UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

"LOS ACCIDENTES DE TRÁNSITO Y SU RELACIÓN CON LAS
CARACTERÍSTICAS GEOMÉTRICAS DE LA AV. HÉROES DEL
CENEPA DESDE LA AV. INDEPENDENCIA HASTA LA AV. VÍA DE
EVITAMIENTO SUR EN LA CIUDAD DE CAJAMARCA"

TESIS

Para optar el Título Profesional de:

INGENIERO CIVIL

Presentado por el Bachiller:

JAIME ANTONIO VILLACORTA DELGADO

Asesora:

Mcs. ING. MARIA SALOME DE LA TORRE RAMIREZ

Cajamarca - Perú

2018

AGRADECIMIENTO

A Dios por brindarme su protección durante toda mi vida, por darme las fuerzas, la salud para lograr culminar mis estudios universitarios.

Agradezco a la universidad Nacional de Cajamarca, por sus conocimientos impartidos en mi formación académica y en especial a la facultad de ingeniería civil, que me ha dado la oportunidad de enriquecer mis conocimientos y principios imperecederos de calidad científica y humanística, de la misma manera a todos los docentes de mi querida universidad que me impartieron sus conocimientos.

A mis padres quienes siempre me brindan su apoyo incondicional, guiándome con sus sabios consejos, su paciencia, su confianza depositada en mí persona. Ellos han inculcado en mí el amor, la responsabilidad, la ética ¡Son lo más valiosos que Dios me ha dado!

A mi asesora de tesis; Mcs. Ing. María Salome de la Torre Ramírez, quien me brindo alcances técnicos en la presente tesis, siendo fundamental para llevar acabo su desarrollo.

También doy gracias a mis hermanas, compañeros y amigos quienes me apoyaron con sus sugerencias.

DEDICATORIA

"A mis padres, por su amor, trabajo y sacrificios en todos estos años, gracias a ellos he logrados culminar mis estudios universitarios y convertirme en lo que soy. Es un privilegio ser su hijo, son los mejores padres Antonio Villacorta y Perpetua Delgado"

Jaime Antonio, Villacorta Delgado

INDICE

AGRADEC	MIENTO	ii
DEDICATO	RIA	iii
ÍNDICE DE	TABLAS	IV
ÍNDICE DE	FIGURAS	V
	I	
	TRODUCCIÓN	
	ANTEAMIENTO DEL PROBLEMA	
	DRMULACIÓN DEL PROBLEMA	
1.4. HI	PÓTESIS	6
1.5. JU	STIFICACIÓN DE LA INVESTIGACIÓN	6
1.6. AI	CANCES DE LA INVESTIGACIÓN	6
1.7. OI	BJETIVOS	6
1.7.1.	OBJETIVO GENERAL	6
1.7.2.	OBJETIVOS ESPECÍFICO	6
1.7.3.	DESCRIPCIÓN DE CAPÍTULOS.	7
CAPÍTULO	II	8
MARCO TE	ÓRICO	8
2.1. AN	NTECEDENTES TEÓRICOS	8
2.1.1.	A NIVEL INTERNACIONAL	8
2.1.2.	A NIVEL NACIONAL	8
2.1.3.	A NIVEL LOCAL	8
2.2. BA	ASES TEÓRICAS	9
2.2.1.	MANUAL DE DISEÑO GEOMÉTRICO DE VÍAS URBANAS":	9
2.2.2.	EL REGLAMENTO NACIONAL DE TRÁNSITO	10
2.3. DI	EFINICION DE TERMINOS BASICOS	11
2.3.1.	EL TRÁNSITO	11
2.3.2.	ACCIDENTE DE TRANSITO	12
2.3.3.	ACCIDENTOLOGÍA VIAL RAMA	12
2.3.4.	DATOS ESTADÍSTICOS DE ACCIDENTES DE TRÁNSITO	12
2.3.5.	DESPISTE	14
2.3.6.	CHOQUE	15
2.3.7.	INDICADORES DE ACCIDENTABILIDAD	15
2.3.8.	LA VÍA	16
2.3.9.	CLASIFICACIÓN DEL SISTEMA VIAL URBANO	17

	2.4. E	LEMENTOS DE LA VIALIDAD URBANA	26
	2.4.1.	DE LA VÍA	26
	2.5. D	ISTANCIA DE VISIBILIDAD PARA ADELANTAR	28
	2.6. V	ELOCIDAD DE DISEÑO	28
	2.7. V	ÍA DE DESVIACIÓN DE CIRCULACIÓN	28
	2.8. V	ÍA DE CAMIONES	29
	2.9. V	ÍA EXCLUSIVA PARA BUSES	29
	2.10.	DISTANCIA DE VELOCIDAD DE PARADA	29
	2.11.	ALINEAMIENTO HORIZONTAL	32
	2.12.	ALINEAMIENTOS RECTOS	32
	2.13.	CURVAS HORIZONTALES	34
	2.14.	EL PERFIL LONGITUDINAL	37
	2.15.	ELEMENTOS DE DISEÑO	38
	2.15.1	TANGENTES VERTICALES	38
	2.15.2	PENDIENTES MÍNIMAS	38
	2.15.3	PENDIENTES MÁXIMAS	38
	2.15.4		
		SVERSALES	
	2.15.5		
	2.16.	INTERSECCIONES E INTERCAMBIOS	
	2.17.	SEÑALIZACIÓN DE CALLES Y CARRETERAS	
	2.17.1		
	2.17.2		
	2.17.3		
		FACTORES DE TRANSITO CONSIDERADOS EN LA SEGURIDAD VÍA	
	2.19.	DISPOSITIVOS DE CONTROL.	
	2.20.	CONCEPTOS DE SEGURIDAD VIAL	
	2.21.	DATOS DE ACCIDENTABILIDAD	
	2.22.	INFORMACIÓN DE DISEÑO GEOMÉTRICO	
	2.23.	ESTACIÓN TOTAL	
	2.24.	GPS.	
	2.25.	WINCHA TOPOGRÁFICA	
N		LES Y MÉTODOS	
		BICACIÓN DE LA ZONA EN ESTUDIO	
	311	UBICACIÓN POLÍTICA	-52

3.1.	2. UBICACIÓN GEOGRÁFICA, Coordenadas UTM – WGS84 – Zona 17S	52
3.2.	TIEMPO EN EL CUAL SE REALIZA LA INVESTIGACIÓN	55
3.3.	VISITA DE CAMPO	55
3.4.	DESCRIPCIÓN DEL MÉTODO UTILIZADO	58
3.4.	1. LEVANTAMIENTO TOPOGRÁFICO	58
3.4.	2. UNIDADES DE MUESTRA	58
3.4.	3. ÍNDICE MEDIO DIARIO ANUAL (IMDA)	58
3.4.	4. ANÁLISIS DE ACCIDENTABILIDAD EN LA RUTA DE ESTUDIO	66
3.4.	.5. TRABAJO DE GABINETE	66
3.4.	.6. ESTUDIO DE ACCIDENTALIDAD EN LA RUTA DE ESTUDIO	66
CAPÍTU	TLO IV	97
ANÁLIS	SIS Y DISCUCIÓN DE RESULTADOS	97
4.1.	DATOS TOPOGRÁFICOS	97
4.2.	DISEÑO GEOMÉTRICO	97
4.3.	INDICADORES DE ACCIDENTALIDAD POR TRAMO Y AÑO	97
4.3.	1. ÍNDICE DE PELIGROSIDAD	97
4.3.	2. ÍNDICE DE PELIGROSIDAD DE ACCIDENTES CON VÍCTIMAS	101
4.3.	3. ÍNDICE DE SEVERIDAD	105
CAPÍTU	ILO V	135
CONCL	USIONES Y RECOMENDACIONES	135
5.1.	CONCLUSIONES	135
5.2.	RECOMENDACIONES	136
REFERE	ENCIAS BIBLIOGRAFICAS	137
ANEXO	A	138
DATOS	DEL LEVANTAMIENTO TOPOGRAFICO EN EXCEL	138
ANEXO	В	155
FOTOS	DE LOS ACCIDENTES OCURRIDOS EN LA AV. HEROES DEL CENEPA	155
	В	
PANEL	FOTOGRÁFICO	159
	C	
	DE UBICACIÓN	
	D	
) GEOMETRICO DE LA VIA	
	E	
	S PLANTA Y PERFIL	
	· F	
PLANO:	S SECCIONES TRANSVERSALES	167

TABLA N° 1: Accidentes de Tránsito por Año, Según Departamento. Periodo 2004-20155 TABLA N º02 . Parámetros de Diseño vinculados a la Clasificación de Vías Urbanas.
TABLA Nº 03. Valores del Coeficiente de Fricción Longitudinal según la velocidad de circulación
TABLA Nº04. Distancia de Visibilidad de Parada en terrenos planos
TABLA N^0 05. Distancia de visibilidad de parada en terreno con pendiente (m)31
TABLA Nº 06 Longitud mínima de tangentes para el diseño geométrico
TABLA Nº 07. Velocidad directriz
TABLA Nº 08. Radios mínimos
TABLA 09. Pendientes máximas
TABLA Nº 10. Ancho de carril
TABLA Nº11. Bombeo de Calzada
TABLA Nº 12. Pendientes máximas de bordes de Calzada
TABLA Nº13. Ubicación geográfica coordenadas UTM52TABLA Nº 14. Primera semana de conteo de vehículos59
TABLA Nº 15. Segunda semana de conteo de vehículos
TABLA Nº 16. Valores promedio del conteo de vehículos
TABLA Nº 17. IMD tramo I
TABLA Nº 18. IMD tramo II
TABLA Nº 19. IMD tramo III
TABLA Nº 20. Registro de accidentes de transito en la Av. Heroes del Cenepa – Cajamarca (2011-2017)
TABLA Nº 21. Variación de la accidentabilidad en vehículos
TABLA Nº 22. Accidentes en el tramo de estudio80

TABLA Nº 23 . Causa de los Accidentes en la Av. Héroes del Cenepa 2012 al 2016	83
TABLA Nº24 . Tipos de accidentes en la Av. Heroes del Cenepa	86
TABLA Nº25. Puntos críticos de accidentalidad en el tramo de estudio	89
TABLA Nº26 . Número de accidentes con víctimas en el tramo de estudio año 20 2017	
TABLA Nº27. cuadro resumen de número de accidentes en cada año por tramos	94
TABLA Nº 28. cuadro resumen de número de accidentes en total por tramos	94
TABLA Nº29. Índice de Peligrosidad de Accidentes Totales por Tramo	98
TABLA Nº30 . Índice de Peligrosidad de Accidentes con Víctimas por Tramos	102
TABLA Nº31. Índice de Severidad por Tramos	107
TABLA Nº32. Inventario de las características existentes en la sección transversal	110
TABLA Nº 33. Inventario de las características existentes en el perfil	114
TABLA Nº 34. Contrastación de parámetros (ancho de calzada)	117
TABLA Nº35. Contrastación de parámetros (ancho de berma)	111
Inventario de las características existentes en el perfil	112
TABLA Nº36. Contrastación de parámetros (bombeo)	124
TABLA Nº 37. Contrastación de parámetros (pendiente máxima)	128
TABLA Nº 38. Cuantificación del contraste por parámetro	132
TABLA Nº39. Cuantificación genera del contraste.	132

ÍNDICE DE FIGURAS

FIGURA N° 01: Parque automotor nacional 1990 – 2014	Pág.
FIGURA N° 2: Relación Comparativa de la Tasa de Mortalidad en Accidentes de Tasa	-
cada 100mil Habitantes, 2010 – 2012.	
FIGURA N ⁰ 3. Espaciamiento entre vías expresas.	
FIGURA N ⁰ 04. Espaciamiento entre vías expresas	
FIGURA N ⁰ 05. Características del flujo	
FIGURA N ⁰ 06. Curvas circulares simples	
FIGURA N ⁰ 07. Valores del sobreancho	
FIGURA N⁰ 08 . Estación total Leica Geosystems TS-09	
FIGURA N ⁰ 09. GPS Garmin eTrex Vista HCx	
FIGURA N ⁰ 10. Wincha topográfica	51
FIGURA N ⁰ 08. Transición de peralte curva con espiral	50
FIGURA 11. Ubicación Geografica del Peru.	53
FIGURA 12. Ubicacion Geografica de Cajamarca.	53
Longitudes mínimas de curvas verticales cóncavas.	45
FIGURA N° 13. Ubicación geográfica de la Av. Héroes del Cenepa	54
FIGURA N° 14: Reconocimiento de la zona	55
FIGURA N° 15: Sección transversal típica N ⁰ 01	56
FIGURA N° 16: Sección transversal típica Nº2	56
FIGURA Nº 17 Metodología del estudio	57
FIGURA Nº18. Número de vehículos por día	62
FIGURA Nº 19. Variación de la accidentalidad	79
FIGURA Nº 20. Número de Accidentes según Gravedad	
FIGURA Nº 21. Causa de los accidentes.	
FIGURA N ⁰ 22. Tipos de accidentes	87
FIGURA N ⁰ 23. Puntos de Accidentabilidad.	90
FIGURA Nº 24. Número de accidentes con víctimas por tramo de estudio	95
FIGURA Nº 25. Índice de Peligrosidad de Accidentes de Tránsito Tramo I	
FIGURA Nº26. Índice de Peligrosidad de Accidentes de Tránsito Tramo II	
FIGURA Nº 27. Índice de Peligrosidad de Accidentes de Tránsito Tramo III.	

FIGURA Nº 28. Índice de Peligrosidad de Accidentes con Víctimas Tramo I	.104
FIGURA Nº29. Índice de Peligrosidad de Accidentes con Víctimas Tramo II	.104
FIGURA Nº 30. Índice de Peligrosidad de Accidentes con Víctimas Tramo III	.105
FIGURA Nº 31. Índice de Severidad Tramo I	108
FIGURA Nº32. Índice de Severidad Tramo II	108
FIGURA Nº 33. Índice de Severidad Tramo III	.109

RESUMEN

La presente tesis está basada en |, para lo cual se determinó los puntos críticos de

accidentabilidad, procediendo luego a realizar un análisis estadístico de la vía indicando el

tipo de accidente y su causa, se evaluó el riesgo de accidentes severos, de acuerdo a este

estudio, se obtuvo que el factor de mayor incidencia para la causalidad de accidentes de

tránsito en esta vía es el factor vía y entorno, con un 75%, de los cuales la mayor cantidad

de ellos son por su elevada pendiente, los puntos críticos se ubica en el tramo III

comprendido entre el Jr. Nuevo Cajamarca y la Av. Vía de Evitamiento Sur, el índice de

accidentes totales es de 1.80, correspondiente al tramo II comprendido entre el Jr. Carlos

Malpica y el Jr. Perea, y el índice de accidentes con víctimas de 5.88, en este mismo tramo,

por lo cual el tránsito en esta parte de la vía es peligrosa, el tipo de accidente más frecuente

es por colisión lateral con 9 accidentes de tránsito, que representan el 18.75% y la causa de

mayor accidentabilidad es por la elevada pendiente. Por lo que se determinó que la vía no

brinda los parámetros de diseño básicos que garanticen un adecuado tránsito tanto peatonal

como vehicular, poniendo en constante riesgo la integridad de quienes transitan por dicha

vía.

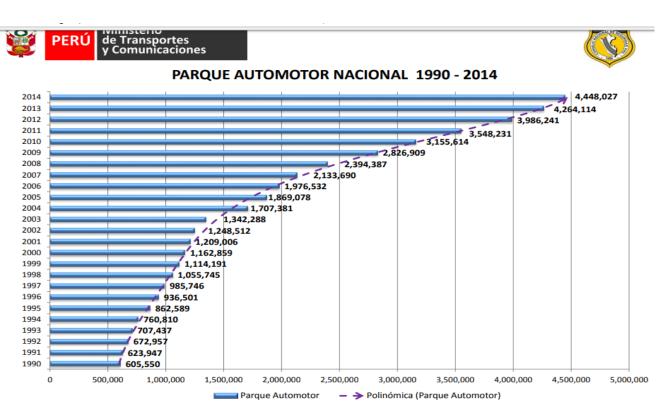
PALABRAS CLAVES: Seguridad vial, diseño geométrico, accidentabilidad

i

ABSTRACT

This thesis is based on "Traffic accidents and their relationship with the geometric characteristics of Heroes del Cenepa avenue from Independencia Avenue to Av. Vía de Evitamiento Sur, in the city of Cajamarca", for which purpose it was determined the critical points of accidents, proceeding then to perform a statistical analysis of the road indicating the type of accident and its cause, the risk of severe accidents was evaluated, according to this study, it was obtained that the factor of greatest incidence for causality of traffic accidents in this road is the factor via and environment, with 75%, of which the greater number of them are due to their high slope, the critical points are located in section III between the Jr. Nuevo Cajamarca and Av. Vía de Evitamiento Sur, the total accident rate is 1.80, corresponding to section II between Jr. Carlos Malpica and Jr. Perea, and the accident rate with victims of 5.88, in this same section, for which the traffic in this part of the road is dangerous, the most frequent type of accident is by side collision with 9 traffic accidents, which represent 18.75% and the cause of greater accident rate is for the steep slope. Therefore, it was determined that the road does not provide the basic design parameters that guarantee adequate pedestrian and vehicular traffic, putting the integrity of those who transit through this route in constant risk.

KEY WORDS: Road safety, geometric design, acciden


CAPÍTULO I

1.1. INTRODUCCIÓN

Uno de los principales problemas a nivel mundial son los accidentes de tránsito, los cuales causan una alta tasa de mortalidad; según la OMS (2015) en el mundo el número de muertos al año a causa de los accidentes de tránsito son de 1,25 millones con un rango de edad entre 5 – 44 años y 50 millones de heridos, siendo los más afectados: los peatones, motociclistas, ciclistas y pasajeros del transporte público.

En el Perú debido al crecimiento exponencial del parque automotor es uno de los principales problemas que afectan la seguridad vial en la Figura N° 01 se puede apreciar el aumento del parque automotor.

Figura N° 01: Parque automotor nacional 1990 - 2014.

Nota: A partir del año 2004 los vehículos menores (mototaxis y motos) están considerados en el total de parque automotor nacional. Fuente: SUNARP

FUENTE: MTC, 2016

Dicho aumento incrementa el número de accidentes de tránsito y cantidad de muertes como se puede apreciar en la **Figura N** $^{\circ}$ **2**.

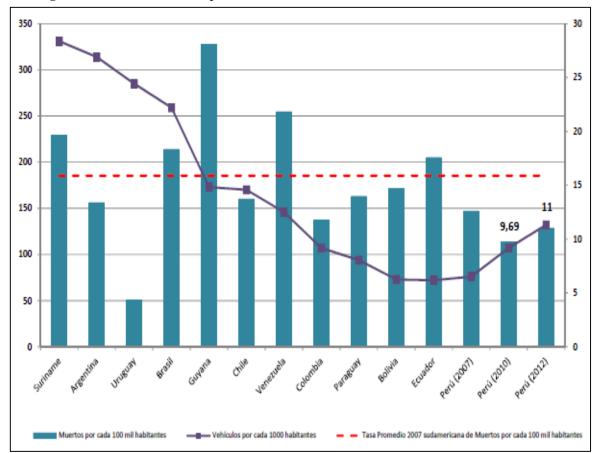


Figura Nº 2: Relación Comparativa de la Tasa de Mortalidad en Accidentes de Tránsito

por cada 100mil Habitantes, 2010 – 2012.

FUENTE: MTC, 2013.

Según el reporte estadístico de accidentes de tránsito de la Policía Nacional del Perú para el año 2016, en el departamento de Cajamarca el número de accidentes de tránsito está descendiendo como se observa en la Tabla N° 1

Tabla N° 01: Accidentes de Tránsito por Año, Según Departamento. Periodo 2004-2015.

DEPARTAMENTO						ΑÑ	0S					
	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
AMAZONAS	109	170	116	98	271	220	95	239	487	542	463	381
ANCASH	1398	1545	1173	1261	1616	2263	1946	2267	2298	2476	2477	1697
APURIMAC	214	210	129	199	428	183	123	185	616	525	643	531
AREQUIPA	3808	3886	4042	4652	5594	5293	4809	5637	5704	6438	5630	5182
AYACUCHO	1200	620	765	836	752	613	1480	1006	910	1061	1101	1416
CAJAMARCA	332	710	1127	1820	3070	3590	3182	2945	3186	3156	2119	1276
CUZCO	1133	1003	1687	2397	2514	1774	406	549	1957	4009	4100	4604
HUANCAVELICA	72	46	55	26	47	56	71	50	174	86	201	249
HUANUCO	608	612	392	436	462	673	508	801	1070	1648	4283	2708
ICA	1930	1721	1421	1494	1404	1485	1573	1584	1635	1907	1512	1172
JUNIN	927	2523	2015	1568	1889	1819	2333	2138	3173	3604	2711	2367

FUENTE: Anuario PNP, 2015.

Estos accidentes se ocasionan por tres factores que son: humano, infraestructura vial y vehículo.

Por lo cual es de mucha importancia el conocimiento de la incidencia del diseño de las vías en la accidentabilidad esperada, no solo para los fines propiamente técnicos, sino también para la seguridad vial y una concientización de todos los actores involucrados en los proyectos, ya que hasta el momento en el Perú esta labor no se ha desarrollado.

Por todo lo mencionado anteriormente, el establecimiento de relaciones de causalidad entre la geometría y los eventos de accidentes de tránsito y de las especificaciones tan limitadas, es de importancia para la realidad de la ingeniería civil. Así mismo es necesario aclarar, que las vías en el departamento de Cajamarca presentan serias deficiencias en su geometría, porque son vías que en su mayoría carecen de bermas, tienen pendientes elevadas, radios horizontales menores a los radios mínimos establecidos en el Manual de Diseño Geométrico de Vías Urbanas, así como, el deterioro permanente de los pavimentos.

1.2. PLANTEAMIENTO DEL PROBLEMA

El problema de los accidentes de tránsito en la ciudad de Cajamarca se debe a tres factores la vía (mal diseño geométrico), conductor (problemas de cansancio físico, alcohol, etc.) y vehículo (fallas mecánicas). Lo cual constituyen un problema prácticamente permanente.

Desde el inicio de su funcionamiento la Av. Héroes del Cenepa, se han venido suscitando múltiples accidentes de tránsito, de consecuencias fatales, a esta vía comúnmente le llaman la Vía de la Muerte.

Sin embargo, mucho de los accidentes se deben a la geometría de la vía razón por la cual la presente tesis pretende aportar información que contribuya a la disminución de los accidentes de tránsito, debido a que las pérdidas de vidas humanas de estos lamentables hechos son considerables.

1.3. FORMULACIÓN DEL PROBLEMA

¿Cuál es la incidencia de los accidentes de tránsito y su relación con las características geométricas de la vía en la Avenida Héroes del Cenepa desde la Avenida Independencia hasta la Avenida Vía de Evitamiento Sur en la Ciudad de Cajamarca

1.4. HIPÓTESIS

Los accidentes de tránsito ocurridos en la Avenida Héroes del Cenepa desde la Avenida Independencia hasta la Avenida Vía de Evitamiento Sur en la Ciudad de Cajamarca se producen hasta un 80% por un mal diseño de la vía.

1.5. JUSTIFICACIÓN DE LA INVESTIGACIÓN

En la presente investigación se determinará las causas de los accidentes de tránsito en la Av. Héroes del Cenepa desde la Avenida Independencia hasta la Avenida Vía de Evitamiento Sur en la Ciudad de Cajamarca y proponer alternativas que puedan minimizar los accidentes de tránsito.

1.6. ALCANCES DE LA INVESTIGACIÓN

La presente investigación pretende determinar si la vía existente cumple con los parámetros de diseño geométrico dispuestos por la norma de diseño actual, y su relación con los accidentes de tránsito.

1.7. OBJETIVOS

1.7.1. OBJETIVO GENERAL

Evaluar la incidencia de los accidentes de tránsito y su relación con las características geométricas de la Av. Héroes del Cenepa desde la Av. Independencia hasta la Av. Vía de Evitamiento Sur en la Ciudad de Cajamarca.

1.7.2. OBJETIVOS ESPECÍFICO

✓ Determinar los puntos críticos de accidentabilidad

- ✓ Realizar un análisis estadístico de la accidentabilidad en la vía objeto de estudio indicando el tipo de accidente y su causa.
- ✓ Evaluar el riesgo de accidentabilidad de los accidentes severos de la vía de estudio.

1.7.3. DESCRIPCIÓN DE CAPÍTULOS.

El trabajo de tesis está dividido en cinco capítulos, los cuales, de manera breve, se describen a continuación:

- ➤ El primer capítulo "INTRODUCCIÓN", es de carácter informativo sobre el contexto, el problema, la justificación o importancia de la investigación, así como sus alcances, objetivos e hipótesis.
- ➤ El segundo capítulo "EL MARCO TEÓRICO", se describe las investigaciones anteriores que existen sobre el tema o problema, destacando algunos de sus resultados o conclusiones más relevantes.
- ➤ El tercer capítulo "MATERIALES Y MÉTODOS", se indica la ubicación geográfica donde se realizó la investigación, el tiempo en la cual se enmarca, los diferentes procesos realizados, el tratamiento que se utilizó en los datos de cada variable y los resultados del trabajo de investigación.
- ➤ El cuarto capítulo "ANÁLISIS Y DISCUSIÓN DE RESULTADOS", abarca la interpretación, explicación y la discusión de los resultados finales obtenidos.
- ➤ En el quinto capítulo "CONCLUSIONES Y RECOMENDACIONES", desarrolla las conclusiones de la investigación descriptiva para cada objetivo propuesto; y las recomendaciones, que sugieren la ampliación de los conocimientos sobre el problema de investigación.

CAPÍTULO II

MARCO TEÓRICO

2.1. ANTECEDENTES TEÓRICOS

2.1.1. A NIVEL INTERNACIONAL

- ✓ Ignacio Pérez Pérez (1996). EVALUACIÓN DE LA EFECTIVIDAD DE LAS ACTUACIONES EN CARRETERAS SOBRE LA ACCIDENTALIDAD. APLICACIÓN AL CASO DE LA COMUNIDAD DE MADRID. (Tesis Doctoral), tiene como objetivo optimizar recursos económicos disponibles para la ejecución de actuaciones que resulten más efectivas desde el punto de vista de la reducción de la accidentabilidad, fue necesario evaluar previamente estas actuaciones para seleccionar las más convenientes
- ✓ JERIE WESLEY LEIVA ALVA (2003). ANÁLISIS DE ACCIDENTES VIALES APLICANDO LA INGENIERÍA DE TRÁNSITO. (Tesis inédita para titulación). UNIVESIDAD SAN CARLOS DE GUATEMALA, tiene como objetivo encontrar soluciones que permitan reducir el número de accidentes de tránsito en las vías del transporte terrestre. Disminuir la gravedad de este problema, a través del conocimiento de las causas más comunes de los accidentes.

2.1.2. A NIVEL NACIONAL

✓ KARINA FIORELLA LA ROSA VICTORIA (2012) – Diseño de Sistema Integral de Seguridad Vehicular: Seguridad Pasiva, Seguridad Activa y Socorro inmediato para conductores y pasajeros de vehículos automotores". PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU− Tiene como objetivo Diseñar un sistema integrado al vehículo que permita prevenir, proteger durante el accidente y agilizar la detección y localización de accidentes de tránsito mediante el envío de un mensaje de Socorro con la finalidad de reducir el tiempo de localización y rescate.

2.1.3.A NIVEL LOCAL

✓ KATHIA YOVANA CORREA SALDAÑA (2017) – "EVALUACIÓN DE LAS CARACTERÍSTICAS GEOMÉTRICAS DE LA CARRETERA CAJAMARCA –

GAVILÁN (KM 173 – KM 158) DE ACUERDO CON LAS NORMAS DE DISEÑO GEOMÉTRICO DE CARRETERAS DG-2013". UNIVERSIDAD NACIONAL DE CAJAMARCA – Tiene como objetivo evaluar las características geométricas de la carretera Cajamarca – Gavilán (km 173 – km 158), de acuerdo con el Manual de Diseño Geométrico de Carreteras DG-2014.

2.2. BASES TEÓRICAS

2.2.1.MANUAL DE DISEÑO GEOMÉTRICO DE VÍAS URBANAS" 1:

Nuestro país cuenta desde hace años con Manuales y Normas para diseño de carreteras, las que atienden los requerimientos del diseño geométrico respectivo. Sin embargo, no se encuentra normatividad nacional aplicable a vías urbanas por lo que los proyectistas peruanos han venido empleando, referencialmente, normatividad desarrollada para otros países y eventualmente estipulaciones previstas para el diseño de carreteras.

La primera versión del presente manual fue desarrollada en 1998. Luego, y sobre la base de la experiencia adquirida en diversos proyectos y el estudio comparativo con normatividad de otros países, se efectuó desarrollo la segunda versión correspondiente al año 2003 la que con ocasión del XIV Congreso Nacional de Ingeniería Civil realizado en la ciudad de Iquitos, fue sometido a consideración a la Comunidad Ingenieril Nacional, en calidad de Ponencia, recibiendo el reconocimiento a través de una mención especial en las conclusiones de dicho congreso.

En el 2004 se efectuó una nueva ampliación y actualización del Manual, lo que permitió contar con la tercera versión que se denominó "Manual de Diseño Geométrico de Vías Urbanas – 2004 - VCHI", la misma que se diferenció de la previa (2003) principalmente en:

- ✓ Mejoras y complementaciones a los capítulos Primero (INTRODUCCIÓN) y Cuarto (CAPACIDAD VIAL Y NIVELES DE SERVICIO).
- ✓ Cambios mayores en los capítulos Octavo (ALINEAMIENTO HORIZONTAL); Décimo Primero (INTERSECCIONES E INTERCAMBIOS) y Décimos Cuarto (FACILIDADES PARA EL TRANSPORTE EN BICICLETA).
- ✓ La incorporación del capítulo Décimo Quinto (NORMA PARA LA PRESENTACIÓN DEL INFORME FINAL DE LOS PROYECTOS). En esta oportunidad nos complacemos

9

¹ MTC. Manual de Diseño Geométrico de Vías Urbanas 2005 (VCHI), p.8

en presentar la cuarta versión del presente Manual, el que denominamos "Manual de Diseño Geométrico de Vías Urbanas – 2005 - VCHI", o simplemente "MDGVU-2005-VCHI". La actualización en este caso está referida al capítulo Décimo Tercero (FACILIDADES PARA PEATONES) modificado en su totalidad a efectos de:

- ✓ Brindar un soporte más efectivo a los diseñadores en lo relativo al mejor entendimiento del peatón,
- ✓ Familiarizarse con los principales parámetros del flujo peatonal (velocidad, densidad, motivos de viaje, nivel de servicio, etc).
- ✓ Calcular o decidir sobre la capacidad de las vías peatonales,
- ✓ Propiciar un manejo uniforme de las consideraciones para diseño geométrico en planta, sección transversal, perfil longitudinal, tratamiento de esquinas, diseño en terrenos de fuerte pendiente, etc.
- ✓ Utilización de resaltos o lomos de seguridad (gibas) como complemento a otras medidas destinadas a propiciar un tráfico seguro.
- ✓ Tratamiento en intersecciones y cruces de calzada a nivel y desnivel.
- ✓ Ensanches requeridos para condiciones especiales.
- ✓ Facilidades para discapacitados.

2.2.2.EL REGLAMENTO NACIONAL DE TRÁNSITO²

Es aquel que emite el Ministerio de Transportes y Comunicaciones. Contiene las normas que regulan el uso de las vías públicas terrestres, aplicables a los desplazamientos de peatones, vehículos, animales y a las actividades vinculadas con el transporte.

El gobierno peruano decidió la creación del Consejo Nacional de Seguridad Vial (CNSV), mediante Decreto Supremo 010-96-MTC, modificado posteriormente por los Decretos Supremos 024-2001-MTC y 027-2002-MTC y últimamente por el Decreto Supremo 023-

² El Reglamento Nacional de Tránsito, p. 1-2

2008-MTC. El mismo que señala que el Consejo Nacional de Seguridad Vial estará integrado por un representante de las siguientes entidades:

- ✓ Ministerio de Transportes y Comunicaciones
- ✓ Ministerio de Educación
- ✓ Ministerio de Salud
- ✓ Ministerio Interior (Policía Nacional del Perú)
- ✓ Ministerio de Trabajo y Promoción del Empleo
- ✓ Asamblea Nacional de Gobiernos Regionales
- ✓ Municipalidad de Lima
- ✓ Superintendencia Nacional de Administración Tributaria SUNAT
- ✓ Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual
 INDECOPI
 - ✓ La Dirección General de Transporte Terrestre.

El objetivo principal del CNSV como ente rector es promover y coordinar las acciones vinculadas a la seguridad vial en el Perú, así como de implementar de forma multisectorial el Plan Nacional de Seguridad Vial 2007 - 2011, convocando para ello no sólo a instituciones del sector público, sino también a organismos privados y no gubernamentales.

El CNSV inició su trabajo a mediados de 1997. Para hacer operativas sus funciones, el CNSV constituyó una Secretaría Técnica, instancia de coordinación que viene desarrollando el Plan Nacional de Seguridad Vial, aprobado mediante el Decreto Supremo 013-2007-MTC, cuya finalidad es establecer una política nacional de seguridad vial a mediano y largo plazo además de prevenir la ocurrencia de accidentes de tránsito.

2.3. DEFINICION DE TERMINOS BASICOS³

2.3.1. EL TRÁNSITO

Conjunto de desplazamientos de personas, vehículos y animales por las vías terrestres de uso público (Circulación).

11

 $^{^3}$ ANÁLISIS DE ACCIDENTES VIALES APLICANDO LA INGENIERÍA DE TRÁNSITO, p.4-5

2.3.2. ACCIDENTE DE TRANSITO

Según la Real Academia de la Lengua Española, accidente es "un suceso eventual del que involuntariamente resulta daño para las personas o las cosas", por lo que podemos decir que un Accidente de Tránsito es un acontecimiento

inesperado donde pueden interactuar automóviles, peatones, motocicletas, buses etc., y cualquier otro usuario de las vías, donde se desarrolla un hecho

no premeditado, que contiene un elemento de azar y cuyos resultados son indeseables e infortunados.

2.3.3. ACCIDENTOLOGÍA VIAL RAMA

De la Accidentología que se encarga del estudio y determinación de los accidentes de tránsito.

2.3.4. DATOS ESTADÍSTICOS DE ACCIDENTES DE TRÁNSITO⁴

Aunque las causas de accidentes de tránsito son, por lo general, una combinación de factores exógenos, también existen otros elementos que pueden traducirse en la realidad como determinantes de una colisión. Los actos anteriores al choque, son factores simultáneos que comienzan a mover la cadena de sucesos imponderables, los cuales pueden ser clasificados en dos grandes grupos:

- Factores de orden operacional
- Factores de orden condicional

Dentro del primer grupo, podemos colocar las siguientes situaciones:

- Táctica evasiva inapropiadamente seleccionada
- Excesiva velocidad de circulación
- Estrategia elegida tardíamente
- Falla en el diseño de la vía

⁴ ANÁLISIS DE ACCIDENTES VIALES APLICANDO LA INGENIERÍA DE TRÁNSITO, p.7-8

12

- a. Táctica evasiva inapropiadamente seleccionada: una falla en la ejecución de un acto comprendido dentro de la cadena de sucesos previos al accidente contribuye, sin duda, a que este se produzca. Cuando la decisión evasiva es tomada tardíamente, puede llegar a cometer otras acciones que agraven el accidente. Un accidente consumado refleja errores en la conducción, en cuanto a la táctica evasiva, por lo menos en uno de sus conductores.
- b. Excesiva velocidad de circulación: en la gran mayoría de los casos, la excesiva velocidad es conducente a la producción de accidentes, ya sea por la situación de ingobernabilidad del vehículo, que se le plantea en determinado momento al conductor ó por la imposibilidad de evitar que se presenta ante él. Es decir, la excesiva velocidad puede colocar al conductor en una situación donde sea imposible percibir de manera apropiada un peligro inminente.
- c. Estrategia elegida tardíamente: la decisión correcta, consiste en seleccionar las maniobras adecuadas. Esta decisión, elegida tardíamente e la cadena de sucesos de un peligro de colisión inminente, será, en la gran mayoría de los casos, causa de la producción de accidentes.
- **d.** Falla en el diseño de la vía: una vía correctamente diseñada, es aquella que le proporciona al usuario un alto grado de seguridad, tanto en el diseño geométrico, como en la señalización que se coloque a lo largo de la carretera para advertir de los posibles peligros y limites a que debe de regirse el conductor.

Los obstáculos visuales más comunes, tales como el cambio de rasante inesperado, la depresión drástica de la ruta, una curva muy cerrada después de una tangente larga, etc., son ejemplo de una deficiencia del diseño de la vía. Si en una curva, la calzada está más elevada en la parte exterior que en la parte interna, se dice que tiene peralte. Está pendiente o sobre elevación transversal, hacia el exterior de la curva impide que los vehículos puedan deslizarse en forma lateral, dándoles a los usuarios mayor seguridad al transitar por curvas.

e. Falta de educación vial: en las calles circulan vehículos a distintas velocidades, los camiones y autobuses no pueden moverse con la misma velocidad, esto no debería

constituir motivo de accidentes si todos utilizaran el carril que les corresponde, desafortunadamente esto no ocurre y los vehículos que circulan despacio ocupan el carril que sea, sin importar los conflictos que ocasionan, esto no es más que la falta de Educación Vial de los conductores.

Dentro del factor de orden condicional tenemos:

- ✓ La oscuridad: es un factor del accidente, solo si éste no hubiera ocurrido en el día.
- ✓ La niebla y el humo: son similares a la oscuridad, porque en la mayoría de los accidentes de tránsito en los cuales intervienen, la causa es el exceso de velocidad para las condiciones de visibilidad reinantes.
- ✓ La lluvia y la nieve: como ya se ha dicho, presentan dos problemas a los conductores, que, en realidad, no son problemas atmosféricos. Uno es el carácter deslizante que adquiere el pavimento y otro el empañamiento de los cristales del vehículo.
- ✓ Pavimentos irregulares: pueden hacer que el vehículo pierda el control, vuelque o frene tan violentamente que suponga un peligro.
- ✓ Curvas: si un vehículo circula a gran velocidad en una curva, patinará o se deslizará.
- ✓ Velocidad critica en curvas: cuando un automóvil rebasa la velocidad critica en una curva, se produce un resbalamiento lateral, producida porque la fuerza centrífuga ha sido mayor que las que se oponen a su actuación libre, tales como las fuerzas de fricción.

2.3.5. DESPISTE.

Es la acción u efecto de perder la pista y se aplica al caso en que el vehículo abandona la calzada por la que transita contra o sin la voluntad de su conductor. El despiste es simple

cuando no ocurre nada más que lo señalado pero el despiste puede ser el origen de otro accidente mayor.

2.3.6. CHOQUE

Es el embestimiento de un vehículo contra un obstáculo inmóvil de la vía cercano a ella, que puede ser incluso otro vehículo con la condición que no se encuentra en movimiento

2.3.7. INDICADORES DE ACCIDENTABILIDAD⁵

Los indicadores de accidentabilidad permiten medir el peligro de una carretera considerando el número de accidentes y el volumen de vehículos que circulan por un determinado tramo de carretera.

IPat: (Índice de peligrosidad de accidentes totales). Relaciona el número total de accidentes registrados en un año con la cantidad de vehículos que circulan por un sector determinado o tramo de vía.

$$Ipat = \frac{10^6.N}{IMD.365 X L} \dots \dots \dots \dots (1)$$

IPav: (Índice de peligrosidad de accidentes con víctimas). Relaciona el número de accidentes con víctimas registrados en un año con la cantidad de vehículos que circulan por un sector determinado o tramo de vía.

$$Ipav = \frac{10^6.Nv}{IMD.365.XL}....(2)$$

IS: (Índice de severidad). Relaciona el número equivalente de accidentes de tránsito registrados en un año con la cantidad de vehículos que circulan por un sector determinado o tramo de vía.

⁵ ALCALDIA MAYOR DE BOGOTÁ, SECRETARIA DE TRANSITO, CAL y MAYOR ASOCIADOS Manual de Planeación y Diseño para la Administración del Tránsito y el Transporte. Bogotá D.C.: Alcaldía Mayor de Bogotá, 2005.

IS

Dónde:

IS: Índice de severidad

N : número de accidentes

Nv : (número de accidentes con víctimas) = AF + AS

AF : Accidentes fatales

AS : Accidentes serios

ASimp: Accidentes simples

IMD : Tráfico promedio diario (veh/día)

L : Longitud del tramo (Km)

El porcentaje de cambio en la accidentabilidad de un sitio se determina como:

% De cambio =
$$100(\frac{Indice\ anterior - Indice\ posterior}{Indice\ anterior}) \dots \dots \dots \dots \dots (4)$$

2.3.8. LA VÍA

Se denomina así al terreno destinado y acomodado para la circulación de vehículos teniendo destinada parte de su sección para los peatones. Representa un porcentaje significativo en la utilización del suelo en áreas urbanas, ya que el desarrollo de las ciudades depende del buen funcionamiento de estas.

2.3.9. CLASIFICACIÓN DEL SISTEMA VIAL URBANO⁶

2.3.9.1. LAS VIAS URBANAS

El sistema de clasificación planteado es aplicable a todo tipo de vías públicas urbanas terrestres, ya sean calles, jirones, avenidas, alamedas, plazas, malecones, paseos, destinados al tráfico de vehículos, personas y/o mercaderías; habiéndose considerado los siguientes criterios:

- ✓ Funcionamiento de la red vial.
- ✓ Tipo de tráfico que soporta.
- ✓ Uso del suelo colindante (acceso a los lotes urbanizados y desarrollo de establecimientos comerciales); y.
- ✓ Espaciamiento (considerando a la red vial en su conjunto).
- ✓ Nivel de servicio y desempeño operacional; y
- ✓ Características físicas.
- ✓ Compatibilidad con sistemas de clasificación vigentes.

La clasificación adoptada considera cuatro categorías principales: Vías expresas, arteriales, colectoras y locales. Se ha previsto también una categoría adicional denominada "vías especiales" en la que se consideran incluidas aquellas que, por sus particularidades, no pueden asimilarse a las categorías principales. La clasificación de una vía, al estar vinculada a su funcionalidad y al papel que se espera desempeñe en la red vial urbana, implica de por si el establecimiento de parámetros relevantes para el diseño como son:

- ✓ Velocidad de diseño.
- ✓ Características básicas del flujo que transitara por ellas.

-

⁶ Manual de diseño de vías urbanas-2005, p.11

- ✓ Control de accesos y relaciones con otras vías.
- ✓ Número de carriles.
- ✓ Servicio a la propiedad adyacente.
- ✓ Compatibilidad con el transporte público; y.
- ✓ Facilidades para el estacionamiento y la carga y descarga de mercaderías.

El TABLA Nº 02 presenta resumidamente las categorías principales y los parámetros de diseño antes mencionados.

2.3.9.2. VÍAS EXPRESAS

• FUNCIÓN

Las vías expresas establecen la relación entre el sistema interurbano y el sistema

vial urbano, sirven principalmente para el tránsito de paso (origen y destino distantes entre sí). Unen zonas de elevada generación de tráfico transportando grandes volúmenes de vehículos, con circulación a alta velocidad y bajas condiciones de accesibilidad. Sirven para viajes largos entre grandes áreas de vivienda y concentraciones industriales, comerciales y el área centra

TABLA Nº 02. PARÁMETROS DE DISEÑO VINCULADOS A LA CLASIFICACIÓN DE VÍAS URBANAS

ATRIBUTOS Y RESTRICCIONES	VÍAS EXPRESAS	VÍAS ARTERIALES	VÍAS COLECTORAS	VÍAS LOCALES
Velocidad de Diseño	Entre 80 y 100 Km/hora Se regirá por lo establecido en los artículos 160 a 168 del Reglamento Nacional de Tránsito (RNT) vigente.	Entre 50 y 80 Km/hora Se regirá por lo establecido en los artículos 160 a 168 del RNT vigente.	Entre 40 y 60 Km/hora Se regirá por lo establecido en los artículos 160 a 168 del RNT vigente.	Entre 30 y 40 Km/hora Se regirá por lo establecido en los artículos 160 a 168 del RNT vigente.
Características del flujo	Flujo ininterrumpido. Presencia mayoritaria de vehículos livianos. Cuando es permitido, también por vehículos pesados. No se permite la circulación de vehículos menores, bicicletas, ni circulación de peatones.	Debe minimizarse las interrupciones del tráfico. Los semáforos cercanos deberán sincronizarse para minimizar interferencias. Se permite el tránsito de diferentes tipos de vehículos, correspondiendo el flujo mayoritario a vehículos livianos. Las bicicletas están permitidas en ciclovías	Se permite el tránsito de diferentes tipos de vehículos y el flujo es interrumpido frecuentemente por intersecciones a nivel. En áreas comerciales e industriales se presentan porcentajes elevados de camiones. Se permite el tránsito de bicicletas recomendándose la implementación de ciclo vías.	Está permitido el uso por vehículos livianos y el tránsito peatonal es irrestricto. El flujo de vehículos semipesados es eventual. Se permite el tránsito de bicicletas.
Control de Accesos y Relación con otras vías	Control total de los accesos. Los cruces peatonales y vehiculares se realizan a desnivel o con intercambios especialmente diseñados. Se conectan solo con otras vías expresas o vías arteriales en puntos distantes y mediante enlaces. En casos especiales, se puede prever algunas conexiones con vías colectoras, especialmente en el Área Central de la ciudad, a través de vías auxiliares	Los cruces peatonales y vehiculares deben realizarse en pasos a desnivel o en intersecciones o cruces sanforizados. Se conectan a vías expresas, a otras vías arteriales y a vías colectoras. Eventual uso de pasos a desnivel y/o intercambios. Las intersecciones a nivel con otras vías arteriales y/o colectoras deben ser necesariamente metaforizadas y considerarán carriles adicionales para volteo.	Incluyen intersecciones sanforizadas en cruces con vías arteriales y solo señalizadas en los cruces con otras vías colectoras o vías locales. Reciben soluciones especiales para los cruces donde existían volúmenes de vehículos y/o peatones de magnitud apreciable	Se conectan a nivel entre ellas y con las vías colectoras.
Número de carriles	Bidireccionales: 3 o más carriles/sentido	Unidireccionales: 2 ó 3 carriles Bidireccionales: 2 ó 3 carriles/sentido	Unidireccionales: 2 ó 3 carriles Bidireccionales: 1 ó 2 carriles/sentido	Unidireccionales: 2 carriles Bidireccionales: 1 carril/sentido
Servicio a propiedades adyacentes	Vías auxiliares laterales	Deberán contar preferentemente con vías de servicio laterales.	Prestan servicio a las propiedades adyacentes.	Prestan servicio a las propiedades adyacentes, debiendo llevar únicamente su tránsito propio generado.
Servicio de Transporte público	En caso se permita debe desarrollarse por buses, preferentemente en " Carriles Exclusivos " o " Carriles Solo Bus " con paraderos diseñados al exterior de la vía.	El transporte público autorizado deber desarrollarse por buses, preferentemente en "Carriles Exclusivos " o " Carriles Solo Bus con paraderos diseñados al exterior de la vía o en bahía.	El transporte público, cuando es autorizado, se " da generalmente en carriles mixtos, debiendo establecerse paraderos especiales y/o carriles adicionales para volteo.	No permitido
Estaciona- miento, carga y descarga de mercaderías	No permitido salvo en emergencias.	No permitido salvo en emergencias o en las vías de servicio laterales diseñadas para tal fin. Se regirá por lo establecido en los artículos 203 al 225 del RNT vigente.	El estacionamiento de vehículos se realiza en estas vías en áreas adyacentes, especialmente destinadas para este objeto. Se regirá por lo establecido en los artículos 203 al 225 del RNT vigente.	El estacionamiento está permitido y se regirá por lo establecido en los artículos 203 al 225 del RNT vigente

Fuente: Manual Geométrico de Vías Urbanas 2005.p 2/2

Facilitan una movilidad óptima para el tráfico directo. El acceso a las propiedades adyacentes debe realizarse mediante pistas de servicio laterales.

En su recorrido no es permitido el estacionamiento, la descarga de mercaderías, ni el tránsito de peatones. Este tipo de vías también han sido llamadas "autopistas".

CARACTERÍSTICAS DEL FLUJO

En esta vía el flujo es ininterrumpido, porque no existen cruces al mismo nivel con otras vías, sino solamente a diferentes niveles en intercambios especialmente diseñados.

TIPOS DE VEHÍCULO

Las vías expresas suelen transportar vehículos pesados, cuyo tráfico es tomado en consideración para el diseño geométrico correspondiente.

Para el transporte público de pasajeros se permite el servicio de buses, preferentemente en carriles segregados y el empleo de paraderos debidamente diseñados en los intercambios.

CONEXIONES

Las vías expresas están directamente conectadas entre sí con vías arteriales. En casos especiales, se puede prever algunas conexiones con vías colectoras, especialmente en el área central de la ciudad, a través de vías auxiliares.

ESPACIAMIENTO

El espaciamiento deseable entre los corredores de vías expresas, varía entre 4 y 10 Km, siendo adoptado el primero para el área central y el segundo en áreas de expansión urbana, y es condicionado por zonas generadoras de tráfico, por la topografía y por todos los factores de uso del suelo.

Una primera aproximación del espaciamiento deseable entre vías expresas puede ser calculado en función de la densidad de los desplazamientos a través de la siguiente fórmula:

donde:

E e = Espaciamiento en Km entre vías expresas;

Ea = Espaciamiento promedio en Km entre vías arteriales;

L = Extensión media en Km, de los desplazamientos en el Área de Estudio;

D = Densidad de los desplazamientos entre los extremos (en vehículos/km2)

V = Volumen diario medio en la vía expresa (VDM medido para ambos sentidos)

Asumiendo valores típicos para L y Ea, se obtienen los valores de la **FIGURA Nº03**, que muestra la relación entre el espaciamiento entre las vías expresas y la densidad de desplazamiento entre los extremos, en función de la capacidad de la vía expresa, donde para el caso de Lima Metropolitana, la extensión media de los desplazamientos entre los extremos es de 8,5 Km y el espaciamiento medio entre las vías arteriales es de 2,0 Km

2.3.9.3. VÍAS ARTERIALES

FUNCIÓN

Las vías arteriales permiten el tránsito vehicular, con media o alta fluidez, baja accesibilidad y relativa integración con el uso del suelo colindante. Estas vías deben ser integradas dentro del sistema de vías expresas y permitir una buena distribución y repartición del tráfico a las vías colectoras y locales. El estacionamiento y descarga de mercancías está prohibido.

El término Vía Arterial no equivale al de Avenida, sin embargo, muchas vías arteriales han recibido genéricamente la denominación de tales.

CARACTERÍSTICAS DEL FLUJO

En estas vías deben evitarse interrupciones en el flujo de tráfico. En las intersecciones donde los semáforos están cercanos, deberán ser sincronizados para minimizar las interferencias al flujo directo.

FIGURA Nº03. Espaciamiento entre vías expresas

Fuente: Manual Geométrico de Vías Urbanas 2005.p 2/3

Los peatones deben cruzar solamente en las intersecciones o en cruces semaforizados especialmente diseñados para el paso de peatones.

Los paraderos del transporte público deberán estar diseñados para minimizar las interferencias con el movimiento del tránsito directo.

En las intersecciones pueden diseñarse carriles adicionales para volteos con el fin de aumentar su capacidad.

Se recomienda que estas vías cuenten con pistas de servicio laterales para el acceso a las propiedades.

TIPOS DE VEHÍCULO

Las vías arteriales son usadas por todo el tipo de tránsito vehicular. Se admite un porcentaje reducido de vehículos pesados y para el transporte colectivo de pasajeros se permite el servicio con un tratamiento especial en vías exclusivas o carriles segregados y con paraderos e intercambios debidamente diseñados.

CONEXIONES

Las vías arteriales se conectan a vías expresas, a otras vías arteriales y a vías colectoras, no siendo conveniente que se encuentren conectadas a vías locales residenciales.

ESPACIAMIENTO

De una manera general, las vías arteriales en la fase de planeamiento, deberán estar separadas a 2.0 Km una de otra. Sin embargo, una primera aproximación de espaciamiento deseable entre vías arteriales, puede ser calculado a través de la siguiente fórmula, que representa una adaptación de la fórmula de

NORTON SCHNEIDER, ya mostrada para vías expresas, usándolas ahora, para el caso de vías arteriales:

donde:

Ea = Espaciamiento en Km, entre vías arteriales;

Ec = Espaciamiento medio en Km., entre vías colectoras;

L = Extensión media en Km., de los desplazamientos en el Área del Estudio;

D = Densidad de desplazamiento entre los extremos (en vehículos/km2)

V = Volumen diario medio en la vía arterial (VDM medido para ambos sentidos)

De igual manera, que, en el caso de las vías expresas, se puede obtener el gráfico de la **FIGURA N**⁰**04**, a partir de la relación entre el espaciamiento entre vías arteriales y la densidad del desplazamiento entre los extremos, en función de la capacidad de la vía arterial, adoptándose un valor de 3,50 Km., para la extensión media de los desplazamientos entre los extremos y siendo 0,50 km., el espaciamiento medio entre las vías colectoras.

65 6 NUMERO DE DESPLAZAMIENTO HACIA LOS EXTREMOS (1.000VP/Km2) 5 35 30 25 1.5 2 2.5 3 3.5 4.5 5 Κm ESPACIAMIENTO ENTRE VIAS EXPRESAS

FIGURA N⁰04. Espaciamiento entre vías expresas

Fuente: Manual Geométrico de Vías Urbanas 2005.p 2/4

2.3.9.4. VÍAS COLECTORAS

FUNCIÓN

Las vías colectoras sirven para llevar el tránsito de las vías locales a las arteriales y en algunos casos a las vías expresas cuando no es posible hacerlo por intermedio de las vías arteriales. Dan servicio tanto al tránsito de paso, como hacia las propiedades adyacentes.

Pueden ser colectoras distritales o interdistritales, correspondiendo esta clasificación a las Autoridades Municipalidades, de la cual se derivan, entre otros, parámetros para establecer la competencia de dichas autoridades.

Este tipo de vías, han recibido muchas veces el nombre genérico de Jirón, Vía Parque, e inclusive Avenida.

CARACTERÍSTICAS DE FLUJO

El flujo de tránsito es interrumpido frecuentemente por intersecciones semaforizadas, cuando empalman con vías arteriales y, con controles simples, con señalización horizontal y vertical, cuando empalman con vías locales.

El estacionamiento de vehículos se realiza en estas vías en áreas adyacentes, especialmente destinadas para este objeto.

Reciben soluciones especiales para los cruces peatonales, donde existían volúmenes de vehículos y/ o peatones de magnitud apreciable.

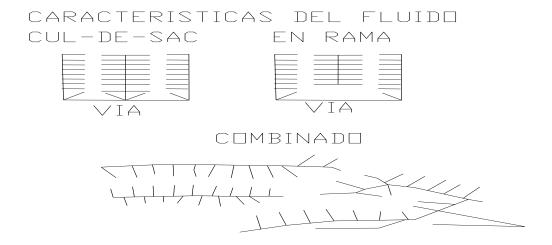
TIPOS DE VEHÍCULOS

Las vías colectoras son usadas por todo tipo de tránsito vehicular. En las áreas comerciales e industriales se presentan porcentajes elevados de camiones. Para el sistema de buses se podrá diseñar paraderos especiales y/o carriles adicionales para volteo.

CONEXIONES

Las vías colectoras se conectan con las arterias y con las locales, siendo su proporción siempre mayor con las vías locales que con las vías arteriales.

ESPACIAMIENTO


De una manera general, las vías colectoras deberán estar separadas a 800 metros una de otra, en la fase de planeamiento.

2.3.9.5. VÍAS LOCALES

Son aquellas cuya función principal es proveer acceso a los predios o lotes, debiendo llevar únicamente su tránsito propio, generado tanto de ingreso como de salida. Por ellas transitan vehículos livianos, ocasionalmente semipesados; se permite estacionamiento vehícular y existe tránsito peatonal irrestricto. Las vías locales se conectan entre ellas y con las vías colectoras.

Este tipo de vías han recibido el nombre genérico de calles y pasajes. A efectos de restringir el tránsito de paso en estas vías se puede utilizar soluciones que permitan solamente la accesibilidad a las edificaciones, tales como: 1) cul - de - sec; 2) en rama y 3) combinado. La primera solución es utilizada en vías sin salida con plaza de retorno al final. La segunda es derivada de la anterior y no necesita de plaza de retorno. La última, es el resultado mixto de las anteriores. Ver **FIGURA N**⁰**05**

FIGURA Nº05. Características del flujo

Fuente: Manual Geométrico de Vías Urbanas 2005.p 2/5

2.3.9.6. VÍAS DE DISEÑO ESPECIAL

Son todas aquellas cuyas características no se ajustan a la clasificación establecida anteriormente. Se puede mencionar, sin carácter restrictivo los siguientes tipos:

- ✓ Vías peatonales de acceso a frentes de lote
- ✓ Pasajes peatonales
- ✓ Malecones
- ✓ Paseos
- ✓ Vías que forman parte de parques, plazas o plazuelas
- ✓ Vías en túnel que no se adecuan a la clasificación principal

2.4. ELEMENTOS DE LA VIALIDAD URBANA

En función de la frecuencia de uso, los términos o expresiones técnicas para el diseño de vías Urbanas, fueron clasificados según los siguientes aspectos:

2.4.1. DE LA VÍA

2.4.1.1. ACERA O VEREDA

Parte de la vía urbana, destinada para el uso exclusivo de los peatones o transeúntes, y con una elevación diseñada apropiadamente contando con accesos para impedidos físicos debidamente ubicados.

2.4.1.2. ALINEAMIENTO

Es la proyección horizontal o vertical del eje de una vía o calzada, constituida por tramos rectos y /o curvos.

2.4.1.3. **AVENIDA**

Calle ancha generalmente de doble sentido con calzadas separadas por una berma central. Diversas vías del tipo arterial y colectoras han recibido la calificación de avenida.

2.4.1.4. BACHE

Hoyo o erosión producido en la superficie de rodadura, producto del desgaste o daño ocasionado por agentes de sobrecarga, agua acumulada, etc.

2.4.1.5. BADÉN

Es la depresión de una vía pública, destinada a cruzar un curso de agua, generalmente diseñada con material rígido (cemento o piedra).

2.4.1.6. BOMBEO

Es la pendiente o inclinación transversal en tramos rectos de una vía, para facilitar el escurrimiento de las aguas superficiales, evitando la acumulación de agua en el pavimento.

2.4.1.7. CALLE

En el sentido más genérico es una vía pública en la zona urbana, con ingreso y salida, destinada al tránsito de peatones y/o vehículos.

2.4.1.8. CALZADA

Es la parte de la sección de la vía, destinada a la circulación exclusiva de vehículos. También se le conoce como superficie de rodadura o pista.

2.4.1.9. CARRILES (PISTAS) DE CAMBIO DE VELOCIDAD

Cuando un conductor va a hacer un giro en una intersección, debe modificar su velocidad. Si se propone pasar de una vía a un ramal de giro, deberá disminuirla para adecuarla a las inferiores condiciones geométricas de este último, y si pretende acceder a una de las vías, proveniente de un

ramal de giro, puede ser preferible aumentarla para hacerla compatible con las condiciones de flujo de aquélla.

Para que estas operaciones, inherentes a toda intersección, se desarrollen con un mínimo de perturbaciones, se pueden diseñar pistas de cambio de velocidad. Estas son pistas auxiliares, sensiblemente paralelas a las vías desde las cuales se pretende salir, o a las cuales se pretende entrar, y que permiten acomodar la velocidad según las conveniencias expuestas.

Según sus funciones, éstas reciben el nombre de carriles o pistas de aceleración o pistas desde(sa) aceleración.

2.4.1.10. SEPARADOR O BERMA CENTRAL

Es una franja o dispositivo, localizada longitudinalmente entre dos calzadas para separar el mismo sentido o sentido opuestos y es proyectado para impedir el paso de una calzada a otra.

2.5. DISTANCIA DE VISIBILIDAD PARA ADELANTAR

Es la distancia mínima de visibilidad, en vías de tránsito de doble sentido, que debe estar libre y disponible para que el conductor de un vehículo pueda adelantar a otro, de forma segura y confortable; sin interferir con un vehículo que circule en sentido contrario, a la velocidad directriz, en el caso que éste se torne visible, después de haber iniciado la maniobra de adelanto.

2.6. VELOCIDAD DE DISEÑO

Es la velocidad adoptada en el proyecto de una vía, correlacionado con sus factores de proyecto geométrico tales como curvas verticales y distancia de visibilidad, de la cual depende la circulación segura de los vehículos. Algunos diseñadores prefieren denominarla velocidad de proyecto o velocidad básica de proyecto. Es también definida como la velocidad continua más elevada, en la cual los vehículos individualmente puedan transitar con seguridad en la vía, la densidad del tráfico es baja y los factores de proyecto son aquellos que determinan las condiciones de seguridad.

2.7. VÍA DE DESVIACIÓN DE CIRCULACIÓN

Es la vía destinada a desviar el tráfico directo de una vía existente, al atravesar una zona determinada, contorneándola para retornar a la vía principal más adelante o para permitir continuar por otra vía.

2.8. VÍA DE CAMIONES

Es la vía destinada exclusivamente al tránsito de vehículos de carga.

2.9. VÍA EXCLUSIVA PARA BUSES

Carril exclusivo, destinado al tránsito de vehículos de transporte colectivo, determinada por un separador físico.

2.10. DISTANCIA DE VELOCIDAD DE PARADA⁷

Es la distancia que recorre un vehículo desde el momento en el que logra observar una situación de riesgo hasta que el conductor logra detenerlo. Para el cálculo de esta distancia se debe entender que existen dos momentos claramente diferenciados en el proceso de detener el vehículo:

El tiempo de percepción – reacción, es un intervalo de tiempo que requiere el ser humano para comprender, analizar, decidir y reaccionar accionando el freno, se mide desde la observación de la situación. Si bien no existen estudios registrados en nuestro medio al respecto que permitan definir este tiempo, se asumirá el valor de 2.5 segundos que es recomendado por la AASHTO y que corresponde al tiempo del

90avo percentil del tiempo empleado por los conductores sometidos a sus estudios. Debe comentarse que existen algunas opiniones de reducir este valor al tratase de vías urbanas pues los conductores suelen tener mayor concentración en este caso que en carreteras, sin embargo, al no existir los sustentos necesarios no se recomienda emplear cifras menores a la señalada.

Por las ecuaciones de velocidad tenemos que el tiempo de percepción-reacción demanda una distancia recorrida, es así que tenemos la siguiente ecuación:

-

⁷ Manual de diseño de vías urbanas-2005, p.84

TABLA Nº 03. Valores del Coeficiente de Fricción Longitudinal según la velocidad de circulación.

V (km/h)	30	40	50	60	70	80	90	100	110	120
F	0.4	0.38	0.35	0.33	0.31	0.3	0.3	0.29	0.28	0.28

Fuente: Manual Geométrico de Vías Urbanas 2005.p 7/2

Finalmente diremos que la Distancia de Visibilidad de Parada está dada por la suma de las ecuaciones (1) y (2):

$$D_p = 0.694(V_0) + \frac{V_0^2}{254(f)} \dots \dots \dots \dots \dots (7)$$

Vo= Velocidad de diseño (km/h)

Dp= Distancia de parada (m)

f = Coeficiente de fricción

Tabulando estos valores para distintas velocidades con los respectivos coeficientes de fricción obtenemos la TABLA Nº04:

TABLA Nº04. Distancia de Visibilidad de Parada en terrenos planos

Velocidad De Diseño (km/h)	DISTANCIA (m)
30	30
40	45
50	63
60	85
70	111
80	140
90	469
100	205
110	247
120	286

Fuente: Manual Geométrico de Vías Urbanas 2005.p 7/2

Para aclarar el término "p" diremos que en la fórmula una pendiente de 5% positiva se escribe 0.05, mientras que una pendiente negativa de 6% se escribirá –0.06. A continuación, se presenta la **Tabla N°05** valores tabulados de Distancia de Visibilidad de Parada expresada en metros para diversos valores de pendiente.

Como resultado se obtiene valores de distancia de parada mayores que las calculadas bajo el criterio de fricción cuando las velocidades son menores a 60km/h y distancias de parada menores para las velocidades mayores a 60km/h. Si analizamos estos resultados, podemos afirmar que para la desaceleración de 3.4m/s2 el vehículo entrará en derrape solo a velocidades mayores a 60km/h pues estaría excediendo el coeficiente de fricción.

Pero es más cierto que a esas velocidades un vehículo que venga detrás del que está frenando no logrará detenerse a tiempo y colisionará con el primero. En consecuencia, este manual recomienda para calcular la Distancia de Parada mantener el criterio del coeficiente de fricción que propone mayores distancias de parada para velocidades de más de 60km/h.

TABLA Nº 05. Distancia de visibilidad de parada en terreno con pendiente (m)

V	f			p ((%) er	subic	das			p (%) en bajadas							
km/h	1	3	4	5	6	7	8	9	10	-3	-4	-5	-6	-7	-8	-9	-10
30	0.40	29	29	29	29	28	28	28	28	30	31	31	31	32	32	32	33
40	0.38	43	43	42	42	42	41	41	41	46	46	47	47	48	49	49	50
50	0.35	61	60	59	59	58	58	57	57	65	66	68	69	70	71	73	74
60	0.33	81	80	79	78	77	76	75	75	89	91	92	94	96	98	101	103
70	0.31	105	104	102	101	99	98	97	96	117	120	123	126	129	132	136	140
80	0.30	132	130	128	126	124	122	120	119	149	152	156	161	165	170	176	182
90	0.30	159	156	154	151	149	146	144	142	181	185	190	195	201	207	214	222
100	0.29	192	189	185	182	179	176	173	170	221	227	233	241	248	257	266	277
110	0.28	230	225	221	216	212	209	205	202	267	275	283	293	303	315	327	341
120	0.28	266	260	255	250	245	241	237	232	310	320	330	341	353	367	382	398

Fuente: Manual Geométrico de Vías Urbanas 2005.p 7/3

2.11. ALINEAMIENTO HORIZONTAL

El alineamiento horizontal, o las características del diseño geométrico en planta, deberá permitir, en lo posible, la operación ininterrumpida de los vehículos, tratando de conservar en promedio la misma velocidad directriz en la mayor longitud de vía que sea posible. A efectos de lograrlo los diseños en planta atienden principalmente:

- ✓ Alineamientos rectos
- ✓ Curvas Horizontales
- ✓ Sobreancho
- ✓ Islas
- ✓ Canalización
- ✓ Carriles (Pistas) de cambio de velocidad

Estos elementos, que definen las características geométricas de una vía urbana, están íntimamente ligados a la forma en que los vehículos pueden utilizarla; a su comportamiento en la vía; a la armonía entre la estética y funcionalidad de todos los elementos urbanos; y, a la presencia de los peatones con sus deseos de circulación.

2.12. ALINEAMIENTOS RECTOS⁸

El trazado de una vía urbana contiene usualmente alineamientos rectos, los cuales ofrecen ventajas de orientación, entre otras. Usualmente la longitud de los alineamientos rectos está condicionada por las características del derecho de vía, sin embargo, cuando es posible decidir sobre las mismas, sobre todo en zonas habitacionales donde las vías locales tienen restricciones de velocidad, conviene intercalar trazados curvos por las ventajas de la variedad paisajista que estos ofrecen, así como por el control de velocidad que inducen, ello sin descuidar la comodidad visual del conductor.

No se recomienda en el presente Manual restricción a las longitudes máximas de tramos rectos, pero si para las longitudes mínimas de aquellas rectas comprendidas entre curvas, las mismas que se sugiere no sean inferiores a 100 a 200 m. por razones de confort y seguridad. Las longitudes mínimas de tangente deberán permitir la transición de sobre anchos y la de bombeo hacia peraltes.

Cuando no sea posible atender las distancias mínimas recomendables entre curvas circulares se deberá adoptar las longitudes mínimas de tangentes, indicada en la TABLA N⁰06, calculadas en

 $^{^{8}}$ $^{(7)}$ Manual de diseño de vías urbanas-2005, p.88

función de la velocidad directriz del diseño, para vías expresas, arteriales, colectoras y locales, en situaciones entre curvas en un mismo sentido y entre curvas reversas. En caso de utilizar curvas del tipo clotoide la longitud de tangentes puede ser tan pequeña como se desee.

En relación a la determinación de las longitudes mínimas absolutas, indicadas en el **TABLA Nº06**, se tuvo en consideración que el tiempo deseable para una maniobra y recuperación del sentido de equilibrio sería 2 ½ segundos para el "caso 1"; 3 ½ segundos para el "caso 2"; 1 ½ segundos para el "caso 3" y 2 segundos para el "caso 4", en condiciones normales de operación de un vehículo tipo que represente un promedio de los vehículos motorizados que circulan en cada una de las Vías Expresas, Arteriales, Colectoras y Locales.

TABLA Nº 06. Longitud mínima de tangentes para el diseño geométrico.

		LONGITUD MINIMA DE TANGENTES PARA EL DISEÑO GEOMETRICO								
VELO		EXPRE		COLECTORAS Y						
DIRECTRIZ		ARTER	IALES	LOCALES						
		1	2	3	4					
			Т	T	Т					
Km/h	m/s	Metros	Metros	Metros	Metros					
30	8.33			15	20					
40	11.11			20	25					
50	13.88	35	50	25	30					
60	16.66	45	60	30	35					
80	22.22	60	80							

Fuente: Manual Geométrico de Vías Urbanas 2005.p 8/1

El "caso 3" y 2 segundos para el "caso 4", en condiciones normales de operación de un vehículo tipo que represente un promedio de los vehículos motorizados que circulan en cada una de las Vías Expresas, Arteriales, Colectoras y Locales.

2.13. CURVAS HORIZONTALES⁹

El diseño de las curvas obedece a diferentes criterios. Son comunes las curvas circulares simples y las compuestas, las mismas que pueden llevar curvas de transición del tipo espiral. Los tramos con espiral se utilizarán entre alineamientos rectos y la curva circular, para proporcionar una trayectoria más confortable y segura; posibilitar velocidades más uniformes; facilitar la dirección de los vehículos; efectuar la variación del peralte y sobreancho; así como mejorar el aspecto estético del alineamiento.

Para el diseño de vías, cuya velocidad directriz sea igual o mayor de 60 kph se utilizarán espirales para realizar la transición, teniendo en cuenta las recomendaciones expresadas en el presente documento. En las vías locales y colectoras, existen diversos factores que contribuyen a tornar la transición

impracticable e indeseable, tales como: (a) gran proximidad entre intersecciones; (b) presencia de inmuebles muy cerca de la vía; y, (c) condiciones de drenaje superficial y subterráneo. En caso en que los radios empleados para las curvas excedan a los indicados en el TABLA Nº 06, el requerimiento de la curva espiral puede obviarse.

TABLA N⁰ 07. Velocidad directriz.

VELOCIDAD DIRECTRIZ	ESPIRAL OBLIGATORIA HASTA R (mts) ≥ a:
60	300
70	500
80	800
90	1000
100	1300
110	1900
120	2500

Fuente: Manual Geométrico de Vías Urbanas 2005.p 8/2

.

⁹ Manual de diseño de vías urbanas-2005, p.88

El diseño de tramos viales en curva debe efectuarse teniendo en cuenta la relación entre la velocidad de diseño, el radio de la curva, el efecto de la inclinación transversal de la vía y la interacción de estos con la fricción entre vehículo y vía. Si bien estas relaciones se deducen de las leyes físicas, los valores usados se han deducido empíricamente para los rangos involucrados en el diseño.

El cambio de un tramo en tangente para otro en curva, o sea, de un radio infinito para un radio finito, no debe ser hecho bruscamente, lo que puede ofrecer inseguridad e incomodidad, tanto para la carga como para los pasajeros. El presente Manual estableció los valores de radios mínimos sobre la base la velocidad de diseño, peralte máximo y coeficiente de fricción transversal máximo, los mismos que se muestran en la TABLA N⁰08, el mismo que se adaptó de la primera de las referencias bibliográficas mencionadas en el capítulo 1.

TABLA N ⁰ 08. Radios mínimos.

V(Km/hr)	Coef.Fricción Transversal f	Mínimo	Real de R con p máx. seable	Mínimo o	ictico de R con p máx. cable
	máx.	p máx.	p máx.	p máx.	p máx.
		4%	6%	4%	6%
20	0.18	14.32	13.12	15	15
30	0.17	33.75	30.81	35	30
40	0.17	59.99	54.78	60	55
50	0.16	98.43	89.48	100	90
60	0.15	149.19	134.98	150	135
70	0.14	214.35	192.91	215	195
80	0.14	279.97	251.97	280	250
90	0.13	375.17	335.68	375	335
100	0.12	492.13	437.45	490	435
110	0.11		560.44		560
120	0.09		755.91		755
130	0.08		950.51		950

Fuente: Manual Geométrico de Vías Urbanas 2005.p 8/2

En caso de que no pueda utilizarse los peraltes máximos, o que convenga emplear unos menores, los radios mínimos a utilizar serán los obtenidos mediante la fórmula mostrada a continuación:

Rmin = V2/(127*(0.01p + fmax)), donde:

V= velocidad de diseño expresada en Kms/ Hora

P = peralte en porcentaje

Fmax= coeficiente de fricción correspondiente a la velocidad de diseño

CURVAS CIRCULARES SIMPLES

Es el tipo de curvas usado para concordar dos alineamientos rectos en el trazado de una vía urbana. En estos, el radio es el elemento principal a ser escogido, de tal manera que la mejor curva se adapte al terreno en el lugar del proyecto. Los elementos necesarios para el diseño y cálculo de una curva circular en planta, se encuentran en la **FIGURA N**⁰06.

