Uso de las redes neuronales artificiales en el modelado del ensayo de resistencia a compresión de concreto de construcción según la norma ASTM C39/C 39M
Resumen
El objetivo principal de la presente tesis, consiste en el pronóstico de la Resistencia a Compresión del concreto mediante un sistema basado en Redes Neuronales Artificiales. La metodología implementada consistió inicialmente en recopilar una base histórica de diseños de mezclas (propiedades físicas de los agregados y cantidades de materiales por m3), para resistencias a la compresión del concreto comprendidas entre 210kg/cm2 y 300kg/cm2, de trabajos de tesis ejecutadas en la Facultad de Ingeniería, así como las correspondientes resistencias a la compresión de los testigos ensayados según la norma ASTM C39. Luego se aplicó el software MATLAB para la fase de aprendizaje y entrenamiento del mismo, proponiéndose cinco Redes Neuronales Artificiales (Perceptrones Multicapa) que pronostiquen la Resistencia a la Compresión de cuatro diseños de mezclas (de f’c de 210kg/cm2, 250kg/cm2, 280kg/cm2 y 300kg/cm2) a las edades de 7, 14 y 28 días (10 testigos para cada ensayo, haciendo un total de 120 probetas), y en el proceso de contraste y validación, se encontró una taza de error de hasta 3.29%, lo que permite concluir que este método es totalmente válido en el diseño de proyección del concreto normal.
Colecciones
El ítem tiene asociados los siguientes ficheros de licencia: