UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA HIDRÁULICA

"REGIONALIZACIÓN MORFOMÉTRICA ADIMENSIONAL DE CUENCAS HIDROGRÁFICAS DE LA SIERRA DE PIURA - PERÚ, CON FINES DE TRANSFERENCIA DE INFORMACIÓN HIDROLÓGICA"

TESIS PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO HIDRÁULICO

PRESENTADO POR EL BACHILLER:

AQUINO CUSQUISIBÁN, Segundo Manuel

ASESOR:

Dr. Ing. José Francisco Huamán Vidaurre

CAJAMARCA – PERÚ

2019

AGRADECIMIENTO

Agradezco a Dios, por darme la vida y permitirme lograr la culminación del presente trabajo de investigación.

A mis padres y hermanos por haberme apoyado permanente, por ser los pilares fundamentales de mi formación como ser humano y profesional.

A mi asesor el Dr. Ing. José Francisco Huamán Vidaurre, por haberme brindado la oportunidad de recurrir a su capacidad y conocimiento, por su apoyo incondicional durante todo el desarrollo de mi trabajo de investigación.

Al Dr. Ing. Gaspar Méndez Cruz; Al Dr. Ing. Luis Vásquez Ramírez; Al M.Sc. Ing. Marco Silva Silva jurados de tesis, por su aportes y comentarios que ayudaron a mejorar y concluir mi trabajo de investigación.

Finalmente, Agradezco a mis familiares, amigos y personas que de una u otra manera contribuyeron hacer realidad el presente trabajo de investigación.

DEDICATORIA

A Dios, por ser mi fortaleza, por darme la vida, la salud, guiarme por el buen camino y alcanzar mis sueños.

A mis padres: Manuel y María, por su amor, apoyo y por su sacrificio a lo largo de mi vida, gracias a ustedes he logrado llegar hasta aquí, por enseñarme que con esfuerzo y sacrificio se logran los objetivos.

A mis hermanos: Roberto, Marleny y Santos Edwin; por el aliento y apoyo incondicional para lograr el presente trabajo.

A mis abuelos, tíos, tías y familiares en general que contribuyeron en mi desarrollo personal, por sus sabios consejos para afrontar el camino de la vida y nunca rendirse.

A mis compañeros de estudios y amigos, por compartir sus conocimientos, inquietudes y anhelos.

ÍNDICE DE CONTENIDO

AGRADECIMIENTO	
DEDICATORIA	
ÍNDICE DE CONTENIDOÍNDICE DE TABLASÍNDICE DE TABLAS	
ÍNDICE DE FIGURAS	
RESUMEN	
ABSTRACTCAPÍTULO I. INTRODUCCIÓN	XII
1.1. PLANTEAMIENTO DEL PROBLEMA	2
1.2. FORMULACIÓN DEL PROBLEMA	
1.3. HIPÓTESIS	
1.4. JUSTIFICACIÓN DE LA INVESTIGACIÓN	
1.5. ALCANCES DE LA INVESTIGACIÓN	
1.6. OBJETIVOS	4
1.6.1. Objetivo General	4
1.6.2. Objetivos Específicos	4
1.7. DESCRIPCIÓN DE LOS CONTENIDOS DE LOS CAPÍTULOS	4
CAPÍTULO II. MARCO TEÓRICO	
2.1. ANTECEDENTES TEÓRICOS DE LA INVESTIGACIÓN	5
2.2. BASES TEÓRICAS	6
2.2.1.REGIONALIZACIÓN MORFOMÉTRICA ADIMENSIONAL	6
2.2.2.CUENCA HIDROGRÁFICA	7
2.2.3. PARÁMETROS GEOMORFOLÓGICOS DE LA CUENCA	8
2.2.4. MORFOMETRIA ADIMENSIONAL DE CUENCAS HIDROGRÁFICAS	18
2.2.5. SIMILITUD DE SISTEMAS HIDROLÓGICOS	20
2.2.6.INFORMACIÓN HIDROLÓGICA Y SU TRATAMIENTO	23
2.3. DEFINICIÓN DE TÉRMINOS BÁSICOS	35
CAPÍTULO III. MATERIALES Y MÉTODOS	
3.1. UBICACIÓN	37
3.1.1. UBICACIÓN DE LA INVESTIGACIÓN	37
3.1.2. ÉPOCA DE LA INVESTIGACIÓN	38
3.2. METODOLOGÍA DE LA INVESTIGACIÓN	
3.2.1. TIPO, NIVEL, DISEÑO Y MÉTODO DE INVESTIGACIÓN	38
3.2.2. MUESTRA HIDROLÓGICA	
3.2.3. UNIDAD DE ANÁLISIS:	38
3.2.4. TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS:	38

3.3. PROCEDIMIENTO:	39
3.3.1. Delimitación de las Microcuenca	40
3.3.2. Parámetros Geomorfológicos de la Cuenca	43
3.3.3. Parámetros Adimensionales de similitud de sistemas hidrológicos	47
3.3.4. Clasificación de microcuencas por su geometría	47
3.3.5. Estimación del estadístico de discrepancia	49
3.3.6. Agrupación de microcuencas con Similitud hidrológica	49
3.3.7. Transferencia de Información hidrológica	51
3.4. TRATAMIENTO, ANÁLISIS DE DATOS Y PRESENTACIÓN DE RESULTAD	OS 54
3.4.1. TRATAMIENTO Y ANÁLISIS DE DATOS:	54
3.4.2. PRESENTACIÓN DE RESULTADOS:	54
CAPÍTULO IV. ANÁLISIS Y DISCUSIÓN DE RESULTADOS	
4.1. DESCRIPCIÓN Y DISCUSIÓN DE RESULTADOS:	76
4.2. DISCUSIÓN DE RESULTADOS CONTRASTADOS CON ANTECEDENT TEÓRICOS	
4.3. DISCUSIÓN DE RESULTADOS CONTRASTADOS CON LA HIPÓTESIS	81
CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES	
5.1. CONCLUSIONES	82
5.2. RECOMENDACIONES	83
REFERENCIAS BIBLIOGRÁFICAS	84
ANEXOS	
ANEXO I: REPORTE DE PARÁMETROS GEOMORFOLÓGICOS DE LAS CUE HIDROGRÁFICAS	87
ANEXO II: UBICACIÓN DE LA REGIÓN DE PIURA - PERÚ	137
ANEXO III: MICROCUENCAS CON SIMILITUD HIDROLÓGICA, APLICACIÓN I METODOLOGÍA	
ANEXO IV: RED DE ESTACIONES PLUVIOMÉTRICAS EN FUNCIONAMIENTO REGIÓN DE PIURA	
ANEXO V: MICROCUENCA DE ORIGEN CON INFORMACIÓN HIDROLÓ (MICROCUENCA DEL RIO CUEVAS)	
ANEXO VI: MICROCUENCA DE DESTINO SIN INFORMACIÓN HIDROLÓ (MICROCUENCA DEL RIO CONGONA)	
ANEXO VII: CURVAS INTENSIDAD DURACIÓN FRECUENCIA (IDF) PAR MICROCUENCA SIN INFORMACIÓN HIDROLÓGICA (MICROCUENCA DEI CONGONA)	L RIO
ANEXO VIII: MANUAL DE USUARIO DEL PROGRAMA ACUS HYDROLOGY® E EXCEL CON PROGRAMACIÓN DE MACROS EN VISUAL BASIC	

ÍNDICE DE TABLAS

Tabla 2.1. Tamaño relativo de los sistemas hidrológicos	9
Tabla 2.2. Formas de la Cuenca de acuerdo al Índice de Compacidad	. 10
Tabla 2.3. Clasificación de las Cuencas de acuerdo a la pendiente	. 13
Tabla 2.4. Variables y dimensiones del fenómeno precipitación-escorrentía	. 19
Tabla 2.5. Formas de sistemas hidrológicos con base en el coeficiente de Gravelius	
Tabla 2.6. Índice de ramificación de la red de drenaje	. 21
Tabla 2.7. Potencial de degradación hídrica	. 22
Tabla 2.8. Valores críticos para la prueba de Anderson-Darling	. 26
Tabla 2.9. Valores críticos de Δ_o del estadístico Smirnov - Kolmogorov, para varios valores de	
y valores de significación	. 32
Tabla 3.1. Cartas Nacionales que abarca la sierra de la región de Piura	. 40
Tabla 3.2. Información meteorológica de intensidades máximas (mm/h) de la estación	
pluviométrica Tuluce (altitud 2233 msnm), microcuenca del Rio Cuevas	.52
Tabla 3.3. Resultados de Parámetros Geomorfológicos de la Microcuencas 01: Río Sapce	
Tabla 3.4. Parámetros adimensionales de similitud de cuencas hidrográficas altoandinas de la	
región Piura	.56
Tabla 3.5. Grupo de microcuencas con similitud hidrológica de la forma oval redonda	
(1 <kc≤1.25)- g.a1<="" td=""><td>. 60</td></kc≤1.25)->	. 60
Tabla 3.6. Grupo de microcuencas con similitud hidrológica de la forma oval redonda	
(1 <kc≤1.25)- g.a2<="" td=""><td>. 60</td></kc≤1.25)->	. 60
Tabla 3.7. Grupo de microcuencas con similitud hidrológica de la forma oval oblonga (1.25 <kc< td=""><td></td></kc<>	
≤1.50)- G.B1	
Tabla 3.8. Grupo de microcuencas con similitud hidrológica de la forma oval oblonga (1.25 <kc< td=""><td></td></kc<>	
≤1.50)- G.B2	. 62
Tabla 3.9. Grupo de microcuencas con similitud hidrológica de la forma oval oblonga (1.25 <kc< td=""><td></td></kc<>	
≤1.50)- G.B3	
Tabla 3.10. Grupo de microcuencas con similitud hidrológica de la forma oval oblonga (1.25 <k< td=""><td></td></k<>	
≤1.50)- G.B4	. 63
Tabla 3.11. Grupo de microcuencas con similitud hidrológica de la forma oblonga alargada	
(1.50< kc ≤1.75)-G.C1	
Tabla 3.12. Modelamiento del modelo Gumbel y Pruebas de Bondad de Ajuste de las variables	
hidrológicas - Estación pluviométrica Tuluce, microcuenca del Rio Cuevas	. 67
Tabla 3.13. Modelación y simulación del modelo probabilístico Gumbel de Intensidades en	
función de "N" y "J" - Estación pluviométrica Tuluce, microcuenca del Rio Cuevas	. 68
Tabla 3.14. Intensidades máximas de precipitación transferidas a la microcuenca del Rio	
Congona en función de "N" y "J"	
Tabla 6.1. Parámetros Geomorfológicos de la Microcuencas 01: Río Sapce	
Tabla 6.2. Parámetros Geomorfológicos de la Microcuencas 02: Rio San Lorenzo	
Tabla 6.3. Parámetros Geomorfológicos de la Microcuencas 03: Qda. Singocate	
Tabla 6.4. Parámetros Geomorfológicos de la Microcuencas 04: Rio Pusmalca	
Tabla 6.5. Parámetros Geomorfológicos de la Microcuencas 05: Qda. Cashapite	
Tabla 6.6. Parámetros Geomorfológicos de la Microcuencas 06: Qda. Chalpa	
Tabla 6.7. Parámetros Geomorfológicos de la Microcuencas 07: Rio Overal	
Tabla 6.8. Parámetros Geomorfológicos de la Microcuencas 08: Qda. Rinconada	
Tabla 6.9. Parámetros Geomorfológicos de la Microcuencas 09: Rio Ladrillo	
Tabla 6.10. Parámetros Geomorfológicos de la Microcuencas 10: Qda. San Martín	.91

Tabla 6.11.	Parámetros	Geomorfológicos	de la	Microcuencas	11:	Rio Piscan	92
Tabla 6.12.	Parámetros	Geomorfológicos	de la	Microcuencas	12:	Rio Chalaco	92
Tabla 6.13.	Parámetros	Geomorfológicos	de la	Microcuencas	13:	Rio Capones	93
Tabla 6.14.	Parámetros	Geomorfológicos	de la	Microcuencas	14:	Rio San Jorge	93
Tabla 6.15.	Parámetros	Geomorfológicos	de la	Microcuencas	15:	Qda. Simitri	94
Tabla 6.16.	Parámetros	Geomorfológicos	de la	Microcuencas	16:	Rio Defrias	94
Tabla 6.17.	Parámetros	Geomorfológicos	de la	Microcuencas	17:	Qda. Chamba	95
Tabla 6.18.	Parámetros	Geomorfológicos	de la	Microcuencas	18:	Rio Geraldo	95
Tabla 6.19.	Parámetros	Geomorfológicos	de la	Microcuencas	19:	Rio Chontas	96
Tabla 6.20.	Parámetros	Geomorfológicos	de la	Microcuencas	20:	Rio Tasajeras	96
Tabla 6.21.	Parámetros	Geomorfológicos	de la	Microcuencas	21:	Rio Congona	97
Tabla 6.22.	Parámetros	Geomorfológicos	de la	Microcuencas	22:	Qda. Chuguyo	97
Tabla 6.23.	Parámetros	Geomorfológicos	de la	Microcuencas	23:	Rio Cajunga	98
Tabla 6.24.	Parámetros	Geomorfológicos	de la	Microcuencas	24:	Rio Rincón	98
						Rio Paucas	
Tabla 6.26.	Parámetros	Geomorfológicos	de la	Microcuencas	26:	Rio Huarmarca	99
		-				Rio Grande	
						Rio Playa Seca	
		-				Qda. Decuse	
						Rio San Bumbal	
						Rio Cuevas	
						Rio Mancucur	
						Rio Shumaya	
						Qda. Curlata	
		-				Rio Chantaco	
						Qda. Unguio	
		-				Qda. Nancho	
						Rio Chocan	
						Rio Chimbinuma	
						Rio Aragoto	
		•				Rio Tondopa	
		_				Qda. Ulunche	
		-				Rio Matala	
						Qda. Yerbabuena	
		-				Rio Zamba	
						Rio Sicacate	
		-				Rio Guir Guir	
						Rio Huanta	
						Rio Cutaco	
		•				Rio Olleros	
						Rio Malache	
						Rio Barro Negro	
						Rio Sancay	
						Rio Tapal Rio Ramos	
						Rio Aranza	
							. 114
iaula 0.57	raidinence		והו ייווו	WILL OUT HIER	. 1/	NU AIUGUUU	

Tabla 6.58.	Parámetros	Geomorfológicos	de la	Microcuencas	58:	Rio Vilcas	.115
Tabla 6.59.	Parámetros	Geomorfológicos	de la	Microcuencas	59:	Qda. Yunguilla	.116
Tabla 6.60.	Parámetros	Geomorfológicos	de la	Microcuencas	60:	Rio San Pablo	.116
Tabla 6.61.	Parámetros	Geomorfológicos	de la	Microcuencas	61:	Rio San Juan	.117
Tabla 6.62.	Parámetros	Geomorfológicos	de la	Microcuencas	62:	Qda. Naranjo	.117
Tabla 6.63.	Parámetros	Geomorfológicos	de la	Microcuencas	63:	Rio Llaga	.118
Tabla 6.64.	Parámetros	Geomorfológicos	de la	Microcuencas	64:	Rio Talaneo	.118
Tabla 6.65.	Parámetros	Geomorfológicos	de la	Microcuencas	65:	Rio Reyna Inca	.119
Tabla 6.66.	Parámetros	Geomorfológicos	de la	Microcuencas	66:	Rio Palo Blanco	.119
Tabla 6.67.	Parámetros	Geomorfológicos	de la	Microcuencas	67:	Rio Suyo	.120
		_				Rio Chullucanas	
						Qda. Capsol	
		_				Rio Uchupata	
Tabla 6.71.	Parámetros	Geomorfológicos	de la	Microcuencas	71:	Qda. Carhuancho	.122
		_				Rio Pashal	
Tabla 6.73.	Parámetros	Geomorfológicos	de la	Microcuencas	73:	Qda. Palo Blanco	.123
		_				Qda. Oberito	
						Rio Palmo	
		_				Rio Paltoran	
						Rio Yahuangate	
		_				Rio Frejolillo	
						Rio Collona	
						Rio San Pedro	
						Rio Gramadal	
						Rio Ceibal	
						Rio Huayos	
						Rio Samanguilla	
		•				Qda. Blanco	
						Rio Los Mojica	
		_				Rio Rosarios	
		_				Rio Chinguela	
		_				Qda. Tingo Barro	
		•				Rio Sauce Chico	
		•				Qda. SangrinRio Naranjo	
		•				Rio Pomayaco	
						Qda. Sancay	
		_				Rio Castaya	
						Qda. Infiernillo	
		•				Rio Mallancoca	
						Qda. Sural	
						Rio Pilana	
		_				10: Rio Cash Cash	
		•				riesgo del 1%	
				•		riesgo del 2%	
						riesgo del 5%	
						-	144

ÍNDICE DE FIGURAS

Figura 2.1. Regionalización Morfométrica Adimensional (Adaptado de Ortiz, O. 2015)
Figura 2.2. Cuenca hidrográfica (Adaptado de Villón, M. 2002)
Figura 2.3. Análisis para el cálculo de la pendiente en una faja según Alvord (Adaptado de Villón
<i>M.</i> 2002)
Figura 2.4. Jerarquización de cauces mediante el método de Horton- Strahler. (Adaptado de
Villón, M. 2002)
Figura 2.5. Comparación de la localización central de las tres curvas. (Adaptado de Villón, M. 2002)24
Figura 2.6. Comparación de dispersión o variabilidad de dos curvas. (Adaptado de Villón, M. 2002)
Figura 3.1. Ubicación geográfica de la región Piura37
Figura 3.2. Flujograma del procedimiento realizado en la investigación39
Figura 3.3. Cartas Nacionales de la región de Piura (Adaptado del I.G.N_Perú)40
Figura 3.4. Flujograma para el proceso de unión de curvas y ríos en el software ArcGIS41
Figura 3.5. Flujograma para delimitación de las microcuencas en el software ArcGIS42
Figura 3.6. Flujograma para obtener las curvas a nivel y los cauces dentro del área de influencia de las microcuencas
Figura 3.7. Microcuenca Modelo delimitada en el software ArcGIS43
Figura 3.8. Obtención de Parámetros de forma de la microcuenca modelo con el software ArcGIS
Figura 3.9. Obtención de tabla de atributos para elaborar la curva hipsométrica y el polígono de frecuencia de altitudes en el software ArcGIS para la microcuenca Modelo
Figura 3.10. Obtención de tabla de atributos para determinar las pendiente y longitud del cauce
principal en el software ArcGIS para la microcuenca Modelo46
Figura 3.11. Obtención de tabla de Categorización de la red de drenaje en el software ArcGIS
para la microcuenca Modelo47
Figura 3.12. Flujograma para obtener la clasificación de microcuencas por su geometría48
Figura 3.13. Flujograma para obtener el estadístico de discrepancia, dado por el coeficiente de
variación49
Figura 3.14. Flujograma para obtener microcuencas con similitud hidrológica de la forma Oval, mediante la prueba de Anderson Darling50
Figura 3.14. Red estaciones en monitoreo de la Región de Piura51
Figura 3.15. Ubicación de la Estación pluviométrica Tuluce51
Figura 3.17. Análisis grafico de la Clasificación geométrica de la muestra hidrológica atendiendo
a los rangos del Índice de Gravelius
Figura 3.18. Análisis gráfico del Grupo de microcuencas con similitud hidrológica de la forma oval redonda (1 <kc≤1.25)< td=""></kc≤1.25)<>
Figura 3.19. Análisis gráfico del Grupo de microcuencas con similitud hidrológica de la forma
oval oblonga (1.25 <kc td="" ≤1.50)64<=""></kc>
Figura 3.20. Análisis gráfico del Grupo de microcuencas con similitud hidrológica de la forma
oblonga alargada (1.50< kc ≤1.75)66
Figura 7.1. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona,
para un riesgo de predicción del 1%143
Figura 7.2. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona,
para un riesgo de predicción del 2%143

Figura 7.3. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Cor	ngona,
para un riesgo de predicción del 5%	144
Figura 7.4. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Cor	ngona,
para un riesgo de predicción del 10%	144
Figura 7.5. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Cor	ngona,
para un riesgo de predicción del 15%	145
Figura 7.6. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Cor	ngona,
para un riesgo de predicción del 20%	145
Figura 7.7. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Cor	ngona,
para un riesgo de predicción del 25%	146
Figura 7.8. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Cor	ngona,
para un riesgo de predicción del 30%	146
Figura 7.9. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Cor	ngona,
para un riesgo de predicción del 40%	147
Figura 7.10. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio	
Congona, para un riesgo de predicción del 50%	147
Figura 7.11. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio	
Congona, para un riesgo de predicción del 60%	148
Figura 7.12. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio	
Congona, para un riesgo de predicción del 70%	148
Figura 7.13. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio	
Congona, para un riesgo de predicción del 80%	149
Figura 7.14. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio	
Congona, para un riesgo de predicción del 90%	149

RESUMEN

El presente estudio tiene como objetivo principal determinar las cuencas hidrográficas de la sierra de Piura, que cumplen con el principio de similitud de sistemas hidrológicos, desarrolladas por más de 1500 m de altitud, con áreas entre 20 y 200 Km²; se usó parámetros adimensionales como referentes de semejanza geométrica, cinemática y dinámica para identificar sistemas hidrológicos similares; resultando de la forma oval redonda (11%) distribuida en dos grupos, un primer grupo (G.A1) conformado por siete unidades hidrológicas, un segundo grupo (G.A2) con cuatro unidades: de la forma oval oblonga (28%) quedó distribuida en cuatro grupos, un primer grupo (G.B1) conformado por ocho unidades hidrológicas, un segundo grupo (G.B2) con ocho unidades y un tercer grupo (G.B3) con cinco unidades; y un cuarto grupo (G.B4) con siete unidades; de la forma oblonga alargada (2%) quedó distribuida en solo grupo (G.C1) de dos unidades hidrológicas. Se seleccionó el sistema de origen la microcuenca Rio Cuevas (coeficiente de Gravelius de 1.27, relación de confluencias de 1.63, y el coeficiente orográfico de 15.33%) y el sistema hidrológico de destino la microcuenca del Rio Congona (coeficiente de Gravelius de 1.27, relación de confluencias de 1.62, y el coeficiente orográfico de 15.00%), perteneciente al mismo grupo (G.B3) de similitud hidrológica de la forma oval oblonga, para la aplicación de transferencia de información hidrológica, obteniendo una gama muy amplia de opciones en cuanto a periodos de vida útil (N), incertidumbre (J), periodo de retorno (Tr) y periodo de duración. De los resultados se concluyó la existencia de cuarenta y uno cuencas hidrográficas de la sierra de Piura (41%) cumplen con el principio de similitud de sistemas hidrológicos, entre los que se puede intercambiar información hidrológica.

Palabras Clave: similitud de sistemas hidrológicos, parámetros adimensionales, transferencia, información Hidrológica.

ABSTRACT

The main objective of this study is to determine the hydrographic basins of the Sierra de Piura, which comply with the principle of similarity of hydrological systems, developed by more than 1500 m of altitude, with areas between 20 and 200 km²; dimensionless parameters were used as referents of geometric, kinematic and dynamic similarity to identify similar hydrological systems; resulting from the round oval shape (11%) distributed in two groups, a first group (G.A1) consisting of seven hydrological units, a second group (G.A2) with four units; of the oblong oval shape (28%) it was distributed in four groups, a first group (G.B1) consisting of eight hydrological units, a second group (G.B2) with eight units and a third group (G.B3) with five units; and a fourth group (G.B4) with seven units; of the oblong oblong form (2%) it was distributed in only group (G.C1) of two hydrological units. The Rio Cuevas microbasin source system was selected (Gravelius coefficient of 1.27, confluence ratio of 1.63, and the orographic coefficient of 15.33%) and the destination hydrological system of the micro basin of the Congona river (Gravelius coefficient of 1.27, ratio of confluences of 1.62, and the orographic coefficient of 15.00%), belonging to the same group (G.B3) of hydrological similarity of the oblong oval form, for the application of hydrological information transfer, obtaining a very wide range of options as far as to periods of useful life (N), uncertainty (J), return period (Tr) and duration period. The results concluded the existence of forty-one hydrographic basins in the Sierra de Piura (41%) comply with the principle of similarity of hydrological systems, among which hydrological information can be exchanged.

Keywords: similarity of hydrological systems, dimensionless parameters, transfer, hydrological information.

CAPÍTULO I. INTRODUCCIÓN

Geográficamente la Región Piura se localiza al noroeste del Perú, limita por el norte con Tumbes y el Ecuador, con Lambayeque por el sur, con Cajamarca por el este y con el Océano Pacífico por el oeste. Posee una superficie: 35892.49 Km² y es la segunda región más poblada del país. Durante las últimas décadas, la falta de información hidrológica dificulta el diseño, operación y mantenimiento de la infraestructura hidráulica. repercutiendo negativamente en el planeamiento y gestión de los recursos hídricos. Las zonas donde el problema se agudiza, son en las cuencas altoandinas y se ven perjudicadas por ser las más alejadas del sistema hidrológico; situación que busca la necesidad de una regionalización morfométrica adimensional, que permita identificar sistemas hidrológicos similares, en base a parámetros adimensionales de semejanza geométrica, cinemática y dinámica, relacionados con el coeficiente de Gravelius, relación de confluencias y coeficiente orográfico, respectivamente; además de ser una de las alternativas de generación de información local, aún no aprovechada. Esta metodología aplicada a la región de Piura, conllevó a la selección de 100 microcuencas altoandinas con más de 1500 m de altitud, con áreas entre 20 y 200 Km², en las vertientes del Pacífico y Atlántico, que hacen un área total aproximada de 10 326 Km², que representa el 30 % del área total de la región. Caracterizados en parámetros de forma, de relieve y red hidrográfica, que explican su comportamiento hidrológico de las cuencas hidrográficas. Obteniendo los sistemas hidrológicos de mayor frecuencia en la forma oval oblonga (59%), seguido por la forma oval redonda (30%) y finalmente de la forma oblonga alargada (11%), estos atendiendo a la clasificación según los rangos del coeficiente de Gravelius. Los resultados de este estudio de regionalización morfométrica de una muestra de cien microcuencas altoandinas, ubicadas en la región de Piura de Perú, dan cuenta de cuarenta y uno por ciento de estos sistemas son similares, entre los que se puede intercambiar información hidrológica. Para la aplicación de transferencia de información se seleccionó el sistema de origen la microcuenca Rio Cuevas (coeficiente de Gravelius de 1.27, relación de confluencias de 1.63, y el coeficiente orográfico de 15.33%) y el sistema hidrológico de destino la microcuenca del Rio Congona (coeficiente de Gravelius de 1.27, relación de confluencias de 1.62, y el coeficiente orográfico de 15.00%), perteneciente al mismo grupo similitud hidrológica de la forma oval oblonga.

1.1. PLANTEAMIENTO DEL PROBLEMA

La falta de información hidrológica en cuencas hidrográficas de la sierra de Piura - Perú, es la primera dificultad que se encuentra cuando se desarrolla un proyecto relacionado con el agua. Información que es fundamental no sólo para la planificación y gestión de los recursos hídricos sino también para el diseño, operación y mantenimiento de la infraestructura hidráulica, a pesar de la riqueza hídrica peruana cada vez se está convirtiendo en un recurso escaso, su mal uso será trascendental en futuro no muy lejano. Para el diseño de obras hidráulicas, la información hidrológica es un parámetro clave en el dimensionamiento de las mismas y que está asociado a la disponibilidad del recurso hídrico, sin información dificulta que el diseño sea óptimo. La gestión de los recursos hídricos se inicia con la planificación que es satisfacer la demanda multisectorial de agua regional y local, promoviendo un uso sostenible, equilibrando la oferta con la demanda, En este sentido la información hidrológica cobra una importancia significativa.

Piura es una de las regiones del Perú, donde la falta de información hidrológica se hace notar, donde las mayores consecuencias lo sufren sus cuencas alto andinas, además los criterios y metodologías que se utilizan actualmente impiden un análisis regional consistente lo cual induce a una fuerte incertidumbre en los estudios de disponibilidad hídrica. Esta situación obliga a la búsqueda de metodologías sencillas, acorde con la realidad, que permitan generar información local, en cantidad y calidad, lo suficientemente aceptables. A través de la regionalización morfométrica adimensional de cuencas hidrográficas de la sierra de Piura, se pretende generar información local, aún no aprovechada. La similitud de sistemas hidrológicos, permite identificar sistemas hidrológicos similares, usando parámetros adimensionales como referentes de semejanza geométrica, cinemática y dinámica. Estos parámetros de semejanza y otros deducidos dimensionalmente de fenómenos físicos que tienen como escenario la cuenca. No obstante que el área de estudio comprende el ámbito territorial de la sierra de Piura. La regionalización morfométrica adimensional no sólo pueden resultar beneficioso para transferir información hidrológica, sino, además, será de mucha utilidad en el manejo de cuencas hidrográficas de la sierra de Piura, en el afán de planificación y gestión integral de los recursos Hídricos, que implica su importancia y el buen uso del recurso hídrico en la región de Piura, ya que en nuestro medio existe un concepto indiferente que consiste en pensar que el Perú es un país con una fuente inagotable de agua, nada más erróneo y alejado de la verdad.

1.2. FORMULACIÓN DEL PROBLEMA

La investigación trata de resolver la siguiente pregunta:

¿Cuántas cuencas hidrográficas de la sierra de Piura – Perú, cumplen con el principio de similitud de sistemas hidrológicos que permitan transferencia de información hidrológica?

1.3. HIPÓTESIS

Las cuencas hidrográficas de la sierra de Piura que cumplen con el principio de similitud de sistemas hidrológicos son mayores al 25% que permiten la transferencia de información hidrológica.

1.4. JUSTIFICACIÓN DE LA INVESTIGACIÓN

La presente investigación es importante y necesaria, porque permite identificar y cuantificar las cuencas hidrográficas de la sierra de Piura – Perú, que cumplen con el principio de similitud de sistemas hidrológicos y transferir información hidrológica, además aportar y ampliar los conocimientos teóricos y prácticos sobre la regionalización morfométrica adimensional basado en la similitud de sistemas hidrológicos; debido a los escasos estudios hecho hasta el momento, esta metodología de regionalización resuelve en cierta medida el problema de la falta de información hidrológica en las cuencas hidrográficas de la sierra de Piura - Perú, permitiendo de manera muy simple y sencilla la transferencia de información hidrológica, comparada con cualquier otra; proporcionando así la información necesaria y de credibilidad que permita evaluar, cuantificar y la toma de decisión en el mejor aprovechamiento de los recursos hídricos y ansiar el desarrollo sustentable en las cuencas hidrográficas de la sierra de Piura - Perú.

1.5. ALCANCES DE LA INVESTIGACIÓN

La presente investigación se limita sólo a estudiar las cuencas hidrográficas de la sierra de Piura - Perú, desarrolladas con más de 1500 m de altitud, con áreas entre 20 y 200 Km², mediante ArcGIS como modelo de geoprocesamiento de información cartográfica y MS Excel con Programación de Macros en Visual Basic para la determinación de los características geomorfológicas y de similitud hidrológica, su agrupamiento y luego realizar la transferencia de información hidrológica (Intensidades máximas de cuarenta años (1979 – 2018)), recopiladas del Servicio Nacional de Hidrología y Meteorología del Perú (SENAMHI).

1.6. OBJETIVOS

1.6.1. Objetivo General

 Determinar las cuencas hidrográficas de la sierra de Piura – Perú, que cumplen con el principio de similitud de sistemas hidrológicos con fines de transferencia de información hidrológica.

1.6.2. Objetivos Específicos

- Procesar la información cartográfica de las cuencas hidrográficas altoandinas, desarrolladas por más de 1500 m de altitud, con áreas entre 20 y 200 Km2.
- Determinar los parámetros morfométricos adimensionales de similitud de cuencas hidrográficas (coeficiente de Gravelius, relación de confluencias y coeficiente orográfico).
- Identificar los sistemas hidrológicos similares, en base al estadístico de discrepancia.
- Aplicar las funciones de transferencia de información hidrológica entre sistemas hidrológicos altoandinos similares.

1.7. DESCRIPCIÓN DE LOS CONTENIDOS DE LOS CAPÍTULOS

El presente estudio cuenta con cinco capítulos los cuales se describen a continuación:

Capítulo I: En este capítulo se presenta la introducción, que comprende el planeamiento del problema, formulación del problema, hipótesis, justificación de la investigación, alcances de la investigación y los objetivos.

Capítulo II: Este capítulo contiene al marco teórico, que describe los antecedentes teóricos de la investigación; luego se detalla los fundamentos teóricos que sirven de base para la investigación.

Capítulo III: Se menciona la metodología aplicada y se describe el procedimiento en orden cronológico realizados en esta investigación y finalmente se presenta los resultados obtenidos del procesamiento de datos, de acuerdo a los objetivos especificados.

Capítulo IV: En esta sección se analiza y discuten los resultados obtenidos del capítulo anterior, también se hace un contraste de la hipótesis y de los antecedentes.

Capítulo V: En este capítulo finaliza la investigación, presentando las conclusiones para cada objetivo en función a los resultados encontrados y también se indica las recomendaciones pertinentes a la presente investigación.

CAPÍTULO II. MARCO TEÓRICO

2.1. ANTECEDENTES TEÓRICOS DE LA INVESTIGACIÓN

Ortiz O. (2015) presentó la investigación denominado: "Similitud hidráulica de sistemas hidrológicos altoandinos y transferencia de información hidrometeorológica". Determinó las leyes que rigen la similitud hidráulica entre sistemas hidrológicos altoandinos. Para ello, los parámetros adimensionales en hidrología, al igual que en hidráulica de modelos físicos, jugaron papel preponderante. Se encontró que los parámetros índices Gravelius, relación de confluencias y coeficiente orográfico, son condiciones necesarias y suficientes para una aproximación de similitud hidráulica. Los parámetros obtenidos mediante análisis dimensional, unidos a las condiciones de semejanza, permite intercambiar información entre sistemas hidrológicos similares. La Morfometria adimensional en la que se sustenta la similitud hidráulica permite generalizar su aplicación a sistemas hidrológicos de otra región o interregiones subnacionales e internacionales. Define cuantitativamente el grado de aproximación de la similitud hidráulica de los sistemas hidrológicos, medidos mediante el estadístico coeficiente de variación, fijando un límite máximo para cada parámetro adimensional, tomándose como máximos referenciales los valores de 0.05, 0.20 y 0.30, para el índice de Gravelius, relación de confluencias y coeficiente orográfico, respectivamente; este nivel de aproximación, aceptado en la práctica y en Ingeniería Hidrológica. Los parámetros adimensionales de similitud identificados son el producto del análisis dimensional de variables del fenómeno precipitación-escorrentía y forman parte de las leyes físicas que gobiernan los sistemas hidrológicos altoandinos. Los resultados de este estudio de regionalización morfométrica de una muestra de 50 microcuencas altoandinas, ubicadas en el departamento de Cajamarca del norte de Perú, dan cuenta que más del 25% de estos sistemas son similares, entre los que se puede intercambiar información hidrológica.

Álvarez, O. (2011) en su investigación: "Identificación de Regiones Hidrográficas Homogéneas Mediante Análisis Multivariado". Presentó un método de regionalización hidrológica que se utiliza para transferir información hidrológica. Sin embargo, para obtener resultados confiables, las cuencas involucradas deben tener un comportamiento hidrológico semejante. Se identificó zonas hidrológicamente homogéneas en la Mixteca oaxaqueña (México). La metodología de regionalización involucra dos etapas principales: la identificación de grupos de cuencas hidrológicamente homogéneas y la aplicación de un método regional para cada región homogénea.

2.2. BASES TEÓRICAS

2.2.1. REGIONALIZACIÓN MORFOMÉTRICA ADIMENSIONAL

El término regionalización se utiliza en Hidrología para la identificación y transferencia de información de un sitio a otro dentro de un área de comportamiento hidrológico semejante. Así, se emplea la regionalización para obtener información hidrológica en sitios sin datos o con poca información (Tucci, C. 2002).

La regionalización morfométrica adimensional, basado en el principio de similitud entre sistemas hidrológicos altoandinos, permite identificar sistemas hidrológicos similares, usando parámetros adimensionales como referentes de semejanza geométrica, cinemática y dinámica. La naturaleza adimensional de la regionalización morfométrica es atractiva por cuanto su aplicación tiene carácter general, a diferencia de cualquier otra metodología empírica (Ortiz, O. 2015).

Esta metodología de regionalización morfométrica adimensional sustentada en la similitud de sistemas hidrológicos será siempre, en cualquier tiempo y espacio, una alternativa viable para afrontar el problema de falta de información local, pues el carácter adimensional y generaliza su aplicación a cualquier región nacional e internacional. Además, esta metodología muestra la inmensa utilidad que tienen los parámetros adimensionales de la hidrología superficial, tal como sucede con los modelos a escala reducida de la hidráulica aplicada, pues constituyen herramientas poderosas para explicar fenómenos y a la vez transferir información entre sistemas hidrológicos similares (Ortiz, O. 2015).

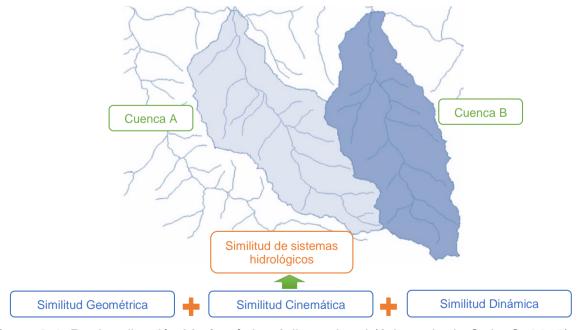


Figura 2.1. Regionalización Morfométrica Adimensional (Adaptado de Ortiz, O. 2015)

2.2.2. CUENCA HIDROGRÁFICA

Una cuenca hidrográfica es el área físico-geográfica delimitada por divisorias topográficas o edáficas en donde las aguas superficiales y subterráneas desembocan en una red natural mediante vertientes que confluyen a su vez en un río principal, en un depósito natural de aguas, en un pantano o directamente en el mar. (Valderrama, P. 1985). También se puede definir a una cuenca hidrográfica como el área natural en donde se acumula el agua proveniente de las precipitaciones formando un cauce principal, las divisorias de agua son formadas naturalmente por los puntos más altos que encierran el río principal y los sistemas de cursos de agua que desembocan en él, formando así una unidad fisiográfica. (Ramakrishna, B. 1997).

Las cuencas hidrográficas deben ser tratadas como unidades de planificación ordenamiento territorial y gestión, para el manejo de los recursos naturales, ya que la conservación de estos recursos no está circunscrita a límites geográficos o políticos, sino más bien al accionar y características sociales, culturales y económicas de la población asentada dentro de la cuenca y el deterioro ambiental que generan sus prácticas de producción. (Gaspari, F. 2010).

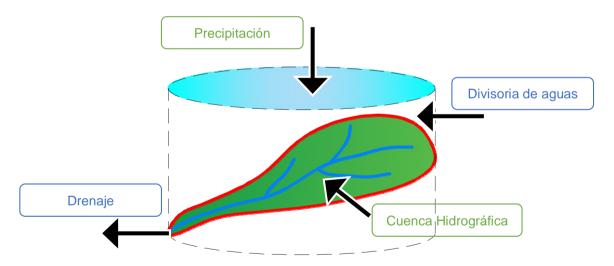


Figura 2.2. Cuenca hidrográfica (Adaptado de Villón, M. 2002)

2.2.2.1. Delimitación de la Cuenca

Consiste en definir la línea de divortio aquarum, que es una línea curva cerrada que parte y llega al punto de captación mediante la unión de todos los puntos altos e interceptando en forma perpendicular a todas las curvas de altitudes del plano. (Villón, M. 2002).

Delimitación de la Cuenca tiene por finalidad trazar la divisoria de aguas o divortium aquarum es una línea imaginaria que delimita la cuenca hidrográfica. Una divisoria de aguas marca el límite entre cuenca hidrográficas y las cuencas vecinas. El agua precipitada a cada lado de la divisoria desemboca generalmente en ríos distintos. También se denomina "parteaguas". (Ordoñez, J. 2011)

La Delimitación de cuenca, se basada en el principio de la red de flujo, considerando que la línea divisoria de aguas es teóricamente una línea neutral de flujo, cuyo campo cumple las ecuaciones de Laplace en 2D, (Sotelo, G. 1977).

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \tag{1}$$

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = 0 \tag{2}$$

Donde: ψ : potencial hidráulico; x,y: coordenadas cartesianas.

En este caso, la red de flujo del campo está conformada por la familia de líneas de energía equipotenciales dadas por las curvas de nivel del relieve del terreno y la familia de líneas de corriente o de flujo de escorrentía superficial, cuyo campo se extiende a la totalidad de la superficie de la cuenca.

2.2.3. PARÁMETROS GEOMORFOLÓGICOS DE LA CUENCA

Las características fisiográficas de la cuenca pueden ser explicadas a partir de ciertos parámetros o constantes que se obtienen del procesamiento de la información cartográfica y conocimiento de la topografía de la zona de estudio. (Gaspari, F. 2010).

El análisis morfométrico permite conocer las características físicas de una cuenca mediante el estudio de las particularidades de superficie, relieve e hidrografía, que permite realizar comparaciones con otras cuencas y ayuda a entender el complejo de su funcionamiento hidrológico y las consideraciones necesarias para su manejo. (Aguirre, N. 2007).

Con el fin de establecer grupos de cuencas hidrológicamente semejantes, se estudian una serie de características físicas en cada cuenca, entre las que se tienen:

2.2.3.1. Parámetros de forma

a. Área (A)

Es la superficie de la cuenca comprendida dentro de la curva cerrada de divortio aquarum; dependiendo de la ubicación de la cuenca, su tamaño influye en mayor o menor grado en el aporte de escorrentía, tanto directa como de flujo de base o flujo sostenido. (Monsalve, G. 1999).

Los tamaños relativos de estos espacios hidrológicos definen o determinan, aunque no de manera rígida, los nombres de micro cuenca, sub cuenca o cuenca, según explica la Tabla 2.1.

Tabla 2.1. Tamaño relativo de los cuencas hidrograficas

Unid. Hidrológica	Área (Km2)	N° de Orden
Micro cuenca	10-100	1, 2, 3
Sub cuenca	101-700	4, 5
Cuenca	más de 700	6 a más

Fuente: Monsalve, G. 1999

b. Perímetro (P)

Es la medición del contorno que encierra el área de la cuenca hidrográfica, por la divisoria de aguas. Se define también como la longitud de la línea de divortio aquarum o divisoria de aguas. Se mide mediante el curvímetro o directamente se obtiene del Software en sistemas digitalizados. (Gaspari, F. 2010)

c. Ancho promedio (Ap)

Es la relación entre la superficie de la cuenca con su longitud axial obtenida en kilómetros (Burbano, 1989).

$$Ap = \frac{A}{L} \tag{3}$$

Donde:

A: Área de la cuenca (Km2)

L: Longitud del máximo recorrido (Km)

d. Factor de Forma (F)

Es la relación entre el área A de la cuenca y el cuadrado del máximo recorrido (L). Este es un indicador que nos permite aproximar la forma de la cuenca a una forma geométrica, a fin de poder determinar la velocidad con la que el agua llega al río principal de la cuenca. (Fierro, D. & Jiménez, L. 2011)

Este parámetro mide la tendencia de la cuenca hacia las crecidas, rápidas y muy intensas a lentas y sostenidas, según que su factor de forma tienda hacia valores extremos grandes o pequeños, respectivamente. Es un parámetro adimensional que denota la forma redondeada o alargada de la cuenca. (Aparicio, F. 2010)

$$F = \frac{A}{L^2} \tag{4}$$

A: Área de la cuenca (Km2)

L: Longitud de máximo recorrido (Km)

e. Coeficiente de Gravelius o Índice de Compacidad (Kc)

Parámetro adimensional que relaciona el perímetro de la cuenca y el perímetro de un círculo de igual área que el de la cuenca. Este parámetro, describe la geometría de la cuenca y está estrechamente relacionado con el tiempo de concentración del sistema hidrológico (Gravelius, H. 1914).

Las cuencas redondeadas tienen tiempos de concentración cortos con gastos pico muy fuertes y recesiones rápidas, mientras que las alargadas tienen gastos pico más atenuados y recesiones más prolongadas. (Gravelius, H. 1914).

$$K_c = 0.2821 \frac{P}{\sqrt{A}}$$
 (5)

P: Perímetro de la cuenca (Km)

A: Área de la cuenca (Km2)

Las formas de la cuenca, en concordancia con los valores que adopte los índices de compacidad, se muestran en la Tabla 2.2.

Tabla 2.2. Formas de la Cuenca de acuerdo al Índice de Compacidad

Clase de Forma	Índice de Compacidad (Kc)	Forma de la Cuenca
Clase I	1.0 a 1.25	Oval redonda
Clase II	1.26 a 1.50	Oval oblonga
Clase III	1.51 a 1.75	Oblonga alargada

Fuente: (Henaos, J. 1988)

2.2.3.2. Parámetros de relieve

Para describir el relieve de una cuenca existen numerosos parámetros que han sido desarrollados por varios autores; entre los más utilizados son:

a. Curva Hipsométrica (CH)

Es la curva que, puesta en coordenadas rectangulares, representa la relación entre la altitud, y la superficie de la cuenca que queda sobre esa altitud. También se define como la ordenada media de curva hipsométrica, en ella, el 50 % del área de la cuenca, está situado por encima de esa altitud y el 50 % está situado por debajo de ella.

b. Frecuencia de Altitudes (FA)

Es la representación gráfica, de la distribución en porcentaje, de las superficies ocupadas por diferentes altitudes. Es un complemento de la curva hipsométrica.

c. Altitud Media (Hm)

Es el parámetro ponderado de las altitudes de la cuenca obtenidas en la carta o mapa topográfico. En cuencas andinas este parámetro está relacionado con la magnitud de la lámina de precipitación, variación lineal muy importante en estudios regionales donde la información local es escasa. (Monsalve, G. 1999)

$$Hm = \frac{1}{A} \sum_{i=1}^{n} H_i A_i$$
 (6)

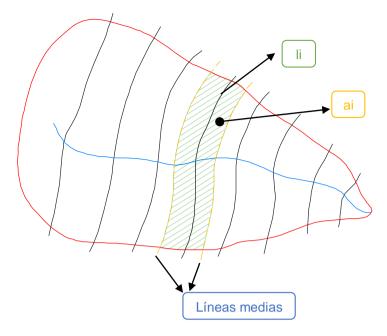
Hm: Altitud media (m.s.n.m.)

Hi: Altura correspondiente al área acumulada Ai encima de la curva Hi.

A: Área de la Cuenca

n: Número de áreas parciales

d. Altitud más Frecuente (HF)


Altitud más frecuente, es el máximo valor en porcentaje de la curva de frecuencia de altitudes.

e. Pendiente de la Cuenca

Es el promedio de las pendientes de la cuenca, es un parámetro muy importante que determina el tiempo de concentración y su influencia en las máximas crecidas y en el potencial de degradación de la cuenca, sobre todo en terrenos desprotegidos de cobertura vegetal. Existen variadas metodologías, tanto gráficas como analíticas, que permiten estimar la pendiente de la cuenca. (Monsalve, G. 1999)

Existen diversos criterios para evaluar la pendiente media de una cuenca, entre las que se destacan son: criterio de Alvord y criterio de Horton. (Cahuana, A. & Yugar, W. 2009)

Criterio de Alvord: Analiza la pendiente existente entre curvas de nivel, trabajando con la faja definida por las líneas medias que pasan entre las curvas de nivel, Para una de ellas la pendiente es (Fig. 2.3).

Figura 2.3. Análisis para el cálculo de la pendiente en una faja según Alvord (Adaptado de López, F. 1987)

$$S_i = \frac{D}{W_i} \tag{7}$$

$$W_i = \frac{a_i}{l_i} \tag{8}$$

Siendo:

Si= pendiente de la faja analizada i

D= desnivel entre líneas medias, aceptado como desnivel entre curvas.

Wi= ancho de la faja analizada i

ai= área de la faja analizada i

li= longitud de la curva de nivel correspondiente a la faja analizada i

Así la pendiente media de la cuenca será el promedio pesado de la pendiente de cada faja en relación con su área:

$$S = \left(\frac{D \cdot l_1}{a_1} \cdot \frac{a_1}{A}\right) + \left(\frac{D \cdot l_2}{a_2} \cdot \frac{a_2}{A}\right) + \dots + \left(\frac{D \cdot l_n}{a_n} \cdot \frac{a_n}{A}\right) \tag{9}$$

$$S = \frac{D}{A}(l_1 + l_2 + \dots + l_n)$$
 (10)

$$S = \frac{D.L}{A} \tag{11}$$

Donde:

S = Pendiente de la cuenca

L = longitud total de las curvas de nivel dentro de la cuenca.

A= Área de la cuenca

La clasificación de las cuencas de acuerdo a la pendiente de laderas, se aprecia en la Tabla 2.3.

Tabla 2.3. Clasificación de las Cuencas de acuerdo a la pendiente.

Pend. Media (%)	Tipo de Relieve	Símbolo
0-3	Plano	P1
3-7	Suave	P2
7-12	Mediano	P3
20-35	Accidentado	P4
35-50	Fuerte	P5
50-65	Muy Fuerte	P6
65-75	Escarpado	P7
>75	Muy Escarpado	P8

Fuente: Monsalve, G. 1999

f. Coeficiente de masividad (Cm)

Es la relación entre la altitud media del relieve y la superficie proyectada.

$$C_m = \frac{Hm}{A} \tag{12}$$

Dónde:

Hm: Altitud media (m.s.n.m)
A: superficie proyectada (m2)

g. Coeficiente Orográfico (Co):

Es el producto entre la altitud media y el coeficiente de masividad

$$C_o = \frac{Hm^2}{A} \tag{13}$$

Dónde:

Hm: Altitud media (m.s.n.m)
A: superficie proyectada (m2)

2.2.3.3. Parámetros de la Red Hidrográfica

La red hidrográfica corresponde al drenaje natural, permanente o temporal, por el que fluyen las aguas de los escurrimientos superficiales, hipodérmicos y subterráneos de la cuenca. (Cahuana, 2009)

a. Pendiente del Cauce Principal

El conocimiento de la pendiente del cauce principal de una cuenca, es un parámetro importante, en el estudio del comportamiento del recurso hídrico, como, por ejemplo, para la determinación de las características óptimas de su aprovechamiento hidroeléctrico, o en la solución de problemas de inundaciones (Llamas, J. 1993).

En general, Pendiente del Cauce Principal es el promedio de las pendientes del cauce principal. La metodología más recomendada para determinar la pendiente promedio del cauce principal está basada en el uso del perfil longitudinal y mediante la expresión de Taylor y Schwars:

$$S_{0} = \left[\frac{\sum_{i=1}^{n} l_{i}}{\sum_{i=1}^{n} \left(\frac{l_{i}}{S_{i}} \right)^{\frac{1}{2}}} \right]^{2}$$
 (14)

Dónde:

So: Pendiente del cauce principal

li: Longitud de cada tramo de pendiente Si

n: Número de tramos de similar pendiente

En general, la pendiente del cauce principal es mucho menor que la pendiente de la cuenca.

b. Longitud del cauce principal (Lcp)

Es la medida de la mayor trayectoria de las partículas del flujo comprendida entre el punto más bajo del colector común, conocido como punto emisor, y el punto más alto o inicio del recorrido sobre la línea de divortio aquarum. (Roche, M. 1963).

c. Tiempo de Concentración (Tc)

Es un parámetro que se usa intensamente en los cálculos de la relación precipitación escorrentía es el tiempo de concentración de la cuenca que es el tiempo que una partícula tarda en llegar del punto más alejado al punto de desagüe. (Fatorelli, S. y Fernández, P. 2011)

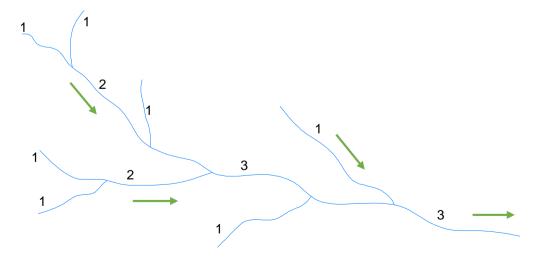
Es considerado como el tiempo de viaje de una gota de agua de lluvia que escurre superficialmente desde el lugar más lejano de la cuenca hasta el punto de salida o punto emisor. (Ven Te Chow 1994). Existen muchas fórmulas empíricas para estimar el tiempo

de concentración de la cuenca; a continuación, se muestra la formula empírica a utilizar en esta investigación:

➤ Kirpich (1940): Desarrolla con información proporcionada por el Soil Conservation Service (SCS) en siete cuencas en Tennessee (USA) de áreas comprendidas entre 0.0051 y 0.433 km2, en canales de altas pendientes 3-10% (Ven Te Chow 1994). Es una de las fórmulas más tradicionales que expresa el tiempo de concentración así:

$$T_C = 0.0195 \left(\frac{L^3}{H}\right)^{0.385} \tag{15}$$

Dónde:


Tc: Tiempo de concentración (min)

L: Longitud del curso principal (m)

H: Diferencia de elevación entre los puntos extremos del cauce principal (m)

d. Categorización de la red de drenaje (Rd)

La metodología de Strahler (1932), señala que al iniciar la categorización de una red en las confluencias más alejadas donde concurren dos cauces, sólo uno de ellos es de primera categoría (orden 1), mientras el otro es de segunda categoría (orden 2). El curso de primer orden o categoría queda determinado por el que haga mayor ángulo en el punto de confluencia, respecto del tramo siguiente. Una vez terminada la categorización de toda la red de drenaje, el cauce que ostenta la mayor jerarquía viene a constituir el curso principal del sistema hidrológico y, por ende, la categoría la cuenca.

Figura 2.4. Jerarquización de cauces mediante el método de Strahler. (Adaptado de Roche, M. 1963)

e. Relación de confluencias (Rc)

La disposición o configuración espacial de la red de drenaje superficial se puede representar cuantitativamente mediante la razón o relación de confluencias promedio de la ecuación siguiente, el valor promedio de la relación de confluencias explica, en cierta medida, la configuración espacial de la red de drenaje y se refleja en la geometría del hidrograma de escorrentía, de modo muy similar a la geometría de la cuenca. (Ven Te Chow 1994).

La relación de confluencias que se obtiene dividiendo el número total de ríos de cierto orden por el número total de ríos de orden inmediatamente superior.

$$R_{ci} = \frac{N_i}{N_{i+1}} \tag{16}$$

$$R_C = \frac{1}{n} \sum_{i} R_{ci} \tag{17}$$

Donde:

Rci: Relación de confluencia parcial.

Ni: Número de cursos de orden i.

Ni+1: Número de cursos de orden inmediatamente superior.

Rc: Relación de confluencias promedio.

n: Número de relación de confluencias parciales calculadas

f. Relación de longitudes (RI)

La relación de longitudes se obtiene dividiendo la longitud media de los ríos de cierto orden por la longitud media de los ríos de orden inmediatamente inferior.

$$r_L = \frac{L_i}{L_{i-1}} \tag{18}$$

Donde:

rL: relación de longitudes (parámetro adimensional)

Li: longitud media de todos los ríos de orden i

Li-1: longitud media de todos los ríos de orden i -1

g. Densidad de drenaje (Dd)

Es un indicador de la respuesta de la cuenca ante un aguacero, y, por tanto, condiciona la forma del hidrograma resultante en el desagüe de la cuenca.

A mayor densidad de drenaje, más dominante es el flujo en el cauce frente al flujo en ladera, lo que se traduce en un menor tiempo de respuesta de la cuenca y, por tanto, un menor tiempo al pico del hidrograma. Horton (1945), definió la densidad de drenaje de una cuenca como el cociente entre la longitud total de los cauces pertenecientes a su red de drenaje y la superficie de la cuenca. (Roche, M. 1963).

$$D_d = \frac{\sum_{i=1}^{N} L_i}{A} \tag{19}$$

Donde:

Dd: Densidad de drenaje (Km / Km2)

L: Longitud total de corrientes (Km)

A: Área de la cuenca (Km2)

h. Frecuencia de Ríos (Fr)

Esta dado por la relación entre el número de cursos de un orden dado y el área de la cuenca (Linsley, J. 1977).

$$F_r = \frac{n_i}{A} \tag{20}$$

Donde:

Fr: Frecuencia de ríos (Ríos/km2)

Ni: Numero de ríos de orden i

A: área de la cuenca (km2)

i. Extensión media de escurrimiento superficial (Es)

Se define como la distancia media en que el agua de lluvia tendría que escurrir sobre los terrenos de una cuenca, en caso de que la escorrentía se diese en línea recta, desde donde la lluvia cayó, hasta el punto más próximo al lecho de una corriente cualquiera de la cuenca. (Fattoreli A. 2011),

$$Es = \frac{A}{4 * L_i} \tag{21}$$

Donde:

Es: Extensión media de esc. Superficial. (km)

Li: Longitud total de cursos de agua (km)

A: área de la cuenca (km2)

j. Coeficiente de torrencialidad (Ct)

Índice que mide el grado de torrencialidad de la cuenca, por medio de la relación del número de cauces de orden uno con respecto al área total de la misma (López, F. 1977).

$$C_t = \frac{O_1}{A} \tag{22}$$

Donde:

Ct: Coeficiente de torrencialidad (Rios/Km2)

O₁: N° de cauces de 1er orden

A: área de la cuenca (Km2)

k. Superficie Umbral de Escurrimiento (Ue)

Es el área mínima necesaria para que exista un gasto de escurrimiento concentrado. (López, F. 1977).

$$U_e = A^{\frac{1}{N}} \tag{23}$$

Donde:

Ue: Superficie Umbral de escurrimiento (Km2)

A: Área proyectada de la cuenca (Km2)

N: Orden del curso principal

2.2.4. MORFOMETRIA ADIMENSIONAL DE CUENCAS HIDROGRÁFICAS

El fenómeno físico más importante en microcuencas altoandinas es el de precipitación-escorrentía, variables causa y efecto, respectivamente. (Ortiz, O. 2015)

La primera, dependiente de las características climáticas, y la segunda de la naturaleza de cada microcuenca (Chow, V. 1993). Sencillamente, si se desprecia la evapotranspiración real, el fenómeno simplificado queda representado por las variables mostradas en la tabla 2.4.

Las variables se agruparon en parámetros adimensionales, mediante la aplicación del teorema PI de Vaschy-Buckingham (Sotelo, G. 1977). El producto de este análisis condujo a la obtención de las leyes físicas que rigen los sistemas hidrológicos altoandinos, representadas por los parámetros adimensionales de las ecuaciones (24), (25), (26), (27) y (28).

Tabla 2.4. Variables y dimensiones del fenómeno precipitación-escorrentía

Variable	Dimensión
1.Precipitación pluvial: P	LT ⁻¹
2.Intensidad de precipitación pluvial: I	LT ⁻¹
3.Periodo de duración de la lluvia: t	Т
4. Proyección del área receptora colectora: A	L ²
5.Desnivel sobre el nivel del mar: H	L
6.Caudal de escurrimiento: Q	L ³ T ⁻¹
7.Perímetro de la cuenca: p	L

Fuente: Ortiz, O. 2015

El conjunto de estas ecuaciones constituye la base científica en la que se sustenta la metodología de identificación de similitud hidráulica de sistemas hidrológicos.

$$\pi_1 = \frac{Q}{AP} \tag{24}$$

$$\pi_2 = \frac{H}{\sqrt{A}} \tag{25}$$

$$\pi_3 = \frac{I * t}{H} \tag{26}$$

$$\pi_4 = \frac{Q}{I * A} \tag{27}$$

$$\pi_5 = \frac{p}{\sqrt{A}} \tag{28}$$

Dónde:

 π : Parámetro adimensional.

Q: caudal de escurrimiento.

A: proyección del área receptora-colectora sobre un plano horizontal.

P: precipitación pluviométrica.

H: altitud media sobre el nivel del mar.

I: intensidad de precipitación.

t: periodo de duración de intensidad de precipitación.

p: perímetro de la cuenca.

El hecho de haber despreciado la evapotranspiración real en este análisis se justifica porque los tiempos de duración de las tormentas son relativamente cortos; para periodos de tiempo más largos. (Chow, V. et al., 1993)

2.2.5. SIMILITUD DE SISTEMAS HIDROLÓGICOS

2.2.5.1. Semejanza Geométrica

Está dado por el parámetro adimensional de la ecuación (28), donde multiplicando ambos miembros por 0.28 resulta el índice de Gravelius ($Kc = 0.28^* \pi 5$) dado por la ecuación (29); parámetro adimensional que se obtiene relacionando el perímetro de una cuenca y el perímetro que tendría un círculo imaginario de la misma área que la cuenca (Gravelius, H. 1914).

$$K_c = 0.28 \frac{p}{\sqrt{A}} \tag{29}$$

El índice de Gravelius tiene influencia en la configuración de la red de drenaje superficial y en la geometría del hidrograma de escorrentía directa y, por tanto, en la magnitud del caudal pico de avenidas (Ibizate, A. et al., 2004). Además, los rangos de este parámetro han sido de mucha utilidad en la clasificación de cuencas por su geometría, tal como el que se plasma en la tabla 2.5 (Henaos, R. 1988). Este parámetro, por ser descriptor más eficaz de la forma de la cuenca, es un buen referente de similitud geométrica entre sistemas hidrológicos.

Condición de semejanza geométrica: "dos o más sistemas hidrológicos altoandinos son semejantes geométricamente si tienen igual índice de Gravelius", al grado de aproximación previamente adoptado.

Conviene resaltar que el término "igual" no tiene connotación matemática, sino simplemente el de una "igualdad hidrológica", que al igual que en estadística, se acepta con cierto nivel de aproximación válida para fines prácticos.

Las microcuencas de forma oval concentran más rápidamente los flujos superficiales, generando picos súbitos violentos y recesiones rápidas ante tormentas extraordinarias, características que favorecen la escorrentía directa y la erosión hídrica, en detrimento de la recarga de acuíferos, contrariamente al comportamiento de las cuencas alargadas. (Ortiz, O. 2015)

Tabla 2.5. Formas de sistemas hidrológicos con base en el coeficiente de Gravelius

Clase de Geometría	Rango de clase	Forma de la Cuenca
K _{c1}	1 < Kc ≤ 1.25	Oval redonda
K _{c2}	1.25 < Kc ≤ 1.50	Oval oblonga
K _{c3}	1.50 < Kc ≤ 1.7	Oblonga alargada

Fuente: Henaos, J. 1988

2.2.5.2. Semejanza Cinemática

Este parámetro adimensional, influenciado también por el índice de Gravelius, describe la configuración espacial o geometría de la red de drenaje y expresa el grado de ramificaciones de la red (Jardi, M. 1985). Se cuantifica mediante la aplicación de las ecuaciones (30) y (31), para lo cual es necesaria la categorización previa de la red de drenaje superficial, prefiriéndose la metodología de Horton (Gaspari, F. 2012)

Por la influencia que ejerce en la configuración espacial de la red de drenaje, se considera que la relación de confluencias promedio es un buen referente de la similitud cinemática de los sistemas hidrológicos.

$$r_C = \frac{n_i}{n_{i+1}} \tag{30}$$

$$r_C = \frac{1}{n} \sum_{i=1}^{n} r_{ci}$$
 (31)

Dónde:

rc: relación de confluencias parcial.

ni: número de cursos naturales de orden i.

ni+1: número de cauces de orden inmediatamente superior a i (i = 1, 2, 3, ..., N-1).

N: número de orden de la cuenca.

rci: cada uno de los "n" valores parciales.

RC: relación de confluencias promedio.

Condición de semejanza cinemática: "dos o más sistemas hidrológicos altoandinos son semejantes cinemáticamente si tienen igual relación de confluencias promedio", al grado de aproximación previamente adoptado. Con la misma indicación del término "igual" que para el caso de semejanza anterior.

Los valores de relación de confluencias promedio, ha permitido establecer rangos de índices de ramificación para las redes de drenaje de los sistemas hidrológicos, que se muestran la Tabla 2.6.

Tabla 2.6. Índice de ramificación de la red de drenaje

Índice de ramificación de la red de drenaje	Valores de relación de confluencias
Muy alto	1.0 < Rc ≤ 3.0
Alto	3.0 < Rc ≤ 4.0
Moderado	4.0 < Rc ≤ 5.0
Bajo	Rc≥ 5.0

Fuente: Roche, M. 1963.

2.2.5.3. Semejanza Dinámica

Está representado por la ecuación (25), donde elevando al cuadrado ambos miembros resulta el parámetro adimensional de la ecuación (32), conocido como coeficiente orográfico ($\pi 2^2 = C_0$), parámetro asociado con las fuerzas gravitaciones de los flujos superficiales y, por ende, con los potenciales de erosión hídrica y de generación de energía hidráulica. (Henaos, R. 1988)

$$C_o = \frac{H^2}{A} \tag{32}$$

Donde:

Co = Coeficiente orográfico

H = Altitud media, m.s.n.m.

A = Área proyectada sobre un plano horizontal.

Los sistemas altoandinos de relieve escarpado, ubicados a gran altitud, tienen coeficientes orográficos muy altos, siendo indicativos de una gran capacidad erosiva y de transporte de sedimentos (Henaos, R. 1988). Por todo ello, se considera que este parámetro constituye un buen referente de similitud dinámica.

Condición de semejanza dinámica: "dos o más sistemas hidrológicos son semejantes dinámicamente si tienen igual coeficiente orográfico", al grado de aproximación previamente adoptado. Con la misma indicación del término "igual" que para el caso de semejanza anterior.

Los valores del coeficiente orográfico son bastante sensibles a la ubicación y relieve de una microcuenca, correspondiendo a las unidades hidrológicas ubicadas en zonas montañosas de cabecera los mayores valores, respecto a las ubicadas en zonas más bajas.

Los valores del coeficiente orográfico, ha permitido establecer rangos potenciales de degradación hídrica para las microcuencas de la región de estudio, según se muestra en la Tabla 2.7.

Tabla 2.7. Potencial de degradación hídrica

Potencial de erosión hídrica	Coeficiente orográfico, Co (%)
Baja	Co < 1.0
Moderada	1.0 < Co ≤ 4.0
Alta	4.0 < Co ≤ 10.0
Muy alta	Co > 10.0

Fuente: Roche, M. 1963.

2.2.5.4. Condición de similitud de sistemas hidrológicos

Según las consideraciones anteriores, "Dos o más sistemas hidrológicos altoandinos son semejantes si cumplen simultáneamente las condiciones de semejanza geométrica, cinemática y dinámica", con cierto nivel de aproximación previamente adoptado.

El grado de aproximación de similitud para fines prácticos se ha fijado como límites máximos del coeficiente de variación de 0.05, 0.20 y 0.30, para el índice de Gravelius, relación de confluencias promedio y coeficiente orográfico, respectivamente. (Ortiz, O. 2015)

2.2.6. INFORMACIÓN HIDROLÓGICA Y SU TRATAMIENTO

Las necesidades de información hidrológica están ligadas a los objetivos del estudio hidrológico y a la disponibilidad de tipo de datos de la red de estaciones pluviométrica (intensidades máximas de precipitación) e hidrométricas (descargas) y el tratamiento de muestras implica metodologías de la hidrología para analizar, seleccionar y sintetizar en productos manipulables y útiles para el diseño, lo cual es posible gracias a la estadística y al cálculo de probabilidades (Roche, M. 1963).

a. Análisis estadísticos

Para describir ciertas características de un conjunto de datos, se puede usar números simples, llamados estadísticos. De ellos se puede obtener un conocimiento más preciso de los datos. (López, F. 1987)

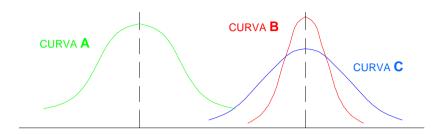
Las características más importantes de este conjunto de datos son:

- Medidas de tendencia central

Una medida de tendencia central ubica e identifica el punto alrededor del cual se central los datos, una de ellas es:

Promedio aritmético (µ): es el primer momento alrededor del origen. Aunque da información sobre la muestra, este parámetro no caracteriza completamente a una variable. Si la muestra es pequeña y contiene valores extremos (altos o bajos) el promedio no será un parámetro real en relación con la población. (Fattorelli & Fernández, 2011).

Se calcula mediante la ecuación:

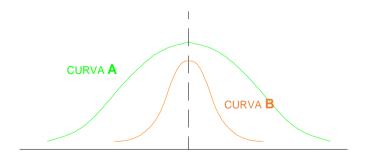

$$\bar{X} = \frac{\sum_{i=1}^{n} xi}{n} \tag{33}$$

Donde:

n = Numero de datos

xi = Datos de la variable. i = 1, 2, 3..., n

En la figura 2.5. la *curva A* queda a la izquierda de los puntos medios de las *curvas B* y *C*, las cuales tienen la misma localización central.