CURVAS CIRCULARES SIMPLES

FIGURA N⁰06. Curvas circulares simples

Fuente: Manual Geométrico de Vías Urbanas 2005.p 8/2

ALINEAMIENTO VERTICAL

En las vías urbanas normalmente no se tiene la posibilidad de escoger entre opciones de paso para tantear alternativas, por eso la topografía suele ser condicionante de los diseños altimétricos de las vías. Esta situación es muy distante de lo que sucede con las carreteras, en donde se puede buscar una rasante óptima para el diseño mediante la evaluación de pendientes diversas. En el trazo vial urbano, el proyectista se encontrará con frentes de viviendas consolidadas que dan cara a la vía que se diseña, en estos casos no hay mayores alternativas que asimilar la pendiente al terreno existente.

Lamentablemente, algunos proyectos de lotización no consideran la importancia del empleo de pendientes adecuadas y disponen del trazo de calles con gradientes muy elevadas.

Cuando el diseño involucra la definición de Pasos a Desnivel o Intercambios viales, en donde las pendientes serán inducidas por el proyecto, se tendrá necesariamente en cuenta los diversos criterios que se exponen en este capítulo.

Antes de continuar, resulta conveniente tomar algunas definiciones respecto del tipo de terreno, para este efecto se han asimilado las del Manual de Diseño Geométrico de Carreteras DG-2001.

- ✓ **Terreno Plano**, propio de topografías en valles donde las ciudades inician su desarrollo. No existe mayores cambios de relieve y las pendientes son muy suaves.
- ✓ **Terreno Ondulado**, presencia de pequeñas alteraciones en el relieve del terreno que permiten ascensos o descensos moderados independientemente de su longitud.
- ✓ Terreno Montañoso, topografía con pendientes de magnitud considerable que suelen obligar a cortes y/o rellenos de consideración cuando se traza la vía.

2.14. EL PERFIL LONGITUDINAL

Es una línea que se emplea en el diseño para representar gráficamente la disposición vertical de la vía respecto del terreno. Esta línea suele estar asociada al Eje del trazo definido en la planta, identificándose a lo largo de su desarrollo las variaciones de las cotas del terreno y de la rasante de la vía.

Si bien en los diseños en planta se suele emplear un Eje de Trazo para la vía, en el caso de vías urbanas muchas veces se tiene el diseño de calzadas separadas en donde por fines de optimización resulta necesario emplear un eje para cada calzada.

Para la situación de diseño de Pasos a Desnivel o Intercambios Viales, cada una de las pistas previstas (sean las principales o las rampas de acceso o salida) deben contar con un Eje asociado a su respectivo perfil longitudinal. En general es recomendable que el perfil longitudinal sea trazado sobre la calzada, ya sea al centro o al borde de la misma, en el caso de calzadas separadas ubicar el perfil en el separador central puede traer confusiones por diferencias entre la topografía del terreno en el separador y las rasantes proyectadas en las vías.

2.15. ELEMENTOS DE DISEÑO

Los elementos de diseño del Perfil Longitudinal son las Tangentes Verticales más conocidas como Pendiente y las Curvas Verticales, la unión de ambos forma la Rasante de la vía.

2.15.1. TANGENTES VERTICALES

Respecto a los tramos en tangente vertical existen estipulaciones sobre pendientes máximas y mínima que se deben respetar; se conoce como pendiente al cociente entre variación vertical y variación horizontal expresada en porcentaje:

$$P\% = \frac{d(cota)}{d(longitud)} \times 100 \dots \dots \dots \dots (9)$$

2.15.2. PENDIENTES MÍNIMAS.

La pendiente mínima está gobernada por problemas de drenaje, es así que si el bombeo de la calzada es de por lo menos 2% se puede aceptar pendientes mínimas de 0.3%, para casos de bombeo menor usar como pendiente mínima 0.5%.

2.15.3. PENDIENTES MÁXIMAS.

En vías urbanas, cuando se tiene la posibilidad de elegir la pendiente a emplear en un alineamiento vertical, se deberá tener presente las consideraciones económicas, constructivas y los efectos de la gradiente en la operación vehicular. A continuación, se muestra un cuadro, en donde se adoptan valores de pendiente máxima con la incorporación del criterio del Tipo de Terreno.

TABLA 09. Pendientes máximas.

TIPO DE VÍA	Terreno Plano	Terreno Ondulado	Terreno Montañoso		
Vía Expresa	3%	4%	4%		
Vía Arterial	4%	5%	7%		
Vía Colectora	6%	8%	9%		
Vía Local	Según topografía	10%	10%		
Rampas de acceso o salidas a vías libres de Intersecciones	6% - 7%	8% - 9%	8% - 9%		

Fuente: Manual Geométrico de Vías Urbanas 2005.p 9/1

2.15.4. CARACTERÍSTICAS GEOMÉTRICAS EN SECCIONES TRANSVERSALES

El diseño de la sección transversal implica a su vez el diseño de diversos elementos en un proceso que se encuentra notablemente influido por condiciones de la demanda; por la capacidad vial que es factible ofrecer; por estipulaciones de índole reglamentario (Reglamento Nacional de Construcciones, Ordenanzas Municipales, etc.) y por limitaciones en el derecho de vía, entre otras.

El diseño optará por esquemas que, satisfaciendo las estipulaciones del presente manual, así como las necesidades del habitante del lugar y del peatón, brinden comodidad, seguridad y funcionalidad adecuadas a los conductores.

Los elementos de la sección transversal considerados en el presente manual son:

- ✓ Número de carriles / ancho de las calzadas;
- ✓ Ancho de los carriles;
- ✓ Bombeo y Peralte (Pendiente Transversal);
- ✓ Separadores o bermas centrales;
- ✓ Bermas laterales;
- ✓ Sardineles; y
- ✓ Distancias laterales y verticales libres en las vías;
- ✓ Secciones en túnel
- ✓ Secciones transversales típicas

2.15.5. NÚMERO DE CARRILES

2.15.5.1. ANCHO DE LAS CALZADAS

Esta característica está directamente relacionada con la clasificación funcional de la vía; también con la capacidad operacional necesaria para atender a la demanda vehicular; y, con el sentido de la circulación. La decisión que el proyectista tome al respecto dependerá por tanto de estos factores, así como también de las restricciones que pudieran existir al derecho de vía.

La determinación del número de carriles y consecuentemente del ancho de la calzada, en un principio, se define en los estudios de planificación de la red vial y de transporte urbano. El número mínimo de carriles en una calzada con sentido único es lógicamente uno y el máximo sugerido es cuatro. Este máximo es en realidad un criterio estrictamente referencial ya que en caso de que la

demanda sugiera un mayor número de carriles puede convenir establecer dos calzadas por sentido. La primera de ellas, probablemente ubicada más hacia el centro de la vía y destinada a los vehículos con un recorrido más largo, y la otra operaria como vía local.

Es común enfrentar situaciones especiales a nivel físico, institucional u operacional, en que la sección transversal o derecho de vía no permite que se tenga el ancho de las calzadas compatible con la capacidad requerida, obligando a estudiar alternativas o soluciones de reducción de número de carriles o de ancho de calzadas.

A nivel operacional, la fijación del número de carriles, viene dada por la disposición de las marcas viales en el pavimento.

A modo ilustrativo puede señalarse que es perfectamente recomendable que una vía del tipo arterial con 4 carriles de 3.50 m. de ancho cada una, en un tramo largo y sin interrupciones laterales, pueda dar lugar a 5 carriles de 2.80 m. de ancho cada uno, en zonas de aproximada de 50 m cercanas a puntos de intersección semaforizados, permaneciendo constante el ancho de la vía con los mismos 14 metros.

2.15.5.2. ANCHO DE CARRILES¹⁰

El ancho recomendable para los carriles de una vía dependerá principalmente de la clasificación de la misma y de la velocidad de diseño adoptada, sin embargo, no siempre será posible que los diseños se efectúen según las condiciones ideales. El proyectista podrá justificar el empleo de valores excepcionales atendiendo aspectos sociales, económicos, físicos, geográficos e inclusive institucionales. Dependiendo de la velocidad de diseño y de la clasificación vial, el ancho de los carriles, en tramos rectos, puede asumir los valores indicados en el **TABLA Nº10**.

¹⁰ Manual de diseño de vías urbanas-2005, p. 101

TABLA Nº 10. Ancho de carril.

CLASIFICACION DE VIAS		Velocidad (Km/Hr)	Ancho Recomendable (Mts)	Ancho Mínimo de Carril en Pista Normal (Mts) (2, 3)	Ancho Mínimo de Carril único del tipo Solo Bus (Mts)	Ancho de dos carriles juntos (mts) (5)
	LOCAL	30 A 40	3	2.75	3.50 (4)	6.5
	COLECTORA	40 A 50	3.3	3	3.50 (4)	6.5
ARTERIAL		50 A 60	3.30	3.25	3.50	6.75
		60 a 70	3.5	3.25	3.75	6.75
		70 a 80	3.50	3.50	3.75	7.0
EXPRESAS		80 a 90	3.6	3.5	3.75	7.25
		90 a 100	3.6	3.5	No aplicable	No aplicable

Fuente: Manual Geométrico de Vías Urbanas 2005.p 10/1

Notas

- Los anchos indicados son válidos solo en tramos rectos. Para zonas de curva ver la sección relativa a diseño de curvas horizontales del presente manual.
- El uso de los anchos mínimos exige trazados con clotoides para velocidades iguales o mayores a 50 km/hora.
- Si el porcentaje de vehículos pesados excede el 10% entonces el mínimo para V < 70 Kms/hora es 3.25 mts y para V>= 70 Kms/hora es 3.50 mts.
- 4. Si el carril es único, como por ejemplo para el caso de accesos o salidas, entonces deberá adicionarse dos (2) metros al ancho mínimo.
- 5. Si dos carriles juntos han de ser de distinto sentido no recomendable- el mínimo ancho para las dos vías será el doble del mínimo ancho para los carriles solo Bus.

2.15.5.3. BOMBEO Y PERALTE (PENDIENTE TRANSVERSAL)¹¹

En lo que respecta a la pendiente de las secciones transversales debe tenerse presente que el diseño geométrico de vías urbanas presenta condicionamientos altimétricos especiales para los bordes de las vías debido a la obligación de producir empalmes coherentes y estéticos con los demás

-

¹¹ Manual de diseño de vías urbanas-2005, p. 102

elementos urbanos. Debido a ello, no siempre será posible introducir las recomendaciones para las pendientes transversales, sean estas relativas al bombeo o al peralte.

BOMBEO.

La pendiente de las secciones transversales en tramos rectos o "bombeo" tiene por objeto facilitar el drenaje superficial. Esta inclinación puede ser constante en todo el ancho o presentar discontinuidad en el eje de simetría para que el drenaje se produzca hacia ambos bordes. La magnitud del bombeo dependerá del tipo de superficie de rodadura y de los niveles de precipitación de la zona.

El presente manual adoptó la estipulación del Manual de Diseño Geométrico de Carreteras del Perú. Ver TABLA N^011 .

TABLA Nº11. Bombeo de Calzada

Ancho Mínimo de Carril en	Bomb	eo %		
Pistas Normal (Mts) (2,3)	Precipitación<500	Precipitación>500		
2.75	mm/año	mm/año		
Pavimento Superior	2.00	2.50		
Tratamiento Superficial	2.50	2.5-3		
Afirmado	3.0-3.5	3-4.9		

Fuente: Manual Geométrico de Vías Urbanas 2005.p 10/2

Para mejorar el confort y seguridad en un tramo en curva, se puede adoptar un aumento de la pendiente transversal o "peralte", en un ángulo conveniente, creando así un componente contrario a la fuerza centrífuga.

Para la definición de los peraltes debe tenerse en cuenta que aun cuando fijar la geometría de una vía exige la definición previa de una velocidad de diseño, el hecho de tratarse de una vía urbana implica, mucho más que en el caso rural, una gran dispersión de las velocidades de operación a lo largo del día y de la vida útil en general. Esto, sumado a las limitaciones físicas que impone el entorno urbano, hace recomendable limitar el peralte máximo en forma mucho más estricta que en el caso de carreteras.

TABLA Nº 12. Pendientes máximas de bordes de Calzada.

TIDO DE MAVIMO	PENDIEN	PENDIENTE MAXIMA EN PORCENTAJE PARA VELOCIDADES DE DISEÑO EN km/hr									
TIPO DE MAXIMO	30	40	50	60	70	80	90	100			
NORMAL	0.80	0.70	0.86	0.60	0.55	0.50	0.45	0.40			
ABSOLUTO	1.80	1.60	1.20	1.00	0.80	0.70	0.60	0.50			

Fuente: Manual Geométrico de Vías Urbanas 2005.p 10/3

2.15.5.4. SEPARADORES O BERMAS CENTRALES¹²

Son superficies generalmente elevadas, delimitadas usualmente por sardineles, alargadas en sentido paralelo a las calzadas y que tienen por objeto principal separar físicamente dos corrientes de tráfico, incrementando la seguridad y creando espacios para los giros vehiculares y refugio a los peatones.

Los separadores pueden ser planteados también como reservas de espacio para futuras ampliaciones, y permiten la creación de pistas de desaceleración y espera, empleando parte de su ancho normal.

Los anchos de bermas centrales se adecuarán a los siguientes criterios:

- ✓ Si la función es únicamente la de separar flujos el ancho no será menor a 1.0 metros.
- ✓ Si la función, además de separar flujos, es la de servir como islas de refugio para el cruce peatonal, entonces el ancho no será menor a 2.0 metros.
- ✓ Si se ha previsto el empleo de estos para alojar en ellos pistas de giro el ancho mínimo será de 5.0 metros.
- ✓ Si se ha previsto que los separadores puedan alojar los ensanches de calzada destinados a paraderos, entonces el mínimo será de 6.0 metros.
- ✓ Los anchos de 6.0 metros ofrecen así mismo una capacidad mínima de almacenamiento en sus aberturas.
- ✓ La pendiente transversal de los separadores o bermas centrales se adecuará a las necesidades de compatibilización altimétrica de las calzadas adyacentes.
- ✓ En vías expresas es conveniente que las bermas centrales tengan anchos del orden de 12.0 metros cuando no usen barreras vehiculares y de por lo menos 4.0 metros cuando si las usen.

-

¹² Manual de diseño de vías urbanas-2005, p. 104

✓ En las vías arteriales y colectores, estos separadores pueden ser reducidos, por problemas de limitación de espacio, a un ancho mínimo de 2 y 1 metro, respectivamente, manteniéndose los dispositivos de seguridad y protección necesarios.

2.16. INTERSECCIONES E INTERCAMBIOS

2.16.1.1. SEÑALIZACIÓN DE INTERSECCIONES

Toda intersección debe estar convenientemente regulada mediante señales informativas, preventivas y restrictivas en concordancia con el Manual de Dispositivos de Control de Tránsito Automotor para Calles y Carreteras del MTC.

Las señales informativas deben estar ubicadas a una distancia suficiente del cruce como para permitir que el conductor decida con anticipación las maniobras que debe ejecutar.

En vías urbanas con tramos largos sin intersecciones, como es el caso de tramos finales de una vía expresa, la señalización preventiva debe indicar al conductor el tipo y categoría de las vías que forman la intersección, especificando cuál tiene preferencia sobre la otra. La señal preventiva deberá preceder a la señal restrictiva en una distancia equivalente a 1,5 veces la de visibilidad de parada correspondiente.

En toda Intersección a nivel, salvo que se trate de dos vías de tipo local, la importancia de una vía prevalecerá sobre la de la otra, y por tanto, uno de ellos deberá enfrentar un signo PARE o una señal CEDA EL PASO.

La elección entre uno u otro se hará teniendo presente las siguientes consideraciones

.

- (a) Cuando exista un triángulo de visibilidad adecuado a las velocidades de diseño de ambas vías y las relaciones entre flujos convergentes no exijan una prioridad absoluta, se usará el signo CEDA ELPASO.
- (b) Cuando el triángulo de visibilidad obtenido no cumpla con los mínimos requeridos para la velocidad de aproximación al cruce, o bien la relación de los flujos de tránsito aconseje otorgar prioridad absoluta al mayor de ellos, se utilizará el signo PARE.

2.16.1.2. INTERSECCIÓN REGULADA POR SEÑAL CEDA EL PASO.

- (a) Las distancias de visibilidad de parada que se consideran seguras en diseño o Intersecciones, son las mismas usadas en cualquier otro elemento de la vía.
- (b) Cuando el triángulo de visibilidad no cumple las exigencias impuestas por las velocidades de diseño de las vías y las características del tránsito no justifican un signo PARE, se debe ajustar la velocidad de los vehículos de la vía de menor importancia, a un valor que llamaremos velocidad crítica.

2.17. SEÑALIZACIÓN DE CALLES Y CARRETERAS

Las señales son dispositivos de control de tránsito instalados a nivel del camino o sobre él, destinados a transmitir un mensaje a los conductores y peatones, mediante palabras o símbolos, sobre la reglamentación de tránsito vigente, o para advertir sobre la existencia de algún peligro en la vía y su entorno, o para guiar e informar sobre rutas, nombres y ubicación de poblaciones, lugares de interés y servicios.

2.17.1. CLASIFICACIÓN

Desde el punto de vista funcional, las señales verticales se clasifican en:

A. SEÑALES DE REGLAMENTACIÓN:

Son las que indican al conductor sobre la prioridad de paso, la existencia de ciertas limitaciones, prohibiciones y restricciones en el uso de la vía, según las leyes y reglamentos en materia de tránsito de cada país. La violación de la regulación establecida en el mensaje de estas señales constituye una contravención, que es sancionada conforme con lo establecido en la ley o reglamento de tránsito. Este tipo de infracciones se sanciona con multas, el retiro de la circulación del vehículo, o la suspensión de la licencia.

B. SEÑALES DE PREVENCIÓN:

Son las que indican al conductor de las condiciones prevalecientes en una calle o carretera y su entorno, para advertir al conductor la existencia de un potencial peligro y su naturaleza.

C. SEÑALES DE INFORMACIÓN:

Son las que guían o informan al conductor sobre nombres y ubicación de poblaciones, rutas, destinos, direcciones, kilometrajes, distancias, servicios, puntos de interés, y cualquier otra información geográfica, recreacional y cultural pertinente para facilitar las tareas de navegación y orientación de los usuarios.

2.17.2. FUNCIÓN DE LAS SEÑALES

El propósito del señalamiento vial y los dispositivos de control de tránsito, las reglas de justificación para su uso, es facilitar y garantizar el movimiento ordenado, seguro y predecible de todos los usuarios de la vía a través de toda la red vial, sean estos flujos automotores, peatonales o de otra índole. Asimismo, los dispositivos de control también tienen por objeto guiar y advertir a los usuarios de la vía conforme sea necesario, para garantizar la operación segura y uniforme de los elementos individuales de la corriente de tránsito.

El señalamiento y los dispositivos de control de tránsito deben ser utilizados para dirigir y asistir a los conductores en las tareas de prevención, guía, orientación y navegación propias de la conducción de un vehículo automotor para garantizar el viaje seguro en cualquier calle, camino o carretera abierta al público. El señalamiento de guía e información debe estar restringido al control del tránsito, usarse cuando sea estrictamente necesario y no se debe utilizar como un anuncio o medio de publicidad de ninguna índole.

2.17.3. CRITERIOS DE INSTALACIÓN

Este renglón se establecen los principios básicos que rigen el diseño y uso de los dispositivos de control de tránsito. Es importante que estos principios se consideren de forma prioritaria en la selección, aplicación y adaptación de cada señal o dispositivo de control del tránsito para todo tipo de calles, caminos y carreteras abiertas al público, independientemente de su tipo, clase o del ente público que tenga jurisdicción sobre ellas. Para que sea efectivo, cualquier dispositivo para el control del tránsito deberá cumplir con los requisitos fundamentales que se enumeran a continuación:

a. Satisfacer una necesidad para el adecuado desenvolvimiento del tránsito. Cuando se coloca un dispositivo donde no se requiere, no sólo resulta inútil sino perjudicial por cuanto inspira irrespeto en el usuario. Además, cuando este problema es frecuente, en forma reiterada se

violan las expectativas de los usuarios, con lo cual se fomenta una cultura de desobediencia generalizada al señalamiento.

- **b.** Atraer la atención del usuario. Todo dispositivo debe ser advertido por el público. Cuando esto no se cumple, el dispositivo resulta completamente inútil.
- **c.** Transmitir un mensaje claro y sencillo. La indicación suministrada por un dispositivo debe ser lacónica y clara para que sea interpretada rápidamente.
- **d.** Infundir respeto a los usuarios de la vía. Los usuarios deben ser compelidos, por la sensación que brinde el dispositivo, a respetar la indicación que éste transmite. Se debe utilizar un lenguaje formal.
- e. Permitir suficiente tiempo y espacio para una respuesta adecuada. Los dispositivos deben tener un diseño claro e uniforme tanto en el texto, forma y color, colocarse de modo que el usuario, al advertirlos, tenga suficiente tiempo y espacio para efectuar la maniobra o realizar la acción requerida conforme lo dispongan los mensajes.

2.18. FACTORES DE TRANSITO CONSIDERADOS EN LA SEGURIDAD VÍA.

Las carreteras y su infraestructura deben facilitar el servicio de transporte para el tránsito de vehículos livianos, público (buses), comercial (camiones), de carga (transporte de carga peligrosa), los cuales puede generar problemas de accidentabilidad y congestionamiento.

Los factores a considerar en el problema de transito son

- ✓ Diferentes tipos de vehículos en la misma vía. Donde en una misma carretera están circulando automóviles diversos y de altas velocidades, buses y camiones de diferentes dimensiones y altas velocidades y camiones de carga de baja velocidad.
- ✓ Falta de carreteras que no han evolucionado a los cambios exigentes para disminuir tiempos de viaje con criterios de seguridad.
- ✓ Falta de planificación del tránsito.
- ✓ Se considera el factor de la velocidad, el volumen, la densidad, capacidad y accidentalidad.

2.19. DISPOSITIVOS DE CONTROL.

Los dispositivos de control permiten la regulación del tránsito, con el propósito de mejorar la movilidad, prevenir incidentes y accidentes, estos dispositivos deben ser instalados en concordancia con el diseño geométrico y se pueden clasificar en:

Señales horizontales, señales verticales, Señalización en Obras, otros Dispositivos, Señalización de Ciclo Rutas, Moto Vías y Vías Peatonales, Semáforos, eventos Especiales, Buses de Tránsito Rápido.

Los dispositivos deben cumplir factores básicos como:

- ✓ Satisfacer una necesidad: En los proyectos viales deben cumplir con color, tamaño, contraste iluminación, que tengan un mensaje simple y claro
- ✓ Ubicarse en lugar apropiado: se deben ubicar dentro del cono visual del conductor para facilitar su lectura considerando la velocidad del vehículo

2.20. CONCEPTOS DE SEGURIDAD VIAL.

Los elementos que contribuyen, en forma individual o en conjunto a la ocurrencia de accidentes de tránsito son: el factor humano, el vehículo, y la vía y el entorno. Según estudios, se ha demostrado que los factores mencionados, estadísticamente representan los siguientes porcentajes:

- ✓ Factor Humano (implicado en alrededor del 94% de los accidentes)
- ✓ Factor vehículo (implicado en alrededor del 8% de los accidentes)
- ✓ Factor vía y el entorno (implicado en el 28% de los accidentes)

FIGURA Nº 07. Factores de ocurrencia de accidentes.

Fuente: Main Roads westem Autralia, Investigacion de Seguridad Vial, Factores que contribuyen a la ocurrencia de un accidente (www.mnva.we.gov .au)

2.21. DATOS DE ACCIDENTABILIDAD.

Por medio la información entregada por la Policía Nacional del Perú, Región Cajamarca-Cajamarca, se obtuvo el historial de accidentabilidad de la vía en estudio de los últimos seis (6) años (2012-2017). Con esta información se crea una base de datos la cual se organiza para realizar el análisis de accidentabilidad ocurrido en la vía objeto de estudio.

2.22. INFORMACIÓN DE DISEÑO GEOMÉTRICO.

No se pudo conseguir esta información, esta obra fue realizada por convenio entre la Municipalidad Provincial de Cajamarca y Minera Yanacocha, las dos entidades dijeron no tener el proyecto de esta vía tan problemática, se adjunta la documentación remitida por la Municipalidad Provincial de Cajamarca. Por lo cual se tuvo que realizar el levantamiento topográfico de la vía Héroes del Cenepa.

2.23. ESTACIÓN TOTAL.

Se denomina estación total a un aparato electro-óptico utilizado en topografía, cuyo funcionamiento se apoya en la tecnología electrónica, consiste en la incorporación de un distanciómetro y un microprocesador a un teodolito electrónico. Algunas de las características que incorpora, y con las cuales no cuentan los teodolitos, son una pantalla alfanumérica de cristal líquido(LCD), leds de avisos, iluminación independiente de la luz solar, calculadora, distanciómetro, trackeador (seguidor de trayectoria) y en formato electrónico, lo cual permite utilizarla posteriormente en ordenadores personales.

Ventajas de la TS-09

- Flexibilidad total en cuanto a software y hardware
- Tornillería sin fin
- Plomada láser
- Distanciometría láser 30m + 400 m o +1000 m
- Sistema de compensado cuádruple
- Posibilidad de elegir distintas precisiones 1" 2" 3" 5" 7"
- Conexión USB, Wireless

FIGURA Nº 08. Estación total Leica Geosystems TS-09

Fuente: Elaboración propia

2.24. GPS.

El sistema de posicionamiento global (GPS) es un sistema que permite determinar en toda la Tierra la posición de un objeto (una persona, un vehículo) con una precisión de hasta centímetros (si se utiliza GPS diferencial), aunque lo habitual son unos pocos metros de precisión. El sistema fue desarrollado, instalado y empleado por el **Departamento de Defensa de los Estados Unidos**. Para determinar las posiciones en el globo, el sistema GPS está constituido por 24 satélites y utiliza la **trilateración**.

FIGURA Nº 09. GPS Garmin eTrex Vista HCx

2.25. WINCHA TOPOGRÁFICA.

Es una cinta métrica flexible, enrollada dentro de una caja de plástico o metal, que generalmente está graduada en centímetros en un costado de la cinta y en pulgadas en el otro. Para longitudes mayores a 10 m, existen de plástico o lona reforzada. Las más confiables son las metálicas porque no se deforman al estirarse.

FIGURA Nº 10. Wincha topográfica

CAPÍTULO III

MATERIALES Y MÉTODOS

3.1. UBICACIÓN DE LA ZONA EN ESTUDIO

La presente investigación se realizó en la Región Cajamarca, provincia de Cajamarca, distrito de Cajamarca, en la toda la Vía de la Av. Héroes del Cenepa

3.1.1. UBICACIÓN POLÍTICA.

- País : Perú.

Región : Cajamarca.
 Departamento : Cajamarca.
 Provincia : Cajamarca.
 Distrito : Cajamarca

3.1.2. UBICACIÓN GEOGRÁFICA, Coordenadas UTM – WGS84 – Zona 17S

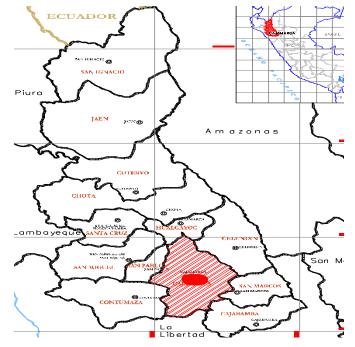
TABLA Nº13. Ubicación geográfica coordenadas UTM

PUNTO	COORDENAL	DAS GEOGRÁFI	CAS	COORDENADAS UTM					
	LATITUD	LONGITUD	ALTITUD	ESTE	NORTE	COTA			
INICIAL	7°11'18.23"S	78°30'41.39"O	2846.3745	774819.061	9204672.83	2846.3745			
FINAL	7°10'29.39"S	78°29'29.27"O	2691.1 m	777032.745	9206175.71	2704.2864			

OCEANO
PACIFICO

UBICACIÓN DEL PERU

COLOMBIA


BRAZIL

BRAZIL

BOLIVIA

Figura N° 11. Ubicación geográfica del Perú

Fuente: Elaboración propia

Figura N $^{\circ}$ **12**. Ubicación geográfica de Cajamarca

FIGURA N^0 13. Ubicación de la Vía Héroes del Cenepa- Cajamarca

3.2. TIEMPO EN EL CUAL SE REALIZA LA INVESTIGACIÓN

La investigación se realizó en el transcurso de los meses de enero del 2017 hasta la fecha.

3.3. VISITA DE CAMPO. La visita de campo y el recorrido por la vía de estudio, se localizarán los puntos de accidentabilidad obtenidos por los registros facilitando así el análisis de la relación del diseño de la vía con cada evento ocurrido.

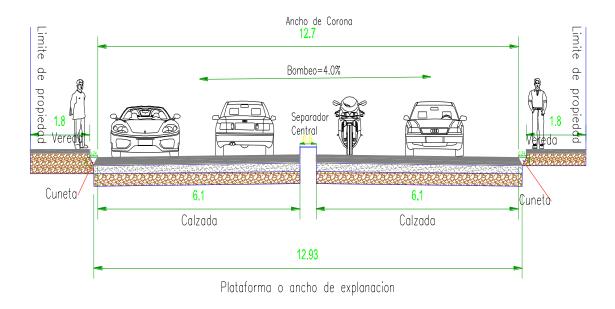

Figura N° 14: Reconocimiento de la zona

Figura N° 15: Sección transversal típica N⁰01

Fuente: Elaboración propia

Figura N° 16: Sección transversal típica N°02

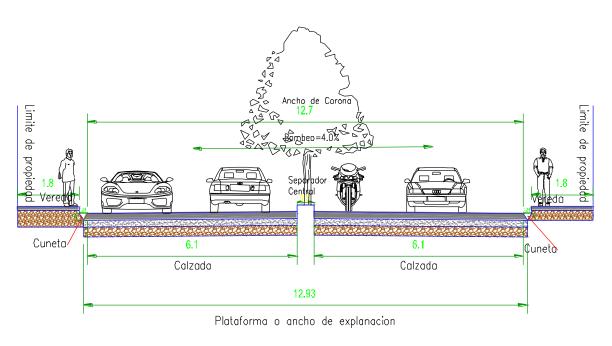
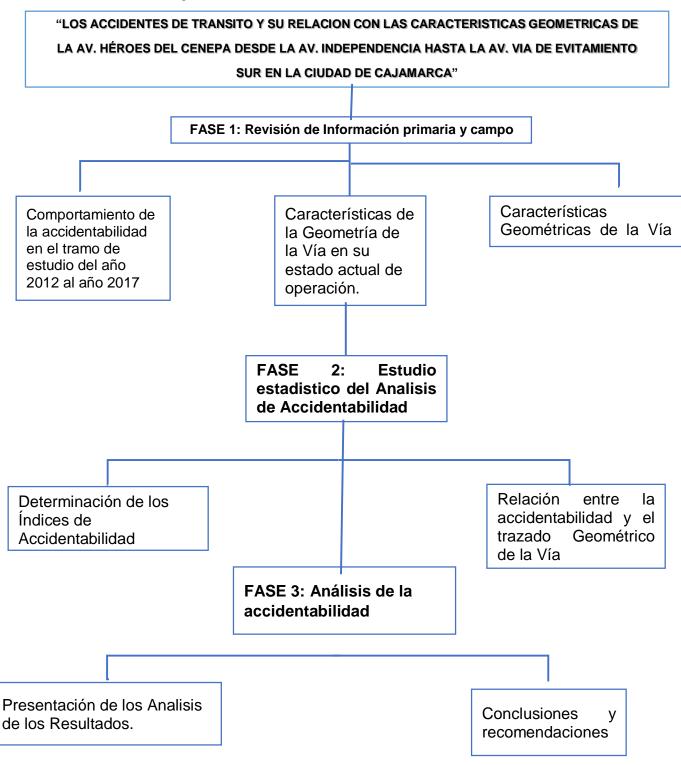



FIGURA. 17 Metodología del estudio

3.4. DESCRIPCIÓN DEL MÉTODO UTILIZADO

3.4.1. LEVANTAMIENTO TOPOGRÁFICO

El levantamiento topográfico es el procedimiento realizado en campo para obtener la representación gráfica del terreno, de sus accidentes y edificaciones existentes, puestas por el hombre, en un plano topográfico después de su procesamiento en gabinete. El levantamiento topográfico muestra las distancias horizontales y las diferentes cotas o elevaciones de los elementos representados en el plano mediante curvas de nivel, a escalas convenientes para la interpretación del plano y para la adecuada representación del camino y las diversas estructuras que lo componen.

3.4.2. UNIDADES DE MUESTRA

Se toma como muestra la Av. Héroes del Cenepa desde la Av. Independencia hasta la Av. Vía de Evitamiento Sur, en la Ciudad de Cajamarca.

3.4.3. ÍNDICE MEDIO DIARIO ANUAL (IMDA)

Es el valor numérico estimado del tráfico vehicular en un determinado tramo de la red vial en un año. Es el resultado de los conteos volumétricos y clasificación vehicular en campo en una semana, y un factor de corrección que estime el comportamiento anualizado del tráfico de pasajeros y mercancías, se obtiene de la multiplicación del índice medio Diario semanal (IMDS) y el factor de corrección estacional (F.C).

$$IMDA = IMDS \times FC \dots (1)$$

El Índice medio Diario semanal se obtiene a partir del volumen de tráfico diario registrado por tipo de vehículo en un tramo de la red vial durante 1 días.

IMDS =
$$\sum Vi / 7....(2)$$

En donde:

Vi = Volumen Vehicular Diario de los 07 días de la semana.

En tal sentido se procedió a calcular el IMDS, teniendo como resultado el siguiente:

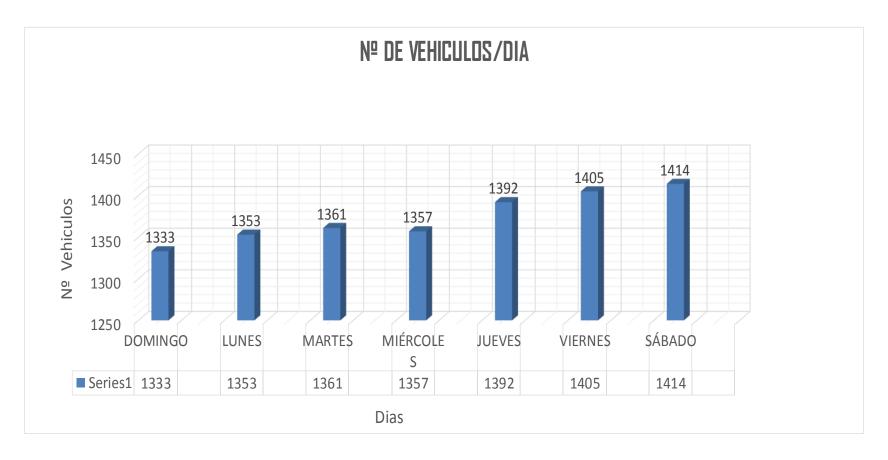
TABLA Nº14. Primera semana de conteo de vehículos.

