
07	Limpieza de	Retiro de material arrastrado por	ud	40 – 60
	badenes y pontones	lluvias		

Nota: Los precios unitarios son referenciales y varían según la zona y el mercado local. de acuerdo al MTC – Manual de Mantenimiento Vial Rutinario (2013, 2018)

Tabla 63. Partidas típicas de mantenimiento periódico de carreteras

Código	Partida	Descripción	Unidad	Precio unitario (S/.)*
01	Reconformación de afirmado	Perfilado y compactación de la superficie de rodadura con aporte de material	km	18,000 – 25,000
02	Regravelado	Colocación de nueva capa granular para mejorar la calzada	m³	40 – 55
03	Limpieza y reparación de cunetas	Perfilado, revestimiento y reparación de cunetas laterales	m	12 – 18
04	Limpieza y reparación de alcantarillas	Sustitución de piezas dañadas, sellado y descolmatación	ud	250 – 400
05	Reposición de badenes o pontones menores	Reconstrucción parcial o total de estructuras pequeñas	ud	1,200 – 2,000
06	Carpeta asfáltica delgada (slurry o microaglomerado)	Aplicación de capa protectora de asfalto en vías pavimentadas	m²	18 – 25
07	Reposición de señalización vial	Sustitución de señales deterioradas y repintado	ud / m²	35 – 50

Nota: Los precios unitarios son referenciales y dependen del mercado, transporte de materiales, topografía y región. tomado de MTC (2013). Manual de mantenimiento rutinario y periódico de caminos vecinales

Tabla 64. Costos estimados de mantenimiento rutinario de la vía cruce Shanango-Bellavista

Nº	Actividad	Unidad	Cantidad	Precio Unitario (S/.)	Subtotal (S/.)
1	Limpieza de plataforma	m²	5,000.00	0.5	2,500.00
2	Bacheo simple	m²	100.00	45	4,500.00
3	Limpieza de alcantarillas	m³	50.00	30	1,500.00
4	Reparación menor de cunetas	m³	20.00	35	700.00
5	Pintura de señalización	m²	500.00	15	7,500.00
		Subtotales	directos		16,700.00
		1,670.00			
	Supervisión técnica (5%)				835.00
		19,205			

Nota. Según estimaciones del MTC y las condiciones actuales de la vía

Tabla 65. Costos estimados de mantenimiento periódico de la vía cruce Shanango-Bellavista

Nº	actividad	Unidad	Cantidad	Precio Unitario (S/.)	Subtotal (S/.)
1	Recapeo asfáltico (espesor 5 cm)	m²	1,000.00	40.00	40,000.00
2	Sellado de fisuras	m²	1,000.00	8.00	8,000.00
3	Reconstrucción de badenes	und	2	2,500.00	5,000.00
4	Limpieza y mejora de cunetas/pluviales	ml	1,000.00	5.00	5,000.00
5	Mejora de alcantarillas (1 km aprox.)	und	2	10,000.00	20,000.00
	Subtotales directos				78,000.00
		Gastos generales y utilidad (10%)			7,800.00
		Supervisión técnica (5%)			3,900.00
		Costo Total por kilometro			89,700.00

ANEXO X. PANEL FOTOGRÁFICO

PANEL FOTOGRÁFICO DE ACTIVIDADES DE CAMPO

Figura 9. Aforo vehicular en la estación Nº 01 de la vía cruce Shanango-Bellavista, en la progresiva 0+200.

Figura 10. Verificación de las obras de arte y drenaje de vía cruce Shanango-Bellavista, salida de alcantarilla se puede apreciar que se encuentra semicolmatada en la progresiva 0+259.

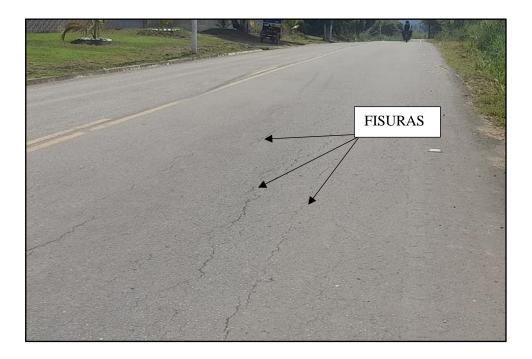

Figura 11. Verificación de las obras de arte y drenaje de vía cruce Shanango-Bellavista, salida de alcantarilla se puede apreciar que se encuentra semicolmatada en la progresiva 5+731.

Figura 12. Toma de medidas de la plataforma de vía cruce Shanango-Bellavista , se aprecia la media de berma en la progresiva 2+500.

Figura 13. Verificación de las obras de arte y drenaje de vía cruce Shanango-Bellavista, entrada de alcantarilla se puede apreciar que se encuentra semicolmatada en la progresiva 2+207.

Figura 14. Estado de plataforma de rodadura de la vía cruce Shanango-Bellavista, se aprecia las fisuras uno de los carriles, en la progresiva 0+300.

Figura 15. Estado de plataforma de ingreso de la alcantarilla de la vía cruce Shanango-Bellavista, se aprecia vegetación y lodo, en la progresiva 3+660.

Figura 16.Se aprecia al personal obrero realizando relleno de fisuras con asfalto en frio actividades que corresponden al mantenimiento rutinario, en la progresiva 1+150.

ANEXO XI. PLANOS