Figura 2.5. Comparación de la localización central de las tres curvas. (Adaptado de López, F. 1987)

- Medidas de Dispersión o variabilidad

Las medidas de dispersión o variabilidad permiten observar cómo se reparten o dispersan los datos a uno y otro lado del centro. Si la dispersión es poca, indica gran uniformidad de los datos. Por el contrario, gran dispersión indica poca uniformidad. (López, F. 1987).

Las medidas de dispersión son indicadores de variabilidad y cuya importancia reside en la necesidad de tomar decisiones, basada en estadísticas básicas. La Dispersión se refiere a la variabilidad entre los valores, es decir, qué tan grandes son las diferencias entre los valores. Además, la idea de dispersión se relaciona con la mayor o menor concentración de los datos en torno a un valor central.

En la figura 2.6 se observa que la *curva A* tiene una mayor separación o dispersión que la *curva B*.

Figura 2.6. Comparación de dispersión o variabilidad de dos curvas. (Adaptado de López, F. 1987)

• **Desviación Estándar (S):** Es el parámetro de dispersión más usado en hidrología, se llama también desviación cuadrática. Es la raíz cuadrada de la varianza y tiene las unidades de X. (Fattorelli & Fernández, 2011)

Se calcula mediante la ecuación:

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{X})^2}$$
 (34)

Donde:

n = Numero de datos

 x_i = Datos de la variable i = 1, 2, 3..., n

 \bar{X} = Media de la serie de datos.

• Coeficiente de variación (Cv): es el cociente entre la desviación estándar y el promedio, X, Es adimensional.

El coeficiente de variación toma valores entre 0 y 1. Si el coeficiente es próximo al 0, significa que existe poca variabilidad en los datos y es una muestra muy compacta. En cambio, si tienden a 1 es una muestra muy dispersa. El coeficiente de variación es la estandarización de la desviación típica al eliminar la unidad de medida de la variable. Se puede considerar una dispersión aceptable cuando El coeficiente de variación sea igual o incluso inferior a 0,5 ó 50,0 %, y cuanto más se aproxime a cero menor será la dispersión. (Carlos de la Puente, V. 2009)

El grado de significancia del coeficiente de variación, aceptados en estadística descriptiva y lo que indica la variabilidad de la muestra se tiene: $Cv \le 10\%$, Existe poca variabilidad; $10\% \le Cv \le 33\%$, Existe una variabilidad aceptable; $33\% \le Cv \le 53\%$, Existe una variabilidad excesiva pero tolerable; Cv > 50%, Existe una variabilidad excesiva. (Carlos de la Puente, V. 2009)

El grado de aproximación de la similitud, desde el punto de vista práctico, se estableció en base al coeficiente de variación (Cv), asumiendo como discrepancias máximas de 0.05 para el índice de Gravelius, 0.20 para la relación de confluencias promedio y 0.30 para el coeficiente orográfico. Sin embargo, el criterio queda a voluntad del investigador en función de sus intereses. (Ortiz, O. 2015)

Se calcula mediante la ecuación:

$$C_V = \frac{S}{\overline{X}} \tag{35}$$

Donde:

S = Desviación Estándar de la serie de datos.

 \bar{X} = Media de la serie de datos.

Estadístico Anderson-Darling (AD)

La prueba Anderson-Darling es una forma de estimación de mínima distancia, y uno de los estadísticos más potentes para detectar discrepancia de datos. El estadístico de Anderson-Darling mide qué tan bien siguen los datos una distribución en particular. Por lo general, mientras mejor se ajuste la distribución a los datos, menor será el estadístico AD. (García, E. 2006).

La prueba AD ve si la muestra proviene de una distribución específica. La fórmula del estadístico **A** para ver si los datos provienen de una distribución con F es $A^2 = -n - S$. Para ello, los datos $\{Y1 < ... < Yn\}$ deben estar ordenados.

$$S = \sum_{k=1}^{n} \frac{2k-1}{n} \left[\ln F(Yk) + \ln(1 - F(Y_{n+1-k})) \right]$$
 (35.1)

El estadístico AD se utiliza para calcular el valor p para la prueba de bondad de ajuste, que ayuda a determinar qué distribución se ajusta mejor a los datos. El estadístico de prueba puede entonces ser comparado contra los valores críticos de la distribución teórica (dependiendo de que F es utilizada) para determinar el p-valor. La prueba AD para normalidad es una prueba de distancia o prueba de función de distribución empírica. Está basada en el concepto de que cuando se da una distribución subyacente hipotética, los datos pueden ser transformados a una distribución uniforme. Los datos muestrales transformados pueden entonces ser probados para uniformidad con una prueba de distancia. (García, E. 2006)

Las hipótesis para la prueba de Anderson-Darling son:

H₀: Los datos siguen una distribución especificada.

H₁: Los datos no siguen una distribución especificada.

Comparar el estadístico de prueba con el valor crítico. Si el estadístico de prueba es menor el valor crítico no se puede rechazar la hipótesis nula.

Tabla 2.8. Valores críticos para la prueba de Anderson-Darling

	A diviste ditant atatiatia		1-α				
Case	Adjusted test statistic	0.900	0.900 0.950 0.975 0.99 1.933 2.492 3.070 3.86 0.632 0.751 0.870 1.02 1.070 1.326 1.587 1.94				
All parameters known	$An^2 for n \ge 5$)					
$N(ar{X}(n),S^2(n))$	$\left(1 + \frac{4}{n} - \frac{25}{n^2}\right) A n^2$	0.632	1.029				
$Expo(ar{X}(n))$	$\left(1 + \frac{0.6}{\sqrt{n}}\right) An^2$	1.070	1.326	1.587	1.943		
Weibull($\widehat{\propto},\widehat{\beta}$)	$\left(1 + \frac{0.2}{\sqrt{n}}\right) A n^2$	0.637	0.757	0.877	1.038		
Log-logistic($\hat{\alpha}$, $\hat{\beta}$)	$\left(1 + \frac{0.25}{\sqrt{n}}\right) An^2$	0.563	0.660	0.769	0.906		

Fuente: Simulation Modeling and Analysis Anderson-Darling

Análisis de tormentas

El análisis de tormenta consiste, en determinar y analizar sus principales características, tales como: altura, intensidad y duración de la precipitación. En conjunto, dichos análisis constituyen registros útiles para el diseño e investigación de predicciones cuantitativas de lluvia; que pueden representarse en tablas o curvas. Una tormenta puede durar desde unos pocos minutos hasta varias horas y aun días. Los elementos a considerar en el análisis de tormentas:

La intensidad (mm/hr): Es la precipitación que ocurre a lo largo del tiempo (mm/hr). Puede ser instantánea o promedio.

La duración (minutos): Es el tiempo que transcurre entre el comienzo y el fin de la tormenta tomado en minutos u horas.

La frecuencia: Es el número de veces que se repite una tormenta de características de intensidad y duración definidas, en un periodo de tiempo más o menos largo, tomado generalmente en años.

Análisis de la Intensidad máxima: La intensidad máxima depende del intervalo de tiempo (Δt); a mayor periodo de duración menor intensidad por unidad de tiempo e inversamente a menor periodo de duración mayor intensidad. Las lluvias que ocasionan la descarga máxima a una cuenca son aquellas cuya duración es igual al tiempo de concentración. El procedimiento para determinar la intensidad máxima es:

Identificado los puntos de interés, se procede a tabular la información indicando:

- Hora: Corresponde a la hora (indicada en el Pluviógrafo en abscisas) en que la precipitación cambia de intensidad.
- Lluvia acumulada: corresponde a la lluvia registrada en las ordenadas del pluviograma.
- Intervalo de tiempo o tiempo parcial: es el tiempo transcurrido en los cambios de intensidad.
- Tiempo acumulado: suma sucesiva de tiempos parciales.
- Intensidad: se obtiene por el cociente entre lluvia parcial y tiempo parcial.

Cálculo de la intensidad máxima para periodos de duración estandarizados: de 5, 10, 30, 60, 120 minutos, dentro del tiempo total de duración de la tormenta.

Análisis de frecuencias: para esto se procede a analizar 2, 3 tormentas mayores de cada año registrado; es decir que para cada una de esas tormentas se determina la intensidad máxima en diferentes periodos de duración. Estos resultados se tabulan en orden cronológico. El siguiente paso es ordenar de manera decreciente, e independiente

de la duración, los valores de las intensidades máximas correspondientes a cada duración. De la misma manera el periodo de retorno será la inversa de la frecuencia.

Curvas Intensidad Duración Frecuencia (IDF): Son un elemento de diseño que relacionan la intensidad de lluvia, la duración de la misma y la frecuencia con que se puede presentar, es decir su probabilidad ocurrencia o el período de retorno. Las curvas IDF, son aquellas que resultan de unir los puntos representativos de la intensidad media en intervalos de diferente duración, y correspondientes todas ellas a una misma frecuencia o Periodo de Retorno. Con los valores obtenidos dan juicios básicos para la realización de cálculos previos al diseño de obras de ingeniería hidráulica.

Modelo de Dick Peschke (1978)

Para el caso de duraciones de tormenta entre 8 y 720 minutos, o no se cuente con registros pluviográficos que permitan obtener las intensidades máximas, estas pueden ser calculadas mediante la metodología de Dick Peschke (Guevara, 1991) que relaciona la duración de la tormenta con la precipitación máxima en 24 horas. La expresión es la siguiente:

$$P_d = P_{24h} \left(\frac{d}{1440}\right)^{0.25} \tag{35.2}$$

Donde:

P_d = Precipitación total (mm)

d = duración en minutos

 P_{24h} = precipitaciones máximas en 24 horas (mm)

La intensidad se halla dividiendo la precipitación Pd entre la duración.

b. Modelos de Distribución Estadística

En la Hidrología estadística existen diversas funciones de distribución de probabilidad teóricas. Para el cálculo de variables extremas utilizaremos el modelo de Distribución (Linsley, R. 1977) y son las siguientes funciones:

Distribución Normal

La distribución normal se origina del teorema del límite central, el cual presupone que si en una serie de variables aleatorias xi éstas son independientes idénticamente distribuidas con promedio μ y varianza σ^2 . La función de densidad de probabilidad normal se define como:

$$f(x) = \frac{1}{S\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-u}{S})^2}$$
 (36)

Donde:

f(x): Función densidad normal de la variable x

x: Variable independiente

- u: Parámetro de localización, igual a la media aritmética de x
- S: Parámetro de escala, igual a la desviación estándar de x
 - Distribución Log Normal 2 Parámetros

Se dice que X posee una distribución log normal cuando la variable aleatoria Y = log X sigue una distribución normal. La función de distribución de probabilidad es:

$$P(x \le x_i) = \frac{1}{S\sqrt{2\pi}} \int_{-\infty}^{x_i} e^{\left(-(x-X)^2/2S^2\right)} dx \qquad (37)$$

Donde:

X y S son los parámetros de la distribución.

Si la variable x de la ecuación (37) se reemplaza por una función y = f(x), tal que $y = \log(x)$, la función puede normalizarse, transformándose en una ley de probabilidades denominada log normal, N(Y, SY). Los valores originales de la variable aleatoria xi deben ser transformados a $y = \log(x)$, de tal manera que:

$$\bar{Y} = \sum_{i=1}^{n} \log^{xi} / n \tag{38}$$

Donde \bar{Y} es la media de los datos de la muestra transformada.

$$S_{y} = \sqrt{\frac{\sum_{i=1}^{n} (yi - \bar{Y})^{2}}{n-1}}$$
 (39)

Donde S_y es la desviación estándar de los datos de la muestra transformada.

Asimismo; se tiene las siguientes relaciones:

$$C_s = a/S_{3v} \tag{40}$$

$$a = \frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} (yi - \bar{Y})^3$$
 (41)

Donde \mathcal{C}_s es el coeficiente de oblicuidad de los datos de la muestra transformada.

- Distribución Log Normal 3 Parámetros

La función de densidad de x es:

$$f(x) = \frac{1}{(x - x_0)\sqrt{(2\pi)S_y}} e^{-\frac{1}{2}(\frac{Ln(x - x_0) - u_y}{Sy})}$$
(42)

Para x>x0

Dónde: x_0 es parámetros de posición, Uy parámetro de escala o media, Sy^2 parámetro de forma o varianza.

$$x_0 = \frac{x_1 * x_n - x^2 \text{ mediana}}{x_1 + x_n - 2x \text{ mediana}}$$

$$\tag{43}$$

Cuando:

 $x_1+x_n-2x_{mediana}>0$, x_0 Representa el límite inferior, μy y σ se estiman como la media y desviación de $y_i=ln(x_i-x_0)$.

 $x_1+x_n-2x_{mediana}<0$, x_0 representa el límite superior, $\mu y \ \, \sigma$ se estiman como la media y desviación de $y_i=ln(x_0-x_i)$.

- Distribución Log Person Tipo III

La función de densidad es:

$$f(x) = \frac{(lonx - x_0)^{y-1} e^{\frac{(lonx - x_0)}{\beta}}}{x\beta^y r(y)}$$
(44)

Valido para:

*x*0≤*x*<∞ −∞<*x*0<∞ 0<*β*<∞ 0<*Y*<∞

Donde x_0 parámetro de posición, Y parámetro de tiempo, β parámetro de escala.

- Distribución Gumbel

La distribución de Valores Tipo I conocida como Distribución Gumbel o Doble Exponencial, tiene como función de distribución de probabilidades la expresión (45).

Función Acumulada: La función de distribución acumulada de la distribución Gumbel, tiene la forma:

$$F_{(x)} = e^{-e^{-\left(\frac{x-\mu}{\alpha}\right)}}$$
(45)

Donde:

e= base de los logaritmos neperianos = 2.71828183

 $0 < \alpha < \infty$ = parámetro de escala.

 $-\infty < \mu < \infty$ = parámetro de posición, valor central o moda.

La variable aleatoria reducida de Gumbel, se define como:

$$y = \frac{x - u}{a} \tag{46}$$

$$x = u + ay \tag{47}$$

Estimación de Parámetros – Método de Momentos Ordinarios: Usando el método de momentos, y, considerando la constante de Euler, se obtienen las siguientes relaciones

$$a = \frac{\sqrt{6}}{\pi} S \tag{48}$$

$$u = \bar{X} - 0.5772156a \tag{49}$$

Donde:

 α = Parámetro de escala, μ = Parámetro de posición, S= Desviación estándar de los datos hidrológicos, \overline{X} = Promedio de los datos hidrológicos

c. Pruebas de Bondad de Ajuste

Las pruebas de bondad de ajuste son pruebas de hipótesis que se usan para evaluar si un conjunto de datos es una muestra independiente de la distribución elegida.

Además, estas pruebas consisten en comparar gráfica y estadísticamente, si la frecuencia empírica de la serie analizada, se ajusta a una determinada función de probabilidades teórica seleccionada a priori, con los parámetros estimados con base en los valores muestrales. Las pruebas estadísticas, tienen por objeto, medir la certidumbre que se obtiene al hacer una hipótesis estadística sobre una población, es decir, calificar el hecho de suponer que una variable aleatoria, se distribuya según una cierta función de probabilidades (López, F. 1987).

Prueba Smironov – Kolmogorov

La prueba de Smirnov Kolmogorov, consiste en comparar las diferencias existentes, entre la probabilidad teórica, tomando el valor máximo del valor absoluto, de la diferencia entre el valor observado y el valor de la recta del modelo, es decir:

$$\Delta = \max |F(x) - P(x)| \tag{50}$$

Dónde:

Δ: Estadístico de Smirnov – Kolmogorov.

F(x): Probabilidad de la distribución teórica.

P(x): Probabilidad experimental o empírica de los datos, denominada también frecuencia acumulada.

Esta prueba se utiliza para contrastar la hipótesis acerca de la distribución de la población, de la cual se extrae una variable aleatoria. Las hipótesis a contrastar son:

H₀: Los datos analizados siguen una distribución Normal.

H₁: Los datos analizados no siguen una distribución Normal.

Por tanto, el criterio para la toma de la decisión entre las dos hipótesis será de la forma:

P (
$$\Delta > \Delta_0$$
)= $\alpha \leftrightarrow$ Aceptar H₁
P ($\Delta < \Delta_0$)= $\alpha \leftrightarrow$ Aceptar H₀

El estadístico " Δ " tiene su función de distribución de probabilidades y " Δ_0 " es un valor crítico para un nivel de significación α . A su vez, el valor de " Δ_0 " depende del tipo de distribución a probar y se encuentra tabulado.

Tabla 2.9. Valores críticos de ∆₀ del estadístico Smirnov - Kolmogorov, para varios valores de N y valores de significación

TAMAÑO MUESTRAL	NIVEL DE SIGNIFICACIÓN								
N	0.20	0.10	0.05	0.01					
5	0.45	0.51	0.56	0.67					
10	0.32	0.37	0.41	0.49					
15	0.27	0.3	0.34	0.4					
20	0.23	0.26	0.29	0.36					
25	0.21	0.24	0.27	0.32					
30	0.19	0.22	0.24	0.29					
35	0.18	0.2	0.23	0.27					
40	0.17	0.19	0.21	0.25					
45	0.16	0.18	0.2	0.24					
50	0.15	0.17	0.19	0.23					
N > 50	$\frac{1.07}{\sqrt{\mathrm{N}}}$	$\frac{1.22}{\sqrt{\mathrm{N}}}$	$\frac{1.36}{\sqrt{N}}$	$\frac{1.63}{\sqrt{N}}$					

FUENTE: Linsley, R. 1977

La tabla 2.8 muestra los valores críticos de " Δ_0 " del estadístico del Smirnov - Kolmogorov " Δ ", para valores de "N" y diferentes niveles de significación. El procedimiento para efectuar el ajuste, mediante el estadístico del Smirnov - Kolmogorov, es el siguiente:

Calcular la probabilidad empírica o experimental P(x) de los datos cuyos valores han sido ordenados en forma creciente, para esto se usa la fórmula de Weibull:

$$P(x) = \frac{m}{N+1} \tag{51}$$

Dónde:

P(x): Probabilidad experimental de los datos (frecuencia acumulada)

N: Número de datos.

m: Número de orden.

Calcular la probabilidad teórica F(x): usar la ecuación de la función acumulada F(x), o tablas elaboradas para tal fin.

Calcular la diferencia: P(x)-F(x), para todos los valores "x".

Seleccionar la máxima diferencia: "Amáx." Con la ecuación (51)

Calcular el valor crítico del estadístico " Δ ", es decir " Δ_0 " para un α =5% y N=número de datos. Los valores de " Δ_0 ", se muestran en la tabla 2.8.

Comparar el valor estadístico " Δ máx.", con el valor crítico " Δ_0 ", con los siguientes criterios de decisión:

$$\Delta < \Delta_0 \rightarrow \text{el ajuste es bueno}$$

$$\Delta \ge \Delta_0 \rightarrow \text{el ajuste no es bueno}$$

d. Modelación y simulación del modelo probabilístico Gumbel

Estimación de los parámetros del modelo ajustado

Se determina los parámetros estadísticos del modelo Gumbel, modelo al que se ajustó la muestra, utilizando las ecuaciones (48) y (49).

Interpretación de la Distribución de Gumbel:

Si se desea calcular la probabilidad de que se presente un fenómeno (caudal, intensidad de precipitación, etc.) mayor o igual que x (dato registrado), será:

$$1 - F_{(x)} = 1 - e^{-e^{-\left(\frac{x-\mu}{\alpha}\right)}}$$
 (52)

Donde:

x= Dato dado cuya probabilidad se desea calcular.

e= base de los logaritmos neperianos = 2.71828183

 α = Parámetro de escala.

 μ = Parámetro de posición.

Por esta ecuación se calcula la probabilidad de Gumbel a relacionar con la probabilidad de Weibull, en la prueba de bondad de ajuste Smirnov – Kolmogorov.

Si se desea calcular x (caudal, intensidad de precipitación, etc.) para un período de retorno seleccionado (5, 10, 25 años, etc.), será:

$$x = u - \alpha * \left(Ln \left(-Ln \left(1 - \frac{1}{T} \right) \right) \right) \tag{53}$$

Donde:

x= Dato hidrológico que se desea calcular.

Tr= Período de retorno seleccionado (lo elige quien realiza el cálculo) (en años).

 α = Parámetro de escala.

 μ = Parámetro de posición.

2.2.6.1. Funciones de transferencia de información

Establecida la similitud de sistemas hidrológicos, todos los parámetros adimensionales que controlan las leyes del fenómeno estudiado (ecuaciones (24), (25), (26), (27) y (28)) se convierten en funciones de transferencia, dependiendo en qué parámetro se ubique la variable de interés (Sotelo, G. 1977).

En ocasiones, con el propósito de mejorar la calidad de transferencia, se pueden realizar combinaciones entre parámetros para obtener otro(s) parámetro adimensional(es) con mayor cantidad de variables, tal como el parámetro adimensional (Oswald) de la ecuación (33), resultado de combinar las ecuaciones (24) y (25), muy importante para transferir escorrentías (Ortiz, O. 2015).

$$\pi_{12} = \frac{QH}{A^{\frac{3}{2}}P} \tag{54}$$

Aplicando el principio de similitud para una dupla de cuencas origen y destino, el parámetro adimensional de la ecuación (54) queda conforme lo establece la ecuación (55), o su equivalente (56), en función de escalas (Ortiz, O. 2015).

$$\frac{Q_0 H_0}{A_0^{3/2} P_0} = \frac{Q_d H_d}{A_d^{3/2} P_d} \tag{55}$$

Los subíndices de las variables del primer y segundo miembro de esta ecuación corresponden a los sistemas hidrológicos de origen y destino, respectivamente:

$$Qd = \left(\frac{H_0}{H_d}\right) \left(\frac{P_d}{P_0}\right) \left(\frac{A_d}{A_0}\right)^{\frac{3}{2}} Qo \tag{56}$$

$$Q_d = H_e^{-1} P_e A_e^{\frac{3}{2}} Q_0 \tag{57}$$

Dónde:

H_e: escala de altitudes.

Pe: escala de precipitaciones.

A_e: escala de áreas.

Q₀: caudal total en la cuenca de origen.

Q_d: caudal total transferido a la cuenca destino.

La calidad de información transferida depende de la calidad de información de la estación de origen. Pueden ser datos promedio, mensuales, anuales u otros. La información puede estar procesada o no, pero se prefiere siempre transferir el producto con el objeto de evitar la propagación de mayores errores. Por esta razón, si hubiere necesidad de modelamientos, conviene realizarlo antes de la transferencia. Los datos transferidos jamás reemplazan a los datos "vírgenes", pero son de mucha utilidad para solucionar problemas en la práctica de la ingeniería hidráulica. (Ortiz, O. 2015)

Otras de las variables de mayor escasez son las intensidades de tormentas máximas, cuya función de transferencia se obtiene a partir de la ecuación (26), la que mediante el principio de similitud se convierte en la ecuación (58) o su equivalente (59), en función de escalas:

$$\frac{I_0 t_0}{H_0} = \frac{I_{\rm d} t_{\rm d}}{H_{\rm d}} \tag{58}$$

$$Id = \left(\frac{H_{\rm d}}{H_0}\right) \left(\frac{t_0}{t_d}\right) Io \tag{59}$$

$$I_d = H_e t_e^{-1} I_0 (60)$$

l_d: intensidad de precipitación en la cuenca de destino.

l₀: intensidad de precipitación en la cuenca de origen.

te: escala de periodo de duración.

H_e: escala de altitudes.

Ecuación válida para transferencia de información de intensidades de precipitación para cualquier periodo de duración y frecuencia. Igualmente, que, para el caso de escorrentías, se prefiere transferir el producto del análisis de frecuencias de tormentas y de modelamientos previos. (Ortiz, O. 2015)

2.3. DEFINICIÓN DE TÉRMINOS BÁSICOS

- Hidrología: Es la ciencia natural que estudia al agua, su ocurrencia, circulación y distribución en la superficie terrestre, sus propiedades químicas y físicas y su relación con el medio ambiente, incluyendo a los seres vivos. (Villón, M. 2004)
- Cuenca Hidrográfica: entiéndase aquí como un sistema hidrológico, que viene ser un conjunto de partes diferenciadas que interactúan como un todo. El ciclo hidrológico es para de ella. Considerada también como una zona de la superficie terrestre en donde las gotas de lluvia que caen sobre ella tienden a ser drenadas por el sistema de corrientes hacia un mismo punto de salida o punto emisor.
- Análisis dimensional: El análisis dimensional constituye la base científica para construir, experimentar y transferir características de variables del modelo al prototipo; procedimiento que requiere de una adecuada planificación si se desea llegar a resultados aceptables en cuanto a calidad de información, costo y tiempo. (Ortiz, O. 2015)
- Leyes físicas de los sistemas hidrológicos altoandinos: Conjunto de leyes físicas que describen similitud de los sistemas hidrológicos. El fenómeno físico de mayor relevancia que tiene lugar en las microcuencas altoandinas es el de

- precipitación escorrentía, variables causa y efecto, respectivamente. La primera variable dependiente de factores climatológicos y la segunda de la naturaleza intrínseca de cada sistema hidrológico. (Ortiz, O. 2015)
- Parámetros adimensionales: el análisis dimensional permite agrupar las variables implicadas en un fenómeno en parámetros adimensionales, y expresar el problema en términos de la relación funcional de estos parámetros mediante la aplicación del teorema PI de Vaschy-Buckingham. La triada de parámetros adimensionales, sobre el que descansa la similitud de sistemas hidrológicos altoandinos, está conformado por el índice de Gravelius, relación confluencias y coeficiente orográfico, como referentes de semejanza geométrica, cinemática y dinámica, respectivamente. (Ortiz, O. 2015)
- Similitud de sistemas hidrológicos: dos o más sistemas hidrológicos altoandinos son semejantes si cumplen simultáneamente las condiciones de semejanza geométrica, cinemática y dinámica con cierto nivel de aproximación previamente adoptado. El grado de aproximación de similitud para fines prácticos se ha fijado como límites máximos del coeficiente de variación de 0.05, 0.20 y 0.30, para el índice de Gravelius, relación de confluencias promedio y coeficiente orográfico, respectivamente. (Ortiz, O. 2015)
- Número Oswald: combinación de parámetros adimensionales con mayor cantidad de variables, tal como el parámetro adimensional (Oswald) muy importante para transferir escorrentías. (Ortiz, O. 2015)
- La vida útil (N): la vida útil de una obra hidráulica es un concepto económico en relación con las depreciaciones y costos de las mismas. La "vida" de las estructuras debe ser la máxima posible para contribuir a la buena gestión de recurso hídrico.
- Periodo de retorno (Tr): Intervalo de tiempo promedio, dentro del cual un evento de magnitud X puede ser igualado o excedido por lo menos una vez en promedio. Estadísticamente el periodo de retorno es la inversa de la probabilidad de excedencia. (Linsley, R. 1977)
- Riesgo de falla (R): Se define el riesgo R de un diseño como la probabilidad de que la avenida para la cual se diseña la obra sea excedida. Se entiende que ésta es una situación de riesgo, pues la obra se diseña para soportar cierta avenida máxima, y crecientes mayores le podrían hacer daño o incluso destruirla.
- La Intensidad de tormentas: es la cantidad de agua caída por unidad de tiempo.
 Lo que interesa particularmente de cada tormenta es la intensidad máxima que se haya presentado. Es decir, la altura máxima de agua caída por unidad de tiempo.

CAPÍTULO III. MATERIALES Y MÉTODOS

3.1. UBICACIÓN

3.1.1. UBICACIÓN DE LA INVESTIGACIÓN

La investigación se realizó en las Cuencas Hidrográficas de la Sierra de Piura. La región Piura está ubicada en el extremo nor-occidental del Perú. La región de Piura se encuentra comprendido entre los cuadrángulos de la carta nacional (9b, 9c, 9d, 10b, 10c, 10d, 11b, 11c, 11d, 11e, 12b, 12c, 12d, 12e,), con coordenadas UTM – DATUM – WGS84 – ZONA – 17S.

➣ Geográfica

Sus coordenadas geográficas se encuentran entre los 4°04'50" y 6°22'10" de latitud sur y los 79°13'15" y 81°19'35" de longitud oeste del Meridiano de Greenwich. Tiene como límites:

Norte: Región de Tumbes y la República del Ecuador Este: Región de Cajamarca y la República del Ecuador

Sur: Región de Lambayeque

Oeste: Océano Pacífico

Demarcación Política

País : Perú Región : Piura

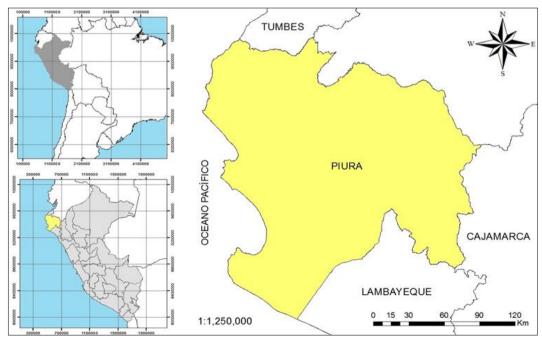


Figura 3.1. Ubicación geográfica de la región Piura

3.1.2. ÉPOCA DE LA INVESTIGACIÓN

La presente investigación se realizó desde el mes de diciembre del 2018 hasta el mes de junio del 2019.

3.2. METODOLOGÍA DE LA INVESTIGACIÓN

3.2.1. TIPO, NIVEL, DISEÑO Y MÉTODO DE INVESTIGACIÓN

La metodología de investigación empleada en la Tesis es de tipo Aplicada, debido a la utilización de los conocimientos en la práctica, como la Similitud de sistemas hidrológicos altoandinos y transferencia de información hidrológica; nivel descriptivo correlacional, por la interacción de los componentes: cartografía, hidrología y similitud hidrológica; de diseño Descriptivo, basada en la toma y procesamiento de datos cartográficos, en el tratamiento de datos hidrológicos y de método cuantitativo con la determinación de sistemas hidrológicos con similares y generar transferencia de información hidrológica.

3.2.2. MUESTRA HIDROLÓGICA

Se seleccionó una muestra de 100 microcuencas altoandinas ubicadas en la sierra de Piura - Perú, a partir de información cartográfica del Instituto Geográfico Nacional (IGN), conjuntamente con modelos de elevación digital (DEM) Aster Global de USGS Earth Explorer, de tal manera que se desarrollen por más de 1500 m de altitud, con áreas entre 20 y 200 Km².

3.2.3. UNIDAD DE ANÁLISIS

La unidad de análisis fue las cuencas hidrográficas de la sierra de Piura – Perú que cumplan el principio de similitud de sistemas hidrológicos.

3.2.4. TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS

Técnicas: El presente estudio empleó técnicas directas de recopilación de información, los cuales permitieron el procesamiento de estas para la Regionalización morfométrica adimensional de cuencas hidrográficas de la sierra de Piura - Perú, con fines de transferencia de información hidrológica.

Instrumentos: Esta investigación utilizó como instrumento el software ArcGIS como modelo de geoprocesamiento de información cartográfica y MS Excel con Programación de Macros en Visual Basic para la determinación de los parámetros geomorfológicos y de similitud hidrológica, su agrupamiento y luego realizar la transferencia de información hidrológica, complementando en el proceso de selección de sistemas hidrológicos similares con el software Statistical Minitab.

3.3. PROCEDIMIENTO

A continuación, se presenta un flujograma del procedimiento realizado en la presente investigación:

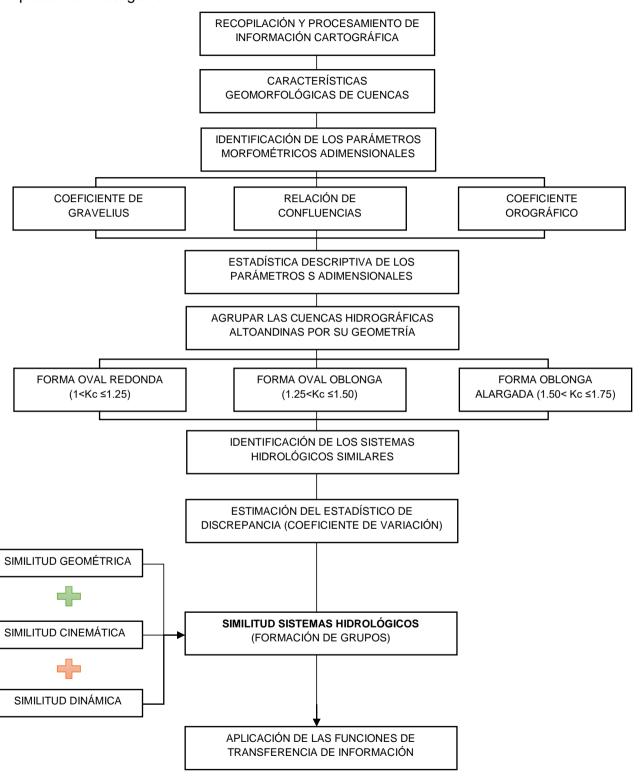


Figura 3.2. Flujograma del procedimiento realizado en la investigación

3.3.1. Delimitación de las Microcuenca

Se realizó la delimitación de las microcuencas hidrográficas de la sierra de Piura, con el uso del software ArcGIS, pero previamente ubicando los emisores, se trabajó con modelos de elevación digital (DEM) Aster Global de USGS Earth Explorer (Figura 3.3.). Se usaron las cartas nacionales comprendidos en la región de Piura con coordenadas UTM – DATUM – WGS84 – ZONA – 17S, descritas en la tabla 3.1.

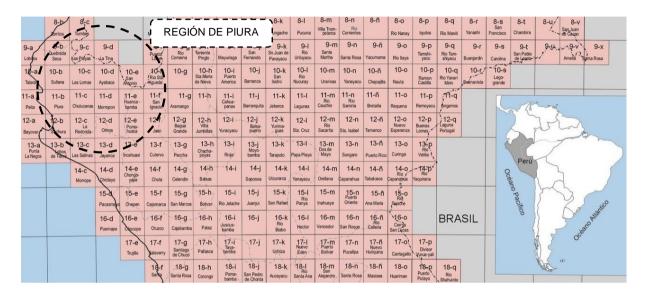


Figura 3.3. Cartas Nacionales de la región de Piura (Adaptado del I.G.N_Perú)

Tabla 3.1. Cartas Nacionales que abarca la sierra de la región de Piura

Código	Nombre	Zona
9-b	Quebrada Seca	17 S
9-c	Las Playas	17 S
9-d	La Tina	17 S
10-b	Sullana	17 S
10-c	Las Lomas	17 S
10-d	Ayabaca	17 S
10-e	San Antonio	17 S
11-b	Piura	17 S
11-c	Chulucanas	17 S
11-d	Morropon	17 S
11-e	Huancabamba	17 S
12-b	Sechura	17 S
12-c	La Redonda	17 S
12-d	Olmos	17 S
12-e	Pomahuaca	17 S

Fuente: Carta Nacional de la sierra de Piura (Adaptado del I.G.N_Perú)

Abriendo los archivos Shapefiles de ríos y curvas a nivel, para que, una vez unidos (un solo archivo shapefile de ríos y uno de curvas a nivel), pueda ubicarse los emisores de las microcuencas existentes. Este proceso, en resumen, se expresa en el siguientes Flujograma:

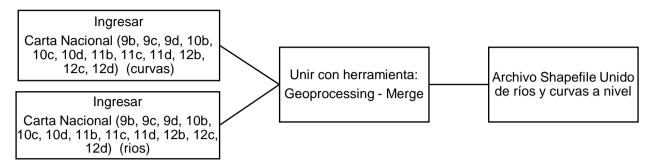


Figura 3.4. Flujograma para el proceso de unión de curvas y ríos en el software ArcGIS

Una vez ubicado el punto emisor de las microcuencas de la sierra de Piura, se procedió con la delimitación del mismo, usando, de igual modo, el software ArcGIS, con el siguiente procedimiento:

- Se convirtió el archivo de curvas a nivel en un archivo TIN (redes irregulares de triángulos) y luego en un archivo ráster (datos pixeleados o en celdas: filas y columnas, cada celda representa un dato con información específica).
- Se eliminaron imperfecciones (huecos y sumideros) del ráster (herramienta Fill).
- Se estableció la dirección del flujo hidrológico tomando en cuenta la pendiente (herramienta Flow Direction).
- Se determinó la acumulación del flujo en el ráster (celdas que fluyen hacia cada celda descendiendo sobre la pendiente) (herramiento Flow Acumulation).
- Para tener una mejor visión de la red hídrica (zoom), se utilizó un condicional (herramienta Con), que permite clasificar las celdas de acumulación de flujo superior y mostrar con mayor precisión a las de flujo menor (subcuencas y microcuencas), a raíz de este condicional, se genera un archivo shapefile o vector (figuras definidas, líneas que representen la red hídrica en este caso).
- Se interpoló el punto emisor ya identificado con el ráster generado anteriormente, para que dicho punto tenga coordenadas en tres dimensiones (herramienta Interpolate Shape).
- Finalmente, teniendo en cuenta la dirección del flujo y el punto emisor interpolado, se generó automáticamente la delimitación de las microcuencas (herramienta Watershed), a la que simplemente se la convierte a un archivo shapefile (en este caso se genera un polígono) (herramienta: Raster to Polygon).

Todo el procedimiento descrito anteriormente se muestra en el siguiente Flujograma, presentado a continuación:

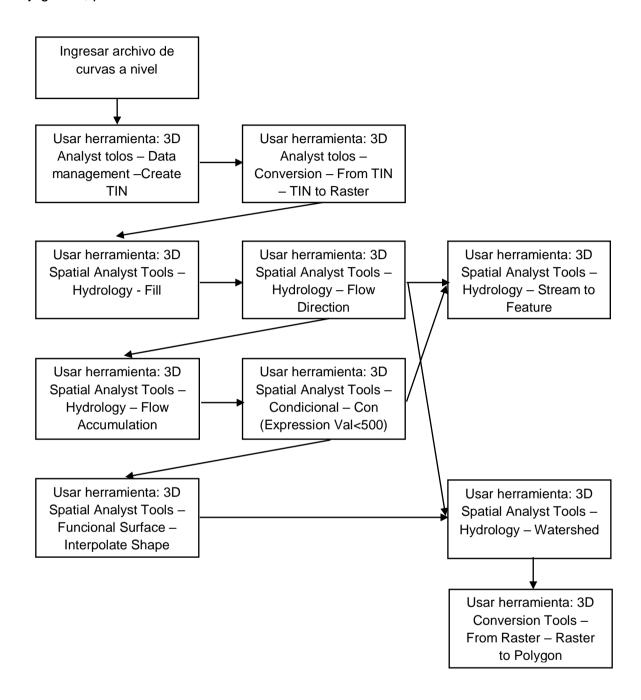
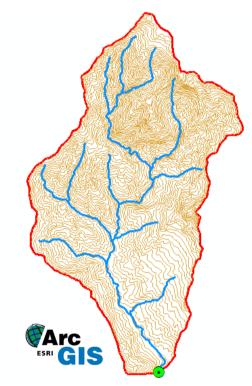
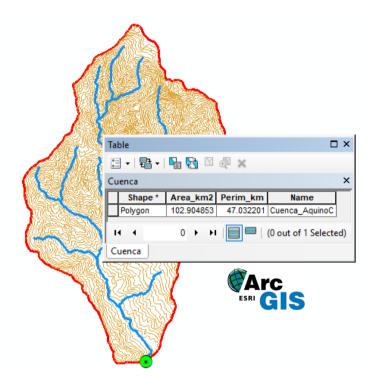


Figura 3.5. Flujograma para delimitación de las microcuencas en el software ArcGIS

Una vez obtenida la cuenca, con el fin de tener un mejor panorama para su análisis y presentación en planos, fue necesario cortarla, mostrando las curvas a nivel y el cauce o cauces únicamente dentro de la microcuenca. Para ello también se utilizó el software ArcGIS, mediante la herramienta Clip. Para resumir este proceso se muestra el siguiente Flujograma:

Figura 3.6. Flujograma para obtener las curvas a nivel y los cauces dentro del área de influencia de las microcuencas.




Figura 3.7. Microcuenca Modelo delimitada en el software ArcGIS

3.3.2. Parámetros Geomorfológicos de la Cuenca

Para obtener los parámetros geomorfológicos las cuencas hidrográficas de la sierra de Piura utilizaremos el software ArcGIS y MS Excel con Programación de Macros en Visual Basic, se realizaron consultas simples sobre los atributos del polígono generado (cuenca en formato shapefile).

Parámetros de forma: para obtener el área y perímetro se parte de la matriz de atributos Watershed la cual posee valores de atributos característicos propios de la cuenca. Para calcular el área y perimetro se usó la función Calculate Geometry de ArcGIS.

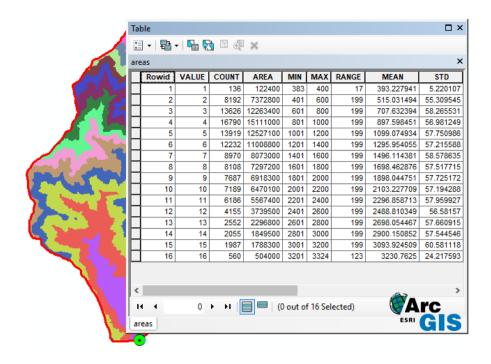

Para conocer el Ancho promedio, Factor de Forma, Coeficiente de Gravelius (Ecuaciones (3), (4), (5) respectivamente), hacemos uso MS Excel con Programación de Macros en Visual Basic, el cual toma valores área y perímetro designada por los atributos del polígono generado (microcuenca en formato shapefile).

Figura 3.8. Obtención de Parámetros de forma de la microcuenca modelo con el software ArcGIS

Parámetros de relieve: para obtener la curva hipsométrica y la curva de frecuencia de altitudes, las cuales se obtuvieron con los softwares ArcGIS y MS Excel con Programación de Macros en Visual Basic, con el siguiente procedimiento:

- En ArcGIS se reclasificó al archivo ráster de la cuenca para obtener áreas entre curvas a nivel, en intervalos iguales (herramienta Reclass).
- Para poder consultar la información (es decir, qué área se encuentra entre cada intervalo de curvas de nivel), se tuvo que generar la tabla que nos muestre estos datos necesarios para construir los gráficos que requerimos (herramienta Zonal Statistics as Table).

Figura 3.9. Obtención de tabla de atributos para elaborar la curva hipsométrica y el polígono de frecuencia de altitudes en el software ArcGIS para la microcuenca Modelo.

- Finalmente, a través del MS Excel con Programación de Macros en Visual Basic y con los datos obtenidos en el software ArcGIS, se construyó la tabla y se realizaron los cálculos necesarios que nos permitieron obtener la curva hipsométrica y el polígono de frecuencia de altitudes, con las que, luego de realizar cálculos adicionales, se pudieron obtener las altitudes características paras las microcuencas.
- Con estas gráficas, podemos establecer las altitudes características de la microcuenca, de ellas, la que se utilizó en los cálculos estadísticos será la altitud media, la altitud más frecuente.

Para determinar la pendiente media de la cuenca (ecuación (11)), En ArcGIS se obtuvo directamente las tablas de áreas, y según el criterio de Alvord se analiza la pendiente existente entre curvas de nivel, trabajando con la faja definida por las líneas medias que pasan entre las curvas de nivel, Así la pendiente media de la cuenca será el promedio pesado de la pendiente de cada faja en relación con su área obtenidos con MS Excel con Programación de Macros en Visual Basic.

Para conocer el Coeficiente de masividad (ecuación (12)) se realizó la relación entre la altitud media del relieve y la superficie proyectada y para el Coeficiente Orográfico (ecuación (13)) se calculó el producto entre la altitud media y el coeficiente de masividad, estos cálculos realizados en MS Excel con Programación de Macros en Visual Basic.

Parámetros de la Red Hidrográfica: Para obtener la pendiente y longitud del cauce principal, utilizamos el comando Flow Length en el software ArcGIS.

Figura 3.10. Obtención de tabla de atributos para determinar las pendiente y longitud del cauce principal en el software ArcGIS para la microcuenca Modelo.

Para conocer Tiempo de Concentración, calculado en MS Excel con Programación de Macros en Visual Basic aplicando Kirpich (Ecuación (15)), es el tiempo que una partícula tarda en llegar del punto más alejado al punto de desagüe.

Para el caso de Categorización de la red de drenaje, con la red de drenaje ya definida se aplica la función Stream definition en el software ArcGIS, para definir los órdenes de las corrientes según el método propuesto por Horton- Strahler. Entramos en Arc-Toolbox, nos ubicamos en Spatial Analyst Tools, escogiendo Map Algebra y clic en Raster Calculator. Incorporamos la formula siguiente: con ("FlowAcc_flow" > 100, 1). La siguiente función será Stream Link que divide el cauce en segmentos no interrumpidos. Luego, Stream Order, En el método Strahler, el orden de la corriente se incrementa cuando se cruzando dos drenajes del mismo orden. Dos drenajes de diferentes órdenes no se traducirán en un aumento del orden de la siguiente corriente. Finalmente, Stream to Feature, Crea un shape de drenajes, para su visualización de la Red de drenaje en formato shp, para una mejor visualización entramos en sus propiedades, simbología y ordenamos en orden de color 1, 2 y 3.

Figura 3.11. Obtención de tabla de Categorización de la red de drenaje en el software ArcGIS para la microcuenca Modelo.

La obtención de la Relación de confluencias (Ecuación (17)), dividimos el número total de ríos de cierto orden por el número total de ríos de orden inmediatamente superior.

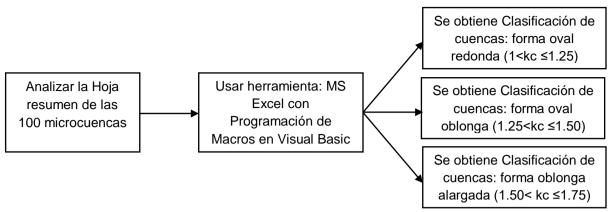
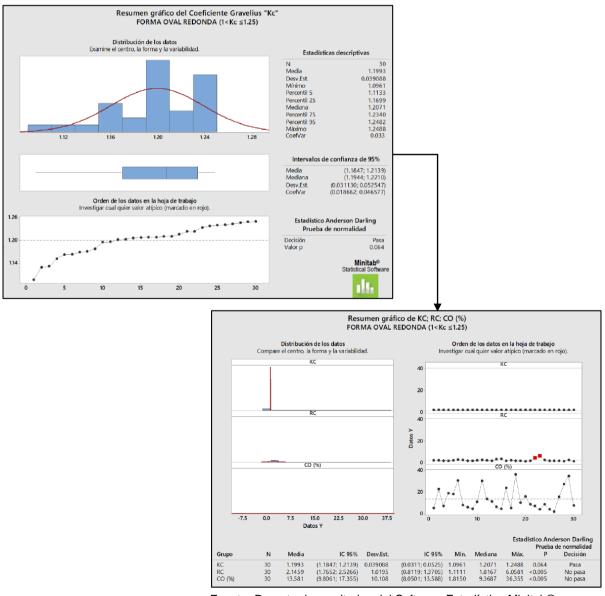
La determinación de la Densidad de drenaje, Frecuencia de Ríos, Extensión media de escurrimiento superficial, Coeficiente de torrencialidad, Superficie Umbral de Escurrimiento (Ecuaciones (19), (20), (21), (22), (23)), se calcula con MS Excel con Programación de Macros en Visual Basic.

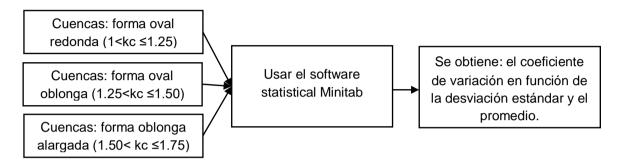
3.3.3. Parámetros Adimensionales de similitud de sistemas hidrológicos.

La obtención de Parámetros Adimensionales de Similitud de las cuencas hidrográficas como son el Coeficiente gravelius (Kc), Relación de confluencias (Rc), Coeficiente orográfico (Co), se determinó de acuerdo a las ecuaciones (29), (31), (32) respectivamente para cada una de las cuencas, con MS Excel con Programación de Macros en Visual Basic.

3.3.4. Clasificación de microcuencas por su geometría

Para la clasificación se usó MS Excel con Programación de Macros en Visual Basic para todas las microcuencas por su geometría, utilizamos el criterio de rangos del índice de Gravelius de la Tabla 2.5. Para resumir este proceso se muestra el siguiente Flujograma:


Figura 3.12. Flujograma para obtener la clasificación de microcuencas por su geometría.

Con el fin de una mejor selección de las unidades hidrológicas, realizamos la prueba de Anderson Darling para Kc, Rc, Co (%) para cada grupo de formas resultantes de las Cuencas Hidrográficas, para luego excluir de cada grupo geométrico las unidades hidrológicas de mayor discrepancia.

3.3.5. Estimación del estadístico de discrepancia

La Estimación del estadístico de discrepancia, dado por el coeficiente de variación, para cada parámetro de semejanza. El grado de aproximación de similitud hidrológica para fines prácticos se ha fijado como límites máximos del coeficiente de variación de 0.05, 0.20 y 0.30, para el índice de Gravelius, relación de confluencias promedio y coeficiente orográfico, respectivamente, se determinó con MS Excel con Programación de Macros en Visual Basic y el software statistical Minitab.

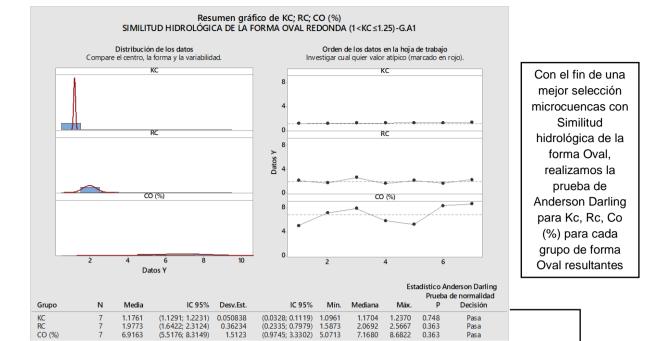
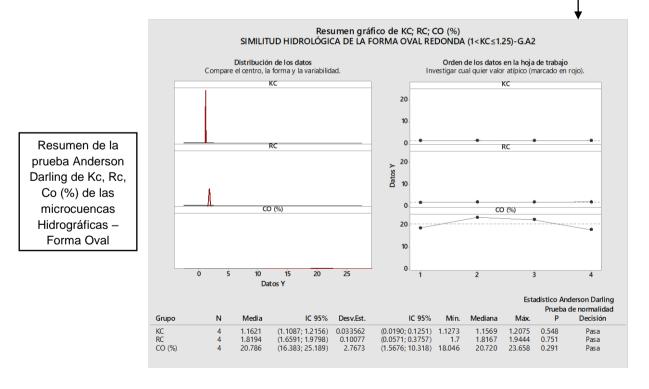


Figura 3.13. Flujograma para obtener el estadístico de discrepancia, dado por el coeficiente de variación.

3.3.6. Agrupación de microcuencas con Similitud hidrológica


En este proceso agrupamos con MS Excel con Programación de Macros en Visual Basic las microcuencas con Similitud hidrológica de la forma Oval según la tabla 2.5, además se excluyen de cada grupo geométrico las unidades hidrológicas de mayor discrepancia, hasta que el coeficiente de variación para cada parámetro de similitud hidrológica, no exceda el límite máximo previamente definido. Desde luego, las unidades hidrológicas descartadas pueden ir a conformar otros grupos de microcuencas similares. Las unidades hidrológicas que quedan, luego del paso precedente, son microcuencas hidrológicamente similares.

Con el fin de una mejor selección microcuencas con Similitud hidrológica de la forma Oval, realizamos la prueba de Anderson Darling para Kc, Rc, Co (%) para cada grupo de forma Oval resultantes, para luego excluir de cada grupo geométrico las unidades hidrológicas de mayor discrepancia. La prueba Anderson-Darling es una forma de estimación de mínima distancia, y uno de los estadísticos más potentes para detectar discrepancia de datos y permite observar cómo se reparten o dispersan los datos a uno y otro lado del centro. Si la dispersión es poca, indica gran uniformidad de los datos y existe mayor similitud, cuya importancia reside en la necesidad de tomar decisiones desde el punto de vista de la ingeniería basada en estadísticas básicas.

Fuente: Reporte de resultados del Software Estadístico Minitab©

Se excluyen de cada grupo geométrico las unidades hidrológicas de mayor discrepancia, hasta que el coeficiente de variación para cada parámetro de similitud hidrológica, no exceda el límite máximo. Las unidades hidrológicas descartadas pueden ir a conformar otros grupos de

Fuente: Reporte de resultados del Software Estadístico Minitab©

Figura 3.14. Flujograma para obtener microcuencas con similitud hidrológica de la forma Oval, mediante la prueba de Anderson Darling.

3.3.7. Transferencia de Información hidrológica

3.3.7.1. Sistema hidrológico con información hidrológica

Para ilustrar la aplicación de transferencia de información mediante esta metodología se tomó como sistema origen la microcuenca Rio Cuevas (Tabla 3.9), en cuya cercanía de su cuenca baja se ubica la estación pluviométrica Tuluce (05 º 28' 37.83" S; 79 º 20' 50.71" W; altitud, 2233 msnm) del Servicio Nacional de Meteorología e Hidrología, SENAMHI-Perú, en la Región de Piura, provincia de Huancabamba, distrito de Sondor.



Figura 3.15. Red estaciones en monitoreo de la Región de Piura

Fuente: Servicio Nacional de Meteorología e Hidrología del Perú (www.senamhi.gob.pe)

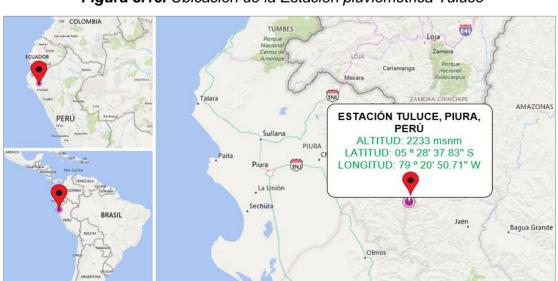


Figura 3.16. Ubicación de la Estación pluviométrica Tuluce

Fuente: Servicio Nacional de Meteorología e Hidrología del Perú (www.senamhi.gob.pe)

Tabla 3.2. Información meteorológica de intensidades máximas (mm/h) de la estación pluviométrica Tuluce (altitud 2233 msnm), microcuenca del Rio Cuevas.

ESTACIÓN: TULUCE REGIÓN: PIURA

ALTITUD: 2233 msnm PROVINCIA: HUANCABAMBA LATITUD: 05 ° 28' 37.83" S DISTRITO: SONDOR

LONGITUD: 79 ° 20' 50.71" W

LONGITUD:	79 ° 20' 50.71'				
Año	5 Min	10 Min	30 Min	60 Min	120 Min
1978	116.23	69.11	30.32	18.03	10.72
1979	102.83	61.14	26.82	15.95	9.48
1980	111.27	66.16	29.03	17.26	10.26
1981	113.31	67.38	29.56	17.58	10.45
1982	83.31	49.54	21.73	12.92	7.68
1983	218.76	130.08	57.06	33.93	20.18
1984	75.15	44.69	19.60	11.66	6.93
1985	73.70	43.82	19.22	11.43	6.80
1986	52.72	31.35	13.75	8.18	4.86
1987	93.80	55.77	24.47	14.55	8.65
1988	47.48	28.23	12.39	7.36	4.38
1989	50.39	29.96	13.15	7.82	4.65
1990	56.51	33.60	14.74	8.76	5.21
1991	49.23	29.27	12.84	7.64	4.54
1992	47.77	28.41	12.46	7.41	4.41
1993	101.37	60.28	26.44	15.72	9.35
1994	94.09	55.95	24.54	14.59	8.68
1995	69.62	41.40	18.16	10.80	6.42
1996	94.67	56.29	24.69	14.68	8.73
1997	106.61	63.39	27.81	16.54	9.83
1998	100.50	59.76	26.21	15.59	9.27
1999	188.18	111.89	49.09	29.19	17.35
2000	119.72	71.19	31.23	18.57	11.04
2001	108.94	64.78	28.42	16.90	10.05
2002	100.50	59.76	26.21	15.59	9.27
2003	108.65	64.61	28.34	16.85	10.02
2004	110.11	65.47	28.72	17.08	10.15
2005	152.93	90.93	39.89	23.72	14.10
2006	164.00	97.51	42.78	25.44	15.12
2007	223.42	132.85	58.28	34.65	20.60
2008	238.28	141.68	62.15	36.96	21.97
2009	153.80	91.45	40.12	23.86	14.18
2010	218.47	129.90	56.99	33.89	20.15
2011	232.74	138.39	60.71	36.10	21.46
2012	148.85	88.51	38.83	23.09	13.73
2013	161.96	96.30	42.25	25.12	14.94
2014	218.76	130.08	57.06	33.93	20.18
2015	130.21	77.42	33.96	20.20	12.01
2017	179.44	106.69	46.81	27.83	16.55
2018	75.74	45.03	19.76	11.75	6.98
Promedio	122.35	72.75	31.91	18.98	11.28
Desv. Estándar	55.76	33.16	14.55	8.65	5.14
Años de obs.	40	40	40	40	40
				•	

^{*} Para el año 2016 no se cuenta con información suficiente

Fuente: Servicio Nacional de Meteorología e Hidrología del Perú (www.senamhi.gob.pe)

^{*} Para el año 2018 solo se contó con información desde el mes de enero a setiembre.

- Tratamiento de la información y selección del modelo

La información recopilada del Servicio Nacional de Hidrología y Meteorología (SENAMHI) del Perú, no conllevó a obtener una muestra de tormentas máximas procesadas de cuarenta años (1979 – 2018), por lo en esta parte obviamos el análisis de frecuencias de tormentas, iniciando unos de nuestros objeticos con el Análisis estadísticos, se determinó los estadísticos muestrales, como el promedio aritmético, la Desviación Estándar, y el Coeficiente de variación según las ecuaciones (33), (34), (35) respectivamente. El análisis estadístico nos conlleva a seleccionar el modelo Gumbel entre todos los modelos, además es el que mejor describe las características de la muestra de tormentas máximas anuales.

- Modelo de Distribución Gumbel

De acuerdo al registro de datos meteorológicos y al análisis estadístico, el modelamiento será por la distribución Gumbel conocido como la distribución de Valores Tipo I ó Doble Exponencial es el que representa en forma satisfactoria el comportamiento de la variable. Para utilizar el modelo Gumbel, se deberá calcular los parámetros y realizar la prueba de bondad de ajuste. Si el ajuste es bueno utilizaremos dicho modelo que permite modelar y simular las intensidades de máximas tormentas anuales.

- Pruebas de Bondad de Ajuste

Se realizó la prueba de Prueba Smironov – Kolmogorov en la que se comparó las diferencias existentes, entre la probabilidad empírica de los datos de la muestra y la probabilidad teórica, tomando un valor máximo del valor absoluto, de la diferencia entre el valor observado y el valor de la recta teórica del modelo, mediante la ecuación (41). Calculamos el valor crítico del estadístico " Δ ", es decir " Δ 0" para un α =5% y N=número de datos. Los valores de " Δ 0", se muestran en la tabla 2.8. Comparamos el valor estadístico " Δ máx.", con el valor crítico " Δ 0", resultando el ajuste bueno en todos Periodo de Duración (min).

- Modelación y simulación del modelo probabilístico Gumbel

Se determinó los parámetros estadísticos del modelo Gumbel, utilizando las ecuaciones (39) y (40). Permitió además modelar y simular las intensidades de máximas tormentas anuales, algunos de cuyos resultados se presentan en la Tabla 3.115, para luego transferir la información.

3.3.7.2. Sistema hidrológico sin información hidrológica

Se seleccionó a priori la microcuenca del Rio Congona (altitud media, 2373.9 msnm), pero pudo haber sido cualquier otra del mismo grupo geométrico de similitud hidrológica que la cuenca origen (ver Tabla 3.9). Esta cuenca, así como otras de la región de estudio, carece de información de máximas tormentas, muy importante para cualquier proyecto de Ingeniería Hidráulica. La transferencia de información se realiza mediante funciones de transferencia que resultan de aplicar el principio de similitud hidrológica a los parámetros adimensionales que gobiernan los sistemas hidrológicos altoandinos. Se utilizó para este caso la ecuación (51).

3.4. TRATAMIENTO, ANÁLISIS DE DATOS Y PRESENTACIÓN DE RESULTADOS 3.4.1. TRATAMIENTO Y ANÁLISIS DE DATOS

El tratamiento y análisis de los datos obtenidos de la Regionalización Morfométrica Adimensional de Cuencas Hidrográficas de la sierra de Piura - Perú, con fines de Transferencia de Información Hidrológica, se realiza a través de tablas y gráficos en los cuales se obtuvieron de acuerdo a los objetivos planteados en un inicio. Usando para ello, software ampliamente difundidos como ArcGIS y MS Excel con Programación de Macros en Visual Basic y el software Statistical Minitab, que permiten acelerar los procesos y tener confianza en ellos, puesto que usan métodos minuciosos que confieren fiabilidad a los resultados.

3.4.2. PRESENTACIÓN DE RESULTADOS

A continuación, se muestran los resultados obtenidos de acuerdo a los objetivos, mediante, tablas, figuras y de manera descriptiva.

3.4.2.1. Cartografía y Características Geomorfológicas de las cuencas hidrográficas.

El resultado del procesamiento de información cartográfico recopilado del Instituto Geográfico Nacional (Tabla 3.1.), y de modelos de elevación digital (DEM) Aster Global de USGS Earth Explorer, conllevó a obtener las cuencas hidrográficas delimitadas, se determinó las características más relevantes de las mismas, que sirven de base para la aplicación de la metodología de similitud de sistemas hidrológicos y la posterior interpretación de los resultados de la regionalización hidrológica. Cabe mencionar que para los parámetros se usó los softwares de ArcGIS y MS Excel con Programación de Macros en Visual Basic, presentados en la tabla 3.3. y en los Anexos (*Tabla 6.1 – Tabla 6.100*).

Tabla 3.3. Resultados de Parámetros Geomorfológicos de la Microcuencas 01: Río Sapce

N°		PARÁMETROS GEOMORFOLÓGICOS	:		RESULT	ADO
1		ÁREA (A)	:	232.94	Km ²	Sub cuenca
2		PERÍMETRO (P)	:	73.93	Km	
3		LONGITUD DEL MÁXIMO RECORRIDO (Lmax)	:	28.87	Km	
4	MA	ANCHO PROMEDIO (Ap)	:	8.07	Km	
5	-ORMA	FACTOR DE FORMA (F)	:	0.28		
6	ш	ÍNDICE DE COMPACIDAD (Kc)	:	1.37	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)	:	-		
8		FRECUENCIA DE ALTITUDES (FA)	:	-		
9		ALTITUD MEDIA (Hm)	:	2108.73	msnm	
10		ALTITUD MAS FRECUENTE (HF)	:	2300.50	msnm	
11	Έ	PENDIENTE DE LA CUENCA	:	47.22%	Fuerte	(Criterio Alvord)
12	-2	COEFICIENTE DE MASIVIDAD (Cm)	:	0.01		
13	REI	COEFICIENTE OROGRÁFICO (Co)	:	0.019	: 1.91 %	Moderada
14		RECTÁNGULO EQUIVALENTE (Re)	:	a=7.95 km	b=29.29 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)	:	8.14%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)	:	28.87	Km	
17		TIEMPO DE CONCENTRACIÓN (Tc)	:	123.50	min	(Método de Kirpich)
18		CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	4	Orden	
19	SA	RELACIÓN DE CONFLUENCIAS (Rc)	:	1.77	Muy alto	
20	ÁFI	RELACIÓN DE LONGITUDES (RI)	:	1.02	-	
21	DROGRÁFICA	DENSIDAD DE DRENAJE (D)	:	0.67	km/km²	
22	IDR	FRECUENCIA DE RÍOS (Fr)	:	0.63	ríos/Km²	
23	ED HI	EXTENSIÓN MEDIA DE ESCURR. SUPERFICIAL (Es)	:	0.37	km	
24	RE	COEFICIENTE DE TORRENCIALIDAD (Ct)	:	0.32	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue)	:	3.91	Km²	
CI	URV	A HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES		MIC	CROCUENCA (01: RÍO SAPCE
		ÁREAS SOBRE LAS ALTITUDES (Km2)	44000	648000	652000 69	56000 660000
		0 50 100 150 200 250		Ĭ.	_	
	3100 2900	2	w ->	F	~ >>	9436000
2	2700	10.9		5		6
	2500 2300	2500			N) Y	J
_	2300 2100	.5	Ley	enda 🏑	Y	
ısıı) (1900	2.5	•	Emisor Rios		9428000
\supset	1700 1500			Curvas Cuenca 01	$\backslash J$	
-	1300	3		1	1-	9457000
	1100 900	1000		()	el -	
	700			K		9420000
	500 391	5 1.4				
	551	0 5 10 15				1:150,000
		% (Área Parcial / Área total)	144000	648000	0 1 2	4 6 8 Km
		CURVA RIPSOWETRICA ()	.4000	24000	00	000000

Fuente: Reporte del software ArcGIS y MS Excel con Programación de Macros en Visual Basic

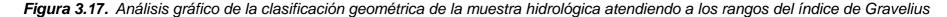
Los reportes de las características Geomorfológicos de las cuencas hidrográficas restantes, se presentan en los Anexos (*Tabla 6.1 – Tabla 6.100*).

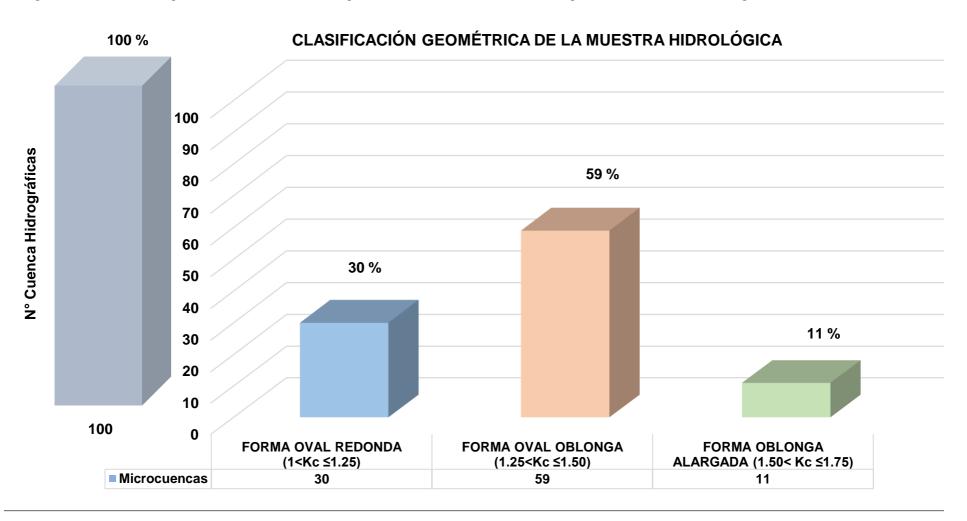
Tabla 3.4. Parámetros adimensionales de similitud de cuencas hidrográficas altoandinas de la región Piura.

Microcuencas	Área	Perímetro	Altitud	Número de orden	Coeficiente Gravelius	Relación de Confluencias	Coeficiente orográfico	Cuenca	Vertiente
	A (Km ²)	P (Km)	Hm (msnm)	0	K _C	R _C	C _o (%)		
1 Río Sapce	232.94	73.93	2108.73	4	1.37	1.77	1.91	Piura	Pacífico
2 Rio San Lorenzo	102.90	47.03	1522.03	3	1.31	1.59	2.25	Piura	Pacífico
3 Qda. Singocate	69.68	39.64	1602.60	3	1.34	1.62	3.69	Piura	Pacífico
4 Rio Pusmalca	96.15	42.86	1947.95	4	1.23	6.06	3.95	Piura	Pacífico
5 Qda. Cashapite	68.17	37.92	1918.55	3	1.30	1.56	5.40	Piura	Pacífico
6 Qda. Chalpa	48.58	36.60	1965.14	3	1.48	1.68	7.95	Piura	Pacífico
7 Rio Overal	58.92	43.49	1840.82	3	1.60	2.37	5.75	Piura	Pacífico
8 Qda. Rinconada	36.72	28.20	1575.27	3	1.31	1.95	6.76	Piura	Pacífico
9 Rio Ladrillo	57.90	31.57	1846.00	3	1.17	1.59	5.89	Piura	Pacífico
10 Qda. San Martín	34.28	25.38	1698.37	3	1.22	1.63	8.42	Piura	Pacífico
11 Rio Piscan	100.87	45.99	1727.31	3	1.29	1.61	2.96	Piura	Pacífico
12 Rio Chalaco	155.44	69.00	1786.95	4	1.56	3.31	2.05	Piura	Pacífico
13 Rio Capones	209.79	79.13	1500.72	4	1.54	2.55	1.07	Piura	Pacífico
14 Rio San Jorge	100.23	44.82	1845.38	4	1.26	6.38	3.40	Piura	Pacífico
15 Qda. Simitri	24.67	22.23	1507.79	2	1.26	1.33	9.21	Piura	Pacífico
16 Rio Defrias	64.47	33.25	2262.64	3	1.17	2.57	7.94	Piura	Pacífico
17 Qda. Chamba	20.02	21.39	1622.76	3	1.35	3.67	13.15	Piura	Pacífico
18 Rio Geraldo	51.96	30.84	1500.29	3	1.21	3.43	4.33	Piura	Pacífico
19 Rio Chontas	45.47	31.46	2340.95	3	1.32	1.67	12.05	Chamaya	Atlántico
20 Rio Tasajeras	57.73	35.96	2235.26	3	1.33	1.83	8.65	Chamaya	Atlántico
21 Rio Congona	37.57	27.70	2373.99	3	1.27	1.62	15.00	Chamaya	Atlántico
22 Qda. Chuguyo	23.31	19.29	2295.97	3	1.13	1.83	22.62	Chamaya	Atlántico
23 Rio Cajunga	30.39	29.17	2292.38	3	1.49	2.46	17.29	Chamaya	Atlántico
24 Rio Rincón	39.61	26.82	2105.48	3	1.20	1.68	11.19	Chamaya	Atlántico
25 Rio Paucas	47.83	33.92	2296.33	2	1.38	1.10	11.02	Chamaya	Atlántico
26 Rio Huarmarca	78.31	39.62	2326.99	4	1.26	4.40	6.91	Chamaya	Atlántico
27 Rio Grande	59.78	39.15	2525.77	3	1.43	1.57	10.67	Chamaya	Atlántico
28 Rio Playa Seca	25.73	23.16	2239.10	2	1.29	1.14	19.48	Chamaya	Atlántico
29 Qda. Decuse	22.46	22.25	2426.84	2	1.32	1.50	26.23	Chamaya	Atlántico
30 Rio San Bumbal	38.95	28.63	2437.62	3	1.29	1.58	15.25	Chamaya	Atlántico
31 Rio Cuevas	45.08	30.30	2628.65	3	1.27	1.63	15.33	Chamaya	Atlántico
32 Rio Mancucur	48.58	31.83	2374.90	3	1.29	1.58	11.61	Chamaya	Atlántico
33 Rio Shumaya	45.05	35.71	2424.55	3	1.51	1.87	13.05	Chamaya	Atlántico
34 Qda. Curlata	20.40	21.32	2661.97	2	1.33	1.25	34.74	Chamaya	Atlántico

Tabla 3.4. Continuación...