PRIMERA SEMANA DE CONTEO

	IÓN DEL TRÁNSITO ACTUAL											
	NACIONAL DE CAJAMARCA	CIONI CONII	AC CADACTE	DICTIO A C OF	OMETRICA C DE	I A AV LIEDOE	O DEL CENEDA	DECDELA	AV INDEDEN	IDENICIA LIACT	A I A A V VIA DE I	NUTANIENTO CUD
Tesis Tesista	LOS ACCIDENTES DE TRANSITO Y SU RELA	CION CON L	AS CARACTE	RISTICAS GE	OMETRICAS DE	LA AV. HEROES	S DEL CENEPA	A DESDE LA	AV. INDEPEN	IDENCIA HAST	A LA AV. VIA DE I	VITAMIENTO SUR
Distrito	JAIME ANTONIO VILLACORTA DELGADO CAJAMARCA											
Escuela	INGENIERIA CIVIL											
	AV. HÉROES DEL CENEPA											
Lugar												
Ficha	DETERMINACIÓN DEL VOLUMEN VEHICULA	.R										
		CAMIONE	CAMION	;	SEMIREMOLQU	E	BUSES					
DIA	SENTIDO	TA PICK UP	2 EJES	3 EJES	T2S1/2/3	T3S1/2/3	B2/B3	AUTOS	COMBIS	TOTAL POR TRAMO	TOTAL IDA Y VUELTA	PORCENTAJE
		-0-0'	-	10 ¹ 00	100 0 00	#4.05 · · · ·		-0 ¹	000			
DOMINGO	Av. Independencia- Av. Via de evitamiento sur	235	36	10	10	8	45	235	92	671	1357	6.76%
	Av. Via de evitamiento sur-Av. Independencia	238	39	13	12	10	43	239	92	686		6.91%
LUNES	Av. Independencia- Av. Via de evitamiento sur	242	38	11	13	9	46	234	95	688	1379	6.93%
LUITES	Av. Via de evitamiento sur-Av. Independencia	245	36	12	10	9	45	238	96	691	1373	6.97%
	Av. Independencia- Av. Via de evitamiento sur	256	34	14	16	11	49	237	89	706		7.12%
MARTES	Av. Via de evitamiento sur-Av. Independencia	254	59	10	14	7	43	236	85	708	1414	7.14%
MIÉRCOLES	Av. Independencia- Av. Via de evitamiento sur	259	56	8	12	5	48	231	86	705	1398	7.11%
IMERCOLLO	Av. Via de evitamiento sur-Av. Independencia	258	42	4	11	4	47	232	95	693	1000	6.99%
JUEVES	Av. Independencia- Av. Via de evitamiento sur	257	29	7	13	7	49	236	96	694	1422	7.00%
	Av. Via de evitamiento sur-Av. Independencia	253	59	16	14	13	53	238	82	728	• •	7.34%
VIERNES	Av. Independencia- Av. Via de evitamiento sur	252	58	14	12	11	51	234	79	711	1460	7.17%
	Av. Via de evitamiento sur-Av. Independencia	263	63	13	11	10	51	239	99	749		7.55%
SÁBADO	Av. Independencia- Av. Via de evitamiento sur	251	79	12	10	9	48	240	86	735	1491	7.41%
3. = 7.2 0	Av. Via de evitamiento sur-Av. Independencia	269	87	11	7	9	47	234	92	756		7.62%
	TOTAL	3532 505	715 102	155 22	165 24	122 17	665 0F	3303 472	1264 181	9921 1417	9921	100.00%
	IMD _S	35.60%	7.21%	1.56%	1.66%	1.23%	95 6.70%	33.29%	181 12.74%	100.00%		
	PORCENTAJE F			n propia		1.23%	0.70%	33.29%	12.74%	100.00%		

 $TABLA\ N^015$. Segunda semana de conteo de vehículos.

SEGUNDA SEMANA DE CONTEO


	IÓN DEL TRÁNSITO ACTUAL											
	NACIONAL DE CAJAMARCA											
Tesis	LOS ACCIDENTES DE TRANSITO Y SU RELA	ACION CON L	AS CARACTE	RISTICAS GEO	OMETRICAS DE	LA AV. HEROES	S DEL CENEPA	A DESDE LA	AV. INDEPEN	IDENCIA HAST	A LA AV. VIA DE I	EVITAMIENTO SUR
Tesista	JAIME ANTONIO VILLACORTA DELGADO											
Distrito	CAJAMARCA											
Escuela	INGENIERIA CIVIL											
Lugar	AV. HÉROES DEL CENEPA											
Ficha	DETERMINACIÓN DEL VOLUMEN VEHICULA											
DIA	SENTIDO	CAMIONE TA	CAMION	S	SEMIREMOLQU	E	BUSES	AUTOS	COMBIS			PORCENTAJE
			2 EJES	3 EJES	T2S1/2/3	T3S1/2/3	B2/B3			TOTAL POR TRAMO	TOTAL IDA Y VUELTA	
		-0-0-	0	-00 OO	10 ¹⁶ 5 00	***		0	0 0			
DOMINGO	Av. Independencia- Av. Via de evitamiento sur	231	89	18	15	8	47	159	89	656	1308	7.05%
	Av. Via de evitamiento sur-Av. Independencia	232	86	22	18	10	47	153	84	652	1000	7.01%
LUNES	Av. Independencia- Av. Via de evitamiento sur	236	85	17	16	9	49	157	92	661	1327	7.10%
	Av. Via de evitamiento sur-Av. Independencia	229	95	22	15	10	43	156	96	666		7.16%
MARTES	Av. Independencia- Av. Via de evitamiento sur	232	98	15	13	12	45	151	95	661		7.10%
	Av. Via de evitamiento sur-Av. Independencia	226	79	25	11	11	46	154	95	647	1308	6.95%
MIÉRCOLES	Av. Independencia- Av. Via de evitamiento sur	235	89	21	12	12	41	162	92	664	1315	7.13%
	Av. Via de evitamiento sur-Av. Independencia	229	86	19	11	4	42	169	91	651		6.99%
JUEVES	Av. Independencia- Av. Via de evitamiento sur	238	96	22	13	10	59	167	89	694	1362	7.46%
	Av. Via de evitamiento sur-Av. Independencia	221	94	18	18	11	58	164	84	668		7.18%
VIERNES	Av. Independencia- Av. Via de evitamiento sur	236	91	22	19	11	54	162	92	687	1350	7.38%
	Av. Via de evitamiento sur-Av. Independencia	228	97	20	11	13	53	160	81	663		7.12%
SÁBADO	Av. Independencia- Av. Via de evitamiento sur	221	94	24	10	9	52	160	99	669	1337	7.19%
	Av. Via de evitamiento sur-Av. Independencia	220	90	22	10	11	62	159	94	668	1007	7.18%
	TOTAL	3214	1269	287	192	141	698	2233	1273	9307	18614	100.00%
	IMD _S	459	181	41	27	20	100	319	182	1330		
	PORCENTAJE	34.53%	13.63%	3.08%	2.06%	1.51%	7.50%	23.99%	13.68%	100.00%		

$TABLA\ N^016. \mbox{Valores promedio del conteo de vehículos}$

VALORES PROMEDIO DEL TRAFICO

DETERMINACI	IÓN DEL TRÁNSITO ACTUAL											
UNIVERSIDAD	NACIONAL DE CAJAMARCA											
Tesis	LOS ACCIDENTES DE TRANSITO Y SU RELACION CON LAS CARACTERISTICAS GEOMETRICAS DE LA AV. HEROES DEL CENEPA DESDE LA AV. INDEPENDENCIA HASTA LA AV. VIA DE EVITAMIENTO SUI											EVITAMIENTO SUR
Tesista	JAIME ANTONIO VILLACORTA DELGADO											
Distrito	CAJAMARCA											
Escuela	INGENIERIA CIVIL											
Lugar	AV. HÉROES DEL CENEPA											
Ficha	DETERMINACIÓN DEL VOLUMEN VEHICULAR											
DIA	SENTIDO	CAMIONE TA	CAMION		SEMIREMOLQUE		BUSES	AUTOS	COMBIS			
		PICK LIP	2 EJES	3 EJES	T2S1/2/3	T3S1/2/3	B2/B3	A0103	COMIDIO	TOTAL POR	TOTAL IDA Y VUELTA	PORCENTAJE
		-0-0'		00	2 0 00			-0 ¹		TRAMO		
DOMINGO	Av. Independencia- Av. Via de evitamiento sur	233	62.5	14	12.5	8	46	197	90.5	663.5	1333	6.90%
	Av. Via de evitamiento sur-Av. Independencia	235	62.5	17.5	15	10	45	196	88	669		6.96%
LUNES	Av. Independencia- Av. Via de evitamiento sur	239	61.5	14	14.5	9	48	195.5	93.5	674.5	1353	7.02%
	Av. Via de evitamiento sur-Av. Independencia	237	65.5	17	12.5	9.5	44	197	96	678.5		7.06%
MARTES	Av. Independencia- Av. Via de evitamiento sur	244	66	14.5	14.5	11.5	47	194	92	683.5	1361	7.11%
	Av. Via de evitamiento sur-Av. Independencia	240	69	17.5	12.5	9	45	195	90	677.5		7.05%
MIÉRCOLES	Av. Independencia- Av. Via de evitamiento sur	247	72.5	14.5	12	8.5	45	196.5	89	684.5	1357	7.12%
	Av. Via de evitamiento sur-Av. Independencia	243.5	64	11.5	11	4	45	200.5	93	672		6.99%
JUEVES	Av. Independencia- Av. Via de evitamiento sur	247.5	62.5	14.5	13	8.5	54	201.5	92.5	694	1392	7.22%
JUEVES	Av. Via de evitamiento sur-Av. Independencia	237	76.5	17	16	12	56	201	83	698		7.26%
VIERNES	Av. Independencia- Av. Via de evitamiento sur	244	74.5	18	15.5	11	53	198	85.5	699	1405	7.27%
	Av. Via de evitamiento sur-Av. Independencia	245.5	80	16.5	11	11.5	52	199.5	90	706		7.34%
SÁBADO	Av. Independencia- Av. Via de evitamiento sur	236	86.5	18	10	9	50	200	92.5	702	1414	7.30%
345450	Av. Via de evitamiento sur-Av. Independencia	244.5	88.5	16.5	8.5	10	55	196.5	40	712		7.41%
TOTAL		3373	992	221	178.5	131.5	685	2768	1215.5	9614		100.00%
	IMD _s	482	142	32	26	19	98	395	174	1373		
	PORCENTAJE	35.08%	10.32%	2.30%	1.86%	1.37%	7.13%	28.79%	12.64%	100.00%		

FIGURA Nº18. Número de vehículos por día

Fuente: Elaboración propia

Par la presente investigación se tuvo que obtener el IMDA por tramos para poder hallar los índices de accidentabilidad.

TABLA Nº17. IMD tramo I

	IMDA POR TRAMOS												
DETERMI	NACIÓN DEL TRÁNSITO ACTUAL												
DETERMI	DETERMINACION DEL TRANSITO ACTUAL TRAMO I												
UNIVERS	JNIVERSIDAD NACIONAL DE CAJAMARCA												
Tesis	LOS ACCIDENTES DE TRANSITO Y SU RELACION CON LAS CARACTERISTICAS GEOMETRICAS DE LA AV. HEROES DEL CENEPA DESDE LA AV. INDEPEND												
Tesista	JAIME ANTONIO VILLACORTA DELGADO												
Distrito	CAJAMARCA												
Escuela	INGENIERIA CIVIL												
Lugar	AV. HÉROES DEL CENEPA												
Ficha													
		CAMIONET	CAMION	S	EMIREMOLQ	UE	BUSES	AUTOS	COMBIS	TOTAL POR	TOTAL IDA		
DIA	SENTIDO	PICK_UP	2 EJES	3 EJES	T2S1/2/3	T3S1/2/3	B2/B3			TRAMO	Y VUELTA	PORCENTAJE	
		-0-0	0	20 00	00 0 00	10 ¹⁰ 00 0		000	6				
DOMINGO	TRAMO I	47	7	2	2	2	9	47	18	134		6.75%	
DOMINGO	TRAMO I	48	8	3	2	2	9	48	18	138	272	6.95%	
LUNES	TRAMO I	48	8	2	3	2	9	47	19	138		6.95%	
LONLO	TRAMO I	49	7	2	2	2	9	48	19	138	276	6.95%	
MARTES	TRAMO I	51	7	3	3	2	10	47	18	141		7.10%	
	TRAMO I	51	12	2	3	1	9	47	17	142	283	7.15%	
MIÉRCOLES	TRAMO I	52	11	2	2	1	10	46	17	141	_	7.10%	
	TRAMO I	52	8	1	2	1	9	46	19	138	279	6.95%	
JUEVES	TRAMO I	51	6	1	3	1	10	47	19	138	4	6.95%	
	TRAMO I	51	12	3	3	3	11	48	16	147	285	7.41%	
VIERNES	TRAMO I	50	12	3	2	2	10	47	16	142		7.15%	
	TRAMO I	53	13	3	2	2	10	48	20	151	293	7.61%	
SÁBADO	TRAMO I	50	16	2	2	2	10	48	17	147		7.41%	
	TRAMO I	54	17	2	1	2	9	47	18	150	297	7.56%	
	TOTAL	707	144	31	32	25	134	661	251	1985	1985	100.00%	
	IMD _s	101	21	4	5	4	19	94	36	284	_		
	PORCENTAJE	35.62%	7.25%	1.56%	1.61%	1.26%	6.75%	33.30%	12.64%	100.00%			

TABLA Nº18. IMD tramo II

IMDA POR TRAMOS

DETERM	DETERMINACIÓN DEL TRÁNSITO ACTUAL								
DETERMINACION DEL TRANSITO ACTUAL TRAMO II									
UNIVERS	SIDAD NACIONAL DE CAJAMARCA								
Tesis	LOS ACCIDENTES DE TRANSITO Y SU RELACION CON LAS CARACTERISTICAS GEOMETRICAS DE LA AV. HEROES DEL CENEPA DESDE LA AV. INDEPEND								
Tesista	JAIME ANTONIO VILLACORTA DELGADO								
Distrito	CAJAMARCA								
Escuela	INGENIERIA CIVIL								
Lugar	AV. HÉROES DEL CENEPA								
Ficha	DETERMINACIÓN DEL VOLUMEN VEHICULAR								

		CAMIONEI	CAMION	S	EMIREMOLQU	JE	BUSES					
DIA	SENTIDO	A PICK UP	2 EJES	3 EJES	T2S1/2/3	T3S1/2/3	B2/B3	AUTOS	COMBIS	TOTAL POR	TOTAL IDA	PORCENTAJE
		-0-0	0	10 00°	10 ¹⁰ 5 00	10 ¹⁰ 05 0		-0100	(4) a (4)	TRAMO	Y VUELTA	
DOMINGO	TRAMO II	82	13	4	4	3	16	82	32	236		6.78%
DOMINGO	TRAMO II	83	14	5	4	4	15	84	32	241	477	6.92%
LUNES	TRAMO II	85	13	4	5	3	16	82	33	241		6.92%
LUNES	TRAMO II	86	13	4	4	3	16	83	34	243	484	6.98%
MARTES	TRAMO II	90	12	5	6	4	17	83	31	248		7.12%
WARTES	TRAMO II	89	21	4	5	2	15	83	30	249	497	7.15%
MIÉRCOLES	TRAMO II	91	20	3	4	2	17	81	30	248		7.12%
WIERCOLES	TRAMO II	90	15	1	4	1	16	81	33	241	489	6.92%
JUEVES	TRAMO II	90	10	2	5	2	17	83	34	243		6.98%
JUEVES	TRAMO II	89	21	6	5	5	19	83	29	257	500	7.38%
VIERNES	TRAMO II	88	20	5	4	4	18	82	28	249		7.15%
VIERNES	TRAMO II	92	22	5	4	4	18	84	35	264	513	7.58%
SÁBADO	TRAMO II	88	28	4	4	3	17	84	30	258		7.41%
SABADO	TRAMO II	94	30	4	2	3	16	82	32	263	521	7.56%
	TOTAL	1237	252	56	60	43	233	1157	443	3481	3481	100.00%
	IMD _s		36	8	9	6	33	165	63	497		
	PORCENTAJE		7.24%	1.61%	1.72%	1.24%	6.69%	33.24%	12.73%	100.00%		

TABLA Nº19.IMD tramo III

IMDA POR TRAMOS

DETERMI	ETERMINACIÓN DEL TRÁNSITO ACTUAL												
DETERMI	NACION DEL TRANSITO ACTUAL TR	RAMO III											
UNIVERS	IDAD NACIONAL DE CAJAMARCA												
Tesis	LOS ACCIDENTES DE TRANSITO Y S	SU RELACK	ON CON LA	S CARAC	TERISTICAS	GEOMETI	RICAS DE I	A AV. HER	OES DEL	CENEPA D	ESDE LA A	V. INDEPEND	
Tesista	JAIME ANTONIO VILLACORTA DELG	ADO											
Distrito	CAJAMARCA												
Escuela	INGENIERIA CIVIL												
Lugar	AV. HÉROES DEL CENEPA												
Ficha	DETERMINACIÓN DEL VOLUMEN VE	HICULAR											
	CAMIONE SEMIREMOLQUE BUSES AUTOS COMBIS TOTAL POR TOTAL IDA												
DIA	SENTIDO	PICK LIP	2 EJES	3 EJES	T2S1/2/3	T3S1/2/3	B2/B3			TRAMO	Y VUELTA	PORCENTAJE	
		-0-0	0	00	0 00	00000		0	0 0				
DOMINGO	TRAMO III	106	16	5	5	4	20	106	41	303		6.79%	
	TRAMO III	107	18	6	5	5	19	108	41	309	612	6.92%	
LUNES	TRAMO III	109	17	5	6	4	21	105	43	310		6.94%	
	TRAMO III	110	16	5	5	4	20	107	43	310	620	6.94%	
MARTES	TRAMO III	115	15	6	7	5	22	107	40	317		7.10%	
	TRAMO III	114	27	5	6	3	19	106	38	318	635	7.12%	
MIÉRCOLES	TRAMO III	117	25	4	5	2	22	104	39	318		7.12%	
	TRAMO III	116	19	2	5	2	21	104	43	312	630	6.99%	
JUEVES	TRAMO III	116	13	3	6	3	22	106	43	312		6.99%	
002120	TRAMO III	114	27	7	6	6	24	107	37	328	640	7.35%	
VIERNES	TRAMO III	113	26	6	5	5	23	105	36	319		7.14%	
71211120	TRAMO III	118	28	6	5	5	23	108	45	338	657	7.57%	
SÁBADO	TRAMO III	113 121	36	5	5	4	22	108	39	332		7.44%	
Gr.Erize	TRAMO III	39	5	3	4	21	105	41	339	671	7.59%		
	TOTAL	1589	322 46	70	74	56	299	1486	569	4465	4465	100.00%	
	IMD _s 227			10	11	8	43	212	81	638			
	PORCENTAJE 35.59%			1.57%	1.66%	1.25%	6.70%	33.28%	12.74%	100.00%			

3.4.4. ANÁLISIS DE ACCIDENTABILIDAD EN LA RUTA DE ESTUDIO.

Con los datos anteriores del diseño geométrico y el historial de accidentabilidad se procederá a realizar la relación entre el diseño geométrico y la accidentabilidad.

3.4.5. TRABAJO DE GABINETE

Terminada la fase de campo, se procesa la información obtenida en la zona, realizando el modelamiento de la vía, tanto en planta, perfil y secciones transversales mediante el software AutoCAD Civil 3D 2017.

Mediante hojas de cálculo en Excel se ejecuta el análisis de la accidentabilidad y comparación de las características geométricas de la vía en estudio con las especificaciones y norma estipulada en el Manual de Diseño de Vías Urbanas 2005.

3.4.6. ESTUDIO DE ACCIDENTALIDAD EN LA RUTA DE ESTUDIO

3.4.6.1. INTRODUCCIÓN

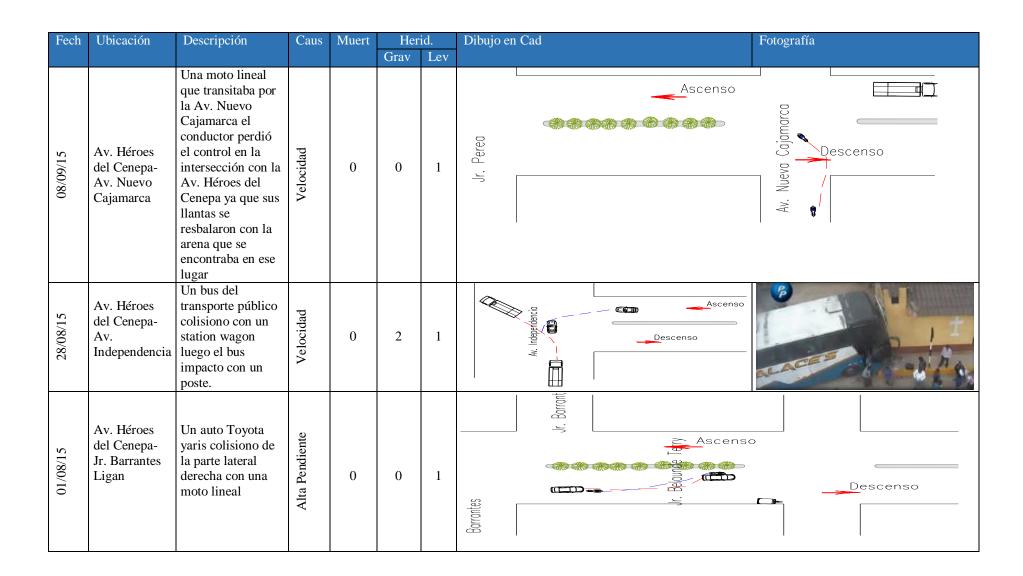

Los datos de accidentalidad en la ruta de estudio permiten determinar el número de accidentes ocurridos, los puntos de la vía donde se presentan los accidentes y la causa; para estos análisis se tuvo en cuenta la información suministrada por la Policía Nacional del Perú, a partir del año 2011 a del 2017.

TABLA Nº20. Registro de accidentes de tránsito en la Av. Héroes del Cenepa- Cajamarca periodo (2011-2017)

Fech	Ubicación	Descripción	Caus	Muert	Her	rid.	Dibujo en Cad	Fotografía
					Grav	Lev		
13/06/2017	Av. Héroes del Cenepa- Jr. Barrantes Ligan	Un camión fuso bajaba y choco contra el separador central luego que el conductor perdió el control del vehículo debido a la alta pendiente.	Alta Pendiente	0	0	0	Ascenso	
20/02/2017	Av. Héroes del Cenepa- Av. Mártires de Uchuracay	El tráiler también impactó contra un automóvil, una camioneta y dos mototaxis, dejando a los cuerpos tirados en la pista.	Alta Pendiente	4	5	6	Av. Mortin de Porres Descenso Descenso	1214
23/09/2016	Av. Héroes del Cenepa- Av. Mártires de Uchuracay	Colisión frontal entre camión y una camioneta cerrada entre la intersección de la Av. Héroes del Cenepa y la Av. Mártires de Uchuracay cuando la camioneta giro con destino a la Av. Héroes del Cenepa	Velocidad	0	0	0	Av. San Martin de Porre	BRATTO

Fech	Ubicación	Descripción	Caus	Muert	Herid.		Dibujo en Cad	Fotografía
					Grav	Lev		
10/09/16	Av. Héroes del Cenepa- Jr. Barrantes Ligan	el tráiler de la empresa "Cabanillas", de matrícula T5W- 994 con 750 bolsas de cemento, al llegar al cruce con el jirón Belaúnde, la mototaxi de placa MO-1467	Alta Pendiente	2	1	0	Jr. Belaunde Terry	
19/03/16	Av. Héroes del Cenepa- Av. Mártires de Uchuracay	Dos volquetes bajaban delante de ellos iba una camioneta la cual dio vuelta en U, es cuando uno de los volquetes choca con la camioneta y terminan teniendo una colisión en cadena	Alta Pendiente	0	2	0	Ascenso	
12/02/16	Av. Héroes del Cenepa- Vía de Evitamiento sur	Una moto lineal transitaba por la Vía de	Velocidad	0	1	0	Ascenso	Via de Evitamiento

Fech	Ubicación	Descripción	С	Muert	Her	id.	Dibujo en Cad	Fotografía
			au s		Grav	Lev		
19/01/16	Av. Héroes del Cenepa- Jr. Barrantes Ligan	Un choque múltiple producido al perder el control el conductor de un camión fuso el cual se lanzó en la Av. La paz, chocando con 3 postes, 2 mototaxis y con una casa	Alta Pendiente	0	0	0	Ascenso Descenso There of the page of th	Av. Mortiges de Uchuracoy Jr. Santa Maria
04/11/15	Av. Héroes del Cenepa C9	Un volquete bajaba con material de construcción impactando con una combi y un camión de mangos, para finalmente impactar con una vivienda	Alta Pendiente	3	5	6	Desceuso Desceuso Ascenso A	HEAVE TO THE PROPERTY OF THE P
29/10/15	Av. Héroes del Cenepa- Av. San Martin de Porres	Un volquete bajaba el cual perdió el control impactando en los arboles del separador central, volteándose lo que provoco que impactara con 2 camionetas que transitaban por la Av. San Martin	Alta Pendiente	0	2	0	Jr. San Marcos Av. San Martin de Porres	

Fech	Ubicación	Descripción	Caus	Muert	Her	id.	Dibujo en Cad	Fotografía
					Grav	Lev		
27/04/15	Av. Héroes del Cenepa- Av. Sam Martin de Porres	Una colisión entre la Av. Héroes del Cenepa y la Av. San Martin de Porres de una bicicleta y un camión el hecho se dio cuando el vehículo intentaba girar hacia la Av. Héroes del Cenepa	Distracción	0	0	1		Av. San Martin de Porres
06/10/14	Av. Héroes del Cenepa C9	Un camión fuso perdió el control provocando un choque con un a mototaxi, 2 postes y una vivienda	Alta Pendiente	2	1	0	Descenso Descenso Solotti Zaupou	Jr. Sanchez Hoyes
01/08/14	Av. Héroes del Cenepa- Av. San Martin de Porres	Un camión se le vaciaron los frenos y termino impactando en una vivienda	Alta Pendiente	0	0	3	Av. Son Martin de Porres	2993 2993

Fech	Ubicación	Descripción	Caus	Muert	Her	id.	Dibujo en Cad	Fotografía
					Grav	Lev		
10/05/14	Av. Héroes del Cenepa C4	Una camioneta que bajaba por la Av. Héroes del Cenepa colisiono a una moto lineal en su parte posterior.	Velocidad	0	0	1	Av. San Martin de Porres	Descenso
21/03/14	Av. Héroes del Cenepa- Av. Mártires de Uchuracay	Una moto lineal colisiono con un station wagon, el conductor de la moto resulto herido	Velocidad	0	0	1	Av. Mortires de UchuBcoy	Descenso
13/12/13	Av. Héroes del Cenepa- Av. Independencia	Una mototaxi que bajaba por la Av. Independencia colisiono con una camioneta, el conductor de la camioneta se encontraba en estado de ebriedad	Distracción	0	0	0	Av. Independencia	Ascenso Descenso

Fech	Ubicación	Descripción	Caus	Muert	Her	id.	Dibujo en	Fotografía
					Grav	Lev	Cad	
15/06/13	Av. Héroes del Cenepa- Av. Mártires de Uchuracay	Un micro y una mototaxis colisionaron en la intersección de la Av. Héroes del Cenepa y la Av. Mártires de Uchuracay	Falta de señalización	0	0	0		Av Mortires de uchurocoy
14/06/13	Av. Héroes del Cenepa- Vía de Evitamiento Sur	Una motocliteta que transitaba por la Av. Vía de Evitamiento Sur en la intersección de la Av. Héroes del Cenepa perdió el control por fallas en el pavimento	Deterioro del pavimento	0	0	2	Ascenso	Descenso
04/04/13	Av. Héroes del Cenepa- Jr. Beato Masías	Una persona estaba guardando su moto lineal en ese preciso instante fue impactado por su carro al ser este colisionado por un tráiler	Ancho de carril	0	1	1	Ascenso open Mosics	Descenso Descenso

Fech	Ubicación	Descripción	Caus	Muert	Her	id.	Dibujo en Cad	Fotografía
					Grav	Lev		
31/01/13	Av. Héroes del Cenepa altura del Jr. Túpac Amaru	Una moto lineal subía por la Av. Héroes del Cenepa en ese preciso instante apareció un menor cruzando la pista y surgió el accidente.	Velocidad	0	1	1		Ascenso Descenso
01/11/12	Av. Héroes del Cenepa- Av. San Martin de Porras	Una mototaxi fue colisionada por una camioneta en la esquina de la Av. San Martin de Porras	Falta de señalización	0	0	0	Av. San Martin de Porres	Descenso
10/10/12	Av. Héroes del Cenepa- Av. San Martin de Porras.	Un volquete que llevaba arena decencia por la Av. Héroes del Cenepa cuando se le cruzo una moto por esquivarlo colisiono con una combi	Alta pendiente	0	1	2	Ascenso	Descenso Av. Lo Poz

Fech	Ubicación	Descripción	Caus	Muert	Her	id.	Dibujo en Cad Fotografía
					Grav	Lev	
27/08/12	Av. Héroes del Cenepa-Jr. Perea	Moto lineal fue colisionada por un camión	Velocidad	0	0	1	Ascenso Descenso On the second of the seco
22/08/12	Av. Héroes del Cenepa- Av. Nuevo Cajamarca	Un camión fuso bajaba por la Av. Héroes del Cenepa cuando perdió el control colisionando con un bus de la empresa cruz del sur, y este colisiono con una mototaxi	Alta pendiente	0	1	0	Ascenso Descenso Descenso
21/08/12	Av. Héroes del Cenepa- Av. La Paz	Un camión fuso bajaba por la Av. Héroes del Cenepa cuando de pronto perdió el control colisionando con una camioneta y luego con una mototaxi	Alta pendiente	0	1	0	Ascenso Descense

Fech	Ubicación	Descripción	Caus	Muert	Her	id.	Dibujo en Cad	Fotografía
					Grav	Lev		
29/07/12	Av. Héroes del Cenepa altura de la Av. Mártires de Uchuracay	Una moto lineal fue colisionada por un auto a la altura de la Av. Mártires de Uchuracay, el cual lo cerro	distracción	0	1	0	Av. Martires de Uchuracay osuesses osuesses	Jr Beato Masias
10/04/12	Av. Héroes del Cenepa- Av. Mártires de Uchuracay	Un automóvil bajaba por la Av. Héroes del Cenepa, el cual colisiono con una bicicleta quedando el conductor de esta fracturado el tobillo.	Alta pendiente	0	1	0	Descenso	Jr. Pereo
26/01/12	Av. Héroes del Cenepa- Altura del Jr. Belaunde Terry	Un automóvil colisiono con una mototaxi que bajaba a la altura del Jr. Belaunde Terry	Alta pendiente	0	0	0	Jr. Borrantes Jr. Borrantes	Jr. Belaunde Terry

Fech	Ubicación	Descripción	Caus	Muert	Her	id.	Dibujo en Cad	Fotografía
					Grav	Lev		
21/11/11	Av. Héroes del Cenepa- Av. San Martin de Porras	Una mototaxi transitaba por el Jr. San Martin de Porras cuando llego a la intersección con la Av. Héroes del Cenepa fue colisionada por un auto	Distracción	0	0	0	Ascenso Desce	enso
08/11/11	Av. Héroes del Cenepa- Av. La Paz	Una mototaxi fue colisionada por un camión que bajaba por la Av. Héroes del Cenepa	Alta pendiente	0	0	0	Ascenso Zod O J .:	eenso

3.1.1.1. VARIACIÓN DE LA ACCIDENTABILIDAD.

Para identificar la accidentabilidad en el tramo de estudio comprendido desde la Av. Independencia hasta la Av. Vía de Evitamiento Sur, se realizó la variación de la accidentabilidad desde el periodo del 2011 al 2017 con los datos suministrados por la Policía Nacional del Perú. Los resultados se obtienen en el Tabla 21 y en la Figura 19.

TABLA Nº21. Variación de la accidentabilidad en vehículos

PERIODO	N ACCIDENTES
AÑO 2011	2
AÑO 2012	8
AÑO 2013	5
AÑO 2014	4
AÑO 2015	5
AÑO 2016	6
AÑO 2017	2
TOTAL	32

Fuente. Elaboración propia

Nota en el año 2017 se cerró la vía para el tránsito pesado, Por lo cual ha disminuido los accidentes de manera considerable, después del terrible accidente acaecido el 20 de febrero del presente año donde hubo 4 muertos.

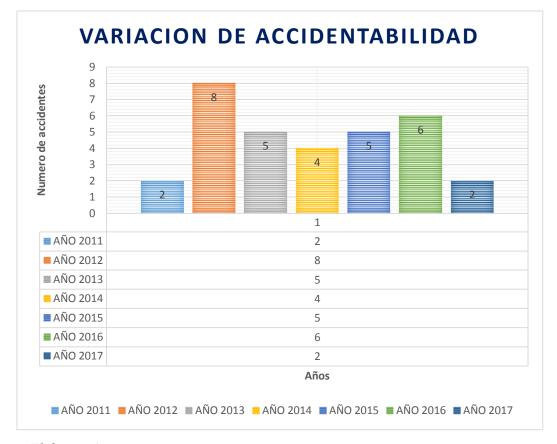


FIGURA 19. Variación de la accidentabilidad

3.4.4.3. NÚMERO DE ACCIDENTES SEGÚN LA GRAVEDAD. En la Av. Héroes del Cenepa desde la Av. Independencia hasta la Av. Vía de Evitamiento Sur en la Ciudad de Cajamarca.

En la **TABLA 22**se puede determinar la evolución de los accidentes presentados desde el periodo del 2011 al 2017, según la gravedad considerando

- ✓ Accidentes con Muertos
- ✓ Accidentes con heridos graves
- ✓ Accidentes con heridos leves
- ✓ Accidentes con solo daños

TABLA Nº22. Accidentes en el tramo de estudio

Accidentes según la gravedad

Número de Accidentes	2011	2012	2013	2014	2015	2016	2017
Número de muertos	0	0	0	2	3	2	4
Numero heridos graves	0	5	2	4	9	4	5
Número de heridos leves	4	3	4	2	10	1	0
Numero de choques simples	0	2	1	0	0	2	1
Total	4	10	7	8	22	9	10
Fallecidos por cada 100 accidentes	0.0000	0.000	0.000	0.020	0.030	0.020	0.040

Fuente. Elaboración propia

FIGURA 20. Número de Accidentes según Gravedad

Fuente. Elaboración propia

Los datos de las cifras de número de muertos y heridos en el periodo 2011 al 2017 pueden considerarse que son de manera creciente a media que aumentan los vehículos en Cajamarca ya que por esta vía hacían su ingreso (hasta febrero del 2017) todo el tránsito pesado Según datos tomados por la Policía de Tránsito y representados en la figura 20, de la cual se puede identificar:

En 2015 han fallecido (3) personas una más en accidente de tránsito que en el 2014, lo que supone un aumento del 25%; en cuanto al número de heridos graves en el 2013 presenta una reducción del 50% con respecto al año 2014; en accidentes con heridos leves se presenta un aumento del 25%;

en el 2012 al 2013, en cuanto a choques simples presenta una disminución del 50% con respecto al 2012.

El número de muertos paso (2) en el 2014 a tres (3) en el 2015, lo que presenta un aumento del 33.3%; en accidentes con heridos graves paso de 4 a 9 con un aumento del 55.5%; con respecto a heridos leves se refleja un aumento del 80% en accidentes.

En cuanto al análisis de este año 2017, se dio un accidente muy grave el día 20 de febrero de este mismo año en el cual murieron 4 personas, y por lo cual se decidió por cerrar dicha vía para el ingreso de vehículos pesados. Según el análisis estadístico de accidentes estos fueron creciendo cada vez más por el aumento de vehículos pesados, cabe mencionar que el conductor no se encontraba en estado de ebriedad, ni ningún conductor que participo en este hecho.

3.4.4.4. CAUSA DE LOS ACCIDENTES. en la Av. Héroes del Cenepa desde la Av.

Independencia hasta la Av. Vía de Evitamiento Sur en la Ciudad de Cajamarca.

Los datos suministrados permiten identificar las causas de los accidentes.

FACTOR VEHÍCULO

✓ Fallas mecánicas

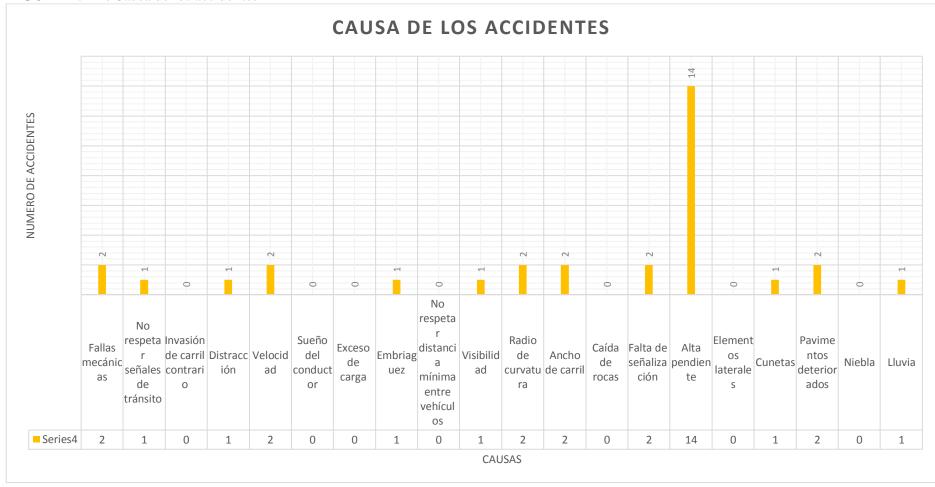
FACTOR HUMANO

- ✓ No respetar señales de tránsito
- ✓ Invasión de carril contrario
- ✓ Distracción
- ✓ Excesiva Velocidad
- ✓ Sueño del conductor
- ✓ Exceso de carga
- ✓ Embriaguez
- ✓ No respetar distancia mínima entre vehículos

FACTOR VÍA Y EL ENTORNO

- ✓ Visibilidad
- ✓ Radio de curvatura

- ✓ Ancho de carril
- ✓ Caída de rocas
- ✓ Falta de señalización
- ✓ Alta pendiente
- ✓ Elementos laterales
- ✓ Cunetas
- ✓ Pavimento deteriorado.


FACTOR CLIMA

- ✓ Lluvia
- ✓ Niebla

TABLA Nº 23. Causa de los Accidentes en la Av. Héroes del Cenepa 2011 al 2017

CAUSA DE LOS ACCIDENTE	NUMERO DE ACCIDENTES	%
Factor vehículo	710012111120	,,,
Fallas mecánicas	2	
TOTAL	2	6.25%
Factor Humano		
No respetar señales de tránsito	1	
Invasión de carril contrario	0	
Distracción	1	
Velocidad	2	
Sueño del conductor	0	
Exceso de carga	0	
Embriaguez	1	
No respetar distancia mínima entre vehículos	0	
TOTAL	5	15.63%
Factor Vía y el Entorno		
Visibilidad	1	
Radio de curvatura	2	
Ancho de carril	2	
Caída de rocas	0	
Falta de señalización	2	
Alta pendiente	14	
Elementos laterales	0	
Cunetas	1	
Pavimentos deteriorados	2	
TOTAL	24	75.00%
Factor Clima		
Niebla	0	
Lluvia	1	
TOTAL	1	3.13%
TOTAL DE ACCIDENTES	32	100.00%

FIGURA Nº 21. Causa de los accidentes

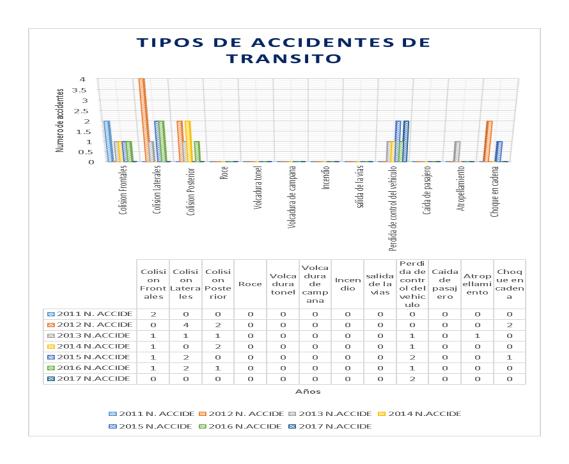
De los datos suministrados indican que la mayor causa de los accidentes es el **Factor vía y entorno** con un 75% correspondiente a 24 accidentes ocurridos entre el año 2011 al 2017, de los cuales se puede observar que 14 se produjeron por el alta pendiente.

La segunda causa de accidentes es el **Factor humano** con 5 accidentes ocurridos que representan el 15.63%.

La tercera causa es **Factor vehículo** se presentaron 2 accidentes que representa el 6.25%, debido a fallas mecánicas.

La cuarta causa de accidente es el **Facto clima** identificados en la TABLA n⁰ 23 (causa de los accidentes), con 1 accidentes equivalente al 3.13%.

3.4.4.5 TIPOS DE ACCIDENTES DE TRÁNSITO


Un accidente de tránsito es un evento que nadie quiere que le suceda, y en caso de llegar a presentarse nadie quiere asumir la responsabilidad así los hechos demuestren su culpabilidad. A continuación, vamos a presentarlos tipos de accidentes de tránsito

- ✓ Frontales
- ✓ Laterales
- ✓ alcance
- ✓ Roce
- ✓ Volcadura tonel
- ✓ Volcadura de campana
- ✓ Incendio
- ✓ salida de la vía
- ✓ Pérdida de control del vehículo
- ✓ Caída de pasajero
- √ Atropellamiento
- ✓ Choque en cadena

TABLA Nº 24. Tipos de los Accidentes en la Av. Héroes del Cenepa 2011 al 2017

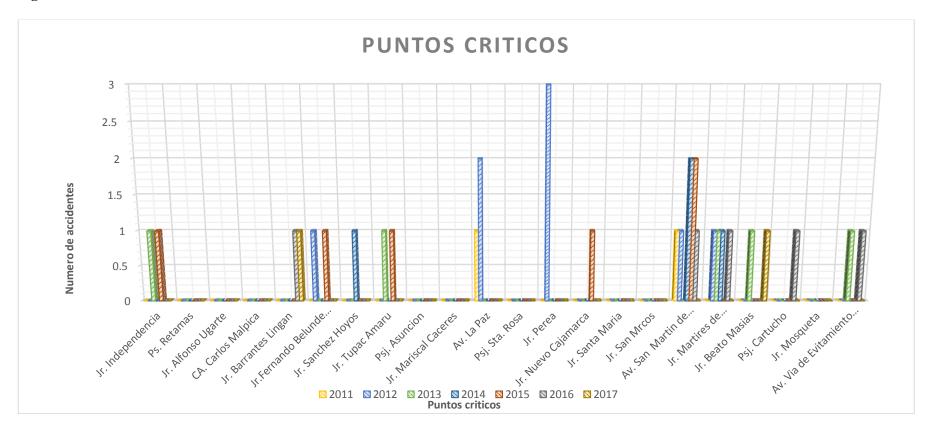
TIPO DE	2	011	2012		2013		2014		2015		2016		2017	
ACCIDENTES	N. ACCIDE	PORCENT	N. ACCIDE	PORCENT	N.ACCIDE	PORCENT								
Colisión Frontales	2	25%	0	0%	1	20%	1	25%	1	17%	1	20%	0	0%
Colisión Laterales	0	0%	4	50%	1	20%	0	0%	2	33%	2	40%	0	0%
Colisión Posterior	0	0%	2	25%	1	20%	2	50%	0	0%	1	20%	0	0%
Roce	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Volcadura tonel	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Volcadura de campana	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Incendio	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
salida de la vías	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Pérdida de control del vehículo	0	0%	0	0%	1	20%	1	25%	2	33%	1	20%	2	100%
Caída de pasajero	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
Atropellamiento	0	0%	0	0%	1	20%	0	0%	0	0%	0	0%	0	0%
Choque en cadena	0	0%	2	25%	0	0%	0	0%	1	17%	0	0%	0	0%
TOTAL	2	25%	8	100%	5	100%	4	100%	6	100%	5	100%	2	100%

FIGURA N^0 22. Tipos de accidentes

De los datos suministrados indican que la mayor tipo accidentes ocurridos en la Av. Héroes del Cenepa es por colisión lateral con una sumatoria de 9 accidentes ocurridos desde el año 2011 al 2017.

El segundo tipo de accidente es el por pérdida del control del vehículo con una sumatoria de 7 con accidentes ocurridos desde el 2011 al 2017.

El tercer tipo de accidentes son colisiones laterales y colisiones frontales con una sumatoria de 6 accidentes ocurridos desde el 2011 al 2017.


La cuarta tipo es por choque en cadena con una sumatoria de 3 accidentes desde 2011 el 2017.

3.4.4.6.ACCIDENTABILIDAD DE LA AV. HÉROES DEL CENEPA. El estudio de accidentabilidad a partir de loa años 2011 al 2017 representados en la tabla N⁰ 24 identifican los puntos críticos por tramos donde se presentan el mayor número de accidentes por año. Esto es indispensable para determinar el estudio de la vía en cuanto a la probabilidad de ocurrencia del accidente en estos sectores.

 ${f TABLA}\ {f N^0}\ {f 25}.$ Puntos críticos de accidentalidad en el tramo de estudio

Punto Critico	2011	2012	2013	2014	2015	2016	2017	Promedio	Porcentaje
Jr. Independencia	0	0	1	0	1	0	0	0.29	6.25%
Psj. Retamas	0	0	0	0	0	0	0	0.00	0.00%
Jr. Alfonso Ugarte	0	0	0	0	0	0	0	0.00	0.00%
Total Tramo I	0	0	1	0	1	0	0	0.29	6.25%
CA. Carlos Malpica	0	0	0	0	0	0	0	0.00	0.00%
Jr. Barrantes Ligan	0	0	0	0	0	1	1	0.29	6.25%
Jr. Fernando Belaunde Terry	0	1	0	0	1	0	0	0.29	6.25%
Jr. Sánchez Hoyos	0	0	0	1	0	0	0	0.14	3.13%
Jr. Túpac Amaru	0	0	1	0	1	0	0	0.29	6.25%
Psj. Asunción	0	0	0	0	0	0	0	0.00	0.00%
Jr. Mariscal Cáceres	0	0	0	0	0	0	0	0.00	0.00%
Av. La Paz	1	2	0	0	0	0	0	0.43	9.38%
Psj. Sta. Rosa	0	0	0	0	0	0	0	0.00	0.00%
Jr. Perea	0	3	0	0	0	0	0	0.43	9.38%
Total Tramo II	1	6	1	1	2	1	1	1.86	40.63%
Jr. Nuevo Cajamarca	0	0	0	0	1	0	0	0.14	3.13%
Jr. Santa María	0	0	0	0	0	0	0	0.00	0.00%
Jr. San Marcos	0	0	0	0	0	0	0	0.00	0.00%
Av. San Martin de Porras	1	1	0	2	2	1	0	1.00	21.88%
Jr. Mártires de Uchuracay	0	1	1	1	0	1	0	0.57	12.50%
Jr. Beato Masías	0	0	1	0	0	0	1	0.29	6.25%
Psj. Cartucho	0	0	0	0	0	1	0	0.14	3.13%
Jr. Mosqueta	0	0	0	0	0	0	0	0.00	0.00%
Av. Vía de Evitamiento Sur	0	0	1	0	0	1	0	0.29	6.25%
Total Tramo III	1	2	3	3	3	4	1	2.43	53.13%
TOTAL DE ACCIDENTES POR AÑO	2	8	5	4	6	5	2	4.57	100.00%

Figura 23. Puntos de Accidentabilidad

Fuente: Elaboracion Propia

Los datos de accidentabilidad de la Av. Héroes del Cenepa indican que los puntos de mayor accidentabilidad están en la abscisa del Jr. Mártires de Uchuracay con un promedio de 0.57 accidentes ocurridos desde el año 2011 al 2017

El segundo punto con mayor accidentabilidad está localizado entre el Jr. Perea y la Av. La Paz con un promedio de 0.43 accidentes ocurridos desde el año 2011 al 2017

El tercer punto con mayor accidentabilidad está localizado entre los Jirones. Independencia, Barrantes Ligan, Fernando Belaunde Terry, Túpac Amaru, Beato Masías, y la Vía de Evitamiento sur con un promedio de 0.29 accidentes ocurridos desde el año 2011 al 2017

Determinación de los accidentes con víctimas en la ruta de estudio. En la Tabla N⁰26 se presenta el número de accidentes con víctimas que se presentan en la ruta de estudio en los dos sentidos por cada kilómetro de vía, esto permite determinar el grado de peligrosidad de un trayecto o de una vía.

TABLA Nº26. Número de accidentes con víctimas en el tramo de estudio año 2011 al 2017

IABLA	14 20.		10 00 8	I		ii victii	ctimas en el tramo de estudio ano 2011 a						1 2017								
4.00004		2011			2012			2013			2014			2015		2016		2017			
ABSCISA	Muertos	Graves	Heridos leves	Muertos	Graves	Heridos leves	Muertos	Graves	Heridos leves	Muertos	Graves	Heridos leves	Muertos	Graves	Heridos leves	Muertos	Graves	Heridos leves	Muertos	Graves	Heridos leves
Jr. Independencia														2	1						
Psj. Retamas																					
Jr. Alfonso Ugarte																					
Total Tramo I	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0
CA. Carlos Malpica																					
Jr. Barrantes																					
Lingan																					
Jr. Fernando															1	2	1				
Belaunde Terry															-	-	-				
Jr. Sánchez Hoyos																					
Jr. Túpac Amaru								1	1	2	1		3	5	6						
Psj. Asunción																					
Jr. Mariscal																					
Cáceres																					
Av. La Paz			2		2	2															
Psj. Sta. Rosa																					
Jr. Perea					2	1															
Total Tramo II	0	0	2	0	4	3	0	1	1	2	1	0	3	5	7	2	1	0	0	0	0
Jr. Nuevo															_						
Cajamarca															1						
Jr. Santa María																					
Jr. San Marcos																					
Av. San Martin de			2								4	1		2	1						
Porras			2								7	_			_						
Jr. Mártires de					1							1									
Uchuracay								4	4										_	-	
Jr. Beato Masías								1	1										4	5	
Psj. Cartucho			ļ					ļ									2				
Jr. Mosqueta			-																		
Av. Vía de Evitamiento Sur									2								1				
Lvitaillielito 3ul			_		_				_		_			_			_			_	
Total Tramo II	0	0	2	0	1	0	0	1	3	0	4	2	0	2	2	0	3	0	4	5	0
TOTAL DE ACCIDENTES POR AÑO	0	0	4	0	5	3	0	2	4	2	5	2	3	9	10	2	4	0	4	5	0

Según el **TABLA** Nº 26 en el año 2011, en el tramo II, el punto crítico se encuentra la Av. La Paz con 2 víctimas, en el tramo III se encuentra en el Jr. San Martin de Porras con 2 herido leves.

En el **año 2012**, en el tramo II, el punto crítico se encuentra la Av. La Paz con 4 víctimas de accidentes, en el tramo III se encuentra en el Jr. Mártires de Uchuracay con 1 herido leve.

En el **año 2013** se contempla que el punto crítico del tramo II, corresponde al Jr. Túpac Amaru con (2) heridos; en el tramo III el mayor número de accidentes con víctimas se presentó en el Jr. Beato Masías con (2) heridos.

El **año 2014** el tramo II el punto crítico está en el Jr. Túpac Amaru con (3) víctimas de las cuales (2) fueron fatales; el tramo III el punto crítico se encuentra en la Av. San Martin de Porras con (5) víctimas.

En el **año 2015**, en el tramo I, el punto crítico se encuentra en el Jr. Independencia con total de (3) víctimas; en el tramo II el punto crítico se encuentra en el Jr. Túpac Amaru con un total de (14) víctimas de las cuales (3) fueron fatales, el tercer III el punto de mayor accidentabilidad está en la Av. San Martin de Porras con total de (3) víctimas.

En el **año 2016** se contempla que el punto crítico del tramo II, corresponde al Jr. Fernando Belaunde Terry con total de (3) víctimas de las cuales (2) fueron fatales; en el tramo III el punto crítico está en el Jr. Cartucho con (2) victimas.

El **año 2017** el tramo III el punto crítico está en la Jr. Beato Masías con (9) víctimas de las cuales (4) fueron fatales. Después de este accidente se decidió cerrar la vía para el tránsito pesado.

TABLA N^0 27. cuadro resumen de número de accidentes en cada año por tramos

Obteniendo el siguiente cuadro resumen

ABSCI	2011		2012		2013			2014		2015		2016			2017						
SA	Muert os	Grav es	Herido s leves	Muert os	Grav es	Heridos leves															
Total Tramo	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0
Total Tramo II	0	0	2	0	4	3	0	1	1	2	1	0	3	5	7	2	1	0	0	0	0
Total Tramo III	0	0	2	0	1	0	0	1	3	0	4	2	0	2	2	0	3	0	4	5	0

Fuente. Elaboración propia

TABLA Nº28. cuadro resumen de número de accidentes en total por tramos

	Muertos	Graves	Heridos leves	Total
Total Tramo I	0	2	1	3
Total Tramo				
II	7	12	13	32
Total Tramo				
III	4	16	9	29
Total	11	30	23	

ACCIDENTES CON VICTIMAS EN TRAMOS ACCIDENTES CON VICTIMAS Graves Herido Muert Herido Muert Herido Muert Herido Muert Muert Herido Muert Herido Muert Herido Graves Graves Graves Graves Graves Graves s leves Total Tramo III Total Tramo II Total Tramo I AÑOS Total Tramo I Total Tramo II Tramo III

FIGURA Nº24. Número de accidentes con víctimas por tramo de estudio

En la **FIGURA Nº24**. se puede identificar que el tramo de mayor accidentabilidad en la ruta de estudio es el tramo II de la Av. Héroes del Cenepa de la Ciudad de Cajamarca, el cual durante los seis últimos años de estudio presenta los mayores valores de accidentes con víctimas, aportando 32 víctimas de los accidentes de tránsito de los cuales 7 fueron fatales, 12 heridos graves y 13 heridos leves.

En segundo lugar, se encuentra en el tramo III, y presenta los siguientes valores de accidentes con víctimas, aportando 29 víctimas de las cuales 4 fueron fatales, 16 graves y 9 heridos leves.

En resumen, durante el tiempo de estudio total de víctimas fatales 11, heridos graves 30, heridos leves 23.

CAPÍTULO IV

ANÁLISIS Y DISCUCIÓN DE RESULTADOS

4.1. DATOS TOPOGRÁFICOS

La Av. Héroes del Cenepa se encuentra en el Distrito de Cajamarca, presenta una topografía accidentada, ubicada en la región natural quechua a una altura de 2846-2704 msnm aprox.

Se ha realizado un trazo directo seccionado cada 20m en tramos tangentes y en tramos curvos cada 10m aproximadamente, y por cada sección se ha tomado 10 puntos aprox., así mismo se ha ubicado el BM de inicio fijado en el terreno con pintura de color rojo y fondo blanco en objetos inamovibles y sus respectivos PC.

Esta vía es una de las principales avenidas de la ciudad de Cajamarca, se extiende de noreste a suroeste a lo largo de 21 cuadras. Asimismo, se constituye como un importante eje de conexión de la carretera a Ciudad de Dios con la avenida Evitamiento, considerándose actualmente una de las vías más peligrosas de la ciudad debido a la empinada pendiente que describe en su recorrido.

4.2. DISEÑO GEOMÉTRICO

No se pudo encontrar el diseño de dicha vía por lo cual se tuvo que hacer su respectivo levantamiento topográfico.

4.3. INDICADORES DE ACCIDENTALIDAD POR TRAMO Y AÑO.

Los indicadores de accidentalidad permitirán medir el peligro en la Av. Héroes del Cenepa.

4.3.1. ÍNDICE DE PELIGROSIDAD

IPat: (Índice de peligrosidad de accidentes totales)

$$Ipat = \frac{10^6.N}{IMD.365 X L} \dots \dots \dots \dots (5)$$

✓ Los puntos críticos de la vía son cuando el Ipat es mayor o igual a 1.5

TABLA N^029 . Índice de peligrosidad de accidentes totales por tramo

TABLA N°29. Indice de pengrosidad de ad		IMD (vehículos/día)		
TRAMO	N	livid (veniculos/dia)	L (km)	Ipat
AÑO 2011				
Tramo I	0	168	0.84	0.00
Av. Independencia-Jr. Alfonso Ugarte	· ·	100	0.04	0.00
Tramo II	1	310	0.86	1.03
CA. Carlos Malpica-Jr. Perea		310	0.00	1.05
Tramo III	1	420	0.95	0.68
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur	_	420	0.55	0.00
AÑO 2012			,	,
Tramo I	0	200	0.84	0.00
Av. Independencia-Jr. Alfonso Ugarte	Ŭ	200	0.01	0.00
Tramo II	6	350	0.86	2.74
CA. Carlos Malpica-Jr. Perea	Ŭ	330	0.00	2.7.
Tramo III	2	449	0.95	1.28
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur		113	0.55	1.20
AÑO 2013				
Tramo I	1	217	0.84	1.51
Av. Independencia-Jr. Alfonso Ugarte	1	217	0.04	1.51
Tramo II	1	380	0.86	0.84
CA. Carlos Malpica-Jr. Perea	1	380	0.00	0.84
Tramo III	3	488	0.95	1.76
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur	3	480	0.93	1.70
AÑO 2014				
Tramo I	0	231	0.84	0.00
Av. Independencia-Jr. Alfonso Ugarte	U	231	0.04	0.00
Tramo II	1	404	0.86	0.79
CA. Carlos Malpica-Jr. Perea	1	404	0.00	0.73
Tramo III	3	519	0.95	1.66
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur	3	319	0.93	1.00
AÑO 2015	_			
Tramo I	1	248	0.84	1.32
Av. Independencia-Jr. Alfonso Ugarte		240	0.04	1.32
Tramo II	2	434	0.86	1.47
CA. Carlos Malpica-Jr. Perea		454	0.00	1.77
Tramo III	3	558	0.95	1.54
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur		330	0.55	1.5 .
AÑO 2016			•	
Tramo I	0	270	0.84	0.00
Av. Independencia-Jr. Alfonso Ugarte		=7.0	0.0.	0.00
Tramo II	1	497	0.86	0.64
CA. Carlos Malpica-Jr. Perea		137	0.00	0.01
Tramo III	4	638	0.95	1.80
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur	•		0.55	1.00
AÑO 2017			ı	
Tramo I	0	284	0.84	0.00
Av. Independencia-Jr. Alfonso Ugarte			0.01	5.00
Tramo II	1	497	0.86	0.64
CA. Carlos Malpica-Jr. Perea	1	43/	0.80	0.04
Tramo III				
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur	1	638	0.95	0.45
		1	1	J

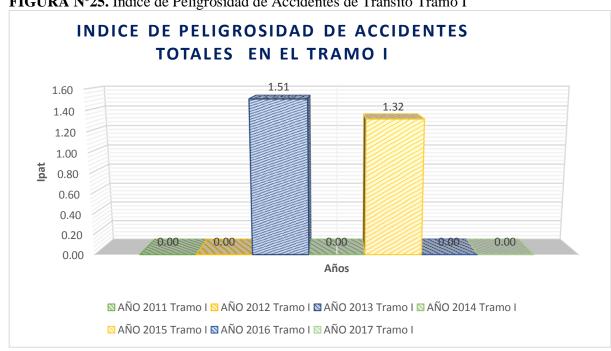
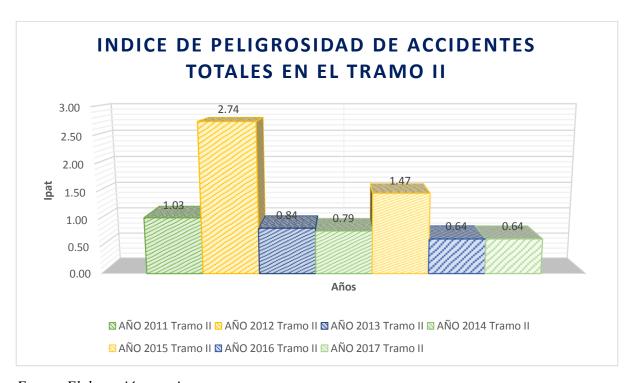



FIGURA Nº25. Índice de Peligrosidad de Accidentes de Tránsito Tramo I

Fuente. Elaboración propia.

FIGURA N^0 26. Índice de Peligrosidad de Accidentes de Tránsito Tramo II

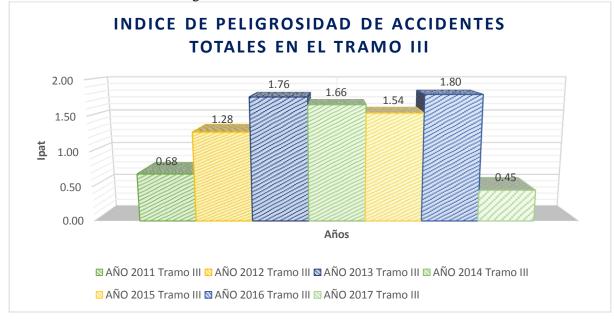


FIGURA Nº27 Índice de Peligrosidad de Accidentes de Tránsito Tramo III

Fuente. Elaboración Propia.

En el **Tramo I**, correspondiente a la Av. Independencia –Jr. Alfonso Ugarte, se aprecia que este tramo es un punto crítico cuyo valor es mayor a 1.51 esto es debido a los accidentes ocurridos en este parte de la vía ya que en ella la pendiente es mayor al 9%, por lo cual en esta parte de la avenida es muy peligrosa.

De acuerdo a los resultados obtenidos se identifican que el tramo de estudio el índice de peligrosidad para el **tramo I**, Av. Independencia-Jr. Alfonso Ugarte se presenta un aumento en el 2013 así mismo se presentó un incremento considerable, este con el aumento del parque automotor en este tramo.

El **tramo II**, de estudio Jr. Carlos Malpica-Jr. Perea el índice de peligrosidad presenta un máximo de 2.74 en el año 2012 siendo uno de los sectores más peligrosos.

El **tramo III**, de Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur, presenta un índice de peligrosidad máximo de 1.80 en los años 2016, para luego disminuir esto se debe en cierto porcentaje a la presencia de la policía de tránsito.

En el presente año se presenta un índice de peligrosidad más bajo (0.64) pues esta vía fue cerrada para el tránsito pesado, disminuyendo el tránsito vehicular en gran medida y con ello disminuyeron los accidentes de tránsito.

4.3.2. ÍNDICE DE PELIGROSIDAD DE ACCIDENTES CON VÍCTIMAS.

El Índice de peligrosidad de accidentes con víctimas, relaciona el número de accidentes con víctimas registrados en un año con la cantidad de vehículos que circulan por un sector determinado o tramo de vía.

$$Ipav = \frac{10^6.Nv}{IMD.365 X L} \dots \dots \dots \dots \dots (6)$$

Dónde:

Nv: (Número de accidentes con víctimas) = AF + AS

AF: Accidentes Fatales.AS: Accidentes Serios

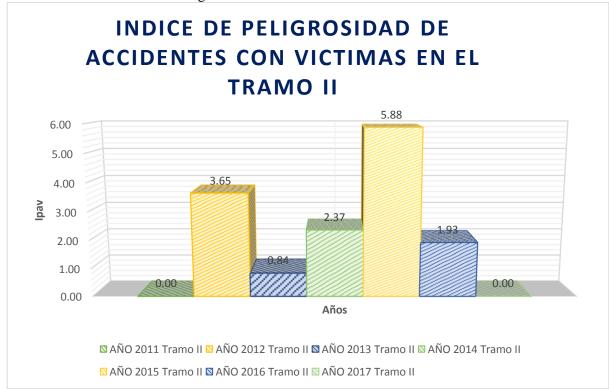
IMD: Índice Medio Diario

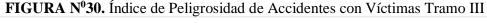
L: Longitud del tramo (km).

✓ Los puntos críticos de la vía son cuando el Ipav es mayor o igual a 1.0

TABLA Nº 30. Índice de Peligrosidad de Accidentes con Víctimas por Tramos

TABLA Nº 30. Indice de Peligrosidad de Accid	ientes con v		.OS		
TRAMO	Nv	IMD (vehículos/día)	L (km)	Ipav	
AÑO 2011					
Tramo I	0	100	0.04	0.00	
Av. Independencia-Jr. Alfonso Ugarte	0	168	0.84	0.00	
Tramo II	0	210	0.96	0.00	
CA. Carlos Malpica-Jr. Perea	0	310	0.86	0.00	
Tramo III	0	420	0.95	0.00	
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur	U	420	0.95	0.00	
AÑO 2012					
Tramo I	0	200	0.84	0.00	
Av. Independencia-Jr. Alfonso Ugarte					
Tramo II	4	350	0.86	3.65	
CA. Carlos Malpica-Jr. Perea		330	0.00	5.00	
Tramo III	1	449	0.95	0.64	
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur	_		0.55		
AÑO 2013			l e	,	
Tramo I					
Av. Independencia-Jr. Alfonso Ugarte	0	217	0.84	0.00	
Tramo II					
CA. Carlos Malpica-Jr. Perea	1	380	0.86	0.84	
Tramo III					
	1	488	0.95	0.59	
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur					
AÑO 2014		T		1	
Tramo I	0	231	0.84	0.00	
Av. Independencia-Jr. Alfonso Ugarte					
Tramo II	3	404	0.86	2.37	
CA. Carlos Malpica-Jr. Perea					
Tramo III	4	519	0.95	2.21	
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur AÑO 2015					
Tramo I		T T		1	
Av. Independencia-Jr. Alfonso Ugarte	2	248	0.84	2.64	
Tramo II					
CA. Carlos Malpica-Jr. Perea	8	434	0.86	5.88	
Tramo III					
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur	2	558	0.95	1.03	
AÑO 2016					
Tramo I					
Av. Independencia-Jr. Alfonso Ugarte	0	270	0.84	0.00	
Tramo II	2	407	0.00	1.02	
CA. Carlos Malpica-Jr. Perea	3	497	0.86	1.93	
Tramo III	3	638	0.95	1.35	
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur	3	030	0.33	1.33	
AÑO 2017					
Tramo I	0	284	0.84	0.00	
Av. Independencia-Jr. Alfonso Ugarte	J	204	0.04	0.00	
Tramo II	0	497	0.86	0.00	
CA. Carlos Malpica-Jr. Perea	J	731	0.00	0.00	
Tramo III	9	638	0.95	4.05	
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur			0.55		


En la **TABLA Nº30.** se representa el cálculo del índice de peligrosidad con víctima por año y por tramo. Los datos de número de accidentes con víctimas, se tomó como datos los obtenidos en la **FIGURA Nº28,29 y 30.** considerando el número de accidentes con víctimas fatales y heridos graves.


- ✓ En el **año 2015** de acuerdo a los resultados obtenidos se considera que el **tramo I** correspondiente a la Av. Independencia-Jr. Alfonso Ugarte, presenta los mayores índices de peligrosidad según los estudios realizados con un valor de **2.64**, que es un valor crítico para la ocurrencia de accidentes.
- ✓ En el **año 2015** de acuerdo a los resultados obtenidos se considera que el **tramo II** correspondiente a la Jr. Carlos Malpica-Jr. Perea, presenta los mayores índices de peligrosidad según los estudios realizados con un valor de **5.88**, que representa un valor crítico para la ocurrencia de accidentes.
- ✓ En el **año 2012** de acuerdo a los resultados obtenidos se considera que el **tramo II** correspondiente a la Jr. Carlos Malpica-Jr. Perea, presenta los mayores índices de peligrosidad según los estudios realizados con un valor de **3.65**, que representa un valor crítico para la ocurrencia de accidentes.
- ✓ En el año 2017 de acuerdo a los resultados obtenidos se considera que el tramo III correspondiente al Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur, presenta los mayores índices de peligrosidad según los estudios realizados con un valor de 4.05, que representa un valor crítico para la ocurrencia de accidentes
- ✓ En el **año 2014** de acuerdo a los resultados obtenidos se considera que el **tramo III** correspondiente al Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur, presenta los mayores índices de peligrosidad según los estudios realizados con un valor de **2.21**, que representa un valor crítico para la ocurrencia de accidentes

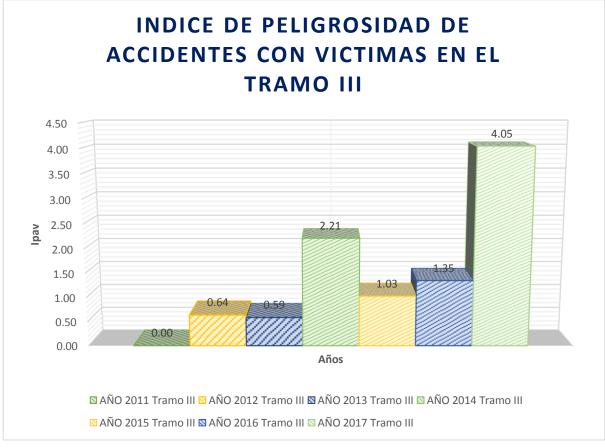

FIGURA Nº28. Índice de Peligrosidad de Accidentes con Víctimas Tramo I

FIGURA Nº 29. Índice de Peligrosidad de Accidentes con Víctimas Tramo II

4.3.3. ÍNDICE DE SEVERIDAD.

El Índice de severidad (IS), permite en el tramo de estudio relacionar el número equivalente de accidentes de tránsito registrados en un año con la cantidad de vehículos que circulan por un tramo; este estudio se realizará para el año 2011 al 2017 en los trayectos de estudio considerando los accidentes en ambos sentidos.

$$IS = \frac{\text{Num. Accident leves} + 3 \times \text{Num. Accident Heridos} + 12 \times \text{Num. Accident con Muertos y Heridos}}{\text{IMD X 365 X L}} \dots (7)$$

Dónde:

IS: Índice de severidad

N: número de accidentes

Nv: (número de accidentes con víctimas) = AF + AS

AF: Accidentes fatales

AS: Accidentes serios

ASimp: Accidentes simples

IMD: Índice Medio diario (veh/día)

L: Longitud del tramo (Km)

✓ Los puntos críticos de la vía son cuando el Is es mayor o igual 5

En la **TABLA** Nº31. se identifica los índices de severidad por tramo considerando los datos de la **FIGURA** Nº31, 32 y 33 correspondiente a accidentes fatales se toma como (AF), los datos de accidentes serios (AS), son tomados de la **TABLA** Nº 29 de los cuales se descuenta el número de accidente serios, heridos graves y leves.

TABLA N^0 31. Índice de Severidad por Tramos

ткамо	AF	AS	Asimpl	IMD (vehículos/día)	L (km)	IS
AÑO 2011						
Tramo I	0	0	0	168	0.84	0.00
Av. Independencia-Jr. Alfonso Ugarte	0	0	0	100	0.04	0.00
Tramo II	0	0	2	310	0.86	0.21
CA. Carlos Malpica-Jr. Perea	0	0		310	0.00	0.21
Tramo III	0	0	2	420	0.95	0.14
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur			_			•
AÑO 2012						
Tramo I	0	0	0	200	0.84	0.00
Av. Independencia-Jr. Alfonso Ugarte				200	0.01	0.00
Tramo II	0	4	3	350	0.86	5.75
CA. Carlos Malpica-Jr. Perea	0	4	3	330	0.80	3.73
Tramo III	0	1	0	449	0.95	0.96
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur				773	0.55	0.50
AÑO 2013						
Tramo I	0	0	0	217	0.84	0.00
Av. Independencia-Jr. Alfonso Ugarte		•		217	0.04	0.00
Tramo II	0	1	1	380	0.86	1.34
CA. Carlos Malpica-Jr. Perea					0.00	1.0 .
Tramo III	0	1	3	488	0.95	1.06
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur		_	•			_,,,,
AÑO 2014						
Tramo I	0	0	0	231	0.84	0.00
Av. Independencia-Jr. Alfonso Ugarte						
Tramo II	2	1	0	404	0.86	3.08
CA. Carlos Malpica-Jr. Perea						
Tramo III	0	4	2	519	0.95	3.43
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur AÑO 2015						
Tramo I Av. Independencia-Jr. Alfonso Ugarte	0	2	1	248	0.84	4.09
Tramo II						
CA. Carlos Malpica-Jr. Perea	3	5	7	434	0.86	8.68
Tramo III						
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur	0	2	2	558	0.95	1.65
AÑO 2016						
Tramo I						
Av. Independencia-Jr. Alfonso Ugarte	0	0	0	270	0.84	0.00
Tramo II						
CA. Carlos Malpica-Jr. Perea	2	1	0	497	0.86	2.50
Tramo III						
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur	0	3	0	638	0.95	2.02
AÑO 2017						
Tramo I	-	-	-	25.		
Av. Independencia-Jr. Alfonso Ugarte	0	0	0	284	0.84	0.00
Tramo II					_	_
CA. Carlos Malpica-Jr. Perea	0	0	0	497	0.86	0.00
Tramo III		_			_	
Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur	4	5	0	638	0.95	5.53
E El 1						

FIGURA Nº31. Índice de Severidad Tramo I

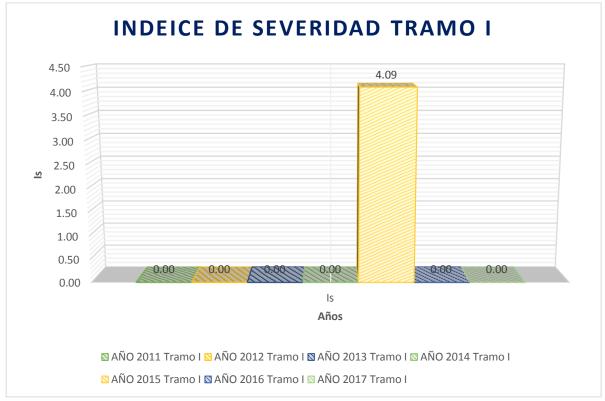
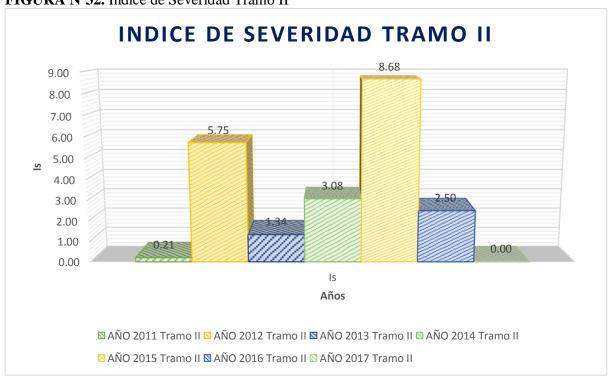



FIGURA Nº32. Índice de Severidad Tramo II

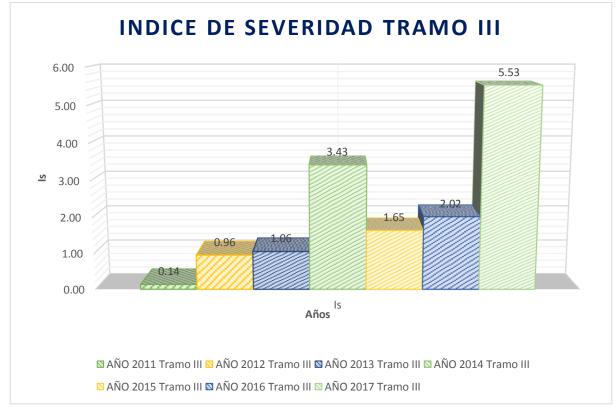


FIGURA Nº33. Índice de Severidad Tramo III

- ✓ En el año 2015 de acuerdo a los resultados obtenidos se considera que el tramo II correspondiente a la Av. Independencia-Jr. Alfonso Ugarte, presenta el mayor índice de severidad según los estudios realizados con un valor de 8.68, que representa un punto crítico para la ocurrencia de accidentes severos.
- ✓ En el **año 2012** de acuerdo a los resultados obtenidos se considera que el **tramo II** correspondiente a la Av. Independencia-Jr. Alfonso Ugarte, presenta el mayor índice de severidad según los estudios realizados con un valor de **5.75**, que representa un punto crítico para la ocurrencia de accidentes severos.
- ✓ En el año 2017 de acuerdo a los resultados obtenidos se considera que el tramo III correspondiente al Jr. Nuevo Cajamarca-Av. Vía de Evitamiento Sur, presenta el mayor índice de severidad según los estudios realizados con un valor de 5.53, que representa un punto crítico para la ocurrencia de accidentes severos.