		_	T	_			1		
35 Rio Chantaco	47.87	30.48	2706.02	3	1.24	1.57	15.30	Chamaya	Atlántico
36 Qda. Unguio	28.33	24.98	2667.29	3	1.32	3.67	25.11	Chamaya	Atlántico
37 Qda. Nancho	37.04	31.27	2920.38	3	1.45	1.73	23.03	Chamaya	Atlántico
38 Rio Chocan	72.19	33.01	1913.31	3	1.10	2.07	5.07	Chira	Pacífico
39 Rio Chimbinuma	89.33	43.13	1816.30	4	1.29	2.89	3.69	Chira	Pacífico
40 Rio Aragoto	45.49	32.11	1970.46	3	1.34	2.42	8.54	Chira	Pacífico
41 Rio Tondopa	67.10	35.51	2140.94	4	1.22	4.43	6.83	Chira	Pacífico
42 Qda. Ulunche	21.39	19.68	1700.61	3	1.20	1.88	13.52	Chira	Pacífico
43 Rio Matala	30.08	24.52	1947.35	3	1.26	1.60	12.61	Chira	Pacífico
44 Qda. Yerbabuena	25.53	24.90	2032.78	2	1.39	1.14	16.19	Chira	Pacífico
45 Rio Zamba	34.34	26.18	1643.18	3	1.26	1.65	7.86	Chira	Pacífico
46 Rio Sicacate	123.94	53.16	1760.69	3	1.35	1.63	2.50	Chira	Pacífico
47 Rio Guir Guir	40.87	29.36	1500.24	4	1.30	2.05	5.51	Chira	Pacífico
48 Rio Huanta	149.59	61.33	2441.46	4	1.41	1.98	3.98	Chira	Pacífico
49 Rio Cutaco	54.05	39.82	2046.96	3	1.53	2.86	7.75	Chira	Pacífico
50 Rio Olleros	118.78	52.02	1754.76	3	1.35	1.55	2.59	Chira	Pacífico
51 Rio Malache	66.19	38.16	2515.05	4	1.32	2.02	9.56	Chira	Pacífico
52 Rio Barro Negro	33.34	24.44	1895.89	3	1.19	1.83	10.78	Chira	Pacífico
53 Rio Sancay	42.66	26.66	2833.48	3	1.15	1.70	18.82	Chira	Pacífico
54 Rio Tapal	61.35	36.36	2687.70	3	1.31	1.69	11.77	Chira	Pacífico
55 Rio Ramos	58.76	44.55	2647.45	2	1.64	1.08	11.93	Chira	Pacífico
56 Rio Aranza	151.74	67.96	2317.94	4	1.56	1.66	3.54	Chira	Pacífico
57 Rio Algarrobo	36.27	27.55	1727.34	3	1.29	1.65	8.23	Chira	Pacífico
58 Rio Vilcas	63.55	37.03	2170.87	3	1.31	1.80	7.42	Chira	Pacífico
59 Qda. Yunguilla	14.23	18.06	1767.06	2	1.35	1.33	21.95	Chira	Pacífico
60 Rio San Pablo	29.21	24.05	2146.90	4	1.26	2.50	15.78	Chira	Pacífico
61 Rio San Juan	33.60	25.75	2938.83	3	1.26	1.92	25.70	Chira	Pacífico
62 Qda. Naranjo	26.37	22.71	3030.29	3	1.25	2.45	34.82	Chira	Pacífico
63 Rio Llaga	43.97	28.38	3225.48	3	1.21	1.80	23.66	Chira	Pacífico
64 Rio Talaneo	32.06	30.56	3172.00	3	1.52	3.20	31.38	Chira	Pacífico
65 Rio Reyna Inca	33.12	32.69	3143.80	2	1.60	1.11	29.84	Chira	Pacífico
66 Rio Palo Blanco	70.10	39.72	3023.41	3	1.34	2.43	13.04	Chira	Pacífico
67 Rio Suyo	185.45	66.36	1501.18	4	1.37	1.72	1.22	Chira	Pacífico
68 Rio Chullucanas	144.46	55.93	3207.47	3	1.31	1.64	7.12	Chamaya	Atlántico
69 Qda. Capsol	21.65	24.75	2689.26	3	1.51	2.75	33.41	Chamaya	Atlántico
70 Rio Uchupata	63.26	36.55	2834.31	4	1.30	2.40	12.70	Chamaya	Atlántico
71 Qda. Carhuancho	21.03	18.90	2548.36	3	1.16	2.75	30.88	Chamaya	Atlántico
72 Rio Pashal	35.09	27.08	1875.62	3	1.29	1.68	10.03	Olmos	Pacífico
73 Qda. Palo Blanco	29.85	24.18	1501.38	2	1.25	1.13	7.55	Cascajal	Pacífico


Tabla 3.4. Continuación...


74 Qda. Oberito	25.07	22.54	1708.01	3	1.27	3.20	11.64	Cascajal	Pacífico
75 Rio Palmo	49.93	30.26	1619.18	3	1.21	2.10	5.25	Cascajal	Pacífico
76 Rio Paltoran	36.11	25.68	1502.70	3	1.21	3.20	6.25	Cascajal	Pacífico
77 Rio Yahuangate	68.12	38.56	1741.74	4	1.32	1.91	4.45	Cascajal	Pacífico
78 Rio Frejolillo	81.16	43.92	1502.11	4	1.38	6.16	2.78	Cascajal	Pacífico
79 Rio Collona	88.84	46.49	1746.82	3	1.39	1.57	3.43	Piura	Pacifico
	154.71	73.26	3140.48	3	1.66	1.65	5.43 6.37	Chira	Pacifico
					1.00			Chira	
81 Rio Gramadal	143.96	52.73	1616.41	4		1.62	1.81		Pacífico
82 Rio Ceibal	44.16	26.62	1779.07	3	1.13	1.68	7.17	Chira	Pacífico
83 Rio Huayos	44.15	28.50	2107.03	3	1.21	1.71	10.06	Chira	Pacífico
84 Rio Samanguilla	50.62	31.20	2096.43	3	1.24	2.21	8.68	Chira	Pacífico
85 Qda. Blanco	25.49	23.17	2761.80	2	1.29	4.00	29.92	Chinchipe	Atlántico
86 Rio Los Mojica	58.43	37.07	2698.69	3	1.37	1.75	12.46	Chinchipe	Atlántico
87 Rio Rosarios	90.70	47.03	2975.63	4	1.39	1.95	9.76	Chinchipe	Atlántico
88 Rio Chinguela	58.06	39.18	2845.13	3	1.45	1.60	13.94	Chinchipe	Atlántico
89 Qda. Tingo Barro	20.45	19.97	2367.97	2	1.25	1.33	27.42	Chinchipe	Atlántico
90 Rio Sauce Chico	51.52	29.57	3049.23	4	1.16	1.94	18.05	Chamaya	Atlántico
91 Qda. Sangrin	20.41	20.25	2617.22	2	1.26	1.25	33.56	Chamaya	Atlántico
92 Rio Naranjo	115.24	51.82	2399.31	4	1.36	1.64	5.00	Chira	Pacífico
93 Rio Pomayaco	30.96	27.43	2916.11	2	1.39	1.33	27.47	Chira	Pacífico
94 Qda. Sancay	27.87	23.56	2460.31	3	1.26	1.73	21.72	Chira	Pacífico
95 Rio Castaya	31.60	24.21	2242.37	2	1.22	1.11	15.91	Chira	Pacífico
96 Qda. Infiernillo	21.15	20.47	2233.63	3	1.26	1.75	23.59	Chira	Pacífico
97 Rio Mallancoca	57.67	33.35	1503.95	3	1.24	1.60	3.92	Chira	Pacífico
98 Qda. Sural	19.50	18.92	2660.44	2	1.21	1.50	36.35	Chinchipe	Atlántico
99 Rio Pilana	49.80	29.46	1500.93	3	1.18	1.64	4.52	Piura	Pacífico
100 Rio Cash Cash	34.64	24.94	3248.28	3	1.20	2.35	30.46	Chamaya	Atlántico
PROMEDIO	59.83	34.60	2211.71	3.05	1.32	2.10	12.70		
DESV.EST	43.052	13.208	510.815	0.609	0.118	1.006	9.333		
COEF.VAR	0.720	0.382	0.231	0.200	0.090	0.478	0.735		

^{*} El estudio de la muestra regional altoandina, constituida por 100 cuencas hidrográficas altoandinas de la región Piura, en las vertientes del Pacífico y Atlántico, hace un área total aproximada de 10 326 Km2, que representa el 30 % del área total de la región (35 892 km2); que es lo suficientemente representativa. Mediante el conjunto de Parámetros adimensionales (índice de Gravelius, relación de confluencias y coeficiente orográfico) se explica toda la dinámica de similitud de sistemas hidrológicos.

En la similitud de sistemas hidrológicos, la Medida de dispersión de la muestra hidrológica, está representada por el Coeficiente de variación, es el indicador estadístico que indican como se alejan los datos respecto de la media aritmética y permite decidir con mayor claridad sobre la dispersión o variabilidad de los datos.

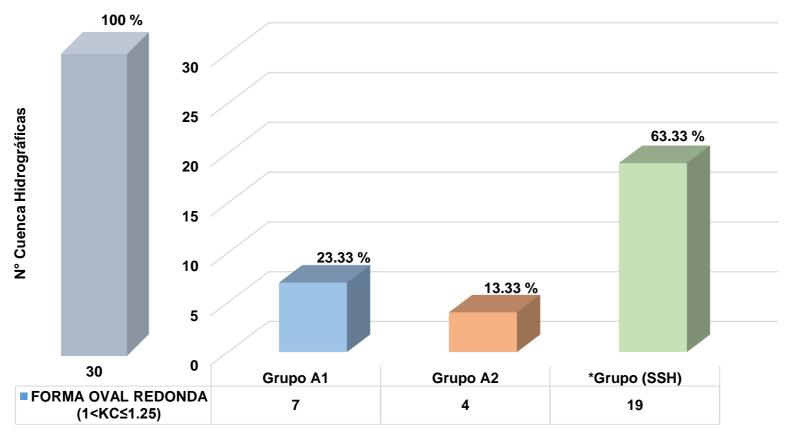
Los Parámetros adimensionales de similitud de cuencas hidrográficas altoandinas de la región Piura (Tabla 3.4.), relacionados con índice de Gravelius, relación de confluencias y coeficiente orográfico, nos reporta que se trata de una muestra hidrológica muy heterogénea, los valores obtenidos del indicador estadístico (Coeficiente de variación) son 0.090, 0.478, 0.735 para cada parámetro de semejanza respectivamente.

^{*} La clasificación de la muestra hidrológica, influenciada por su forma geométrica (coeficiente de Gravelius) de las cuencas hidrográficas, tiene mayor incidencia en la configuración de la red de drenaje (relación de confluencias) y en menor proporción sobre los factores de relieve (coeficiente orográfico) y, por tanto atendiendo la clasificación a los rangos del coeficiente de Gravelius, dio como resultado treinta unidades hidrológicas de la forma oval redonda (30%), cincuenta nueve de la forma oval oblonga (59%) y once de la forma oblonga alargada (11%).

Tabla 3.5. GRUPO DE MICROCUENCAS CON SIMILITUD HIDROLÓGICA DE LA FORMA OVAL REDONDA (1<KC≤1.25)- G.A1

N°	Microcuenca	Área	Perímetro	Altitud	Número de orden	Coeficiente Gravelius	Relación de Confluencias	Coeficiente orográfico	Cuenca	Vertiente
		A (Km ²)	P (Km)	Hm (msnm)	0	K _C	R _C	C ₀ (%)		
1	Rio Chocan	72.19	33.01	1913.31	3.00	1.10	2.07	5.07	Chira	Pacífico
2	Rio Ceibal	44.16	26.62	1779.07	3.00	1.13	1.68	7.17	Chira	Pacífico
3	Rio Defrias	64.47	33.25	2262.64	3.00	1.17	2.57	7.94	Piura	Pacífico
4	Rio Ladrillo	57.90	31.57	1846.00	3.00	1.17	1.59	5.89	Piura	Pacífico
5	Rio Palmo	49.93	30.26	1619.18	3.00	1.21	2.10	5.25	Cascajal	Pacífico
6	Qda. San Martín	34.28	25.38	1698.37	3.00	1.22	1.63	8.42	Piura	Pacífico
7	Rio Samanguilla	50.62	31.20	2096.43	3.00	1.24	2.21	8.68	Chira	Pacífico
	PROMEDIO					1.18	1.98	6.92		
	DESV.EST					0.051	0.362	1.512		
	COEF.VAR					0.043	0.183	0.219		

^{*} El grupo conformado por 30 microcuencas de la forma oval redonda, la aplicación de la metodología de Similitud de Sistemas Hidrológicos, resultó un primer grupo de 07 microcuencas (Tabla 3.5), con una significativa mejora en aproximación de la similitud hidrológica, considerando el limite máximos de coeficiente de variación: 0.05, 0.20 y 0.30, para el índice de Gravelius, relación de confluencias y coeficiente orográfico, respectivamente.


Tabla 3.6. GRUPO DE MICROCUENCAS CON SIMILITUD HIDROLÓGICA DE LA FORMA OVAL REDONDA (1<KC≤1.25)- G.A2

N	^o Microcuenca	Área	Perímetro	Altitud	Número de orden	Coeficiente Gravelius	Relación de Confluencias	Coeficiente orográfico	Cuenca	Vertiente
		A (Km ²)	P (Km)	Hm (msnm)	0	K _C	R _c	C ₀ (%)		
1	Rio Sancay	42.66	26.66	2833.48	3.00	1.15	1.70	18.82	Chira	Pacífico
2	Rio Llaga	43.97	28.38	3225.48	3.00	1.21	1.80	23.66	Chira	Pacífico
3	Qda. Chuguyo	23.31	19.29	2295.97	3.00	1.13	1.83	22.62	Chamaya	Atlántico
4	Rio Sauce Chico	51.52	29.57	3049.23	4.00	1.16	1.94	18.05	Chamaya	Atlántico
	PROMEDIO DESV.EST COEF.VAR					1.16 0.034 0.029	1.82 0.101 0.055	20.79 2.767 0.133		

^{*} El conjunto de microcuencas que han sido descartadas del grupo primigenio en razón de su mayor discrepancia, puede ir a formar otro grupo de microcuencas de la misma forma geométrica (oval redonda) con similitud hidrológica, considerando el limite máximos de coeficiente de variación: 0.05, 0.20 y 0.30, para el índice de Gravelius, relación de confluencias y coeficiente orográfico, respectivamente, resultando un grupo de 04 microcuencas (Tabla 3.6), incluso con una mayor aproximación que las de grupo G.A1 (Tabla 3.5).

Figura 3.18. Análisis gráfico del Grupo de microcuencas con similitud hidrológica de la forma oval redonda (1<kc≤1.25)

SIMILITUD HIDROLÓGICA DE SISTEMAS DE FORMA OVAL REDONDA

Existe Similitud de Sistemas Hidrológicos cuando "dos o más sistemas hidrológicos altoandinos cumplen simultáneamente las tres condiciones de semejanza: geométrica (coeficiente de Gravelius), cinemática (relación de confluencias) y dinámica (coeficiente orográfico)", considerando el grado de aproximación de similitud hidrológica para fines prácticos, como límites máximos del coeficiente de variación de 0.05, 0.20 y 0.30, para el coeficiente de Gravelius, relación de confluencias promedio y coeficiente orográfico, respectivamente, valores aceptables en Ingeniería Hidrológica; esto conlleva la formación grupos por su forma geométrica con mejoraras de la calidad de la similitud hidrológica, además se pueden ir reduciendo por descarte las unidades hidrológicas más discrepantes e ir a conformar otros grupos con similitud hidrológica, en razón de su compatibilidad con los errores máximos permisibles preestablecidos para cada uno de los parámetros de similitud.

En este grupo (30 microcuencas), se encontraron un primer grupo de 07 unidades con similitud hidrológica que representa el 23.33 % del total de este grupo, un segundo grupo conformado por 04 unidades con similitud hidrológica que representa el 13.33% y 19 microcuencas que no mostraron identidad de similitud entre sí, menos aún con la de los otros dos grupos; lo cual representa el 63.33% del total de este grupo.

^{*}Grupo (SSH): Grupo de microcuencas que no mostraron identidad de similitud hidrológica entre sí, menos aún con los otros grupos de la forma oval redonda.

Tabla 3.7. GRUPO DE MICROCUENCAS CON SIMILITUD HIDROLÓGICA DE LA FORMA OVAL OBLONGA (1.25<Kc ≤1.50)- G.B1

N°	Microcuenca	Área	Perímetro	Altitud	Número de orden	Coeficiente Gravelius	Relación de Confluencias	Coeficiente orográfico	Cuenca	Vertiente
		A (Km ²)	P (Km)	Hm (msnm)	0	K _C	R _C	C ₀ (%)		
1	Rio Zamba	34.34	26.18	1643.18	3.00	1.27	1.65	7.86	Chira	Pacífico
2	Rio Algarrobo	36.27	27.55	1727.34	3.00	1.29	1.65	8.23	Chira	Pacífico
3	Rio Vilcas	63.55	37.03	2170.87	3.00	1.31	1.80	7.42	Chira	Pacífico
4	Rio Malache	66.19	38.16	2515.05	4.00	1.32	2.02	9.56	Chira	Pacífico
5	Rio Tasajeras	57.73	35.96	2235.26	3.00	1.33	1.83	8.65	Chamaya	Atlántico
6	Rio Aragoto	45.49	32.11	1970.46	3.00	1.34	2.42	8.54	Chira	Pacífico
7	Rio Rosarios	90.70	47.03	2975.63	4.00	1.39	1.95	9.76	Chinchipe	Atlántico
8	Qda. Chalpa	48.58	36.60	1965.14	3.00	1.48	1.68	7.95	Piura	Pacífico
	PROMEDIO					1.34	1.88	8.50		
	DESV.EST					0.067	0.259	0.819		
	COEF.VAR					0.050	0.138	0.096		

^{*} El grupo conformado por 59 microcuencas de la forma oval oblonga, la aplicación de la metodología de Similitud de Sistemas Hidrológicos, resultó un primer grupo de 08 microcuencas (Tabla 3.7), con una significativa mejora en aproximación de la similitud hidrológica, considerando el limite máximos de coeficiente de variación: 0.05, 0.20 y 0.30, para el índice de Gravelius, relación de confluencias y coeficiente orográfico, respectivamente.

Tabla 3.8. GRUPO DE MICROCUENCAS CON SIMILITUD HIDROLÓGICA DE LA FORMA OVAL OBLONGA (1.25<Kc ≤1.50)- G.B2

N°	Microcuenca	Área	Perímetro	Altitud	Número de orden	Coeficiente Gravelius	Relación de Confluencias	Coeficiente orográfico	Cuenca	Vertiente
		A (Km ²)	P (Km)	Hm (msnm)	0	K _C	R _C	C _o (%)		
1	Rio Matala	30.08	24.52	1947.35	3.00	1.26	1.60	12.61	Chira	Pacífico
2	Rio Mancucur	48.58	31.83	2374.90	3.00	1.29	1.58	11.61	Chamaya	Atlántico
3	Rio Pashal	35.09	27.08	1875.62	3.00	1.29	1.68	10.03	Olmos	Pacífico
4	Rio Uchupata	63.26	36.55	2834.31	4.00	1.30	2.40	12.70	Chamaya	Atlántico
5	Rio Tapal	61.35	36.36	2687.70	3.00	1.31	1.69	11.77	Chira	Pacífico
6	Rio Chontas	45.47	31.46	2340.95	3.00	1.32	1.67	12.05	Chamaya	Atlántico
7	Rio Los Mojica	58.43	37.07	2698.69	3.00	1.37	1.75	12.46	Chinchipe	Atlántico
8	Rio Grande	59.78	39.15	2525.77	3.00	1.43	1.57	10.67	Chamaya	Atlántico
	PROMEDIO					1.32	1.74	11.74		
	DESV.EST					0.054	0.272	0.955		
	COEF.VAR					0.041	0.156	0.081		

^{*} El conjunto de microcuencas que han sido descartadas del grupo primigenio en razón de su mayor discrepancia, puede ir a formar otro grupo de microcuencas de la misma forma geométrica (oval oblonga) con similitud hidrológica, considerando el limite máximos de coeficiente de variación: 0.05, 0.20 y 0.30, para el índice de Gravelius, relación de confluencias y coeficiente orográfico, respectivamente, resultando un segundo grupo de 08 microcuencas (Tabla 3.8).

Tabla 3.9. GRUPO DE MICROCUENCAS CON SIMILITUD HIDROLÓGICA DE LA FORMA OVAL OBLONGA (1.25<Kc ≤1.50)- G.B3

N°	Microcuenca	Área	Perímetro	Altitud	Número de orden	Coeficiente Gravelius	Relación de Confluencias	Coeficiente orográfico	Cuenca	Vertiente
		A (Km ²)	P (Km)	Hm (msnm)	0	K _C	R _C	C ₀ (%)		
1	Rio Palo Blanco	70.10	39.72	3023.41	3.00	1.34	2.39	13.04	Chira	Pacífico
2	Rio Chinguela	58.06	39.18	2845.13	3.00	1.42	1.60	13.94	Chinchipe	Atlántico
3	Rio Congona	37.57	27.70	2373.99	3.00	1.27	1.62	15.00	Chamaya	Atlántico
4	Rio San Bumbal	38.95	28.63	2437.62	3.00	1.29	1.58	15.25	Chamaya	Atlántico
5	Rio Cuevas	45.08	30.30	2628.65	3.00	1.27	1.63	15.33	Chamaya	Atlántico
	PROMEDIO					1.32	1.76	14.51		
	DESV.EST					0.062	0.350	0.993		
	COEF.VAR					0.047	0.198	0.068		

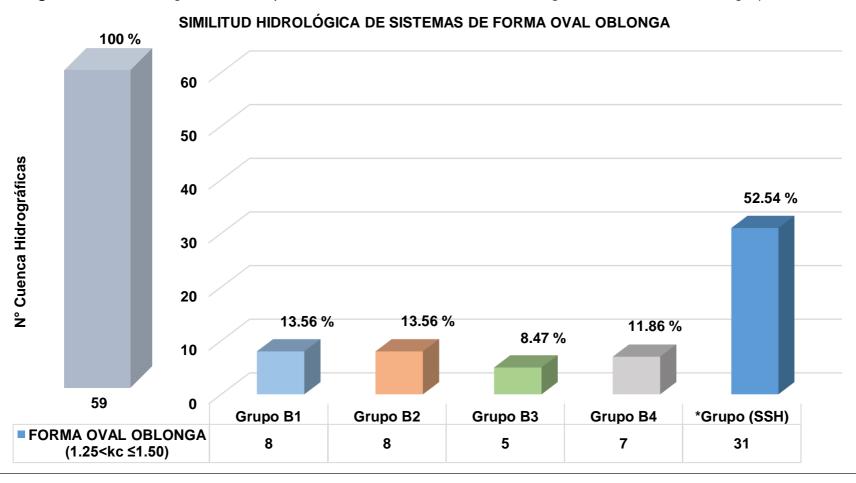

^{*} Otro grupo formado por microcuencas de la misma forma geométrica (oval oblogna) con similitud hidrológica, que han sido descartadas del grupo primigenio, considerando el limite máximos de coeficiente de variación: 0.05, 0.20 y 0.30, para el índice de Gravelius, relación de confluencias y coeficiente orográfico, respectivamente, resultó un tercer grupo de 05 microcuencas (Tabla 3.9).

Tabla 3.10. GRUPO DE MICROCUENCAS CON SIMILITUD HIDROLÓGICA DE LA FORMA OVAL OBLONGA (1.25<Kc ≤1.50)- G.B4

N°	Microcuenca	Área	Perímetro	Altitud	Número de orden	Coeficiente Gravelius	Relación de Confluencias	Coeficiente orográfico	Cuenca	Vertiente
		A (Km ²)	P (Km)	Hm (msnm)	0	K _C	R _C	C ₀ (%)		
1	Rio Piscan	100.87	45.99	1727.31	3.00	1.29	1.61	2.96	Piura	Pacífico
2	Rio San Lorenzo	102.90	47.03	1522.03	3.00	1.31	1.59	2.25	Piura	Pacífico
3	Qda. Singocate	69.68	39.64	1602.60	3.00	1.34	1.62	3.69	Piura	Pacífico
4	Rio Olleros	118.78	52.02	1754.76	3.00	1.35	1.55	2.59	Chira	Pacífico
5	Rio Sicacate	123.94	53.16	1760.69	3.00	1.35	1.63	2.50	Chira	Pacífico
6	Rio Collona	88.84	46.49	1746.82	3.00	1.39	1.57	3.43	Piura	Pacífico
7	Rio Huanta	149.59	61.33	2441.46	4.00	1.41	1.98	3.98	Chira	Pacífico
	PROMEDIO DESV.EST					1.35 0.043	1.65 0.147	3.06 0.656		
	COEF.VAR					0.032	0.100	0.215		

^{*} Otro grupo formado por microcuencas de la misma forma geométrica (oval oblogna) con similitud hidrológica, que han sido descartadas del grupo primigenio, considerando el limite máximos de coeficiente de variación: 0.05, 0.20 y 0.30, para el índice de Gravelius, relación de confluencias y coeficiente orográfico, respectivamente, resultó un cuarto grupo de 07 microcuencas (Tabla 3.10).

Figura 3.19. Análisis gráfico del Grupo de microcuencas con similitud hidrológica de la forma oval oblonga (1.25<kc ≤1.50)

Existe Similitud de Sistemas Hidrológicos cuando "dos o más sistemas hidrológicos altoandinos cumplen simultáneamente las tres condiciones de semejanza: geométrica (coeficiente de Gravelius), cinemática (relación de confluencias) y dinámica (coeficiente orográfico)", considerando el grado de aproximación de similitud hidrológica para fines prácticos, como límites máximos del coeficiente de variación de 0.05, 0.20 y 0.30, para el coeficiente de Gravelius, relación de confluencias promedio y coeficiente orográfico, respectivamente, valores aceptables en Ingeniería Hidrológica; esto conlleva la formación grupos por su forma geométrica con mejoraras de la calidad de la similitud hidrológica, además se pueden ir reduciendo por descarte las unidades hidrológicas más discrepantes e ir a conformar otros grupos con similitud hidrológica, en razón de su compatibilidad con los errores máximos permisibles preestablecidos para cada uno de los parámetros de similitud.

En este grupo (59 microcuencas), se encontraron un primer grupo de 08 unidades con similitud hidrológica que representa el 13.56% del total de este grupo, un segundo grupo conformado por 08 unidades con similitud hidrológica que representa el 13.56% y tercer grupo conformado por 05 unidades con similitud hidrológica que representa el 8.47% y cuarto grupo conformado por 07 unidades con similitud hidrológica que representa el 11.86% y 31 microcuencas que no mostraron identidad de similitud entre sí, menos aún con los otros grupos; lo cual representa el 52.54% del total de este grupo.

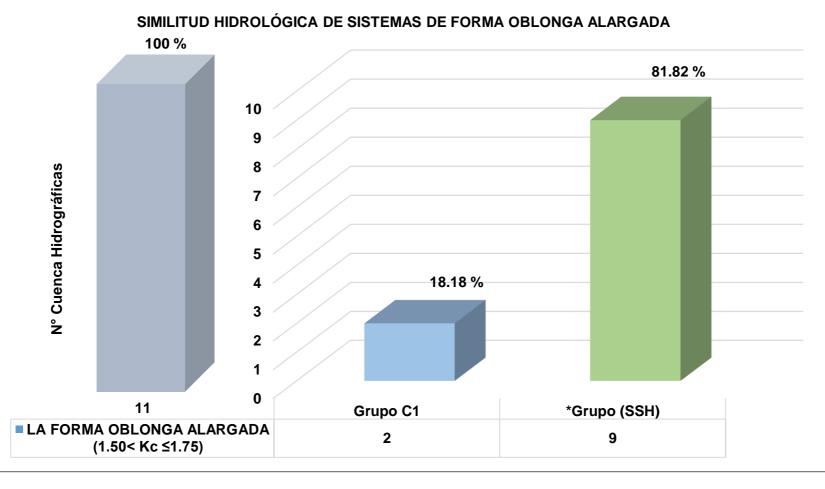

^{*}Grupo (SSH): Grupo de microcuencas que no mostraron identidad de similitud hidrológica entre sí, menos aún con los otros grupos de la forma oval oblonga.

Tabla 3.11. GRUPO DE MICROCUENCAS CON SIMILITUD HIDROLÓGICA DE LA FORMA OBLONGA ALARGADA (1.50< Kc ≤1.75)- G.C1

N°		Microcuenca	Área	Perímetro	Altitud	Número de orden	Coeficiente Gravelius	Relación de Confluencias	Coeficiente orográfico	Cuenca	Vertiente
			A (Km ²)	P (Km)	Hm (msnm)	0	K _C	R _C	C ₀ (%)		
1	64	Rio Talaneo	32.06	30.56	3172.00	3.00	1.52	3.20	31.38	Chira	Pacífico
2	69	Qda. Capsol	21.65	24.75	2689.26	3.00	1.51	2.75	33.41	Chamaya	Atlántico
		PROMEDIO DESV.EST COEF.VAR					1.51 0.012 0.01	2.98 0.318 0.11	32.40 1.433 0.04		

^{*} El grupo conformado por 11 microcuencas de la forma oblonga alargada la aplicación de la metodología de Similitud de Sistemas Hidrológicos, resultó un grupo de 02 microcuencas (Tabla 3.11), con una significativa mejora en aproximación de la similitud hidrológica, considerando el limite máximos de coeficiente de variación: 0.05, 0.20 y 0.30, para el índice de Gravelius, relación de confluencias y coeficiente orográfico, respectivamente.

Figura 3.20. Análisis gráfico del Grupo de microcuencas con similitud hidrológica de la forma oblonga alargada (1.50< kc ≤1.75)

Existe Similitud de Sistemas Hidrológicos cuando "dos o más sistemas hidrológicos altoandinos cumplen simultáneamente las tres condiciones de semejanza: geométrica (coeficiente de Gravelius), cinemática (relación de confluencias) y dinámica (coeficiente orográfico)", considerando el grado de aproximación de similitud hidrológica para fines prácticos, como límites máximos del coeficiente de variación de 0.05, 0.20 y 0.30, para el coeficiente de Gravelius, relación de confluencias promedio y coeficiente orográfico, respectivamente, valores aceptables en Ingeniería Hidrológica; esto conlleva la formación grupos por su forma geométrica con mejoraras de la calidad de la similitud hidrológica, además se pueden ir reduciendo por descarte las unidades hidrológicas más discrepantes e ir a conformar otros grupos con similitud hidrológica, en razón de su compatibilidad con los errores máximos permisibles preestablecidos para cada uno de los parámetros de similitud.

En este grupo (11 microcuencas), se encontraron un primer grupo de 02 unidades con similitud hidrológica que representa el 18.18% del total de este grupo y 09 microcuencas que no mostraron identidad de similitud entre sí, menos aún con la de los otros grupos; lo cual representa el 81.82% del total de este grupo.

^{*}Grupo (SSH): Grupo de microcuencas que no mostraron identidad de similitud hidrológica entre sí, menos aún con los otros grupos de la forma oblonga alargada.

Tabla 3.12. Modelamiento del modelo Gumbel y Pruebas de Bondad de Ajuste de las variables hidrológicas - Estación pluviométrica Tuluce, microcuenca del Rio Cuevas.

MODELO GUMBEL PARA 5. 10. 30. 60. 120 MINUTOS

	1		1	1			WODELO		ARA 5, 10, 3	J, 60, 120 WIII			1					
					5 min	,		10 min		,	30 min			60 min	1		120 min	
m	P(X>x) Weibull	1-P(X>x)	Tr años 1/P(x)	Intensidad es Ord. Desc.	F(X)	P(X)-F(X)												
1	0.0244	0.9756	41.00	238.28	0.9604	0.0152	141.68	0.9604	0.0152	62.15	0.9604	0.0152	36.96	0.9604	0.0152	21.97	0.9604	0.0152
2	0.0488	0.9512	20.50	232.74	0.9552	0.0040	138.39	0.9552	0.0040	60.71	0.9552	0.0040	36.10	0.9552	0.0040	21.46	0.9552	0.0040
3	0.0732	0.9268	13.67	223.42	0.9450	0.0181	132.85	0.9450	0.0181	58.28	0.9450	0.0181	34.65	0.9450	0.0181	20.60	0.9450	0.0181
4	0.0976	0.9024	10.25	218.76	0.9390	0.0366	130.08	0.9390	0.0366	57.06	0.9390	0.0366	33.93	0.9390	0.0366	20.18	0.9390	0.0366
5	0.1220	0.8780	8.20	218.76	0.9390	0.0610	130.08	0.9390	0.0610	57.06	0.9390	0.0610	33.93	0.9390	0.0610	20.18	0.9390	0.0610
6	0.1463	0.8537	6.83	218.47	0.9386	0.0850	129.90	0.9386	0.0850	56.99	0.9386	0.0850	33.89	0.9386	0.0850	20.15	0.9386	0.0850
7	0.1707	0.8293	5.86	188.18	0.8816	0.0524	111.89	0.8816	0.0524	49.09	0.8816	0.0524	29.19	0.8816	0.0524	17.35	0.8816	0.0524
8	0.1951	0.8049	5.13	179.44	0.8576	0.0527	106.69	0.8576	0.0527	46.81	0.8576	0.0527	27.83	0.8576	0.0527	16.55	0.8576	0.0527
9	0.2195	0.7805	4.56	164.00	0.8040	0.0235	97.51	0.8040	0.0235	42.78	0.8040	0.0235	25.44	0.8040	0.0235	15.12	0.8040	0.0235
10	0.2439	0.7561	4.10	161.96	0.7958	0.0397	96.30	0.7958	0.0397	42.25	0.7958	0.0397	25.12	0.7958	0.0397	14.94	0.7958	0.0397
11	0.2683	0.7317	3.73	153.80	0.7596	0.0279	91.45	0.7596	0.0279	40.12	0.7596	0.0279	23.86	0.7596	0.0279	14.18	0.7596	0.0279
12	0.2927	0.7073	3.42	152.93	0.7555	0.0481	90.93	0.7555	0.0481	39.89	0.7555	0.0481	23.72	0.7555	0.0481	14.10	0.7555	0.0481
13	0.3171	0.6829	3.15	148.85	0.7352	0.0523	88.51	0.7352	0.0523	38.83	0.7352	0.0523	23.09	0.7352	0.0523	13.73	0.7352	0.0523
14	0.3415	0.6585	2.93	130.21	0.6252	0.0334	77.42	0.6252	0.0334	33.96	0.6252	0.0334	20.20	0.6252	0.0334	12.01	0.6252	0.0334
15	0.3659	0.6341	2.73	119.72	0.5510	0.0831	71.19	0.5510	0.0831	31.23	0.5510	0.0831	18.57	0.5510	0.0831	11.04	0.5510	0.0831
16	0.3902	0.6098	2.56	116.23	0.5245	0.0852	69.11	0.5245	0.0852	30.32	0.5245	0.0852	18.03	0.5245	0.0852	10.72	0.5245	0.0852
17 18	0.4146 0.4390	0.5854 0.5610	2.41 2.28	113.31 111.27	0.5019 0.4858	0.0835 0.0752	67.38 66.16	0.5019 0.4858	0.0835 0.0752	29.56	0.5019 0.4858	0.0835 0.0752	17.58 17.26	0.5019 0.4858	0.0835 0.0752	10.45	0.5019 0.4858	0.0835 0.0752
19	0.4390	0.5366	2.26	110.11	0.4656	0.0752	65.47	0.4656	0.0752	29.03 28.72	0.4656	0.0752	17.26	0.4656	0.0752	10.26 10.15	0.4656	0.0752
20	0.4878	0.5300	2.16	108.94	0.4671	0.0451	64.78	0.4671	0.0451	28.42	0.4671	0.0451	16.90	0.4763	0.0451	10.15	0.4671	0.0451
21	0.4676	0.3122	1.95	108.94	0.4647	0.0431	64.61	0.4647	0.0431	28.34	0.4647	0.0431	16.85	0.4647	0.0431	10.03	0.4647	0.0431
22	0.5366	0.4676	1.86	106.63	0.4482	0.0231	63.39	0.4482	0.0231	27.81	0.4482	0.0231	16.54	0.4482	0.0231	9.83	0.4482	0.0231
23	0.5610	0.4390	1.78	102.83	0.4402	0.0132	61.14	0.4402	0.0132	26.82	0.4462	0.0132	15.95	0.4402	0.0132	9.48	0.4462	0.0132
24	0.5854	0.4146	1.71	101.37	0.4049	0.0027	60.28	0.4049	0.0027	26.44	0.4049	0.0027	15.72	0.4049	0.0220	9.35	0.4049	0.00220
25	0.6098	0.3902	1.64	100.50	0.3977	0.0074	59.76	0.3977	0.0074	26.21	0.3977	0.0074	15.59	0.3977	0.0074	9.27	0.3977	0.0074
26	0.6341	0.3659	1.58	100.50	0.3977	0.0318	59.76	0.3977	0.0318	26.21	0.3977	0.0318	15.59	0.3977	0.0318	9.27	0.3977	0.0318
27	0.6585	0.3415	1.52	94.67	0.3491	0.0076	56.29	0.3491	0.0076	24.69	0.3491	0.0076	14.68	0.3491	0.0076	8.73	0.3491	0.0076
28	0.6829	0.3171	1.46	94.09	0.3442	0.0271	55.95	0.3442	0.0271	24.54	0.3442	0.0271	14.59	0.3442	0.0271	8.68	0.3442	0.0271
29	0.7073	0.2927	1.41	93.80	0.3418	0.0491	55.77	0.3418	0.0491	24.47	0.3418	0.0491	14.55	0.3418	0.0491	8.65	0.3418	0.0491
30	0.7317	0.2683	1.37	83.31	0.2561	0.0122	49.54	0.2561	0.0122	21.73	0.2561	0.0122	12.92	0.2561	0.0122	7.68	0.2561	0.0122
31	0.7561	0.2439	1.32	75.74	0.1983	0.0456	45.03	0.1983	0.0456	19.76	0.1983	0.0456	11.75	0.1983	0.0456	6.98	0.1983	0.0456
32	0.7805	0.2195	1.28	75.15	0.1941	0.0254	44.69	0.1941	0.0254	19.60	0.1941	0.0254	11.66	0.1941	0.0254	6.93	0.1941	0.0254
33	0.8049	0.1951	1.24	73.70	0.1837	0.0114	43.82	0.1837	0.0114	19.22	0.1837	0.0114	11.43	0.1837	0.0114	6.80	0.1837	0.0114
34	0.8293	0.1707	1.21	69.62	0.1559	0.0149	41.40	0.1559	0.0149	18.16	0.1559	0.0149	10.80	0.1559	0.0149	6.42	0.1559	0.0149
35	0.8537	0.1463	1.17	56.51	0.0818	0.0645	33.60	0.0818	0.0645	14.74	0.0818	0.0645	8.76	0.0818	0.0645	5.21	0.0818	0.0645
36	0.8780	0.1220	1.14	52.72	0.0654	0.0566	31.35	0.0654	0.0566	13.75	0.0654	0.0566	8.18	0.0654	0.0566	4.86	0.0654	0.0566
37	0.9024	0.0976	1.11	50.39	0.0564	0.0412	29.96	0.0564	0.0412	13.15	0.0564	0.0412	7.82	0.0564	0.0412	4.65	0.0564	0.0412
38	0.9268	0.0732	1.08	49.23	0.0522	0.0210	29.27	0.0522	0.0210	12.84	0.0522	0.0210	7.64	0.0522	0.0210	4.54	0.0522	0.0210
39	0.9512	0.0488	1.05	47.77	0.0472	0.0015	28.41	0.0472	0.0015	12.46	0.0472	0.0015	7.41	0.0472	0.0015	4.41	0.0472	0.0015
40	0.9756	0.0244	1.03	47.48	0.0463	0.0219	28.23	0.0463	0.0219	12.39	0.0463	0.0219	7.36	0.0463	0.0219	4.38	0.0463	0.0219
MaxIP	(X)-F(X)	1				0.0852			0.0852			0.0852]		0.0852			0.0852
	Datos					40			40			40			40			40
X						122.35			72.75			31.91			18.98			11.28
S		1				56.47			33.58	1		14.73			8.76			5.21
а		1				44.05	•		26.19			11.49			6.83			4.06
и		1				96.93	•		57.63			25.28			15.03			8.94
Valor Cr	ítico (∆o)	1					•						•			1		
Para o	a = 0.05					0.21	,		0.21			0.21			0.21			0.21 67
Criterio d	e Decisión]			Se	ajusta al mod	delo	Se	ajusta al mo	delo	Se	ajusta al mo	delo	Se	ajusta al mo	delo	Se ajus	sta al modelo
		-													*		•	

Tabla 3.13. Modelación y simulación del modelo probabilístico Gumbel de Intensidades en función de "N" y "J" - Estación pluviométrica Tuluce, microcuenca del Rio Cuevas.

				A MODELO		<u> </u>	ı
N°	PARÁM	IETROS	5 MIN	10 MIN	30 MIN	60 MIN	120 MIN
1	Ā	<u> </u>	122.35	72.75	31.91	18.98	11.28
2		S	56.47	33.58	14.73	8.76	5.21
3	а		44.05	26.19	11.49	6.83	4.06
4	u		96.93	57.63	25.28	15.03	8.94
		CALCULO D	E INTENSI	DADES MÁXI	IMAS (mm/h) _	
VIDA ÚTIL		TIEMPO		$x = u - \alpha * \bigg(L_1$	$n\left(-\ln\left(1-\frac{1}{2}\right)\right)$	7))	
AÑOS	DE FALLA	DE		x = u u = E			1
"N"	J(%)	Tr(AÑOS)	5 MIN	10 MIN `	30 MIN	60 MIN	120 MIN
	1	498.0	370.4	220.3	96.6	57.5	34.2
	2	248.0	339.7	202.0	88.6	52.7	31.3
	5	98.0	298.6	177.6	77.9	46.3	27.5
	10	48.0	266.9	158.7	69.6	41.4	24.6
	15	31.3	247.9	147.4	64.7	38.4	22.9
	20	22.9	233.9	139.1	61.0	36.3	21.6
	25	17.9	222.7	132.4	58.1	34.5	20.5
5	30	14.5	213.2	126.8	55.6	33.1	19.7
	40	10.3	197.4	117.4	51.5	30.6	18.2
	50	7.7	184.0	109.4	48.0	28.5	17.0
	60	6.0	171.7	102.1	44.8	26.6	15.8
	70	4.7	159.6	94.9	41.6	24.8	14.7
	80	3.6	146.9	87.3	38.3	22.8	13.5
	90	2.7	131.1	77.9	34.2	20.3	12.1
	100	1.0	-	-	-	-	-
	1	995.5	401.0	238.4	104.6	62.2	37.0
	2	495.5	370.2	220.1	96.6	57.4	34.1
	5	195.5	329.2	195.7	85.9	51.1	30.4
	10	95.4	297.5	176.9	77.6	46.1	27.4
	15	62.0	278.4	165.5	72.6	43.2	25.7
	20	45.3	264.4	157.2	69.0	41.0	24.4
	25	35.3	253.2	150.6	66.1	39.3	23.4
10	30	28.5	243.8	144.9	63.6	37.8	22.5
	40	20.1	227.9	135.5	59.5	35.4	21.0
	50	14.9	214.5	127.5	56.0	33.3	19.8
	60	11.4	202.2	120.2	52.7	31.4	18.6
	70	8.8	190.2	113.1	49.6	29.5	17.5
	80	6.7	177.4	105.5	46.3	27.5	16.4
	90	4.9	161.6	96.1	42.2	25.1	14.9
	100	1.0	-	-	-	-	-
	1	1493.0	418.8	249.0	109.3	65.0	38.6
	2	743.0	388.1	230.8	101.2	60.2	35.8
	5	292.9	347.0	206.4	90.5	53.8	32.0
	10	142.9	315.3	187.5	82.3	48.9	29.1
	15	92.8	296.2	176.1	77.3	45.9	27.3
	20	67.7	282.3	167.8	73.6	43.8	26.0
	25	52.6	271.1	161.2	70.7	42.0	25.0
15	30	42.6	261.6	155.6	68.2	40.6	24.1
	40	29.9	245.8	146.2	64.1	38.1	22.7
	50	22.1	232.4	138.2	60.6	36.0	21.4
	60	16.9	220.1	130.8	57.4	34.1	20.3
	70	13.0	208.0	123.7	54.3	32.3	19.2
	80	9.8	195.2	116.1	50.9	30.3	18.0
	90	7.0	179.5	106.7	46.8	27.8	16.6
	100	1.0	-	-	-	-	-

Tabla 3.13. Continuación...

N	J (%)	Tr		Intensida	des Máxim	as (mm/h)	
IN	J (%)	(Años)	5 min	10 min	30 min	60 min	120 min
	1	1990.5	431.5	256.6	112.6	66.9	39.8
	2	990.5	400.8	238.3	104.5	62.2	37.0
	5	390.4	359.7	213.9	93.8	55.8	33.2
	10	190.3	328.0	195.0	85.6	50.9	30.2
	15	123.6	308.9	183.7	80.6	47.9	28.5
	20	90.1	295.0	175.4	76.9	45.7	27.2
	25	70.0	283.8	168.7	74.0	44.0	26.2
20	30	56.6	274.3	163.1	71.5	42.5	25.3
	40	39.7	258.5	153.7	67.4	40.1	23.8
	50	29.4	245.0	145.7	63.9	38.0	22.6
	60	22.3	232.7	138.4	60.7	36.1	21.5
	70	17.1	220.7	131.2	57.6	34.2	20.4
	80	12.9	207.9	123.6	54.2	32.2	19.2
	90	9.2	192.1	114.2	50.1	29.8	17.7
	100	1.00	-	-	-	-	-
	1	2985.5	449.4	267.2	117.2	69.7	41.4
	2	1485.4	418.6	248.9	109.2	64.9	38.6
	5	585.4	377.6	224.5	98.5	58.6	34.8
	10	285.2	345.9	205.7	90.2	53.6	31.9
	15	185.1	326.8	194.3	85.2	50.7	30.1
	20	134.9	312.8	186.0	81.6	48.5	28.8
	25	104.8	301.6	179.3	78.7	46.8	27.8
30	30	84.6	292.2	173.7	76.2	45.3	26.9
	40	59.2	276.3	164.3	72.1	42.9	25.5
	50	43.8	262.9	156.3	68.6	40.8	24.2
	60	33.2	250.6	149.0	65.4	38.9	23.1
	70	25.4	238.6	141.9	62.2	37.0	22.0
	80	19.1	225.8	134.2	58.9	35.0	20.8
	90	13.5	210.0	124.9	54.8	32.6	19.4
	100	1.00	-	-	-	-	-
	1	3980.5	462.0	274.7	120.5	71.7	42.6
	2	1980.4	431.3	256.4	112.5	66.9	39.8
	5	780.3	390.2	232.0	101.8	60.5	36.0
	10	380.1	358.5	213.2	93.5	55.6	33.1
	15	246.6	339.4	201.8	88.5	52.6	31.3
	20	179.8	325.5	193.5	84.9	50.5	30.0
	25	139.5	314.3	186.9	82.0	48.7	29.0
40	30	112.6	304.8	181.2	79.5	47.3	28.1
	40	78.8	289.0	171.8	75.4	44.8	26.7
	50	58.2	275.6	163.8	71.9	42.7	25.4
	60	44.2	263.3	156.5	68.7	40.8	24.3
	70	33.7	251.2	149.4	65.5	39.0	23.2
	80	25.4	238.5	141.8	62.2	37.0	22.0
	90	17.9	222.7	132.4	58.1	34.5	20.5
	100	1.00	-	-	-	-	-

Tabla 3.13. Continuación...

1 2 5 10 15 20 25 30 40 50 60 70 80 90 100 1	(Años) 4975.5 2475.4 975.3 475.1 308.2 224.6 174.3 140.7 98.4 72.6 55.1 42.0	5 min 471.9 441.1 400.1 368.4 349.3 335.3 324.1 314.7 298.8 285.4 273.1	10 min 280.6 262.3 237.9 219.0 207.7 199.4 192.7 187.1 177.7	30 min 123.1 115.1 104.4 96.1 91.1 87.5 84.5 82.1	60 min 73.2 68.4 62.1 57.1 54.2 52.0 50.3 48.8	120 min 43.5 40.7 36.9 34.0 32.2 30.9 29.9
2 5 10 15 20 25 30 40 50 60 70 80 90 100	2475.4 975.3 475.1 308.2 224.6 174.3 140.7 98.4 72.6 55.1 42.0	441.1 400.1 368.4 349.3 335.3 324.1 314.7 298.8 285.4	262.3 237.9 219.0 207.7 199.4 192.7 187.1 177.7	115.1 104.4 96.1 91.1 87.5 84.5 82.1	68.4 62.1 57.1 54.2 52.0 50.3	40.7 36.9 34.0 32.2 30.9 29.9
5 10 15 20 25 30 40 50 60 70 80 90 100	975.3 475.1 308.2 224.6 174.3 140.7 98.4 72.6 55.1 42.0	400.1 368.4 349.3 335.3 324.1 314.7 298.8 285.4	237.9 219.0 207.7 199.4 192.7 187.1 177.7	104.4 96.1 91.1 87.5 84.5 82.1	62.1 57.1 54.2 52.0 50.3	36.9 34.0 32.2 30.9 29.9
10 15 20 25 30 40 50 60 70 80 90 100	475.1 308.2 224.6 174.3 140.7 98.4 72.6 55.1 42.0	368.4 349.3 335.3 324.1 314.7 298.8 285.4	219.0 207.7 199.4 192.7 187.1 177.7	96.1 91.1 87.5 84.5 82.1	57.1 54.2 52.0 50.3	34.0 32.2 30.9 29.9
15 20 25 30 40 50 60 70 80 90 100	308.2 224.6 174.3 140.7 98.4 72.6 55.1 42.0	349.3 335.3 324.1 314.7 298.8 285.4	207.7 199.4 192.7 187.1 177.7	91.1 87.5 84.5 82.1	54.2 52.0 50.3	32.2 30.9 29.9
20 25 30 40 50 60 70 80 90	224.6 174.3 140.7 98.4 72.6 55.1 42.0	335.3 324.1 314.7 298.8 285.4	199.4 192.7 187.1 177.7	87.5 84.5 82.1	52.0 50.3	30.9 29.9
25 30 40 50 60 70 80 90 100	174.3 140.7 98.4 72.6 55.1 42.0	324.1 314.7 298.8 285.4	192.7 187.1 177.7	84.5 82.1	50.3	29.9
30 40 50 60 70 80 90	140.7 98.4 72.6 55.1 42.0	314.7 298.8 285.4	187.1 177.7	82.1	+	
40 50 60 70 80 90	98.4 72.6 55.1 42.0	298.8 285.4	177.7		48.8	20.0
50 60 70 80 90 100	72.6 55.1 42.0	285.4	1	 ^		29.0
60 70 80 90 100	55.1 42.0			77.9	46.3	27.6
70 80 90 100	42.0	273 1	169.7	74.4	44.3	26.3
80 90 100	_		162.4	71.2	42.4	25.2
90 100		261.1	155.2	68.1	40.5	24.1
100	31.6	248.3	147.6	64.8	38.5	22.9
	22.2	232.5	138.2	60.6	36.1	21.4
1	1.00	-	-	-	-	-
ı	5970.4	479.9	285.4	125.2	74.4	44.3
2	2970.4	449.1	267.1	117.2	69.7	41.4
5	1170.2	408.1	242.7	106.5	63.3	37.6
10	570.0	376.4	223.8	98.2	58.4	34.7
15	369.7	357.3	212.5	93.2	55.4	33.0
20	269.4	343.3	204.2	89.6	53.3	31.7
25	209.1	332.2	197.5	86.6	51.5	30.6
30	168.7	322.7	191.9	84.2	50.0	29.8
40	118.0	306.9	182.5	80.0	47.6	28.3
50	87.1	293.4	174.5	76.5	45.5	27.1
60	66.0	281.1	167.2	73.3	43.6	25.9
70	50.3	269.1	160.0	70.2	41.7	24.8
80	37.8	256.3	152.4	66.9	39.8	23.6
90	26.6	240.5	143.0	62.7	37.3	22.2
100	1.00	-	-	-	-	-
1	6965.4	486.7	289.4	127.0	75.5	44.9
2	3465.4	455.9	271.1	118.9	70.7	42.0
5	1365.2	414.9	246.7	108.2	64.4	38.3
						35.3
			 			33.6
			1			32.3
	+		1			31.3
			1			30.4
						28.9
			1		+	27.7
			1		+	26.6
						25.4
70	+				1	24.3
90	-		 			
80						22.8
	10 15 20 25 30 40 50 60 70 80 90	15 431.2 20 314.2 25 243.8 30 196.8 40 137.5 50 101.5 60 76.9 70 58.6 80 44.0 90 30.9	15 431.2 364.1 20 314.2 350.1 25 243.8 338.9 30 196.8 329.5 40 137.5 313.7 50 101.5 300.2 60 76.9 287.9 70 58.6 275.9 80 44.0 263.1 90 30.9 247.3	15 431.2 364.1 216.5 20 314.2 350.1 208.2 25 243.8 338.9 201.5 30 196.8 329.5 195.9 40 137.5 313.7 186.5 50 101.5 300.2 178.5 60 76.9 287.9 171.2 70 58.6 275.9 164.0 80 44.0 263.1 156.4 90 30.9 247.3 147.1	15 431.2 364.1 216.5 95.0 20 314.2 350.1 208.2 91.3 25 243.8 338.9 201.5 88.4 30 196.8 329.5 195.9 85.9 40 137.5 313.7 186.5 81.8 50 101.5 300.2 178.5 78.3 60 76.9 287.9 171.2 75.1 70 58.6 275.9 164.0 72.0 80 44.0 263.1 156.4 68.6 90 30.9 247.3 147.1 64.5	15 431.2 364.1 216.5 95.0 56.5 20 314.2 350.1 208.2 91.3 54.3 25 243.8 338.9 201.5 88.4 52.6 30 196.8 329.5 195.9 85.9 51.1 40 137.5 313.7 186.5 81.8 48.6 50 101.5 300.2 178.5 78.3 46.6 60 76.9 287.9 171.2 75.1 44.7 70 58.6 275.9 164.0 72.0 42.8 80 44.0 263.1 156.4 68.6 40.8 90 30.9 247.3 147.1 64.5 38.4

Tabla 3.13. Continuación...

N	J (%)	Tr		Intensida	des Máxim	as (mm/h)	
14	J (/0)	(Años)	5 min	10 min	30 min	60 min	120 min
	1	7960.4	492.6	292.9	128.5	76.4	45.4
	2	3960.4	461.8	274.6	120.5	71.6	42.6
	5	1560.2	420.8	250.2	109.8	65.3	38.8
	10	759.8	389.1	231.3	101.5	60.3	35.9
	15	492.8	370.0	220.0	96.5	57.4	34.1
	20	359.0	356.0	211.7	92.9	55.2	32.8
	25	278.6	344.8	205.0	89.9	53.5	31.8
80	30	224.8	335.4	199.4	87.5	52.0	30.9
	40	157.1	319.5	190.0	83.3	49.6	29.5
	50	115.9	306.1	182.0	79.8	47.5	28.2
	60	87.8	293.8	174.7	76.6	45.6	27.1
	70	66.9	281.8	167.5	73.5	43.7	26.0
	80	50.2	269.0	159.9	70.2	41.7	24.8
	90	35.2	253.2	150.6	66.0	39.3	23.4
	100	1.00	-	-	-	-	-
	1	8955.4	497.8	296.0	129.8	77.2	45.9
	2	4455.3	467.0	277.7	121.8	72.4	43.1
	5	1755.1	426.0	253.3	111.1	66.1	39.3
	10	854.7	394.3	234.4	102.8	61.1	36.4
	15	554.3	375.2	223.1	97.9	58.2	34.6
	20	403.8	361.2	214.8	94.2	56.0	33.3
	25	313.3	350.0	208.1	91.3	54.3	32.3
90	30	252.8	340.5	202.5	88.8	52.8	31.4
	40	176.7	324.7	193.1	84.7	50.4	29.9
	50	130.3	311.3	185.1	81.2	48.3	28.7
	60	98.7	299.0	177.8	78.0	46.4	27.6
	70	75.3	287.0	170.6	74.9	44.5	26.5
	80	56.4	274.2	163.0	71.5	42.5	25.3
	90	39.6	258.4	153.6	67.4	40.1	23.8
	100	1.00	-	-	-	-	-
	1	9950.4	502.4	298.7	131.1	77.9	46.3
	2	4950.3	471.6	280.4	123.0	73.2	43.5
	5	1950.1	430.6	256.0	112.3	66.8	39.7
	10	949.6	398.9	237.2	104.1	61.9	36.8
	15	615.8	379.8	225.8	99.1	58.9	35.0
	20	448.6	365.8	217.5	95.4	56.7	33.7
	25	348.1	354.7	210.9	92.5	55.0	32.7
100	30	280.9	345.2	205.2	90.0	53.5	31.8
100	40	196.3	329.4	195.8	85.9	51.1	30.4
	50	144.8	315.9	187.8	82.4	49.0	29.1
						+	28.0
	60	109.6	303.6	180.5	79.2	47.1	
	70	83.6	291.6	173.4	76.1	45.2	26.9
	80	62.6	278.8	165.8	72.7	43.2	25.7
	90	43.9	263.0	156.4	68.6	40.8	24.3
	100	1.00	-	-	-	-	-

Tabla 3.14. Intensidades máximas de precipitación transferidas a la microcuenca del Rio Congona en función de "N" y "J"

MICROCUENCA: Rio Congona ALTITUD MEDIA (Hm): 2374 msnm

NI NI	1./0/\	Tr		Intensida	des Máxima	as (mm/h)	
N	J (%)	(Años)	5 min	10 min	30 min	60 min	120 min
	1	498.0	393.8	234.2	102.7	61.1	36.3
	2	248.0	361.1	214.7	94.2	56.0	33.3
	5	98.0	317.5	188.8	82.8	49.2	29.3
	10	48.0	283.8	168.7	74.0	44.0	26.2
	15	31.3	263.5	156.7	68.7	40.9	24.3
	20	22.9	248.7	147.9	64.9	38.6	22.9
	25	17.9	236.8	140.8	61.8	36.7	21.8
5	30	14.5	226.7	134.8	59.1	35.2	20.9
	40	10.3	209.9	124.8	54.7	32.6	19.4
	50	7.7	195.6	116.3	51.0	30.3	18.0
	60	6.0	182.5	108.5	47.6	28.3	16.8
	70	4.7	169.7	100.9	44.3	26.3	15.7
	80	3.6	156.1	92.8	40.7	24.2	14.4
	90	2.7	139.4	82.9	36.4	21.6	12.9
	100	1.00	-	-	-	-	-
	1	995.5	426.3	253.5	111.2	66.1	39.3
	2	495.5	393.6	234.0	102.7	61.0	36.3
	5	195.5	350.0	208.1	91.3	54.3	32.3
	10	95.4	316.3	188.0	82.5	49.1	29.2
	15	62.0	296.0	176.0	77.2	45.9	27.3
	20	45.3	281.1	167.2	73.3	43.6	25.9
	25	35.3	269.2	160.1	70.2	41.8	24.8
10	30	28.5	259.2	154.1	67.6	40.2	23.9
	40	20.1	242.3	144.1	63.2	37.6	22.3
	50	14.9	228.0	135.6	59.5	35.4	21.0
	60	11.4	215.0	127.8	56.1	33.3	19.8
	70	8.8	202.2	120.2	52.7	31.4	18.6
	80	6.7	188.6	112.1	49.2	29.3	17.4
	90	4.9	171.8	102.2	44.8	26.6	15.8
	100	1.00	-	-	-	-	-
	1	1493.0	445.3	264.8	116.2	69.1	41.1
	2	743.0	412.6	245.3	107.6	64.0	38.1
	5	292.9	369.0	219.4	96.2	57.2	34.0
	10	142.9	335.2	199.3	87.4	52.0	30.9
	15	92.8	314.9	187.3	82.2	48.8	29.0
	20	67.7	300.1	178.4	78.3	46.5	27.7
	25	52.6	288.2	171.4	75.2	44.7	26.6
15	30	42.6	278.1	165.4	72.6	43.1	25.7
. •	40	29.9	261.3	155.4	68.2	40.5	24.1
	50	22.1	247.0	146.9	64.4	38.3	22.8
	60	16.9	234.0	139.1	61.0	36.3	21.6
	70	13.0	221.2	131.5	57.7	34.3	20.4
	80	9.8	207.6	123.4	54.1	32.2	19.1
	90	7.0	190.8	113.5	49.8	29.6	17.6
	100	1.00	130.0	- 113.3	+3.0 -	23.0	- 17.0
	100	1.00			<u>-</u>	_	-

Tabla 3.14. Continuación...

N	J (%)	Tr		Intensida	des Máxima	as (mm/h)	
IN	J (%)	(Años)	5 min	10 min	30 min	60 min	120 min
	1	1990.5	458.8	272.8	119.7	71.2	42.3
	2	990.5	426.1	253.3	111.1	66.1	39.3
	5	390.4	382.4	227.4	99.8	59.3	35.3
	10	190.3	348.7	207.3	91.0	54.1	32.2
	15	123.6	328.4	195.3	85.7	50.9	30.3
	20	90.1	313.6	186.5	81.8	48.6	28.9
	25	70.0	301.7	179.4	78.7	46.8	27.8
20	30	56.6	291.6	173.4	76.1	45.2	26.9
	40	39.7	274.8	163.4	71.7	42.6	25.3
	50	29.4	260.5	154.9	68.0	40.4	24.0
	60	22.3	247.4	147.1	64.5	38.4	22.8
	70	17.1	234.6	139.5	61.2	36.4	21.6
	80	12.9	221.0	131.4	57.7	34.3	20.4
	90	9.2	204.3	121.5	53.3	31.7	18.8
	100	1.00	-	-	-	-	-
	1	2985.5	477.7	284.1	124.6	74.1	44.1
	2	1485.4	445.0	264.6	116.1	69.0	41.0
	5	585.4	401.4	238.7	104.7	62.3	37.0
	10	285.2	367.7	218.6	95.9	57.0	33.9
	15	185.1	347.4	206.6	90.6	53.9	32.0
	20	134.9	332.6	197.7	86.7	51.6	30.7
	25	104.8	320.7	190.7	83.6	49.7	29.6
30	30	84.6	310.6	184.7	81.0	48.2	28.6
	40	59.2	293.8	174.7	76.6	45.6	27.1
	50	43.8	279.5	166.2	72.9	43.3	25.8
	60	33.2	266.4	158.4	69.5	41.3	24.6
	70	25.4	253.6	150.8	66.2	39.3	23.4
	80	19.1	240.0	142.7	62.6	37.2	22.1
	90	13.5	223.3	132.8	58.2	34.6	20.6
	100	1.00	-	-	-	-	-
	1	3980.5	491.2	292.1	128.1	76.2	45.3
	2	1980.4	458.5	272.6	119.6	71.1	42.3
	5	780.3	414.9	246.7	108.2	64.3	38.3
	10	380.1	381.2	226.6	99.4	59.1	35.2
	15	246.6	360.9	214.6	94.1	56.0	33.3
	20	179.8	346.0	205.8	90.3	53.7	31.9
	25	139.5	334.1	198.7	87.2	51.8	30.8
40	30	112.6	324.1	192.7	84.5	50.3	29.9
	40	78.8	307.2	182.7	80.1	47.7	28.3
	50	58.2	293.0	174.2	76.4	45.4	27.0
	60	44.2	279.9	166.4	73.0	43.4	25.8
	70	33.7	267.1	158.8	69.7	41.4	24.6
	80	25.4	253.5	150.7	66.1	39.3	23.4
	90	17.9	236.7	140.8	61.8	36.7	21.8
	100	1.00	-	-	-	-	-

Tabla 3.14. Continuación...

N	1 (0/)	Tr		Intensidades Máximas (mm/h) 10 min 30 min 60 min 12					
IN	J (%)	(Años)	5 min	10 min	30 min	60 min	120 min		
	1	4975.5	501.7	298.3	130.9	77.8	46.3		
	2	2475.4	469.0	278.8	122.3	72.7	43.2		
	5	975.3	425.3	252.9	110.9	66.0	39.2		
	10	475.1	391.6	232.9	102.2	60.7	36.1		
	15 308.2		371.3	220.8	96.9	57.6	34.2		
	20	224.6	356.5	212.0	93.0	55.3	32.9		
	25	174.3	344.6	204.9	89.9	53.4	31.8		
50	30	140.7	334.5	198.9	87.3	51.9	30.9		
	40	98.4	317.7	188.9	82.9	49.3	29.3		
	50	72.6	303.4	180.4	79.1	47.1	28.0		
	60	55.1	290.3	172.6	75.7	45.0	26.8		
	70	42.0	277.6	165.0	72.4	43.0	25.6		
	80	31.6	264.0	157.0	68.9	40.9	24.3		
	90	22.2	247.2	147.0	64.5	38.3	22.8		
	100	1.00	-	-	-	70.4	- 47.4		
	1	5970.4	510.2	303.4	133.1	79.1	47.1		
	2	2970.4	477.5	283.9	124.6	74.1	44.0		
	5	1170.2	433.9	258.0	113.2	67.3	40.0		
	10	570.0	400.2	237.9	104.4	62.1	36.9		
	15	369.7	379.9	225.9	99.1	58.9	35.0		
	20	269.4	365.0	217.0	95.2	56.6	33.7		
60	25	209.1	353.1	210.0	92.1	54.8	32.6		
60	30	168.7	343.1	204.0	89.5	53.2	31.6		
	40	118.0	326.2	194.0	85.1	50.6	30.1		
	50	87.1	311.9	185.5	81.4	48.4	28.8		
	60 70	66.0 50.3	298.9 286.1	177.7 170.1	78.0 74.6	46.4 44.4	27.6 26.4		
	80	37.8	272.5	162.0	74.0	42.3	25.1		
	90	26.6	255.7	152.1	66.7	39.7	23.6		
	100	1.00	200.1	102.1	-	-	23.0		
	1	6965.4	517.4	307.7	135.0	80.3	47.7		
	2	3465.4	484.7	288.2	126.4	75.2	44.7		
	5	1365.2	441.1	262.3	115.1	68.4	40.7		
	10	664.9	407.4	242.2	106.3	63.2	37.6		
	15	431.2	387.1	230.2	101.0	60.0	35.7		
	20	314.2	372.2	221.3	97.1	57.7	34.3		
	25	243.8	360.3	214.3	94.0	55.9	33.2		
70	30	196.8	350.3	208.3	91.4	54.3	32.3		
	40	137.5	333.5	198.3	87.0	51.7	30.8		
	50	101.5	319.2	189.8	83.3	49.5	29.4		
	60	76.9	306.1	182.0	79.8	47.5	28.2		
	70	58.6	293.3	174.4	76.5	45.5	27.0		
	80	44.0	279.7	166.3	73.0	43.4	25.8		
	90	30.9	262.9	156.3	68.6	40.8	24.2		
	100	1.00	-	-	-	-	-		

Tabla 3.14. Continuación...