✓ En el año 2013 de acuerdo a los resultados obtenidos se considera que el tramo I correspondiente a la Av. Independencia-Jr. Alfonso Ugarte, presenta el mayor índice de severidad según los estudios realizados con un valor de 4.09

CARACTERÍSTICAS EXISTENTES DE LA VÍA.

Los datos correspondientes a las características existentes en la avenida Héroes del Cenepa, se los muestra en las siguientes tablas:

TABLA Nº32. Inventario de las características existentes en la sección transversal

PROGRESIV	PROGRESIVAS		E CALZADA m)	(m)			OMBEO (%)	
DE:	A:	ASCENSO	DESCENSO	ASCENSO	DESCENSO	ASCENSO	DESCENSO	
0+000.00	0+020.00	6.10	6.10	0	0	1.87%	1.90%	
0+020.00	0+040.00	6.10	6.10	0	0	1.87%	1.90%	
0+040.00	0+060.00	6.10	6.10	0	0	2.82%	2.87%	
0+060.00	0+080.00	6.01	6.01	0	0	2.82%	2.87%	
0+080.00	0+100.00	6.05	6.01	0	0	2.12%	2.64%	
0+100.00	0+120.00	6.13	6.00	0	0	2.22%	2.95%	
0+120.00	0+140.00	6.16	6.00	0	0	3.83%	2.64%	
0+140.00	0+160.00	6.19	6.00	0	0	3.13%	3.20%	
0+160.00	0+180.00	6.21	6.01	0	0	2.67%	3.85%	
0+180.00	0+200.00	6.24	6.01	0	0	2.67%	3.85%	
0+200.00	0+220.00	6.48	6.01	0	0	2.67%	3.85%	
0+220.00	0+240.00	6.78	5.97	0	0	2.67%	3.85%	
0+240.00	0+260.00	7.01	5.95	0	0	2.67%	3.85%	
0+260.00	0+280.00	6.12	6.39	0	0	2.67%	3.85%	
0+280.00	0+300.00	6.15	6.15	0	0	2.67%	3.85%	
0+300.00	0+320.00	6.15	6.15	0	0	3.41%	2.85%	
0+320.00	0+340.00	6.15	6.15	0	0	3.41%	2.85%	
0+340.00	0+360.00	5.88	5.34	0	0	3.37%	2.63%	
0+360.00	0+380.00	5.72	5.35	0	0	4.16%	3.23%	
0+380.00	0+400.00	5.54	5.37	0	0	4.16%	3.23%	
0+400.00	0+420.00	6.25	5.62	0	0	3.98%	3.63%	
0+420.00	0+440.00	6.14	5.58	0	0	3.00%	2.59%	
0+440.00	0+460.00	6.03	5.54	0	0	3.00%	2.59%	
0+460.00	0+480.00	5.91	5.50	0	0	3.00%	2.59%	
0+480.00	0+495.82	5.80	5.46	0	0	3.17%	2.57%	
0+495.82	0+500.00	5.68	5.42	0	0	3.17%	2.57%	
0+500.00	0+520.00	5.60	5.40	0	0	3.15%	2.37%	
0+520.00	0+533.32	6.13	6.06	0	0	3.15%	2.37%	
0+533.32	0+540.00	6.14	6.07	0	0	3.15%	2.37%	

0+540.00	0+560.00	6.16	6.08	0	0	3.15%	2.37%
0+560.00	0+570.82	6.18	6.08	0	0	3.15%	2.37%
0+570.82	0+580.00	6.19	6.04	0	0	3.17%	1.80%
0+580.00	0+600.00	6.13	5.99	0	0	3.17%	1.80%
0+600.00	0+620.00	6.08	5.94	0	0	3.17%	1.80%
0+620.00	0+640.00	6.08	5.94	0	0	3.17%	1.80%
0+640.00	0+660.00	6.11	5.38	0	0	3.17%	2.64%
0+660.00	0+680.00	5.93	5.39	0	0	3.17%	2.64%
0+680.00	0+700.00	5.77	5.40	0	0	0.50%	1.89%
0+700.00	0+720.00	5.59	5.42	0	0	0.50%	1.89%
0+720.00	0+740.00	6.30	5.67	0	0	0.50%	1.89%
0+740.00	0+760.00	6.19	5.63	0	0	0.50%	1.89%
0+760.00	0+780.00	6.08	5.59	0	0	0.50%	1.89%
0+780.00	0+800.00	5.96	5.55	0	0	2.48%	2.19%
0+800.00	0+820.00	5.85	5.51	0	0	3.35%	2.20%
0+820.00	0+840.00	5.73	5.47	0	0	3.35%	2.20%
0+840.00	0+860.00	5.65	5.45	0	0	3.35%	2.20%
0+860.00	0+880.00	6.18	6.11	0	0	3.04%	2.45%
0+880.00	0+900.00	6.19	6.12	0	0	3.04%	2.45%
0+900.00	0+920.00	6.21	6.13	0	0	1.77%	1.80%
0+920.00	0+940.00	6.23	6.13	0	0	1.77%	1.80%
0+940.00	0+960.00	6.24	6.09	0	0	2.72%	2.77%
0+960.00	0+980.00	6.18	6.04	0	0	2.72%	2.77%
0+980.00	1+000.00	6.13	5.99	0	0	2.02%	2.54%
1+000.00	1+020.00	6.13	5.99	0	0	2.12%	2.85%
1+020.00	1+040.00	6.30	6.05	0	0	3.73%	2.54%
1+040.00	1+060.00	6.70	6.04	0	0	3.03%	3.10%
1+060.00	1+080.00	6.19	6.03	0	0	2.57%	3.75%
1+080.00	1+100.00	6.16	6.01	0	0	2.57%	3.75%
1+100.00	1+120.00	6.18	6.00	0	0	2.57%	3.75%
1+120.00	1+140.00	6.06	6.06	0	0	2.57%	3.75%
1+140.00	1+160.00	6.10	6.06	0	0	2.57%	3.75%
1+160.00	1+180.00	6.18	6.05	0	0	2.57%	3.75%
1+180.00	1+200.00	6.21	6.05	0	0	2.57%	3.75%
1+200.00	1+220.00	6.24	6.05	0	0	3.31%	2.75%
1+220.00	1+240.00	6.26	6.06	0	0	3.31%	2.75%
1+240.00	1+260.00	6.29	6.06	0	0	3.27%	2.53%
1+260.00	1+278.92	6.53	6.06	0	0	4.06%	3.13%
1+278.92	1+280.00	6.83	6.02	0	0	4.06%	3.13%
1+280.00	1+300.00	7.06	6.00	0	0	3.88%	3.53%
1+300.00	1+320.00	6.17	6.44	0	0	2.90%	2.49%
1+320.00	1+326.42	6.20	6.20	0	0	2.90%	2.49%
1+326.42	1+340.00	6.20	6.20	0	0	2.90%	2.49%
1+340.00	1+360.00	6.20	6.20	0	0	3.07%	2.47%
1+360.00	1+373.92	6.20	6.20	0	0	3.07%	2.47%

1+373.92	1+380.00	5.45	6.50	0	0	3.05%	2.27%
1+380.00	1+400.00	5.45	6.19	0	0	3.05%	2.27%
1+400.00	1+420.00	5.41	5.70	0	0	3.05%	2.27%
1+420.00	1+440.00	5.51	5.51	0	0	3.05%	2.27%
1+440.00	1+460.00	5.48	5.77	0	0	3.05%	2.27%
1+460.00	1+480.00	5.45	6.03	0	0	3.07%	1.70%
1+480.00	1+500.00	5.70	6.21	0	0	3.07%	1.70%
1+500.00	1+520.00	5.66	5.80	0	0	3.07%	1.70%
1+520.00	1+540.00	5.62	5.28	0	0	3.07%	1.70%
1+540.00	1+560.00	5.58	5.32	0	0	3.07%	2.54%
1+560.00	1+580.00	5.54	5.35	0	0	3.07%	2.54%
1+580.00	1+600.00	5.49	5.39	0	0	1.40%	1.79%
1+600.00	1+620.00	5.47	5.38	0	0	1.40%	1.79%
1+620.00	1+640.00	5.45	5.91	0	0	1.40%	1.79%
1+640.00	1+660.00	5.50	5.74	0	0	1.40%	1.79%
1+660.00	1+680.00	5.59	5.48	0	0	1.40%	1.79%
1+680.00	1+700.00	6.26	5.36	0	0	2.38%	2.09%
1+700.00	1+720.00	6.06	5.33	0	0	3.25%	2.10%
1+720.00	1+740.00	5.72	5.35	0	0	3.25%	2.10%
1+740.00	1+760.00	5.54	5.37	0	0	2.94%	2.35%
1+760.00	1+780.00	6.25	5.62	0	0	2.94%	2.35%
1+780.00	1+800.00	6.14	5.58	0	0	1.97%	2.00%
1+800.00	1+820.00	6.03	5.54	0	0	1.97%	2.00%
1+820.00	1+840.00	5.91	5.50	0	0	2.92%	2.97%
1+840.00	1+860.00	5.80	5.46	0	0	2.92%	2.97%
1+860.00	1+880.00	5.68	5.42	0	0	2.22%	2.74%
1+880.00	1+900.00	5.60	5.40	0	0	2.32%	3.05%
1+900.00	1+920.00	6.13	6.06	0	0	3.93%	2.74%
1+920.00	1+940.00	6.14	6.07	0	0	3.23%	3.30%
1+940.00	1+960.00	6.16	6.08	0	0	2.77%	3.95%
1+960.00	1+980.00	6.18	6.08	0	0	2.77%	3.95%
1+980.00	2+000.00	6.19	6.04	0	0	2.77%	3.95%
2+000.00	2+020.00	6.13	5.99	0	0	2.77%	3.95%
2+020.00	2+040.00	6.08	5.94	0	0	2.77%	3.95%
2+040.00	2+060.00	6.08	5.94	0	0	2.77%	3.95%
2+060.00	2+080.00	6.25	6.00	0	0	2.77%	3.95%
2+080.00	2+100.00	6.65	5.99	0	0	3.51%	2.95%
2+100.00	2+120.00	6.14	5.98	0	0	3.51%	2.95%
2+120.00	2+140.00	6.11	5.96	0	0	3.47%	2.73%
2+140.00	2+160.00	6.13	5.95	0	0	4.26%	3.33%
2+160.00	2+180.00	6.01	6.01	0	0	4.26%	3.33%
2+180.00	2+200.00	6.05	6.01	0	0	4.08%	3.73%
2+200.00	2+220.00	6.13	6.00	0	0	3.10%	2.69%
2+220.00	2+240.00	6.16	6.00	0	0	3.10%	2.69%
2+240.00	2+260.00	6.19	6.00	0	0	3.10%	2.69%

2+260.00	2+267.13	6.21	6.01	0	0	3.27%	2.67%
2+267.13	2+280.00	6.24	6.01	0	0	3.27%	2.67%
2+280.00	2+300.00	6.48	6.01	0	0	3.25%	2.47%
2+300.00	2+304.63	6.78	5.97	0	0	3.25%	2.47%
2+304.63	2+320.00	7.01	5.95	0	0	3.25%	2.47%
2+320.00	2+340.00	6.12	6.39	0	0	3.25%	2.47%
2+340.00	2+342.13	6.15	6.15	0	0	3.25%	2.47%
2+342.13	2+360.00	6.15	6.15	0	0	3.27%	1.90%
2+360.00	2+380.00	6.15	6.15	0	0	3.27%	1.90%
2+380.00	2+400.00	5.40	6.45	0	0	3.27%	1.90%
2+400.00	2+420.00	5.40	6.14	0	0	3.27%	1.90%
2+420.00	2+440.00	5.36	5.65	0	0	3.27%	2.74%
2+440.00	2+460.00	5.46	5.46	0	0	3.27%	2.74%
2+460.00	2+480.00	5.43	5.72	0	0	2.60%	1.99%
2+480.00	2+500.00	5.40	5.98	0	0	3.60%	1.99%
2+500.00	2+520.00	5.65	6.16	0	0	1.80%	1.99%
2+520.00	2+540.00	5.61	5.75	0	0	2.00%	1.99%
2+540.00	2+560.00	5.57	5.23	0	0	3.00%	1.99%
2+560.00	2+580.00	5.53	5.27	0	0	2.00%	2.29%
2+580.00	2+600.00	5.49	5.30	0	0	3.05%	2.30%
2+600.00	2+620.00	5.44	5.34	0	0	3.15%	2.30%
2+620.00	2+640.00	5.42	5.33	0	0	2.45%	2.30%
2+640.00	2+660.00	5.40	5.86	0	0	2.14%	2.55%
2+660.00	2+667.88	5.45	5.69	0	0	2.14%	2.55%

TABLA Nº 33. Inventario de las características existentes en el perfil

PROGRESIVA	СОТА	PENDIENTE (%)	UBICACIÓN
0+000.00	2,839.754m	-9.22%	PVI
0+020.00	2,837.911m	-9.22%	1 41
0+040.00	2,836.067m	-9.22%	
0+060.00	2,834.224m	-9.22%	
0+080.00	2,832.381m	-9.22%	
0+100.00	2,830.537m	-9.22%	
0+120.00	2,828.694m	-9.22%	
0+140.00	2,826.850m	-9.22%	
0+160.00	2,825.007m	-9.22%	
0+180.00	2,823.164m	-9.22%	
0+200.00	2,821.320m	-9.22%	
0+220.00	2,819.477m	-9.22%	
0+240.00	2,817.633m	-9.22%	
0+260.00	2,815.790m	-9.22%	
0+280.00	2,813.947m	-9.22%	
0+300.00	2,812.103m	-9.22%	
0+320.00	2,810.260m	-9.22%	
0+340.00	2,808.416m	-9.22%	
0+360.00	2,806.573m	-9.22%	
0+380.00	2,804.730m	-9.22%	
0+400.00	2,802.886m	-9.22%	
0+420.00	2,801.043m	-9.22%	
0+440.00	2,799.199m	-9.22%	
0+460.00	2,797.356m	-9.22%	
0+480.00	2,795.513m	-9.22%	
0+481.86	2,795.341m	-9.22%	PVC
0+500.00	2,793.737m	-8.84%	
0+519.36	2,792.175m	-8.07%	Cóncava
0+520.00	2,792.126m	-7.66%	
0+540.00	2,790.680m	-7.23%	
0+556.86	2,789.589m	-6.47%	PVT
0+560.00	2,789.397m	-6.12%	
0+580.00	2,788.173m	-6.12%	
0+600.00	2,786.949m	-6.12%	
0+620.00	2,785.725m	-6.12%	
0+640.00	2,784.500m	-6.12%	
0+660.00	2,783.276m	-6.12%	
0+680.00	2,782.052m	-6.12%	
0+700.00	2,780.828m	-6.12%	
0+720.00	2,779.604m	-6.12%	
0+740.00	2,778.379m	-6.12%	
0+760.00	2,777.155m	-6.12%	

0+780.00	2,775.931m	-6.12%	
0+800.00	2,774.707m	-6.12%	
0+820.00	2,773.483m	-6.12%	
0+840.00	2,772.259m	-6.12%	
0+860.00	2,771.034m	-6.12%	
0+880.00	2,769.810m	-6.12%	
0+900.00	2,768.586m	-6.12%	
0+920.00	2,767.362m	-6.12%	
0+940.00	2,766.138m	-6.12%	
0+960.00	2,764.913m	-6.12%	
0+980.00	2,763.689m	-6.12%	
1+000.00	2,762.465m	-6.12%	
1+020.00	2,761.241m	-6.12%	
1+040.00	2,760.017m	-6.12%	
1+060.00	2,758.792m	-6.12%	
1+080.00	2,757.568m	-6.12%	
1+100.00	2,756.344m	-6.12%	
1+120.00	2,755.120m	-6.12%	
1+140.00	2,753.896m	-6.12%	
1+160.00	2,752.672m	-6.12%	
1+180.00	2,751.447m	-6.12%	
1+200.00	2,750.223m	-6.12%	
1+220.00	2,748.999m	-6.12%	
1+240.00	2,747.775m	-6.12%	
1+260.00	2,746.551m	-6.12%	
1+278.92	2,745.393m	-6.12%	PVC
1+280.00	2,745.327m	-6.11%	
1+300.00	2,744.158m	-5.84%	
1+320.00	2,743.088m	-5.35%	
1+326.42	2,742.766m	-5.02%	Convexa
1+340.00	2,742.119m	-4.77%	
1+360.00	2,741.249m	-4.35%	
1+373.92	2,740.703m	-3.93%	PVT
1+380.00	2,740.475m	-3.75%	
1+400.00	2,739.725m	-3.75%	
1+420.00	2,738.974m	-3.75%	
1+440.00	2,738.224m	-3.75%	
1+460.00	2,737.474m	-3.75%	
1+480.00	2,736.724m	-3.75%	
1+500.00	2,735.973m	-3.75%	
1+520.00	2,735.223m	-3.75%	
1+540.00	2,734.473m	-3.75%	
1+560.00	2,733.722m	-3.75%	
1+580.00	2,732.972m	-3.75%	
1+600.00	2,732.222m	-3.75%	

1+620.00	2,731.471m	-3.75%	1
1+640.00	2,730.721m	-3.75%	
1+660.00	2,729.971m	-3.75%	
1+680.00	2,729.221m	-3.75%	
1+700.00	2,728.470m	-3.75%	
1+720.00	2,727.720m	-3.75%	
1+740.00	2,726.970m	-3.75%	
1+760.00	2,726.219m	-3.75%	
1+780.00	2,725.469m	-3.75%	
1+789.66	2,725.107m	-3.75%	PVI
1+800.00	2,724.917m	-1.83%	
1+820.00	2,724.551m	-1.83%	
1+840.00	2,724.185m	-1.83%	
1+860.00	2,723.818m	-1.83%	
1+880.00	2,723.452m	-1.83%	
1+900.00	2,723.086m	-1.83%	
1+920.00	2,722.720m	-1.83%	
1+940.00	2,722.353m	-1.83%	
1+960.00	2,721.987m	-1.83%	
1+980.00	2,721.621m	-1.83%	
2+000.00	2,721.254m	-1.83%	
2+020.00	2,720.888m	-1.83%	
2+040.00	2,720.522m	-1.83%	
2+060.00	2,720.155m	-1.83%	
2+080.00	2,719.789m	-1.83%	
2+100.00	2,719.423m	-1.83%	
2+120.00	2,719.057m	-1.83%	
2+140.00	2,718.690m	-1.83%	
2+160.00	2,718.324m	-1.83%	
2+180.00	2,717.958m	-1.83%	
2+200.00	2,717.591m	-1.83%	
2+220.00	2,717.225m	-1.83%	
2+240.00	2,716.859m	-1.83%	
2+260.00	2,716.492m	-1.83%	
2+267.13	2,716.362m	-1.83%	PVC
2+280.00	2,716.115m	-1.92%	
2+300.00	2,715.689m	-2.13%	
2+304.63	2,715.583m	-2.29%	Convexa
2+320.00	2,715.210m	-2.42%	
2+340.00	2,714.679m	-2.66%	
2+342.13	2,714.620m	-2.80%	PVT
2+360.00	2,714.117m	-2.81%	
2+380.00	2,713.554m	-2.81%	
2+400.00	2,712.991m	-2.81%	
2+420.00	2,712.428m	-2.81%	

2+440.00	2,711.865m	-2.81%	
2+460.00	2,711.302m	-2.81%	
2+480.00	2,710.739m	-2.81%	
2+500.00	2,710.176m	-2.81%	
2+520.00	2,709.613m	-2.81%	
2+540.00	2,709.050m	-2.81%	
2+560.00	2,708.488m	-2.81%	
2+580.00	2,707.925m	-2.81%	
2+600.00	2,707.362m	-2.81%	
2+620.00	2,706.799m	-2.81%	
2+640.00	2,706.236m	-2.81%	
2+660.00	2,705.673m	-2.81%	
2+667.88	2,705.451m	-2.81%	PVI

COMPARACION DE LAS CARACTERÍSTICAS GEOMÉTRICAS Y SUS RESPECTIVOS PARÁMETROS DE DISEÑO

Para la verificación de su cumplimiento, se desarrollaron las tablas que se presentan a continuación, donde se contrasta las características existentes con los parámetros de diseño según el Manual de Diseño Geométrico de Vías Urbanas – 2005.

TABLA Nº34. Contrastacion de parámetros (ancho de calzada).

ANCHO DE CALZADA									
BBOOL	DECIVA	VALOR DE DISEÑO (m)	VALOR EX	(ICTENTE (m)		CUMPLIMI	ENTO		
PRUG	RESIVA		VALUR E	VALOR EXISTENTE (m)		ASCENSO	DES	DESCENSO	
DE	Α		ASCENSO	DESCENSO	SI	NO	SI	NO	
0+000.00	0+020.00	7.2	6.10	6.10		Х		Х	
0+020.00	0+040.00	7.2	6.10	6.10		Х		Х	
0+040.00	0+060.00	7.2	6.10	6.10		Х		Х	
0+060.00	0+080.00	7.2	6.01	6.01		Х		Х	
0+080.00	0+100.00	7.2	6.05	6.01		Х		Х	
0+100.00	0+120.00	7.2	6.13	6.00		Х		Х	
0+120.00	0+140.00	7.2	6.16	6.00		Х		Х	
0+140.00	0+160.00	7.2	6.19	6.00		Х		Х	
0+160.00	0+180.00	7.2	6.21	6.01		Х		Х	
0+180.00	0+200.00	7.2	6.24	6.01		Х		Х	
0+200.00	0+220.00	7.2	6.48	6.01		Х		Х	
0+220.00	0+240.00	7.2	6.78	5.97		Х		Х	
0+240.00	0+260.00	7.2	7.01	5.95		X		Х	

0+260.00	0+280.00	7.2	6.12	6.39	X	X
0+280.00	0+300.00	7.2	6.15	6.15	X	Х
0+300.00	0+320.00	7.2	6.15	6.15	X	Х
0+320.00	0+340.00	7.2	6.15	6.15	X	X
0+340.00	0+360.00	7.2	5.88	5.34	X	X
0+360.00	0+380.00	7.2	5.72	5.35	X	Х
0+380.00	0+400.00	7.2	5.54	5.37	X	Х
0+400.00	0+420.00	7.2	6.25	5.62	X	Х
0+420.00	0+440.00	7.2	6.14	5.58	X	X
0+440.00	0+460.00	7.2	6.03	5.54	X	X
0+460.00	0+480.00	7.2	5.91	5.50	X	Х
0+480.00	0+495.82	7.2	5.80	5.46	X	Х
0+495.82	0+500.00	7.2	5.68	5.42	X	Х
0+500.00	0+520.00	7.2	5.60	5.40	X	Х
0+520.00	0+533.32	7.2	6.13	6.06	X	Х
0+533.32	0+540.00	7.2	6.14	6.07	X	Х
0+540.00	0+560.00	7.2	6.16	6.08	X	Х
0+560.00	0+570.82	7.2	6.18	6.08	X	Х
0+570.82	0+580.00	7.2	6.19	6.04	X	X
0+580.00	0+600.00	7.2	6.13	5.99	X	X
0+600.00	0+620.00	7.2	6.08	5.94	X	X
0+620.00	0+640.00	7.2	6.08	5.94	X	X
0+640.00	0+660.00	7.2	6.11	5.38	X	X
0+660.00	0+680.00	7.2	5.93	5.39	X	X
0+680.00	0+700.00	7.2	5.77	5.40	X	Х
0+700.00	0+720.00	7.2	5.59	5.42	X	Х
0+720.00	0+740.00	7.2	6.30	5.67	X	Х
0+740.00	0+760.00	7.2	6.19	5.63	X	Х
0+760.00	0+780.00	7.2	6.08	5.59	X	Х
0+780.00	0+800.00	7.2	5.96	5.55	Х	Х
0+800.00	0+820.00	7.2	5.85	5.51	Х	Х
0+820.00	0+840.00	7.2	5.73	5.47	Х	Х
0+840.00	0+860.00	7.2	5.65	5.45	Х	Х
0+860.00	0+880.00	7.2	6.18	6.11	X	Х
0+880.00	0+900.00	7.2	6.19	6.12	Х	Х
0+900.00	0+920.00	7.2	6.21	6.13	Х	Х
0+920.00	0+940.00	7.2	6.23	6.13	Х	Х
0+940.00	0+960.00	7.2	6.24	6.09	Х	Х
0+960.00	0+980.00	7.2	6.18	6.04	Х	Х
0+980.00	1+000.00	7.2	6.13	5.99	X	X
1+000.00	1+020.00	7.2	6.13	5.99	X	X
1+020.00	1+040.00	7.2	6.30	6.05	X	X
1+040.00	1+060.00	7.2	6.70	6.04	X	X
1+060.00	1+080.00	7.2	6.19	6.03	X	Х

1+080.00	1+100.00	7.2	6.16	6.01	X	X
1+100.00	1+120.00	7.2	6.18	6.00	X	X
1+120.00	1+140.00	7.2	6.06	6.06	X	Х
1+140.00	1+160.00	7.2	6.10	6.06	X	Х
1+160.00	1+180.00	7.2	6.18	6.05	X	Х
1+180.00	1+200.00	7.2	6.21	6.05	X	Х
1+200.00	1+220.00	7.2	6.24	6.05	X	Х
1+220.00	1+240.00	7.2	6.26	6.06	X	Х
1+240.00	1+260.00	7.2	6.29	6.06	X	Х
1+260.00	1+278.92	7.2	6.53	6.06	X	Х
1+278.92	1+280.00	7.2	6.83	6.02	X	Х
1+280.00	1+300.00	7.2	7.06	6.00	X	X
1+300.00	1+320.00	7.2	6.17	6.44	X	X
1+320.00	1+326.42	7.2	6.20	6.20	X	Х
1+326.42	1+340.00	7.2	6.20	6.20	X	X
1+340.00	1+360.00	7.2	6.20	6.20	X	Х
1+360.00	1+373.92	7.2	6.20	6.20	X	Х
1+373.92	1+380.00	7.2	5.45	6.50	X	X
1+380.00	1+400.00	7.2	5.45	6.19	X	Х
1+400.00	1+420.00	7.2	5.41	5.70	X	Х
1+420.00	1+440.00	7.2	5.51	5.51	X	Х
1+440.00	1+460.00	7.2	5.48	5.77	X	Х
1+460.00	1+480.00	7.2	5.45	6.03	X	Х
1+480.00	1+500.00	7.2	5.70	6.21	X	Х
1+500.00	1+520.00	7.2	5.66	5.80	X	X
1+520.00	1+540.00	7.2	5.62	5.28	X	X
1+540.00	1+560.00	7.2	5.58	5.32	X	X
1+560.00	1+580.00	7.2	5.54	5.35	X	X
1+580.00	1+600.00	7.2	5.49	5.39	X	X
1+600.00	1+620.00	7.2	5.47	5.38	X	X
1+620.00	1+640.00	7.2	5.45	5.91	X	X
1+640.00	1+660.00	7.2	5.50	5.74	X	X
1+660.00	1+680.00	7.2	5.59	5.48	X	X
1+680.00	1+700.00	7.2	6.26	5.36	X	X
1+700.00	1+720.00	7.2	6.06	5.33	X	X
1+720.00	1+740.00	7.2	5.72	5.35	X	X
1+740.00		7.2 7.2	5.54	5.37	X	X
1+760.00	1+780.00	7.2	6.25	5.62	X	X
1+780.00		7.2	6.14	5.58	X	X
1+800.00	1+820.00 1+840.00	7.2	6.03	5.54	X	X
1+820.00	1+840.00	7.2	5.91	5.50	X	X
1+840.00	1+880.00	7.2	5.80	5.46	X	X
1+860.00	1+900.00	7.2	5.68	5.42	X	X
1+880.00	17300.00	1.2	5.60	5.40	^	^

		TOTAL			146	146
			6.21	5.31	X	X
2+660.00	2+667.88	7.2	5.45	5.69	X	X
2+640.00	2+660.00	7.2	5.40	5.86	X	X
2+620.00	2+640.00	7.2	5.42	5.33	X	X
2+600.00	2+620.00	7.2	5.44	5.34	X	X
2+580.00	2+600.00	7.2	5.49	5.30	X	X
2+560.00	2+580.00	7.2	5.53	5.27	X	X
2+540.00	2+560.00	7.2	5.57	5.23	X	X
2+520.00	2+540.00	7.2	5.61	5.75	X	X
2+500.00	2+520.00	7.2	5.65	6.16	X	X
2+480.00	2+500.00	7.2	5.40	5.98	X	X
2+460.00	2+480.00	7.2	5.43	5.72	X	X
2+440.00	2+460.00	7.2	5.46	5.46	X	X
2+420.00	2+440.00	7.2	5.36	5.65	X	Х
2+400.00	2+420.00	7.2	5.40	6.14	X	Х
2+380.00	2+400.00	7.2	5.40	6.45	X	X
2+360.00	2+380.00	7.2	6.15	6.15	X	Х
2+342.13	2+360.00	7.2	6.15	6.15	X	X
2+340.00	2+342.13	7.2	6.15	6.15	X	Х
2+320.00	2+340.00	7.2	6.12	6.39	X	Х
2+304.63	2+320.00	7.2	7.01	5.95	X	Х
2+300.00	2+304.63	7.2	6.78	5.97	X	Х
2+280.00	2+300.00	7.2	6.48	6.01	X	Х
2+267.13	2+280.00	7.2	6.24	6.01	X	Х
2+260.00	2+267.13	7.2	6.21	6.01	X	Х
2+240.00	2+260.00	7.2	6.19	6.00	X	X
2+220.00	2+240.00	7.2	6.16	6.00	X	X
2+200.00	2+220.00	7.2	6.13	6.00	X	X
2+180.00	2+200.00	7.2	6.05	6.01	X	X
2+160.00	2+180.00	7.2	6.01	6.01	X	X
2+140.00	2+160.00	7.2	6.13	5.95	X	X
2+120.00	2+140.00	7.2	6.11	5.96	X	X
2+100.00	2+120.00	7.2	6.14	5.98	X	Х
2+080.00	2+100.00	7.2	6.65	5.99	X	X
2+060.00	2+080.00	7.2	6.25	6.00	X	X
2+040.00	2+060.00	7.2	6.08	5.94	X	X
2+020.00	2+040.00	7.2	6.08	5.94	X	X
2+000.00	2+020.00	7.2	6.13	5.99	X	X
1+980.00	2+000.00	7.2	6.19	6.04	X	X
1+960.00			6.18	6.08		
1+940.00	1+960.00 1+980.00	7.2 7.2	6.16	6.08	X	X
1+920.00			6.14	6.07	X	X
1+900.00	1+940.00	7.2	6.13	6.06	X	X
4 000 00	1+920.00	7.2		605	X	X

TABLA N^0 35. Contrastación de parámetros (ancho de berma).

			ANCHO DE BERMA					
PROGRESI	VA	VALOR	VALOR EXISTENTE		CUI	MPLIMI	ENTO	
		DE DISEÑO (m) VALOR DE DISEÑO (m)	(m) VALOR EXISTENTE (m)		ASC	CENSO	DESC	ENSO
DE	A	VALOR DE DISEÑO (m)	ASCENSO	DESCENSO	SI	NO	SI	NO
0+000.00	0+020.00	3	0	0		Х		Х
0+020.00	0+040.00	3	0	0		Х		Х
0+040.00	0+060.00	3	0	0		Х		Х
0+060.00	0+080.00	3	0	0		Х		Х
0+080.00	0+100.00	3	0	0		Х		Х
0+100.00	0+120.00	3	0	0		Х		Х
0+120.00	0+140.00	3	0	0		Х		Х
0+140.00	0+160.00	3	0	0		Х		Х
0+160.00	0+180.00	3	0	0		Х		Х
0+180.00	0+200.00	3	0	0		Х		Х
0+200.00	0+220.00	3	0	0		Х		Х
0+220.00	0+240.00	3	0	0		Х		Х
0+240.00	0+260.00	3	0	0		Х		Х
0+260.00	0+280.00	3	0	0		Х		Х
0+280.00	0+300.00	3	0	0		Х		Х
0+300.00	0+320.00	3	0	0		Х		Х
0+320.00	0+340.00	3	0	0		Х		Х
0+340.00	0+360.00	3	0	0		Х		Х
0+360.00	0+380.00	3	0	0		Х		Х
0+380.00	0+400.00	3	0	0		Х		Х
0+400.00	0+420.00	3	0	0		Х		Х
0+420.00	0+440.00	3	0	0		Х		Х
0+440.00	0+460.00	3	0	0		Х		Х
0+460.00	0+480.00	3	0	0		Х		Х
0+480.00	0+495.82	3	0	0		Х		Х
0+495.82	0+500.00	3	0	0		Х		Х
0+500.00	0+520.00	3	0	0		Х		Х
0+520.00	0+533.32	3	0	0		Х		Х
0+533.32	0+540.00	3	0	0		Х		Х
0+540.00	0+560.00	3	0	0		Х		Х
0+560.00	0+570.82	3	0	0		X		Х
0+570.82	0+580.00	3	0	0		Х		Х
0+570.82	0+600.00	3	0	0		Х		Х
0+600.00	0+620.00	3	0	0		Х		Х
0+620.00	0+640.00	3	0	0		X		Х
0+640.00	0+660.00	3	0	0		X		X
0+660.00	0+680.00	3	0	0		X		X
0+680.00	0+700.00	3	0	0		X		X

0+700.00	0+720.00	3	0	0	X	X
0+720.00	0+740.00	3	0	0	X	X
0+740.00	0+760.00	3	0	0	X	X
0+760.00	0+780.00	3	0	0	X	X
0+780.00	0+800.00	3	0	0	X	Х
0+800.00	0+820.00	3	0	0	X	Х
0+820.00	0+840.00	3	0	0	X	X
0+840.00	0+860.00	3	0	0	X	X
0+860.00	0+880.00	3	0	0	X	X
0+880.00	0+900.00	3	0	0	X	X
0+900.00	0+920.00	3	0	0	X	X
0+920.00	0+940.00	3	0	0	X	X
0+940.00	0+960.00	3	0	0	X	X
0+960.00	0+980.00	3	0	0	X	X
0+980.00	1+000.00	3	0	0	X	X
1+000.00	1+020.00	3	0	0	X	X
1+020.00	1+040.00	3	0	0	X	X
1+040.00	1+060.00	3	0	0	X	X
1+040.00	1+080.00	3	0	0	X	X
1+080.00	1+100.00	3	0	0	X	X
	1+120.00	3	0	0	X	X
1+100.00	1+140.00	3	0	0	X	X
1+120.00	1+160.00	3	0	0	X	X
1+140.00	1+180.00	3	0	0	X	X
1+160.00	1+200.00	3	0	0	X	X
1+180.00	1+220.00	3	0	0	X	X
1+200.00	1+240.00	3	0	0	X	X
1+220.00	1+260.00	3	0	0	X	X
1+240.00	1+278.92	3	0	0	X	X
1+260.00	1+280.00	3	0	0	X	X
1+278.92	1+300.00	3	0	0	X	X
1+280.00	1+320.00	3	0	0	X	X
1+300.00	1+326.42	3	0	0	X	X
1+320.00	1+340.00	3	0	0	X	X
1+326.42	1+360.00	3	0	0	X	X
1+340.00	1+373.92	3	0	0	X	X
1+360.00	1+380.00	3	0	0	X	X
1+373.92	1+300.00	3	0	0	X	X
1+380.00	1+420.00	3	0	0	X	X
1+400.00	1+440.00	3	0	0	X	X
1+420.00	1+440.00	3	0	0	X	X
1+440.00			0	0	X	X
1+460.00	1+480.00	3			X	X
1+480.00	1+500.00	3	0	0		
1+500.00	1+520.00	3	0	0	X	X
1+520.00	1+540.00	3	0	0	Х	X

1+540.00	1+560.00	3	0	0	X	X
1+560.00	1+580.00	3	0	0	X	Х
1+580.00	1+600.00	3	0	0	X	Х
1+600.00	1+620.00	3	0	0	X	Х
1+620.00	1+640.00	3	0	0	X	X
1+640.00	1+660.00	3	0	0	X	X
1+660.00	1+680.00	3	0	0	X	X
1+680.00	1+720.00	3	0	0	X	X
1+720.00	1+740.00	3	0	0	X	X
1+740.00	1+760.00	3	0	0	X	X
1+760.00	1+780.00	3	0	0	X	Х
1+780.00	1+800.00	3	0	0	X	X
1+800.00	1+820.00	3	0	0	X	X
1+820.00	1+840.00	3	0	0	X	X
1+840.00	1+860.00	3	0	0	X	X
1+860.00	1+880.00	3	0	0	X	X
1+880.00	1+900.00	3	0	0	X	X
1+900.00	1+920.00	3	0	0	X	X
1+920.00	1+940.00	3	0	0	X	X
1+940.00	1+960.00	3	0	0	X	X
1+960.00	1+980.00	3	0	0	X	X
1+980.00	2+000.00	3	0	0	X	X
2+000.00	2+020.00	3	0	0	X	X
2+000.00	2+040.00	3	0	0	X	X
2+040.00	2+060.00	3	0	0	X	X
2+040.00	2+080.00	3	0	0	X	X
2+080.00	2+100.00	3	0	0	X	X
2+080.00	2+120.00	3	0	0	X	X
2+100.00	2+140.00	3	0	0	X	X
2+120.00	2+160.00	3	0	0	X	X
2+140.00	2+180.00	3	0	0	X	X
	2+200.00	3	0	0	X	X
2+180.00 2+200.00	2+220.00	3	0	0	X	X
2+200.00	2+240.00	3	0	0	X	X
	2+260.00	3	0	0	X	X
2+240.00	2+267.13	3	0	0	X	X
2+260.00	2+280.00	3	0	0	X	X
2+267.13	2+300.00	3	0	0	X	X
2+280.00	2+304.63	3	0	0	X	X
2+300.00	2+320.00	3	0	0	X	X
2+304.63	2+340.00	3	0	0	X	X
2+320.00	2+342.13	3	0	0	X	X
2+340.00	2+360.00	3	0	0	X	X
2+342.13	2+380.00	3	0	0	X	X
2+360.00	2+300.00	3	0	0	X	X
2+380.00	27400.00	5	U	U	_ ^	^

	146	146				
2+660.00	2+667.88	3	0	0	X	Х
2+640.00	2+660.00	3	0	0	X	Х
2+620.00	2+640.00	3	0	0	X	Х
2+600.00	2+620.00	3	0	0	X	Х
2+580.00	2+600.00	3	0	0	X	Х
2+560.00	2+580.00	3	0	0	X	Х
2+540.00	2+560.00	3	0	0	X	Х
2+520.00	2+540.00	3	0	0	X	X
2+500.00	2+520.00	3	0	0	X	Х
2+480.00	2+500.00	3	0	0	X	Х
2+460.00	2+480.00	3	0	0	X	Х
2+440.00	2+460.00	3	0	0	X	Х
2+420.00	2+440.00	3	0	0	X	Х
2+400.00	2+420.00	3	0	0	X	X

TABLA Nº36. Contrastación de parámetros (bombeo)

	BOMBEO									
PROGRESIV	A	VALOR DE	VALOR EXI	STENTE (%)	CUMPLIMIENTO					
		DISEÑO (%)			ASCENSO		DESCENSO			
DE	A		ASCENSO	DESCENSO	SI	NO	SI	NO		
0+000.00	0+020.00	4.00%	1.87%	1.90%		Х		Х		
0+020.00	0+040.00	4.00%	1.87%	1.90%		Х		Х		
0+040.00	0+060.00	4.00%	2.82%	2.87%		Х		Х		
0+060.00	0+080.00	4.00%	2.82%	2.87%		Х		Х		
0+080.00	0+100.00	4.00%	2.12%	2.64%		Х		Х		
0+100.00	0+120.00	4.00%	2.22%	2.95%		Х		Х		
0+120.00	0+140.00	4.00%	3.83%	2.64%		Х		Х		
0+140.00	0+160.00	4.00%	3.13%	3.20%		X		Х		
0+160.00	0+180.00	4.00%	2.67%	3.85%		Х		Х		
0+180.00	0+200.00	4.00%	2.67%	3.85%		Х		Х		
0+200.00	0+220.00	4.00%	2.67%	3.85%		X		Х		
0+220.00	0+240.00	4.00%	2.67%	3.85%		Х		Х		
0+240.00	0+260.00	4.00%	2.67%	3.85%		Х		Х		
0+260.00	0+280.00	4.00%	2.67%	3.85%		Х		Х		
0+280.00	0+300.00	4.00%	2.67%	3.85%		Х		Х		
0+300.00	0+320.00	4.00%	3.41%	2.85%		Х		Х		
0+320.00	0+340.00	4.00%	3.41%	2.85%		Х		Х		
0+340.00	0+360.00	4.00%	3.37%	2.63%		Х		Х		
0+360.00	0+380.00	4.00%	4.16%	3.23%		Х		Х		
0+380.00	0+400.00	4.00%	4.16%	3.23%		Х		Х		
0+400.00	0+420.00	4.00%	3.98%	3.63%		Х		Х		
0+420.00	0+440.00	4.00%	3.00%	2.59%		Х		Х		
0+440.00	0+460.00	4.00%	3.00%	2.59%		Х		Х		

0+460.00	0+480.00	4.00%	3.00%	2.59%	X	X
0+480.00	0+495.82	4.00%	3.17%	2.57%	X	Х
0+495.82	0+500.00	4.00%	3.17%	2.57%	X	Х
0+500.00	0+520.00	4.00%	3.15%	2.37%	X	Х
0+520.00	0+533.32	4.00%	3.15%	2.37%	X	Х
0+533.32	0+540.00	4.00%	3.15%	2.37%	X	X
0+540.00	0+560.00	4.00%	3.15%	2.37%	X	X
0+560.00	0+570.82	4.00%	3.15%	2.37%	X	X
0+570.82	0+580.00	4.00%	3.17%	1.80%	X	X
0+580.00	0+600.00	4.00%	3.17%	1.80%	X	X
0+600.00	0+620.00	4.00%	3.17%	1.80%	X	Х
0+620.00	0+640.00	4.00%	3.17%	1.80%	X	Х
0+640.00	0+660.00	4.00%	3.17%	2.64%	X	X
0+660.00	0+680.00	4.00%	3.17%	2.64%	X	X
0+680.00	0+700.00	4.00%	0.50%	1.89%	X	Х
0+700.00	0+720.00	4.00%	0.50%	1.89%	X	X
0+720.00	0+740.00	4.00%	0.50%	1.89%	X	X
0+720.00	0+760.00	4.00%	0.50%	1.89%	X	X
0+740.00	0+780.00	4.00%	0.50%	1.89%	X	X
0+780.00	0+800.00	4.00%	2.48%	2.19%	X	X
0+800.00	0+820.00	4.00%	3.35%	2.20%	X	X
0+820.00	0+840.00	4.00%	3.35%	2.20%	X	X
0+840.00	0+860.00	4.00%	3.35%	2.20%	X	X
0+860.00	0+880.00	4.00%	3.04%	2.45%	X	X
0+880.00	0+900.00	4.00%	3.04%	2.45%	X	X
0+900.00	0+920.00	4.00%	1.77%	1.80%	X	X
0+920.00	0+940.00	4.00%	1.77%	1.80%	X	X
0+940.00	0+960.00	4.00%	2.72%	2.77%	X	Х
0+960.00	0+980.00	4.00%	2.72%	2.77%	X	Х
0+980.00	1+000.00	4.00%	2.02%	2.54%	X	Х
1+000.00	1+020.00	4.00%	2.12%	2.85%	X	Х
1+020.00	1+040.00	4.00%	3.73%	2.54%	X	X
1+040.00	1+060.00	4.00%	3.03%	3.10%	X	Х
1+060.00	1+080.00	4.00%	2.57%	3.75%	X	Х
1+080.00	1+100.00	4.00%	2.57%	3.75%	X	Х
1+100.00	1+120.00	4.00%	2.57%	3.75%	X	Х
1+120.00	1+140.00	4.00%	2.57%	3.75%	X	Х
1+140.00	1+160.00	4.00%	2.57%	3.75%	X	Х
1+160.00	1+180.00	4.00%	2.57%	3.75%	X	Х
1+180.00	1+200.00	4.00%	2.57%	3.75%	X	X
1+200.00	1+220.00	4.00%	3.31%	2.75%	X	X
1+220.00	1+240.00	4.00%	3.31%	2.75%	X	Х
1+240.00	1+260.00	4.00%	3.27%	2.53%	X	Х
1+260.00	1+278.92	4.00%	4.06%	3.13%	X	Х
1+278.92	1+280.00	4.00%	4.06%	3.13%	X	X

1+280.00	1+300.00	4.00%	3.88%	3.53%	X	X
1+300.00	1+320.00	4.00%	2.90%	2.49%	X	X
1+320.00	1+326.42	4.00%	2.90%	2.49%	X	X
1+326.42	1+340.00	4.00%	2.90%	2.49%	X	X
1+340.00	1+360.00	4.00%	3.07%	2.47%	X	X
1+360.00	1+373.92	4.00%	3.07%	2.47%	X	X
1+373.92	1+380.00	4.00%	3.05%	2.27%	X	X
1+380.00	1+400.00	4.00%	3.05%	2.27%	X	X
1+400.00	1+420.00	4.00%	3.05%	2.27%	X	X
1+420.00	1+440.00	4.00%	3.05%	2.27%	X	X
1+440.00	1+460.00	4.00%	3.05%	2.27%	X	X
1+460.00	1+480.00	4.00%	3.07%	1.70%	X	X
1+480.00	1+500.00	4.00%	3.07%	1.70%	X	X
1+500.00	1+520.00	4.00%	3.07%	1.70%	X	X
1+520.00	1+540.00	4.00%	3.07%	1.70%	X	X
1+540.00	1+560.00	4.00%	3.07%	2.54%	X	X
1+560.00	1+580.00	4.00%	3.07%	2.54%	X	X
1+580.00	1+600.00	4.00%	1.40%	1.79%	X	X
1+600.00	1+620.00	4.00%	1.40%	1.79%	X	X
1+620.00	1+640.00	4.00%	1.40%	1.79%	X	X
1+640.00	1+660.00	4.00%	1.40%	1.79%	X	X
1+660.00	1+680.00	4.00%	1.40%	1.79%	X	X
1+680.00	1+720.00	4.00%	2.38%	2.09%	X	Х
1+720.00	1+740.00	4.00%	3.25%	2.10%	X	Х
1+740.00	1+760.00	4.00%	3.25%	2.10%	X	Х
1+760.00	1+780.00	4.00%	2.94%	2.35%	X	Х
1+780.00	1+800.00	4.00%	2.94%	2.35%	X	Х
1+800.00	1+820.00	4.00%	1.97%	2.00%	X	Х
1+820.00	1+840.00	4.00%	1.97%	2.00%	X	Х
1+840.00	1+860.00	4.00%	2.92%	2.97%	X	Х
1+860.00	1+880.00	4.00%	2.92%	2.97%	X	Х
1+880.00	1+900.00	4.00%	2.22%	2.74%	X	Х
1+900.00	1+920.00	4.00%	2.32%	3.05%	X	Х
1+920.00	1+940.00	4.00%	3.93%	2.74%	X	Х
1+940.00	1+960.00	4.00%	3.23%	3.30%	X	X
1+960.00	1+980.00	4.00%	2.77%	3.95%	X	X
1+980.00	2+000.00	4.00%	2.77%	3.95%	X	Х
2+000.00	2+020.00	4.00%	2.77%	3.95%	X	Х
2+020.00	2+040.00	4.00%	2.77%	3.95%	X	Х
2+040.00	2+060.00	4.00%	2.77%	3.95%	X	Х
2+060.00	2+080.00	4.00%	2.77%	3.95%	X	Х
2+080.00	2+100.00	4.00%	2.77%	3.95%	X	Х
2+100.00	2+120.00	4.00%	3.51%	2.95%	X	Х
2+120.00	2+140.00	4.00%	3.51%	2.95%	X	Х
2+140.00	2+160.00	4.00%	3.47%	2.73%	X	Х

			146	146		
2+660.00	2+667.88	4.00%	2.14%	2.55%	X	Х
2+640.00	2+660.00	4.00%	2.45%	2.30%	Х	Х
2+620.00	2+640.00	4.00%	3.15%	2.30%	Х	Х
2+600.00	2+620.00	4.00%	3.05%	2.30%	Х	Х
2+580.00	2+600.00	4.00%	2.00%	2.29%	Х	Х
2+560.00	2+580.00	4.00%	3.00%	1.99%	Х	Х
2+540.00	2+560.00	4.00%	2.00%	1.99%	Х	Х
2+520.00	2+540.00	4.00%	1.80%	1.99%	Х	Х
2+500.00	2+520.00	4.00%	3.60%	1.99%	Х	Х
2+480.00	2+500.00	4.00%	2.60%	1.99%	Х	Х
2+460.00	2+480.00	4.00%	3.27%	2.74%	Х	Х
2+440.00	2+460.00	4.00%	3.27%	2.74%	Х	Х
2+420.00	2+440.00	4.00%	3.27%	1.90%	Х	Х
2+400.00	2+420.00	4.00%	3.27%	1.90%	Х	Х
2+380.00	2+400.00	4.00%	3.27%	1.90%	Х	Х
2+360.00	2+380.00	4.00%	3.27%	1.90%	Х	Х
2+342.13	2+360.00	4.00%	3.25%	2.47%	Х	Х
2+340.00	2+342.13	4.00%	3.25%	2.47%	Х	Х
2+320.00	2+340.00	4.00%	3.25%	2.47%	Х	Х
2+304.63	2+320.00	4.00%	3.25%	2.47%	Х	Х
2+300.00	2+304.63	4.00%	3.25%	2.47%	X	Х
2+280.00	2+300.00	4.00%	3.27%	2.67%	Х	X
2+267.13	2+280.00	4.00%	3.27%	2.67%	Х	Х
2+260.00	2+267.13	4.00%	3.10%	2.69%	X	Х
2+240.00	2+260.00	4.00%	3.10%	2.69%	X	Х
2+220.00	2+240.00	4.00%	3.10%	2.69%	X	Х
2+200.00	2+220.00	4.00%	4.08%	3.73%	X	Х
2+180.00	2+200.00	4.00%	4.26%	3.33%	X	Х
2+160.00	2+180.00	4.00%	4.26%	3.33%	X	X

TABLA Nº 37. Contrastación de parámetros (pendiente máxima)

		PENDI	ENTE		
PROGF	RESIVA	VALOR DE	VALOR	CUMPLI	IMIENTO
DE	Α	DISEÑO (%)	EXISTENTE (%)	SI	NO
0+000.00	0+020.00	±8.00%	-9.22%		X
0+020.00	0+040.00	±8.00%	-9.22%		X
0+040.00	0+060.00	±8.00%	-9.22%		X
0+060.00	0+080.00	±8.00%	-9.22%		X
0+080.00	0+100.00	±8.00%	-9.22%		X
0+100.00	0+120.00	±8.00%	-9.22%		X
0+120.00	0+140.00	±8.00%	-9.22%		Х
0+140.00	0+160.00	±8.00%	-9.22%		X
0+160.00	0+180.00	±8.00%	-9.22%		Х
0+180.00	0+200.00	±8.00%	-9.22%		Х
0+200.00	0+220.00	±8.00%	-9.22%		Х
0+220.00	0+240.00	±8.00%	-9.22%		Х
0+240.00	0+260.00	±8.00%	-9.22%		Х
0+260.00	0+280.00	±8.00%	-9.22%		Х
0+280.00	0+300.00	±8.00%	-9.22%		Х
0+300.00	0+320.00	±8.00%	-9.22%		X
0+320.00	0+340.00	±8.00%	-9.22%		Х
0+340.00	0+360.00	±8.00%	-9.22%		Х
0+360.00	0+380.00	±8.00%	-9.22%		X
0+380.00	0+400.00	±8.00%	-9.22%		Х
0+400.00	0+420.00	±8.00%	-9.22%		Х
0+420.00	0+440.00	±8.00%	-9.22%		Х
0+440.00	0+460.00	±8.00%	-9.22%		Х
0+460.00	0+480.00	±8.00%	-9.22%		Х
0+480.00	0+495.82	±8.00%	-9.22%		Х
0+495.82	0+500.00	±8.00%	-9.22%		Х
0+500.00	0+520.00	±8.00%	-8.84%		Х
0+520.00	0+533.32	±8.00%	-8.07%		X
0+533.32	0+540.00	±8.00%	-7.66%	Х	
0+540.00	0+560.00	±8.00%	-7.23%	Х	
0+560.00	0+570.82	±8.00%	-6.47%	Х	
0+570.82	0+580.00	±8.00%	-6.12%	Х	
0+580.00	0+600.00	±8.00%	-6.12%	Х	
0+600.00	0+620.00	±8.00%	-6.12%	Х	
0+620.00	0+640.00	±8.00%	-6.12%	Х	
0+640.00	0+660.00	±8.00%	-6.12%	Х	
0+660.00	0+680.00	±8.00%	-6.12%	Х	
0+680.00	0+700.00	±8.00%	-6.12%	Х	
0+700.00	0+720.00	±8.00%	-6.12%	Х	

0+720.00	0+740.00	±8.00%	-6.12%	X	
0+740.00	0+760.00	±8.00%	-6.12%	Х	
0+760.00	0+780.00	±8.00%	-6.12%	Х	
0+780.00	0+800.00	±8.00%	-6.12%	X	
0+800.00	0+820.00	±8.00%	-6.12%	X	
0+820.00	0+840.00	±8.00%	-6.12%	X	
0+840.00	0+860.00	±8.00%	-6.12%	X	
0+860.00	0+880.00	±8.00%	-6.12%	X	
0+880.00	0+900.00	±8.00%	-6.12%	X	
0+900.00	0+920.00	±8.00%	-6.12%	X	
0+920.00	0+940.00	±8.00%	-6.12%	X	
0+940.00	0+960.00	±8.00%	-6.12%	X	
0+960.00	0+980.00	±8.00%	-6.12%	X	
0+980.00	1+000.00	±8.00%	-6.12%	X	
1+000.00	1+020.00	±8.00%	-6.12%	X	
1+020.00	1+040.00	±8.00%	-6.12%	X	
1+040.00	1+060.00	±8.00%	-6.12%	X	
1+060.00	1+080.00	±8.00%	-6.12%	X	
1+080.00	1+100.00	±8.00%	-6.12%	X	
1+100.00	1+120.00	±8.00%	-6.12%	X	
1+120.00	1+140.00	±8.00%	-6.12%	X	
1+140.00	1+160.00	±8.00%	-6.12%	X	
1+160.00	1+180.00	±8.00%	-6.12%	X	
1+180.00	1+200.00	±8.00%	-6.12%	X	
1+200.00	1+220.00	±8.00%	-6.12%	Х	
1+220.00	1+240.00	±8.00%	-6.12%	X	
1+240.00	1+260.00	±8.00%	-6.12%	X	
1+260.00	1+278.92	±8.00%	-6.12%	Х	
1+278.92	1+280.00	±8.00%	-6.12%	Х	
1+280.00	1+300.00	±8.00%	-6.11%	X	
1+300.00	1+320.00	±8.00%	-5.84%	X	
1+320.00	1+326.42	±8.00%	-5.35%	X	
1+326.42	1+340.00	±8.00%	-5.02%	X	
1+340.00	1+360.00	±8.00%	-4.77%	Х	
1+360.00	1+373.92	±8.00%	-4.35%	Х	
1+373.92	1+380.00	±8.00%	-3.93%	Х	
1+380.00	1+400.00	±8.00%	-3.75%	Х	
1+400.00	1+420.00	±8.00%	-3.75%	Х	
1+420.00	1+440.00	±8.00%	-3.75%	Х	
1+440.00	1+460.00	±8.00%	-3.75%	Х	
1+460.00	1+480.00	±8.00%	-3.75%	Х	
1+480.00	1+500.00	±8.00%	-3.75%	Х	
1+500.00	1+520.00	±8.00%	-3.75%	Х	
1+520.00	1+540.00	±8.00%	-3.75%	Х	
1+540.00	1+560.00	±8.00%	-3.75%	Х	
1.340.00			3.7370		

1+560.00	1+580.00	±8.00%	-3.75%	X	
1+580.00	1+600.00	±8.00%	-3.75%	X	
1+600.00	1+620.00	±8.00%	-3.75%	X	
1+620.00	1+640.00	±8.00%	-3.75%	X	
1+640.00	1+660.00	±8.00%	-3.75%	X	
1+660.00	1+680.00	±8.00%	-3.75%	X	
1+680.00	1+720.00	±8.00%	-3.75%	X	
1+720.00	1+740.00	±8.00%	-3.75%	X	
1+740.00	1+760.00	±8.00%	-3.75%	X	
1+760.00	1+780.00	±8.00%	-3.75%	X	
1+780.00	1+800.00	±8.00%	-3.75%	X	
1+800.00	1+820.00	±8.00%	-1.83%	X	
1+820.00	1+840.00	±8.00%	-1.83%	Х	
1+840.00	1+860.00	±8.00%	-1.83%	X	
1+860.00	1+880.00	±8.00%	-1.83%	Х	
1+880.00	1+900.00	±8.00%	-1.83%	X	
1+900.00	1+920.00	±8.00%	-1.83%	X	
1+920.00	1+940.00	±8.00%	-1.83%	X	
1+940.00	1+960.00	±8.00%	-1.83%	X	
1+960.00	1+980.00	±8.00%	-1.83%	Х	
1+980.00	2+000.00	±8.00%	-1.83%	X	
2+000.00	2+020.00	±8.00%	-1.83%	X	
2+020.00	2+040.00	±8.00%	-1.83%	X	
2+040.00	2+060.00	±8.00%	-1.83%	X	
2+060.00	2+080.00	±8.00%	-1.83%	Х	
2+080.00	2+100.00	±8.00%	-1.83%	Х	
2+100.00	2+120.00	±8.00%	-1.83%	Х	
2+120.00	2+140.00	±8.00%	-1.83%	Х	
2+140.00	2+160.00	±8.00%	-1.83%	Х	
2+160.00	2+180.00	±8.00%	-1.83%	Х	
2+180.00	2+200.00	±8.00%	-1.83%	Х	
2+200.00	2+220.00	±8.00%	-1.83%	Х	
2+220.00	2+240.00	±8.00%	-1.83%	Х	
2+240.00	2+260.00	±8.00%	-1.83%	X	
2+260.00	2+267.13	±8.00%	-1.83%	X	
2+267.13	2+280.00	±8.00%	-1.83%	X	
2+280.00	2+300.00	±8.00%	-1.92%	Х	
2+300.00	2+304.63	±8.00%	-2.13%	Х	
2+304.63	2+320.00	±8.00%	-2.29%	Х	
2+320.00	2+340.00	±8.00%	-2.42%	Х	
2+340.00	2+342.13	±8.00%	-2.66%	Х	
2+342.13	2+360.00	±8.00%	-2.80%	Х	
2+360.00	2+380.00	±8.00%	-2.81%	Х	
2+380.00	2+400.00	±8.00%	-2.81%	Х	
2+400.00	2+420.00	±8.00%	-2.81%	Х	

2+420.00	2+440.00	±8.00%	-2.81%	X	
2+440.00	2+460.00	±8.00%	-2.81%	Х	
2+460.00	2+480.00	±8.00%	-2.81%	Х	
2+480.00	2+500.00	±8.00%	-2.81%	Х	
2+500.00	2+520.00	±8.00%	-2.81%	Х	
2+520.00	2+540.00	±8.00%	-2.81%	Х	
2+540.00	2+560.00	±8.00%	-2.81%	Х	
2+560.00	2+580.00	±8.00%	-2.81%	Х	
2+580.00	2+600.00	±8.00%	-2.81%	Х	
2+600.00	2+620.00	±8.00%	-2.81%	Х	
2+620.00	2+640.00	±8.00%	-2.81%	Х	
2+640.00	2+660.00	±8.00%	-2.81%	Х	
2+660.00	2+667.88	±8.00%	-2.81%	Х	
	114	28			

De las tablas anteriores se analizan 146 progresivas en sección transversal por cada dirección; teniendo como resultado la cuantificación del contraste por parámetro, presentada en la Tabla N° 38.

TABLA Nº38. Cuantificación del contraste por parámetro.

PARAMETR O	CONTRASTE							
	CUMPLE		NO CUMPLE		Σ CUMPL	Σ NO CUMPL	SI CUMPLE	NO CUMPLE
	ASCENS O	DESCENS O	ASCENS O	DESCENS O	E	E	%	%
ANCHO DE CALZADA	0.00	0.00	146	146	0.00	292	0.00%	100.00%
ANCHOS DE BERMA	0.00	0.00	146	146	0.00	292	0.00%	100.00%
BOMBEO	0	0	146	146	0.00	292	0.00%	100.00%
PENDIENTE	1	17		28	117	28	80.69%	19.31%
TOTAL	1	17	g	004	110	904	10.85%	89.15%

Fuente: Elaboración propia

Cuantificada la contrastación por parámetro, se elaboró la Tabla N° 39, en la que se presenta en forma porcentual respecto a la norma.

TABLA Nº39. Cuantificación genera del contraste.

PARAMETRO	CONTRASTE					
	CUMPLE		NO CUMPLE			
	ASCENSO	DESCENSO	ASCENSO	DESCENSO		
ANCHO DE CALZADA	0	0	135	135		
ANCHOS DE BERMA	0	0	135	135		
вомвео	0	0	93	115		
PENDIENTE	117		28			
TOTAL	117		904			
PORCENTAJE	11.46% 88.54%			.54%		

ANÁLISIS DE LA VÍA ACTUAL

En el estudio visual de la ruta, se inspecciono la infraestructura de la vía, para la determinación de amenaza de accidentalidad por defectos del diseño geométrico, señalización y la topografía de la zona de influencia pueden contribuir en la accidentalidad generando una probabilidad de ocurrencia de un accidente para los usuarios de la vía.

Los factores analizados son:

- ✓ Diseño geométrico: ancho de calzadas y carriles, bermas, cunetas, velocidad del proyecto, características de los alineamientos y accesos a la vía
- ✓ Señalización: horizontal y vertical
- ✓ Elementos peligros a borde de vía
- ✓ Cruces y pasos por poblaciones.
- ✓ Topografía: accidentada
- ✓ Tráfico: Bidireccional en cada calzada
- ✓ Ancho de calzada: 6.00m
- ✓ Ancho de carriles: 3,00m
- ✓ Número de calzada: 2 separadas por un separador central
- ✓ Número de carriles: 2
- ✓ Bermas: no existe
- ✓ Elementos de drenaje: cunetas a borde de la calzada
- ✓ Accesos: 21 accesos a la vía
- ✓ Superficie de rodadura: pavimento rígido en toda la vía, se encuentra en malas condiciones en algunos tramos
- ✓ Velocidad de diseño. Debido a la topografía es variable con tramos de velocidad de 70Km/hora, 60km/hora y 50km/hora

Evaluación general de la vía de acuerdo a lo anterior

Se considera que el tramo presenta puntos peligrosos debido a:

✓ Accesos no controlados: El riesgo de accidente es alto por entrecruzamiento de vehículos, choques laterales y traseros, entre otros.

- ✓ El riesgo de accidentalidad es muy alto, por el alta pendiente (10%) en el primer tramo más aun para los vehículos pesados.
- ✓ Carriles de aceleración y de desaceleración: No se encuentran en los tramos de pendientes altas y en los puntos de acceso aumentando la probabilidad de accidentalidad por ser una vía de alto tráfico.
- ✓ Se presenta variación en los anchos de carril en Av. Héroes del Cenepa donde se pasa del carril interno de 3,0m y el carril externo 3,10 y bajando de 3,05m

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

- ✓ Se determinó que el diseño geométrico de la avenida Héroes del Cenepa incide un 75% en la causalidad de los accidentes de tránsito, que representan 24 accidentes ocurridos en los 7 años de estudio, de los cuales 14 son debido al alta pendiente (TABLA Nº23), además en este periodo se ha presentado un registro total de 32 accidentes de tránsito (TABLA Nº21) con un promedio de 5 accidente por año.
- ✓ Se determinó los puntos críticos de accidentabilidad los cuales se encuentra el tramo III comprendido entre el Jr. Nuevo Cajamarca y la Av. Vía de Evitamiento Sur (TABLA Nº25), el índice de accidentes totales mayor es de 1.80 (TABLA Nº29) correspondiente al tramo II en el año 2012, que representa un valor crítico, y con un valor al índice de accidentes con víctimas de 5.88 (TABLA Nº30) en el año 2015, para la ocurrencia de accidentes, por lo cual el tránsito por esta parte de la vía es peligrosa.
- ✓ Desacuerdo al análisis estadístico de accidentabilidad de la Av. Héroes del Cenepa el tipo de accidente con el mayor número es por colisión lateral con 9 accidentes de tránsito, que representan el 18.75% (TABLA Nº24) y la causa de mayor accidentabilidad es por la elevada pendiente 75% (TABLA Nº23).
- ✓ Al evaluar el riesgo de mayor accidentabilidad en la Av. Héroes del Cenepa, el de mayor riesgo de accidentes severos se encuentra en el tramo II comprendido entre Jr. Carlos Malpica y el Jr. Perea se obtuvo un valor máximo de Severidad de 8.68 que representa un valor crítico (TABLA Nº31).
- ✓ Al realizar dicho análisis se determinó que la vía no brinda los parámetros de diseño básicos que garanticen un adecuado tránsito tanto de personas como de vehículos.

5.2. RECOMENDACIONES

- ✓ Se recomienda plantear una vía alterna para vehículos de transporte pesado.
- ✓ Se sugiere eliminar el tránsito de mototaxis definitivamente.
- ✓ Se sugiere mejorar en los puntos críticos la señalización en la calzada, cunetas, rompe muelles, badenes, realizar controles periódicos de velocidad, sobre todo en tramos donde el cambio de velocidad es brusco parte alta (Tramo I), de tal manera que se pueda asegurar la disminución paulatina de velocidad de los vehículos.
- ✓ Respetar el ancho de vereda (0.80-1.20m) según Normas de Viviendas Urbanas (GH 0.20) Capitulo II. Diseño de Vías, articulo 5.
- ✓ Se recomienda a la autoridad competente plantear planes de orientación en educación vial y concientización a los conductores tanto de transporte público como privado.
- ✓ Se sugiere seguir evaluando las vías respecto a los problemas de accidentabilidad en la ciudad de Cajamarca.

REFERENCIAS BIBLIOGRAFICAS

- 1. Bravo PE. (1993) Diseño de Carreteras Técnicas y Análisis 6Ed, Bogotá Col Carbajal 403p
- 2. Cárdenas Grisales, J. (2002) DISEÑO GEOMÉTRICO DE CARRETERAS 3 Ed Bogotá Col Eco Ediciones 401p
- 3. Céspedes, J. (2001). Carreteras Diseño moderno 1Ed, Cajamarca Pe 690p
- 4. Federación Internacional de Carreteras. (1980) Reunión regional, Buenos Aires, Argentina. 320p.
- 5. Karlaftis, M y Golias, L. (2002). Effects of road geometry and traffic volumes on rural roadway accidents rates. Accident Analysis and Prevention 34 (2002) 357-365p.
- Kraemer, C, Pardillo, M, Rocci, S, Romana, M y Sánchez, V. 2003. Ingeniería de Carreteras. Editorial Mc. Graw Hill. 1° Edición (en español), Volumen I. Madrid, España
- 7. Manual de Diseño Geométrico de Vías Urbanas 2005. Lima, Perú.
- 8. Nicholas J. Garber-Lester A. Hoel. (2005) INGENIERIA DE TRANSITO Y CARRETERAS. 3 Ed. Madrid Es Thompson 1160p
- Oficina de investigaciones y desarrollo tecnológico. Instituto Nacional de Vías, INVIAS. (1998). Manual de Diseño Geométrico para Carreteras. Bogotá, Colombia.
- Oglesby, C y Hewes, L. (1980). Ingeniería de carreteras calles, viaductos y pasos a desnivel. Traducción de la según edición en inglés; Compañía Editorial Continental, S. A. Ciudad de México, México. 2Ed 400p
- 11.Rafael Cal y Mayor-James Cárdenas. (1994). INGENIERIA DE TRANSITO 7 ed México D.F Me Alfa omega 534p
- 12. Reglamento Nacional de Transito.
- 13. Reyes, F. y Fernández, A. (1983). Incidencia de las características geométricas de diseño de las vías rurales en la accidentalidad. Proyecto Final de Graduación para optar por el grado de Ingeniero Civil. Facultad de Ingeniería. Universidad Javeriana. Bogotá, Colombia.
- 14. Secretaria de comunicaciones y transporte. (1991) Manual de Proyecto Geométrico de Carreteras 1Ed, México. 480p.
- 15. Universidad Politécnica de Madrid. (1987) ELEMENTOS DE INGENIERIA DE TRÁFICO, Wright. INGENIERÍA DE CARRETERAS 5Ed Madrid Es 659p.