N	J (%)	Tr		Intensida	as (mm/h)		
IN	3 (70)	(Años)	5 min	10 min	30 min	60 min	120 min
	1	7960.4	523.7	311.4	136.6	81.2	48.3
	2	3960.4	491.0	291.9	128.1	76.2	45.3
	5	1560.2	447.3	266.0	116.7	69.4	41.3
	10	759.8	413.6	245.9	107.9	64.2	38.1
	15	492.8	393.3	233.9	102.6	61.0	36.3
	20	20 359.0 378.5		225.1	98.7	58.7	34.9
	25	278.6	366.6	218.0	95.6	56.9	33.8
80	30	224.8	356.5	212.0	93.0	55.3	32.9
	40	157.1	339.7	202.0	88.6	52.7	31.3
	50	115.9	325.4	193.5	84.9	50.5	30.0
	60	87.8	312.3	185.7	81.5	48.4	28.8
	70	66.9	299.6	178.1	78.1	46.5	27.6
	80	50.2	286.0	170.0	74.6	44.4	26.4
	90	35.2	269.2	160.1	70.2	41.8	24.8
	100	1.00	-	-	-	-	-
	1	8955.4	529.2	314.7	138.0	82.1	48.8
	2	4455.3	496.5	295.2	129.5	77.0	45.8
	5	1755.1	452.9	269.3	118.1	70.2	41.8
	10	854.7	419.2	249.2	109.3	65.0	38.7
	15	554.3	398.9	237.2	104.0	61.9	36.8
	20	403.8	384.0	228.3	100.2	59.6	35.4
	25	313.3	372.1	221.3	97.1	57.7	34.3
90	30	252.8	362.0	215.3	94.4	56.2	33.4
	40	176.7	345.2	205.3	90.1	53.5	31.8
	50	130.3	330.9	196.8	86.3	51.3	30.5
	60	98.7	317.9	189.0	82.9	49.3	29.3
	70	75.3	305.1	181.4	79.6	47.3	28.1
	80	56.4	291.5	173.3	76.0	45.2	26.9
	90	39.6	274.7	163.3	71.7	42.6	25.3
	100	1.00	-	-	-	-	-
	1	9950.4	534.1	317.6	139.3	82.8	49.3
	2	4950.3	501.4	298.2	130.8	77.8	46.2
	5	1950.1	457.8	272.2	119.4	71.0	42.2
	10	949.6	424.1	252.2	110.6	65.8	39.1
	15	615.8	403.8	240.1	105.3	62.6	37.2
	20	448.6	388.9	231.3	101.5	60.3	35.9
	25	348.1	377.0	224.2	98.4	58.5	34.8
100	30	280.9	367.0	218.2	95.7	56.9	33.8
	40	196.3	350.2	208.2	91.3	54.3	32.3
	50	144.8	335.9	199.7	87.6	52.1	31.0
	60	109.6	322.8	191.9	84.2	50.1	29.8
	70	83.6	310.0	184.3	80.9	48.1	28.6
	80	62.6	296.4	176.3	77.3	46.0	27.3
	90	43.9	279.6	166.3	72.9	43.4	25.8
	100	1.00	-	-	-	-	-

CAPÍTULO IV. ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1. DESCRIPCIÓN Y DISCUSIÓN DE RESULTADOS:

A continuación, se analizan y discuten los resultados obtenidos de la regionalización morfométrica adimensional de cuencas hidrográficas de la sierra de Piura - Perú, que cumplen con el principio de similitud de sistemas hidrológicos con fines de transferencia de información hidrológica.

4.1.1. Análisis cartográfico y características geomorfológicas de las cuencas hidrográficas altoandinas de la región Piura.

Se realizó el análisis cartográfico de cada una de las cuencas hidrográficas en el software ArcGIS, con el fin de caracterizarlos como cuencas altoandinas, de las cuales se obtuvieron sus Parámetros Geomorfológicos, agrupados para ello en parámetros de forma, de relieve y red hidrográfica. Se logró delimitar una muestra regional constituida por 100 cuencas hidrográficas altoandinas de la región Piura, en las vertientes del Pacífico y Atlántico, que hace un área total aproximada de 10 326 Km², que representa el 30 % del área total de la región (35 892 Km²). Producto del análisis cartográfico de cuencas nos conllevo a realizar en MS Excel una Programación de Macros en Visual Basic, el cual facilita el proceso de determinación de Parámetros geomorfológicas de las microcuencas altoandinas, obteniendo los resultados presentados en las presentados en la *Tabla 3.3.* y en los Anexos (*Tabla 6.100*).

4.1.2. Parámetros morfométricos adimensionales de similitud de las cuencas hidrográficas

El estudio morfométrico mediante estimadores adimensionales relacionados con la similitud de sistemas hidrológicos - índice de Gravelius, relación de confluencias y coeficiente orográfico, reporta que se trata de una muestra hidrológica muy heterogénea, cuya variabilidad se refleja en el comportamiento del indicador estadístico dado por el coeficiente de variación de cada parámetro de semejanza, presentados en la Tabla 3.4.

La clasificación geométrica de la muestra hidrológica atendiendo a los rangos del índice de Gravelius dio como resultado treinta unidades hidrológicas de la forma oval redonda (30%), cincuenta nueve de la forma oval oblonga (59%) y once de la forma oblonga alargada (11%). Presentados en el análisis grafico de la clasificación geométrica de microcuencas en Figura (3.17) respectivamente.

Dentro de la que se identificaran las unidades hidrológicas con similitud hidrológica aproximada, teniendo en consideración el límite de error preestablecido para cada uno de los parámetros de semejanza, medida mediante el coeficiente de variación.

4.1.3. Identificación de sistemas hidrológicos similares

Similitud de sistemas hidrológicos de la forma oval redonda

La similitud hidrológica en esta clase de geometría está distribuida en dos grupos, un primer grupo (G.A1) conformado por siete unidades hidrológicas (Tabla 3.5), un segundo grupo (G.A2) con cuatro unidades (Tabla 3.6); lo cual hace un total de once microcuencas, que representa el 36.67 % del número total de esta clase geométrica y el 11 % del total de la muestra.

En este grupo de microcuencas (Tabla 3.5), se encontraron siete unidades con similitud hidrológica que representa el 23.33 por ciento del total de este grupo y el 7 por ciento del total de la muestra, se denominó un primer grupo como (G.A1) tal como se observa en los resultados mostrados en la Tabla 3.5. Los límites de tolerancia para el índice de Gravelius (coeficiente de variación, 0.043), relación de confluencias (coeficiente de variación, 0.183), y el coeficiente de variación del coeficiente orográfico de 0.219.

Las unidades hidrológicas descartadas, pueden ir a conformar otros grupos con similitud hidrológica, en razón de su compatibilidad con los errores máximos permisibles preestablecidos para cada uno de los parámetros de similitud. Se encontró un segundo grupo denominado (G.A2), conformado por cuatro unidades con similitud hidrológica que representa el 13.33 por ciento del total de este grupo y el 4 por ciento del total de la muestra, resultados mostrados en la Tabla (3.6), cuyo índice de Gravelius (coeficiente de variación, 0.029), relación de confluencias (coeficiente de variación, 0.055), y el coeficiente de variación del coeficiente orográfico de 0.133.

En este grupo geométrico de la forma oval redonda, existe un número de diecinueve microcuencas que no mostraron identidad de similitud entre sí, menos aún con la de los otros dos grupos; lo cual representa el 63.33 por ciento del total de esta clase geométrica y 19 por ciento del total de la muestra regional.

Similitud de sistemas hidrológicos de la forma oval oblonga

La similitud hidrológica en esta clase de geometría está distribuida en cuatro grupos, un primer grupo (G.B1) conformado por ocho unidades hidrológicas (Tabla 3.7), un segundo grupo (G.B2) con ocho unidades (Tabla 3.8); un tercer grupo (G.B3) con cinco

unidades (Tabla 3.9); y un cuarto grupo (G.B4) con siete unidades (Tabla 3.10) lo cual hace un total de veintiocho microcuencas, que representa el 47.46 % del número total de esta clase geométrica y el 28% del total de la muestra.

En este grupo de microcuencas (Tabla 3.7) de geometría más recurrente en la muestra, se encontraron ocho unidades con similitud hidrológica que representa el 13.56 por ciento del total de este grupo y el 8 por ciento del total de la muestra. Es el grupo con mayor presencia de similitud hidrológica en la muestra regional; cuyo índice de Gravelius (coeficiente de variación, 0.050), relación de confluencias (coeficiente de variación, 0.138), y el coeficiente de variación del coeficiente orográfico de 0.096.

Para mejorar la calidad de la similitud hidrológica, por descarte de las unidades más discrepantes, se pueden ir reduciendo los límites de error, Las unidades hidrológicas descartadas, pueden ir a conformar otros grupos con similitud hidrológica.

En el grupo de microcuencas (Tabla 3.8), se encontraron ocho unidades con similitud hidrológica que representa el 13.56 por ciento del total de este grupo y el 8 por ciento del total de la muestra, cuyo índice de Gravelius (coeficiente de variación, 0.041), relación de confluencias (coeficiente de variación, 0.156), y el coeficiente de variación del coeficiente orográfico de 0.081).

En el grupo de microcuencas (Tabla 3.9), se encontraron cinco unidades con similitud hidrológica que representa el 8.47 por ciento del total de este grupo y el 5 por ciento del total de la muestra, cuyo índice de Gravelius (coeficiente de variación, 0.047), relación de confluencias (coeficiente de variación, 0.198), y el coeficiente de variación del coeficiente orográfico de 0.068.

En el grupo de microcuencas (Tabla 3.10), se encontraron siete unidades con similitud hidrológica que representa el 11.86 por ciento del total de este grupo y el 7 por ciento del total de la muestra, cuyo índice de Gravelius (coeficiente de variación, 0.032), relación de confluencias (coeficiente de variación, 0.100), y el coeficiente de variación del coeficiente orográfico de 0.215.

Es el grupo geométrico de forma oval oblonga con mayor presencia de similitud hidrológica en la muestra de la región de estudio; sin embargo, existe un número de treinta uno microcuencas que no mostraron identidad de similitud entre sí, menos aún con la de los otros cuatro grupos; lo cual representa el 52.54 por ciento del total de esta clase geométrica y 31 por ciento del total de la muestra regional.

Similitud de sistemas hidrológicos de la forma oblonga alargada

La similitud hidrológica de las microcuencas de esta geometría está distribuida en un solo grupo que se denominó (G.C1) de dos unidades hidrológicas (Tabla 3.11), que representa el 18.18 por ciento del número total de este grupo geométrico y el dos por ciento del número total de la muestra regional; cuyo índice de Gravelius (coeficiente de variación, 0.010), relación de confluencias (coeficiente de variación, 0.110), y el coeficiente de variación del coeficiente orográfico (0.04). No obstante, este grupo presenta una menor aproximación de la similitud por ello el escaso unidades hidrológicas similares.

También queda un grupo de nueve microcuencas que no tuvieron identidad de similitud con ninguno del grupo ni consigo mismas, lo que representa el 81.82 por ciento del número total de esta clase geométrica y nueve por ciento del total de la muestra regional.

4.1.4. Funciones de transferencia de información hidrológica.

La condición de similitud de sistemas hidrológicos, "Dos o más sistemas hidrológicos altoandinos son semejantes si cumplen simultáneamente las condiciones de semejanza geométrica, cinemática y dinámica", con cierto grado de aproximación de similitud para fines prácticos se ha fijado como límites máximos del coeficiente de variación de 0.05, 0.20 y 0.30, para el índice de Gravelius, relación de confluencias promedio y coeficiente orográfico, respectivamente. Según las consideraciones anteriores y para ilustrar la aplicación de transferencia de información mediante esta metodología se tomó como sistema origen la microcuenca Rio Cuevas, del grupo (G.B3) de microcuencas (Tabla 3.9), con similitud hidráulica de la forma oval oblonga, perteneciente a la cuenca Chamaya, en la vertiente del atlántico, cuyo índice de Gravelius (1.27), relación de confluencias (1.63), y el coeficiente orográfico (15.33%). En la microcuenca baja del Rio Cuevas se ubica la estación pluviométrica Tuluce (05 º 28' 37.83" S; 79 º 20' 50.71" W; altitud, 2233 msnm) del Servicio Nacional de Meteorología e Hidrología, SENAMHI-Perú, en la Región de Piura, provincia de Huancabamba, distrito de Sondor.

La información hidrológica para la transferencia fue de tormentas máximas procesadas de cuarenta años (1979 – 2018), los resultados de análisis estadísticos nos conllevaron a seleccionar el modelo Gumbel, es el que representa en forma satisfactoria el comportamiento de tormentas máximas anuales. Se realizó la prueba de Prueba Smironov – Kolmogorov en la que se comparó las diferencias existentes, entre la

probabilidad empírica de los datos de la muestra y la probabilidad teórica, tomando un valor máximo del valor absoluto, de la diferencia entre el valor observado y el valor de la recta teórica del modelo, resultando para 5 minutos (Max|P(X)-F(X)|=0.0852), 10 minutos (Max|P(X)-F(X)|=0.0852), 30 minutos (Max|P(X)-F(X)|=0.0852), 60 minutos (Max|P(X)-F(X)|= 0.0852), 120 minutos (Max|P(X)-F(X)|= 0.0852), para luego calcular valor crítico del estadístico " Δ ", es decir (Δ_0 =0.21) para un α =5% y N=40 datos. Los valores de " Δ_0 ", se muestran en la tabla 2.8. Comparamos el valor estadístico " $\Delta_{máx}$.", con el valor crítico " Δ_0 ", resultando el ajuste bueno en todos Periodo de Duración (min). Finalmente realizar la simulación del modelo, desde luego se calculó los parámetros del modelo Gumbel resultando para: 5 minutos (α = 41.43, υ =94.43), 10 minutos (α = 24.58, ν =56.15), 30 minutos (α = 10.78, ν =24.63), 60 minutos (α = 6.41, ν =14.65), 120 minutos (α = 3.81, ν =8.71). La selección de la variable de diseño (Tablas 3.13), donde existe una gama muy amplia de opciones en cuanto a periodos de vida útil (N), incertidumbre (J), tiempos de retorno (Tr) y periodo de duración, acorde con el tiempo de concentración de la superficie receptora - colectora, permite adecuarla a la naturaleza e importancia de cualquier proyecto hidráulico.

La Transferencia de información al sistema hidrológico de destino será microcuenca del Rio Congona (altitud media, 2373.9 msnm), perteneciente al mismo grupo (G.B3) de microcuencas (Tabla 3.9), con similitud hidrológica de la forma oval oblonga, cuyo índice de Gravelius (1.27), relación de confluencias (1.62), y el coeficiente orográfico (15.00%), cuyo resultados se muestran en la Tabla 3.14. Las funciones de transferencia se convierten en herramientas muy útiles para transferir información hidrológica desde localidades con información hacia localidades carentes de ella, respecto a cierta variable de interés y en cuencas hidrológicamente similares.

4.2. DISCUSIÓN DE RESULTADOS CONTRASTADOS CON ANTECEDENTES TEÓRICOS:

De los resultados obtenidos se llega afirmar con lo mencionado por Ortiz O. (2015) en su Tesis de Doctorado: "Similitud hidráulica de sistemas hidrológicos altoandinos y transferencia de información hidrometeorológica", que la similitud sistemas hidrológicos es una de las alternativas para contribuir en gran medida, a la solución de problemas de escasez de información hidrológica en microcuencas altoandinas. Usando una metodología de naturaleza adimensional, que tiene alcances fuera de la región estudiada, pudiendo aplicarse a cualquier región del país o inter regiones, subnacionales o internacionales, mientras se cumplan las leyes físicas que gobiernan

los sistemas hidrológicos altoandinos. Además, el intercambio de información hidrológico entre sistemas hidrológicos similares, mediante parámetros adimensionales de transferencia, es un procedimiento sencillo a diferencia de otras metodologías de análisis regional, las que requieren de mucha información distribuida en el espacio y tiempo para conseguir resultados aceptables.

También se afirma con lo mencionado con Álvarez, O. (2011), que la regionalización hidrológica que involucre cuencas altoandinas deben tener un comportamiento hidrológico semejante para transferir información hidrológica.

4.3. DISCUSIÓN DE RESULTADOS CONTRASTADOS CON LA HIPÓTESIS:

De acuerdo a los resultados obtenidos de la regionalización morfométrica de una muestra de cien microcuencas altoandinas, ubicadas en la región de Piura de Perú, dan cuenta la existencia del cuarenta y uno sistemas hidrológicos similares, estas unidades hidrológicas expresada en porcentaje representan un cuarenta y uno por ciento, cantidad mayor al veinticinco por ciento planteado inicialmente. Las unidades hidrológicas similares de la forma oval redonda representan once por ciento; de la forma oval oblonga representa el veintiocho por ciento; y de la forma oblonga alargada representa el dos por ciento.

Finalmente se acepta la hipótesis inicial planteada, de acuerdo a los resultados obtenidos.

CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES:

Finalizado el presente trabajo de investigación se llegaron a las siguientes conclusiones:

- Se determinó cuarenta y uno cuencas hidrográficas de la sierra de Piura Perú, que cumplen con el principio de similitud de sistemas hidrológicos, que representa el 41% de la muestra hidrológica; de la forma oval redonda representa el 11%; de la forma oval oblonga representa el 28%; y de la forma oblonga alargada representa el 2%.
- Del procesamiento cartográfico resultó cuencas hidrográficas caracterizados como altoandinas, por desarrollarse por más de 1500 m de altitud, en las vertientes del Pacífico y Atlántico, que constituyen un área total aproximada de 10 326 Km2, que representa el 30 % del área total de la región (35 892 Km2); agrupados en parámetros de forma, de relieve y red hidrográfica, que explican sus características fisiográficas o comportamiento hidrológico de las cuencas hidrográficas.
- Se determinó los parámetros adimensionales de similitud de cuencas hidrográficas, cuya variabilidad reflejada en el Coeficiente Gravelius es 0.090; para la relación de confluencias es 0.478; y para el Coeficiente orográfico es 0.735, reportando que se trata de una muestra hidrológica muy heterogénea, atendiendo la clasificación a los rangos del coeficiente de Gravelius, dio como resultado treinta unidades hidrológicas de la forma oval redonda (30%), cincuenta nueve de la forma oval oblonga (59%) y once de la forma oblonga alargada (11%).
- Se identificó los sistemas hidrológicos similares, de la forma oval redonda quedó está distribuida en 2 grupos, un primer grupo (G.A1) conformado por 7 unidades hidrológicas, un segundo grupo (G.A2) con 4 unidades; de la forma oval oblonga quedó distribuida en 4 grupos, un primer grupo (G.B1) conformado por 8 unidades hidrológicas, un segundo grupo (G.B2) con 8 unidades hidrológicas y un tercer grupo (G.B3) con 5; y un cuarto grupo (G.B4) con 7 unidades hidrológicas; de la forma oblonga alargada quedó distribuida en solo grupo (G.C1) de 2 unidades hidrológicas.

La aplicación de la metodología de similitud de sistemas hidrológicos, nos conllevó a seleccionar como sistema de origen la microcuenca Rio Cuevas, del grupo (G.B3), donde se ubica la estación pluviométrica Tuluce (05 º 28' 37.83" S; 79 º 20' 50.71" W; altitud, 2233 msnm) del Servicio Nacional de Meteorología e Hidrología, SENAMHI-Perú, para la transferencia de intensidades máximas de precipitación procesadas de cuarenta años (1979 – 2018), con gama muy amplia de opciones en cuanto a periodos de vida útil (N), incertidumbre (J), periodo de retorno (Tr) y periodo de duración. Finalmente transferidas al sistema hidrológico de destino de la microcuenca del Rio Congona (altitud media, 2373.9 msnm), seleccionada a priori, perteneciente al mismo grupo (G.B3) de microcuencas con similitud hidrológica de la forma oval oblonga.

5.2. RECOMENDACIONES:

Para futuros trabajos de investigación relacionadas con la similitud de sistemas hidrológicos se hacen las siguientes recomendaciones:

- Verificar los aspectos intrínsecos de su naturaleza y su contorno de los sistemas hidrológicos similares identificados.
- Evaluar la efectividad de la prueba Anderson Darling en el proceso de selección de sistemas hidrológicos similares en una regionalización morfométrica adimensional.
- Realizar un estudio detallado del comportamiento hidráulico de los sistemas hidrológicos similares de alta montaña.
- Evaluar el grado de influencia que tiene la forma de la cuenca sobre la configuración de la red de drenaje y los factores de relieve, en la similitud de sistemas hidrológicos.
- Determinar una mayor gama de funciones de distribución de probabilidad, en el ajuste de serie de datos hidrológicos.
- Elaborar mapas temáticos de los sistemas hidrológicos similares vulnerables a la erosión hídrica.
- A futuras investigaciones que involucren integrar recursos computaciones, para determinar cuencas hidrográficas que cumplen con el principio de similitud de sistemas hidrológicos y transferencia de información, se les recomienda usar la aplicación **ACUS HYDROLOGY**[®] en MS Excel con Programación de Macros en Visual Basic.

REFERENCIAS BIBLIOGRÁFICAS:

- Álvarez, O., (2011). Identificación de Regiones Hidrográficas Homogéneas Mediante Análisis Multivariado. Facultad de Ingeniería, Universidad Autónoma de México, México.
- Aparicio, F. J., (1997). Fundamentos de Hidrología de Superficie. Editorial Limusa S.A., España, 303 pp.
- Cahuana, A. & Yugar, W. (2009). Material de Apoyo Didáctico para la Enseñanza y Aprendizaje de la Asignatura de Hidrología, Cochabamba.
- Carlos de la Puente, V. (2009). Estadística descriptiva e inferencial y una introducción al método científico. Editorial Complutense S. A, Madrid, España.
- Chávarri, E. Hidrología Aplicada: Análisis Probabilístico de las Variables Precipitación Total Anual. Universidad Nacional Agraria La Molina, Lima, Perú.
- Chereque, W. (1991). Hidrología, Pontífice Universidad Católica Del Perú, Lima, 103 pp.
- Chow, V. T., Maidment D. R. & Mays L. W., (1993). Hidrología Aplicada. Ediciones McGraw-Hill, Santa Fe de Bogotá, Colombia: 580 pp.
- Gaspari, F. J (2012). Caracterización Morfométrica de la Cuenca de la Cuenca Alta del Rio Sauce Grande, Buenos Aires, Argentina. VII Congreso de Medio Ambiente AUGM, 22al 24 de mayo de 2012.UNLP. La Plata, Argentina.
- García, E. (2006). Simulación y análisis de sistemas con Promodel. Primera edición. Editorial Pearson educación, México.
- Guevara, E. & Cartaya, H., (1991). Hidrología: una introducción a la ciencia hidrológica aplicada. Universidad de Carabobo. Valencia, Venezuela. 358 p.
- Gravelius, H. (1914). Flsskunde. Goschen Verlagshan dlug Berlin, I. Morphometry of Drainage Bassins. Amterdam, Elsevier.
- Henaos, J. E. (1988). Introducción al manejo de cuencas hidrográficas. Universidad Santo Tomás. Centro de enseñanza desescolarizada. Bogotá: 396 p.

- Llamas, J., (1993). Hidrología General: principios y aplicaciones. Servicio Editorial de la Universidad del País Vasco. España: 365 pp.
- Linsley R.; Kohler, M. & Paulhus, J., (1977). Hidrología para ingenieros. Mc Graw-Hill. New Yord. 386 p.
- López, F. (1987). Hidrología de superficie. Editorial Salazar. Escuela Técnica Superior de Ingenieros de Montes, Madrid, España.
- Monsalve, G., (1995). Hidrología en la Ingeniería. Escuela Colombiana de Ingeniería. Santafé de Bogotá, Colombia.
- Ortiz, V. O. (2014). Similitud hidráulica de sistemas hidrológicos altoandinos y transferencia de información hidrometeorológica. Universidad Nacional Agraria la Molina, Lima, Perú.
- Ortiz, V. O. (2015). Similitud hidráulica de sistemas hidrológicos altoandinos y transferencia de información hidrometeorológica. ISSN 01 87-8336 Tecnología y Ciencias del Agua, 25-44pp.
- Ramírez L. J. (2015). Alternativas de manejo sustentable de la Subcuenca del río Pitura, provincia de Imbabura. Universidad Nacional de La Plata, Ecuador.
- Roche M., (1963). Hydrologie de surface. Gauthier-Villars. Paris, 430 pp.
- Ruiz J., (2001). Hidrología; evolución y visión sistémica, la morfometría de cuencas como aplicación. Unellez. Barinas, Venezuela. 238 p.
- TUCCI, C. (2002). Hidrología, Regionalizacao de vazoes. Editorial Da Universidade. Porto Alegre, Brasil. 255 p.
- Ven Te Chow, (1993). Hidrología Aplicada. Ediciones McGraw-Hill, Santa Fe de Bogotá, Colombia.
- Villón, M. (2004), Hidrología, 4ta Ed. Editorial: Tecnológica de Costa Rica. Cartago, Costa Rica: 474 pp.
- Villón, M. (2006), Hidrología Estadística, 1ra Ed. Editorial: Tecnológica de Costa Rica. Cartago, Costa Rica: 440 pp.

ANEXOS

ANEXO I: REPORTE DE PARÁMETROS GEOMORFOLÓGICOS DE LAS CUENCAS HIDROGRÁFICAS

N°	PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1	ÁREA (A)		:	232.94	Km ²	Sub cuenca
2	PERÍMETRO (P)		:	73.93	Km	
3 ≸	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	28.87	Km	
3 WA 4	ANCHO PROMEDIO (Ap)		:	8.07	Km	
5	FACTOR DE FORMA (F)		:	0.28		
6	ÍNDICE DE COMPACIDAD (Kc)		:	1.37	Clase II	Oval oblonga
7	CURVA HIPSOMÉTRICA (CH)		:	-		
8	FRECUENCIA DE ALTITUDES (FA)		:	-		
9	ALTITUD MEDIA (Hm)		:	2108.73	msnm	
10 11 RELEVE	ALTITUD MAS FRECUENTE (HF)		:	2300.50	msnm	
17 🗒	PENDIENTE DE LA CUENCA		:	47.22%	Fuerte	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)		:	0.01		,
13	COEFICIENTE OROGRÁFICO (Co)		:	0.019	: 1.91 %	Moderada
14	RECTANGULO EQUIVALENTE (Re)		:	a=7.95 km	b=29.29 km	
15	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	8.14%	(Método de T	aylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	28.87	Km	· · · · · · · · · · · · · · · · · · ·
17	TIEMPO DE CONCENTRACION (Tc)		:	123.50	min	(Metodo de Kirpich)
15 05 11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	4	Orden	
19 %	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.77	Muy alto	
20 8	RELACIÓN DE LONGITUDES (RI)		:	1.02		
21 📮	DENSIDAD DE DRENAJE (D)		:	0.67	km/km²	
22 🖺	FRECUENCIA DE RÍOS (Fr)		:	0.63	ríos/Km²	
23 ~	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.37	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.32	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.91	Km²	
CUR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICE	ROCUENCA 01	: RÍO SAPCE
70 50	0.5	0000274 0000274 0000274 0000274	i	e48000	652000 656	000000

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1		ÁREA (A)		:	102.90	Km ²	Sub cuenca
2		PERÍMETRO (P)		:	47.03	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	24.73	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	4.16	Km	
5	_	FACTOR DE FORMA (F)		:	0.17		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.31	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1522.03	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	900.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	49.44%	Fuerte	(Criterio Alvord)
12	æ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.01		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0225	: 2.25 %	Moderada
14		RECTANGULO EQUIVALENTE (Re)		:	a=5.73 km	b=17.96 km	า
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	6.56%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	24.73	Km	
17	7	TIEMPO DE CONCENTRACION (Tc)		:	106.86	min	(Metodo de Kirpich
18	ROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE ((Rd)	:	3.00	Orden	
19	ìRÀI	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.59	Muy alto	
20	306	RELACIÓN DE LONGITUDES (RI)		:	0.98		
21	HIDE	DENSIDAD DE DRENAJE (D)		:	0.66	km/km²	
	ED I	FRECUENCIA DE RÍOS (Fr)		:	0.61	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	۱L (E	s) :	0.38	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.31	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	4.69	Km²	
C	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 02: R	IO SAN LORENZO
		ÁREAS SOBRE LAS ALTITUDES (Km2)	-	63900	0 642000	645000	648000 651000
		0 50 100 150 	000		ň.	\wedge	
	262 100	2.5 0.5 2.5 1.7	9435000	w-	-		}
	900	2000	9		s (130	
	700	9500	9432000		,		V
_	500 300	3.0					الرحر
_	100		9429000		1	1 7	
\neg	900 700				(4)	Lix	7)
Η.	500		9426000				\
	300	1000				~5	/
	100 900	14.7	9423000		evenda	Lys.	
	700	500	3		Emisor Rios	15-	
	500	0	9420000	ī	Curvas Cuenca 02	1/5	/
		0 5 10 15 20 % (Área Parcia I/ Área total)	9421			1	1:110,000
		FRECUENCIA DE ALTITUDES ————————————————————————————————————	L	63900	0 642000	645000	649000 651000

 Tabla 6.3.
 Resultados de Parametros Geomorfológicos de la Microcuenca 03: Qda. Singocate

Ν°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	69.68	Km ²	Sub cuenca
2		PERÍMETRO (P)		:	39.64	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	18.26	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	3.82	Km	
5	_	FACTOR DE FORMA (F)		:	0.21		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.34	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1602.60	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	1500.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	53.92%	Muy Fuerte	(Criterio Alvord)
12	2	COEFICIENTE DE MASIVIDAD (Cm)		:	0.02		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0369	: 3.69 %	Moderada
14		RECTANGULO EQUIVALENTE (Re)		: :	a=4.51 km	b=15.46 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	11.05%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	18.26	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	72.69	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden	
19	iRÁI	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.62	Muy alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	0.86		
21		DENSIDAD DE DRENAJE (D)		:	0.72	km/km²	
22	ED I	FRECUENCIA DE RÍOS (Fr)		:	0.75	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (F	≣s) :	0.35	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.39	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	4.11	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 03: QE	DA. SINGOCATE
		ÁREAS SOBRE LAS ALTITUDES (Km2)	,	650000	652000 6540	00 656000 658	66000 662000
	3300	0 20 40 60 80	4000	Ž			9414000
	3300 3100	32	94	* -			2
	2900					~~	
	2700 2500	3000	941100	Leyen	da	10	411,000
_	2300			R	misor los urvas	11	3 P
_	2100 1900	0.5	008000		uenca 04	Jank .	0000000
TUD	1700	F 2000	8		$\int V$		
	1500	1500	8		5		
	1300 1100	0.5	9405000		1		1949
	900	4		/	1		
	700 500	500	9402000	6	The same		9402000
	377					11116	1:100.000
		0 5 10 15	9000				2 1 0 2 Km
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	939	650000	652000 6540	00 656000 658	000 660000 662000

N°		la 6.4. Resultados de Parametros Geomori PARÁMETROS GEOMORFOLÓGICOS	- 3			RESULT	
1		ÁREA (A)		:	96.15	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	42.86	Km	
3	ΑN	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	19.24	Km	
4	-ORMA	ANCHO PROMEDIO (Ap)		:	5.00	Km	
5	ш	FACTOR DE FORMA (F)		:	0.26		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.23	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1947.95	msnm	
10	:VE	ALTITUD MAS FRECUENTE (HF)		:	1500.50	msnm	
11	RELIEVE	PENDIENTE DE LA CUENCA		:	52.76%		(Criterio Alvord)
12	R	COEFICIENTE DE MASIVIDAD (Cm)		:	0.02	.,	(
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0395	: 3.95 %	Moderada
14		RECTANGULO EQUIVALENTE (Re)				b=15.31 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	11.25%		Γaylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	19.24	Km	,
17		TIEMPO DE CONCENTRACION (Tc)		:	79.57	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	4.00	Orden	
19	RÁF	RELACIÓN DE CONFLUENCIAS (Rc)		:	6.06	Bajo	
20	SOG	RELACIÓN DE LONGITUDES (RI)		:	1.36	•	
21	HDF	DENSIDAD DE DRENAJE (D)		:	0.65	km/km²	
22	ED F	FRECUENCIA DE RÍOS (Fr)		:	0.61	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es	s) :	0.39	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.31	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	le)	:	3.13	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 04: F	RIO PUSMALCA
		ÁREAS SOBRE LAS ALTITUDES (Km2)		6-	18000 6	51000 654000	657000
		0 20 40 60 80 100	00	L			00
	3300	1.5	9420	Z			942000
	2900	1 3500			~		
	2700 2500	3000		1			
(E	2300		9416000	2		~	941600
(musuu)	2100	0.5		5	The		
TUD	1900	9.8 0.5			M	L. Le	
ALTI	1900 1700 1500	0.5	9412000		T		9412000
	1300	0.5	•			N	
	1100	5.5					/
	700	500	9408000				0008
	593	0.0	940		Leyenda • Emisor		1:100,000
		0 5 10 15 % (Área Parcia I/ Área total)			Curvas	0	0.5 1 2 3 4 Km
		FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	-	6-		51000 654000	657000

Tabla 6.5. Resultados de Parametros Geomorfológicos de la Microcuenca 05: Qda. Cashapite

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	68.17	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	37.92	Km	
3	-ORMA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	16.90	Km	
4	POR	ANCHO PROMEDIO (Ap)		:	4.04	Km	
5	_	FACTOR DE FORMA (F)		:	0.24		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.30	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1918.55	msnm	
10	IEVE	ALTITUD MAS FRECUENTE (HF)		:	1700.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	52.46%	Muy Fuerte	(Criterio Alvord)
12	"	COEFICIENTE DE MASIVIDAD (Cm)		:	0.03		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.054	: 5.40 %	Alta
14		RECTANGULO EQUIVALENTE (Re)	_	:	a=4.75 km	b=14.36 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	10.17%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)	_	:	16.90	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)	_	:	74.32	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE	(R	d) :	3.00	Orden	
19	ЖÁ	RELACIÓN DE CONFLUENCIAS (Rc)	_	:	1.56	Muy alto	
20	Š	RELACIÓN DE LONGITUDES (RI)		:	1.04		
21	딒	DENSIDAD DE DRENAJE (D)		:	0.71	km/km²	
	_ [FRECUENCIA DE RÍOS (Fr)		:	0.57	ríos/Km²	
23	~	EXTENSION MEDIA DE ESCURR. SUPERFICIA	AL	(Es) :	0.35	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.29	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue	e) :	4.09	Km²	
С	UR۱	/A HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES	T		MICRO	CUENCA 05: Q	DA. CASHAPITE
		ÁREAS SOBRE LAS ALTITUDES (Km2)	T	656000	658000 660000	662000 66400	0 666000 668000
		0 20 40 60 80	000				9402000
	900		9402				940
	700	3000				1	
	2500		9399000	-			0006655
_	2300 2100	11.2			/	1	
S	900	2000	3396000		مر	5	0009655
٩,	700	5 15 1	939			()	\alpha \\alpha \alpha \alpha \\alpha \alpha
⊨	500	1500				15-()	
1	300	5 9.4 1000	9393000	- 1	Jan 1	\prec	8333000
1	100				3-1		
	903	.5 1.8	9390000	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			0000
	794	.5 0.0	939		Leyenda • Emisor		939
		0 5 10 15 20			Rios		1:100,000 0 0.5 1 2 3 4 Km
		% (Área Parcia l/ Área total) FRECUENCIA DE ALTITUDES ——CURVA HIPSOMÉTRICA	1	656000	658000 660000	662000 66400	0 666000 668000 8

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	48.58	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	36.60	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	18.10	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	2.68	Km	
5	_	FACTOR DE FORMA (F)		:	0.15		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.48	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1965.14	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	1500.50	msnm	
11	ELI	PENDIENTE DE LA CUENCA		:	58.11%	Muy Fuerte	(Criterio Alvord)
12	œ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.04		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.079	: 7.95 %	Alta
14		RECTANGULO EQUIVALENTE (Re)		: 8	a=3.19 km	b=15.25 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	11.01%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	18.10	Km	
17	4	TIEMPO DE CONCENTRACION (Tc)		:	78.40	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden	
19	зRÁ	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.68	Muy alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	0.99		
21		DENSIDAD DE DRENAJE (D)		:	0.68	km/km²	
22	ED I	FRECUENCIA DE RÍOS (Fr)		:	0.76	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es) :	0.37	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.39	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	le)	:	3.65	Km²	
С	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 06:	QDA. CHALPA
		ÁREAS SOBRE LAS ALTITUDES (Km2)	_	658000	660000 66	2000 664000 666	000 668000 670000
	3100	3500	9399000		N		939-9000
	2900	5 00	6	w_	*		6
	2700	3000	0009		Å,		0009
2	2500	.5 8.4 2500	936				36
Ē 2	2300	9.9	900				
ms.	2100	.5 10.5 - 2000	9393000				
g .	2300 2100 1900 1700 1500	.5 10.8 12.0 1500	9			1/-	
٩Ľ	1500	.5	939000	(1		KE	
	1300			_	~~	كراا	
	1100	.5	9387000			S	97800
	902	.5 2.5	(100)	Leyen	ida misor		
	79	0.0	384000		Curvas		1:110,000
		0 5 10 15	93				1:110,000 S 0 0.5 1 2 3 4 Km
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	_	658000	660000 66	2000 664000 666	000 668000 670000

Tabla 6.7. Resultados de Parametros Geomorfológicos de la Microcuenca 07: Rio Overal

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL1	ΓADO
1		ÁREA (A)		:	58.92	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	43.49	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	21.56	Km	
4	-ORMA	ANCHO PROMEDIO (Ap)		:	2.73	Km	
5	_	FACTOR DE FORMA (F)		:	0.13		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.60	Clase III	Oblonga alargada
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1840.82	msnm	
10	IE VE	ALTITUD MAS FRECUENTE (HF)		:	1500.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	44.59%	Fuerte	(Criterio Alvord)
12	œ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.03		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0575	: 5.75 %	Alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=3.14 km	b=18.77 km	1
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	9.08%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	21.56	Km	
17	4	TIEMPO DE CONCENTRACION (Tc)		:	100.41	min	(Metodo de Kirpich)
18	FIC	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden	
19	зRÁ	RELACIÓN DE CONFLUENCIAS (Rc)		:	2.37	Muy alto	
20	HIDROGRÁFICA	RELACIÓN DE LONGITUDES (RI)		:	1.30		
21	₽	DENSIDAD DE DRENAJE (D)		:	0.66	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.46	ríos/Km²	
23	2	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.38	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.24	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	le)	:	3.89	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 07	: RIO OVERAL
		ÁREAS SOBRE LAS ALTITUDES (Km2) 0 20 40 60	654000	,	656000 658000	660000 662000	664000 666000 668000
	2700	3000		-			
	2500		939300	7			9397001
		2500					
	2300		\$390000				2390000
	2100	2000	(<		~~	
msı.	1900		9387000				000
5	1700		8				
	1500	1000	000			X	000
	1300	12.5	938400		5	117	-
	1100	- 500	8	1.	woods		9
	900	.5 5.9	938100	Le	eyenda Emisor		9386
	709	0	2		Curvas		WW.
		0 5 10 15 20 % (Área Parcia I/ Área total)	9378000		Guenca 07	0	1:110,000 000 0.5 1 2 3 4 Km
		FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	654000)	656000 658000	660000 662000	664000 666000 668000

Tabla 6.8. Resultados de Parametros Geomorfológicos de la Microcuenca 08: Qda. Rinconada

N°	PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO	
1	ÁREA (A)		:	36.72	Km ²	Micro cuenca	
2	PERÍMETRO (P)		:	28.20	Km		
3 ₹	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	13.10	Km		
3 AMAO-	ANCHO PROMEDIO (Ap)		:	2.80	Km		
5	FACTOR DE FORMA (F)		:	0.21			
6	ÍNDICE DE COMPACIDAD (Kc)		:	1.31	Clase II	Oval oblonga	
7	CURVA HIPSOMÉTRICA (CH)		:	-			
8	FRECUENCIA DE ALTITUDES (FA)		:	-			
9	ALTITUD MEDIA (Hm)		:	1575.27	msnm		
10 1 ELEVE	ALTITUD MAS FRECUENTE (HF)		:	1300.50	msnm		
11 🗒	PENDIENTE DE LA CUENCA		:	47.93%	Fuerte	(Criterio Alvord)	
12	COEFICIENTE DE MASIVIDAD (Cm)		:	0.04			
13	COEFICIENTE OROGRÁFICO (Co)		:	0.0676	: 6.76 %	Alta	
14	RECTANGULO EQUIVALENTE (Re)		: 6	a=3.40 km	b=10.81 km		
15	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	8.35%	(Método de T	Γaylor y Schwarz))
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	13.10	Km		
17 _	TIEMPO DE CONCENTRACION (Tc)		:	62.17	min	(Metodo de Kirp	ich
8 2	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden		
TE 05 61 81 HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.95	Muy alto		
20 00	RELACIÓN DE LONGITUDES (RI)		:	1.08			
21 🖺	DENSIDAD DE DRENAJE (D)		:	0.64	km/km²		
22 🔐	FRECUENCIA DE RÍOS (Fr)		:	0.57	ríos/Km²		
23	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.39	km		
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.30	ríos/Km²		
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	Je)	:	3.32	Km²		
CUR	RVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICROC	CUENCA 08: QI	DA. RINCONADA	
	ÁREAS SOBRE LAS ALTITUDES (Km2)	650000	ŝ	652000	654000 656	000 658000	
	0 10 20 30 40		J	اما اما			
225	6.5 0.8	390000	7	F 1			3390000
210	2.3	6		12	3		6
1900		3388000	,	ノス			9008
<u>~</u> 1700	0.5	8	(56
(1700 E 1500	0.5	9386000		146			000
1300		938		11			938
5	1000	00	1	121			90
110		9384000	L			1	9184000
900	0.5	9				(A - 1)	
700		9382000	.eyer	nda			9382008
56			_	Emisor			
	0 5 10 15 20 25	9380000		Curvas Cuenca 08	0	1:75,000 0.4 0.8 1.6 2.4 3.2	9380000
	% (Área Parcia l/ Área total) ■FRECUENCIA DE ALTITUDES — CURVA HIPSOMÉTRICA	650000		652000	654000 656	000 658000	

Tabla 6.9. Resultados de Parametros Geomorfológicos de la Microcuenca 09: Rio Ladrillo

N°		PARÁMETROS GEOMORFOLÓGICOS	-	:		RESUL	TADO
1		ÁREA (A)		:	57.90	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	31.57	Km	
3	ΜA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	12.36	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	4.69	Km	
5	_	FACTOR DE FORMA (F)		:	0.38		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.17	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1846.00	msnm	
10	IEVE	ALTITUD MAS FRECUENTE (HF)		:	2100.50	msnm	
11	RELIE	PENDIENTE DE LA CUENCA		:	46.50%	Fuerte	(Criterio Alvord)
12	2	COEFICIENTE DE MASIVIDAD (Cm)		:	0.03		,
13		COEFICIENTE OROGRÁFICO (Co)		:	0.059	: 5.89 %	Alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=5.64 km	b=10.26 km	n
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	12.17%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	12.36	Km	,
17	_	TIEMPO DE CONCENTRACION (Tc)		:	56.95	min	(Metodo de Kirpich)
18	Z I	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden	. , ,
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.59	Muy alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	0.82		
21	₽	DENSIDAD DE DRENAJE (D)		:	0.66	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.57	ríos/Km²	
23	₩.	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.38	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.29	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	Je)	:	3.87	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 09:	RIO LADRILLO
		ÁREAS SOBRE LAS ALTITUDES (Km2)		65-	1000 6560	00 658000	660000 662000
		0.0000 20.0000 40.0000 60.0000 80.0000 3000		Å	,		
	266	33.0 0.6	9382000	孝	E		3382000
	250	0.5 8.1 2500		s			
	230	0.5	000086				0000
Ē	210	00.5	8	1			•
(msnm)			9378000			John	0008
ALTITUD	170	00.5	8	4			~ (is
ALTI	150	0.5	000			1	8
	130	1000	9376000		16		9376000
	110	500	00			1	8
		5.0	9374000	Ley	enda		9374000
	92	11.5		•	Emisor Rios		
		0.0000 5.0000 10.0000 15.0000 20.0000 % (Área Parcia I/ Área total)	937200		Curvas Cuenca 09	0_0/	1:75,000 000 4 0.8 1.6 2.4 3.2 Km
		FRECUENCIA DE ALTITUDES — CURVA HIPSOMÉTRICA		65-	1000 6560	00 658000	660000 662000

Та	bla	6.10. Resultados de Parametros Geomorfo	lógico	s o	de la Mici	ocuenca 10	0: Qda. San Martín
Ν°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	TADO
1		ÁREA (A)		:	34.28	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	25.38	Km	
3	-ORMA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	10.93	Km	
4	FOF	ANCHO PROMEDIO (Ap)		:	3.14	Km	
5		FACTOR DE FORMA (F)		:	0.29		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.22	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9	l	ALTITUD MEDIA (Hm)		:	1698.37	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	1500.50	msnm	
11	RELIEVE	PENDIENTE DE LA CUENCA		:	54.69%	Muy Fuerte	(Criterio Alvord)
12	"	COEFICIENTE DE MASIVIDAD (Cm)		:	0.05		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.08	: 8.42 %	Alta
14		RECTANGULO EQUIVALENTE (Re)		: 6	a=3.83 km	b=8.96 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	11.83%	(Método de 7	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	10.93	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	50.12	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd)	:	3.00	Orden	
19	ìКÁ	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.63	Muy alto	
20	Š	RELACIÓN DE LONGITUDES (RI)		:	1.00		
21	₽	DENSIDAD DE DRENAJE (D)		:	0.64	km/km²	
22		FRECUENCIA DE RÍOS (Fr)		:	0.73	ríos/Km²	
23	2	EXTENSION MEDIA DE ESCURR. SUPERFICIAI	L (Es)	:	0.39	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.38	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.25	Km²	
C	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICROC	UENCA 10: QI	DA. SAN MARTÍN
		ÁREAS SOBRE LAS ALTITUDES (Km2)			652000	654000	656000 658000
		0 10 20 30 40		Å			
:	2623	3.5 0.2		1			
:	2500	0.5 6.2 2500	9376000		1888		9376000
:	2300	0.5	2000		A BOOK		0.52
æ:	2100	9.5	8			7	9
	1900	0.5	9374000				93740
5	1700	0.5					
ΙĒ	1500		1372000				1372000
		1000	937				
	1300	500					
	1100	0.5	Leve	enda			837,0000
	915	5.5 2.7	•	Emis Rios	1 1 11		
		0 5 10 15 20		Curv	as ica 10	0 0.35	1:60,000 0.7 1.4 2.1 2.8 Km
		% (Área Parcia I/ Área total) I FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	15.		652000	654000	656000 658000

Tabla 6.11. Resultados de Parametros Geomorfológicos de la Microcuenca 11: Rio Piscan

N°		PARÁMETROS GEOMORFO	LÓGICOS		:		RESULT	ADO
1		ÁREA (A)			:	100.87	Km ²	Micro cuenca
2		PERÍMETRO (P)			:	45.99	Km	
3	MA	LONGITUD DEL MÁXIMO RECORR	RIDO (Lmax)		:	23.52	Km	
4	FORMA	ANCHO PROMEDIO (Ap)			:	4.29	Km	
5	_	FACTOR DE FORMA (F)			:	0.18		
6		ÍNDICE DE COMPACIDAD (Kc)			:	1.29	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)			:	-		
8		FRECUENCIA DE ALTITUDES (FA))		:	-		
9		ALTITUD MEDIA (Hm)			:	1727.31	msnm	
10	IEVE	ALTITUD MAS FRECUENTE (HF)			:	1700.50	msnm	
11		PENDIENTE DE LA CUENCA			:	55.01%	MuyFuerte	(Criterio Alvord)
12	R	COEFICIENTE DE MASIVIDAD (Cm	n)		:	0.02		,
13		COEFICIENTE OROGRÁFICO (Co)	,		:	0.0296	: 2.96 %	Moderada
14		RECTANGULO EQUIVALENTE (Re)		:		b=17.36 km	
15		PENDIENTE DEL CAUCE PRINCIP			:	8.68%		Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPA	. ,		:	23.52	Km	.,.,,
17		TIEMPO DE CONCENTRACION (To	,		:	101.10	min	(Metodo de Kirpich)
18	HIDROGRAFICA	CATEGORIZACIÓN DE LA RED DE	DRENAJE (I	Rd)	:	3.00	Orden	, ,
19	RAF	RELACIÓN DE CONFLUENCIAS (R	,		:	1.61	Muy alto	
20	:0G	RELACIÓN DE LONGITUDES (RI)	<u>, </u>		:	1.04	.,	
21	IIDR	DENSIDAD DE DRENAJE (D)			:	0.65	km/km²	
22		FRECUENCIA DE RÍOS (Fr)			:	0.48	ríos/Km²	
23	RE	EXTENSION MEDIA DE ESCURR.	SUPERFICIA	L (E		0.38	km	
24		COEFICIENTE DE TORRENCIALID			:	0.25	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURI		Je)	:	4.66	Km²	
	UR۱	VA HIPSOMÉTRICA & FRECUENCIA DE .	•				ROCUENCA 11	: RIO PISCAN
		ÁREAS SOBRE LAS ALTITUDES (Kr			633	000 636000	639000	642000 645000
		0 50 100	150 + 3500	ĺ		N A		
	3268		3300	۰	w	*		
	3100 2900		3000	9438000		Š		0008876
	2700						5	(()
_	2500 2300		- 2500	9435000			· · · · · · · · · · · · · · · · · · ·	000957
☲	2300 2100		2000					
	900	0.5	1	9432000		١ كم لر		+132000
Η.	700		.4 - 1500	26		SIR	3	
	1500 1300		1000	3429000	1	VIII		Leyenda 000 NA
1	100	0.5	1000	9429	1	TI	1	Emisor Rips
	900	1	- 500	9		July		Curvas Cuenca 11
	506			9426000		1))		Cuenca 11
		0 5 10	15 0		-		0 0.5 1	1:110,000
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ————————————————————————————————————	nooué roio.	123000	633	000 636000		642000 645000 6

Tabla 6.12. Resultados de Parametros Geomorfológicos de la Microcuenca 12: Rio Chalaco

	DAD (METDOS OFOMODES) (10:000					a 12: Rio Chalaco
	PARÁMETROS GEOMORFOLÓGICOS		- :		RESUL	
	. ` '		:			Sub cuenca
_	, ,		:	69.00	Km	
RM/	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	30.91	Km	
6	ANCHO PROMEDIO (Ap)		:	5.03	Km	
	FACTOR DE FORMA (F)		:	0.16		
	ÍNDICE DE COMPACIDAD (Kc)		:	1.56	Clase III	Oblonga alargada
	CURVA HIPSOMÉTRICA (CH)		:	-		
	FRECUENCIA DE ALTITUDES (FA)		:	-		
ļ.,,	ALTITUD MEDIA (Hm)		:	1786.95	msnm	
EVE	ALTITUD MAS FRECUENTE (HF)		:	2100.50	msnm	
Æ	PENDIENTE DE LA CUENCA		:	47.94%	Fuerte	(Criterio Alvord)
"	COEFICIENTE DE MASIVIDAD (Cm)		:	0.011		
	COEFICIENTE OROGRÁFICO (Co)		:	0.0205	: 2.05 %	Moderada
	RECTANGULO EQUIVALENTE (Re)		:	a=5.27 km	b=29.49 ki	m
	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	7.95%	(Método de	Taylor y Schwarz)
	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	30.91	Km	
_	TIEMPO DE CONCENTRACION (Tc)		:	147.92	min	(Metodo de Kirpich)
5	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	4.00	Orden	
ìRÁ	RELACIÓN DE CONFLUENCIAS (Rc)		:	3.31	Alto	
ő	RELACIÓN DE LONGITUDES (RI)		:	0.95		
₽	DENSIDAD DE DRENAJE (D)		:	0.71	km/km²	
ED 1	FRECUENCIA DE RÍOS (Fr)		:	0.62	ríos/Km²	
2	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.35	km	
	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.32	ríos/Km²	
	SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	Je)	:	3.53	Km²	
UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 12	2: RIO CHALACO
	ÁREAS SOBRE LAS ALTITUDES (Km2)		624000	628000	632000	636000 640000
36	4000	9448000		N		M448000
3500	0.5 📮 0.3		w_	 €		
		144000	7	Åz.		944000
	3000	a			1	The !
2500	7.6	0000				
	J.5 11.1	94		5		*
		000		1)£_	0000520
1500	0.5 6.8 1500	9436			July 1	9436
1100	0.5	8	1	THE	X-1	Leyenda 8
	6.3	94320	5	X /		Leyenda 8000000000000000000000000000000000000
500	0.5 2.5 - 500	9	()			Curvas
	08 00	942800	8			1:150,000
	0 5 10 15	ľ			0_1	2 4 6 8 Km
	% (Area Parcia I/ Area total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA		624000	628000	632000	636000 640000
	36 3500 3300 33100 22900 2500 2500 2100 1100 1100 900 500 300 1	FACTOR DE FORMA (F) [NDICE DE COMPACIDAD (Kc) CURVA HIPSOMÉTRICA (CH) FRECUENCIA DE ALTITUDES (FA) ALTITUD MEDIA (Hm) ALTITUD MAS FRECUENTE (HF) PENDIENTE DE LA CUENCA COEFICIENTE OROGRÁFICO (Co) RECTANGULO EQUIVALENTE (Re) PENDIENTE DEL CAUCE PRINCIPAL (Lcp) TIEMPO DE CONCENTRACION (Tc) CATEGORIZACIÓN DE LA RED DE DRENAJE (FA) RELACIÓN DE LONGITUDES (RI) DENSIDAD DE DRENAJE (D) FRECUENCIA DE RÍOS (Fr) EXTENSION MEDIA DE ESCURR. SUPERFICIA COEFICIENTE DE TORRENCIALIDAD (Ct) SUPERFICIE UMBRAL DE ESCURRIMIENTO (U URVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES ÁREAS SOBRE LAS ALTITUDES (Km2) 0 50 100 150 200 3635 3300.5 1.1 3300.5 1.5 2500.5 2500.5 2500.5 2500.5 2500.5 300.5 2500.5 300.5 2500.5 300.	PERÍMETRO (P) LONGITUD DEL MÁXIMO RECORRIDO (Lmax) ANCHO PROMEDIO (Ap) FACTOR DE FORMA (F) ÍNDICE DE COMPACIDAD (Kc) CURVA HIPSOMÉTRICA (CH) FRECUENCIA DE ALTITUDES (FA) ALTITUD MEDIA (Hm) ALTITUD MAS FRECUENTE (HF) PENDIENTE DE LA CUENCA COEFICIENTE OROGRÁFICO (Co) RECTANGULO EQUIVALENTE (Re) PENDIENTE DEL CAUCE PRINCIPAL (LCP) TIEMPO DE CONCENTRACION (TC) CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd) RELACIÓN DE CONFLUENCIAS (RC) RELACIÓN DE LONGITUDES (RI) DENSIDAD DE DRENAJE (D) FRECUENCIA DE RÍOS (Fr) EXTENSION MEDIA DE ESCURR. SUPERFICIAL (ESCUENCIA DE ALTITUDES) AREAS SOBRE LAS ALTITUDES (Km2) O SO 100 150 200 AREAS SOBRE LAS ALTITUDES (KM2) O SO 100 150 200 O 5 10 15 O 50 500.5 O 500.5	AREA (A)	AREA (A) : 155,44 PERÍMETRO (P) : 69.00 LONGITUD DEL MÁXIMO RECORRIDO (Lmax) : 30.91 ANCHO PROMEDIO (Ap) : 5.03 FACTOR DE FORMA (F) : 0.16 INDICE DE COMPACIDAD (Kc) : 1.56 CURVA HIPSOMÉTRICA (CH) : - FRECUENCIA DE ALTITUDES (FA) ALTITUD MEDIA (Hm) : 1786.95 ALTITUD MAS FRECUENTE (HF) : 2100.50 PENDIENTE DE LA CUENCA : 47.94% COEFICIENTE DE MASIVIDAD (Cm) : 0.011 COEFICIENTE DE CAUCE PRINCIPAL (Lop) : 30.91 TIEMPO DE CONCENTRACION (Tc) : 147.92 CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd) : 4.00 RELACIÓN DE CONFLUENCIAS (Rc) : 3.31 TIEMPO DE CONCENTRACION (Tc) : 147.92 CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd) : 4.00 RELACIÓN DE LONGITUDES (RI) : 0.95 DENSIDAD DE DRENAJE (D) : 0.71 FRECUENCIA DE RÍOS (Fr) : 0.62 EXTENSION MEDIA DE ESCURR. SUPERFICIAL (ES) : 0.35 COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.32 SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 3.53 URVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES MICRO AREAS SOBRE LAS ALTITUDES (Km2) 200 0 5 100 150 200 0 5 100 150 200 0 5 100 150 00	AREA (A) : 155.44 Km² PERÍMETRO (P) : 69.00 Km LONGITUD DEL MÁXIMO RECORRIDO (Lmax) : 30.91 Km ANCHO PROMEDIO (Ap) : 5.03 Km ANCHO PROMEDIO (Ap) : 5.03 Km FACTOR DE FORMA (F) : 0.16 INDICE DE COMPACIDAD (Kc) : 1.56 Clase III CURVA HIPSOMÉTRICA (CH) : - FRECUENCIA DE ALTITUDES (FA) : - ALTITUD MAD FRECUENTE (HF) : 2100.50 msnm PENDIENTE DE LA CUENCA : 47.94% Fuerte COEFICIENTE DE MASIVIDAD (Cm) : 0.011 COEFICIENTE DE MASIVIDAD (Cm) : 0.011 COEFICIENTE DEL CAUCE PRINCIPAL (S) : 7.95% (Método de LONGITUD DEL CAUCE PRINCIPAL (CP) : 30.91 Km TIEMPO DE CONCENTRACION (Tc) : 147.92 min CATEGORIZACIÓN DE LA RED DE DERNAJE (Rd) : 4.00 Orden RELACIÓN DE CONFLUENCIAS (Rc) : 3.31 Alto RELACIÓN DE LONGITUDES (RI) : 0.95 DENSIDAD DE DE RENAJE (D) : 0.71 km²/km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.32 ríos/Km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.32 ríos/Km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.32 ríos/Km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.32 ríos/Km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.32 ríos/Km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.32 ríos/Km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIAL DE ALTITUDES (MCROCUENCA 12 ms) MICROCUENCA 12 ms) AREAS SOBRE LAS ALTITUDES (Km²) 500.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.

 Tabla 6.13. Resultados de Parametros Geomorfológicos de la Microcuenca 13: Rio Capones

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1		ÁREA (A)		:	209.79	Km ²	Sub cuenca
2		PERÍMETRO (P)		:	79.13	Km	
3	ΜĀ	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	38.22	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	5.49	Km	
5	_	FACTOR DE FORMA (F)		:	0.14		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.54	Clase III	Oblonga alargada
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1500.72	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	1500.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	42.87%	Fuerte	(Criterio Alvord)
12	œ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.01		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0107	: 1.07 %	Moderada
14		RECTANGULO EQUIVALENTE (Re)		: :	a=6.24 km	b=33.62 km	n
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	4.20%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	38.22	Km	
17	4	TIEMPO DE CONCENTRACION (Tc)		:	169.48	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	4.00	Orden	
19	зŔÁ	RELACIÓN DE CONFLUENCIAS (Rc)		:	2.55	Muy Alto	
20	Š	RELACIÓN DE LONGITUDES (RI)		:	0.91		
21	₽	DENSIDAD DE DRENAJE (D)		:	0.76	km/km²	
22		FRECUENCIA DE RÍOS (Fr)		:	0.65	ríos/Km²	
23	œ	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es) :	0.33	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.34	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	3.81	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 13	: RIO CAPONES
		ÁREAS SOBRE LAS ALTITUDES (Km2)	6120	00	616000 62	624000	628000 632000
3	3292	0 50 100 150 200 250	945000	Ã,		~	9450000
	3100	\	2	*	E		
	2900 2700		9445000	s			1 000
	2500	2300)_ {,	Red
(2300 2100	7.7	000				00000
_	1900		9440000		S		
\neg	1700 1500		-) \	1 7	
4	1300	9.0	9435000		- 11	3	Leyenda 5
1	1100 900	1000			51		Emisor Rios 13
	700		9430000		53	كرسا	Curvas Cuenca 13
	500 300		ä	1	11		60
	153	0	00	1	سر کھ		1:170,000
		0 5 10 15 % (Área Parcia I/ Área total)	94250	5		0_	1:170,000 80 1 2 4 6 8 Km
-		FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA	6120	00	616000 62	0000 624000	628000 632000

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESU	LTADO
1		ÁREA (A)		:	100.23	Km ²	Sub cuenca
2		PERÍMETRO (P)		:	44.82	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	20.18	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	4.97	Km	
5		FACTOR DE FORMA (F)		:	0.25		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.26	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1845.38	msnm	
10	IEVE	ALTITUD MAS FRECUENTE (HF)		:	1900.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	44.36%	Fuerte	(Criterio Alvord)
12	2	COEFICIENTE DE MASIVIDAD (Cm)		:	0.02		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.034	: 3.40 %	Moderada
14		RECTANGULO EQUIVALENTE (Re)		:	a=6.07 km	b=16.51 k	m
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	11.15%	(Método de	e Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	20.18	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	89.55	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	4.00	Orden	
19	ìRÁI	RELACIÓN DE CONFLUENCIAS (Rc)		:	6.38	Bajo	
20	300	RELACIÓN DE LONGITUDES (RI)		:	1.01		
21	i i	DENSIDAD DE DRENAJE (D)		:	0.76	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.67	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.33	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.34	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	Je)	:	3.16	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 14	: RIO SAN JORGE
		ÁREAS SOBRE LAS ALTITUDES (Km2)	000	6120	00 615000	618000	621000 624000 8
		0 50 100 150	945900		Ă.		9459000
	2900	9.5 3.1 4.7	900	w-	*		900
	2700	3000	9456000		s		9486000
	2500	0.5	00				
Ê	2300		9453000			1 1	///
(msn	2100	0.5	8			T	
ALTITUD (msnm)	1900		9450000				34500
ALTI	1700		8		41		
	1300	4000	9447000)	JYF		7
	1100	9.0	8	1	1		2
	900	- 500	9444000		Leyenda		944460
	7	1.1	2		Emisor Rios		1:120.000
		0 5 10 15 % (Área Parcia l/ Área total)	9441000		Curvas Cuenca 14	0 0.7	1:120,000 8 75 1.5 3 4.5 6 Km
		FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA		6120	00 615000	618000	621000 624000

Tabla 6.15. Resultados de Parametros Geomorfológicos de la Microcuenca 15: Qda. Simitri

N°	PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ΓADO
1	ÁREA (A)		:	24.67	Km ²	Micro cuenca
2	PERÍMETRO (P)		:	22.23	Km	
3 \	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	10.52	Km	
3 AMAO	ANCHO PROMEDIO (Ap)		:	2.35	Km	
5	FACTOR DE FORMA (F)		:	0.22		
6	ÍNDICE DE COMPACIDAD (Kc)		:	1.26	Clase II	Oval oblonga
7	CURVA HIPSOMÉTRICA (CH)		:	-		
8	FRECUENCIA DE ALTITUDES (FA)		:	-		
9	ALTITUD MEDIA (Hm)		:	1507.79	msnm	
10	ALTITUD MAS FRECUENTE (HF)		:	1500.50	msnm	
11	PENDIENTE DE LA CUENCA		:	47.37%	Fuerte	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)		:	0.06		
13	COEFICIENTE OROGRÁFICO (Co)		:	0.0921	: 9.21 %	Alta
14	RECTANGULO EQUIVALENTE (Re)		: :	a=3.02 km	b=8.18 km	
15	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	13.65%	(Método de	Taylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	10.52	Km	<u> </u>
17	TIEMPO DE CONCENTRACION (Tc)		:	49.03	min	(Metodo de Kirpich)
18 19 20 21 HDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	2.00	Orden	<u> </u>
19	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.33	Muy Alto	
20 8	RELACIÓN DE LONGITUDES (RI)		:	0.98		
21 📮	DENSIDAD DE DRENAJE (D)		:	0.61	km/km²	
22	FRECUENCIA DE RÍOS (Fr)		:	0.28	ríos/Km²	
23	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.41	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.16	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	4.97	Km²	
CUF	RVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 15:	: QDA. SIMITRI
	ÁREAS SOBRE LAS ALTITUDES (Km2) 0 10 20 30	50	614000	616	100 61800	0 620000
	2500		,	Å		
228	1.0 1.4	00	" 2			00
210	0.5 6.9	9446000			112	9446000
190						- 1557M
€ 170	0.5	9444000			7	0001
msm)	18.2	96	1	15		3
₽ 150 P	0.5					
ALTITUD (msnm) 120 120 130	0.5	9442000				3442000
110		-			1	
90	7.0		ı	_eyenda		
		9440000	-	Emisor Rios		944000
71	7.0 2.2		[Curvas Cuenca 15		1:60,000
	0 5 10 15 20 25	000			0 0.37	50.75 1.5 2.25 3 Km
	% (Área Parcia l∕ Área total) ■FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	9438000	614000	616	000 61800	0 620000

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1		ÁREA (A)		:	64.47	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	33.25	Km	
3	ΜĀ	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	13.22	Km	
4	-ORMA	ANCHO PROMEDIO (Ap)		:	4.88	Km	
5	_	FACTOR DE FORMA (F)		:	0.37		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.17	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2262.64	msnm	
10	RELIEVE	ALTITUD MAS FRECUENTE (HF)		:	1900.50	msnm	
11	EL	PENDIENTE DE LA CUENCA		:	46.77%	Fuerte	(Criterio Alvord)
12	œ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.04		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0794	: 7.94 %	Alta
14		RECTANGULO EQUIVALENTE (Re)		: :	a=5.99 km	b=10.76 kr	n
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	11.78%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	13.22	Km	
17	4	TIEMPO DE CONCENTRACION (Tc)		:	59.60	min	(Metodo de Kirpich)
18	FIC	CATEGORIZACIÓN DE LA RED DE DRENAJE (I		:	3.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	2.57	Muy Alto	
20	ROC	RELACIÓN DE LONGITUDES (RI)		:	0.90		
21	를	DENSIDAD DE DRENAJE (D)		:	0.91	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.48	ríos/Km²	
23	2	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es	s) :	0.28	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.28	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	4.01	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 16	S: RIO DEFRIAS
		ÁREAS SOBRE LAS ALTITUDES (Km2)	r	614000	616000	618000	620000 622000
		0 20 40 60 80	V	1			
	3278		9462000	1			9462000
	3100		98	1		1	3
	2900	- 2500	000				80
	2700		9460000			47	
(msi	2500	2000	8			1	
2	2300	1500	9458000	1	15		948
	2100	12.0	9	(H			
	1900	- 1000	9456000	1	"The	~5	945600
	1700		-				
	1500	10.1	9454000	Ley	yenda Emisor		9454000
	1355	0			- Rios Curvas		1:75,000
		0 5 10 15 % (Área Parcia I/ Área total)	1452000		Cuenca 16	0_0	1.45 0.9 1.8 2.7 3.6 Km
		FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA		614000	616000	618000	620000 622000

 Tabla 6.17.
 Resultados de Parametros Geomorfológicos de la Microcuenca 17: Qda. Chamba

N°	PARÁMETROS GEOMORFOLÓGICOS	:		RESUL	TADO
1	ÁREA (A)	:	20.02	Km ²	Micro cuenca
2	PERÍMETRO (P)	:	21.39	Km	
3 ₹	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)	:	10.26	Km	
3 AMA	ANCHO PROMEDIO (Ap)	:	1.95	Km	
5	FACTOR DE FORMA (F)	:	0.19		
6	ÍNDICE DE COMPACIDAD (Kc)	:	1.35	Clase II	Oval oblonga
7	CURVA HIPSOMÉTRICA (CH)	:	-		
8	FRECUENCIA DE ALTITUDES (FA)	:	-		
9	ALTITUD MEDIA (Hm)	:	1622.76	msnm	
10	ALTITUD MAS FRECUENTE (HF)	:	1750.50	msnm	
11 🗒	PENDIENTE DE LA CUENCA	:	39.04%	Fuerte	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)	:	0.08		
13	COEFICIENTE OROGRÁFICO (Co)	:	0.1315	: 13.15 %	Muy Alta
14	RECTANGULO EQUIVALENTE (Re)	:	a=2.39 km	b=8.38 km	1
15	PENDIENTE DEL CAUCE PRINCIPAL (S)	:	11.39%	(Método de	Taylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)	:	10.26	Km	
17	TIEMPO DE CONCENTRACION (Tc)	:	46.98	min	(Metodo de Kirpich)
18 19 20 HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd) :	3.00	Orden	
19 8	RELACIÓN DE CONFLUENCIAS (Rc)	:	3.67	Alto	
20 8	RELACIÓN DE LONGITUDES (RI)	:	1.10		
21 📮	DENSIDAD DE DRENAJE (D)	:	0.80	km/km²	
22 🖫	FRECUENCIA DE RÍOS (Fr)	:	0.75	ríos/Km²	
23	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es) :	0.31	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)	:	0.40	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je) :	2.72	Km²	
CUR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES		MICRO	OCUENCA 17	QDA. CHAMBA
	0 5 10 15	608000	610000	612000	614000
274 265 254 244 235 225 195 205 195 165 155 145 135 125 105		0000014 00000014 0000014 0000014 0000014 0000014 0000014 0000014 0000014 00000014 0000014 0000014 0000014 0000014 0000014 0000014 0000014 00000014 0000014 0000014 0000014 0000014 0000014 0000014 0000014 00000014 00000014 00000014 00000000	nda Emisor Rios 17 Curvas Cuenca 17		1.50,000

Tabla 6.18. Resultados de Parametros Geomorfológicos de la Microcuenca 18: Rio Geraldo

Ν°	_	PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	TADO
1		ÁREA (A)		:	51.96	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	30.84	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	13.54	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	3.84	Km	
5	_	FACTOR DE FORMA (F)		:	0.28		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.21	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1500.29	msnm	
10	IEVE	ALTITUD MAS FRECUENTE (HF)		:	1550.50	msnm	
11	ELI	PENDIENTE DE LA CUENCA		:	48.70%	Fuerte	(Criterio Alvord)
12	R	COEFICIENTE DE MASIVIDAD (Cm)		:	0.03		,
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0433	: 4.33 %	Moderada
14		RECTANGULO EQUIVALENTE (Re)		: :	a=4.88 km	b=10.66 km	 1
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	9.95%		Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	13.54	Km	.,.,.,
17		TIEMPO DE CONCENTRACION (Tc)		:	66.76	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden	(
19	RÁF	RELACIÓN DE CONFLUENCIAS (Rc)		:	3.43	Alto	
20	903	RELACIÓN DE LONGITUDES (RI)		:	1.16		
21	IIDR	DENSIDAD DE DRENAJE (D)		:	0.68	km/km²	
22	ED F	FRECUENCIA DE RÍOS (Fr)		:	0.67	ríos/Km²	
23	RE	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es) :	0.37	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.35	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	3.73	Km²	
	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES					RIO GERALDO
		0 5 10 15		602	500 6050		610000 612500
	2145		67500	Ň			9467500
	2050		. w	*			2.
	1950 1850		8	Š			00
	1750		9465000		/		94650
$\overline{}$	1650						
- ⊆	1550 1450		9462500	1	S		9462500
9	1350		1		18		5>
⊏	1250 1150		0000)	7/	John	3-2
⋖	1050		3	-		→	()
	950 850	1	900		Leyenda		8
	750		9457500		Emisor Rios		9457500
	650 556				Curvas		-00
	336	0 20 40 60 80 100 120	9455000				1:90,000
		AREA ACUMULADA (%)				0_0	5 1 2 3 4 Km
•		FRECUENCIA DE ALTITUDES —— CÚRVA HIPSOMÉTRICA	İ	602	500 6050	607500	610000 612500

Tabla 6.19. Resultados de Parametros Geomorfológicos de la Microcuenca 19: Rio Chontas

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	45.47	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	31.46	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	16.39	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	2.77	Km	
5		FACTOR DE FORMA (F)		:	0.17		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.32	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2340.95	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	2700.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	53.36%	Muy Fuerte	(Criterio Alvord)
12	æ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.05		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.1205	: 12.05 %	Muy Alta
14		RECTANGULO EQUIVALENTE (Re)		: ;	a=3.76 km	b=12.08 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	8.01%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	16.39	Km	
17	7	TIEMPO DE CONCENTRACION (Tc)		:	75.91	min	(Metodo de Kirpich)
18	FIC/	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd)	:	3.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.67	Muy Alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	1.07		
21	HIDI	DENSIDAD DE DRENAJE (D)		:	0.63	km/km²	
22	ED I	FRECUENCIA DE RÍOS (Fr)		:	0.46	ríos/Km²	
23	Я	EXTENSION MEDIA DE ESCURR. SUPERFICIAI	L (Es)	:	0.40	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.24	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.57	Km²	
C	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 19: F	RIO CHONTAS
		0 10 20 30 40		67200	0 67500	678000	681000
:	3089				Ĭ.		
	2900		354000	3			9400
:	2700		86		š		8
	2500		8				8
^	2300		9351000				9351000
sm)	2100					$\sim \sim 10$	
₽			9348000		~~	my	7
_	1900			1	145	-	
	1700		000	>		Leye	enda 8
	1500		9345000			•	Emisor 8
	1300						Curvas 19 Cuenca 19
	1147		9342000				1:100,000
		0 20 40 60 80 100 120 AREA ACUMULADA (%)	3.27			0 0.5	1 2 3 4 Km
•		AREA ACUMULADA (%) FRECUENCIA DE ALTITUDES CURVA HIPSOMÉTRICA		67200	67500	678000	681000

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	57.73	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	35.96	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	17.53	Km	
4	-ORMA	ANCHO PROMEDIO (Ap)		:	3.29	Km	
5	_	FACTOR DE FORMA (F)		:	0.19		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.33	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9	l	ALTITUD MEDIA (Hm)		:	2235.26	msnm	
10	RELIEVE	ALTITUD MAS FRECUENTE (HF)		:	2700.50	msnm	
11	ΈLI	PENDIENTE DE LA CUENCA		:	53.33%	Muy Fuerte	(Criterio Alvord)
12	L.	COEFICIENTE DE MASIVIDAD (Cm)		:	0.04		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0865	: 8.65 %	Alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=4.13 km	b=13.99 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	8.25%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	17.53	Km	
17	Α	TIEMPO DE CONCENTRACION (Tc)		:	83.31	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (R	(d)	:	3.00	Orden	
19	зRÁ	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.83	Muy Alto	
20	ROC	RELACIÓN DE LONGITUDES (RI)		:	0.95		
21	HD	DENSIDAD DE DRENAJE (D)		:	0.60	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.64	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIAL	(Es)	:	0.42	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.33	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.86	Km²	
C	CUR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 20: R	IO TASAJERAS
		0 5 10 15 20		6690	00 67200	0 675000	678000
;	3075		390000		Ž		1360000
	2900			7			
:	2700		9357000		Leyenda	600	0002520
_ :	2500		935		Emisor Rios	J ((3)	
(msnm	2300				Curvas Cuenca 20		7/
<u>ا</u> :	2100		9354000				\$354000
LTITUD	1900				~		
⋖	1700		9351000	1			133,1000
	1500		8		>h		- ·
	1300		8	1			8
	1174		9348000				93480
		0 20 40 60 80 100 120				0 0.5	1:100,000
		AREA ACUMULADA (%) FRECUENCIA DE ALTITUDES ————————————————————————————————————	3345000			0 675000	

Tabla 6.21. Resultados de Parametros Geomorfológicos de la Microcuenca 21: Rio Congona

Ν°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1		ÁREA (A)		:	37.57	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	27.70	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	14.44	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	2.60	Km	
5	_	FACTOR DE FORMA (F)		:	0.18		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.27	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2373.99	msnm	
10	IEVE	ALTITUD MAS FRECUENTE (HF)		:	2250.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	43.05%	Fuerte	(Criterio Alvord)
12	œ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.06		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.15	: 15.00 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=3.65 km	b=10.31 km	١
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	5.45%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	14.44	Km	
17	1	TIEMPO DE CONCENTRACION (Tc)		:	83.25	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden	
19	ìRÁ	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.62	Muy Alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	1.07		
21	HD	DENSIDAD DE DRENAJE (D)		:	0.65	km/km²	
22	ED I	FRECUENCIA DE RÍOS (Fr)		:	0.61	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.39	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.32	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	3.35	Km²	
С	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 21:	RIO CONGONA
		0 5 10 15 20		658	000 6600	00 662000	664000 666000
2	2937		0009	Ä	_		8376000
2	2850		937	∦	E		837
2	2750		8	š		~	
2	2650		9374000				9374000
(E	2550			0			
musm)	2450	· •	3372000	(9372000
1 1 1 1 1	2350 2350 2250			5			
ALT	2250		9370000	10			827000
2	2150		937	9	(-/ la	renda
2	2050			~		-	Emisor 8
	1950		9368000		V		Curvas Cuenca 21
	1876					2013	1:70,000
		0 20 40 60 80 100 120	000998			0_0	N U.O 1.8 24 32 Km
		AREA ACUMULADA (%) FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA		658	000 6600	00 662000	664000 666000

٧°	PARÁMETROS GEOMORFOLÓGICOS		:		RESUL1	ADO
1	ÁREA (A)		:	23.31	Km ²	Micro cuenca
2	PERÍMETRO (P)		:	19.29	Km	
3 ≦	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	10.23	Km	
3 4	ANCHO PROMEDIO (Ap)		:	2.28	Km	
5	FACTOR DE FORMA (F)		:	0.22		
6	ÍNDICE DE COMPACIDAD (Kc)		:	1.13	Clase II	Oval oblonga
7	CURVA HIPSOMÉTRICA (CH)		:	-		
8	FRECUENCIA DE ALTITUDES (FA)		:	-		
9	ALTITUD MEDIA (Hm)		:	2295.97	msnm	
10	ALTITUD MAS FRECUENTE (HF)		:	2250.50	msnm	
11 [PENDIENTE DE LA CUENCA		:	38.59%	Fuerte	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)		:	0.10		,
13	COEFICIENTE OROGRÁFICO (Co)		:	0.2262	: 22.62 %	Muy alta
14	RECTANGULO EQUIVALENTE (Re)		:	a=4.31 km	b=5.41 km	•
15	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	4.89%	(Método de	Гaylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	10.23	Km	
17	TIEMPO DE CONCENTRACION (Tc)		:	59.78	min	(Metodo de Kirpich)
18 19 20 21	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden	
ج 19 ۾	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.83	Muy Alto	
20 5	RELACIÓN DE LONGITUDES (RI)		:	0.98		
21	DENSIDAD DE DRENAJE (D)		:	0.65	km/km²	
22 [:	0.47	ríos/Km²	
23	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.38	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.26	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	2.86	Km²	
CU	RVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 22: C	DA. CHUGUYO
	0 5 10 15 20 25 30			654000	656000	658000 660000
27			4	Ĺ		
26	50	9370000	7			9370000
25				~		
			1	1850		
(24 HUSE) 23		9368000	1			936900
Ĕ 23! ∩			6		5	
P 22:	50		(1		
₹ _{21:}	50	9366000		Carl.		009988
20	50				30 755 16	
19	51	2			553	
		9364000		Leyenda		9364000
18				- Rios		1:55,000
	0 20 40 60 80 100 120	1 1		Curvas	0.0	3 0.6 1.2 1.8 2.4

Tabla 6.23. Resultados de Parametros Geomorfológicos de la Microcuenca 23: Rio Caiunga

٧°	PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ΓADO
1	ÁREA (A)		:	30.39	Km ²	Micro cuenca
2	PERÍMETRO (P)		:	29.17	Km	
3 ₹	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	14.37	Km	
3 AMA OF	ANCHO PROMEDIO (Ap)		:	2.12	Km	
5	FACTOR DE FORMA (F)		:	0.15		
6	ÍNDICE DE COMPACIDAD (Kc)		:	1.49	Clase II	Oval oblonga
7	CURVA HIPSOMÉTRICA (CH)		:	-		
8	FRECUENCIA DE ALTITUDES (FA)		:	-		
9	ALTITUD MEDIA (Hm)		:	2292.38	msnm	
10	ALTITUD MAS FRECUENTE (HF)		:	2650.50	msnm	
11 🗒	PENDIENTE DE LA CUENCA		:	44.14%	Fuerte	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)		:	0.08		,
13	COEFICIENTE OROGRÁFICO (Co)		:	0.1729	: 17.29 %	Muy Alta
14	RECTANGULO EQUIVALENTE (Re)		:		b=12.21 km	
15	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	8.65%		Taylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	14.37	Km	, , ,
17	TIEMPO DE CONCENTRACION (Tc)		:	72.21	min	(Metodo de Kirpich)
18 05 11 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd)	:	3.00	Orden	
19 8	RELACIÓN DE CONFLUENCIAS (Rc)		:	2.46	Muy Alto	
20 0	RELACIÓN DE LONGITUDES (RI)		:	1.38	-	
21	DENSIDAD DE DRENAJE (D)		:	0.65	km/km²	
22 🖫	FRECUENCIA DE RÍOS (Fr)		:	0.63	ríos/Km²	
23	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.38	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.33	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	le)	:	3.12	Km²	
CUI	RVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 23:	RIO CAJUNGA
	0 50 100 150	-	6660	00 668000	670000	672000 674000
290		9370000	L	-6		837000
28		/	T			
275 265		9368000	1			388000
25			1			
24! <u>E</u> 23!		0009986				00099
<u>الله</u> 22		8		4		
23! 22! 21! 20!		3364000				3384000
두 19:		936				3
189 179		000	ı	_eyenda	~	
16		9362000	Τ.	Emisor Rios		Case
159 149		8	г	Curvas Cuenca 23		
13		8360000		223,00 2.0		336000
	0 5 10 15 AREA ACUMULADA (%)				0	1:75,000 0.4 0.8 1.6 2.4 3.2 Km
	FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA		6660	00 668000	670000	672000 674000

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO	
1		ÁREA (A)		:	39.61	Km ²	Micro cuenca	
2		PERÍMETRO (P)		:	26.82	Km		
3	Σ	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	12.32	Km		
4	-ORMA	ANCHO PROMEDIO (Ap)		:	3.21	Km		
5	_	FACTOR DE FORMA (F)		:	0.26			
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.20	Clase I	Oval redonda	
7		CURVA HIPSOMÉTRICA (CH)		:	-			
8		FRECUENCIA DE ALTITUDES (FA)		:	-			
9		ALTITUD MEDIA (Hm)		:	2105.48	msnm		
10	IE VE	ALTITUD MAS FRECUENTE (HF)		:	1900.50	msnm		
11	Ж П	PENDIENTE DE LA CUENCA		:	0.53	Muy Fuerte	(Criterio Alvord))
12	Y	COEFICIENTE DE MASIVIDAD (Cm)		:	0.05			
13	l	COEFICIENTE OROGRÁFICO (Co)		:	0.1119	: 11.19 %	Muy alta	
14	l	RECTANGULO EQUIVALENTE (Re)		: :	a=4.30 km	b=9.21 km	-	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	83.41	(Método de T	aylor y Schwarz	:)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	12.32	Km		-
17	_	TIEMPO DE CONCENTRACION (Tc)		:	57.68	min	(Metodo de Kirp	oich)
18	HIDROGRAFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	 ≀d)	:	3.00	Orden		
19	KA KA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.68	Muy Alto		
20	5	RELACIÓN DE LONGITUDES (RI)		:	1.08			
21	₽	DENSIDAD DE DRENAJE (D)		:	0.66	km/km²		
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.68	ríos/Km²		
23	2	EXTENSION MEDIA DE ESCURR. SUPERFICIAI	L (Es) :	0.38	km		
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.35	ríos/Km²		
25	ĺ	SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.41	Km²		
CL	JR۱	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 24:	RIO RINCÓN	
		0 20 40 60 80 100 120	245	66	56000 6680	00 670000	672000 67400	0
30	069			Å				
			9360000	*	C E		A	9360000
	900			s	Leyenda Emisor			
27	700		9358000		Rios Curvas			\$358000
⊋ 25	500		22.0		Cuenca 24	7 /		030
js 23	300		356000					9356000
ALTITUD (msnm) 52	100		8	ر		~? \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\	
F AL	900		3354000			/) \		3354000
			930	1				935
	700		9352000		Vine		~	900
15	500		8352					8352000
13	366		8			_	1:75.000	8
		0 5 10 15 20 25 30	9350000			0 0.4 0	8 1.6 2.4 3.2 Km	9350000
	_	AREA ACUMULADA (%) FRECUENCIA DE ALTITUDES ————————————————————————————————————		64	16000 6680	00 670000	672000 67400	

Tabla 6.25. Resultados de Parametros Geomorfológicos de la Microcuenca 25: Rio Paucas

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ΓADO
1		ÁREA (A)		:	47.83	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	33.92	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	18.07	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	2.65	Km	
5		FACTOR DE FORMA (F)		:	0.15		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.38	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8	İ	FRECUENCIA DE ALTITUDES (FA)		:	-		
9	İ	ALTITUD MEDIA (Hm)		:	2296.33	msnm	
10	IEVE	ALTITUD MAS FRECUENTE (HF)		:	2100.50	msnm	
11	RELIE	PENDIENTE DE LA CUENCA		:	49.22%	Fuerte	(Criterio Alvord)
12	R	COEFICIENTE DE MASIVIDAD (Cm)		:	0.05		,
13		COEFICIENTE OROGRÁFICO (Co)		:	0.1102	: 11.02 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		: :	a=3.53 km	b=13.56 km	 1
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	8.75%		Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	18.07	Km	
17		TIEMPO DE CONCENTRACION (Tc)		:	89.87	min	(Metodo de Kirpich)
18	-IC∕	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	2.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.10	Muy Alto	
20	SOG	RELACIÓN DE LONGITUDES (RI)		:	1.31		
21	IIDR	DENSIDAD DE DRENAJE (D)		:	0.59	km/km²	
22	ED F	FRECUENCIA DE RÍOS (Fr)		:	0.44	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.42	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.23	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	6.92	Km²	
C	UR	/A HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 25	: RIO PAUCAS
		0 50 100 150	200	666	000 669	000 672000	675000
	3010		8	Ì	1		8
			93750	7	E .		93750
	2900				_		
	270		9372000	1			372000
ш. С	2500		1	>			
ALTITUD (msnm)	230		00		رسمر		000
Ę	210		9369000		~		9369
ALT	1900				^		
	1700		9366000		Leyenda • Emisor		-399900
	1500		8		Rios Curvas		
			363000		Cuenca 25		0000
	1310	5	9363				1:100,000
		0 5 10 15 20 AREA ACUMULADA (%)				<u>-</u>	0.5 1 2 3 4 Km
		FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA	1				

N°	PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1	ÁREA (A)		:	78.31	Km ²	Micro cuenca
2	PERÍMETRO (P)		:	39.62	Km	
3 ₹	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	18.84	Km	
3 AMA	ANCHO PROMEDIO (Ap)		:	4.16	Km	
5	FACTOR DE FORMA (F)		:	0.22		
6	ÍNDICE DE COMPACIDAD (Kc)		:	1.26	Clase II	Oval oblonga
7	CURVA HIPSOMÉTRICA (CH)		:	-		
8	FRECUENCIA DE ALTITUDES (FA)		:	-		
9	ALTITUD MEDIA (Hm)		:	2326.99	msnm	
10 🖁	ALTITUD MAS FRECUENTE (HF)		:	2250.50	msnm	
11 🗒	PENDIENTE DE LA CUENCA		:	47.77%	Fuerte	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)		:	0.03		
13	COEFICIENTE OROGRÁFICO (Co)		:	0.0691	: 6.91 %	Alta
14	RECTANGULO EQUIVALENTE (Re)		:	a=5.37 km	b=14.60 kr	n
15	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	3.58%	(Método de	Taylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	18.84	Km	
17	TIEMPO DE CONCENTRACION (Tc)		:	103.05	min	(Metodo de Kirpich)
15 05 61 81 11 HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd)	:	4.00	Orden	
19 K	RELACIÓN DE CONFLUENCIAS (Rc)		:	4.40	Moderado	
20 8	RELACIÓN DE LONGITUDES (RI)		:	1.10		
21 📮	DENSIDAD DE DRENAJE (D)		:	0.63	km/km²	
22 🔐	FRECUENCIA DE RÍOS (Fr)		:	0.60	ríos/Km²	
23	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.40	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.31	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	2.97	Km²	
CUR	EVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 26: I	RIO HUARMARCA
	0 5 10 15 20	660000		662500	665000 6	67500 670000
301 295 285 275 265 (www.) 205 245 245 245 245 245 245 245 245 245 24	50 50 50 50 50 50 50 50 50 50 50 50 50 5	9057709 0003710 0003710 0003710 FF6.	enc En	nisor		1990,000

Tabla 6.27. Resultados de Parametros Geomorfológicos de la Microcuenca 27: Rio Grande

Ν°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	TADO
1		ÁREA (A)		:	59.78	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	39.15	Km	
3	ΑĀ	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	18.81	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	3.18	Km	
5	_	FACTOR DE FORMA (F)		:	0.17		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.43	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2525.77	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	2700.50	msnm	
11	RELIE	PENDIENTE DE LA CUENCA		:	49.67%	Fuerte	(Criterio Alvord)
12	2	COEFICIENTE DE MASIVIDAD (Cm)		:	0.04		,
13		COEFICIENTE OROGRÁFICO (Co)		:	0.1067	: 10.67 %	Muy Alta
14		RECTANGULO EQUIVALENTE (Re)		: 6	a=3.74 km	b=15.98 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	6.80%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	18.81	Km	<u>, , , , , , , , , , , , , , , , , , , </u>
17		TIEMPO DE CONCENTRACION (Tc)		:	94.52	min	(Metodo de Kirpich)
18	-IC	CATEGORIZACIÓN DE LA RED DE DRENAJE ((Rd)	:	3.00	Orden	. ,
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.57	Muy Alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	1.47	-	
21		DENSIDAD DE DRENAJE (D)		:	0.59	km/km²	
22	_ [FRECUENCIA DE RÍOS (Fr)		:	0.52	ríos/Km²	
23	8	EXTENSION MEDIA DE ESCURR. SUPERFICIA	AL (Es)	:	0.42	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.27	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	3.91	Km²	
C	:UR\	/A HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 27:	: RIO GRANDE
		0 5 10 15 20 25 30			866000	669000 672	000 675000
	3289			Ă	,		
			9390000	*			9390000
	3100			8	1		
	2900		9387000		<	1	0001888
<u>بر</u>	2700		8			1	88
E :	2500				1	1 4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
E :	2300	*	938400		<-	UK	000788
ALT	2700 2500 2300 2100				4	1	
	1900		9381000			1	9381000
			Leye	enc	la	()	8
	1701		8	Em		\ } /	2
	1599		93780		rvas enca 27		9378060
		0 20 40 60 80 100 120					1:100,000 0 0.5 1 2 3 4 Km
		AREA ACUMULADA (%) FRECUENCIA DE ALTITUDES ————————————————————————————————————			566000	669000 672	000 675000

l°	PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1	ÁREA (A)		:	25.73	Km ²	Micro cuenca
2	PERÍMETRO (P)		:	23.16	Km	
3 8	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	10.98	Km	
FORMA	ANCHO PROMEDIO (Ap)		:	2.34	Km	
5	FACTOR DE FORMA (F)		:	0.21		
3	ÍNDICE DE COMPACIDAD (Kc)		:	1.29	Clase II	Oval oblonga
7	CURVA HIPSOMÉTRICA (CH)		:	-		
3	FRECUENCIA DE ALTITUDES (FA)		:	-		
	ALTITUD MEDIA (Hm)		:	2239.10	msnm	
	ALTITUD MAS FRECUENTE (HF)		:	2650.50	msnm	
1 2	PENDIENTE DE LA CUENCA		:	50.89%	Muy Fuerte	(Criterio Alvord)
2 2	COEFICIENTE DE MASIVIDAD (Cm)		:	0.09		
3	COEFICIENTE OROGRÁFICO (Co)		:	0.1948	: 19.48 %	Moderada
4	RECTANGULO EQUIVALENTE (Re)		:	a=2.95 km	b=8.71 km	
5	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	12.59%	(Método de 1	Гaylor y Schwarz)
6	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	10.98	Km	
7 _	TIEMPO DE CONCENTRACION (Tc)		:	51.97	min	(Metodo de Kirpich
HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (R	(d)	:	2.00	Orden	
9 1 1 1 1	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.14	Muy Alto	
0 8 0	RELACIÓN DE LONGITUDES (RI)		:	0.76		
1 ₽	DENSIDAD DE DRENAJE (D)		:	0.60	km/km²	
2 🖺			:	0.58	ríos/Km²	
3 2	EXTENSION MEDIA DE ESCURR. SUPERFICIAL	(Es)	:	0.42	km	
4	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.31	ríos/Km²	
5	SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	5.07	Km²	
CUF	RVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 28: R	IO PLAYA SECA
	0 50 100 150			674000	676000	678000 680000
29-28-27-26-25-24-4 (Eu 23:20-20-20-20-20-20-20-20-20-20-20-20-20-2	50 50 50 50 50 50 50 50 50 50 50 50 50 5	000ZEES 0000ES 000EZES 0000AZES	*			Leyenda © Emisor Ros Curvas Cuenca 28
13		9374000		674000	0 0.35 0	1:60,000 2.7 1.4 2.1 2.8 Km

 Tabla 6.29.
 Resultados de Parametros Geomorfológicos de la Microcuenca 29: Qda. Decuse

N°	PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1	ÁREA (A)		:	22.46	Km ²	Micro cuenca
2	PERÍMETRO (P)		:	22.25	Km	
3 ₹	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	11.31	Km	
3 4 LONG WA	ANCHO PROMEDIO (Ap)		:	1.99	Km	
5	FACTOR DE FORMA (F)		:	0.18		
6	ÍNDICE DE COMPACIDAD (Kc)		:	1.32	Clase II	Oval oblonga
7	CURVA HIPSOMÉTRICA (CH)		:	-		
8	FRECUENCIA DE ALTITUDES (FA)		:	-		
9	ALTITUD MEDIA (Hm)		:	2426.84	msnm	
10	ALTITUD MAS FRECUENTE (HF)		:	2650.50	msnm	
11 🗒	PENDIENTE DE LA CUENCA		:	57.11%	Muy Fuerte	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)		:	0.11		
13	COEFICIENTE OROGRÁFICO (Co)		:	0.2623	: 26.23 %	Moderada
14	RECTANGULO EQUIVALENTE (Re)		: :	a=2.61 km	b=8.71 km	
15	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	11.90%	(Método de T	aylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	11.31	Km	
17	TIEMPO DE CONCENTRACION (Tc)		:	54.79	min	(Metodo de Kirpich)
18 2	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	2.00	Orden	
18 19 20 HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.50	Muy Alto	
20 8	RELACIÓN DE LONGITUDES (RI)		:	1.74		
21 📮	DENSIDAD DE DRENAJE (D)		:	0.64	km/km²	
22 🖫	FRECUENCIA DE RÍOS (Fr)		:	0.22	ríos/Km²	
23	EXTENSION MEDIA DE ESCURR. SUPERFICIA	AL (Es)	:	0.39	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.13	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	4.74	Km²	
CUR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 29: 0	QDA. DECUSE
	0 2 4 6 8 10 12	668000		670000	672000	674000
320 314 305 295 285 275 265 225 245 205 205 195 185 175		000094 000868 000868 000868	*		Ley	Models

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	38.95	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	28.63	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	13.22	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	2.95	Km	
5		FACTOR DE FORMA (F)		:	0.22		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.29	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2437.62	msnm	
10	RELIEVE	ALTITUD MAS FRECUENTE (HF)		:	2100.50	msnm	
11	Œ	PENDIENTE DE LA CUENCA		:	62.56%	Muy Fuerte	(Criterio Alvord)
12	"	COEFICIENTE DE MASIVIDAD (Cm)		:	0.06		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.1525	: 15.25 %	Muy Alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=3.60 km	b=10.82 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	8.77%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	13.22	Km	
17	4	TIEMPO DE CONCENTRACION (Tc)		:	61.17	min	(Metodo de Kirpich
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	₹d)	:	3.00	Orden	
19	ЗRÁ	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.58	Muy alto	
20	200	RELACIÓN DE LONGITUDES (RI)		:	1.29		
21	呈	DENSIDAD DE DRENAJE (D)		:	0.63	km/km²	
	ED	FRECUENCIA DE RÍOS (Fr)		:	0.64	ríos/Km²	
23	2	EXTENSION MEDIA DE ESCURR. SUPERFICIAI	_ (E	s) :	0.40	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.33	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.39	Km²	
С	UR۱	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 30: RI	O SAN BUMBAL
		0 5 10 15 20 25	680	000	682000	684000 68	6000 688000
3	3459	4000	2000	d	2		990
3	3300	- 3500	28	* 7	N .		
	3100		8				
			940000		1		P ,
mus '	2900	2500					136
ALTITUD (msnm.)	2700	2000	9398000	1		4	
₽2	2500						1
4	2300	1500	9396000		2		
2	2100	- 1000	83			\prec	
1	1900	,	000	V			
	1701	500	9394000		Leyenda		CONTRACTOR
	. , 01	0			Emis Rios	or 0 0.4	1:70,000 4 0.8 1.6 2.4 3.2
		0 50 100 150	ĕ		Curv		Km

Tabla 6.31. Resultados de Parametros Geomorfológicos de la Microcuenca 31: Rio Cuevas

N°		PARÁMETROS GEOMORFOLÓGICOS		:	· <u> </u>	RESULT	ADO
1		ÁREA (A)		:	45.08	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	30.30	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	13.78	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	3.27	Km	
5	ш.	FACTOR DE FORMA (F)		:	0.24		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.27	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)	_	:	-		
8		FRECUENCIA DE ALTITUDES (FA)	_	:	-		
9		ALTITUD MEDIA (Hm)	_	:	2628.65	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	2500.00	msnm	
	RELIE	PENDIENTE DE LA CUENCA		:	61.38%	Muy Fuerte	(Criterio Alvord)
12	2	COEFICIENTE DE MASIVIDAD (Cm)		:	0.06	.,	(
13		COEFICIENTE OROGRÁFICO (Co)		:	0.1533	: 15.33 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=4.00 km		.,
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	9.66%		aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	13.78	Km	., . , ,
17		TIEMPO DE CONCENTRACION (Tc)		:	61.98	min	(Metodo de Kirpich)
18	HIDROGRAFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	₹d)	:	3.00	Orden	
19	RAF	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.63	Muy Alto	
20	SO:	RELACIÓN DE LONGITUDES (RI)		:	1.20		
21	IIDR	DENSIDAD DE DRENAJE (D)		:	0.61	km/km²	
22	ED F	FRECUENCIA DE RÍOS (Fr)		:	0.55	ríos/Km²	
23	RE	EXTENSION MEDIA DE ESCURR. SUPERFICIAI	L (E	s) :	0.41	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		· :	0.29	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.56	Km²	
CI	UR۱	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES				OCUENCA 31:	RIO CUEVAS
		0 5 10 15 20			682500	685000	687500 690000
	3644	4000		Å			
	3500		9397500	***	E		9397500
	3300		5-0-05	S			
3	3100	3000	0000				/ \
Ê 2	2900	2500	9396	•		V 5 V	9396
ALTITUD (msnm.)	2700						
2	2500	2000	9392500		1		3302500
F 4	2300	1500	A. 6760				
2	2100		000				000
1	1900	1000	9390,		Leyenda		93900
1	1700	500			• Emi	sor	
1	1597	7	9387500		Cun	ras	3387500
		0 50 100 150	of.		cue	0_0.5	1:80,000
		AREA ACUMULADA (%) I FRECUENCIA DE ALTITUDES ————————————————————————————————————	Į		682500	685000	687500 690000

٧°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	48.58	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	31.83	Km	
3	¥	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	15.26	Km	
4	-ORMA	ANCHO PROMEDIO (Ap)		:	3.18	Km	
5		FACTOR DE FORMA (F)		:	0.21		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.29	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2374.90	msnm	
10	IEVE	ALTITUD MAS FRECUENTE (HF)		:	2300.50	msnm	
	RELI	PENDIENTE DE LA CUENCA		:	56.83%	Muy Fuerte	(Criterio Alvord)
12	-	COEFICIENTE DE MASIVIDAD (Cm)		:	0.05		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.1161	: 11.61 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		: a	=4.06 km	b=11.98 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	8.08%	(Método de T	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	15.26	Km	
17 .	۷	TIEMPO DE CONCENTRACION (Tc)		:	72.45	min	(Metodo de Kirpich
18 i	HIDROGRAFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd))	:	3.00	Orden	
19	3RA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.58	Muy Alto	
20 8	RO	RELACIÓN DE LONGITUDES (RI)		:	0.99		
21	₽	DENSIDAD DE DRENAJE (D)		:	0.68	km/km²	
22		FRECUENCIA DE RÍOS (Fr)		:	0.56	ríos/Km²	
23 (۳ ا	EXTENSION MEDIA DE ESCURR. SUPERFICIAL ((Es)	:	0.37	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.29	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue)		:	3.65	Km²	
CL	JR۱	/A HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 32: R	IO MANCUCUR
		0 10 20 30		6775	68000	0 682500	685000 687500
34	458	4000		L			
33	300	3500	w - 7	*	> E		9407500
	100		ŧ	S			996
			8			_	900
ALTITUD (msnm)	900	- 2500	/				1
<u>ළ</u> 27	700	2000	8	1	\leftarrow	1 16	~ (L).
₽ 2! F.	500	887	-/	4		The	**058
₹ 2:	300	1500		1	1	7// 3	
2	100	- 1000	-			1	000000
19	900	500		1	Leyenda Emisor		
17	709	8			Curvas		397500
		0 50 100 150		I	Rios Cuenca 32		1:90,000
		AREA ACUMULADA (%) FRECUENCIA DE ALTITUDES — CURVA HIPSOMÉTRICA				0 0.5	1 2 3 4 Km

 Tabla 6.33.
 Resultados de Parametros Geomorfológicos de la Microcuenca 33: Rio Shumaya

Ν°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	45.05	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	35.71	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	14.76	Km	
4	-ORMA	ANCHO PROMEDIO (Ap)		:	3.05	Km	
5	_	FACTOR DE FORMA (F)		:	0.21		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.50	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2424.55	msnm	
10	IE VE	ALTITUD MAS FRECUENTE (HF)		:	2300.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	61.66%	Muy Fuerte	(Criterio Alvord)
12	œ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.05		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.1305	: 13.05 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=3.01 km	b=14.98 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	7.31%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	14.76	Km	
17	4	TIEMPO DE CONCENTRACION (Tc)		:	70.27	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	3.00	Orden	
19	ìКÁ	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.87	Muy Alto	
20	30	RELACIÓN DE LONGITUDES (RI)		:	1.00		
21	₽	DENSIDAD DE DRENAJE (D)		:	0.00	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.73	ríos/Km²	
23	ď	EXTENSION MEDIA DE ESCURR. SUPERFICIA	۱L (I	Es) :	363.34	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.38	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	3.56	Km²	
С	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 33: I	RIO SHUMAYA
		0 10 20 30		6775	500 680000	682500	685000 687500
	344	4000	9415000		À		9415000
	330	- 3500		" 7			
			9412500			(II	9412500
	310				Leyenda • Emisor		P1 -
mu (290	2500	9410000		Curvas	45	11000
sm)	270	2000	2		Cuenca 33	141	
ALTITUD (msnm.)	250		90			UT	
ALT	230	1500	9407500				9407500
	210	1000	-		1	\-	
	190		9405000	6		$\overline{}$	01020196
		- 500					
	171	0	9402500				1:90,000
		0 50 100 150 AREA ACUMULADA (%)	on on			0 0.5 1	2 3 4 Km
		FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA	9.	6775	500 680000	682500	685000 687500

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	ΓADO
1		ÁREA (A)		:	20.40	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	21.32	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	10.70	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	1.91	Km	
5	_	FACTOR DE FORMA (F)		:	0.18		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.33	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2661.97	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	2700.50	msnm	
11	ELI	PENDIENTE DE LA CUENCA		:	47.13%	Fuerte	(Criterio Alvord)
12	W.	COEFICIENTE DE MASIVIDAD (Cm)		:	0.13		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.3474	: 34.74 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=2.47 km	b=8.27 km	-
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	14.05%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	10.70	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	47.74	min	(Metodo de Kirpich
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (F		:	2.00	Orden	<u> </u>
19	ìRÁI	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.25	Muy Alto	
20	SOG	RELACIÓN DE LONGITUDES (RI)		:	1.26		
21	i i	DENSIDAD DE DRENAJE (D)		:	0.71	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.44	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.35	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)	-	:	0.25	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	4.52	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 34:	QDA. CURLATA
		0 5 10 15 20	-	67	6000 67	8000 680000	682000
	3622	4000		A	,		
	3500	2522	9416000	***	Ç.		_
	3300		3550				
	3100	3000	000				
		- 2500	9414000			\sim r	
Ĕ	2900			/	15		
3	2700		9412000	1	5	~~	-
	2500	- 1500					
	2300	1000	9410000	J.			
	2100	1000	9410		Leyenda		
	1900	500	5,5144		Emisor Rios		
	1756	0	9408000		Curvas Cuenca 34		1:65,000
		0 50 100 150	2255			0_04	0.8 1.6 2.4 3.2 Km
_		AREA ACUMULADA (%) FRECUENCIA DE ALTITUDES ————————————————————————————————————	ļ	67	6000 67	8000 680000	682000

 Tabla 6.35.
 Resultados de Parametros Geomorfológicos de la Microcuenca 35: Rio Chantaco

Ν°		PARÁMETROS GEOMORFOLÓGICOS			:	: RESULTADO			
1		ÁREA (A)			:	47.87	Km ²	Micro cuenca	
2		PERÍMETRO (P)			:	30.48	Km		
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)			:	13.16	Km		
4	-ORMA	ANCHO PROMEDIO (Ap)			:	3.64	Km		
5	_	FACTOR DE FORMA (F)			:	0.28			
6		ÍNDICE DE COMPACIDAD (Kc)			:	1.24	Clase I	Oval redonda	
7		CURVA HIPSOMÉTRICA (CH)	_		:	-			
8		FRECUENCIA DE ALTITUDES (FA)			:	-			
9		ALTITUD MEDIA (Hm)			:	2706.02	msnm		
10	EVE	ALTITUD MAS FRECUENTE (HF)			:	2750.50	msnm		
11	RELI	PENDIENTE DE LA CUENCA			:	52.01%	Muy Fuerte	(Criterio Alvord)	
12	2	COEFICIENTE DE MASIVIDAD (Cm)			:	0.06			
13		COEFICIENTE OROGRÁFICO (Co)			:	0.1530	: 15.30 %	Muy Alta	
14		RECTANGULO EQUIVALENTE (Re)			: ;	a=4.35 km	b=11.00 km		
15		PENDIENTE DEL CAUCE PRINCIPAL (S)			:	9.31%	(Método de T	aylor y Schwarz)	
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)	_		:	13.16	Km		
17	_	TIEMPO DE CONCENTRACION (Tc)	_		:	63.34	min	(Metodo de Kirpich)	
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd	l)	:	3.00	Orden		
19	iRÁI	RELACIÓN DE CONFLUENCIAS (Rc)			:	1.57	Alto		
20	300	RELACIÓN DE LONGITUDES (RI)			:	0.86			
21		DENSIDAD DE DRENAJE (D)			:	0.70	km/km²		
22	ED I	FRECUENCIA DE RÍOS (Fr)			:	0.65	ríos/Km²		
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L ((Es)	:	0.36	km		
24		COEFICIENTE DE TORRENCIALIDAD (Ct)			:	0.33	ríos/Km²		
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)		:	3.63	Km²		
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES				MICRO	CUENCA 35: R	IO CHANTACO	
		0 2 4 6 8 10	9			675000	677500	682500	
3	520.5		94250		×			9425000	
	3450	0500		w->	*	E			
	3250		9422500		Š			9422500	
	3150		942						
mu)	2950 2850	2500				1			
sw) (2750		9420000	- 5	2			9420000	
ALTITUD (msnm	2650 2550		9000		6		~		
ALT	2450	1500	90		ء (
	2350		94175		-			9417500	
	2150					Leyenda			
	1950	300	9415000			Emisor Rios		18415000	
	1858	0	2			Curvas	a 35	1:75,000	
		0 50 100 150 AREA ACUMULADA (%)					0 0.4 0.	8 1.6 2.4 3.2 Km	
•		FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA				675000	677500	682500	

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1		ÁREA (A)		:	28.33	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	24.98	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	12.24	Km	
4	-ORMA	ANCHO PROMEDIO (Ap)		:	2.31	Km	
5	ш.	FACTOR DE FORMA (F)		:	0.19		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.32	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2667.29	msnm	
10	LIEVE	ALTITUD MAS FRECUENTE (HF)		:	2250.50	msnm	
11	RELIE	PENDIENTE DE LA CUENCA	_	:	39.30%	Fuerte	(Criterio Alvord)
12	R	COEFICIENTE DE MASIVIDAD (Cm)	_	:	0.09		
13		COEFICIENTE OROGRÁFICO (Co)	_	:	0.2511	: 25.11 %	Muy Alta
14		RECTANGULO EQUIVALENTE (Re)	_	:	a=2.94 km	b=9.65 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	10.01%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	12.24	Km	
17	7	TIEMPO DE CONCENTRACION (Tc)		:	58.26	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (F		:	3.00	Orden	
19	ìRÀI	RELACIÓN DE CONFLUENCIAS (Rc)		:	3.67	Alto	
20	306	RELACIÓN DE LONGITUDES (RI)		:	0.83		
21		DENSIDAD DE DRENAJE (D)		:	0.81	km/km²	
	ED	FRECUENCIA DE RÍOS (Fr)		:	0.53	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.31	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.28	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.05	Km²	
Cl	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 36	: QDA. UNGUIO
		0 5 10 15	672	000	674000	676000	678000 680000
	601		94280	Ň	_		842800
	550 450			**	E I		
3	350 250		9426000	s			428000
3	150	3000					
	050 950	2500	9424000	5			8
$\overline{}$	850 750		9424	1	ford	KARRE	Total Page
₫ 2	650	•		5	150		
	550 450		9422000	6		22 5 A STOCK	8422000
	350 250	4000		1	2135	211/2011	
	150		9420000	6			00000
1	950 950		942			nisor	
1	888	0				os urvas 0 0.4 0.1	1:65,000
		0 50 100 150 AREA ACUMULADA (%)	9418000		c	uenca 36	Km 000176
		FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA	672	000	674000	676000	678000 680000

 Tabla 6.37. Resultados de Parametros Geomorfológicos de la Microcuenca 37: Qda. Nancho

N°	PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	
1	ÁREA (A)		:	37.04	Km ²	Micro cuenca
2	PERÍMETRO (P)		:	31.27	Km	
3 ≸	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	11.63	Km	
3 AMA 9 AMA	ANCHO PROMEDIO (Ap)		:	3.19	Km	
5	FACTOR DE FORMA (F)		:	0.27		
6	ÍNDICE DE COMPACIDAD (Kc)		:	1.45	Clase II	Oval oblonga
7	CURVA HIPSOMÉTRICA (CH)		:	-		
8	FRECUENCIA DE ALTITUDES (FA)		:	-		
9	ALTITUD MEDIA (Hm)		:	2920.38	msnm	
10	ALTITUD MAS FRECUENTE (HF)		:	3150.50	msnm	
11	PENDIENTE DE LA CUENCA		:	44.45%	Fuerte	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)		:	0.08		
13	COEFICIENTE OROGRÁFICO (Co)		:	0.2303	: 23.03 %	Muy Alta
14	RECTANGULO EQUIVALENTE (Re)		:		b=12.88 kr	
15	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	9.03%	(Método de	Taylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	11.63	Km	
17	TIEMPO DE CONCENTRACION (Tc)		:	59.10	min	(Metodo de Kirpich)
18 19 20 HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE	Rd)	:	3.00	Orden	<u> </u>
19 Å	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.73	Muy Alto	
20 0	RELACIÓN DE LONGITUDES (RI)		:	1.05		
21 📮	DENSIDAD DE DRENAJE (D)		:	0.67	km/km²	
22 🖫	FRECUENCIA DE RÍOS (Fr)		:	0.46	ríos/Km²	
23 ~	EXTENSION MEDIA DE ESCURR. SUPERFICIA	AL (Es)	:	0.37	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.24	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (Je)	:	3.33	Km²	
CUF	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 37	: QDA. NANCHO
	0 5 10 15	672000		674000	676000 6780	00 680000 682000
354	4000	36000	Ň		\wedge	943600
345	3500	g w-	*	E	11 S	*
335 325		000	Š	1	15033	0009589
315	3000	943400		1		8
_		00		(1	9
295 285 275 265		94320			1 551331	8432000
285 E 275				15		
F 265		943000	/	1		943000
255			4			
245		9428000		Leyenda		9428000
235 225	- 500	500		Emiso	1	
217		426000		Rios		0009823
	0 50 100 150	6		Cuenc	H 31	1:75,000 a 1.0 2.4 3.2 500
	AREA ACUMULADA (%) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	672000		674000	676000 6780	00 680000 682000

٧°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	TADO
1		ÁREA (A)		:	72.19	Km ²	Micro cuenca
2	Ī	PERÍMETRO (P)		:	33.01	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	13.20	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	5.47	Km	
5	_ 1	FACTOR DE FORMA (F)		:	0.41		
6	Ì	ÍNDICE DE COMPACIDAD (Kc)		:	1.12	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8	Ì	FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1913.31	msnm	
10	IEVE	ALTITUD MAS FRECUENTE (HF)		:	1700.50	msnm	
11 i		PENDIENTE DE LA CUENCA		:	47.48%	Fuerte	(Criterio Alvord)
12	~	COEFICIENTE DE MASIVIDAD (Cm)		:	0.03		
13	İ	COEFICIENTE OROGRÁFICO (Co)		:	0.0507	: 5.07 %	Alta
14	Ì	RECTANGULO EQUIVALENTE (Re)		:	a=8.50 km	b=8.50 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	12.38%	(Método de 7	Taylor y Schwarz)
16	İ	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	13.20	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	58.54	min	(Metodo de Kirpich
18	<u> </u>	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden	
19	ik Al	RELACIÓN DE CONFLUENCIAS (Rc)		:	2.07	Muy Alto	
20	HIDROGRAFICA	RELACIÓN DE LONGITUDES (RI)		:	0.87		
21		DENSIDAD DE DRENAJE (D)		:	0.63	km/km²	
22	_ [FRECUENCIA DE RÍOS (Fr)		:	0.53	ríos/Km²	
23	~	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es	s) :	0.40	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.28	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	le)	:	4.16	Km²	
CL	JR\	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 38:	RIO CHOCAN
		0 5 10 15 20	90 E	35000	637500	640000	642500 645000
2	891	3500	9500		Å		- 098
2	700	3000		w	*		
2	500		9497500	•		1	9497500
	300	- 2500			\sim /		
	100		000		(T	-	8
SE -	900	2000	949500	(2	Visit	1	
፰	700	4500			1	A	1
	500		9492500	-	1		
		1000			51	10	
	300		000		1	+ 1 1	
	100		9490000	Leye	enda Emisor	JAN CEN	100000
•	922	0			NuevosRios Curvas 38		1:80,000
		0 50 100 150			Cuenca 38	0	0.4 0.8 1.6 2.4 3.2

Tabla 6.39. Resultados de Parametros Geomorfológicos de la Microcuenca 39: Rio Chimbinuma

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1	ÁI	REA (A)		:	89.33	Km ²	Micro cuenca
2	PI	ERÍMETRO (P)		:	43.13	Km	
3 ₹	L	ONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	21.73	Km	
3 WW C	δAI	NCHO PROMEDIO (Ap)		:	4.11	Km	
5	F	ACTOR DE FORMA (F)		:	0.19		
6	ĺΝ	NDICE DE COMPACIDAD (Kc)		:	1.29	Clase II	Oval oblonga
7	С	URVA HIPSOMÉTRICA (CH)		:	-		
8	FI	RECUENCIA DE ALTITUDES (FA)		:	-		
9	. Al	LTITUD MEDIA (Hm)		:	1816.30	msnm	
10	AI	LTITUD MAS FRECUENTE (HF)		:	1900.50	msnm	
11 1	PI	ENDIENTE DE LA CUENCA		:	41.39%	Fuerte	(Criterio Alvord)
12		OEFICIENTE DE MASIVIDAD (Cm)		:	0.02		
13	С	OEFICIENTE OROGRÁFICO (Co)		:	0.0369	: 3.69 %	Moderada
14	R	ECTANGULO EQUIVALENTE (Re)		:	a=5.51 km	b=16.22 km	n
15	PI	ENDIENTE DEL CAUCE PRINCIPAL (S)		:	5.77%	(Método de	Taylor y Schwarz)
16	LC	ONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	21.73	Km	
17	, TI	IEMPO DE CONCENTRACION (Tc)		:	109.11	min	(Metodo de Kirpich)
18 19 20 21 H	c.	ATEGORIZACIÓN DE LA RED DE DRENAJE (F	(d)	:	4.00	Orden	
19 %	R	ELACIÓN DE CONFLUENCIAS (Rc)		:	2.89	Muy Alto	
20 0	R	ELACIÓN DE LONGITUDES (RI)		:	1.04		
21	D	ENSIDAD DE DRENAJE (D)		:	0.68	km/km²	
22		RECUENCIA DE RÍOS (Fr)		:	0.73	ríos/Km²	
23	/	XTENSION MEDIA DE ESCURR. SUPERFICIAI	_ (E	s) :	0.37	km	
24	С	OEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.37	ríos/Km²	
25	SI	UPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.07	Km²	
CUI	RVA	HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 39: F	RIO CHIMBINUMA
	0) 5 10 15 20 25	00 r	645	64800	0 651000	654000 657000 8
280	04	3000	9507	Ã	,		9507000
269	1		8	***	E		8
250		2500	950400	š			9504000
230							
		2000	9501000			7	980000
US 210							
ALTITUD (msnm 190		- 1500	9498000				000884
		1000		1	1	13	2
150		1000	9495000		1-1		9000
130	00	- 500	96	1	1//		2
110	00	500	0000	6	Leyenda		492000
9	58	0	9492000		Emisor Rios		1:110.000
	0	-	8		Curvas Cuenca 3	9	0 0.5 1 2 3 4 Km
	= FR	RECUENCIA DE ALTITUDES ————————————————————————————————————	94890	645	64800	0 651000	654000 657000

N°	PARÁMETROS GEOMORFOLÓGICOS	:		RESUL	TADO
1	ÁREA (A)	:	45.49	Km ²	Micro cuenca
2	PERÍMETRO (P)	:	32.11	Km	
3 ₹	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)	:	14.90	Km	
3 A 4 PORMA	ANCHO PROMEDIO (Ap)	:	3.05	Km	
5	FACTOR DE FORMA (F)	:	0.20		
6	ÍNDICE DE COMPACIDAD (Kc)	:	1.34	Clase II	Oval oblonga
7	CURVA HIPSOMÉTRICA (CH)	:	-		
8	FRECUENCIA DE ALTITUDES (FA)	:	-		
9	ALTITUD MEDIA (Hm)	:	1970.46	msnm	
10 🖁	ALTITUD MAS FRECUENTE (HF)	;	2250.50	msnm	
11 🗒	PENDIENTE DE LA CUENCA	;	37.18%	Fuerte	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)	;	0.04		
13	COEFICIENTE OROGRÁFICO (Co)	:	0.0854	: 8.54 %	Alta
14	RECTANGULO EQUIVALENTE (Re)	;	a=3.62 km	b=12.55 kr	m
15	PENDIENTE DEL CAUCE PRINCIPAL (S)	;	8.21%	(Método de	Taylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)	;	14.90	Km	
17	TIEMPO DE CONCENTRACION (Tc)	:	72.54	min	(Metodo de Kirpich)
15 05 61 81 11 HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd) :	3.00	Orden	
19 K	RELACIÓN DE CONFLUENCIAS (Rc)	:	2.42	Muy Alto	
20 S	RELACIÓN DE LONGITUDES (RI)	:	0.79		
21 💂	DENSIDAD DE DRENAJE (D)	:	0.74	km/km²	
22 🔐	FRECUENCIA DE RÍOS (Fr)	;	0.75	ríos/Km²	
23	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es) :	0.34	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)	:	0.40	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e) :	3.57	Km²	
CUR	RVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES		MICRO	OCUENCA 40	: RIO ARAGOTO
3014 2950 2850 2750 2650 2550 2250 2150 2150 1950 1850 1750 1850 1850 1850 1850 1850 1850 1850 18	- 3000 - 2500 - 2000 - 1500 - 500	0001095 0000195 0000195 0000195 0000195	Leyenda Emisor Rios Curas Cuenca 40	000 651000	000984 0000984 0000984 0000984 0000984 000984 000984 000984 000984 000984 000984 000984 000984 000984 00098

 Tabla 6.41. Resultados de Parametros Geomorfológicos de la Microcuenca 41: Rio Tondopa

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	67.10	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	35.51	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	16.35	Km	
4	-ORMA	ANCHO PROMEDIO (Ap)		:	4.10	Km	
5	_	FACTOR DE FORMA (F)		:	0.25		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.22	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2140.94	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	2100.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	53.21%	Muy Fuerte	(Criterio Alvord)
12	14	COEFICIENTE DE MASIVIDAD (Cm)		:	0.03		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0683	: 6.83 %	Alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=5.35 km	b=12.54 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	10.45%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	16.35	Km	
17	4	TIEMPO DE CONCENTRACION (Tc)		:	69.90	min	(Metodo de Kirpich)
18	FIC,	CATEGORIZACIÓN DE LA RED DE DRENAJE ((Rd)	:	4.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	4.43	Moderado	
20	ROC	RELACIÓN DE LONGITUDES (RI)		:	1.71		
21	H	DENSIDAD DE DRENAJE (D)		:	0.68	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.69	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	۱L (E	Es) :	0.37	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.36	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	2.86	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 41: I	RIO TONDOPA
		0 5 10 15 20	1	620000 N	622500	625000	627500 630000
	3421	4000			E		
	3300	3300	9477500	1			9477500
	3100						500
	2900 2700		9475000				9475000
$\overline{}$			96		7		
	2500 2300	2000	8	1	un () al		
=	2100		9472500	\	11		9472500
~	1900 1700	1500		1			
	1500		1470000				470000
	1300	•					1/ "
	1100		200	Ley	yenda Emisor		9467300
	940	0	9467500		Rios Curvas	4-1	159
		0 50 100 150 AREA ACUMULADA (%)			Cuenca 41	0 0.5 1	2 3 4 Km
•		FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA		620000	622500	625000	627500 630000

٧°	PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1	ÁREA (A)		:	21.39	Km ²	Micro cuenca
2	PERÍMETRO (P)		:	19.68	Km	
3 ₹	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	9.27	Km	
3 AMA OF	ANCHO PROMEDIO (Ap)		:	2.31	Km	
5	FACTOR DE FORMA (F)		:	0.25		
6	ÍNDICE DE COMPACIDAD (Kc)		:	1.20	Clase I	Oval redonda
7	CURVA HIPSOMÉTRICA (CH)		:	-		
8	FRECUENCIA DE ALTITUDES (FA)		:	-		
9	ALTITUD MEDIA (Hm)		:	1700.61	msnm	
10 🖁	ALTITUD MAS FRECUENTE (HF)		:	1650.50	msnm	
11 🗒	PENDIENTE DE LA CUENCA		:	50.34%	Muy Fuerte	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)		:	0.08		
13	COEFICIENTE OROGRÁFICO (Co)		:	0.1352	: 13.52 %	Muy Alta
14	RECTANGULO EQUIVALENTE (Re)		: 6	a=3.17 km	b=6.74 km	-
15	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	16.21%	(Método de T	aylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	9.27	Km	
17 _	TIEMPO DE CONCENTRACION (Tc)		:	42.37	min	(Metodo de Kirpich)
15 05 18 15 15 15 15 15 15 15 15 15 15 15 15 15	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	 ?d)	:	3.00	Orden	
19 2	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.88	Muy Alto	
20 8	RELACIÓN DE LONGITUDES (RI)		:	1.71		
21 🖺	DENSIDAD DE DRENAJE (D)		:	0.61	km/km²	
22 🖺	FRECUENCIA DE RÍOS (Fr)		:	0.61	ríos/Km²	
23	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.41	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.33	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	2.78	Km²	
CUF	RVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 42: C	DA. ULUNCHE
	0 50 100 150	-	628000	62	0000 63:	2000 634000
251 245 235 225 215 205 (195 175 165 155 145 135 105 95 85	2500 2000 2000 1500 1000 500	0001895 00002895 00000895 00000895		eyenda Emisar Ros Curus Curus Curus 42	0.035.07	000000 000000 000000 000000 000000 00000

Tabla 6.43. Resultados de Parametros Geomorfológicos de la Microcuenca 43: Rio Matala

N°		PARÁMETROS GEOMORFOLÓGICOS		:	: RESULTADO				
1	,	ÁREA (A)		:	30.08	Km ²	Micro cuenca		
2	ı	PERÍMETRO (P)		:	24.52	Km			
3 ₹		LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	10.97	Km			
3 8 A M A O L	5 ,	ANCHO PROMEDIO (Ap)		:	2.74	Km			
5		FACTOR DE FORMA (F)		:	0.25				
6	į	ÍNDICE DE COMPACIDAD (Kc)		:	1.26	Clase II	Oval oblonga		
7	-	CURVA HIPSOMÉTRICA (CH)		:	-				
8	Ī	FRECUENCIA DE ALTITUDES (FA)		:	-				
9		ALTITUD MEDIA (Hm)		:	1947.35	msnm			
10 🖁	֡֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֟֜֓֓֓֓֓֓֡֡֡֡֓֓֓֓֡֡֝֡֓֡֓֡֡֡֡֡֡֡֡֡֝֡֡֡֡֡֡֡֡	ALTITUD MAS FRECUENTE (HF)		:	2050.50	msnm			
11 🗒		PENDIENTE DE LA CUENCA		:	50.25%	Muy Fuerte	(Criterio Alvord)		
12		COEFICIENTE DE MASIVIDAD (Cm)		:	0.06				
13	-	COEFICIENTE OROGRÁFICO (Co)		:	0.1261	: 12.61 %	Muy Alta		
14	Ī	RECTANGULO EQUIVALENTE (Re)		:	a=3.34 km	b=9.01 km			
15	ı	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	14.18%	(Método de T	aylor y Schwarz)		
16	Ī	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	10.97	Km			
17	- ا	TIEMPO DE CONCENTRACION (Tc)		:	49.40	min	(Metodo de Kirpich)		
18 19 20 HIDROGRÁFICA	2 7	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd)	:	3.00	Orden			
19 K		RELACIÓN DE CONFLUENCIAS (Rc)		:	1.60	Muy Alto			
20 8	3 [RELACIÓN DE LONGITUDES (RI)		:	1.35				
21 📮	1	DENSIDAD DE DRENAJE (D)		:	0.59	km/km²			
22 🖫	3	FRECUENCIA DE RÍOS (Fr)		:	0.70	ríos/Km²			
23	<i>-</i> –	EXTENSION MEDIA DE ESCURR. SUPERFICIAI	L (E	s) :	0.43	km			
24	(COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.37	ríos/Km²			
25	:	SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.11	Km²			
CUF	RV	/A HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICF	ROCUENCA 43:	RIO MATALA		
283 279 265 244 233 (215 205 205 205 194 115 115 115 115 115 115 115 115	50 50 50 50 50 50 50 50 50 50 50 50 50 5	- 2500 - 2000 - 1500 - 1000 - 500	947600 945000 9462000 9462000	632000 W-=	634000	63600	638000 0009999 0001999 0001999 0001999 0001999 0001999 0001999 0001999 0001999 00019999 000199 000199		

N°	PARÁMETROS GEOMORFOLÓGICOS		:	RESULT	ΓADO
1	ÁREA (A)		: 25.53	Km ²	Micro cuenca
2	PERÍMETRO (P)		: 24.90	Km	
3 ₹	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		: 12.51	Km	
3 AMA C	ANCHO PROMEDIO (Ap)		: 2.04	Km	
5	FACTOR DE FORMA (F)		: 0.16		
6	ÍNDICE DE COMPACIDAD (Kc)		: 1.39	Clase II	Oval oblonga
7	CURVA HIPSOMÉTRICA (CH)		: -		
8	FRECUENCIA DE ALTITUDES (FA)		: -		
9	ALTITUD MEDIA (Hm)		: 2032.78	msnm	
10	ALTITUD MAS FRECUENTE (HF)		: 2100.50	msnm	
11 1			: 57.49%	Muy Fuerte	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)		: 0.08		
13	COEFICIENTE OROGRÁFICO (Co)		: 0.1619	: 16.19 %	Muy Alta
14	RECTANGULO EQUIVALENTE (Re)		: a=2.56 km	b=9.98 km	
15	PENDIENTE DEL CAUCE PRINCIPAL (S)		: 15.75%	(Método de	Taylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		: 12.51	Km	
17	TIEMPO DE CONCENTRACION (Tc)		: 51.32	min	(Metodo de Kirpich
18 19 20 21 HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd)	: 2.00	Orden	
19 Å	RELACIÓN DE CONFLUENCIAS (Rc)		: 1.14	Muy Alto	
20 6	RELACIÓN DE LONGITUDES (RI)		: 1.06		
21	DENSIDAD DE DRENAJE (D)		: 0.64	km/km²	
22 🖫			: 0.59	ríos/Km²	
23	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	: 0.39	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		: 0.31	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	Je)	: 5.05	Km²	
CUI	RVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES		MICRO	CUENCA 44: QE	DA. YERBABUENA
	0 5 10 15 20		628000	630000	632000 634000
34	31 4000	94760	Ă	10	79246
33	3500	w->	*		
31		74000	Š		34000
29 27		a Lev	renda		3 \ *
	0500	•	Emisor		
E 23	2000	9472000	- Rios - Curvas		8472000
ALTITUD (msnm) 521 231 191	00		Cuenca 44		
년 19 17	1500	900			1
15	•	9470000	h	1	100
13				Page	3//
110		3468000			00099
9	52 0	3			1:60,000
	0 50 100 150 AREA ACUMULADA (%)			0 0.35	0.7 1.4 2.1 2.8 Km
	FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA		628000	630000	632000 634000

Tabla 6.45. Resultados de Parametros Geomorfológicos de la Microcuenca 45: Rio Zamba

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	34.34	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	26.18	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	14.56	Km	
4	-ORMA	ANCHO PROMEDIO (Ap)		:	2.36	Km	
5	1	FACTOR DE FORMA (F)		:	0.16		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.26	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1643.18	msnm	
10	IEVE	ALTITUD MAS FRECUENTE (HF)		:	1700.50	msnm	
11	RELII	PENDIENTE DE LA CUENCA		:	50.49%	Muy Fuerte	(Criterio Alvord)
12	R	COEFICIENTE DE MASIVIDAD (Cm)		:	0.05		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0786	: 7.86 %	Alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=3.57 km	b=9.62 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	12.40%	(Método de T	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	14.56	Km	
17	1	TIEMPO DE CONCENTRACION (Tc)		:	66.67	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	3.00	Orden	
19	ìRÁ	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.65	Muy Alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	1.44		
21	HIDI	DENSIDAD DE DRENAJE (D)		:	0.61	km/km²	
22	ED I	FRECUENCIA DE RÍOS (Fr)		:	0.55	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	Es) :	0.41	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.29	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	3.25	Km²	
C	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 45: Q	DA. RIO ZAMBA
		0 50 100 150	186000	N	616000	618000 620000	0 622000
	2631	3000	6	**	> E		6
	2500	9500	0000	Š		10(2)	9484000
	2300	2500	948				948
	2100	2000				</td <td></td>	
(mu	1900		948200			-	9482000
sw) c	1700					$\lambda \sim$	
ī	1500		9480000				00000
	1300	1000			198		
			9478000				0008
	1100	- 500	947				ras a
	900		9	Leyend • Em	a isor	TO THE STATE OF	
	709	0	947600	Rio	8 Vas		1:70,000
		0 5 10 15 20 25 AREA ACUMULADA (%)		Cus	enca 45	0 0	4 0.8 1.6 2.4 3.2 Km
		FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA			616000	618000 620000	0 622000

٧°		PARÁMETROS GEOMORFOLÓGICOS					RESUL	TADO
1		ÁREA (A)	_		: .	23.94	Km ²	Sub cuenca
2	ŀ	PERÍMETRO (P)			:	53.16	Km	
3 5	ΜĀ	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)	_		:	25.15	Km	
3 2	Ş	ANCHO PROMEDIO (Ap)	_		:	4.93	Km	
5	- 1	FACTOR DE FORMA (F)	_		:	0.20		
6	ŀ	ÍNDICE DE COMPACIDAD (Kc)	_		:	1.35	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)	_		:	-		
8	ŀ	FRECUENCIA DE ALTITUDES (FA)	_		:	-		
9	İ	ALTITUD MEDIA (Hm)			: 1	760.69	msnm	
10	= \ = \	ALTITUD MAS FRECUENTE (HF)			: 1	500.50	msnm	
11		PENDIENTE DE LA CUENCA			: 4	1.73%	Fuerte	(Criterio Alvord)
12		COEFICIENTE DE MASIVIDAD (Cm)			:	0.01		· ·
13	Ì	COEFICIENTE OROGRÁFICO (Co)			:	0.025	: 2.50 %	Moderada
14	Ì	RECTANGULO EQUIVALENTE (Re)			: a=	5.95 km	b=20.83 km	า
15		PENDIENTE DEL CAUCE PRINCIPAL (S)			: (5.38%	(Método de	Taylor y Schwarz)
16	Ì	LONGITUD DEL CAUCE PRINCIPAL (Lcp)			:	25.15	Km	<u> </u>
17		TIEMPO DE CONCENTRACION (Tc)	_		: -	18.30	min	(Metodo de Kirpich
19 20 20 21	2	CATEGORIZACIÓN DE LA RED DE DRENAJE (Ro	— d)		:	3.00	Orden	· · · · · · · · · · · · · · · · · · ·
19 0	Ϋ́	RELACIÓN DE CONFLUENCIAS (Rc)	_		:	1.63	Muy Alto	
20 5	2	RELACIÓN DE LONGITUDES (RI)	_		:	0.85		
21	<u>ב</u> וֹ בְּ	DENSIDAD DE DRENAJE (D)	_		:	0.65	km/km²	
	_ 1	FRECUENCIA DE RÍOS (Fr)			:	0.54	ríos/Km²	
23	~ t	EXTENSION MEDIA DE ESCURR. SUPERFICIAL	(E	s)	:	0.38	km	
24	İ	COEFICIENTE DE TORRENCIALIDAD (Ct)			:	0.27	ríos/Km²	
25	İ	SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue	:)		:	4.99	Km²	
CU	JR\	/A HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES				MICRO	OCUENCA 46:	RIO SICACATE
		0 5 10 15	8 ,	9	524000	628000	632000	636000 640000
28	379	3500	95000		ř			-
27	700	3000	٠	-	6	10		
25	500		949600		!			-
23	300	- 2500				^		
_ 21 E	100		9492000					-
E	900		51		1)	ZL	
0 17 D 15	700 500		9488000		5	(=)	2-	
F 13	300		8			11/	LIK	
	100		3484000		~	1		1
	900		848			~	~~	
7	700	500	000		Le	yenda		5
5	591	0	9480000			Emisor Rios		
		0 50 100 150			_	Curvas	0.0	1:150,000 751,5 3 4.5 6

 Tabla 6.47. Resultados de Parametros Geomorfológicos de la Microcuenca 47: Rio Guir Guir

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	.TADO
1		ÁREA (A)		:	40.87	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	29.36	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	13.55	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	3.02	Km	
5	_	FACTOR DE FORMA (F)		:	0.22		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.30	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1500.24	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	1250.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	46.20%	Fuerte	(Criterio Alvord)
12	œ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.04		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0551	: 5.51 %	Alta
14		RECTANGULO EQUIVALENTE (Re)		: :	a=3.68 km	b=11.11 kr	m
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	6.82%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	13.55	Km	
17	4	TIEMPO DE CONCENTRACION (Tc)		:	65.80	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	4.00	Orden	
19	зRÁ	RELACIÓN DE CONFLUENCIAS (Rc)		:	2.05	Muy Alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	1.46		
21		DENSIDAD DE DRENAJE (D)		:	0.69	km/km²	
22	ED I	FRECUENCIA DE RÍOS (Fr)		:	0.69	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.36	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.37	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	2.53	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 47	: RIO GUIR GUIR
		0 5 10 15	9490000	610000	612000	614000	616000 618000 00
	2138		946	Ã			3
	2050 1950		00	*	E	1	9
	1850 1750		9488000	š		V	1888
	1750 1650			L	eyenda • Emisor		
_	1550 1450	1500	9486000		Rios		9486000
Ë,	1350				Cuenca 47	1	
	1250 1150		9484000			7	0000
1.1	1050	1000	8	/		~~) }	3
	950 850		000				900
	750 650	-	9482000			1	8982000
	550				-		
	485	0	9480000				1:70,000
		0 50 100 150 AREA ACUMULADA (%)				0_0.	425 0.85 1.7 2.55 3.4 Km
-		FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA		610000	612000	614000	616000 618000