ANEXO A DATOS DEL LEVANTAMIENTO TOPOGRAFICO EN EXCEL

PUNTO	ESTE (m)	NORTE (m)	COTA (m)	DESCRIPCION
1	774904.027	9204724.05	2844.7038	E1
2	774819.061	9204672.83	2846.3745	PR
3	774846.647	9204676.14	2844.2055	CAS
4	774846.027	0 - 0 1 0 1 0 1 - 1	2844.2055	VE
5	774845.974	9204677.35	2844.1561	CU
6	774843.786	9204680.9	2844.1333	ES
7	774839.865	9204687.05	2844.133	EJE
8	774838.762	9204688.58	2844.1155	CU
9	774838.295	9204689.29	2844.0915	CU
10	774836.843	9204691.11	2837.3268	CAS
11	774897.855	9204714.87	2836.9546	CAS
12	774897.504	9204715.7	2836.9169	VE
13	774897.523	9204715.79	2836.8726	CU
14	774897.195	9204716.21	2836.8045	CU
15	774895.558	9204719.09	2836.7998	EJE
16	774891.324	9204724.99	2836.7998	EJE
17	774890	9204726.52	2836.7854	CU
18	774889.443	9204727.17	2836.7191	CU
19	774889.446	9204727.24	2836.7139	VE
20	774888.831	9204728.13	2835.6255	CAS
21	774909.638	9204733.58	2835.4735	SE
22	774909.302	9204734.04	2834.5046	SE
23	774947.099	9204746.97	2834.4884	CAS
24	774946.436	9204747.87	2834.1235	VE
25	774946.408	9204747.88	2829.9086	CU
26	774946.063	9204748.36	2829.7189	CU
27	774944.257	9204751.15	2829.6377	EJE
28	774940.67	9204757.36	2829.6353	EJE
29	774938.919	9204760.29	2829.6284	CU
30	774938.635	9204760.79	2829.6254	CU
31	774938.608	9204760.86	2829.5656	VE
32	774938.116	9204762.06	2829.5507	VE
33	774946.127	9204755.88	2829.5164	SE
34	774945.713	9204756.43	2829.4108	SE
35	774960.815	9204764.13	2829.2203	SE
36	774960.462	9204764.59	2829.2201	SE
37	774973.443	9204763.17	2827.2458	CU
38	774973.022	9204763.73	2827.2427	CU
39	774971.386	9204766.23	2826.0106	EJE
40	774967.856	9204772.57	2826.0052	EJE
41	774966.059	9204775.4	2826.0046	CU
42	774965.896	9204776.08	2825.9777	CU
43	774965.926	9204776.12	2825.9666	VE

44	774965.368	9204777.09	2825.9188	CAS
45	774976.474	9204772.51	2825.9098	SE
46	774976.474	9204772.51	2825.86	SE
47	774976.474	9204772.51	2825.2608	-
48	775020.706	9204797.06	2825.2608	SE
49	775020.431	9204797.57	2825.2608	SE
50	775027.26	9204800.69	2819.3903	SE
51	775026.941	9204801.24	2819.3892	SE
52	775040.655	9204797.91	2818.5965	CAS
53	775040.034	9204799.34	2818.5954	VE
54	775040.004	9204799.38	2817.6641	CU
55	775039.44	9204800.07	2817.6455	CU
56	775037.806	9204802.83	2817.6155	EJE
57	775033.017	9204808.49	2817.5893	EJE
58	775031.419	9204811.36	2817.5052	CU
59	775031.055	9204811.85	2817.446	CU
60	775031.108	9204811.91	2817.442	VE
61	775030.679	9204812.67	2817.3497	CAS
62	775093.25	9204837.76	2817.2603	SE
63	775092.791	9204838.34	2817.2411	SE
64	775099.963	9204831.76	2811.4795	CAS
65	775099.243	9204832.64	2811.4689	VE
66	775099.178	9204832.68	2811.2614	CU
67	775098.909	9204833.4	2811.2341	CU
68	775097.386	9204836.25	2811.1919	EJE
69	775093.858	9204842.75	2811.1844	EJE
70	775092.271	9204845.65	2811.1723	CU
71	775091.807	9204846.08	2811.1584	CU
72	775091.816	9204846.14	2811.1104	VE
73	775091.461	9204847.12	2811.0744	CAS
74	775106.643	9204843	2811.0403	EJE
75	775106.643	9204843	2811.0013	EJE
76	774976.474	9204772.51	2810.335	EJE
77	775106.643	9204843	2810.335	-
78	774976.534	9204772.55	2810.335	-
79	775116.688	9204851.02	2810.334	SE
80	775116.512	9204851.48	2810.2156	SE
81	775155.357	9204863.57	2809.4116	CAS
82	775154.535	9204864.28	2809.4081	VE
83	775154.408	9204864.34	2806.4801	CU
84	775154.016	9204865.09	2806.4765	CU
85	775152.326	9204867.89	2806.3099	CU
86	775148.622	9204873.99	2806.3065	EJE
87	775146.975	9204876.97	2806.2951	CU
88	775146.467	9204877.51	2806.2898	CU

89	775146.437	9204877.52	2806.2063	VE
90	775146.053	9204878.56	2806.1894	CAS
91	775168.975	9204881.64	2806.09	SE
92	775168.627	9204882.22	2806.0646	SE
93	775184.833	9204891.2	2804.6738	SE
94	775184.661	9204891.61	2804.6614	SE
95	775209.655	9204897.49	2803.1831	VE
96	775209.113	9204898.27	2803.1761	VE
97	775209.016	9204898.29	2801.1506	CU
98	775208.495	9204898.86	2801.147	CU
99	775206.742	9204901.71	2801.126	EJE
100	775203.016	9204907.89	2801.1079	EJE
101	775201.29	9204910.7	2801.1079	CU
102	775200.692	9204911.25	2801.0943	CU
103	775200.68	9204911.29	2801.0943	VE
104	775239.269	9204914.67	2801.0229	CAS
105	775239.269	9204914.67	2800.9675	CAS
106	775206.742	9204901.71	2800.9373	CAS
107	775239.269	9204914.67	2800.8689	-
108	775206.798	9204901.75	2798.2569	-
109	775235.246	9204922.72	2798.2515	SE
110	775234.876	9204923.23	2798.2234	SE
111	775265.604	9204942.14	2798.2234	SE
112	775265.339	9204942.7	2798.2234	SE
113	775264.184	9204930.35	2795.2701	CAS
114	775263.425	9204931.19	2795.2634	VE
115	775263.374	9204931.2	2792.6593	CU
116	775262.773	9204931.69	2792.6241	CU
117	775260.885	9204934.43	2792.5717	EJE
118	775256.463	9204940.11	2792.5675	EJE
119	775254.484	9204942.78	2792.5575	CU
120	775254.195	9204943.52	2792.5545	CU
121	775254.071	9204943.53	2792.5163	VE
122	775253.57	9204944.57	2792.4735	CAS
123	775306.165	9204963.05	2792.4267	SE
124	775305.666	9204963.49	2792.3439	SE
125	775322.097	9204985.49	2788.1941	SE
126	775321.879	9204985.88	2788.1852	SE
127	775328.39	9204979.55	2786.1883	CAS
128	775327.645	9204980.3	2786.1771	VE
129	775327.56	9204980.32	2786.0803	CU
130	775327.169	9204980.99	2786.0737	CU
131	775325.307	9204983.74	2785.9951	EJE
132	775321.004	9204989.57	2785.9685	EJE
133	775319.016	9204992.17	2785.9506	CU

134	775318.576	9204992.84	2785.9435	CU
135	775318.632	9204992.89	2785.9424	VE
136	775318.144	9204993.55	2785.8679	CAS
137	775381.262	9205022.65	2785.8495	SE
138	775381.047	9205023.15	2785.7563	SE
139	775415.347	9205046.4	2780.9256	SE
140	775415.347	9205046.4	2780.9148	SE
141	775381.047	9205023.15	2780.9148	SE
142	775415.347	9205046.4	2780.5429	-
143	775381.019	9205023.13	2778.3672	-
144	775418.482	9205047.47	2778.3672	SE
145	775418.895	9205046.9	2778.3672	SE
146	775447.73	9205054.98	2777.8237	CAS
147	775446.899	9205055.79	2777.8153	VE
148	775446.857	9205055.77	2775.7644	CU
149	775446.224	9205056.32	2775.7641	CU
150	775444.265	9205058.86	2775.7616	EJE
151	775441.468	9205065.89	2775.6683	EJE
152	775439.623	9205068.46	2775.6214	CU
153	775439.171	9205069.13	2775.5967	CU
154	775439.13	9205069.18	2775.5831	VE
155	775438.49	9205070.1	2775.5496	CAS
156	775459.847	9205072.96	2775.5073	SE
157	775459.455	9205073.48	2775.3712	SE
158	775541.163	9205131.56	2774.3437	SE
159	775541.416	9205132.15	2774.3242	SE
160	775554.456	9205138.9	2772.0546	CU
161	775551.133	9205141.04	2771.6636	CAS
162	775551.888	9205140.23	2771.5856	VE
163	775551.857	9205140.08	2771.5513	CU
164	775552.287	9205138.79	2771.4111	CU
165	775541.416	9205132.15	2771.1703	CU
166	775541.163	9205131.56	2771.0629	CU
167	775541.416	9205132.15	2771.0629	-
168	775535.65	9205118.57	2771.0596	-
169	775530.543	9205162.55	2771.0596	CAS
170	775532.23	9205162.83	2771.0596	VE
171	775544.789	9205164.87	2770.9133	VE
172	775545.996	9205165.58	2770.885	CAS
173	775546.802	9205165.93	2770.8117	CAS
174	775539.373	9205137.65	2770.8098	CAS
175	775539.978	9205136.64	2770.7803	VE
176	775539.921	9205136.54	2770.5634	CU
177	775540.169	9205135.75	2770.4848	CU
178	775548.807	9205116.87	2770.4778	ES

179	775519.425	9205110.77	2770.3129	ES
180	775520.45	9205111.54	2770.2966	ES
181	775528.64	9205116.13	2770.2612	ES
182	775530.302	9205116.65	2770.244	ES
183	775560.864	9205120.83	2770.1899	ES
184	775558.717	9205125.5	2770.0897	ES
185	775542.583	9205125.92	2770.0675	SE
186	775542.198	9205126.38	2770.0565	SE
187	775590.697	9205157.71	2769.9378	SE
188	775590.289	9205158.2	2769.9127	SE
189	775585.03	9205144.59	2767.5635	CAS
190	775584.258	9205145.51	2767.561	VE
191	775584.2	9205145.49	2767.5579	CU
192	775583.761	9205146.12	2767.5271	CU
193	775581.902	9205148.83	2767.4518	EJE
194	775579.104	9205155.46	2767.4468	EJE
195	775577.415	9205158.37	2767.3896	CU
196	775576.877	9205158.93	2767.2791	CU
197	775576.38	9205160.03	2767.2444	CAS
198	775613.736	9205171.78	2766.8209	PV
199	775602.19	9205164.8	2766.809	PV
200	775602.19	9205164.8	2765.8969	PV
201	775613.736	9205171.78	2765.8969	PV
202	775602.19	9205164.8	2765.8969	-
203	775613.691	9205171.75	2765.8149	-
204	775606.066	9205157.02	2765.4888	ES
205	775611.273	9205160.39	2764.9416	ES
206	775647.145	9205180.93	2764.9416	CAS
207	775646.948	9205181.03	2764.9248	VE
208	775646.546	9205181.71	2762.4361	CU
209	775644.955	9205184.59	2762.4225	EJE
210	775642.033	9205191.3	2762.4011	EJE
211	775640.379	9205194.09	2762.3914	CU
212	775639.836	9205194.68	2762.359	CU
213	775639.928	9205194.76	2762.3097	VE
214	775639.29	9205195.62	2762.2778	CAS
215	775674.718	9205203.59	2762.1653	SE
216	775674.497	9205204.27	2762.155	SE
217	775685.767	9205200.68	2760.1294	VE
218	775696.896	9205205.98	2760.0694	ES
219	775701.754	9205217.41	2759.6255	SE
220	775701.58	9205217.82	2758.8018	SE
221	775690.339	9205220.52	2758.6828	CU
222	775697.221	9205224.08	2758.2912	CU
223	775721.737	9205217.89	2758.2892	CAS

224	775720.794	9205219.2	2758.0153	VE
225	775720.731	9205219.17	2757.304	CU
226	775720.21	9205219.81	2757.2842	CU
227	775718.438	9205222.54	2757.2729	EJE
228	775714.855	9205228.83	2757.2452	EJE
229	775712.954	9205231.58	2757.2333	CU
230	775712.47	9205232.28	2757.2302	CU
231	775712.463	9205232.27	2757.2302	VE
232	775711.894	9205233.13	2757.2285	CAS
233	775780.952	9205261.72	2757.1776	CAS
234	775781.223	9205261.16	2757.0975	SE
235	775711.894	9205233.13	2757.0383	SE
236	775711.88	9205233.12	2756.9308	-
237	775793.285	9205257.61	2753.9164	ES
238	775801.456	9205243.74	2753.8022	ES
239	775784.963	9205273.79	2753.7974	ES
240	775768.556	9205302.44	2753.739	ES
241	775812.618	9205252.25	2753.4967	ES
242	775805.271	9205264.32	2753.4405	ES
243	775780.948	9205309.35	2753.303	ES
244	775796.384	9205281.74	2753.1058	ES
245	775806.698	9205278.16	2753.0847	SE
246	775837.215	9205286.08	2752.9903	CAS
247	775836.197	9205286.82	2752.9903	VE
248	775836.116	9205286.82	2752.9903	CU
249	775835.62	9205287.43	2752.8497	CU
250	775833.692	9205290.04	2752.3571	EJE
251	775829.286	9205295.92	2749.9079	EJE
252	775829.669	9205296.21	2749.8939	EJE
253	775827.726	9205298.81	2749.8883	CU
254	775827.397	9205299.48	2749.8776	CU
255	775826.71	9205300.58	2749.855	VE
256	775868.18	9205316.71	2749.8504	SE
257	775867.991	9205317.15	2749.7889	SE
258	775880.538	9205314.87	2749.7507	ES
259	775888.136	9205321.26	2749.6563	ES
260	775865.11	9205326.5	2749.6183	CAS
261	775872.482	9205332.16	2747.6763	VE
262	775891.918	9205335.14	2747.6694	SE
263	775891.732	9205335.52	2747.5112	SE
264	775967.4	9205393.07	2747.4853	SE
265	775920.337	9205345.82	2747.2509	CAS
266	775919.459	9205346.79	2746.9582	VE
267	775919.44	9205346.78	2746.3463	CU
268	775918.852	9205347.32	2746.2931	CU

269	775916.901	9205350.04	2744.6898	cu
270	775923.938	9205359.61	2744.6581	CU
271	775913.487	9205356.49	2744.638	EJE
272	775911.525	9205359.17	2744.5973	CU
273	775911.053	9205359.64	2744.5862	CU
274	775910.959	9205359.79	2744.5806	VE
275	775910.361	9205360.82	2744.5461	CAS
276	775966.28	9205391.82	2744.4825	SE
277	775965.85	9205392.28	2744.3786	SE
278	775971.969	9205406.55	2744.3535	SE
279	775971.969	9205406.55	2744.0831	SE
280	775923.938	9205359.61	2744.074	SE
281	775971.969	9205406.55	2744.074	-
282	775923.973	9205359.65	2744.074	-
283	775979.602	9205391.1	2744.0478	ES
284	775988.653	9205374.72	2741.8232	ES
285	776002.56	9205381.94	2741.7987	ES
286	775991.888	9205398.81	2741.6677	ES
287	775967.597	9205405.78	2741.6551	ES
288	775951.789	9205426	2741.5575	ES
289	775981.235	9205414.8	2741.458	ES
290	775965.269	9205435.16	2741.3974	ES
291	775980.116	9205413.89	2741.3954	ES
292	775980.078	9205413.86	2741.2888	ES
293	775971.969	9205406.55	2741.2786	ES
294	775923.938	9205359.61	2741.1972	ES
295	775971.969	9205406.55	2741.1815	-
296	775923.997	9205359.67	2741.1154	-
297	775992.161	9205412.38	2741.1154	SE
298	775992.531	9205411.94	2741.1154	SE
299	776020.532	9205421.71	2741.1154	CAS
300	776020.089	9205422.26	2741.1154	VE
301	776020.036	9205422.29	2741.1154	CU
302	776019.614	9205422.87	2741.0839	CU
303	776017.65	9205425.61	2740.9349	EJE
304	776012.976	9205435.13	2740.5946	CU
305	776012.638	9205435.6	2740.5927	CU
306	776042.248	9205449.1	2739.2338	SE
307	776041.83	9205449.57	2739.2258	SE
308	776051.345	9205455.3	2739.2145	ES
309	776051.345	9205455.3	2739.1299	ES
310	775971.969	9205406.55	2738.9827	ES
311	776051.345	9205455.3	2738.9457	-
312	775971.96	9205406.55	2738.8142	-
313	776052.289	9205445.31	2737.8774	ES

314	776059.027	9205435.3	2737.873	ES
315	776068.377	9205440.32	2737.7004	ES
316	776061.494	9205451.45	2737.6048	ES
317	776044.906	9205462.04	2737.4874	ES
318	776039.129	9205469.33	2737.4874	ES
319	776046.093	9205475.97	2737.4874	ES
320	776053.183	9205467.23	2737.435	ES
321	776064.627	9205464.74	2737.4216	SE
322	776065	9205464.35	2737.4142	SE
323	776079.724	9205463.75	2737.338	CAS
324	776078.776	9205464.85	2737.3072	VE
325	776078.688	9205464.85	2736.9295	CU
326	776078.202	9205465.51	2736.9014	CU
327	776076.189	9205468.16	2736.8725	EJE
328	776076.203	9205468.13	2736.3049	EJE
329	776072.301	9205474.16	2736.2811	EJE
330	776068.036	9205475.24	2736.2634	CU
331	776067.474	9205475.7	2736.1718	CU
332	776067.456	9205475.77	2736.1295	VE
333	776066.5	9205476.65	2736.1259	CAS
334	776114.84	9205491.31	2736.1024	CAS
335	776113.929	9205492.58	2736.1016	VE
336	776113.716	9205492.46	2736.0108	CU
337	776113.294	9205493.01	2735.9704	CU
338	776111.352	9205495.82	2735.8198	EJE
339	776107.679	9205502.1	2733.2016	EJE
340	776105.849	9205504.74	2733.1688	CU
341	776105.422	9205505.18	2732.9969	CU
342	776105.429	9205505.22	2732.9662	CU
343	776104.698	9205506.02	2732.9563	CU
344	776117.997	9205504.87	2732.9358	CU
345	776118.007	9205504.85	2732.881	CU
346	776144.152	9205523.41	2732.8259	CU
347	776143.798	9205523.88	2732.8107	SE
348	776170.845	9205540.25	2732.7362	SE
349	776170.845	9205540.25	2732.6883	SE
350	776118.007	9205504.85	2732.6708	SE
351	776170.845	9205540.25	2732.5498	-
352	776118.038	9205504.87	2732.5498	-
353	776158.068	9205521.14	2732.5175	ES
354	776166.778	9205510.04	2732.5126	ES
355	776146.355	9205536.37	2731.2977	ES
356	776140.304	9205544.9	2731.2977	ES
357	776172.625	9205531.12	2730.9024	ES
358	776172.186	9205531.76	2730.8406	ES

359	776172.166	9205531.81	2730.7351	CU
360	776171.831	9205532.27	2730.5752	CU
361	776161.237	9205543.61	2730.3657	ES
362	776162.255	9205542.14	2730.299	ES
363	776162.296	9205542.16	2730.2895	CU
364	776162.582	9205541.77	2730.2217	CU
365	776178.751	9205544.99	2730.2124	SE
366	776178.19	9205545.69	2730.0557	SE
367	776194.987	9205566.69	2730.0499	CAS
368	776195.754	9205565.19	2730.0148	VE
369	776195.725	9205565.16	2730.0032	CU
370	776196.027	9205564.64	2729.9721	CU
371	776196.97	9205562.06	2729.9673	CU
372	776202.304	9205551.57	2729.89	CAS
373	776201.815	9205552.26	2729.8438	VE
374	776201.795	9205552.32	2729.8438	CU
375	776201.523	9205552.74	2729.8438	CU
376	776192.647	9205564.2	2729.8438	EJE
377	776206.685	9205572.91	2729.8334	CAS
378	776207.596	9205571.28	2729.8266	VE
379	776207.827	9205570.76	2729.8163	CU
380	776208.702	9205568.12	2729.7948	EJE
381	776216.079	9205559.02	2729.7946	CAS
382	776215.61	9205559.75	2729.6778	VE
383	776215.558	9205559.79	2729.668	CU
384	776215.309	9205560.2	2729.658	CU
385	776212.991	9205563.15	2729.6029	EJE
386	776214.191	9205578.02	2729.5925	ES
387	776225.351	9205584.73	2729.534	CAS
388	776247.74	9205598.85	2729.4775	CU
389	776247.74	9205598.85	2729.385	CU
390	776170.845	9205540.25	2729.368	CU
391	776247.74	9205598.85	2729.3079	-
392	776170.865	9205540.26	2729.1685	-
393	776261.384	9205611.25	2729.1685	CAS
394	776261.461	9205611.33	2729.1685	CAS
395	776270.115	9205616.25	2728.5309	CAS
396	776209.794	9205564.33	2728.2505	SE
397	776209.38	9205565.14	2728.2383	SE
398	776217.244	9205570.54	2728.2354	SE
399	776218.394	9205570.14	2728.1489	SE
400	776258.569	9205599.9	2728.1281	SE
401	776258.991	9205598.97	2728.0833	SE
402	776264.24	9205592.94	2728.0728	ES
403	776263.718	9205593.67	2728.0009	VE

404	776263.68	9205593.68	2727.9752	CU
405	776263.434	9205594.09	2727.897	CU
406	776261.1	9205597.26	2727.6173	EJE
407	776274.241	9205611.23	2727.5829	SE
408	776274.93	9205610.41	2727.5114	SE
409	776272.282	9205598.74	2727.4836	ES
410	776271.696	9205599.55	2727.4506	VE
411	776271.52	9205599.72	2727.4391	CU
412	776278.547	9205589.9	2727.4232	ES
413	776315.133	9205648.46	2727.3772	CAS
414	776315.158	9205648.4	2727.3555	CU
415	776315.202	9205647.6	2727.3519	CU
416	776316.24	9205645.12	2727.3223	EJE
417	776322.482	9205635.86	2727.3223	VE
418	776322.729	9205635.18	2727.2927	CAS
419	776322.296	9205635.73	2727.2891	CU
420	776322.321	9205635.78	2727.2674	CU
421	776321.859	9205636.28	2727.255	CU
422	776319.523	9205639.47	2727.2381	EJE
423	776317.727	9205642.76	2727.2214	SE
424	776317.963	9205641.68	2727.2055	SE
425	776363.59	9205687.4	2727.2038	SE
426	776363.674	9205687.42	2727.194	SE
427	776386.537	9205702.02	2727.161	CAS
428	776386.537	9205702.02	2727.1332	CAS
429	776363.674	9205687.42	2727.0617	CAS
430	776386.537	9205702.02	2727.0273	-
431	776363.595	9205687.34	2726.5994	-
432	776373.36	9205674.38	2726.1137	ES
433	776374.817	9205675.29	2725.4814	ES
434	776358.814	9205693.16	2725.4761	ES
435	776368.173	9205678.15	2725.4761	SE
436	776379.346	9205686.6	2725.4761	SE
437	776390.78	9205686.28	2725.4169	ES
438	776394.904	9205679.01	2725.405	ES
439	776389.808	9205687.59	2725.3367	ES
440	776389.576	9205688.08	2725.2707	ES
441	776388.34	9205690.59	2725.2125	EJE
442	776388.745	9205694.13	2725.1932	SE
443	776388.261	9205695	2725.1919	SE
444	776386.345	9205696.99	2725.1671	EJE
445	776380.625	9205698.95	2725.1562	ES
446	776381.78	9205698.46	2725.1398	ES
447	776381.858	9205698.43	2725.1356	ES
448	776434.018	9205712.8	2725.1342	ES

449	776433.057	9205714.46	2725.1106	ES
450	776431.944	9205716.54	2725.0521	ES
451	776432.419	9205715.65	2725.0417	ES
452	776428.818	9205716.45	2724.9866	EJE
453	776420.961	9205724.78	2724.9766	CAS
454	776421.806	9205723.55	2724.9668	VE
455	776421.837	9205723.57	2724.954	CU
456	776422.307	9205722.86	2724.9296	CU
457	776423.615	9205720.54	2724.8498	EJE
458	776424.055	9205717.63	2724.8283	SE
459	776424.615	9205716.64	2724.818	SE
460	776436.361	9205725.92	2724.8112	SE
461	776437.825	9205725.43	2724.8008	SE
462	776430.545	9205730.06	2724.6725	SE
463	776440.369	9205718.05	2724.6414	SE
464	776439.608	9205719.38	2724.6298	SE
465	776439.479	9205719.61	2724.5889	SE
466	776439.205	9205720.09	2724.4814	SE
467	776438.735	9205723.05	2724.4229	EJE
468	776458.157	9205741.29	2723.8187	EJE
469	776528.865	9205783.84	2723.8187	EJE
470	776528.906	9205783.83	2723.8187	EJE
471	776528.906	9205783.83	2723.8168	EJE
472	776458.157	9205741.29	2723.4549	EJE
473	776528.906	9205783.83	2723.434	-
474	776457.883	9205741.12	2723.3984	-
475	776465.386	9205745.37	2723.133	SE
476	776464.948	9205746.17	2723.0809	SE
477	776467.531	9205746.87	2723.0613	SE
478	776466.933	9205747.82	2722.9645	SE
479	776499.521	9205761.79	2722.8667	CAS
480	776499.213	9205762.05	2722.7665	VE
481	776499.105	9205761.99	2722.7144	CU
482	776498.731	9205762.44	2722.6353	CU
483	776497.061	9205764.6	2722.4117	CU
484	776493.889	9205770.18	2722.38	EJE
485	776492.291	9205772.32	2722.1396	CU
486	776491.73	9205772.64	2722.0845	CU
487	776491.746	9205772.81	2722.0843	VE
488	776490.691	9205774.41	2722.0689	CAS
489	776503.221	9205783.57	2722.0636	ES
490	776504.721	9205782.06	2722.0624	ES
491	776504.731	9205782	2721.9719	ES
492	776505.092	9205781.56	2721.9618	ES
493	776504.605	9205774.38	2721.9607	SE

494	776505.034	9205773.71	2721.9289	SE
495	776510.385	9205788.86	2721.9258	ES
496	776512.24	9205787.59	2721.9136	ES
497	776512.553	9205787.45	2721.9084	ES
498	776513.487	9205787.44	2721.9081	ES
499	776515.238	9205785.34	2721.8704	EJE
500	776520.009	9205784.23	2721.8673	SE
501	776519.464	9205784.82	2721.8478	SE
502	776556.895	9205818.89	2721.8153	CAS
503	776558.478	9205815.9	2721.7103	VE
504	776558.459	9205815.86	2721.7084	CU
505	776556.763	9205813.99	2721.6985	CU
506	776561.619	9205819.26	2721.6535	EJE
507	776564.857	9205818.28	2719.842	SE
508	776565.444	9205817.38	2719.842	SE
509	776567.772	9205818.91	2719.7418	SE
510	776573.175	9205814.02	2719.7285	CAS
511	776572.385	9205814.9	2719.7282	CU
512	776572.025	9205815.28	2719.7112	CU
513	776570.019	9205817.17	2719.6882	EJE
514	776567.488	9205818.89	2719.6854	SE
515	776567.041	9205819.51	2719.6854	SE
516	776601.77	9205844.27	2719.6069	SE
517	776611.542	9205856.57	2719.5726	EJE
518	776610.411	9205860.77	2719.2328	SE
519	776603.31	9205869.77	2719.2013	SE
520	776617.31	9205851.77	2719.1702	SE
521	776619.31	9205851.77	2719.1199	SE
522	776617.31	9205849.77	2718.906	CAS
523	776626.31	9205836.77	2718.8828	CAS
524	776630.31	9205841.77	2718.8457	CAS
525	776636.31	9205842.77	2718.7861	-
526	776627.31	9205845.77	2718.7407	-
527	776628.144	9205856.59	2718.7407	ES
528	776614.155	9205851.44	2718.7407	ES
529	776627.994	9205870.35	2718.7391	ES
530	776620.31	9205871.77	2718.6787	SE
531	776614.31	9205882.77	2718.6568	SE
532	776612.31	9205880.77	2718.6409	ES
533	776630.745	9205867.18	2718.6308	ES
534	776631.192	9205866.56	2718.5989	ES
535	776632.385	9205863.9	2718.5855	ES
536	776634.462	9205862.92	2718.5602	EJE
537	776636.42	9205862.61	2718.2759	SE
538	776636.42	9205862.61	2718.2759	SE

539	776658.373	9205878.57	2718.2531	EJE
540	776658.373	9205878.57	2718.2314	ES
541	776658.373	9205878.57	2718.0782	ES
542	776655.42	9205880.61	2718.0254	ES
543	776651.178	9205885.57	2718.0105	ES
544	776648.42	9205888.61	2717.824	ES
545	776648.42	9205889.61	2717.8186	ES
546	776648.42	9205889.61	2717.5734	ES
547	776676.42	9205905.61	2717.5432	EJE
548	776677.42	9205906.61	2717.5028	CAS
549	776679.42	9205905.61	2717.4902	VE
550	776679.42	9205905.61	2717.487	CU
551	776680.42	9205904.61	2717.4156	CU
552	776682.42	9205897.61	2717.3712	EJE
553	776683.42	9205897.61	2717.3356	SE
554	776686.42	9205895.61	2717.3075	SE
555	776685.42	9205895.61	2717.2824	SE
556	776685.42	9205900.61	2717.1953	SE
557	776683.42	9205904.61	2717.1923	SE
558	776725.128	9205936.96	2717.135	SE
559	776728.42	9205936.61	2716.9952	SE
560	776732.42	9205936.61	2716.9379	SE
561	776734.42	9205934.61	2716.9349	SE
562	776735.42	9205934.61	2716.8478	EJE
563	776735.42	9205931.61	2716.8227	EJE
564	776735.42	9205930.61	2716.7946	EJE
565	776735.42	9205930.61	2716.759	EJE
566	776734.42	9205929.61	2716.7146	EJE
567	776741.42	9205936.61	2716.6432	EJE
568	776754.42	9205925.61	2716.6401	-
569	776757.42	9205928.61	2716.6274	-
570	776749.42	9205938.61	2716.5871	SE
571	776739.42	9205947.61	2716.5568	SE
572	776731.42	9205958.61	2716.3116	SE
573	776730.42	9205961.61	2716.3062	SE
574	776734.42	9205966.61	2716.1197	CAS
575	776739.314	9205969.48	2716.1048	VE
576	776737.42	9205954.61	2716.0521	CU
577	776741.42	9205952.61	2715.8988	CU
578	776742.42	9205952.61	2715.8771	CU
579	776750.42	9205954.61	2715.8543	EJE
580	776751.42	9205956.61	2715.8543	CU
581	776751.42	9205956.61	2715.5712	CU
582	776752.42	9205955.61	2715.5447	VE
583	776754.42	9205948.61	2715.5313	CAS

584	776754.42	9205950.61	2715.4994	ES
585	776756.42	9205948.61	2715.4893	ES
586	776758.42	9205946.61	2715.4734	ES
587	776758.42	9205946.61	2715.4515	ES
588	776757.42	9205946.61	2715.3911	SE
589	776760.42	9205944.61	2715.3895	SE
590	776800.683	9205972.11	2715.3895	ES
591	776799.683	9205973.11	2715.3895	ES
592	776798.683	9205973.11	2715.3441	ES
593	776798.683	9205972.11	2715.2845	ES
594	776796.683	9205974.11	2715.2474	EJE
595	776796.683	9205974.11	2715.2242	SE
596	776795.683	9205979.11	2715.0103	SE
597	776795.683	9205979.11	2714.9612	CAS
598	776795.683	9205980.11	2714.9289	VE
599	776796.683	9205978.11	2714.8974	CU
600	776830.42	9206009.61	2714.5576	CU
601	776832.42	9206009.61	2714.5233	EJE
602	776831.42	9206012.61	2714.4448	SE
603	776819.42	9206024.61	2714.4448	SE
604	776817.42	9206024.61	2714.442	SE
605	776826.986	9206032.08	2714.419	CAS
606	776827.986	9206033.08	2714.402	CU
607	776837.986	9206021.08	2714.4017	CU
608	776838.986	9206019.08	2714.3884	EJE
609	776841.986	9206019.08	2714.2882	SE
610	776828.42	9206001.61	2714.2882	SE
611	776828.42	9206002.61	2712.4767	SE
612	776836.42	9206000.61	2712.4317	EJE
613	776838.42	9206000.61	2712.4218	SE
614	776838.42	9206000.61	2712.4199	SE
615	776841.42	9206000.61	2712.3149	SE
616	776842.42	9206000.61	2712.2824	SE
617	776850.42	9205992.61	2712.2629	CAS
618	776852.42	9205993.61	2712.2598	CAS
619	776854.42	9205994.61	2712.2221	CAS
620	776850.42	9205994.61	2712.2218	-
621	776844.42	9205999.61	2712.2166	-
622	776849.42	9206005.61	2712.2044	ES
623	776851.986	9206012.08	2712.2013	ES
624	776851.986	9206012.08	2712.1695	ES
625	776851.986	9206012.08	2712.1684	SE
626	776849.986	9206014.08	2712.1583	SE
627	776847.986	9206018.08	2712.0678	ES
628	776849.986	9206016.08	2712.0666	ES

629	776863.986	9206026.08	2712.0613	ES
630	776865.986	9206027.08	2712.0459	ES
631	776880.986	9206038.08	2712.0457	EJE
632	776881.986	9206040.08	2711.9906	SE
633	776885.986	9206047.08	2711.7502	SE
634	776885.986	9206047.08	2711.7185	EJE
635	776887.986	9206047.08	2711.4949	ES
636	776888.42	9206034.61	2711.4158	ES
637	776888.42	9206035.61	2711.3637	ES
638	776887.42	9206035.61	2711.2635	ES
639	776887.42	9206035.61	2711.1657	ES
640	776887.42	9206036.61	2711.0689	ES
641	776938.291	9206073.45	2711.0493	ES
642	776943.856	9206078.92	2710.9972	EJE
643	776940.856	9206085.92	2710.7318	CAS
644	776938.856	9206085.92	2710.6962	VE
645	776938.856	9206088.92	2710.6753	CU
646	776939.856	9206089.92	2710.3134	CU
647	776941.856	9206088.92	2710.3115	EJE
648	776949.856	9206085.92	2710.3115	SE
649	776948.856	9206085.92	2710.3115	SE
650	776978.784	9206119.86	2709.7073	SE
651	776979.784	9206120.86	2709.6488	SE
652	776971.851	9206127.31	2709.5413	SE
653	776983.505	9206123.75	2709.5004	SE
654	776976.851	9206131.31	2709.4888	SE
655	776982.784	9206118.86	2709.4577	SE
656	776983.784	9206117.86	2709.319	SE
657	776989.745	9206113.71	2709.3122	EJE
658	776985.18	9206109.24	2709.3019	EJE
659	776993.18	9206101.24	2709.2006	EJE
660	776993.18	9206101.24	2709.1762	EJE
661	776998.18	9206104.24	2709.1634	EJE
662	776998.18	9206105.24	2709.1536	EJE
663	776995.745	9206114.71	2709.1436	-
664	776994.745	9206117.71	2709.0885	-
665	776993.745	9206117.71	2709.0781	SE
666	776994.745	9206118.71	2709.0196	SE
667	776998.745	9206126.71	2708.996	SE
668	776999.745	9206128.71	2708.9946	SE
669	777001.745	9206139.71	2708.9904	CAS
670	777003.745	9206139.71	2708.974	VE
671	777004.745	9206138.71	2708.9631	CU
672	777009.745	9206132.71	2708.9383	CU
673	777009.745	9206133.71	2708.937	CU

1	1	1	1	1
674	777013.745	9206132.71	2708.9177	EJE
675	777011.745	9206131.71	2708.8595	CU
676	777007.18	9206127.24	2708.7935	CU
677	777007.18	9206127.24	2708.7252	VE
678	777021.745	9206153.71	2708.7133	CAS
679	777021.745	9206153.71	2708.6541	ES
680	777022.745	9206161.71	2708.6541	ES
681	777023.745	9206160.71	2708.6541	ES
682	777024.745	9206160.71	2708.6488	ES
683	777027.745	9206159.71	2708.0165	SE
684	777025.745	9206160.71	2707.5308	SE
685	777025.745	9206162.71	2707.1029	ES
686	777027.745	9206161.71	2707.0685	ES
687	777028.745	9206159.71	2706.9692	ES
688	777031.745	9206154.71	2706.8628	ES
689	777034.745	9206152.71	2706.8411	EJE
690	777033.745	9206151.71	2706.8079	SE
691	777034.745	9206152.71	2706.7783	SE
692	777046.745	9206150.71	2706.707	CAS
693	777041.18	9206153.24	2706.6911	VE
694	777046.745	9206159.71	2706.6796	CU
695	777046.745	9206159.71	2706.6188	CU
696	777033.745	9206172.71	2704.3354	EJE
697	777032.745	9206175.71	2704.2864	SE

ANEXO B	
FOTOS DE LOS ACCIDENTES OCURRIDOS EN LA AV HEROES DEL	CENEDA

FOTOGRAFIA 01. ACCIDENTE DE TRANSITO AV. HEROES DEL CENEPA-JR. BARRANTES LIGAN CAJAMARCA, FECHA C/10/09/2016

FOTOGRAFIA 02. ACCIDENTE DE TRANSITO AV. HEROES DEL CENEPA C9 CAJAMARCA, FECHA C/15/11/2015

FOTOGRAFIA 03. ACCIDENTE DE TRANSITO AV. HEROES DEL CENEPA- JR. SAN MARTIN DE PORRES EN CAJAMARCA, FECHA C/01/18/2014

FOTOGRAFIA 04. ACCIDENTE DE TRANSITO AV. HEROES DEL CENEPA CAJAMARC

FOTOGRAFIA 05. ACCIDENTE DE TRANSITO AV. HEROES DEL CENEPA CAJAMARCA

FOTOGRAFIA 06. ACCIDENTE DE TRANSITO AV. HEROES DEL CENEPA CAJAMARCA

ANEXO C PANEL FOTOGRÁFICO

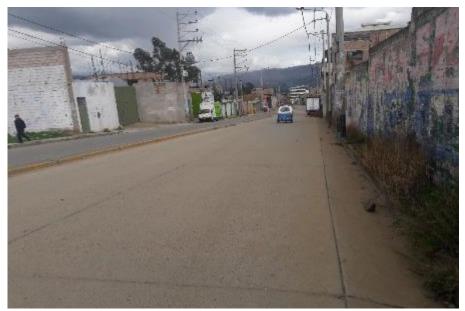
Fotografía N° 07: Equipo topográfico

Fotografía N° 08: Toma de datos

Fotografía N° 09: Levantamiento topográfico

Fotografía N° 10: Levantamiento topográfico

Fotografía N° 11: Toma de medidas.


Fotografía N° 06: Estación Total Leica ST 09

Fotografía \mathbf{N}° 12: Mal estado del pavimento en la Av. Héroes del Cenepa

Fotografía N° 13: Deterioro en el pavimento en la Av. Héroes del Cenepa

Fotografía N° 14: Falta de vereda en algunos tramos de la Av. Héroes del Cenepa

Fotografía \mathbf{N}° 15: Falta de vereda en algunos tramos de la Av. Héroes del Cenepa

ANEXO D PLANO DE UBICACIÓN

ANEXO E PLANOS PLANTA Y PERFIL

ANEXO F PLANOS SECCIONES TIPICAS