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO	
1		ÁREA (A)		:	149.59	Km ²	Sub cuenca	
2		PERÍMETRO (P)		:	61.33	Km		
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	27.21	Km		
4	FORMA	ANCHO PROMEDIO (Ap)		:	5.50	Km		
5		FACTOR DE FORMA (F)		:	0.20			
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.41	Clase II	Oval oblonga	
7		CURVA HIPSOMÉTRICA (CH)		:	-			
8		FRECUENCIA DE ALTITUDES (FA)		:	-			
9		ALTITUD MEDIA (Hm)		:	2441.46	msnm		
10	IEVE	ALTITUD MAS FRECUENTE (HF)		:	2300.50	msnm		
11	RELI	PENDIENTE DE LA CUENCA		:	54.66%	Muy Fuerte	(Criterio Alvore	d)
12	F	COEFICIENTE DE MASIVIDAD (Cm)		:	0.02			
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0398	: 3.98 %	Moderada	
14		RECTANGULO EQUIVALENTE (Re)		:	a=6.01 km	b=24.88 km		
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	6.79%	(Método de T	Гaylor y Schwar	z)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	27.21	Km		
17	Α	TIEMPO DE CONCENTRACION (Tc)		:	126.67	min	(Metodo de Ki	rpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	₹d)	:	4.00	Orden		
19	3R Á	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.98	Muy Alto		
20	RO	RELACIÓN DE LONGITUDES (RI)		:	0.99			
21	HID	DENSIDAD DE DRENAJE (D)		:	0.68	km/km²		
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.55	ríos/Km²		
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.37	km		
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.28	ríos/Km²		
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	le)	:	3.50	Km²		
C	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 48:	RIO HUANTA	
		0 5 10 15	624	4000	628000	632000	636000 6400	000
	3440	0 4000		w_	_		A	
	3300	3500	90	Z		1		90
	3100 2900		9472000			}	<u> </u>	9472000
	2700					{		
(msnm)	2500	2500	9468000			ノブ	\sim	9468000
E)	2300	2000	10,550					1
ALTITUD	2100 1900		000			2		000
Ā	1700	1300	946400		\Rightarrow	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		946
	1500			(115	1 21		
	1300	500	9460000		1	2(1)	1	9460000
	1100		COS	Leyer	nda Emisor	()	1	1
	979	0 50 100 150	0009	F	Rios Curvas		1	9456000
		AREA ACUMULADA (%)	248		Cuenca 48	1:130,00	0 0 0 5 1 2 3	4 245

Tabla 6.49. Resultados de Parametros Geomorfológicos de la Microcuenca 49: Rio Cutaco

l°	PARÁMETROS GEOMORFOLÓGICOS		:	· · · · · · · · · · · · · · · · · · ·	RESUL	TADO
	ÁREA (A)		:	54.05	Km ²	Micro cuenca
2	PERÍMETRO (P)		:	39.82	Km	
-ORMA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	14.90	Km	
i le	ANCHO PROMEDIO (Ap)		:	3.63	Km	
5	FACTOR DE FORMA (F)		:	0.24		
3	ÍNDICE DE COMPACIDAD (Kc)		:	1.53	Clase III	Oblonga alargada
7	CURVA HIPSOMÉTRICA (CH)		:	-		
3	FRECUENCIA DE ALTITUDES (FA)		:	-		
آ	ALTITUD MEDIA (Hm)		:	2046.96	msnm	
EVE	ALTITUD MAS FRECUENTE (HF)		:	1950.50	msnm	
1 2	PENDIENTE DE LA CUENCA		:	36.05%	Fuerte	(Criterio Alvord)
2	COEFICIENTE DE MASIVIDAD (Cm)		:	0.04		
3	COEFICIENTE OROGRÁFICO (Co)		:	0.0775	: 7.75 %	Alta
4	RECTANGULO EQUIVALENTE (Re)		: :	a=3.21 km	b=16.85 km	1
5	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	6.40%	(Método de	Taylor y Schwarz)
6	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	14.90	Km	
7 _	TIEMPO DE CONCENTRACION (Tc)		:	77.53	min	(Metodo de Kirpich)
8 은	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden	
9 K Å	RELACIÓN DE CONFLUENCIAS (Rc)		:	2.86	Muy Alto	
HIDROGRÁFICA	RELACIÓN DE LONGITUDES (RI)		:	1.20		
1 🚽	DENSIDAD DE DRENAJE (D)		:	0.64	km/km²	
2 🖫	FRECUENCIA DE RÍOS (Fr)		:	0.63	ríos/Km²	
3 ~	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.39	km	
4	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.33	ríos/Km²	
5	SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	3.78	Km²	
CUR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 49	: RIO CUTACO
	0 5 10 15 20		64	8000 65	51000 65400	0 657000
293	3500	900	L			500
285	0000	848	T			85
275 265						
255		9489000				-
245			1			
235 225	- 2000	8	1	74		8
215		948600		W.		19896
205	1500					
		9483000		\prec		2000
185 175		2				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
165				Levends		
155	0	943000		Leyenda • Emisor		0000896
148	0			Rios Curvas		1:100,000
	0 50 100 150 AREA ACUMULADA (%)	000		Cuenca 4	0	0.5 1 2 3 4 Km
	FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA	2	64	8000 66	51000 65400	0 657000

Tabla 6.50. Resultados de Parametros Geomorfológicos de la Microcuenca 50: Rio Olleros

l°		PARÁMETROS GEOMORFOLÓGICOS	:		RESULT	ADO
1	ÁRE	EA (A)	:	118.78	Km ²	Sub cuenca
2	PER	tÍMETRO (P)	:	52.02	Km	
3 \$	LON	IGITUD DEL MÁXIMO RECORRIDO (Lmax)	:	25.21	Km	
TORMA	ANC	CHO PROMEDIO (Ap)	:	4.71	Km	
5	FAC	TOR DE FORMA (F)	:	0.19		
3	ÍND	ICE DE COMPACIDAD (Kc)	:	1.35	Clase II	Oval oblonga
,	CUF	RVA HIPSOMÉTRICA (CH)	:	-		
3	FRE	CUENCIA DE ALTITUDES (FA)	:	-		
9		ITUD MEDIA (Hm)	:	1754.76	msnm	
	ALT	ITUD MAS FRECUENTE (HF)	:	1500.50	msnm	
1 [11	IDIENTE DE LA CUENCA	:	49.70%	Fuerte	(Criterio Alvord)
2 "	COE	FICIENTE DE MASIVIDAD (Cm)	:	0.01		
3	COE	FICIENTE OROGRÁFICO (Co)	:	0.0259	: 2.59 %	Moderada
4	REC	CTANGULO EQUIVALENTE (Re)	:	a=5.83 km	b=20.38 km	
5	PEN	IDIENTE DEL CAUCE PRINCIPAL (S)	:	3.57%	(Método de T	aylor y Schwarz)
6	LON	IGITUD DEL CAUCE PRINCIPAL (Lcp)	:	25.21	Km	
7 4	, TIEN	MPO DE CONCENTRACION (Tc)	:	128.76	min	(Metodo de Kirpic
HIDROGRÁFICA	CAT	EGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	3.00	Orden	
9 Å	REL	ACIÓN DE CONFLUENCIAS (Rc)	:	1.55	Muy Alto	
0 2	REL	ACIÓN DE LONGITUDES (RI)	:	0.91		
1 =	DEN	ISIDAD DE DRENAJE (D)	:	0.73	km/km²	
2 6	FRE	CUENCIA DE RÍOS (Fr)	:	0.66	ríos/Km²	
3	_	ENSION MEDIA DE ESCURR. SUPERFICIAL (Es)	:	0.34	km	
4	COE	FICIENTE DE TORRENCIALIDAD (Ct)	:	0.34	ríos/Km²	
5	SUF	PERFICIE UMBRAL DE ESCURRIMIENTO (Ue)	:	4.92	Km²	
CU	RVA HI	PSOMÉTRICA & FRECUENCIA DE ALTITUDES		MICRO	OCUENCA 50: I	RIO OLLEROS
	0	10 20 30 \$	640	000 645	650000	655000
28	48	3000	×			
27	- 6	W-	¥	E		
25	٦,	2500	š			
	00					\rightarrow
		2000				\times
Ë		000ms			~~ /	<u> </u>
19		- 1500		_		
	00	1000	6	7	7	
	00	1000			\mathcal{M}_{\sim}	
	00	. 500		Levenda		
11	00	500		Emisor		
9	87	0		Rios		1:160,000
	0	50 100 150 8		Cuenca 50	0	0.751.5 3 4.5 6 Km

 Tabla 6.51.
 Resultados de Parametros Geomorfológicos de la Microcuenca 51: Rio Malache

N°		PARÁMETROS GEOMORFOLÓGICOS			:		RESULT	ADO
1		ÁREA (A)			:	66.19	Km ²	Micro cuenca
2		PERÍMETRO (P)			:	38.16	Km	
3	-ORMA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)			:	17.85	Km	
4	FOR	ANCHO PROMEDIO (Ap)			:	3.71	Km	
5		FACTOR DE FORMA (F)			:	0.21		
6		ÍNDICE DE COMPACIDAD (Kc)			:	1.32	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)			:	-		
8		FRECUENCIA DE ALTITUDES (FA)			:	-		
9		ALTITUD MEDIA (Hm)			:	2515.05	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)			:	2300.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA			:	51.66%	Muy Fuerte	(Criterio Alvord)
12	2	COEFICIENTE DE MASIVIDAD (Cm)			:	0.04		
13		COEFICIENTE OROGRÁFICO (Co)			:	0.0956	: 9.56 %	Alta
14		RECTANGULO EQUIVALENTE (Re)			:	a=4.49 km	b=14.73 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)			:	8.51%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)			:	17.85	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)			:	84.17	min	(Metodo de Kirpich)
18	-IC/	CATEGORIZACIÓN DE LA RED DE DRENAJE	(Rd	d)	:	4.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)			:	2.02	Muy Alto	
20	300	RELACIÓN DE LONGITUDES (RI)			:	1.24		
21	i i	DENSIDAD DE DRENAJE (D)			:	0.75	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)			:	0.71	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	AL /	(Es	s) :	0.33	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)			:	0.36	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue))	:	2.85	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES	T			MICRO	OCUENCA 51: I	RIO MALACHE
		0 5 10 15 20		_	633000	636000	639000	642000 645000
	3617	4000	8008		Å	2		9998
	3500		26	f "	7	~ i		3
	3300							
	3100	3000	945600	-		V		9436000
Ē	2900	- 2500				.5	\rightarrow	
ALTITUD (msnm	2700	2000	9453000	2000	1			000000
T.D	2500		di	1	(
ALT	2300	- 1500	90		1			8
	2100	1000	94500	1		16	\sim $^{\prime\prime}$.	900996
	1900	1000						
	1700	- 500	9447000		L	eyenda		700
	1588	0			_	Rios Curvas	0.0	1:100,000
		0 50 100 150 AREA ACUMULADA (%)	000			Curvas Cuenca 51	0.0	Km
		FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	9444	-	633000	636000	639000	642000 645000

Та	bla	6.52. Resultados de Parametros Geomorfológi	cos	de la Mici	rocuenca 52	2: Rio Barro Negro	-
N°		PARÁMETROS GEOMORFOLÓGICOS	:		RESULT	ADO	
1		ÁREA (A)	:	33.34	Km ²	Micro cuenca	
2		PERÍMETRO (P)	:	24.44	Km		
3	-ORMA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)	:	11.96	Km		
4	FOF	ANCHO PROMEDIO (Ap)	:	2.79	Km		
5		FACTOR DE FORMA (F)	:	0.23			
6		ÍNDICE DE COMPACIDAD (Kc)	:	1.19	Clase I	Oval redonda	
7		CURVA HIPSOMÉTRICA (CH)	:	-			
8		FRECUENCIA DE ALTITUDES (FA)	:	-			
9		ALTITUD MEDIA (Hm)	:	1895.89	msnm		1
10	EVE	ALTITUD MAS FRECUENTE (HF)	:	1750.50	msnm		1
11	RELI	PENDIENTE DE LA CUENCA	:	52.08%	Muy Fuerte	(Criterio Alvord)	1
12	æ	COEFICIENTE DE MASIVIDAD (Cm)	:	0.06			1
13		COEFICIENTE OROGRÁFICO (Co)	:	0.1078	: 10.78 %	Muy alta	
14		RECTANGULO EQUIVALENTE (Re)	:	a=4.02 km	b=8.29 km		
15		PENDIENTE DEL CAUCE PRINCIPAL (S)	:	8.78%	(Método de 7	Taylor y Schwarz)	1
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)	:	11.96	Km		1
17	_	TIEMPO DE CONCENTRACION (Tc)	:	60.08	min	(Metodo de Kirpich)	1
18	FIC/	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	3.00	Orden		1
19	ìRÁI	RELACIÓN DE CONFLUENCIAS (Rc)	:	1.83	Muy Alto		1
20	300	RELACIÓN DE LONGITUDES (RI)	:	0.83			1
21	HIDROGRÁFICA	DENSIDAD DE DRENAJE (D)	:	0.66	km/km²		1
22	ED	FRECUENCIA DE RÍOS (Fr)	:	0.57	ríos/Km²		1
23	~	EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es	s) :	0.38	km		1
24		COEFICIENTE DE TORRENCIALIDAD (Ct)	:	0.30	ríos/Km²		1
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue)	:	3.22	Km²		1
(CUR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES		MICROC	UENCA 52: RIC	D BARRO NEGRO	1
		0 5 10 15 20 _		652000	654000	656000 658000	1
	2711	3000	Å				
	2650	27	7	- t		00091	
	2550 2450	2500	5		The state of the s		
	2350				///		
	2250	9				14000	
92	2150 2050				9588		
I ⊏	1950					Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y - Y -	
	1850 1750	8	(537 1415	8472	
	1650	1000	(
	1550	500 8-			35) [[5	9000	
	1450 1350		eyend	ia		3	
	1268			nisor os			
		0 50 100 150		rvas enca 52	0 0.35	1:60,000 80 0.7 1.4 2.1 2.8 89	
		AREA ACUMULADA (%) FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA		652000	654000	656000 658000	1

Tabla 6.53. Resultados de Parametros Geomorfológicos de la Microcuenca 53: Rio Sancay

N°	_	PARÁMETROS GEOMORFOLÓGICOS		:	· <u> </u>	RESULT	ADO
1		ÁREA (A)		:	42.66	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	26.66	Km	
3	ΜA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	12.43	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	3.43	Km	
5	_	FACTOR DE FORMA (F)		:	0.28		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.15	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9	l	ALTITUD MEDIA (Hm)		:	2833.48	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	2700.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	34.84%	Accidentado	(Criterio Alvord)
12	œ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.07		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.1882	: 18.82 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		: :	a=5.15 km	b=8.28 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	13.88%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	12.43	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	56.28	min	(Metodo de Kirpich)
18	FICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden	
19	ìКÁ	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.70	Muy Alto	
20	HIDROGRÁ	RELACIÓN DE LONGITUDES (RI)		:	0.65		
21		DENSIDAD DE DRENAJE (D)		:	0.73	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.61	ríos/Km²	
23	~	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es) :	0.34	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.33	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	3.49	Km²	
(CUR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICF	ROCUENCA 53:	RIO SANCAY
		0 5 10 15 20		662	500 665	000 667500	670000 672500
	3806	4000		Å	,		
	3700		9482500	*	E		9482500
	3500			Ś			
	3300	3000	9480000				0000
m (3100	2500	946				7
(msr			9			111	
ALTITUD (msnm.)	2900		9477500	1	\sim		0007796
ΑĽ	2700	1500			1	STORAGE STORAGE	
	2500	1000	9475000				9475000
	2300	1000	ā				*
	2100	500	200		Leyenda • Emisor		000
	1919	0	9472500		Rios		1:85.000
		0 50 100 150			Cuenca 53	0_0	0.450.9 1.8 2.7 3.6 Km
		AREA ACUMULADA (%) FRECUENCIA DE ALTITUDES ————————————————————————————————————	L	662	500 665	000 667500	670000 67250

۱°	PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1	ÁREA (A)		:	61.35	Km ²	Micro cuenca
2	PERÍMETRO (P)		:	36.36	Km	
3 4 P	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	17.50	Km	
4 K	ANCHO PROMEDIO (Ap)		:	3.51	Km	
5	FACTOR DE FORMA (F)		:	0.20		
6	ÍNDICE DE COMPACIDAD (Kc)		:	1.31	Clase II	Oval oblonga
7	CURVA HIPSOMÉTRICA (CH)		:	-		
8	FRECUENCIA DE ALTITUDES (FA)		:	-		
9	ALTITUD MEDIA (Hm)		:	2687.70	msnm	
	ALTITUD MAS FRECUENTE (HF)		:	2500.50	msnm	
11 교	PENDIENTE DE LA CUENCA		:	42.07%	Fuerte	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)		:	0.04		
13	COEFICIENTE OROGRÁFICO (Co)		:	0.1177	: 11.77 %	Muy alta
14	RECTANGULO EQUIVALENTE (Re)		:	a=4.41 km	b=13.91 kr	n
15	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	10.55%	(Método de	Taylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	17.50	Km	
17	TIEMPO DE CONCENTRACION (Tc)		:	78.05	min	(Metodo de Kirpich)
18 년	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden	
15 6 8 1 1 1 1 1 1 1 1 1	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.69	Muy Alto	
20 00	RELACIÓN DE LONGITUDES (RI)		:	0.97		
21 🚊	DENSIDAD DE DRENAJE (D)		:	0.61	km/km²	
22 🖫	FRECUENCIA DE RÍOS (Fr)		:	0.52	ríos/Km²	
23 ~	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.41	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.28	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	3.94	Km²	
CUF	RVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MIC	ROCUENCA 5	54: RIO TAPAL
	0 5 10 15		660000	663000	666000	669000 672000
385	9 4500	480000	Ň			480000
370	- 4000		***	₹		
350	3500	9477000	s			9477000
330	0	3.				3
_ 310 E		9474000		TI		947,4000
290 270	2500	9474	/		7	
270 250		8		7	~	
¥ 230		9471000	$\widetilde{}$	$\langle \ \ \rangle$		947.1000
210	0					
190	1000	9468000				9468000
170		1	Ley	renda Emisor		
158	0	9465000	_	- Rios		1:110,000
	0 50 100 150	å		Cuenca 54		0 0.5 1 2 3 4 Km
	AREA ACUMULADA (%) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA		660000	663000	66000	669000 672000

Tabla 6.55. Resultados de Parametros Geomorfológicos de la Microcuenca 55: Rio Ramos

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1		ÁREA (A)		:	58.76	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	44.55	Km	
3	ΜĀ	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	23.45	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	2.51	Km	
5	_	FACTOR DE FORMA (F)		:	0.11		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.64	Clase III	Oblonga alargada
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2647.45	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	3300.50	msnm	
11	RELIE	PENDIENTE DE LA CUENCA		:	48.93%	Fuerte	(Criterio Alvord)
12	2	COEFICIENTE DE MASIVIDAD (Cm)		:	0.05		,
13		COEFICIENTE OROGRÁFICO (Co)		:	0.1193	: 11.93 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=3.03 km	b=19.41 kn	n
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	8.28%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	23.45	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	106.37	min	(Metodo de Kirpich)
18	Z-IC	CATEGORIZACIÓN DE LA RED DE DRENAJE	(Rd)	:	2.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.08	Muy Alto	
20	Š	RELACIÓN DE LONGITUDES (RI)		:	1.27	-	
21	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DENSIDAD DE DRENAJE (D)		:	0.59	km/km²	
22		FRECUENCIA DE RÍOS (Fr)		:	0.43	ríos/Km²	
23	8	EXTENSION MEDIA DE ESCURR. SUPERFICI	AL (Es) :	0.42	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.22	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue)	:	7.67	Km²	
(UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES	Ť		MIC	ROCUENCA 5	5: RIO RAMOS
		ÁREAS SOBRE LAS ALTITUDES (Km2)		9	660000 66	668000	672000 676000
		0 20 40 60 80	9480000	ì	_		9480000
	385 370	T I		w - **	*		
	350	3300	947600	,			947600
	330						
Œ	310 290	0500	9472000				9472000
sm)	270		-				
ALTITUD (msnm)	250	0.5	9468000	2			Lang of
ALT	230 210	1500	3.		Let	4	*
	190		9464000				9464000
	170	500	946		Leyenda		946
	150		00		Emisor Rios		8
	138	2.0 0.1 0	946000		Curvas Cuenca 5	1.	150,000
		% (Área Parcia I/ Área total)			- Coonca t		0.751.5 3 4.5 6 Km
		FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA			660000 66	64000 668000	672000 676000

٧°		PARÁMETROS GEOMORFOLÓGICOS			:		RESULT	ADO
1		ÁREA (A)			:	151.74	Km ²	Micro cuenca
2		PERÍMETRO (P)			:	67.96	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)			:	32.79	Km	
4	FORMA	ANCHO PROMEDIO (Ap)			:	4.63	Km	
5		FACTOR DE FORMA (F)			:	0.14		
6		ÍNDICE DE COMPACIDAD (Kc)			:	1.56	Clase III	Oblonga alargada
7		CURVA HIPSOMÉTRICA (CH)			:	-		
8		FRECUENCIA DE ALTITUDES (FA)			:	-		
9		ALTITUD MEDIA (Hm)			:	2317.94	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)			:	1900.50	msnm	
	RELI	PENDIENTE DE LA CUENCA			:	58.06%	Muy Fuerte	(Criterio Alvord)
12	œ	COEFICIENTE DE MASIVIDAD (Cm)			:	0.02		
13		COEFICIENTE OROGRÁFICO (Co)			:	0.0354	: 3.54 %	Moderada
14		RECTANGULO EQUIVALENTE (Re)			: 6	=5.23 km	b=29.00 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)			:	3.11%	(Método de T	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)			:	32.79	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)			:	158.96	min	(Metodo de Kirpich
18	임	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	٦d)		:	4.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)			:	1.66	Muy Alto	
20	ő	RELACIÓN DE LONGITUDES (RI)			:	1.11		
21	₽	DENSIDAD DE DRENAJE (D)			:	0.59	km/km²	
		FRECUENCIA DE RÍOS (Fr)			:	0.56	ríos/Km²	
23	~	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s)	:	0.42	km	
24	ı	COEFICIENTE DE TORRENCIALIDAD (Ct)			:	0.28	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	le)		:	3.51	Km²	
CI	UR۱	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES				MICR	OCUENCA 56:	RIO ARANZA
		ÁREAS SOBRE LAS ALTITUDES (Km2)		6540	00	660000	666000	672000 678000
		0 50 100 150 200 4000	9474000	-	Ă			1
		0.0		W	*	Е		
	364		000		s			
	500	2000	946800					290
€ 3	300	.5 8.2 2500			-		~~	
_	100	5.4	9462000	1	\bigcirc	7	TIME	
⊃	900			سنگ		7	1/1/	V Key
_	700. 500.	- 1500	9456000				J. J. J.	
	300		2		Leve	enda		3
2	100	1000	8		•	Emisor		s
19	900	.5	945000	,		Curvas Cuenca 56		
1	700	11.7		ľ			1:200	2 4 6 8
		0 5 10 15	9444000					Km

 Tabla 6.57.
 Resultados de Parametros Geomorfológicos de la Microcuenca 57: Rio Algarrobo

Ν°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1		ÁREA (A)		:	36.27	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	27.55	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	13.26	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	2.73	Km	
5	-	FACTOR DE FORMA (F)		:	0.21		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.29	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1727.34	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	1750.50	msnm	
11	RELIE	PENDIENTE DE LA CUENCA		:	49.54%	Fuerte	(Criterio Alvord)
12	R	COEFICIENTE DE MASIVIDAD (Cm)		:	0.05		,
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0823	: 8.23 %	Alta
14		RECTANGULO EQUIVALENTE (Re)		: :	a=3.49 km		n
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	5.80%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	13.26	Km	, , ,
17		TIEMPO DE CONCENTRACION (Tc)		:	69.78	min	(Metodo de Kirpich)
18	-ICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden	,
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.65	Muy Alto	
20	SOG	RELACIÓN DE LONGITUDES (RI)		:	1.12	-	
21	IIDF	DENSIDAD DE DRENAJE (D)		:	0.62	km/km²	
22	ED F	FRECUENCIA DE RÍOS (Fr)		:	0.52	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.40	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)	-	:	0.28	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	Je)	:	3.31	Km²	
	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 57: I	RIO ALGARROBO
		ÁREAS SOBRE LAS ALTITUDES (Km2)	000	344000	646000	648000	650000 652000 8
		0 10 20 30 40	9462	Ã	l les	7	650000 652000 900
	253	1.0 0.2 9.5 0.5	8	**	-	17	9
	2350		94600	3			94600
	2250					-K	\
_	2150	F 2000	945800		7		9458000
msn	1950	0.5					
ē	1850 1750 1650	0.5	9456000		1		9456000
\LTI	1750	0.5 0.5 21.9				-2	
	1550		9454000		1/2	17	154000
	1450		•	Ley	/enda	\)
	1350		9452000	•	Emisor Rios	\ 1	182000
	119		945		Curvas Cuenca 57		1:75,000
		0 5 10 15 20 25	000		September 195		0 0.4 0.8 1.6 2.4 3.2 Km
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ————————————————————————————————————	9450	144000	646000	648000	650000 652000

N°		bla 6.58. Resultados de Parametros Geom PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	
1		ÁREA (A)		<u> </u>	63.55	Km ²	Micro cuenca
2		PERÍMETRO (P)			37.03	Km	Wildro addition
3	ΑV	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)			15.99	Km	
4	-ORMA	ANCHO PROMEDIO (Ap)			3.97	Km	
5	Ĭ	FACTOR DE FORMA (F)			0.25	1411	
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.31	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:		Old3C II	Ovarobioriga
8		FRECUENCIA DE ALTITUDES (FA)		:			
9		ALTITUD MEDIA (Hm)		:	2170.87	msnm	
10	۸E	ALTITUD MAS FRECUENTE (HF)		:	2100.50	msnm	
11	RELIEVE	PENDIENTE DE LA CUENCA			48.57%	Fuerte	(Critorio Alvord)
12	RE	COEFICIENTE DE MASIVIDAD (Cm)		-		ruene	(Criterio Alvord)
		, ,		<u>:</u>	0.03	. 7.40.0/	A 14 -
13		COEFICIENTE OROGRÁFICO (Co)		- :	0.0742	: 7.42 %	Alta
14		RECTANGULO EQUIVALENTE (Re)				b=14.17 kn	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	6.31%	-	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	15.99	Km	(3.4
17	CA	TIEMPO DE CONCENTRACION (Tc)		- :	77.45	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	₹d)	:	3.00	Orden	
19	GR	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.80	Muy Alto	
20	ORC	RELACIÓN DE LONGITUDES (RI)		:	0.78		
21		DENSIDAD DE DRENAJE (D)		:	0.67	km/km²	
22	RED	FRECUENCIA DE RÍOS (Fr)		:	0.54	ríos/Km²	
23	_	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es	s) :	0.37	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.28	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	le)	:	3.99	Km²	
С	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICE	ROCUENCA 5	8: RIO VILCAS
		ÁREAS SOBRE LAS ALTITUDES (Km2)		6480	00 65100	654000	657000
		0 20 40 60 80 3500	156000	Å	,		9486000
	3213	•	a 1	7		5	·
	3100		8		Leyenda		
2	2900	9.8	9453000		Emisor	1	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	2700	7.0			Curvas	()	
JD (msnm)	2500	10.7 - 2000	3450000		Cuenca 58		80000
92	2300		ä			-	*
Ę:	2100	17.1	9		\\ \\ \		~ \ \ \ .
٠,	1900	.5	9447000			AS	000/1976
	1700						کے
	1500	.5 8.1	9444000			1 (/	9444000
	1395		a.		7	200	1:100,000
		0 5 10 15 20	8			0_	0.5 1 2 3 4 Km
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	94410	6480	00 65100	0 654000	657000

Tabla 6.59. Resultados de Parametros Geomorfológicos de la Microcuenca 59: Qda. Yunguilla

Ν°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1		ÁREA (A)		:	14.23	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	18.06	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	8.80	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	1.62	Km	
5		FACTOR DE FORMA (F)		:	0.18		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.35	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1767.06	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	1650.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	45.68%	Fuerte	(Criterio Alvord)
12	R	COEFICIENTE DE MASIVIDAD (Cm)		:	0.12		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.2195	: 21.95 %	Muy Alta
14		RECTANGULO EQUIVALENTE (Re)		: 6	a=2.01 km	b=7.09 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	7.14%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	8.80	Km	
17	1	TIEMPO DE CONCENTRACION (Tc)		:	48.94	min	(Metodo de Kirpich)
18	FIC/	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	2.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.33	Muy Alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	0.73		
21	HIDI	DENSIDAD DE DRENAJE (D)		:	0.72	km/km²	
22	ED I	FRECUENCIA DE RÍOS (Fr)		:	0.49	ríos/Km²	
23	Я	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.35	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.28	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	Je)	:	3.77	Km²	
С	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 59: 0	QDA. YUNGUILLA
		ÁREAS SOBRE LAS ALTITUDES (Km2)	Ι.		658000	660000	662000 664000
		0 5 10 15		Ă			
:	2333		460000	***	₹		999
:	2250	5.5		š			
	2150	4.8	۰				
E :	2050		9458000				0008598
Ε	1950				_		7
JT.	1850		0000	4			9488000
ALTI	1750		9456000	6			9468
	1650					~~	
	1550	500	454000	Leyend	la		154000
	1450		ă	- Rio	5	1:60,00	00
	1379	0.5			vas enca 59	0 0.3750.75	1.5 2.25 3 Km
		0 5 10 15 20 25 % (Área Parcia I/ Área total)	9452000				9452000
		FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA			658000	660000	662000 664000

N°	4010	a 6.60 Resultados de Parametros Geomos PARÁMETROS GEOMORFOLÓGICOS	101	i :	G GC IG IVII	RESUL		010
1		ÁREA (A)		:	29.21	Km ²	Micro cuenca	
2		PERÍMETRO (P)		•	24.05	Km	WICIO CUEICA	
3	ΨV	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	11.37	Km		
4	-ORMA	ANCHO PROMEDIO (Ap)		:	2.57	Km		
5	Ä	FACTOR DE FORMA (F)		:	0.23	KIII		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.26	Clase II	Oval oblonga	
7		CURVA HIPSOMÉTRICA (CH)		:	1.20	Clase II	Ovai obioriga	
8		FRECUENCIA DE ALTITUDES (FA)		:				
9		ALTITUD MEDIA (Hm)		:	2146.90	msnm		
10	۸E	ALTITUD MAS FRECUENTE (HF)						
	RELIEVE	PENDIENTE DE LA CUENCA	_	:	1850.50	msnm	(Critaria Alvard)	
11 12	RE			:	41.70%	Fuerte	(Criterio Alvord)	
		COEFICIENTE OPOCRÁFICO (Cs)		:	0.07	. 45 70 0/	Malta	
13		COEFICIENTE OROGRÁFICO (Co)		:	0.1578	: 15.78 %	Muy alta	
14		RECTANGULO EQUIVALENTE (Re)			a=3.32 km	b=8.79 km		
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	9.89%	`	Taylor y Schwarz)	
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	11.37	Km		
17	CA	TIEMPO DE CONCENTRACION (Tc)		:	52.96	min	(Metodo de Kirpio	cn)
18	ÁFI	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Ka)	:	4.00	Orden		
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	2.50	Muy Alto		
20	DRC	RELACIÓN DE LONGITUDES (RI)		:	1.04			
21	H	DENSIDAD DE DRENAJE (D)		:	1.01	km/km²		
22	RED	FRECUENCIA DE RÍOS (Fr)		:	0.65	ríos/Km²		
23		EXTENSION MEDIA DE ESCURR. SUPERFICIA	.L (E		0.25	km		
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.34	ríos/Km²		
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	2.32	Km²		
(UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES	500	14.00.000			RIO SAN PABLO	
		ÁREAS SOBRE LAS ALTITUDES (Km2) 0 10 20 30 40	65	8000 N	660000	662000 664	000 666000	1.
	3150	0.0 0.8	946000	\	<u> </u>			946000
	3050 2950	• • • • • • • • • • • • • • • • • • • •		7	A			
	2950 2850		9458000					9458000
	2750 2650	2500				/	22/10/20	
(m	2550	0.5	9456000					9456000
	2450 2350		ž		~			ä
5	2250	9.1	000	3				9454000
	2150 2050	3.0	9454000	1		11	NO THE STATE OF	9454
	1950 1850		00					00
	1750	0.5	9452000	Leven	da			9452000
	1650 1551	7.5			nisor		4.75 000	
	1477		9450000		os urvas		1:75,000	9450000
		0 5 10 15 % (Área Parcia l/ Área total)		C.	uenca 60	0 0.4 0	.8 1.6 2.4 3.2 Km	
	_	FRECUENCIA DE ALTITUDES — CURVA HIPSOMÉTRICA	65	88000	660000	662000 664	000 666000	1

 Tabla 6.61. Resultados de Parametros Geomorfológicos de la Microcuenca 61: Rio San Juan

N°		PARÁMETROS GEOMORFOLÓGICOS			:		RESUL	TADO
1		ÁREA (A)			:	33.60	Km ²	Micro cuenca
2		PERÍMETRO (P)			:	25.75	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)			:	11.20	Km	
4	-ORMA	ANCHO PROMEDIO (Ap)			:	3.00	Km	
5	ш.	FACTOR DE FORMA (F)			:	0.27		
6		ÍNDICE DE COMPACIDAD (Kc)			:	1.25	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)			:	-		
8		FRECUENCIA DE ALTITUDES (FA)			:	-		
9		ALTITUD MEDIA (Hm)			:	2938.83	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)			:	3500.50	msnm	
11	RELIE	PENDIENTE DE LA CUENCA			:	44.88%	Fuerte	(Criterio Alvord)
12	R	COEFICIENTE DE MASIVIDAD (Cm)			:	0.09		,
13		COEFICIENTE OROGRÁFICO (Co)			:	0.2570	: 25.70 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)			: 6	a=3.58 km	b=9.39 km	1
15		PENDIENTE DEL CAUCE PRINCIPAL (S)			:	15.03%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)			:	11.20	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)			:	49.34	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd))	:	3.00	Orden	
19	RÁ	RELACIÓN DE CONFLUENCIAS (Rc)			:	1.92	Muy Alto	
20	300	RELACIÓN DE LONGITUDES (RI)			:	0.92		
21	i i	DENSIDAD DE DRENAJE (D)			:	0.64	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)			:	0.57	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	AL (Es)	:	0.39	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)			:	0.30	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (I	Je)		:	3.23	Km²	
С	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES				MICRO	OCUENCA 61:	: RIO SAN JUAN
		ÁREAS SOBRE LAS ALTITUDES (Km2)		662000	3	664000	666000 668	000 670000 672000
		0 10 20 30 40			Ă			
	3828		000951	w -	*	Е		900999
	3700	3500	8		s			, and the second
	3500	0.5	24000					9454000
	3300	15.2	8				1	3
msnr	3100	0.5	9452000			NAT.		9482000
ALTITUD (msnm)	2900	0.5	2	179	1	r d		*
٩LTΠ	2700	9.7	9450000			~ X		000000
	2500		96	<				46
	2300	10.8	9448000					8000
	2100	8.5	946			Leyenda		3
	1911	2.1	9446000			Emisor Rios		1:80,000
		0 5 10 15 20	944			Curvas Cuenca 61	0_0.4	0.8 1.6 2.4 3.2 Km
-		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ————————————————————————————————————		662000	}	664000	666000 668	000 670000 672000

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1		ÁREA (A)		:	26.37	Km ²	Micro cuenca
2		PERÍMETRO (P)		1	22.71	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		1	10.30	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		1	2.56	Km	
5	_	FACTOR DE FORMA (F)		:	0.25		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.25	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9 .		ALTITUD MEDIA (Hm)		:	3030.29	msnm	
10 i	IEVE	ALTITUD MAS FRECUENTE (HF)		:	3500.50	msnm	
	RELII	PENDIENTE DE LA CUENCA		:	48.16%	Fuerte	(Criterio Alvord)
12	œ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.11		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.3482	: 34.82 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=3.20 km	b=8.24 km	<u> </u>
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	0.17	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	10.30	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	45.73	min	(Metodo de Kirpich
18	FIC/	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd)	:	3.00	Orden	
19	HIDROGRAFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	2.45	Muy Alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	1.21		
21		DENSIDAD DE DRENAJE (D)		:	0.74	km/km²	
	ED	FRECUENCIA DE RÍOS (Fr)		:	0.61	ríos/Km²	
23	2	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.34	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.34	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	2.98	Km²	
CL	JR۱	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 62:	QDA. NARANJO
		ÁREAS SOBRE LAS ALTITUDES (Km2)	64	2000	664000	666000	668000 670000
		0 10 20 30	8	Ă			8
3	837	7.5 0.9	94520 ×	*	E		0002976
3	700	0.5		S			
3	500	0.5	9450000				00000
	300	0.5					1 1
msm)	100	0.5	8448000	\leq	-		
2 2	900	0.5	ä		V	-	
ALTITUD (msnm)	700	15.3	8				
	500		9446000		10		1
	300					333	
2	101	2.5	9444000	Ley	renda Emisor		946
1	972	2.0 0.2	88		- Rios - Curvas	1:70,	000
		0 5 10 15 20 % (Área Parcia I/ Área total)	42000		Cuenca 62	0 0.5 1	2 3 4 Km
		% (Area Parcia // Area total) FRECUENCIA DE ALTITUDES ————————————————————————————————————	4	2000	664000	666000	668000 670000

Tabla 6.63. Resultados de Parametros Geomorfológicos de la Microcuenca 63: Rio Llaga

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1		ÁREA (A)		:	43.97	Km ²	Micro cuenca
2	Ī	PERÍMETRO (P)		:	28.38	Km	
3 \$	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	13.71	Km	
3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ָבָּ בְּי	ANCHO PROMEDIO (Ap)		:	3.21	Km	
5	_	FACTOR DE FORMA (F)		:	0.23		
6	İ	ÍNDICE DE COMPACIDAD (Kc)		:	1.21	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8	İ	FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	3225.48	msnm	
10		ALTITUD MAS FRECUENTE (HF)		:	3550.50	msnm	
11 [PENDIENTE DE LA CUENCA		:	36.44%	Fuerte	(Criterio Alvord)
12	×	COEFICIENTE DE MASIVIDAD (Cm)		:	0.07		
13	İ	COEFICIENTE OROGRÁFICO (Co)		:	0.2366	: 23.66 %	Muy alta
14	İ	RECTANGULO EQUIVALENTE (Re)		:	a=4.48 km	b=9.82 km	1
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	9.95%	(Método de	Taylor y Schwarz)
16	İ	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	13.71	Km	<u> </u>
17		TIEMPO DE CONCENTRACION (Tc)		:	67.26	min	(Metodo de Kirpich)
18 19 20 22 21 E	2	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd)	:	3.00	Orden	
19 0	Ϋ́	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.80	Muy Alto	
20	2	RELACIÓN DE LONGITUDES (RI)		:	1.05		
21	֓֞֝֝֟֝֝֟֝֝֟֝֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֟	DENSIDAD DE DRENAJE (D)		:	0.71	km/km²	
22		FRECUENCIA DE RÍOS (Fr)		:	0.70	ríos/Km²	
23	v t	EXTENSION MEDIA DE ESCURR. SUPERFICIAI	L (E	s) :	0.35	km	
24	İ	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.36	ríos/Km²	
25	İ	SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.53	Km²	
CU	JR\	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICI	ROCUENCA 6	3: RIO LLAGA
		ÁREAS SOBRE LAS ALTITUDES (Km2)	6600 8 L	00	662000	664000	666000 668000
37 36 35 34 (musum) 30 29 27 26 25 24 23	345 750 350 350 450 250 150 250 350 350 350 351 260	3500 3500 3500 3500 3500 3500 3500 3500	9438000 9448000 9442000 9444000 9446000 9448	F	nda Emisor Ros Durvas		000PH 000PH 000PH 000PH 000PH

PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
ÁREA (A)		:	32.06	Km ²	Micro cuenca
PERÍMETRO (P)		:	30.56	Km	
LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	16.04	Km	
ANCHO PROMEDIO (Ap)		:	2.00	Km	
FACTOR DE FORMA (F)		:	0.12		
ÍNDICE DE COMPACIDAD (Kc)		:	1.52	Clase III	Oblonga alargada
CURVA HIPSOMÉTRICA (CH)		:	-		
FRECUENCIA DE ALTITUDES (FA)		:	-		
ALTITUD MEDIA (Hm)		:	3172.00	msnm	
ALTITUD MAS FRECUENTE (HF)		:	3350.50	msnm	
PENDIENTE DE LA CUENCA		:	28.81%	Accidentado	(Criterio Alvord)
COEFICIENTE DE MASIVIDAD (Cm)		:	0.10		
COEFICIENTE OROGRÁFICO (Co)		:	0.3138	: 31.38 %	Muy alta
RECTANGULO EQUIVALENTE (Re)		: 6	a=2.48 km	b=12.91 km	
PENDIENTE DEL CAUCE PRINCIPAL (S)		:	6.28%	(Método de 7	Taylor y Schwarz)
LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	16.04	Km	
TIEMPO DE CONCENTRACION (Tc)		:	92.76	min	(Metodo de Kirpio
CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd)	:	3.00	Orden	
RELACIÓN DE CONFLUENCIAS (Rc)		:	3.20	Alto	
RELACIÓN DE LONGITUDES (RI)		:	1.38		
DENSIDAD DE DRENAJE (D)		:	0.59	km/km²	
FRECUENCIA DE RÍOS (Fr)		:	0.41	ríos/Km²	
EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.42	km	
COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.22	ríos/Km²	
SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	le)	:	3.18	Km²	
VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 64:	RIO TALANEO
ÁREAS SOBRE LAS ALTITUDES (Km2)	658	000	660000	662000 66	4000 666000
0.0000 10.0000 20.0000 30.0000 40.0000	46000	Ă			
4.5 0.2	3 w-	*	₹E		
	44000				
2000	8	1	The state of		
0.5	12000				
	3		(
	00001	1		K -	
- 1500	9	1		1 PM	
25	8000		10		1
1000	ä				7493
	0000	Le	yenda Emisor		
4.0 0.0	8		Rios Curvas		1:80,000
	1		Cuenca 64	0 0.5 1	2 3 4
	PERÍMETRO (P) LONGITUD DEL MÁXIMO RECORRIDO (Lmax) ANCHO PROMEDIO (Ap) FACTOR DE FORMA (F) ÍNDICE DE COMPACIDAD (Kc) CURVA HIPSOMÉTRICA (CH) FRECUENCIA DE ALTITUDES (FA) ALTITUD MEDIA (Hm) ALTITUD MAS FRECUENTE (HF) PENDIENTE DE LA CUENCA COEFICIENTE DE MASIVIDAD (Cm) COEFICIENTE OROGRÁFICO (Co) RECTANGULO EQUIVALENTE (Re) PENDIENTE DEL CAUCE PRINCIPAL (LCp) TIEMPO DE CONCENTRACION (TC) CATEGORIZACIÓN DE LA RED DE DRENAJE (FO) RELACIÓN DE LONGITUDES (RI) DENSIDAD DE DRENAJE (D) FRECUENCIA DE RÍOS (Fr) EXTENSION MEDIA DE ESCURR. SUPERFICIA COEFICIENTE DE TORRENCIALIDAD (Ct) SUPERFICIE UMBRAL DE ESCURRIMIENTO (UC) EVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES AREAS SOBRE LAS ALTITUDES (Km2) 0.0000 10.0000 20.0000 30.0000 40.0000 4.5 0.2 0.5 3.7 3500 0.5 13.2 0.5 13.2 0.6 5.5 13.2 0.7 1500 0.8 5.5 1500 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	PERÍMETRO (P) LONGITUD DEL MÁXIMO RECORRIDO (Lmax) ANCHO PROMEDIO (Ap) FACTOR DE FORMA (F) [NDICE DE COMPACIDAD (Kc) CURVA HIPSOMÉTRICA (CH) FRECUENCIA DE ALTITUDES (FA) ALTITUD MEDIA (Hm) ALTITUD MAS FRECUENTE (HF) PENDIENTE DE LA CUENCA COEFICIENTE OROGRÁFICO (Co) RECTANGULO EQUIVALENTE (Re) PENDIENTE DEL CAUCE PRINCIPAL (S) LONGITUD DEL CAUCE PRINCIPAL (Lcp) TIEMPO DE CONCENTRACION (Tc) CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd) RELACIÓN DE CONFLUENCIAS (Rc) RELACIÓN DE DRENAJE (D) FRECUENCIA DE RÍOS (Fr) EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) COEFICIENTE DE TORRENCIALIDAD (Ct) SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) EVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES AREAS SOBRE LAS ALTITUDES (Km2) 0.0000 10.0000 20.0000 30.0000 40.0000 4.5 0.2 3.7 3500 5.5 5.5 11.9 4.0 0.0	PERÍMETRO (P) LONGITUD DEL MÁXIMO RECORRIDO (Lmax) ANCHO PROMEDIO (Ap) FACTOR DE FORMA (F) ÍNDICE DE COMPACIDAD (Kc) CURVA HIPSOMÉTRICA (CH) FRECUENCIA DE ALTITUDES (FA) ALTITUD MEDIA (Hm) ALTITUD MAS FRECUENTE (HF) PENDIENTE DE LA CUENCA COEFICIENTE DE MASIVIDAD (Cm) COEFICIENTE OROGRÁFICO (Co) RECTANGULO EQUIVALENTE (Re) PENDIENTE DEL CAUCE PRINCIPAL (S) LONGITUD DEL CAUCE PRINCIPAL (Lcp) TIEMPO DE CONCENTRACION (Tc) CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd) RELACIÓN DE LONGITUDES (RI) DENSIDAD DE DRENAJE (D) FRECUENCIA DE RÍOS (Fr) EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) COEFICIENTE DE TORRENCIALIDAD (Ct) SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) AREAS SOBRE LAS ALTITUDES (Km2) 0.05 0.5 0.5 0.5 0.5 0.5 0.5 0	PERÍMETRO (P) : 30.56 LONGITUD DEL MÁXIMO RECORRIDO (Lmax) : 16.04 ANCHO PROMEDIO (Ap) : 2.00 FACTOR DE FORMA (F) : 0.12 ÍNDICE DE COMPACIDAD (Kc) : 1.52 CURVA HIPSOMÉTRICA (CH) : - FRECUENCIA DE ALTITUDES (FA) : - ALTITUD MEDIA (Hm) : 3172.00 ALTITUD MAS FRECUENTE (HF) : 3350.50 PENDIENTE DE LA CUENCA : 28.81% COEFICIENTE DE MASIVIDAD (Cm) : 0.110 COEFICIENTE OROGRÁFICO (Co) : 0.3138 RECTANGULO EQUIVALENTE (Re) : a=2.48 km PENDIENTE DEL CAUCE PRINCIPAL (S) : 6.28% LONGITUD DEL CAUCE PRINCIPAL (Lcp) : 16.04 TIEMPO DE CONCENTRACION (TC) : 92.76 CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd) : 3.00 RELACIÓN DE LONGITUDES (RI) : 1.38 DENSIDAD DE DRENAJE (D) : 0.59 FRECUENCIA DE RÍOS (Fr) : 0.41 EXTENSION MEDIA DE ESCURR. SUPERFICIAL (ES) : 0.42 COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.22 SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 3.18 MICRO AREAS SOBRE LAS ALTITUDES (Mm2) 0.0000 10.0000 20.0000 30.0000 40.0000 4.5 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	PERÍMETRO (P) : 30.56 Km LONGITUD DEL MÁXIMO RECORRIDO (Lmax) : 16.04 Km ANCHO PROMEDIO (Ap) : 2.00 Km FACTOR DE FORMA (F) : 0.12 INDICE DE COMPACIDAD (Kc) : 1.52 Clase III CURVA HIPSOMÉTRICA (CH) : - FRECUENCIA DE ALTITUDES (FA) : - ALTITUD MEDIA (Hm) : 3172.00 msnm ALTITUD MEDIA (Hm) : 3350.50 msnm PENDIENTE DE LA CUENCA : 28.81% Accidentado COEFICIENTE DE MASIVIDAD (Cm) : 0.10 COEFICIENTE OROGRÁFICO (Co) : 0.3138 : 31.38 % RECTANGULO EQUIVALENTE (Re) : a=2.48 km b=12.91 km PENDIENTE DEL CAUCE PRINCIPAL (Lop) : 16.04 Km TIEMPO DE CONCENTRACION (Tc) : 92.76 min CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd) : 3.00 Orden RELACIÓN DE CONFLUENCIAS (Rc) : 3.20 Alto RELACIÓN DE LONGITUDES (RI) : 1.38 DENSIDAD DE DRENAJE (D) : 0.59 km/km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (ES) : 0.42 km COEFICIENTE DE TORRENCIALIDAD (C1) : 0.22 ríos/Km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (ES) : 0.42 km COEFICIENTE DE TORRENCIALIDAD (C1) : 0.22 ríos/Km² EXTENSION MEDIA DE ESCURRIMIENTO (Ue) : 3.18 Km² O.000 10.0000 20.0000 30.0000 40.0000 4.5 0.2 3.7 3.50 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Tabla 6.65. Resultados de Parametros Geomorfológicos de la Microcuenca 65: Rio Reyna Inca

N°		PARÁMETROS GEOMORFOLÓGICOS	:		RESULT	ADO
1		ÁREA (A)	:	33.12	Km ²	Micro cuenca
2		PERÍMETRO (P)	:	32.69	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)	:	15.36	Km	
4	FORMA	ANCHO PROMEDIO (Ap)	:	2.16	Km	
5		FACTOR DE FORMA (F)	:	0.14		
6		ÍNDICE DE COMPACIDAD (Kc)	:	1.60	Clase III	Oblonga alargada
7		CURVA HIPSOMÉTRICA (CH)	:	-		
8		FRECUENCIA DE ALTITUDES (FA)	:	-		
9		ALTITUD MEDIA (Hm)	:	3143.80	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)	:	2850.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA	:	28.15%	Accidentado	(Criterio Alvord)
12	W.	COEFICIENTE DE MASIVIDAD (Cm)		0.09		
13		COEFICIENTE OROGRÁFICO (Co)		0.2984	: 29.84 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		a=2.35 km	b=14.12 km	-
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		4.74%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		15.36	Km	
17		TIEMPO DE CONCENTRACION (Tc)		95.21	min	(Metodo de Kirpich)
18	-IC∕	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd) :	2.00	Orden	
19	RÁF	RELACIÓN DE CONFLUENCIAS (Rc)	:	1.11	Muy Alto	
20	HIDROGRÁFICA	RELACIÓN DE LONGITUDES (RI)	:	1.22		
21	HDF	DENSIDAD DE DRENAJE (D)		0.64	km/km²	
22	ED F	FRECUENCIA DE RÍOS (Fr)	:	0.57	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	0.39	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)	:	0.30	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	Je) :	5.76	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES		MICRO	CUENCA 65: R	IO REYNA INCA
		ÁREAS SOBRE LAS ALTITUDES (Km2)		656000 658000	660000 6620	000 664000 666000
		0 10 20 30 40	80	Ň		800
(3601		W-	*		146
;	3549	5 8.2 3500	9442000	Š		9442000
;	3450	14.3000	26			3
Ē,	3350	13.9	9440000			9440000
msur	3250 3150 3050	5 6.8			3	
9	3150	10.7 - 2000	8438000			000000
Ę	3050	11.0	8			
1	2950	.5	9436000			
2	2850	12.7	9434000		(2)	8
2	2750	5 8.8 - 500	9434	Leyenda • Emisor		2534000
2	2675	1.9	432000	Rios		1:90,000
		0 5 10 15	8	Cuenca 65	0 0.5 1	2 3 4 Km
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA		656000 658000	660000 6620	000 664000 666000

Tabla 6.66. Resultados de Parametros Geomorfológicos de la Microcuenca 66: Rio Palo Blance

N°		PARÁMETROS GEOMORFOLÓGICOS			:		RESUL	.TADO
1		ÁREA (A)			:	70.10	Km ²	Micro cuenca
2		PERÍMETRO (P)			:	39.72	Km	
3	M	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)			:	18.89	Km	
3 4	5	ANCHO PROMEDIO (Ap)			:	3.71	Km	
5	-	FACTOR DE FORMA (F)			:	0.20		
6	İ	ÍNDICE DE COMPACIDAD (Kc)			:	1.34	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)			:	-		
8	İ	FRECUENCIA DE ALTITUDES (FA)			:	-		
9		ALTITUD MEDIA (Hm)			:	3023.41	msnm	
10		ALTITUD MAS FRECUENTE (HF)			:	2950.50	msnm	
11 [PENDIENTE DE LA CUENCA			:	38.78%	Fuerte	(Criterio Alvord)
12	۲	COEFICIENTE DE MASIVIDAD (Cm)			:	0.04		
13	İ	COEFICIENTE OROGRÁFICO (Co)			:	0.1304	: 13.04 %	Muy alta
14	İ	RECTANGULO EQUIVALENTE (Re)			:	a=4.53 km	b=15.48 kr	n
15		PENDIENTE DEL CAUCE PRINCIPAL (S)			:	2.65%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)			:	18.89	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)			:	117.98	min	(Metodo de Kirpich)
18	2	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)		:	3.00	Orden	
19 g	אָל ב	RELACIÓN DE CONFLUENCIAS (Rc)			:	2.43	Muy alto	
18 19 20 20 21 21	2	RELACIÓN DE LONGITUDES (RI)			:	1.13		
21	1	DENSIDAD DE DRENAJE (D)			:	0.62	km/km²	
22 [ב	FRECUENCIA DE RÍOS (Fr)			:	0.53	ríos/Km²	
23	צ	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (I	Ēs)	:	0.40	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)			:	0.27	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)		:	4.12	Km²	
CU	IR۱	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES				MICROC	UENCA 66: F	RIO PALO BLANCO
		ÁREAS SOBRE LAS ALTITUDES (Km2)	0 [575000	677500	680000 682500
		0 20 40 60 80	9425000		×			9425000
36				w-	*	E	_	
35			9422500		s			9422500
34	50	.5 3.3	26					
€ 33		2500	200			1		
(musm) 32 (musm) 31		.5 8.7	9420000	7	2			442000
F					6		-4	
H 30:		1500	200	1	E			98
29		1000	9417500		-			00071146
28		.5				Leyenda		
27		300	9415000			Emisor Rios		9415000
26	73	2.5	26			Curvas	35	1:75,000
		0 5 10 15 20 25 % (Área Parcia I/ Área total)					0 0.4	0.8 1.6 2.4 3.2 Km
		% (Area Parcia i/ Area total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA				675000	677500	680000 682500

Tabla 6.67. Resultados de Parametros Geomorfológicos de la Microcuenca 67: Rio Suyo

N°	PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1	ÁREA (A)		:	185.45	Km ²	Sub cuenca
2	PERÍMETRO (P)		:	66.36	Km	
3 ₹	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	31.44	Km	
3 AMA P	ANCHO PROMEDIO (Ap)		:	5.90	Km	
5	FACTOR DE FORMA (F)		:	0.19		
6	ÍNDICE DE COMPACIDAD (Kc)		:	1.37	Clase II	Oval oblonga
7	CURVA HIPSOMÉTRICA (CH)		:	-		
8	FRECUENCIA DE ALTITUDES (FA)		:	-		
9	ALTITUD MEDIA (Hm)		:	1501.18	msnm	
10 🖁	ALTITUD MAS FRECUENTE (HF)		:	900.50	msnm	
11 교	PENDIENTE DE LA CUENCA		:	34.30%	Accidentado	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)		:	0.01		
13	COEFICIENTE OROGRÁFICO (Co)		:	0.0122	: 1.22 %	Moderada
14	RECTANGULO EQUIVALENTE (Re)		: 8	a=7.02 km	b=26.40 km	
15	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	2.47%	(Método de T	aylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	31.44	Km	
17 🗸	TIEMPO DE CONCENTRACION (Tc)		:	159.36	min	(Metodo de Kirpich)
18 19 20 HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	₹d)	:	4.00	Orden	
19 K	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.72	Muy Alto	
20 0	RELACIÓN DE LONGITUDES (RI)		:	0.91		
21 🚽	DENSIDAD DE DRENAJE (D)		:	0.70	km/km²	
22 🔐	FRECUENCIA DE RÍOS (Fr)		:	0.63	ríos/Km²	
23	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.36	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.32	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	le)	:	3.69	Km²	
CUR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MIC	ROCUENCA 67	7: RIO SUYO
	0.5 0.3 2500 0.5 1.0 200 0.5 2.9 200 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	000158 0000158 000056 0000046 0002046 0000046	806001	eyenda Emisor Guevas Curvas Curvas Curvas		824-000 800148 8001400148 800148 800148 800148 800148 800148 800148 800148 800148 800148 800148 800148 800148 800148 800148 800148 800148 800148 8001

N°		6.68. Resultados de Parametros Geomorfo PARÁMETROS GEOMORFOLÓGICOS		:		RESUL		
1		ÁREA (A)		:	144.46	Km ²	Sub cuenca	
2		PERÍMETRO (P)		:	55.93	Km		
3	ΑM	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	23.48	Km		
4	-ORMA	ANCHO PROMEDIO (Ap)		:	6.15	Km		
5	ш	FACTOR DE FORMA (F)		:	0.26			
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.31	Clase II	Oval oblonga	
7		CURVA HIPSOMÉTRICA (CH)		:	-			
8		FRECUENCIA DE ALTITUDES (FA)		:	-			
9		ALTITUD MEDIA (Hm)		:	3207.47	msnm		
10	LIEVE	ALTITUD MAS FRECUENTE (HF)		:	3450.50	msnm		
11	RELIE	PENDIENTE DE LA CUENCA		:	40.67%	Fuerte	(Criterio Alvord))
12	R	COEFICIENTE DE MASIVIDAD (Cm)		:	0.02			
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0712	: 7.12 %	Alta	
14		RECTANGULO EQUIVALENTE (Re)		:	a=6.74 km	b=21.43 kr	n	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	4.52%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	23.48	Km		
17	_	TIEMPO DE CONCENTRACION (Tc)		:	124.59	min	(Metodo de Kirp	oich)
18	-IC/	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	 ?d)	:	3.00	Orden		
19	RÁ	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.64	Muy Alto		
20	HIDROGRÁFICA	RELACIÓN DE LONGITUDES (RI)		:	0.86			
21	i i	DENSIDAD DE DRENAJE (D)		:	0.69	km/km²		
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.55	ríos/Km²		
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es) :	0.36	km		
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.29	ríos/Km²		
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	5.25	Km²		
(UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICROC	UENCA 68: R	IO CHULLUCANAS	
		ÁREAS SOBRE LAS ALTITUDES (Km2)	_ (64000	668000	672000	676000 680000	_
		0 50 100 150 200	8		i i			00
	3821 3750	0.5	94480	w 🛶	-			9448000
	3650 3550	5.3					3	100000
	3450	0.5	9444000	Love	enda	(}	1 -	9444000
_	3350 3250			•	Emisor Rios	WI		80000
usu)	3150 3050	7.5	9440000		Curvas		286	40000
_	2950	0.5 4.2	8	Н	Cuenca 68	ナノと		96
Η.	2850 2750		3436000		2	W		000
	2650 2550		9436			$j \not\models$	7/	9436
	2450	0.5 2.4	9			7	7	
	2350 2250	0.5 1.3	9432000		(-		9432000
	2175	0					1:140,000	
		0 5 10 15 20 % (Área Parcia I/ Área total)	9428000				3 4.3 6K	3 M28000
		FRECUENCIA DE ALTITUDES ————————————————————————————————————		64000	668000	672000	676000 680000	_ •

Tabla 6.69. Resultados de Parametros Geomorfológicos de la Microcuenca 69: Qda. Capsol

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1		ÁREA (A)		:	21.65	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	24.75	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	10.15	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	2.13	Km	
5	_	FACTOR DE FORMA (F)		:	0.21		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.50	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2689.26	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	2950.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	35.56%	Fuerte	(Criterio Alvord)
12	R	COEFICIENTE DE MASIVIDAD (Cm)		:	0.12		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.3341	: 33.41 %	Alta
14		RECTANGULO EQUIVALENTE (Re)		: :	a=2.09 km	b=10.38 kr	m
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	13.93%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	10.15	Km	
17	1	TIEMPO DE CONCENTRACION (Tc)		:	49.10	min	(Metodo de Kirpich)
18	FIC/	CATEGORIZACIÓN DE LA RED DE DRENAJE (F		:	3.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	2.75	Muy Alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	1.54		
21	HIDI	DENSIDAD DE DRENAJE (D)		:	0.74	km/km²	
22	ED I	FRECUENCIA DE RÍOS (Fr)		:	0.51	ríos/Km²	
23	Я	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.34	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.28	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	2.79	Km²	
С	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 69	: QDA. CAPSOL
		ÁREAS SOBRE LAS ALTITUDES (Km2)	r	666	000 66	8000 6700	00 672000
		0.0000 5.0000 10.0000 15.0000 20.0000 25.0000		Ä	_		
	3317 3250	.5 0.2	9420000	*	B		20000
	3150		2	š			a
	3050 2950			(3)	100		
_ ^	2850		9418000	13			941800
=	2750 2650	2000		1			
\cap $^{\circ}$	2550 2550	.5	9416000		1.65,600	200	0009136
F, 2	2450 2350		2			37/	3
	2350 2250		٠	6			Levenda §
	2150		9414000	1			• Emisor
	2050 1950	300					Rios
1	1851	.5 0.7	9412000				1:65,000 1:6
		0.0000 5.0000 10.0000 15.0000 % (Área Parcia I/ Área total)	96			0 0.5	1:65,000 1 2 3 4 Km
		FRECUENCIA DE ALTITUDES ————————————————————————————————————	, ,	666	000 66	8000 6700	00 672000

Tabla 6.70. Resultados de Parametros Geomorfológicos de la Microcuenca 70: Rio Uchupata

N°		a 6.70. Resultados de Parametros Geomor PARÁMETROS GEOMORFOLÓGICOS		:		RESUL		
1		ÁREA (A)		:	63.26	Km ²	Micro cuenca	a
2		PERÍMETRO (P)		:	36.55	Km		
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	19.54	Km		
4	FORMA	ANCHO PROMEDIO (Ap)		:	3.24	Km		
5	ш.	FACTOR DE FORMA (F)		:	0.17			
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.30	Clase II	Oval oblonga	ì
7		CURVA HIPSOMÉTRICA (CH)		:	-			
8		FRECUENCIA DE ALTITUDES (FA)		:	-			
9		ALTITUD MEDIA (Hm)		:	2834.31	msnm		
10	IEVE	ALTITUD MAS FRECUENTE (HF)		:	3300.50	msnm		
11	RELIE	PENDIENTE DE LA CUENCA		:	40.98%	Fuerte	(Criterio Alvo	ord)
12	R	COEFICIENTE DE MASIVIDAD (Cm)		:	0.04		(-,
13		COEFICIENTE OROGRÁFICO (Co)		:	0.1270	: 12.70 %	Muy alta	
14		RECTANGULO EQUIVALENTE (Re)		:		b=13.84 km		
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	7.55%		Taylor y Schwa	arz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	19.54	Km	.,.,.	,
17		TIEMPO DE CONCENTRACION (Tc)		:	99.31	min	(Metodo de l	(irpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	4.00	Orden	`	. ,
19	RÁF	RELACIÓN DE CONFLUENCIAS (Rc)		:	2.40	Muy Alto		
20	SOS	RELACIÓN DE LONGITUDES (RI)		:	1.24			
21	HDF	DENSIDAD DE DRENAJE (D)		:	0.61	km/km²		
22	ED F	FRECUENCIA DE RÍOS (Fr)		:	0.55	ríos/Km²		
23	RE	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es) :	0.41	km		
24		COEFICIENTE DE TORRENCIALIDAD (Ct)	-	:	0.28	ríos/Km²		
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	le)	:	2.82	Km²		
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 70:	RIO UCHUPATA	4
		ÁREAS SOBRE LAS ALTITUDES (Km2)		660000	663000	666000	669000	672000
		0 20 40 60 80 4000			L			
	345	9.5 2.2	9414000	* >	r .			9414000
	330	0.5	8					8
	310		0		1375			8
<u></u>	290	0.5	9411000		12/0		1	9411000
ALTITUD (msnm)	270	2500)	K	A	
9	250	2000	9408000		-) <	ST OF THE		9408000
받		1500	23		(>	$\supset $		
1	230	J.5 8.1	1405000		\ 1			0000
	210		940					940
	190	0.5 3.9			Emisor		18	
	178	1.5 0.2	9402000		Rios		1:100.000	9402000
		0 5 10 15 20 25			Cuenca 70	0 0.5	1 2 3 4 Km	
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	_	660000	663000		669000	672000

Tabla 6.71. Resultados de Parametros Geomorfológicos de la Microcuenca 71: Qda. Carhuancho

۱°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	21.03	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	18.90	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	7.72	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	2.72	Km	
5	_	FACTOR DE FORMA (F)		:	0.35		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.16	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2548.36	msnm	
0	IEVE	ALTITUD MAS FRECUENTE (HF)		:	2750.50	msnm	
	RELIE	PENDIENTE DE LA CUENCA		:	56.01%	Muy Fuerte	(Criterio Alvord)
2	R	COEFICIENTE DE MASIVIDAD (Cm)		:	0.12		,
3		COEFICIENTE OROGRÁFICO (Co)		:	0.3088	: 30.88 %	Muy alta
4		RECTANGULO EQUIVALENTE (Re)		:	a=3.48 km	b=6.04 km	· · ·
5		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	13.81%	(Método de T	Taylor y Schwarz)
6		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	7.72	Km	, ,
7		TIEMPO DE CONCENTRACION (Tc)		:	35.31	min	(Metodo de Kirpich
8	-ICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	 ₹d)	:	3.00	Orden	(
9	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	2.75	Muy Alto	
0	:0G	RELACIÓN DE LONGITUDES (RI)		:	1.62		
1	IIDF	DENSIDAD DE DRENAJE (D)		:	0.63	km/km²	
	ED F	FRECUENCIA DE RÍOS (Fr)		:	0.52	ríos/Km²	
23	RE	EXTENSION MEDIA DE ESCURR. SUPERFICIAI	L (E		0.40	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)	<u> </u>	:	0.29	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	2.76	Km²	
-	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES	-,	-			A. CARHUANCHO
		ÁREAS SOBRE LAS ALTITUDES (Km2)		664000	66	e000 e	368000 670000
		0 5 10 15 20 25		Ã.	υ.		
	332			w>	E		
	315		940400	š			Leyenda 8
	305 295	7.4					Rios Curvas
_	285	9.6			1		Cuenca 71
77	275		9402000				9402000
9	255	0.5	- 52				
=	245	1000					
	225	1000	9400000				0000
	215	0.5	26				3
	195	0.5 6.8 500			215		
	185 178	50 103	000				1:50,000 8
		0 5 10 15	9398000			0 0.279.5	860
		% (Área Parcia l/ Área total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	L	664000		6000 6	368000 670000

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO	
1		ÁREA (A)		:	35.09	Km ²	Micro cuenca	
2		PERÍMETRO (P)		:	27.08	Km		
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	11.00	Km		
4	FORMA	ANCHO PROMEDIO (Ap)		:	3.19	Km		
5	_	FACTOR DE FORMA (F)		:	0.29			
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.29	Clase II	Oval oblonga	
7		CURVA HIPSOMÉTRICA (CH)		:	-			
8		FRECUENCIA DE ALTITUDES (FA)		:	-			
9	l	ALTITUD MEDIA (Hm)		:	1875.62	msnm		
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	1900.50	msnm		
11	RELII	PENDIENTE DE LA CUENCA		:	56.37%	Muy Fuerte	(Criterio Alvord)	
12	182	COEFICIENTE DE MASIVIDAD (Cm)		:	0.05			
13		COEFICIENTE OROGRÁFICO (Co)		:	0.1003	: 10.03 %	Muy alta	
14		RECTANGULO EQUIVALENTE (Re)		: :	a=3.44 km	b=10.20 km		
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	10.98%	(Método de T	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	11.00	Km		
17	,	TIEMPO DE CONCENTRACION (Tc)		:	46.80	min	(Metodo de Kirp	oich)
18	ÁFIC/	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd	d)	:	3.00	Orden		
19	ìRÁI	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.68	Muy Alto		
20	HIDROGR	RELACIÓN DE LONGITUDES (RI)		:	1.72			
21		DENSIDAD DE DRENAJE (D)		:	0.59	km/km²		
22	ED !	FRECUENCIA DE RÍOS (Fr)		:	0.68	ríos/Km²		
23	교	EXTENSION MEDIA DE ESCURR. SUPERFICIAL ((Es)	:	0.42	km		
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.37	ríos/Km²		
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue))	:	3.27	Km²		
C	CUR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 72:	RIO PASHAL	
		ÁREAS SOBRE LAS ALTITUDES (Km2) 0 10 20 30 40		66	6000 6680	00 670000	672000 674000	•
	309	0.5 2.0 3500	8 w_	*	E			000
	290	0.5 1.6	8360	V	Leyenda			9360000
	270	0.5	00		Emisor Rios		1	000
_	250	0.5 4.1 2500	9358000		Curvas Guenca 24	/ \ ~		9358000
š	230		00			X		000
<u>ا</u>	210	0.5	9326000		1	25/ 1		9356000
Ę	190	0.5	8	٢				90
₹			9324000					9354000
	150		8					2
	110	500	8352000					935206
		50 01						
		0 5 10 15 20	9350000			0 0.4 0	1:75,000 1.8 1.6 2.4 3.2 Km	9350000
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES — CURVA HIPSOMÉTRICA		66	6000 6680	00 670000	672000 674000	

Tabla 6.73. Resultados de Parametros Geomorfológicos de la Microcuenca 73: Qda. Palo Blanco

N°	PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1	ÁREA (A)		:	29.85	Km ²	Micro cuenca
2	PERÍMETRO (P)		:	24.18	Km	
3 ₹	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	12.93	Km	
4 E	ANCHO PROMEDIO (Ap)		:	2.31	Km	
5	FACTOR DE FORMA (F)		:	0.18		
6	ÍNDICE DE COMPACIDAD (Kc)		:	1.25	Clase I	Oval redonda
7	CURVA HIPSOMÉTRICA (CH)		:	-		
8	FRECUENCIA DE ALTITUDES (FA)		:	-		
	ALTITUD MEDIA (Hm)		:	1501.38	msnm	
10 🖁	ALTITUD MAS FRECUENTE (HF)		:	950.50	msnm	
			:	49.22%	Fuerte	(Criterio Alvord)
	COEFICIENTE DE MASIVIDAD (Cm)		:	0.05		
13	COEFICIENTE OROGRÁFICO (Co)		:	0.0755	: 7.55 %	Alta
14	RECTANGULO EQUIVALENTE (Re)		: a	=3.40 km	b=8.79 km	
15	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	7.84%	(Método de	Taylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	12.93	Km	<u> </u>
17 _	TIEMPO DE CONCENTRACION (Tc)		:	65.12	min	(Metodo de Kirpich
18 참	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	2.00	Orden	
19 8	RELACIÓN DE CONFLUENCIAS (Rc)	<u> </u>	:	1.13	Muy Alto	
20 0	RELACIÓN DE LONGITUDES (RI)		:	1.20		
21 🖺	DENSIDAD DE DRENAJE (D)		:	0.60	km/km²	
	FRECUENCIA DE RÍOS (Fr)		:	0.57	ríos/Km²	
\neg		L (Es)	:	0.42	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.30	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	5.46	Km²	
CUF	RVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICROC	UENCA 73: QE	DA. PALO BLANCO
	ÁREAS SOBRE LAS ALTITUDES (Km2)	8	65400	65600	0 658000	660000 662000
	0 10 20 30 40	93560	Ă			
	6.0 0.1	* - 7	*	<u></u>		
	50.5	9354000	š			
	3.5	P		A STORY		
_ 155		1352000		>		
145						
PERÍMETRO (P) : 24.18 Km LONGITUD DEL MÁXIMO RECORRIDO (Lmax) : 12.93 Km ANCHO PROMEDIO (Ap) : 2.31 Km FACTOR DE FORMA (F) : 0.18 [INDICE DE COMPACIDAD (KC) : 1.25 Clase I Oval r CURVA HIPSOMÉTRICA (CH) : - FRECUENCIA DE ALTITUDES (FA) : - ALTITUD MEDIA (Hm) : 1501.38 msnm ALTITUD MAS FRECUENTE (HF) : 950.50 msnm PENDIENTE DE LA CUENCA : 49.22% Fuerte (Criter COEFICIENTE DE MASIVIDAD (Cm) : 0.05 COEFICIENTE DE MASIVIDAD (Cm) : 0.05 COEFICIENTE DEL CAUCE PRINCIPAL (S) : 7.84% (Método de Taylor y LONGITUD DEL CAUCE PRINCIPAL (CP) : 12.93 Km TIEMPO DE CONCENTRACION (Tc) : 65.12 min (Metodo de Taylor y LONGITUD DEL CAUCE PRINCIPAL (LCP) : 12.93 Km TIEMPO DE CONCENTRACION (Tc) : 65.12 min (Metodo de Taylor y LONGITUD DEL CAUCE PRINCIPAL (LCP) : 1.13 Muy Alto RELACIÓN DE LONGITUDES (RI) : 1.20 DENSIDAD DE DRENAJE (D) : 0.60 km/km² EXTENSION MEDIA DE RECOURT. SUPERFICIAL (ES) : 0.42 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.30 ríos/Km² SUPERFICIE UMBRAL DE ESCURR. SUPERFICIAL (ES) : 0.42 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.30 ríos/Km² SUPERFICIE UMBRAL DE ESCURR. SUPERFICIAL (ES) : 0.42 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.30 ríos/Km² SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 5.46 Km² COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.30 ríos/Km² SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 5.46 Km² COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.30 ríos/Km² SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 5.46 Km² COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.30 ríos/Km² 1100 : 10.00						
F 115		8				
100		3000				
	10.0	83	١,	evenda		
	9.4	00		100000000000000000000000000000000000000		
	55.0 1.5	93460				1:75,000
	0 5 10 15		L	Cuenca 73	0 0.4	0.8 1.6 2.4 3.2 Km
		9344000	65404	0 65600	0 658000	660000 662000

Tabla 6.74. Resultados de Parametros Geomorfológicos de la Microcuenca 74: Qda. Oberito

N°		la 6.74. Resultados de Parametros Geomo PARÁMETROS GEOMORFOLÓGICOS			:	RESULT	
1		ÁREA (A)			25.07	Km ²	Micro cuenca
2		PERÍMETRO (P)			22.54	Km	
3	ΑN	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)			12.01	Km	
4	FORMA	ANCHO PROMEDIO (Ap)			2.09	Km	
5	ш	FACTOR DE FORMA (F)			0.17		
6		ÍNDICE DE COMPACIDAD (Kc)			1.27	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)			-		
8		FRECUENCIA DE ALTITUDES (FA)			-		
9		ALTITUD MEDIA (Hm)			1708.01	msnm	
10	IEVE	ALTITUD MAS FRECUENTE (HF)			1900.50	msnm	
11	RELIE	PENDIENTE DE LA CUENCA			53.54%		(Criterio Alvord)
12	8	COEFICIENTE DE MASIVIDAD (Cm)			0.07	,	()
13		COEFICIENTE OROGRÁFICO (Co)			0.1164	: 11.64 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)			a=3.00 km		
15		PENDIENTE DEL CAUCE PRINCIPAL (S)			15.46%		Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)			12.01	Km	., . , ,
17		TIEMPO DE CONCENTRACION (Tc)			51.19	min	(Metodo de Kirpich)
18	-ICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)		3.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)			3.20	Alto	
20	SOS	RELACIÓN DE LONGITUDES (RI)			1.77		
21	HDF	DENSIDAD DE DRENAJE (D)			0.69	km/km²	
22	ED F	FRECUENCIA DE RÍOS (Fr)			0.52	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s)	0.36	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)			0.28	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)		2.93	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 74:	QDA. OBERITO
		ÁREAS SOBRE LAS ALTITUDES (Km2)		52000	654000	656000	658000
		0 10 20 30	936200		ĭ		8395000
	2840	.0 0.4		w-	*		
	2700 2500	2500	000000		!		
	2300		9360				900
(E)	2100	.5 14.6 2000					
ے	1900		9358000		1	1	00000000
an.	1700		1000				- /
ALTI.	1500 1300						
	1100		9356000				Leyenda - S
	900	\					Emisor Rios
	702		9354000		\(\text{\frac{1}{2}}\)	15	Curvas Cuenca 74
	599	0.0	935		C	1.	60,000
		0 5 10 15 20 % (Área Parcia I/ Área total)				0 0.3750	SECTION AND ADDRESS OF THE PROPERTY OF THE PRO
		FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	-	552000	654000	656000	658000

Tabla 6.75. Resultados de Parametros Geomorfológicos de la Microcuenca 75: Rio Palmo

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	49.93	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	30.26	Km	
3	ΜĀ	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	15.10	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	3.31	Km	
5	_	FACTOR DE FORMA (F)		:	0.22		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.21	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1619.18	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	1700.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	57.91%	Muy Fuerte	(Criterio Alvord)
12	2	COEFICIENTE DE MASIVIDAD (Cm)		:	0.03		,
13		COEFICIENTE OROGRÁFICO (Co)		:	0.05	: 5.25 %	Alta
14		RECTANGULO EQUIVALENTE (Re)		: :	a=4.77 km	b=10.47 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	8.94%	(Método de T	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	15.10	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	66.34	min	(Metodo de Kirpich)
18	-1C/	CATEGORIZACIÓN DE LA RED DE DRENAJE ((Rd)	:	3.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	2.10	Muy alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	1.64		
21	₽	DENSIDAD DE DRENAJE (D)		:	0.65	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.62	ríos/Km²	
23	~	EXTENSION MEDIA DE ESCURR. SUPERFICIA	٦L (E	s) :	0.38	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.32	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (I	Je)	:	3.68	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICE	ROCUENCA 75	: RIO PALMO
		ÁREAS SOBRE LAS ALTITUDES (Km2)	г		656000 65	8000 660000	662000 664000
		0 20 40 60		Ž.			
	2854 2700		936000	1			9390000
	2500	- 2500					
2	2300	.5 6.1	935800				0008568
(E)	2100	5 10.4 2000				/ / ·	11)
드	1900		9356000		-		9336000
TUD.	1700	5 15.0 - 1500 5 14.7					
ALT	1500 1300	5 13.9	9354000		Le Lange		8334000
	1100			10			
	900	7.0	9352000				9352000
	700	5 2.5		Leyend • Em	a		
	599	0	9350000	Rio Cur	s vas		80,000
		0 5 10 15 20 % (Área Parcia I/ Área total)		Cue	enca 75	0 0.5 1	2 3 4 Km
•		FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA	1		656000 65	8000 660000	662000 664000

AFRAMETROS GEOMORFOLÓGICOS	_ 7	ab	la 6.76. Resultados de Parametros Geomo	rfológ	gico	s de la M	icrocuenca	76: Rio Paltoran
AREA (A) : 36:11								
CONSITUD DEL MÁXIMO RECORRIDO (Lmax) 12.72 Km	1		ÁREA (A)		:	36.11	Km ²	Micro cuenca
FACTOR DE FORMA (F)	2		PERÍMETRO (P)		:	25.68	Km	
FACTOR DE FORMA (F)	3	₹MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	12.72	Km	
MDICE DE COMPACIDAD (Kc)	4	FO	ANCHO PROMEDIO (Ap)		:	2.84	Km	
CURVA HIPSOMÉTRICA (CH) : -	5		FACTOR DE FORMA (F)		:	0.22		
RECUENCIA DE ALTITUDES (FA)	6		ÍNDICE DE COMPACIDAD (Kc)		:	1.21	Clase I	Oval redonda
ALTITUD MEDIA (Hm) : 1502.70 msnm ALTITUD MAS FRECUENTE (HF) : 1550.50 msnm PENDIENTE DE LA CUENCA : 51.61% Muy Fuerte (Criterio Alvord) COEFICIENTE DE MASIVIDAD (Cm) : 0.04 COEFICIENTE DE CAUCE PRINCIPAL (Cp) : 0.0625 : 6.25 % Alta RECTANGULO EQUIVALENTE (Re) : a=4.07 km b=10.47 km PENDIENTE DEL CAUCE PRINCIPAL (Lcp) : 12.72 km TIEMPO DE CONCENTRACION (Tc) : 61.51 min (Metodo de Taylor y Schwarz) LORGITUD DEL CAUCE PRINCIPAL (Lcp) : 12.72 km TIEMPO DE CONCENTRACION (Tc) : 61.51 min (Metodo de Kirpich) CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd) : 3.00 Orden RELACIÓN DE CONFLUENCIAS (Rc) : 3.20 Alto RELACIÓN DE DENBAJE (D) : 0.71 km/km² PERCUENCIA DE RÍOS (Fr) : 0.36 ríos/Km² ZYTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.19 ríos/Km² SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 3.31 km² CURVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES MICROCUENCA 76: RIO PALTORAN AREAS SOBRE LAS ALTITUDES (Km2) 2000 1 1000 1 10 20 1 30 40 2000 1 150 550 550 550 550 550 550 550 55	7		CURVA HIPSOMÉTRICA (CH)		:	-		
ALTITUD MAS FRECUENTE (HF)	8		FRECUENCIA DE ALTITUDES (FA)		:	-		
PENDIENTE DE LA CUENCA : 51.61% Muy Fuerte (Criterio Alvord)	9		ALTITUD MEDIA (Hm)		:	1502.70	msnm	
PENDIENTE DE LA CUENCA	10	EVE	ALTITUD MAS FRECUENTE (HF)		:	1550.50	msnm	
COEFICIENTE DE MASIVIDAD (Cm) : 0.04	11	ĬΕΠ	PENDIENTE DE LA CUENCA		:	51.61%	Muy Fuerte	(Criterio Alvord)
RECTANGULO EQUIVALENTE (Re) : a=4.07 km b=10.47 km PENDIENTE DEL CAUCE PRINCIPAL (S) : 8.28% (Método de Taylor y Schwarz) LONGITUD DEL CAUCE PRINCIPAL (Lcp) : 12.72 km TIEMPO DE CONCENTRACION (Tc) : 61.51 min (Metodo de Kirpich) CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd) : 3.00 Orden RELACIÓN DE CONFLUENCIAS (Rc) : 3.20 Alto RELACIÓN DE LONGITUDES (RI) : 0.46 DENSIDAD DE DRENAJE (D) : 0.71 km/km² FRECUENCIA DE RÍOS (Fr) : 0.36 ríos/Km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.19 ríos/Km² SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 3.31 Km² COURVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES MICROCUENCA 76: RIO PALTORAN AREAS SOBRE LAS ALTITUDES (Km2) 100 10 20 30 40 2500 150.5 5.6 1450.5 5.6	12	œ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.04		
PENDIENTE DEL CAUCE PRINCIPAL (S)	13		COEFICIENTE OROGRÁFICO (Co)		:	0.0625	: 6.25 %	Alta
LONGITUD DEL CAUCE PRINCIPAL (Lcp) 12.72 Km	14		RECTANGULO EQUIVALENTE (Re)		: 8	a=4.07 km	b=10.47 km	
TIEMPO DE CONCENTRACION (Tc) : 61.51 min (Metodo de Kirpich) CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd) : 3.00 Orden RELACIÓN DE CONFLUENCIAS (Rc) : 3.20 Alto RELACIÓN DE LONGITUDES (RI) : 0.46 DENSIDAD DE DRENAJE (D) : 0.71 km/km² FRECUENCIA DE RÍOS (Fr) : 0.36 ríos/Km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.19 ríos/Km² SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 3.31 Km² CURVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES MICROCUENCA 76: RIO PALTORAN AREAS SOBRE LAS ALTITUDES (Km2) 0.2 14.0 1.6 1850.5 1650.5	15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	8.28%	(Método de T	aylor y Schwarz)
18 19 20 20 20 20 20 20 20 2	16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	12.72	Km	
## PRECUENCIA DE RÍOS (Fr) : 0.36 ríos/Km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.19 ríos/Km² SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 3.31 km² CURVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES MICROCUENCA 76: RIO PALTORAN AREAS SOBRE LAS ALTITUDES (Km²) 0 10 20 30 40 2500 10 20 30 40 2500 10 20 30 40 2500 10 20 30 40 2500 10 50 50 50 50 50 50 50 50 50 50 50 50 50	17	_	TIEMPO DE CONCENTRACION (Tc)		:	61.51	min	(Metodo de Kirpich)
## PRECUENCIA DE RÍOS (Fr) : 0.36 ríos/Km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.19 ríos/Km² SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 3.31 km² CURVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES MICROCUENCA 76: RIO PALTORAN AREAS SOBRE LAS ALTITUDES (Km²) 0 10 20 30 40 2500 10 20 30 40 2500 10 20 30 40 2500 10 20 30 40 2500 10 50 50 50 50 50 50 50 50 50 50 50 50 50	18	FIC/	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd)	:	3.00	Orden	
## PRECUENCIA DE RÍOS (Fr) : 0.36 ríos/Km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.19 ríos/Km² SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 3.31 km² CURVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES MICROCUENCA 76: RIO PALTORAN AREAS SOBRE LAS ALTITUDES (Km²) 0 10 20 30 40 2500 10 20 30 40 2500 10 20 30 40 2500 10 20 30 40 2500 10 50 50 50 50 50 50 50 50 50 50 50 50 50	19	RÁ	RELACIÓN DE CONFLUENCIAS (Rc)		:	3.20	Alto	
## PRECUENCIA DE RÍOS (Fr) : 0.36 ríos/Km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.19 ríos/Km² SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 3.31 km² CURVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES MICROCUENCA 76: RIO PALTORAN AREAS SOBRE LAS ALTITUDES (Km²) 0 10 20 30 40 2500 10 20 30 40 2500 10 20 30 40 2500 10 20 30 40 2500 10 50 50 50 50 50 50 50 50 50 50 50 50 50	20	SOG	RELACIÓN DE LONGITUDES (RI)		:	0.46		
## PRECUENCIA DE RÍOS (Fr) : 0.36 ríos/Km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.19 ríos/Km² SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 3.31 km² CURVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES MICROCUENCA 76: RIO PALTORAN AREAS SOBRE LAS ALTITUDES (Km²) 0 10 20 30 40 2500 10 20 30 40 2500 10 20 30 40 2500 10 20 30 40 2500 10 50 50 50 50 50 50 50 50 50 50 50 50 50	21	₽	DENSIDAD DE DRENAJE (D)		:	0.71	km/km²	
23 EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.35 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.19 ríos/Km² SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 3.31 Km² CURVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES MICROCUENCA 76: RIO PALTORAN AREAS SOBRE LAS ALTITUDES (Km2) 0 10 20 30 40 2500 1650.5 1550.5 1.4 1.4 150.5 1550.5 1	22		FRECUENCIA DE RÍOS (Fr)		:	0.36	ríos/Km²	
SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) 3.31 Km² CURVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES MICROCUENCA 76: RIO PALTORAN AREAS SOBRE LAS ALTITUDES (Km2) 0 10 20 30 40 2500 1500.5 1550.5 1	23	2	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.35	km	
CURVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES MICROCUENCA 76: RIO PALTORAN AREAS SOBRE LAS ALTITUDES (Km2) 0 10 20 30 40 2500 1.6 1.50.5 1550.5 1	24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.19	ríos/Km²	
AREAS SOBRE LAS ALTITUDES (Km2) 0 10 20 30 40 2500 1950.5 1850.5 1650.5 1650.5 1140.5 1500.5 1700.5 1500	25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.31	Km²	
0 10 20 30 40 2500 150.5 1.6 1.6 1.4 1.50.5	C	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 76: F	RIO PALTORAN
2014.0 1950.5 1.6 1.6 1.6 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6			ÁREAS SOBRE LAS ALTITUDES (Km2)	8	642000	644000	646000	648000 650000 g
2014.0 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6			2500	93720				93720
1850.5 1750.5 1650.5 1550.5			.0 0.2		Ì			
1650.5 1650.5 1450.5 11		1850	0.5 1.4	9370000	7			9370000
## 1450.5								
## 1350.5	_			9000		>}		0008
1150.5 5.5	nsu	1350	6.0	926		\mathcal{M}	1	3 {
950.5 850.5 750.5 65.2 8.8 500 8.8 8.8 500 650.5 550.5 450.5 3.4 372.5 0.7 0 5 10 15 650.5) an			8			A ST	573
850.5 750.5 650.5 550.5 450.6 372.5 0 5 10 15 We will be a compared to the co	Ę		1000	93660	-			336601
650.5 550.5 450.5 372.5 0.7 0 5 10 15 0 650.6 650.7 600 600 600 600 600 600 600 600 600 60	٩	850	0.5		1	-5	201 1	
550.5 450.5 372.5 0.7 0 5 10 15 (Area Parcia I/ Área total)				9364000		- h		3364000
372.5 0.7 0 0 5 10 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0		550	5.9	60	1	avenda	1	
0 5 10 15 Curves 0 0.4 0.8 1.6 2.4 3.2 Curves 0 0.4 0.4 0.8 1.6 2.4 3.2 Curves 0 0.4 0.4 0.8 1.6 2.4 3.2 Curves 0 0.4 0.4 0.8 1.6 2.4 3.2 Curves 0 0.4 0.4 0.8 1.6 2.4 3.2 Curves 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0			25 - 07	2000	-	• Emisor	1:7	70,000
% (Alea Palcia / Alea total)			0 5 10 15	936		Curvas	0 0.4 0.8	1.6 2.4 3.2 Km
					642000		646000	648000 650000

Tabla 6.77. Resultados de Parametros Geomorfológicos de la Microcuenca 77: Rio Yahuangate

٧°	PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1	ÁREA (A)		:	68.12	Km ²	Micro cuenca
2	PERÍMETRO (P)		:	38.56	Km	
3 4 E	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	16.17	Km	
4 6	ANCHO PROMEDIO (Ap)		:	4.21	Km	
5	FACTOR DE FORMA (F)		:	0.26		
6	ÍNDICE DE COMPACIDAD (Kc)		:	1.32	Clase II	Oval oblonga
7	CURVA HIPSOMÉTRICA (CH)		:	-		
В	FRECUENCIA DE ALTITUDES (FA)		:	-		
9	ALTITUD MEDIA (Hm)		:	1741.74	msnm	
e E E	ALTITUD MAS FRECUENTE (HF)		:	1500.50	msnm	
1 2	PENDIENTE DE LA CUENCA		:	50.01%	Fuerte	(Criterio Alvord)
2	COEFICIENTE DE MASIVIDAD (Cm)		:	0.03		
3	COEFICIENTE OROGRÁFICO (Co)		:	0.0445	: 4.45 %	Alta
4	RECTANGULO EQUIVALENTE (Re)		:	a=4.59 km	b=14.83 km	n
5	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	12.13%	(Método de	Taylor y Schwarz)
6	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	16.17	Km	
7	TIEMPO DE CONCENTRACION (Tc)		:	68.80	min	(Metodo de Kirpich)
HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	4.00	Orden	
9 K Á	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.91	Muy Alto	
	RELACIÓN DE LONGITUDES (RI)		:	0.89		
21 🚊	DENSIDAD DE DRENAJE (D)		:	0.78	km/km²	
2 🖫	FRECUENCIA DE RÍOS (Fr)		:	0.60	ríos/Km²	
23	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.32	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.31	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	Je)	:	2.87	Km²	
CUR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 77: R	IO YAHUANGATE
	ÁREAS SOBRE LAS ALTITUDES (Km2)	00		648000	651000 6	54000 657000
	0 20 40 60 80	93720	ì			8372000
287		w-	7	E E		
2500		000000	,	(000690
2300	0.5)		
2100 E	2000	000				80
토 1900 티 1700		936600				568
1500	- 1500		5		1	
= 1300		\$363000		$\angle c$		000rses
1100			7		2	1
900 700		0000			17	
500	300	- L	eyen	ıda	7	9995
38	1.0 0.1		• E	misor		1:100,000
	0 5 10 15 20	9357000		curvas cuenca 77	0_0	1:100,000 000 0.5 1 2 3 4 Km
	% (Área Parcia I/ Área total) ■FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA			648000	651000 6	54000 657000

Tabla 6.78. Resultados de Parametros Geomorfológicos de la Microcuenca 78: Rio Freiolillo

N°		la 6.78. Resultados de Parametros Geomos PARÁMETROS GEOMORFOLÓGICOS		:			LTADO		
1		ÁREA (A)		:	81.16	Km ²	Micro c	uenca	
2		PERÍMETRO (P)		:	43.92	Km			
3	ΜA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	18.74	Km			
4	FORMA	ANCHO PROMEDIO (Ap)		:	4.33	Km			
5	_	FACTOR DE FORMA (F)		:	0.23				
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.38	Clase II	Oval ob	olonga	
7		CURVA HIPSOMÉTRICA (CH)		:	-				
8		FRECUENCIA DE ALTITUDES (FA)		:	-				
9		ALTITUD MEDIA (Hm)		:	1502.11	msnm			
10	IEVE	ALTITUD MAS FRECUENTE (HF)		:	1000.50	msnm			
11	RELIE	PENDIENTE DE LA CUENCA		:	57.63%	Fuerte	(Criterio	o Alvord)	
12	ď	COEFICIENTE DE MASIVIDAD (Cm)		:	0.02				_
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0278	: 2.78 %	Modera	nda	_
14		RECTANGULO EQUIVALENTE (Re)		:	a=4.64 km	b=17.49 k	m		_
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	5.11%	(Método de	e Taylor y S	Schwarz)	_
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	18.74	Km	, ,	· · · ·	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	85.71	min	(Metodo	o de Kirpio	ch)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (R	(d)	:	4.00	Orden		•	
19	RÁF	RELACIÓN DE CONFLUENCIAS (Rc)		:	6.16	Bajo			
20	SOG	RELACIÓN DE LONGITUDES (RI)		:	0.84				
21	ID.	DENSIDAD DE DRENAJE (D)		:	0.70	km/km²			
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.67	ríos/Km²			
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIAL	(Es)	:	0.36	km			
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.34	ríos/Km²			-
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.00	Km²			
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES	<u> </u>		MICRO	CUENCA 78:	RIO FREJO	OLILLO	
		ÁREAS SOBRE LAS ALTITUDES (Km2)		6390	00 642000	645000	648000	651000	
		0 20 40 60 80 100			N				
	296	4.0 0.1	9378000	w ->	*				9378000
	280	3000	937		Ž.				937
	260		0000			\sim	`		9375000
<u>_</u>	240		9375		ممر	5 /		_	9375
ર્જ	200	2000	9372000	4		The		1	9372000
Д Д	180	0.5	9372	2			M	11	9372
H	160	1500	9369000	d	3			لمستر	9369000
_	140	0.5	9366	5	2	}			9368
	120		000		11	Leyen	da misor		000
	100	0.5	8366000			R	ios urvas		9366
	82	9.9	000			c	uenca 78 1:120,00	00	000
		0 5 10 15 20	9363000			0.0	.5 1 2 3	4 ■Km	9363000
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA		6390	00 642000	645000	648000	651000	

Tabla 6.79. Resultados de Parametros Geomorfológicos de la Microcuenca 79: Rio Collona

٧°	P	ARÁMETROS GEOMORFO	LÓGICOS		:		RESUL	TADO	
1	ÁREA (A	A)			:	88.84	Km ²	Micro cuenca	
2	PERÍME	TRO (P)			:	46.49	Km		
3 ₹	LONGIT	UD DEL MÁXIMO RECORI	RIDO (Lmax)		:	23.07	Km		
4 %	ANCHO	PROMEDIO (Ap)			:	3.85	Km		
5		R DE FORMA (F)			:	0.17			
6	ÍNDICE	DE COMPACIDAD (Kc)			:	1.39	Clase II	Oval oblonga	
7	CURVA	HIPSOMÉTRICA (CH)			:	-			
В	FRECU	ENCIA DE ALTITUDES (FA	.)		:	-			
9	ALTITU	D MEDIA (Hm)			:	1746.82	msnm		
	ALTITU	D MAS FRECUENTE (HF)			:	900.50	msnm		
	PENDIE	NTE DE LA CUENCA			:	48.63%	Fuerte	(Criterio Alvor	d)
2 ~	COEFIC	IENTE DE MASIVIDAD (Cr	n)		:	0.02			
3	COEFIC	IENTE OROGRÁFICO (Co))		:	0.0343	: 3.43 %	Moderada	
4	RECTAI	NGULO EQUIVALENTE (Re	e)		: 6	a=4.76 km	b=18.66 kn	n	
5	PENDIE	NTE DEL CAUCE PRINCIF	PAL (S)		:	10.39%	(Método de	Taylor y Schwa	rz)
6	LONGIT	UD DEL CAUCE PRINCIPA	AL (Lcp)		:	23.07	Km		
7	TIEMPO	DE CONCENTRACION (T	c)		:	97.66	min	(Metodo de K	irpich
8 은	CATEG	ORIZACIÓN DE LA RED DE	DRENAJE (I	Rd)	:	3.00	Orden		
9 K	RELACI	ÓN DE CONFLUENCIAS (F	Rc)		:	1.57	Muy Alto		
20 00 20 00	RELACI	ÓN DE LONGITUDES (RI)			:	0.96			
21 📮	DENSID	AD DE DRENAJE (D)			:	0.66	km/km²		
	FRECU	ENCIA DE RÍOS (Fr)			:	0.62	ríos/Km²		
23		SION MEDIA DE ESCURR.	SUPERFICIA	L (E	s) :	0.38	km		
24	COEFIC	IENTE DE TORRENCIALIE	DAD (Ct)		:	0.32	ríos/Km²		
25	SUPER	FICIE UMBRAL DE ESCUR	RIMIENTO (L	Je)	:	4.46	Km²		
CUF	RVA HIPSO	MÉTRICA & FRECUENCIA DE	ALTITUDES			MICR	OCUENCA 79:	: RIO COLLONA	
	ÁI	REAS SOBRE LAS ALTITUDES (K	m2)		664000	668000	672000	676000 680000	0
	0	20 40 60 80			Ņ				
	-	3.1		944800	. *	S E 1			944800
		5.7	3500		Š		1		
			- 3000	444000	1	. (->		444000
€ 250	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)								
Ë 210	CURVA HIPSOMÉTRICA (CH) : - FRECUENCIA DE ALTITUDES (FA) : - ALTITUD MEDIA (Hm) : 1746.82 msnm ALTITUD MEDIA (Hm) : 1746.82 msnm ALTITUD MAS FRECUENTE (HF) : 900.50 msnm PENDIENTE DE LA CUENCA : 48.63% Fuerte (Criterio Alvord) COEFICIENTE DE MASIVIDAD (Cm) : 0.02 COEFICIENTE OE MASIVIDAD (Cm) : 0.043 : 3.43 % Moderada RECTANGULO EQUIVALENTE (Re) : a=4.76 km b=18.66 km PENDIENTE DEL CAUCE PRINCIPAL (Lcp) : 23.07 km TIEMPO DE CONCENTRACION (Tc) : 97.66 min (Metodo de Kirpich) CATEGORIZACIÓN DE LA RED DE DENAJE (Rd) : 3.00 Orden RELACIÓN DE CONFLUENCIAS (Rc) : 1.57 Muy Alto RELACIÓN DE LONGITUDES (RI) : 0.96 DENSIDAD DE DRENAJE (D) : 0.66 km/km² FRECUENCIA DE RÍOS (Fr) : 0.62 ríos/km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (ES) : 0.38 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 4.46 km² COEFICIENTE DE TORRENCIALIDAD (Ct) : 4.46 km² CURVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES MICROCUENCA 79: RIO COLLONA AREAS SOBRE LAS ALTITUDES (Km2) 20 40 60 80 100 4000 3000 3000 3000 3000 3000 3000								
190	FRECUENCIA DE ALTITUDES (FA) : 1746.82 msnm ALTITUD MEDIA (Hm) : 1746.82 msnm ALTITUD MAS FRECUENTE (HF) : 900.50 msnm PENDIENTE DE LA CUENCA : 48.63% Fuerte (Criterio Alvord) COFFICIENTE DE MASIVIDAD (Cm) : 0.02 COFFICIENTE OROGRÁFICO (Co) : 0.0343 : 3.43 % Moderada RECTANGULO EQUIVALENTE (Re) : =4.76 km b=18.66 km PENDIENTE DEL CAUCE PRINCIPAL (S) : 10.39% (Método de Taylor y Schwarz) LONGITUD DEL CAUCE PRINCIPAL (Lcp) : 23.07 km TIEMPO DE CONCENTRACION (Tc) : 97.66 min (Metodo de Kirpich) CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd) : 3.00 Orden RELACIÓN DE CONFLUENCIAS (Rc) : 1.57 Muy Alto RELACIÓN DE CONFLUENCIAS (Rc) : 1.57 Muy Alto RELACIÓN DE LONGITUDES (RI) : 0.96 DENSIDAD DE DRENAJE (D) : 0.66 km/km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.38 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.32 ríos/Km² SUPERFICIE UMBRAL DE ESCURR. SUPERFICIAL (Es) : 0.38 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.32 ríos/Km² SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 4.46 km² CURVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES MICROCUENCA 79: RIO COLLONA AREAS SOBRE LAS ALTITUDES (Kmz) 2000								
1/0 تِ									
	COEFICIENTE OROGRÁFICO (Co) : 0.0343 : 3.43 % Moderada RECTANGULO EQUIVALENTE (Re) : a=4.76 km b=18.66 km PENDIENTE DEL CAUCE PRINCIPAL (S) : 10.39% (Método de Taylor y Schwarz) LONGITUD DEL CAUCE PRINCIPAL (Lcp) : 23.07 km TIEMPO DE CONCENTRACION (Tc) : 97.66 min (Metodo de Kirpich) CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd) : 3.00 Orden RELACIÓN DE CONFLUENCIAS (Rc) : 1.57 Muy Alto RELACIÓN DE LONGITUDES (RI) : 0.96 DENSIDAD DE DRENAJE (D) : 0.66 km/km² EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es) : 0.38 km COEFICIENTE DE TORRENCIALIDAD (Ct) : 0.32 ríos/Km² SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue) : 4.46 km² CURVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES (MIZ) 3000.5 4.3 2500.5 8.1 10.0 1500 1500.5 10.0 1500								
	FRECUENCIA DE ALTITUDES (FA) :								
		6.3	500	9432000			7)	9432000
51	1.0		0					1:140,000	
	0			28000			*	0 0.75 1.5 3 4.5	Km 0008
	FRECUENC	IA DE ALTITUDES ——— CURVA H	IIPSOMÉTRICA	8 _	664000	668000	672000	676000 68000	z

۱°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO	
1		ÁREA (A)		:	154.71	Km ²	Sub cuenca	
2		PERÍMETRO (P)		:	73.26	Km		
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	37.39	Km		
4	-OR	ANCHO PROMEDIO (Ap)		:	4.14	Km		
5	ш.	FACTOR DE FORMA (F)		:	0.11			
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.66	Clase III	Oblonga alarg	ada
7		CURVA HIPSOMÉTRICA (CH)		:	-			
8		FRECUENCIA DE ALTITUDES (FA)		:	-			
9		ALTITUD MEDIA (Hm)		:	3140.48	msnm		
0	≅VE	ALTITUD MAS FRECUENTE (HF)		:	3050.50	msnm		
		PENDIENTE DE LA CUENCA		:	26.96%	Accidentado	(Criterio Alvoro	d)
-	2						(
\dashv		, ,				: 6.37 %	Alta	
-		` '						
5								z)
-		* '					., . ,	,
7		, , , , , , , , , , , , , , , , , , ,		:			(Metodo de Ki	rpich
8	ICA		Rd)	•			(
9	RAF	· ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	/					
0	00	` '				,		
1	IIDR	· · ·				km/km²		
_ ,		, ,	L (Es					
-								
-		` '	le)					
	IJR	<u>'</u>	, ,	•			IO SAN PEDRO	
	-		615	000	620000			
		0 50 100 150 200	Γ	Ă				
3	3630	0.0 0.1	70000 ×	₩				
3	3550	0.5 0.2 - 3500	8	s	53			1
3	3450		000		1 8			
_		0.5 6.8	3976		30	DI		F
LONGITUD DEL MÁXIMO RECORRIDO (Lmax) 37.39 Km								
NORITUD DEL MÁXIMO RECORRIDO (Lmax) 37.39 Km								
AREA (A) : 154.71 Km² Sub cuenca AREA (A) : 154.71 Km² Sub cuenca PERIMETRO (P) : 73.26 Km								
-			9455000				21	
		- 1000	926	Leve	nda	775	1	
			00005	•	Emisor	75		
		3.5 0.0	#			(
		0		ш	Cuenca 80		1:180,000	2
		% (Área Parcia // Área total)	L			0 1 2	4 6 8 Km	

Tabla 6.81. Resultados de Parametros Geomorfológicos de la Microcuenca 81: Rio Gramadal

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1		ÁREA (A)		:	143.96	Km ²	Sub cuenca
2		PERÍMETRO (P)		:	52.73	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	23.22	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	6.20	Km	
5	_	FACTOR DE FORMA (F)		:	0.27		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.24	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1616.41	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	1500.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	42.94%	Fuerte	(Criterio Alvord)
12	R	COEFICIENTE DE MASIVIDAD (Cm)		:	0.01		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0181	: 1.81 %	Moderada
14		RECTANGULO EQUIVALENTE (Re)		: 6	a=7.59 km	b=18.98 km	١
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	7.20%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	23.22	Km	
17	Δ	TIEMPO DE CONCENTRACION (Tc)		:	99.75	min	(Metodo de Kirpich)
18	FIC,	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd)	:	4.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.62	Muy Alto	
20	ROC	RELACIÓN DE LONGITUDES (RI)		:	0.93		
21	HID	DENSIDAD DE DRENAJE (D)		:	0.73	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.66	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIAI	L (Es)	:	0.34	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.33	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.46	Km²	
С	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 81:	RIO GRAMADAL
		ÁREAS SOBRE LAS ALTITUDES (Km2)	9	į	604000 6	08000 612000	616000 620000
		0 50 100 150 200	000876	×			000876
	3415 3300	17	w-	*	<u></u>		
	3100	0.5 2.4	8476000	s			9476000
	2900 2700	- 3000	1000		A		
	2500		9472000	Ę			172000
_	2300 2100	3.5			1		
0	1900		9463000		10		0008996
Ę	1700	- 1500	3			1	
	1500 1300	14.6	9464000			- /	1000
	1100		946		Leyenda		1
	700	500	00		Emisor Rios		8
	558		9460000		Curvas		1:150,000
		0 5 10 15 20			Cuenca	0 1 2	4 6 8 Km
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA			604000 6	08000 612000	616000 620000

Tabla 6.82. Resultados de Parametros Geomorfológicos de la Microcuenca 82: Rio Ceiba

٧°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	44.16	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	26.62	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	11.80	Km	
4	-CRMA	ANCHO PROMEDIO (Ap)		:	3.74	Km	
5		FACTOR DE FORMA (F)		:	0.32		
6	İ	ÍNDICE DE COMPACIDAD (Kc)		:	1.13	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8	İ	FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	1779.07	msnm	
10	EVE.	ALTITUD MAS FRECUENTE (HF)		:	1900.50	msnm	
		PENDIENTE DE LA CUENCA		:	52.24%	Muy Fuerte	(Criterio Alvord)
12	צ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.04		
3	İ	COEFICIENTE OROGRÁFICO (Co)		:	0.0717	: 7.17 %	Alta
4	İ	RECTANGULO EQUIVALENTE (Re)		:	a=5.81 km	b=7.60 km	
5		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	12.59%	(Método de 1	Гaylor y Schwarz)
6		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	11.80	Km	
7		TIEMPO DE CONCENTRACION (Tc)		:	53.05	min	(Metodo de Kirpich
8 2	AFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	 (d)	:	3.00	Orden	<u> </u>
9 0	Ϋ́ Y	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.68	Muy Alto	
20 2	HIDROGR	RELACIÓN DE LONGITUDES (RI)		:	1.05		
21	₽	DENSIDAD DE DRENAJE (D)		:	0.62	km/km²	
22		FRECUENCIA DE RÍOS (Fr)		:	0.63	ríos/Km²	
23	צ	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.41	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.34	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.53	Km²	
CL	JR۱	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICE	ROCUENCA 82	:: RIO CEIBAL
		ÁREAS SOBRE LAS ALTITUDES (Km2)		6	40000 64	2000 644000	646000 64800
		0 10 20 30 40 50	0009056	Å	1		-
26	329	.0 0.7		***************************************	E		
25	500	.5 4.8	1504000	1	3		
23	300	.5 11.3	86			1	
	00.	.5 14.0 2000	000		1	1	
(musum) 17 15 15	900	.5 18.2	9502000			1	
<u>a</u> 17	700	.5 18.0 1500	۰			In	
= 15	500	7	950000				
	300	9.7					
11	00.		9498000				
9	900	.5 2.4	-	Ley	enda Emisor		
7	43.	.5 0.5	0009		Rios		1:70,000
		0 5 10 15 20	94960		Cuenca 82	0 0.5 1	2 3 4 _{Km}
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	L	-	40000 64	644000	646000 64800

Tabla 6.83. Resultados de Parametros Geomorfológicos de la Microcuenca 83: Rio Huayos

N°	PARÁMETROS GEOMORFOLÓGICOS	:		RESULT	TADO
1	ÁREA (A)	:	44.15	Km ²	Micro cuenca
2	PERÍMETRO (P)	:	28.50	Km	
3 ₹	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)	:	12.11	Km	
3 AMA	ANCHO PROMEDIO (Ap)	:	3.64	Km	
5	FACTOR DE FORMA (F)	:	0.30		
6	ÍNDICE DE COMPACIDAD (Kc)	:	1.21	Clase I	Oval redonda
7	CURVA HIPSOMÉTRICA (CH)	:	-		
8	FRECUENCIA DE ALTITUDES (FA)	:	-		
9	ALTITUD MEDIA (Hm)	:	2107.03	msnm	
10 🚆	ALTITUD MAS FRECUENTE (HF)	:	1950.50	msnm	
11 🗒	PENDIENTE DE LA CUENCA	:	38.68%	Fuerte	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)	:	0.05		
13	COEFICIENTE OROGRÁFICO (Co)	:	0.1006	: 10.06 %	Muy alta
14	RECTANGULO EQUIVALENTE (Re)	: /	a=4.46 km	b=9.89 km	
15	PENDIENTE DEL CAUCE PRINCIPAL (S)	:	10.37%	(Método de	Taylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)	:	12.11	Km	
17	TIEMPO DE CONCENTRACION (Tc)	:	58.19	min	(Metodo de Kirpich)
18 은	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	3.00	Orden	
18 19 20 21 HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)	:	1.71	Muy Alto	
20 8	RELACIÓN DE LONGITUDES (RI)	:	0.87		
21 📮	DENSIDAD DE DRENAJE (D)	:	0.69	km/km²	
22 🖫	FRECUENCIA DE RÍOS (Fr)	:	0.48	ríos/Km²	
23	EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es)	:	0.36	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)	:	0.25	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue)	:	3.53	Km²	
CUR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES		MICR	OCUENCA 83:	RIO HUAYOS
	ÁREAS SOBRE LAS ALTITUDES (Km2)	-	654000	556000 65800	660000
292 285 275 265 245 245 245 225 215 205 215 195 175 165 155 145	0.5		eyenda Emisor Rics Curras Cuenca 83	1:70,000	0000008 0000008 0000008 0000008 0000008

PARÁMETROS GEOMORFOLÓGICOS ÁREA (A) PERÍMETRO (P) LONGITUD DEL MÁXIMO RECORRIDO (Lmax) ANCHO PROMEDIO (Ap) FACTOR DE FORMA (F) ÍNDICE DE COMPACIDAD (Kc)		:	50.62 31.20	Km ²	Micro cuenca
PERÍMETRO (P) LONGITUD DEL MÁXIMO RECORRIDO (Lmax) ANCHO PROMEDIO (Ap) FACTOR DE FORMA (F) ÍNDICE DE COMPACIDAD (Kc)		:	31.20	Km	Micro cuenca
ANCHO PROMEDIO (Ap) FACTOR DE FORMA (F) ÍNDICE DE COMPACIDAD (Kc)					
ANCHO PROMEDIO (Ap) FACTOR DE FORMA (F) ÍNDICE DE COMPACIDAD (Kc)		:	15.04		
FACTOR DE FORMA (F) ÍNDICE DE COMPACIDAD (Kc)			15.04	Km	
ÍNDICE DE COMPACIDAD (Kc)		:	3.37	Km	
		:	0.22		
		:	1.24	Clase I	Oval redonda
CURVA HIPSOMÉTRICA (CH)		:	-		
FRECUENCIA DE ALTITUDES (FA)		:	-		
ALTITUD MEDIA (Hm)		:	2096.43	msnm	
ALTITUD MAS FRECUENTE (HF)		:	2100.50	msnm	
PENDIENTE DE LA CUENCA		:	37.72%	Fuerte	(Criterio Alvord)
COEFICIENTE DE MASIVIDAD (Cm)		:	0.04		
COEFICIENTE OROGRÁFICO (Co)		:	0.0868	: 8.68 %	Alta
RECTANGULO EQUIVALENTE (Re)		:	a=4.52 km	b=11.19 km	1
PENDIENTE DEL CAUCE PRINCIPAL (S)		:	10.80%	(Método de	Taylor y Schwarz)
LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	15.04	Km	
TIEMPO DE CONCENTRACION (Tc)		:	73.42	min	(Metodo de Kirpich)
CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd)	:	3.00	Orden	
RELACIÓN DE CONFLUENCIAS (Rc)		:	2.21	Muy Alto	
RELACIÓN DE LONGITUDES (RI)		:	0.70		
DENSIDAD DE DRENAJE (D)		:	0.71	km/km²	
FRECUENCIA DE RÍOS (Fr)		:	0.65	ríos/Km²	
EXTENSION MEDIA DE ESCURR. SUPERFICIAL	L (Es)	:	0.35	km	
COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.34	ríos/Km²	
SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.70	Km²	
'A HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICROC	UENCA 84: RI	IO SAMANGUILLA
ÁREAS SOBRE LAS ALTITUDES (Km2)		65	58000 6600	0 662000	664000 666000
0 20 40 60	80	Ă			9494000
5 0.4	8 w-	*	E /	-	28
5 8.7 2500	000	š		K.	
5 16.8	9492		11	1	8482000
5 16.8 2000	900		1 36	(900
5 16.8	9490		68	A	00006896
15.9	000		1		000
5	9488				0008876
	0	Ley	renda Emisor		0
500	9486		Rios Curvas		09896
5 3.3	0		Cuenca 84	A CONTRACTOR	8
	0				
5 0.8	9484			0555	
	H82000 9484				1:80,000 0.4 0.8 1.6 2.4 3.2 8
.5 .5 .5 .5	16.8 16.8 16.8 2000 15.9 14.1 1000 6.4 500	16.8 16.8 16.8 15.9 14.1 1000 15.9 14.1 1000	16.8 16.8 16.8 1500 15.9 14.1 1000 15.9 14.1 1000 15.9	16.8 16.8 16.8 16.8 16.8 16.8 16.8 15.9 1500 15.9 14.1 1000 Leyenda Emisor Rios Cuerca 84 Cuerca 84	16.8 16.8 16.8 15.9 14.1 1000 Leyenda Emsor Ros Curvas Curvas Curvas Curvas O.8

Tabla 6.85. Resultados de Parametros Geomorfológicos de la Microcuenca 85: Qda. Blanco

Ν°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	25.49	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	23.17	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	4.81	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	5.30	Km	
5		FACTOR DE FORMA (F)		:	1.10		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.29	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2761.80	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	2950.50	msnm	
11	RELII	PENDIENTE DE LA CUENCA		:	58.34%	Muy Fuerte	(Criterio Alvord)
12	N.	COEFICIENTE DE MASIVIDAD (Cm)		:	0.11	-	
13		COEFICIENTE OROGRÁFICO (Co)		:	0.2992	: 29.92 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		: :	a=2.91 km	b=8.76 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	16.16%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	4.81	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	19.96	min	(Metodo de Kirpich)
18	FIC/	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	2.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	4.00	Alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	0.78		
21		DENSIDAD DE DRENAJE (D)		:	0.41	km/km²	
22	ED I	FRECUENCIA DE RÍOS (Fr)		:	0.59	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.61	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.47	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	5.05	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 85: (QDA. BLANCO
		ÁREAS SOBRE LAS ALTITUDES (Km2)	г	67	8000 68000	682000	684000 686000
	0500	0 10 20 30		À	<u> </u>		
	3509 3450	1.5 1.0	462000	"			9462000
	3350 3250		*	ś			
	3150	7.9	3460000				9460000
	3050 2950	7.7			1000000	_	0112
,≿	2850 2750	11.5	9458000				000854
JT.	2650	2000					*
ALTI	2650 2650 2550 2450	8.0 9.5 7.1 1500	9456000				9456000
	2350 2250	.5 4.4	ă				8
	2150	2.3	9454000		Leyenda		9454000
	2050 1950	300	3		Emisor Rios		3
	1864	.0 1.0	9452000		Curvas Cuenca 8		1:80,000
		0 5 10 15 % (Área Parcia I/ Área total)	94			0 0.5 1	2 3 4 Km
		FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA		67	8000 68000	682000	684000 686000

۷°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ΓADO
1		ÁREA (A)		:	58.43	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	37.07	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	12.18	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	4.80	Km	
5	_	FACTOR DE FORMA (F)		:	0.39		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.37	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2698.69	msnm	
10	RELIEVE	ALTITUD MAS FRECUENTE (HF)		:	2300.50	msnm	
11	ΈLI	PENDIENTE DE LA CUENCA		:	60.14%	Muy Fuerte	(Criterio Alvord)
12	æ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.05		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.1246	: 12.46 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=3.98 km	b=14.70 km	1
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	12.32%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	12.18	Km	
17	1	TIEMPO DE CONCENTRACION (Tc)		:	53.84	min	(Metodo de Kirpich
8	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I		:	3.00	Orden	
19	ıRÁI	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.75	Muy Alto	
20	30G	RELACIÓN DE LONGITUDES (RI)		:	1.13		
21	HDF	DENSIDAD DE DRENAJE (D)		:	0.56	km/km²	
	ED ŀ	FRECUENCIA DE RÍOS (Fr)		:	0.38	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.45	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.21	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	3.88	Km²	
С	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 86: F	RIO LOS MOJICA
		ÁREAS SOBRE LAS ALTITUDES (Km2)	-	672000	675000	678000	681000 684000
		0 20 40 60 80	9462000				
;	3644		Ĭ		<u>_</u> .		
;	3500	3500	00065	7	,		
;	3300	3000	946			^	
	3100		000			V	
ALTITUD (msnm)	2900	2500	9456000				
<u>.</u>	2700	2000	8				y / y (
Ē :	2500	0.5	9453000			1	
	2300						
:	2100	0.5	9450000				
	1900	500		Le	yenda Emisor		
	1700		9447000		Rios Curvas		1:110.000
		0 5 10 15	8		Cuenca 86	0.0.5	5 1 2 3 4 Km
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	Į.	672000	675000	678000	681000 684000

 Tabla 6.87. Resultados de Parametros Geomorfológicos de la Microcuenca 87: Rio Rosarios

Ν°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	90.70	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	47.03	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	18.99	Km	
4	-ORMA	ANCHO PROMEDIO (Ap)		:	4.78	Km	
5	_	FACTOR DE FORMA (F)		:	0.25		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.39	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2975.63	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	3300.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	54.13%	Muy Fuerte	(Criterio Alvord)
12	œ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.03		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.0976	: 9.76 %	Alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=4.80 km	b=18.89 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	9.26%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	18.99	Km	
17	4	TIEMPO DE CONCENTRACION (Tc)		:	87.04	min	(Metodo de Kirpich)
18	FIC/	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	4.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.95	Muy Alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	1.14		
21		DENSIDAD DE DRENAJE (D)		:	0.53	km/km²	
22	ED I	FRECUENCIA DE RÍOS (Fr)		:	0.45	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	Es) :	0.47	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.23	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	3.09	Km²	
C	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 87: F	RIO ROSARIOS
		ÁREAS SOBRE LAS ALTITUDES (Km2)	1	66	6000 66	672000	675000
		0 20 40 60 80 100	0				00
		7.5 0.1	9375(7			9375000
	3700 3500						
	3300	3000	3372000	1			1372000
_	3100		-				
(msr	2900	0.5	1369000	(1	$-\langle \cdot \rangle$	A M	000
∆LTITUD	2700	0.5 6.3	9369				8368
ALTI	2500	0.5 5.5			`		
	2300	0.5 5.7	0009986		Leyenda		000998
	2100	1000			Rios Curvas		
	1900	0.5 2.9	383000		Cuenca 25		3363000
	1702	2.5 2.0	9363				1:100.000
		0 10 20 30 40				0_0	2.5 1 2 3 4 Km
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ————————————————————————————————————		66	6000 669	9000 672000	675000

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	58.06	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	39.18	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	11.95	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	4.86	Km	
5		FACTOR DE FORMA (F)		:	0.41		
6	İ	ÍNDICE DE COMPACIDAD (Kc)		:	1.45	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8	İ	FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2845.13	msnm	
10	RELIEVE	ALTITUD MAS FRECUENTE (HF)		:	2550.50	msnm	
11 i		PENDIENTE DE LA CUENCA		:	54.41%	Muy Fuerte	(Criterio Alvord)
12	œ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.05		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.1394	: 13.94 %	Muy alta
14	İ	RECTANGULO EQUIVALENTE (Re)		:	a=3.60 km	b=16.14 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	6.24%	(Método de 7	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	11.95	Km	
17	⊿	TIEMPO DE CONCENTRACION (Tc)		:	57.90	min	(Metodo de Kirpich)
18 i	E)	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	3.00	Orden	
19	HIDROGRAFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.60	Muy Alto	
20	S S	RELACIÓN DE LONGITUDES (RI)		:	0.83		
21	≘	DENSIDAD DE DRENAJE (D)		:	0.65	km/km²	
	1	FRECUENCIA DE RÍOS (Fr)		:	0.50	ríos/Km²	
23	~	EXTENSION MEDIA DE ESCURR. SUPERFICIA	ıL (I	Es) :	0.39	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.26	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	3.87	Km²	
Cl	JR۱	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 88: R	IO CHINGUELA
		ÁREAS SOBRE LAS ALTITUDES (Km2)		575000	678000	681000	684000
3	705 650 550	0.0 • 0.4	9441000	w->	*		00017496
3	450 350 250	6.3	9438000				00921
msm) C	150 050 950	8.4 8.9	3435000		0		0089
ALII1 2 2 2	850 750 650 550 450	1.5 8.7 8.6 8.6 9.0 1500 9.2	943	Ley	renda	57	256 000ZEM
2:	350 250 151	5.8 5.0 0.0 0.0 0.0	9429000	Ė	Emisor Rios Curvas Cuenca 88		1:90,000
		0 2 4 6 8 10 % (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES — CURVA HIPSOMÉTRICA	0.74	675000	678000	681000	1:90,000 a Km

Tabla 6.89. Resultados de Parametros Geomorfológicos de la Microcuenca 89: Qda. Tingo Barro

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	20.45	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	19.97	Km	
3	-ORMA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	9.19	Km	
4	P	ANCHO PROMEDIO (Ap)		:	2.23	Km	
5	_	FACTOR DE FORMA (F)		:	0.24		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.25	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2367.97	msnm	
10	IE VE	ALTITUD MAS FRECUENTE (HF)		:	1900.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	62.43%	Muy Fuerte	(Criterio Alvord)
12	2	COEFICIENTE DE MASIVIDAD (Cm)		:	0.12	-	· ·
13		COEFICIENTE OROGRÁFICO (Co)		:	0.2742	: 27.42 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=2.83 km	b=7.23 km	-
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	15.32%	(Método de T	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	9.19	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	38.43	min	(Metodo de Kirpich)
18	-ICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	2.00	Orden	, ,
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.33	Muy Alto	
20	SOG	RELACIÓN DE LONGITUDES (RI)		:	0.75		
21	₽ E	DENSIDAD DE DRENAJE (D)		:	0.55	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.34	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	AL (E	Es) :	0.46	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.20	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	4.52	Km²	
C	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES	Ė		MICROC	UENCA 89: QD	A. TINGO BARRO
		ÁREAS SOBRE LAS ALTITUDES (Km2)		685500	687000	688500 690000	691500 693000
		0 5 10 15 20 25	9451500		ž.		9451500
	349		0.53	w->		-	
	330	0.5	3450000		· Profession		9450000
	310	0.5 6.9					
Ê	290	0.5	3448500				9448500
ALTITUD (msnm)	270	9.3	(1000))
5	250		1447000				9447000
ALTI	230	1500			18		
	210	1000	445500		100		445800
	190	15.4	6	Ley	enda		
	170	555	9444000	•	Emisor Rios		144000
	151	0	di		Curvas Cuenca 89		*
		0 5 10 15 20 % (Área Parcia I/ Área total)	142500			0 0.4 0.8	1:60,000 1.6 2.4 3.2
		FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA	8	885500	687000	688500 690000	691500 693000

Tabla 6.90 Resultados de Parametros Geomorfológicos de la Microcuenca 90: Rio Sauce Chico

i apia	a 6.90 Resultados de Parametros Geomorfo	logicos	s c	ie ia iviicro	ocuenca 90:	Rio Sauce Chico
N°	PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1	ÁREA (A)		:	51.52	Km ²	Micro cuenca
2	PERÍMETRO (P)		:	29.57	Km	
3 ₹	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	12.65	Km	
3 4 C	ANCHO PROMEDIO (Ap)		:	4.07	Km	
5	FACTOR DE FORMA (F)		:	0.32		
6	ÍNDICE DE COMPACIDAD (Kc)		:	1.16	Clase I	Oval redonda
7	CURVA HIPSOMÉTRICA (CH)		:	-		
8	FRECUENCIA DE ALTITUDES (FA)		:	-		
9	ALTITUD MEDIA (Hm)		:	3049.23	msnm	
10	ALTITUD MAS FRECUENTE (HF)		:	3250.50	msnm	
11	PENDIENTE DE LA CUENCA		:	34.97%	Accidentado	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDAD (Cm)		:	0.06		
13	COEFICIENTE OROGRÁFICO (Co)		:	0.1805	: 18.05 %	Muy alta
14	RECTANGULO EQUIVALENTE (Re)		:	a=5.46 km	b=9.44 km	
15	PENDIENTE DEL CAUCE PRINCIPAL (S)		:	9.28%	(Método de T	Taylor y Schwarz)
16	LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	12.65	Km	
17	TIEMPO DE CONCENTRACION (Tc)		:	66.51	min	(Metodo de Kirpich)
18 19 20 21 H	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	4.00	Orden	
عرب 19 م	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.94	Muy Alto	
20 0	RELACIÓN DE LONGITUDES (RI)		:	0.90		
21	DENSIDAD DE DRENAJE (D)		:	0.69	km/km²	
22 🖫	FRECUENCIA DE RÍOS (Fr)		:	0.41	ríos/Km²	
23	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.36	km	
24	COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.21	ríos/Km²	
25	SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	2.68	Km²	
CUI	RVA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICROC	UENCA 90: RIG	O SAUCE CHICO
35	ÁREAS SOBRE LAS ALTITUDES (Km2) 0 20 40 60 24.0 0.1	65800	00	660000	662000 66	64000 666000
33	50.5 50.5 50.5 12.3 17.8 3000	9422000	×			9422000
31 <u>E</u> 30	50.5 50.5 15.9 2500	842000				Donocos
<u> </u>	50.5 50.5 50.5 50.5 50.5	9418000	(0000196
25	50.5 3.5 1500 50.5 3.1 1.7 1000	9416000	1	7	717	0009198
23 22	50.5 1.1 50.5 0.7 97.0 0.0	9414000	Ley	enda		0001116
	97.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5500	00	Emisor Rios Curvas Cuenca 90	0 0.4 0	1:75,000 80000

Tabla 6.91. Resultados de Parametros Geomorfológicos de la Microcuenca 91: Qda. Sangrin

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	20.41	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	20.25	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	10.61	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	1.92	Km	
5		FACTOR DE FORMA (F)		:	0.18		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.26	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2617.22	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	2650.50	msnm	
11	RELI	PENDIENTE DE LA CUENCA		:	28.91%	Accidentado	(Criterio Alvord)
12	F	COEFICIENTE DE MASIVIDAD (Cm)		:	0.13		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.3356	: 33.56 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		: ;	a=2.73 km	b=7.47 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	6.20%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	10.61	Km	
17	Α	TIEMPO DE CONCENTRACION (Tc)		:	51.09	min	(Metodo de Kirpich)
18	FIC	CATEGORIZACIÓN DE LA RED DE DRENAJE (R	₹d)	:	2.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.25	Muy Alto	
20	ROC	RELACIÓN DE LONGITUDES (RI)		:	1.63		
21	HID	DENSIDAD DE DRENAJE (D)		:	0.51	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.44	ríos/Km²	
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIAL	_ (Es)	:	0.49	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.24	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	4.52	Km²	
С	UR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES	-		MICRO	CUENCA 91: C	DA. SANGRIN
		ÁREAS SOBRE LAS ALTITUDES (Km2)			666000 6	68000 670000	672000
		0 5 10 15 20 25		ì			
	3334	4.0 1.5	9418000	4	-		9418000
	3150				Ley	enda	
	3050 2950	7.5	9416000		_	Rios Curvas	9416000
_	2850	0.5	148			Curvas Cuenca 91	941
70	2750 2650	0000	۰				
9	2550	0.5	9414000				9414000
Ē	2450	.000		(
٩	2250	5.8	112000	1			9412000
	2150	5.9	a l			The state of the s	3
	1950	0.5 3.7 500	900				9
	1850 1794	40 12	9410000				1:70,000
		0 5 10 15				0 0.5 1	2 3 4 Km
		% (Área Parcia l/ Área total)	8				8

N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	115.24	Km ²	Sub cuenca
2		PERÍMETRO (P)		:	51.82	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	20.26	Km	
4	-ORMA	ANCHO PROMEDIO (Ap)		:	5.69	Km	
5	_	FACTOR DE FORMA (F)		:	0.28		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.36	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2399.31	msnm	
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	2100.50	msnm	
11		PENDIENTE DE LA CUENCA		:	54.15%	Muy Fuerte	(Criterio Alvord)
12	2	COEFICIENTE DE MASIVIDAD (Cm)		:	0.02		,
13		COEFICIENTE OROGRÁFICO (Co)		:	0.050	: 5.00 %	Alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=5.63 km	b=20.48 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	5.45%	(Método de T	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	20.26	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	96.99	min	(Metodo de Kirpich)
18	Z-IC	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)	:	4.00	Orden	, ,
19	RÁF	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.64	Muy Alto	
20	HIDROGRÁFICA	RELACIÓN DE LONGITUDES (RI)		:	0.85		
21	₽ E	DENSIDAD DE DRENAJE (D)		:	0.74	km/km²	
22	EDF	FRECUENCIA DE RÍOS (Fr)		:	0.56	ríos/Km²	
23	RE	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.34	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)	. ,	:	0.29	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	3.28	Km²	
(LLL CUR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	OCUENCA 92:	RIO NARANJO
		ÁREAS SOBRE LAS ALTITUDES (Km2)		36000	639000		5000 648000
		0 50 100 150	9456000				00098
	3629	9.5 0.0	8		L.		a a
	3500	0.5 0.6	3453000	,			93000
	3300	- 3000	8			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
_	3100		8450000		_		00000
msnm	2900		2	6	\sim		*
9	2700 2500	2000	9447000			\sim \sim	7000
Ε	2300		36	1	2	20	
⋖	2100		3444000			1/2	1 1 2
	1900	- 1000	2	1.0	yenda	1' (1
	1700		11000	Le	Emisor		100
	1589	0.5 0.0	3		Rios Curvas		1:120,000
		0 5 10 15 20 25	0008		Cuenca 92	0 0.751	1,5 3 4,5 6 Km
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES —— CURVA HIPSOMÉTRICA	943	36000	639000	642000 64	5000 648000

 Tabla 6.93.
 Resultados de Parametros Geomorfológicos de la Microcuenca 93: Rio Pomayaco

Ν°	_	PARÁMETROS GEOMORFOLÓGICOS			:	RESULT	ADO	
1		ÁREA (A)			30.96	Km ²	Micro cuenca	
2		PERÍMETRO (P)			27.43	Km		
3	-ORMA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)			11.08	Km		
4	FOR	ANCHO PROMEDIO (Ap)			2.80	Km		
5		FACTOR DE FORMA (F)			0.25			
6		ÍNDICE DE COMPACIDAD (Kc)			1.39	Clase II	Oval oblonga	
7		CURVA HIPSOMÉTRICA (CH)			-			
8		FRECUENCIA DE ALTITUDES (FA)			-			
9		ALTITUD MEDIA (Hm)			2916.11	msnm		
10	EVE	ALTITUD MAS FRECUENTE (HF)			3500.50	msnm		
11	RELI	PENDIENTE DE LA CUENCA			52.26%	Muy Fuerte	(Criterio Alvord)	
12	W.	COEFICIENTE DE MASIVIDAD (Cm)			0.09			
13		COEFICIENTE OROGRÁFICO (Co)			0.2747	: 27.47 %	Muy alta	
14		RECTANGULO EQUIVALENTE (Re)			a=2.81 km	b=11.00 km	-	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)			13.78%	(Método de T	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)			11.08	Km		-
17		TIEMPO DE CONCENTRACION (Tc)			49.40	min	(Metodo de Kirp	oich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd)		2.00	Orden		
19	RÁF	RELACIÓN DE CONFLUENCIAS (Rc)			1.33	Muy Alto		
20	SOG	RELACIÓN DE LONGITUDES (RI)			3.28			
21	HDF	DENSIDAD DE DRENAJE (D)			0.44	km/km²		
22	ED F	FRECUENCIA DE RÍOS (Fr)			0.45	ríos/Km²		
23	RE	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	Es)	0.57	km		
24		COEFICIENTE DE TORRENCIALIDAD (Ct)			0.26	ríos/Km²		
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)		5.56	Km²		
	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES	Ė		MICRO	OCUENCA 93: R	RIO POMAYACO	
		ÁREAS SOBRE LAS ALTITUDES (Km2)		666000	669000	672000	675000 678000	
		0 10 20 30 40			Å			
	381	7.0 0.1	9471000	w-	*			9471000
	370	7.6			s			
	350	0.5 17.9 3000	000					000
Ê	330	- 2500	9468000					9468
ALTITUD (msnm)	310	9.9		1				
5	290	0.5 6.4 2000	9465000	4	7			9465000
ALTI.	270	0.5 7.4					1 7	
	250	9.2	9462000					3462000
	230	0.5	36	ı	_eyenda			2
	210		۰	-	• Emisor Curvas			
	193	0	9459000	[Rios Cuenca 93	1:10	0.000	9459000
		0 5 10 15 20 % (Área Parcia I/ Área total)				0 0.75 1.5	3 4.5 6 Km	
		FRECUENCIA DE ALTITUDES ————————————————————————————————————	1	666000	669000	672000	675000 678000	

۷°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	_TADO
1		ÁREA (A)		:	27.87	Km ²	Micro cuenca
2	l	PERÍMETRO (P)		:	23.56	Km	
3 3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	8.88	Km	
4	-CRMA	ANCHO PROMEDIO (Ap)		:	3.14	Km	
5		FACTOR DE FORMA (F)		:	0.35		
6	İ	ÍNDICE DE COMPACIDAD (Kc)		:	1.26	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8	İ	FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2460.31	msnm	
10	IE VE	ALTITUD MAS FRECUENTE (HF)		:	2650.50	msnm	
		PENDIENTE DE LA CUENCA		:	37.32%	Fuerte	(Criterio Alvord)
12	צ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.09		,
13		COEFICIENTE OROGRÁFICO (Co)		:	0.2172	: 21.72 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=3.22 km	b=8.65 kr	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	12.51%	(Método de	e Taylor y Schwarz)
6		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	8.88	Km	, , , ,
17		TIEMPO DE CONCENTRACION (Tc)		:	44.60	min	(Metodo de Kirpich
8	HIDROGRAFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden	
9 2	Ż Y	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.73	Muy Alto	
20 5	5	RELACIÓN DE LONGITUDES (RI)		:	0.94		
21	ļ	DENSIDAD DE DRENAJE (D)		:	0.61	km/km²	
		FRECUENCIA DE RÍOS (Fr)		:	0.61	ríos/Km²	
23	~ 1	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.41	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.32	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	le)	:	3.03	Km²	
CL	JR۱	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICR	OCUENCA 94	4: QDA. SANCAY
		ÁREAS SOBRE LAS ALTITUDES (Km2)		658000	660000	662000	664000 666000
		0 10 20 30	900		Ă.		
		.5 0.2	94860	w	*		+
		.5 1.0	۰		š		
	950 350		9484000				
	750	2500			/		
(E) 26 (E) 25	550	.5	9482000				
	550	.5			5		
=	150	- 1500	9480000			~ ~~	
	350 250		•	~			
	250. 150.	- 1000	28000				
)50	.5	2				
	950	- 500	000	L	eyenda • Emisor		
	363	.5 0,8	9476000		Rios Curvas		1:80,000
		0 5 10 15 20			Cuenca 94	0 0.5 1	2 3 4 Km
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ————————————————————————————————————	474000				

Tabla 6.95. Resultados de Parametros Geomorfológicos de la Microcuenca 95: Rio Castaya

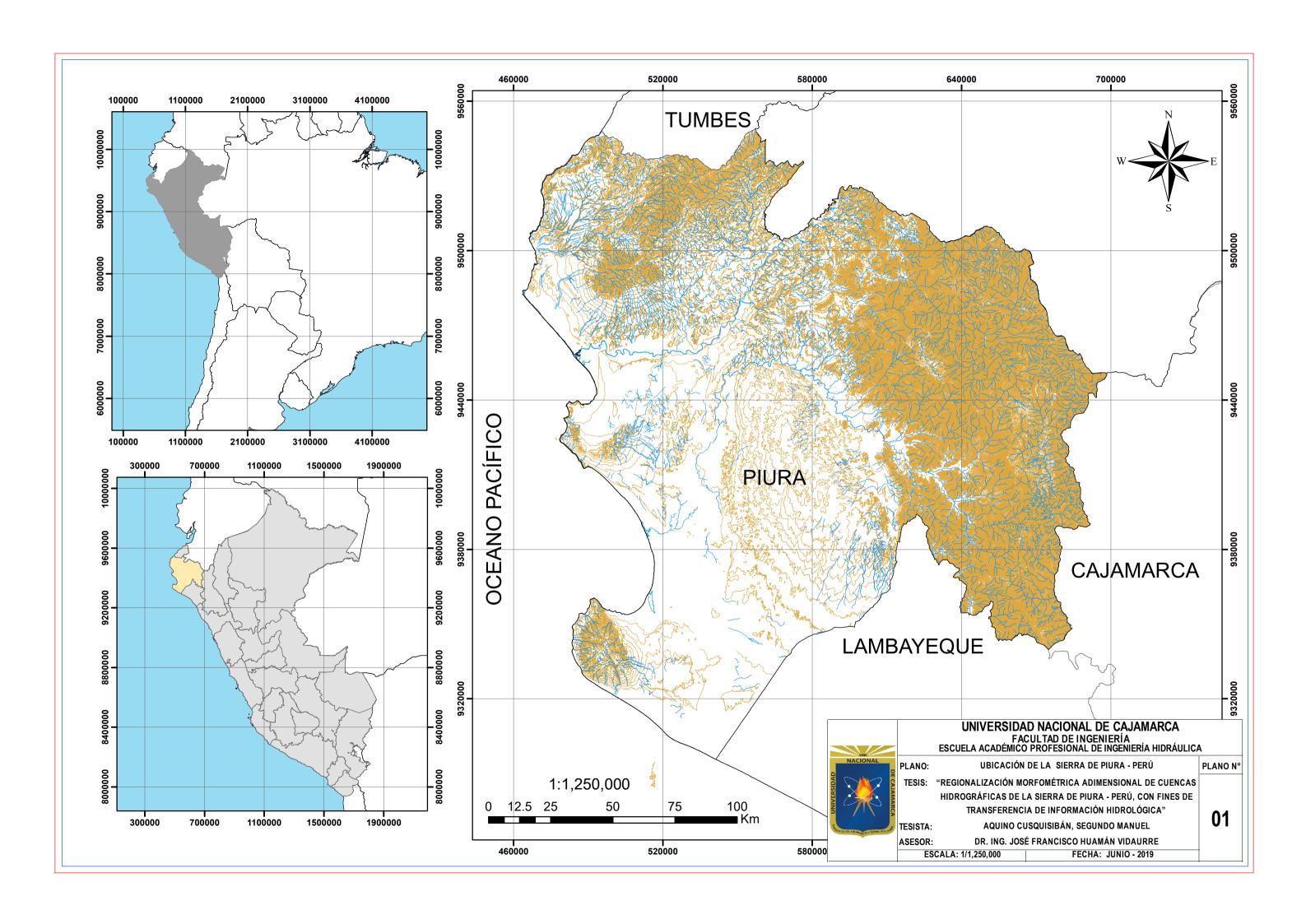
N°	PARÁMETROS GEOMO	ORFOLÓGICOS		:		RESUL	ΓADO
1	ÁREA (A)			:	31.60	Km ²	Micro cuenca
2	PERÍMETRO (P)			:	24.21	Km	
3 ₹	LONGITUD DEL MÁXIMO RE	CORRIDO (Lmax)		:	11.54	Km	
3 WA OF	ANCHO PROMEDIO (Ap)			:	2.74	Km	
5	FACTOR DE FORMA (F)			:	0.24		
6	ÍNDICE DE COMPACIDAD (K	c)		:	1.22	Clase I	Oval redonda
7	CURVA HIPSOMÉTRICA (CH)		:	-		
8	FRECUENCIA DE ALTITUDES	S (FA)		:	-		
9	ALTITUD MEDIA (Hm)			:	2242.37	msnm	
10	ALTITUD MAS FRECUENTE (HF)		:	2350.50	msnm	
11 🗒	PENDIENTE DE LA CUENCA			:	39.30%	Fuerte	(Criterio Alvord)
12	COEFICIENTE DE MASIVIDA	D (Cm)		:	0.07		,
13	COEFICIENTE OROGRÁFICO) (Co)		:	0.1591	: 15.91 %	Muy alta
14	RECTANGULO EQUIVALENT	E (Re)		: :	a=3.73 km	b=8.46 km	
15	PENDIENTE DEL CAUCE PR	INCIPAL (S)		:	10.17%	(Método de	Taylor y Schwarz)
16	LONGITUD DEL CAUCE PRIN			:	11.54	Km	
17	TIEMPO DE CONCENTRACIO	DN (Tc)		:	56.53	min	(Metodo de Kirpich)
18 음	CATEGORIZACIÓN DE LA RE	D DE DRENAJE (I	Rd)	:	2.00	Orden	
18 19 20 21 HDROGRÁFICA	RELACIÓN DE CONFLUENCI	AS (Rc)		:	1.11	Muy Alto	
20 8	RELACIÓN DE LONGITUDES	(RI)		:	0.82		
21 🖺	DENSIDAD DE DRENAJE (D)			:	0.61	km/km²	
22 🔐				:	0.60	ríos/Km²	
23 ~	EXTENSION MEDIA DE ESCU	JRR. SUPERFICIA	L (Es)	:	0.41	km	
24	COEFICIENTE DE TORRENC	IALIDAD (Ct)		:	0.32	ríos/Km²	
25	SUPERFICIE UMBRAL DE ES	CURRIMIENTO (L	Je)	:	5.62	Km²	
CUF	RVA HIPSOMÉTRICA & FRECUENC	IA DE ALTITUDES			MICR	OCUENCA 95:	RIO CASTAYA
	ÁREAS SOBRE LAS ALTITUE	DES (Km2)		64	2000 64	4000 646000	648000
	0 10 20	30 40		Å	,		
	17.0 0.3 50.5 1.5	3300	949200	*	E		8452000
285	3.9	- 3000		8			
	50.5	8.6 2500	9490000				0000694
	50.5	7.5			1888		7
<u>~</u>	50.5	7.8	0000	1	//8554		
225	50.5	8.5 - 1500	98	1			3
_	50.5	8.5 - 1500 8.1	00			Jan Y	
198	50.5	7.4	94860			- A	998
175	50.5	7.6		Ley	enda		$\langle \langle \rangle \rangle$
	50.5 5.1	- 500	9484000	•	Emisor Rios		9484000
	86.0 0.2	0			Curvas Cuenca 95		1:70,000
	0 2 4 6	8 10	182000		-	0 0.5 1	2 3 4 Km
	% (Área Parcia I/ Área t FRECUENCIA DE ALTITUDES ——— CI	otai) JRVA HIPSOMÉTRICA	2	64	12000 64	4000 646000	648000

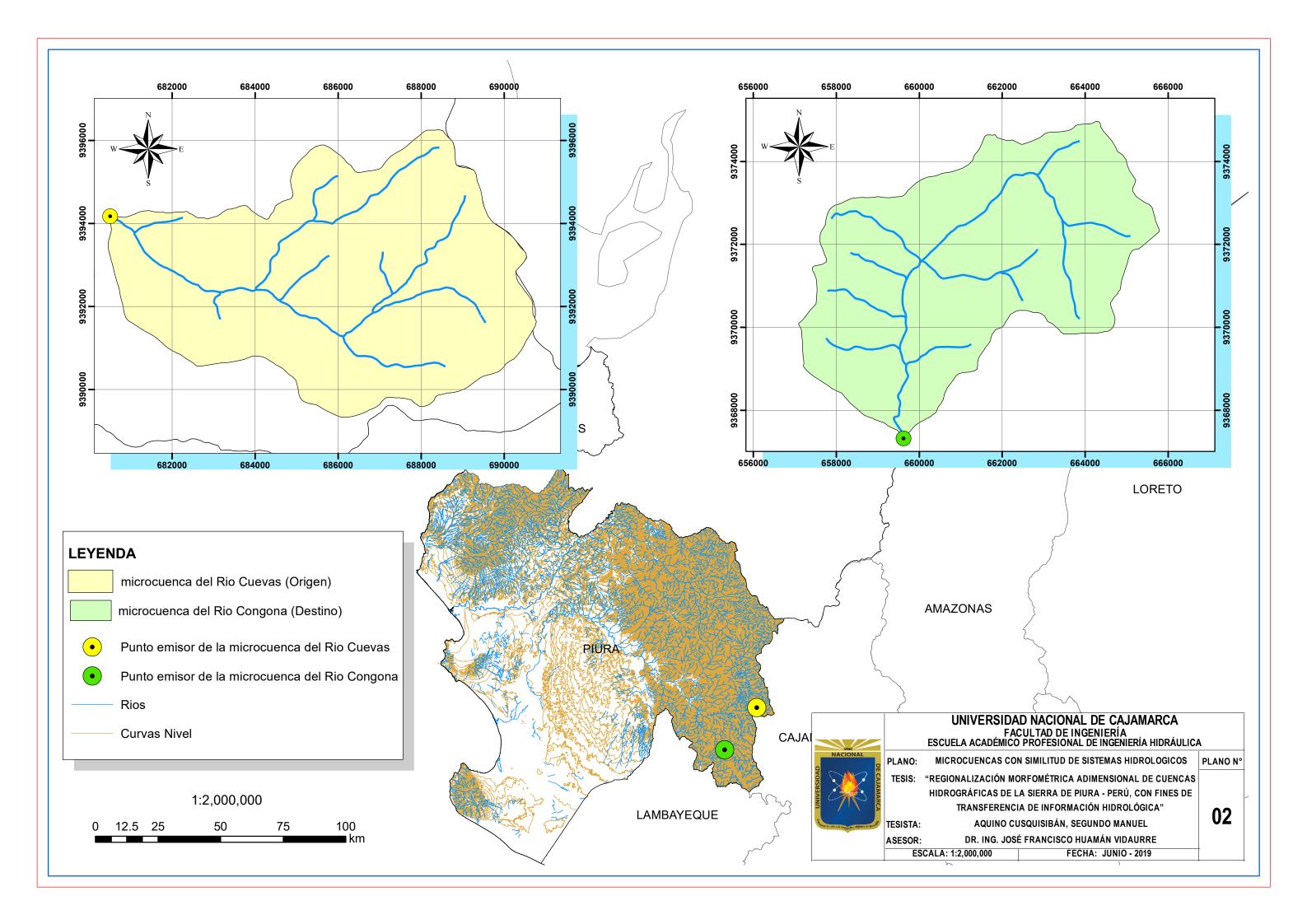
Tabla 6.96. Resultados de Parametros Geomorfológicos de la Microcuenca 96: Qda. Infiernillo

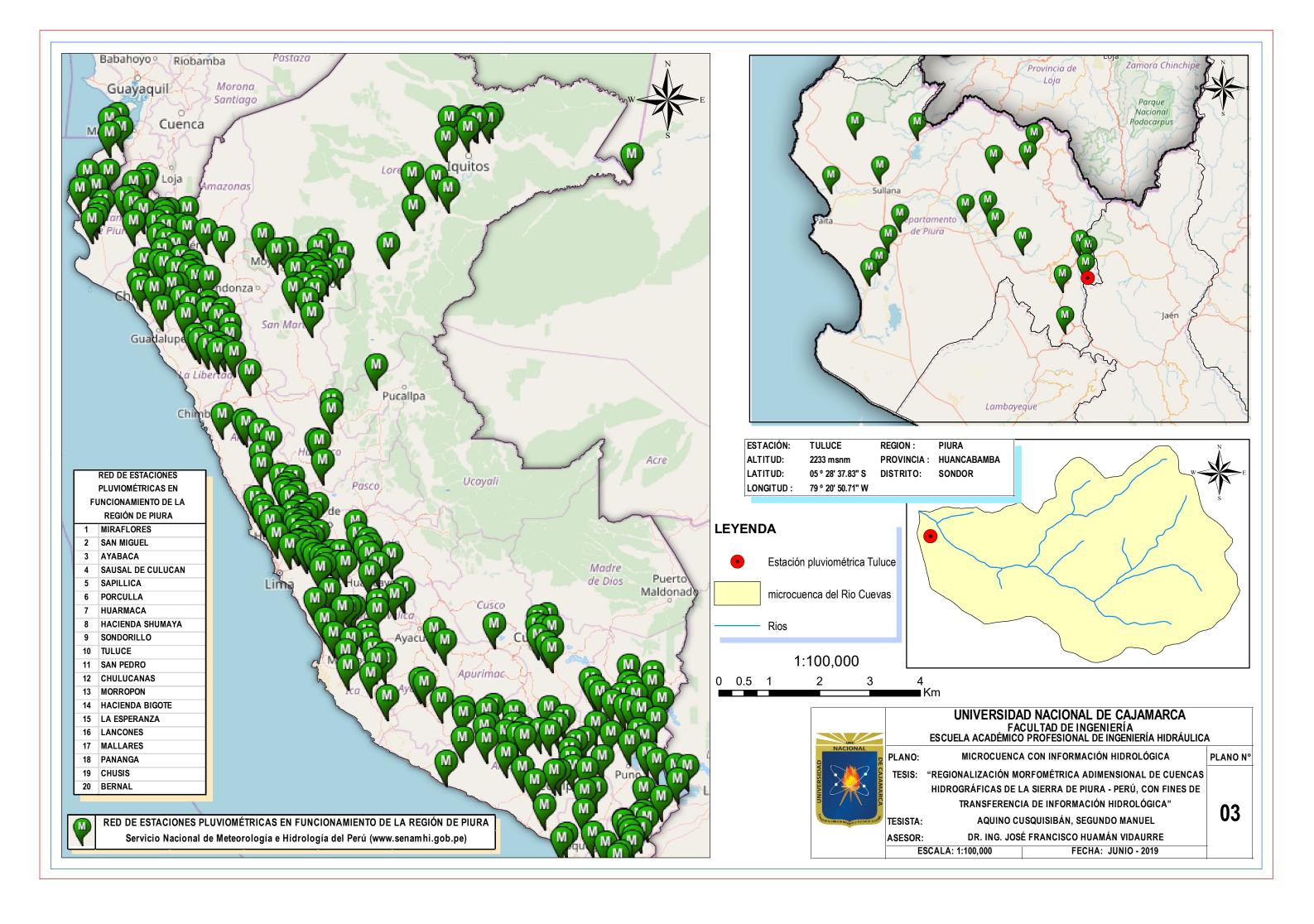
N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESUL	TADO
1		ÁREA (A)		:	21.15	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	20.47	Km	
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		;	8.71	Km	
4	FORMA	ANCHO PROMEDIO (Ap)		:	2.43	Km	
5	_	FACTOR DE FORMA (F)		:	0.28		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.26	Clase II	Oval oblonga
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9		ALTITUD MEDIA (Hm)		:	2233.63	msnm	
10	IEVE	ALTITUD MAS FRECUENTE (HF)		:	2650.50	msnm	
11	RELIE	PENDIENTE DE LA CUENCA	_	:	40.57%	Fuerte	(Criterio Alvord)
12	R	COEFICIENTE DE MASIVIDAD (Cm)	_	:	0.11		,
13		COEFICIENTE OROGRÁFICO (Co)	_	:	0.2359	: 23.59 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)	_	:	a=2.82 km		
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	15.58%		Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	8.71	Km	., . , ,
17		TIEMPO DE CONCENTRACION (Tc)		:	39.73	min	(Metodo de Kirpich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)	:	3.00	Orden	
19	RÁF	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.75	Muy Alto	
20	SOS	RELACIÓN DE LONGITUDES (RI)		:	1.11		
21	IIDF	DENSIDAD DE DRENAJE (D)		:	0.67	km/km²	
22	ED F	FRECUENCIA DE RÍOS (Fr)		:	0.52	ríos/Km²	
23	RE	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	s) :	0.37	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.28	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)	:	2.77	Km²	
	UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES	Ĺ		MICRO	CUENCA 96: C	DA. INFIERNILLO
		ÁREAS SOBRE LAS ALTITUDES (Km2)	000		640000	642000	644000
		0 5 10 15 20 25	9488000	Ă			644000
	2929 2849			***	E		
	2750	7.6	۰	š			
	2650 2550	0.5	948600		1	3	9486000
	2450 2350				12/2		
ıısıı	2250	7.6			All X		
an.	2150 2050	0.5 0.5 8.0	9484000	6			9484000
Ę	2050 1950 1850	0.5 0.5 0.5 1500	56706	138		1	THE R
	1750	0.5 4.5		0			
	1650 1550		9482000			100	9482000
	1450 1351	2.1	8	Leye	enda Emisor		1
	1290				Rios	1:	50,000
		0 5 10 15 % (Área Parcia I/ Área total)	0000		Cuenca 96	0 0.3250.65	1.3 1.95 2.6 Km
		% (Area Parcia i/ Area total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	9480		640000	642000	644000

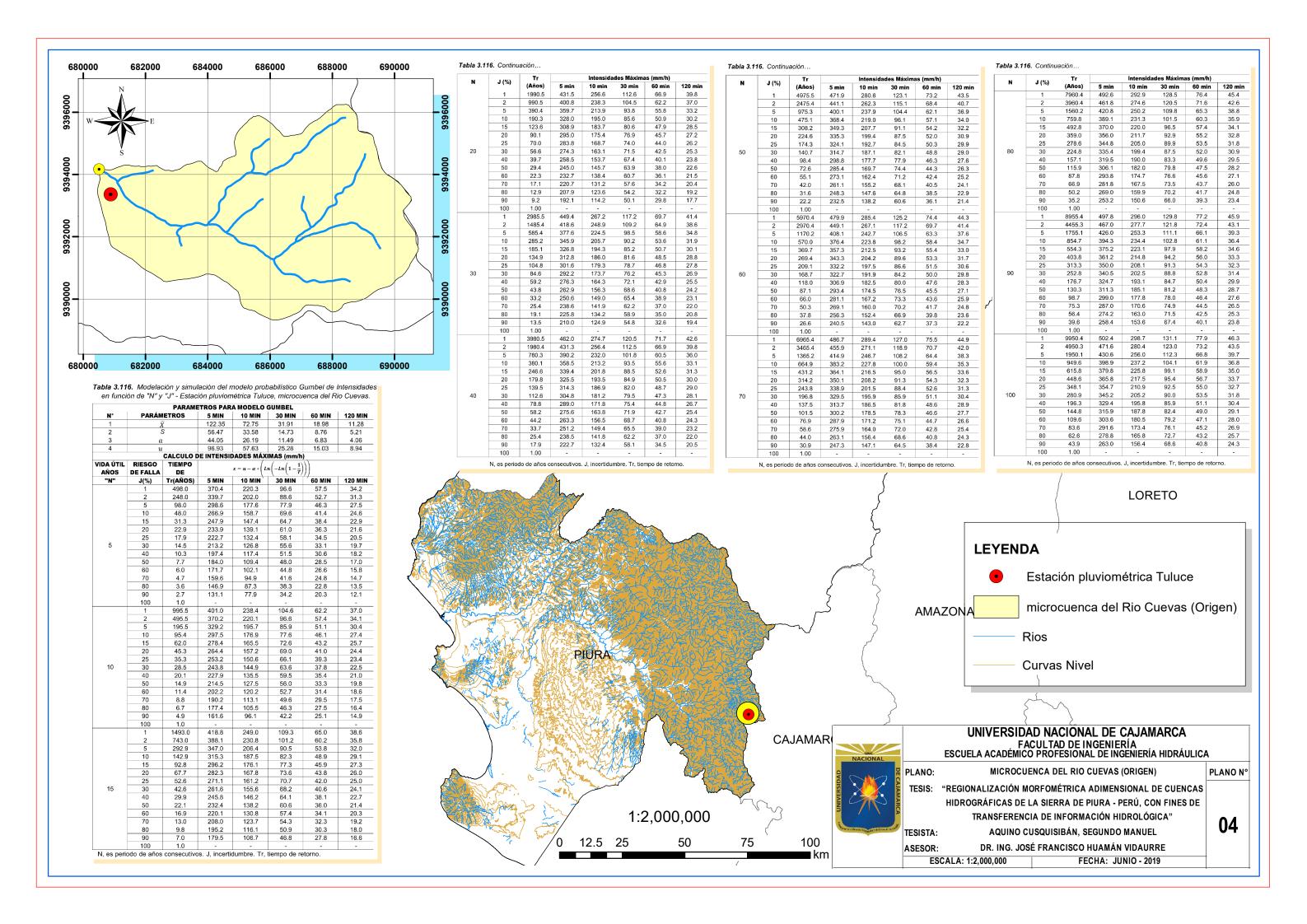
Tabla 6.97. Resultados de Parametros Geomorfológicos de la Microcuenca 97: Rio Mallancoca

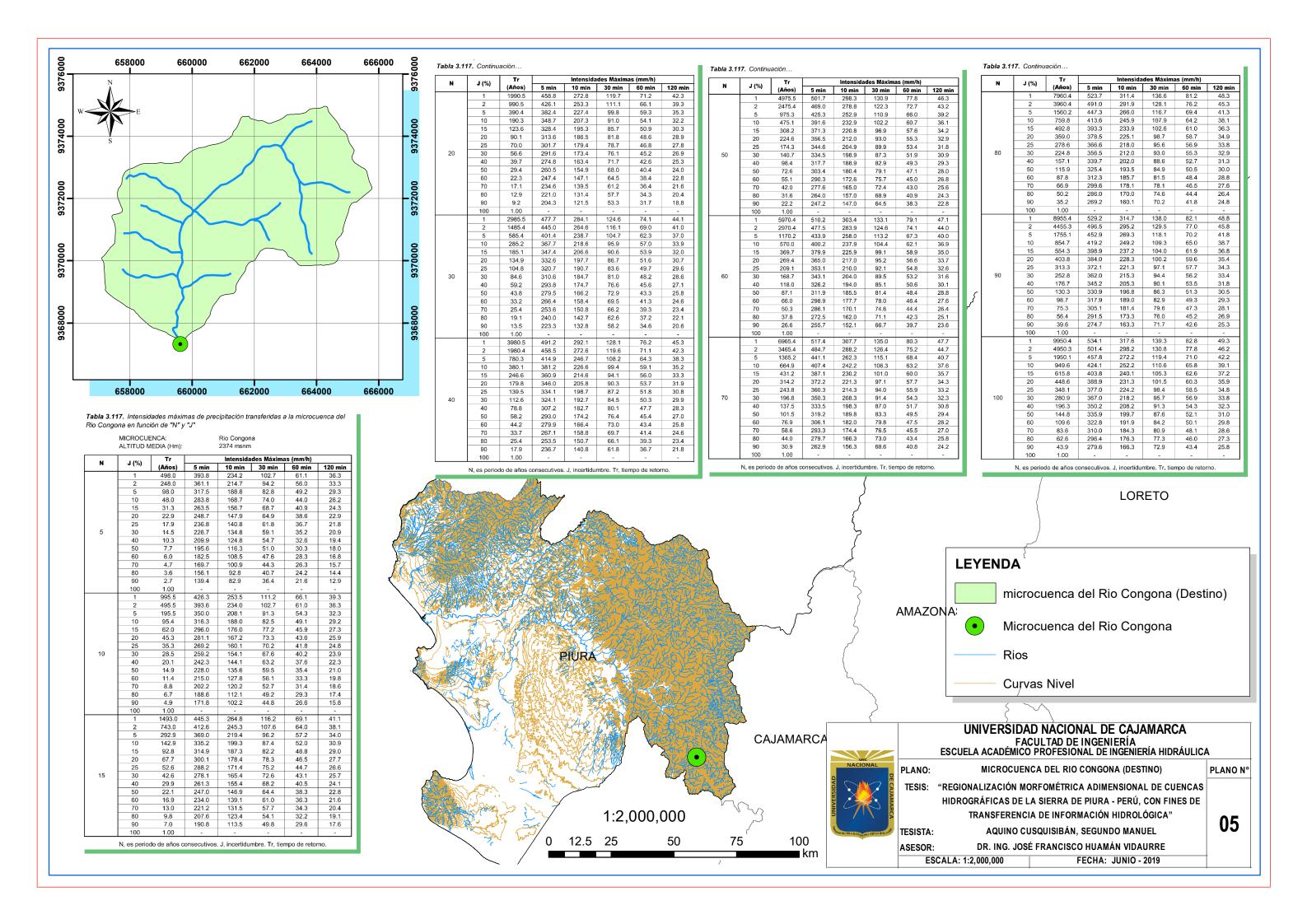
N°		PARÁMETROS GEOMORFOLÓGICOS		:	RESULTADO			
1		ÁREA (A)		:	57.67	Km ²	Micro cuenca	
2		PERÍMETRO (P)		:	33.35	Km		
3	MA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	13.55	Km		
4	FCRMA	ANCHO PROMEDIO (Ap)		:	4.26	Km		
5		FACTOR DE FORMA (F)		:	0.31			
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.24	Clase I	Oval redonda	
7		CURVA HIPSOMÉTRICA (CH)		:	-			
8		FRECUENCIA DE ALTITUDES (FA)		:	-			
9		ALTITUD MEDIA (Hm)		:	1503.95	msnm		
10	EVE	ALTITUD MAS FRECUENTE (HF)		:	1250.50	msnm		
	RE L	PENDIENTE DE LA CUENCA		:	45.23%	Fuerte	(Criterio Alvord)	
12	Y	COEFICIENTE DE MASIVIDAD (Cm)		:	0.03		•	
13	İ	COEFICIENTE OROGRÁFICO (Co)		:	0.0392	: 3.92 %	Moderada	
14	İ	RECTANGULO EQUIVALENTE (Re)		: :	a=4.81 km	b=11.99 km	า	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	8.44%	(Método de	Taylor y Schwarz)	
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	13.55	Km	· · ·	
17		TIEMPO DE CONCENTRACION (Tc)		:	65.41	min	(Metodo de Kirpich)	
18	2	CATEGORIZACIÓN DE LA RED DE DRENAJE (F	Rd)	:	3.00	Orden	<u> </u>	
19	Ϋ́ Y	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.60	Muy Alto		
20	HIDROGRAFICA	RELACIÓN DE LONGITUDES (RI)		:	0.93			
21	₽	DENSIDAD DE DRENAJE (D)		:	0.71	km/km²		
22	_ [FRECUENCIA DE RÍOS (Fr)		:	0.50	ríos/Km²		
23	צ	EXTENSION MEDIA DE ESCURR. SUPERFICIAI	L (Es)	:	0.35	km		
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.26	ríos/Km²		
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	e)	:	3.86	Km²		
CL	JR۱	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICROC	CUENCA 97: R	IO MALLANCOCA	
		ÁREAS SOBRE LAS ALTITUDES (Km2)		62	8000 63000	0 632000	634000 636000	
22	50. 50.	.5 2.0	000000	*	E		0000008	
19 18	50. 50. 50. 50.	5.0 6.5 7.0	8498000				000809	
15 15 14 13	50. 50. 50. 50.	9.2 9.3 9.1	9496000			3/	000000000000000000000000000000000000000	
10 9	50. 50. 50. 50. 50.	5.5 5.5 7.2 5.0 5.1	9492000				0002096	
7	50. 50. 84.	.5 1.5 0 0.2 0 5 10 15	9490000		Leyenda	Vice	1:80,000	
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	8	62	Cuenca 97	-	450.9 1.8 2.7 3.6 Km	

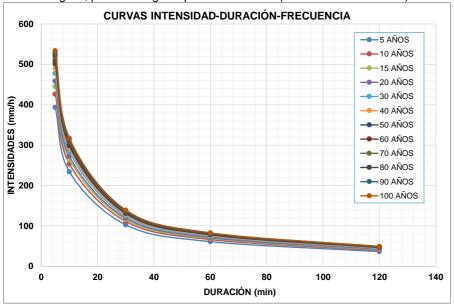

Tabla 6.98. Resultados de Parametros Geomorfológicos de la Microcuenca 98: Qda. Sural


N°		pla 6.98. Resultados de Parametros Geomo PARÁMETROS GEOMORFOLÓGICOS			:	RESULT		
1		ÁREA (A)			: 19.47	Km ²	Micro cuenca	
2		PERÍMETRO (P)			: 18.92	Km		
3	ΜA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)			6.79	Km		
4	FORMA	ANCHO PROMEDIO (Ap)			2.87	Km		
5	ш	FACTOR DE FORMA (F)			0.42			
6		ÍNDICE DE COMPACIDAD (Kc)			: 1.21	Clase I	Oval redonda	
7		CURVA HIPSOMÉTRICA (CH)			: -			
8		FRECUENCIA DE ALTITUDES (FA)						
9		ALTITUD MEDIA (Hm)			2660.44	msnm		
10	IEVE	ALTITUD MAS FRECUENTE (HF)			2450.50	msnm		
11	RELIE	PENDIENTE DE LA CUENCA			66.02%		(Criterio Alvord))
12	8	COEFICIENTE DE MASIVIDAD (Cm)			0.14	,	(**************************************	
13		COEFICIENTE OROGRÁFICO (Co)			0.3635	: 36.35 %	Muy alta	
14		RECTANGULO EQUIVALENTE (Re)			: a=2.97 km			
15		PENDIENTE DEL CAUCE PRINCIPAL (S)			: 10.90%		Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)			6.79	Km		,
17		TIEMPO DE CONCENTRACION (Tc)			: 31.95	min	(Metodo de Kirp	oich)
18	HIDROGRÁFICA	CATEGORIZACIÓN DE LA RED DE DRENAJE (I	Rd)		2.00	Orden	(- /
19	RÁF	RELACIÓN DE CONFLUENCIAS (Rc)			: 1.50	Muy Alto		
20	SOS	RELACIÓN DE LONGITUDES (RI)			: 0.93			
21	HDF	DENSIDAD DE DRENAJE (D)			0.46	km/km²		
22	ED	FRECUENCIA DE RÍOS (Fr)			0.26	ríos/Km²		
23	R	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (E	Es)	: 0.54	km		
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		-	: 0.15	ríos/Km²		
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (L	Je)		: 4.41	Km²		
(UR'	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICE	ROCUENCA 98	: QDA. SURAL	
		ÁREAS SOBRE LAS ALTITUDES (Km2)	31	6840	0 685500	687000	688500 690000	_
		0 5 10 15 20 25	9439500		Ă.			9439500
	3415 3349	2.4	943	W-Z	*			943
	3250	1 3500	000		š			00
	3150	3000	9438000					9438000
	3050 2950			K				
msn	2850	0.5	9436500		M			9436500
9	2750 2650 2550	7.4	20	1				
ALTI	2550 2550	9.6 0.5 11.0 1500	9435000	1	41			9435000
	2450	0.5						
	2350 2250		9433500					433500
	2250 2150	500	å		Leyenda			a
	2063	3.5 0.5	9432000		Emisor Rios		1:55,000	9432000
		0 5 10 15	943		Curvas Cuenca 98	0 0.4 0.8	1.6 2.4 3.2 Km	943
		% (Área Parcia l/ Área total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA		6840	0 685500	687000	688500 690000	


Tabla 6.99. Resultados de Parametros Geomorfológicos de la Microcuenca 99: Rio Pilana


N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ΓADO
1		ÁREA (A)		:	49.80	Km ²	Micro cuenca
2	İ	PERÍMETRO (P)		:	29.46	Km	
3	M	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	15.03	Km	
3 4	5	ANCHO PROMEDIO (Ap)		:	3.31	Km	
5		FACTOR DE FORMA (F)		:	0.22		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.18	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8	İ	FRECUENCIA DE ALTITUDES (FA)		:	-		
9	İ	ALTITUD MEDIA (Hm)		:	1500.93	msnm	
10	<u>ا ۲</u>	ALTITUD MAS FRECUENTE (HF)		:	1300.50	msnm	
11 0		PENDIENTE DE LA CUENCA		:	46.50%	Fuerte	(Criterio Alvord)
12	۲	COEFICIENTE DE MASIVIDAD (Cm)		:	0.03		· · · · · · · · · · · · · · · · · · ·
13	İ	COEFICIENTE OROGRÁFICO (Co)		:	0.0452	: 4.52 %	Alta
14	İ	RECTANGULO EQUIVALENTE (Re)		:	a=5.13 km	b=9.71 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	9.29%	(Método de	Taylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	15.03	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	70.78	min	(Metodo de Kirpich)
18	١ إ	CATEGORIZACIÓN DE LA RED DE DRENAJE (Rd))	:	3.00	Orden	<u> </u>
19	ב צ	RELACIÓN DE CONFLUENCIAS (Rc)		:	1.64	Muy Alto	
18 19 20 20 21 21 21	3	RELACIÓN DE LONGITUDES (RI)		:	1.11		
21	בַּ	DENSIDAD DE DRENAJE (D)		:	0.63	km/km²	
22	ׅׅׅׅׅׅׅׅׅׅׅׅׅׅׅׅ֡֝֝֡֝֝֝֟֝֟֝֟֝ ֚	FRECUENCIA DE RÍOS (Fr)		:	0.62	ríos/Km²	
23	צ	EXTENSION MEDIA DE ESCURR. SUPERFICIAL (Es)	:	0.39	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.32	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (Ue)		:	3.68	Km²	
CU	JR۱	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICI	ROCUENCA 99	9: RIO PILANA
		ÁREAS SOBRE LAS ALTITUDES (Km2)	570	6	02500	605000 607	500 610000
		0 20 40 60		-			
20	95	5.5 0.9	w-	Y	*	- F	0057806
19	900			,			
17	00	7.4			1		0000
_ 15	500					110	3//
ALTITUD (msnm) 11 13 11 0	300	0.5		1	Y		
9 11	00	48228		1	T		00525906
Ę''		1000					
	900	00000			M	1	Leyenda 88
7	'00	0.5	4	2			Rios
5	500	9.6					Curvas Cuenca 99
3	333	2.5	+				9447500
		0 5 10 15 20 25				0_0.5_1	1:80,000 2 3 4 Km
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ————————————————————————————————————		-	02500	605000 607	500 610000


N°		PARÁMETROS GEOMORFOLÓGICOS		:		RESULT	ADO
1		ÁREA (A)		:	34.64	Km ²	Micro cuenca
2		PERÍMETRO (P)		:	24.94	Km	
3	ORMA	LONGITUD DEL MÁXIMO RECORRIDO (Lmax)		:	11.23	Km	
4	FOR	ANCHO PROMEDIO (Ap)		:	3.08	Km	
5		FACTOR DE FORMA (F)		:	0.27		
6		ÍNDICE DE COMPACIDAD (Kc)		:	1.20	Clase I	Oval redonda
7		CURVA HIPSOMÉTRICA (CH)		:	-		
8		FRECUENCIA DE ALTITUDES (FA)		:	-		
9	l	ALTITUD MEDIA (Hm)		:	3248.28	msnm	
10	ELIEVE	ALTITUD MAS FRECUENTE (HF)		:	3250.50	msnm	
11	EL	PENDIENTE DE LA CUENCA		:	32.55%	Accidentado	(Criterio Alvord)
12	œ	COEFICIENTE DE MASIVIDAD (Cm)		:	0.09		
13		COEFICIENTE OROGRÁFICO (Co)		:	0.3046	: 30.46 %	Muy alta
14		RECTANGULO EQUIVALENTE (Re)		:	a=4.09 km	b=8.48 km	
15		PENDIENTE DEL CAUCE PRINCIPAL (S)		:	6.51%	(Método de T	aylor y Schwarz)
16		LONGITUD DEL CAUCE PRINCIPAL (Lcp)		:	11.23	Km	
17	_	TIEMPO DE CONCENTRACION (Tc)		:	66.25	min	(Metodo de Kirpich)
18	FIC/	CATEGORIZACIÓN DE LA RED DE DRENAJE (I		:	3.00	Orden	
19	HIDROGRÁFICA	RELACIÓN DE CONFLUENCIAS (Rc)		:	2.35	Muy Alto	
20	300	RELACIÓN DE LONGITUDES (RI)		:	0.89		
21	₽	DENSIDAD DE DRENAJE (D)		:	0.63	km/km²	
22	ED	FRECUENCIA DE RÍOS (Fr)		:	0.52	ríos/Km²	
23	~	EXTENSION MEDIA DE ESCURR. SUPERFICIA	L (Es)	:	0.39	km	
24		COEFICIENTE DE TORRENCIALIDAD (Ct)		:	0.32	ríos/Km²	
25		SUPERFICIE UMBRAL DE ESCURRIMIENTO (U	le)	:	3.26	Km²	
(CUR	VA HIPSOMÉTRICA & FRECUENCIA DE ALTITUDES			MICRO	CUENCA 100: F	RIO CASH CASH
		ÁREAS SOBRE LAS ALTITUDES (Km2)		50000	662000	664000	666000
		0 10 20 30 40	9436000	N			943600
	3624	0500	**	\downarrow	£ 1		
	3550		00	Å			
	3450	3000	9434000		San	THE	9434000
$\overline{}$	3350	- 2500			JAZ C	3011	
Ξ	3250	.5 18.6	9432000	6		RUSK	- Marie 1
⊏	3150		96	1		IS CENT	372
₹	3050	1500			Jones J.		
2	2950	.5 7.4	9430000		(5)		00000
2	2850	.5 3.5		Lev	venda		
2	2750	.5 0.9	8	•	Emisor		
2	2696	.5 0.0	9428001	_	Curvas Cuenca 100		1:60,000
		0 5 10 15 20		_	_ Cuenca 100	0 0.4 0.8	3 1,6 2.4 3.2 Km
		% (Área Parcia I/ Área total) FRECUENCIA DE ALTITUDES ——— CURVA HIPSOMÉTRICA	6	50000	662000	664000	666000



ANEXO VII: CURVAS INTENSIDAD DURACIÓN FRECUENCIA (IDF) PARA LA MICROCUENCA SIN INFORMACIÓN HIDROLÓGICA (MICROCUENCA DEL RIO CONGONA)

Figura 4.1. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona, para un riesgo de predicción del 1% (ver datos en Tabla 3.14)

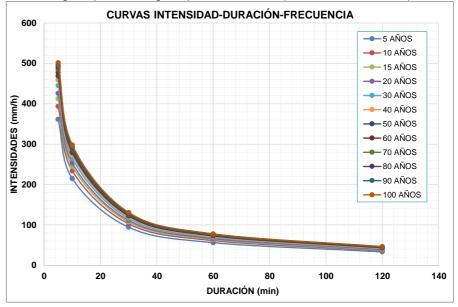
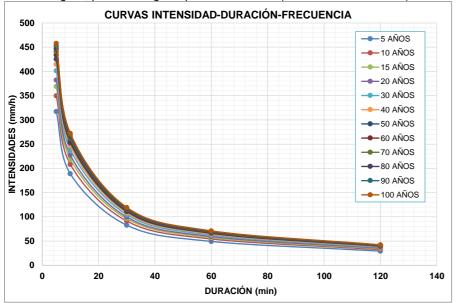

El Gráfico de las curvas IDF para un riesgo de predicción del 1%. Muestra que: a menor duración, mayor intensidad y viceversa. Además, a menor número de años, menores intensidades y viceversa. (ver datos en Tabla 3.14)

Tabla 4.1. Ecuaciones matemáticas de las curvas IDF para un riesgo del 1%

J %	N	Ecuación	R ²
	5	$y = 1316.9x^{-0.75}$	R ² = 1
	10	$y = 1425.4x^{-0.75}$	$R^2 = 1$
	15	$y = 1488.9x^{-0.75}$	$R^2 = 1$
	20	$y = 1533.9x^{-0.75}$	$R^2 = 1$
	30	$y = 1597.4x^{-0.75}$	$R^2 = 1$
4	40	$y = 1642.5x^{-0.75}$	$R^2 = 1$
1	50	$y = 1677.4x^{-0.75}$	$R^2 = 1$
	60	$y = 1706.0x^{-0.75}$	$R^2 = 1$
	70	$y = 1730.1x^{-0.75}$	$R^2 = 1$
	80	$y = 1751.0x^{-0.75}$	$R^2 = 1$
	90	$y = 1769.5x^{-0.75}$	$R^2 = 1$
	100	$y = 1785.9x^{-0.75}$	$R^2 = 1$

Donde "y" (Intensidad máxima) está en función de "x" (duración en minutos). Se verificó que las variables estan bien correlacionadas. R² = 1

Figura 4.2. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona, para un riesgo de predicción del 2% (ver datos en Tabla 3.14)



El Gráfico de las curvas IDF para un riesgo de predicción del 2%. Muestra que: a menor duración, mayor intensidad y viceversa. Además, a menor número de años, menores intensidades y viceversa. (ver datos en Tabla 3.14)

Tabla 4.2. Ecuaciones matemáticas de las curvas IDF para un riesgo del 2%

J %	N	Ecuación	R ²
	5	$y = 1207.5x^{-0.75}$	$R^2 = 1$
	10	$y = 1316.1x^{-0.75}$	$R^2 = 1$
	15	$y = 1488.9x^{-0.75}$	$R^2 = 1$
	20	$y = 1424.6x^{-0.75}$	$R^2 = 1$
	30	$y = 1488.1x^{-0.75}$	$R^2 = 1$
2	40	$y = 1533.1x^{-0.75}$	$R^2 = 1$
2	50	$y = 1568.1x^{-0.75}$	$R^2 = 1$
	60	$y = 1596.6x^{-0.75}$	$R^2 = 1$
	70	$y = 1620.8x^{-0.75}$	$R^2 = 1$
	80	$y = 1641.7x^{-0.75}$	$R^2 = 1$
	90	$y = 1660.1x^{-0.75}$	$R^2 = 1$
	100	$y = 1676.6x^{-0.75}$	$R^2 = 1$

Figura 4.3. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona, para un riesgo de predicción del 5% (ver datos en Tabla 3.14)

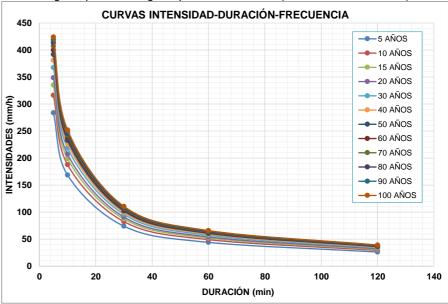
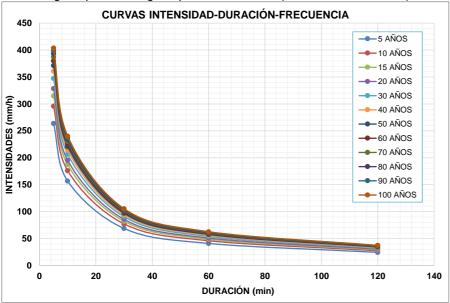

El Gráfico de las curvas IDF para un riesgo de predicción del 5%. Muestra que: a menor duración, mayor intensidad y viceversa. Además, a menor número de años, menores intensidades y viceversa. (ver datos en Tabla 3.14)

Tabla 4.3. Ecuaciones matemáticas de las curvas IDF para un riesgo del 5%

J %	N	Ecuación	R ²
J 70			R ² = 1
	5	$y = 1061.6x^{-0.75}$	
	10	$y = 1170.2x^{-0.75}$	$R^2 = 1$
	15	$y = 1233.7x^{-0.75}$	$R^2 = 1$
	20	$y = 1278.7x^{-0.75}$	$R^2 = 1$
	30	$y = 1342.2x^{-0.75}$	$R^2 = 1$
5	40	$y = 1387.3x^{-0.75}$	$R^2 = 1$
3	50	$y = 1422.2x^{-0.75}$	$R^2 = 1$
	60	$y = 1450.7x^{-0.75}$	$R^2 = 1$
	70	$y = 1474.9x^{-0.75}$	$R^2 = 1$
	80	$y = 1495.8x^{-0.75}$	$R^2 = 1$
	90	$y = 1514.2x^{-0.75}$	$R^2 = 1$
	100	$y = 1530.7x^{-0.75}$	R ² = 1

Donde "y" (Intensidad máxima) está en función de "x" (duración en minutos). Se verificó que las variables estan bien correlacionadas. R² = 1

Figura 4.4. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona, para un riesgo de predicción del 10% (ver datos en Tabla 3.14)



El Gráfico de las curvas IDF para un riesgo de predicción del 10%. Muestra que: a menor duración, mayor intensidad y viceversa. Además, a menor número de años, menores intensidades y viceversa. (ver datos en Tabla 3.14)

Tabla 4.4. Ecuaciones matemáticas de las curvas IDF para un riesgo del 10%

J %	N	Ecuación	R²
	5	$y = 948.93x^{-0.75}$	$R^2 = 1$
	10	$y = 1057.5x^{-0.75}$	$R^2 = 1$
	15	$y = 1121.0x^{-0.75}$	$R^2 = 1$
	20	$y = 1166.0x^{-0.75}$	$R^2 = 1$
	30	$y = 1229.5x^{-0.75}$	$R^2 = 1$
10	40	$y = 1274.5x^{-0.75}$	$R^2 = 1$
10	50	$y = 1309.5x^{-0.75}$	$R^2 = 1$
	60	$y = 1338.0x^{-0.75}$	$R^2 = 1$
	70	$y = 1362.2x^{-0.75}$	$R^2 = 1$
	80	$y = 1383.1x^{-0.75}$	$R^2 = 1$
	90	$y = 1401.5x^{-0.75}$	$R^2 = 1$
	100	$y = 1418.0x^{-0.75}$	$R^2 = 1$

Figura 4.5. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona, para un riesgo de predicción del 15% (ver datos en Tabla 3.14)

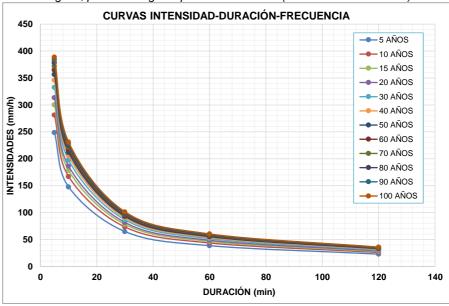
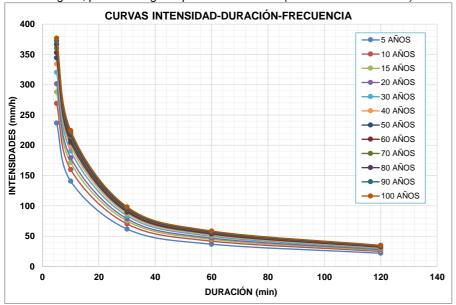

El Gráfico de las curvas IDF para un riesgo de predicción del 15%. Muestra que: a menor duración, mayor intensidad y viceversa. Además, a menor número de años, menores intensidades y viceversa. (ver datos en Tabla 3.14)

Tabla 4.5. Ecuaciones matemáticas de las curvas IDF para un riesgo del 15%

J %	N	Ecuación	R²
	5	$y = 881.07x^{-0.75}$	$R^2 = 1$
	10	$y = 989.61x^{-0.75}$	$R^2 = 1$
	15	$y = 1053.1x^{-0.75}$	$R^2 = 1$
	20	$y = 1098.1x^{-0.75}$	$R^2 = 1$
	30	$y = 1161.6x^{-0.75}$	$R^2 = 1$
15	40	$y = 1206.7x^{-0.75}$	$R^2 = 1$
15	50	$y = 1241.6x^{-0.75}$	$R^2 = 1$
	60	$y = 1270.2x^{-0.75}$	$R^2 = 1$
	70	$y = 1294.3x^{-0.75}$	$R^2 = 1$
	80	$y = 1315.2x^{-0.75}$	$R^2 = 1$
	90	$y = 1333.7x^{-0.75}$	$R^2 = 1$
	100	$y = 1350.2x^{-0.75}$	$R^2 = 1$

Donde "y" (Intensidad máxima) está en función de "x" (duración en minutos). Se verificó que las variables estan bien correlacionadas. R² = 1

Figura 4.6. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona, para un riesgo de predicción del 20% (ver datos en Tabla 3.14)



El Gráfico de las curvas IDF para un riesgo de predicción del 20%. Muestra que: a menor duración, mayor intensidad y viceversa. Además, a menor número de años, menores intensidades y viceversa. (ver datos en Tabla 3.14)

Tabla 4.6. Ecuaciones matemáticas de las curvas IDF para un riesgo del 20%

J %	N	Ecuación	R²
	5	$y = 831.43x^{-0.75}$	$R^2 = 1$
	10	$y = 939.97x^{-0.75}$	$R^2 = 1$
	15	$y = 1003.5x^{-0.75}$	$R^2 = 1$
	20	$y = 1048.5x^{-0.75}$	$R^2 = 1$
	30	$y = 1112.0x^{-0.75}$	$R^2 = 1$
20	40	$y = 1157.0x^{-0.75}$	$R^2 = 1$
20	50	$y = 1192.0x^{-0.75}$	$R^2 = 1$
	60	$y = 1220.5x^{-0.75}$	$R^2 = 1$
	70	$y = 1244.7x^{-0.75}$	$R^2 = 1$
	80	$y = 1265.6x^{-0.75}$	$R^2 = 1$
	90	$y = 1284.0x^{-0.75}$	$R^2 = 1$
	100	$y = 1300.5x^{-0.75}$	$R^2 = 1$

Figura 4.7. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona, para un riesgo de predicción del 25% (ver datos en Tabla 3.14)

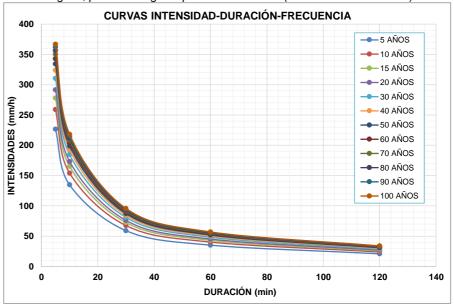
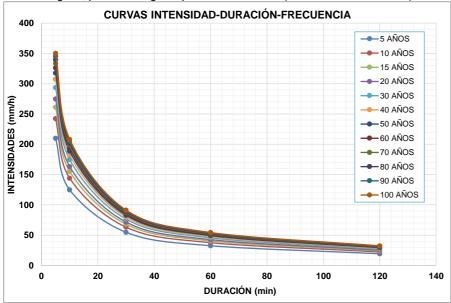

El Gráfico de las curvas IDF para un riesgo de predicción del 25%. Muestra que: a menor duración, mayor intensidad y viceversa. Además, a menor número de años, menores intensidades y viceversa. (ver datos en Tabla 3.14)

Tabla 4.7. Ecuaciones matemáticas de las curvas IDF para un riesgo del 25%

J %	N	Ecuación	R ²
	5	$y = 791.65x^{-0.75}$	$R^2 = 1$
	10	$y = 900.19x^{-0.75}$	$R^2 = 1$
	15	$y = 963.68x^{-0.75}$	$R^2 = 1$
	20	$y = 1008.7x^{-0.75}$	$R^2 = 1$
	30	$y = 1072.2x^{-0.75}$	$R^2 = 1$
25	40	$y = 1117.3x^{-0.75}$	$R^2 = 1$
25	50	$y = 1152.2x^{-0.75}$	$R^2 = 1$
	60	$y = 1180.7x^{-0.75}$	$R^2 = 1$
	70	$y = 1204.9x^{-0.75}$	$R^2 = 1$
	80	$y = 1225.8x^{-0.75}$	$R^2 = 1$
	90	$y = 1244.2x^{-0.75}$	$R^2 = 1$
	100	$y = 1260.7x^{-0.75}$	$R^2 = 1$

Donde "y" (Intensidad máxima) está en función de "x" (duración en minutos). Se verificó que las variables estan bien correlacionadas. R² = 1

Figura 4.8. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona, para un riesgo de predicción del 30% (ver datos en Tabla 3.14)



El Gráfico de las curvas IDF para un riesgo de predicción del 30%. Muestra que: a menor duración, mayor intensidad y viceversa. Además, a menor número de años, menores intensidades y viceversa. (ver datos en Tabla 3.14)

Tabla 4.8. Ecuaciones matemáticas de las curvas IDF para un riesgo del 30%

J %	N	Ecuación	R²
	5	$y = 757.99x^{-0.75}$	R ² = 1
	10	$y = 866.53x^{-0.75}$	$R^2 = 1$
	15	$y = 930.02x^{-0.75}$	$R^2 = 1$
	20	$y = 975.06x^{-0.75}$	$R^2 = 1$
	30	$y = 1038.6x^{-0.75}$	$R^2 = 1$
20	40	$y = 1083.6x^{-0.75}$	$R^2 = 1$
30	50	$y = 1118.5x^{-0.75}$	$R^2 = 1$
	60	$y = 1147.1x^{-0.75}$	$R^2 = 1$
	70	$y = 1171.2x^{-0.75}$	$R^2 = 1$
	80	$y = 1192.1x^{-0.75}$	$R^2 = 1$
	90	$y = 1210.6x^{-0.75}$	$R^2 = 1$
	100	$y = 1227.1x^{-0.75}$	$R^2 = 1$

Figura 4.9. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona, para un riesgo de predicción del 40% (ver datos en Tabla 3.14)

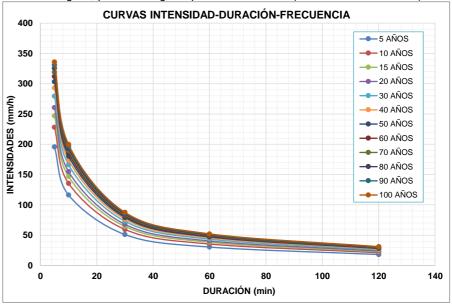
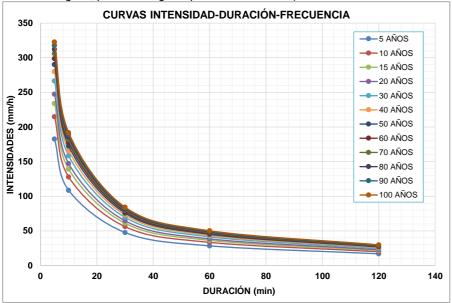

El Gráfico de las curvas IDF para un riesgo de predicción del 40%. Muestra que: a menor duración, mayor intensidad y viceversa. Además, a menor número de años, menores intensidades y viceversa. (ver datos en Tabla 3.14)

Tabla 4.9. Ecuaciones matemáticas de las curvas IDF para un riesgo del 40%

J %	N	Ecuación	R ²
<u> </u>	5	$y = 701.75x^{-0.75}$	R ² = 1
	10	$y = 810.28x^{-0.75}$	$R^2 = 1$
	15	$y = 873.77x^{-0.75}$	$R^2 = 1$
	20	$y = 918.82x^{-0.75}$	$R^2 = 1$
	30	$y = 982.31x^{-0.75}$	$R^2 = 1$
40	40	$y = 1027.4x^{-0.75}$	$R^2 = 1$
40	50	$y = 1062.3x^{-0.75}$	$R^2 = 1$
	60	$y = 1090.8x^{-0.75}$	$R^2 = 1$
	70	$y = 1115.0x^{-0.75}$	$R^2 = 1$
	80	$y = 1135.9x^{-0.75}$	$R^2 = 1$
	90	$y = 1154.3x^{-0.75}$	$R^2 = 1$
	100	$y = 1170.8x^{-0.75}$	$R^2 = 1$

Donde "y" (Intensidad máxima) está en función de "x" (duración en minutos). Se verificó que las variables estan bien correlacionadas. R² = 1

Figura 4.10. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona, para un riesgo de predicción del 50% (ver datos en Tabla 3.14)



El Gráfico de las curvas IDF para un riesgo de predicción del 50%. Muestra que: a menor duración, mayor intensidad y viceversa. Además, a menor número de años, menores intensidades y viceversa. (ver datos en Tabla 3.14)

Tabla 4.10. Ecuaciones matemáticas de las curvas IDF para un riesgo del 50%

J %	N	Ecuación	R²
	5	$y = 653.96x^{-0.75}$	$R^2 = 1$
	10	$y = 762.49x^{-0.75}$	$R^2 = 1$
	15	$y = 825.98x^{-0.75}$	$R^2 = 1$
	20	$y = 871.03x^{-0.75}$	$R^2 = 1$
	30	$y = 934.51x^{-0.75}$	$R^2 = 1$
F0	40	$y = 979.56x^{-0.75}$	$R^2 = 1$
50	50	$y = 1014.5x^{-0.75}$	$R^2 = 1$
	60	$y = 1043.0x^{-0.75}$	$R^2 = 1$
	70	$y = 1067.2x^{-0.75}$	$R^2 = 1$
	80	$y = 1088.1x^{-0.75}$	$R^2 = 1$
	90	$y = 1106.5x^{-0.75}$	$R^2 = 1$
	100	$y = 1123.0x^{-0.75}$	$R^2 = 1$

Figura 4.11. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona, para un riesgo de predicción del 60% (ver datos en Tabla 3.14

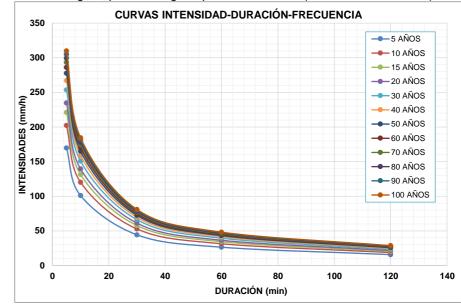
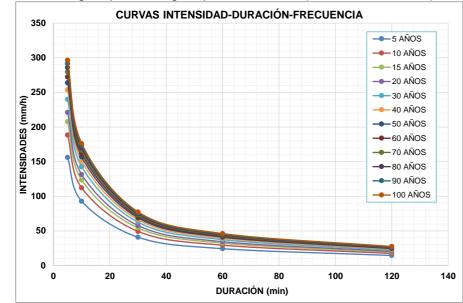

El Gráfico de las curvas IDF para un riesgo de predicción del 60%. Muestra que: a menor duración, mayor intensidad y viceversa. Además, a menor número de años, menores intensidades y viceversa. (ver datos en Tabla 3.14)

Tabla 4.11. Ecuaciones matemáticas de las curvas IDF para un riesgo del 60%

J %	N	Ecuación	R²
	5	$y = 610.26x^{-0.75}$	$R^2 = 1$
	10	$y = 718.79x^{-0.75}$	$R^2 = 1$
	15	$y = 782.28x^{-0.75}$	$R^2 = 1$
	20	$y = 827.32x^{-0.75}$	$R^2 = 1$
	30	$y = 890.81x^{-0.75}$	$R^2 = 1$
00	40	$y = 935.86x^{-0.75}$	$R^2 = 1$
60	50	$y = 970.80x^{-0.75}$	$R^2 = 1$
	60	$y = 999.35x^{-0.75}$	$R^2 = 1$
	70	$y = 1023.5x^{-0.75}$	$R^2 = 1$
	80	$y = 1044.4x^{-0.75}$	$R^2 = 1$
	90	$y = 1062.8x^{-0.75}$	$R^2 = 1$
	100	$y = 1079.3x^{-0.75}$	$R^2 = 1$

Donde "y" (Intensidad máxima) está en función de "x" (duración en minutos). Se verificó que las variables estan bien correlacionadas. R² = 1

Figura 4.12. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona, para un riesgo de predicción del 70% (ver datos en Tabla 3.14)



El Gráfico de las curvas IDF para un riesgo de predicción del 70%. Muestra que: a menor duración, mayor intensidad y viceversa. Además, a menor número de años, menores intensidades y viceversa. (ver datos en Tabla 3.14)

Tabla 4.12. Ecuaciones matemáticas de las curvas IDF para un riesgo del 70%

J %	N	Ecuación	R²
	5	$y = 567.50x^{-0.75}$	$R^2 = 1$
	10	$y = 676.04x^{-0.75}$	$R^2 = 1$
	15	$y = 739.52x^{-0.75}$	$R^2 = 1$
	20	$y = 784.57x^{-0.75}$	$R^2 = 1$
	30	$y = 848.06x^{-0.75}$	$R^2 = 1$
70	40	$y = 893.10x^{-0.75}$	$R^2 = 1$
70	50	$y = 928.05x^{-0.75}$	$R^2 = 1$
	60	$y = 956.59x^{-0.75}$	$R^2 = 1$
	70	$y = 980.73x^{-0.75}$	$R^2 = 1$
	80	$y = 1001.6x^{-0.75}$	$R^2 = 1$
	90	$y = 1020.1x^{-0.75}$	$R^2 = 1$
	100	$y = 1036.6x^{-0.75}$	$R^2 = 1$

Figura 4.13. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona, para un riesgo de predicción del 80% (ver datos en Tabla 3.14)

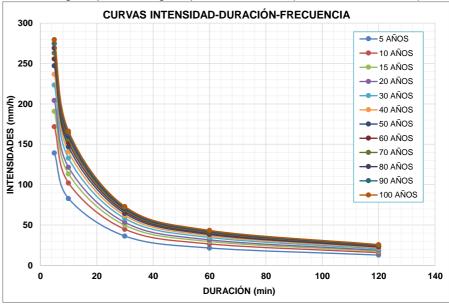

El Gráfico de las curvas IDF para un riesgo de predicción del 80%. Muestra que: a menor duración, mayor intensidad y viceversa. Además, a menor número de años, menores intensidades y viceversa. (ver datos en Tabla 3.14)

Tabla 4.13. Ecuaciones matemáticas de las curvas IDF para un riesgo del 80%

J %	N	Ecuación	R ²
J 70			R ² = 1
	5	$y = 522.05x^{-0.75}$	K ² = 1
	10	$y = 630.59x^{-0.75}$	$R^2 = 1$
	15	$y = 694.07x^{-0.75}$	$R^2 = 1$
	20	$y = 739.12x^{-0.75}$	$R^2 = 1$
	30	$y = 802.61x^{-0.75}$	$R^2 = 1$
90	40	$y = 847.66x^{-0.75}$	$R^2 = 1$
80	50	$y = 882.60x^{-0.75}$	$R^2 = 1$
	60	$y = 911.14x^{-0.75}$	$R^2 = 1$
	70	$y = 935.28x^{-0.75}$	$R^2 = 1$
	80	$y = 956.19x^{-0.75}$	$R^2 = 1$
	90	$y = 974.63x^{-0.75}$	$R^2 = 1$
	100	$y = 991.13x^{-0.75}$	$R^2 = 1$

Donde "y" (Intensidad máxima) está en función de "x" (duración en minutos). Se verificó que las variables estan bien correlacionadas. R² = 1

Figura 4.14. Curvas Intensidad Duración Frecuencia (IDF) para la microcuenca del Rio Congona, para un riesgo de predicción del 90% (ver datos en Tabla 3.14)

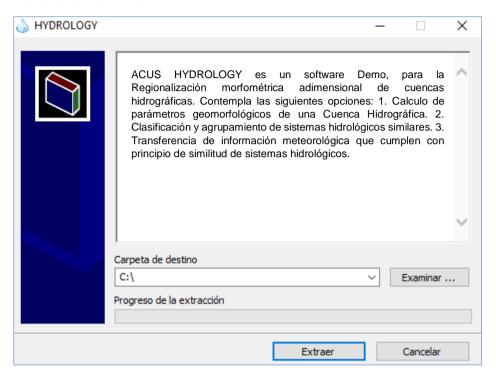
El Gráfico de las curvas IDF para un riesgo de predicción del 90%. Muestra que: a menor duración, mayor intensidad y viceversa. Además, a menor número de años, menores intensidades y viceversa. (ver datos en Tabla 3.14)

Tabla 4.14. Ecuaciones matemáticas de las curvas IDF para un riesgo del 90%

J %	N	Ecuación	R²
	5	$y = 465.97x^{-0.75}$	$R^2 = 1$
	10	$y = 574.51x^{-0.75}$	$R^2 = 1$
	15	$y = 637.99x^{-0.75}$	$R^2 = 1$
	20	$y = 683.04x^{-0.75}$	$R^2 = 1$
	30	$y = 746.53x^{-0.75}$	$R^2 = 1$
90	40	$y = 791.58x^{-0.75}$	$R^2 = 1$
90	50	$y = 826.52x^{-0.75}$	$R^2 = 1$
	60	$y = 855.06x^{-0.75}$	$R^2 = 1$
	70	$y = 879.20x^{-0.75}$	$R^2 = 1$
	80	$y = 900.11x^{-0.75}$	$R^2 = 1$
	90	$y = 918.55x^{-0.75}$	$R^2 = 1$
	100	$y = 935.05x^{-0.75}$	$R^2 = 1$

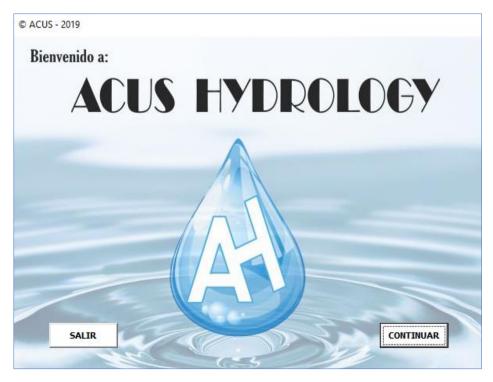
ACUS HYDROLOGY

(MANUAL DE USUARIO)


Requisitos mínimos del sistema:

Windows 7 o superior Microsoft Excel 3MB de espacio libre en disco.

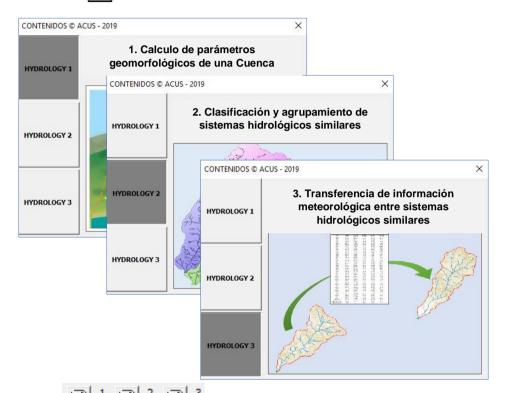
ACUS HYDROLOGY


I. INSTALACIÓN DEL PROGRAMA

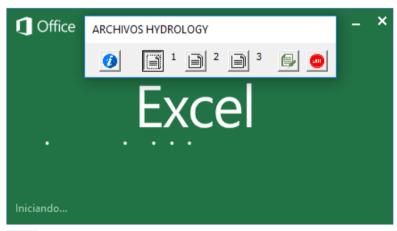
ACUS HYDROLOGY es un software Demo, que se instalará en el disco **C:** y creará un ícono de acceso directo en el escritorio.

II. PANTALLA DE INICIO

Al abrir el programa se mostrará la ventana de inicio, podrás seguir con el botón (*CONTINUAR*), caso contario en el botón (*SALIR*) para cerrar.



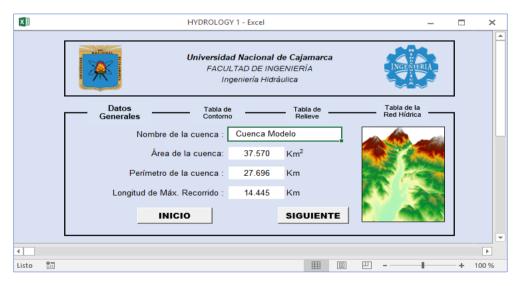
III. MENÚ PRINCIPAL


En el menú principal encontramos la siguiente ventana con las opciones de:

• En la opción apertura una Ventana de AYUDA al usuario, para el uso de software

En la opción (1,2,3), realizan los cálculos independientemente descritos en la opción (2,3), realizan los cálculos independientemente descritos en la opción (3)

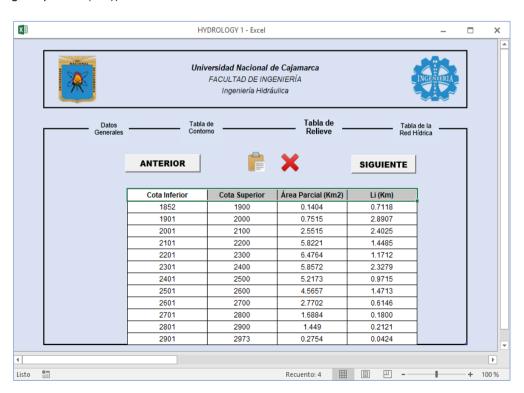
- La opción apertura una Ventana de **TÉRMINOS Y CONDICIONES** del software.
- La opción **FINALIZA** la aplicación.


IV. VENTANA HYDROLOGY 1 © ACUS

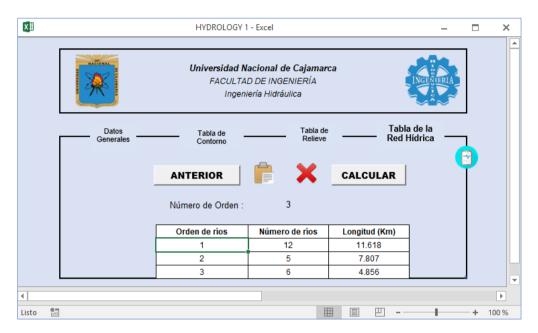
En esta ventana se Inicia de los cálculos de parámetros geomorfológicos de una Cuenca Hidrográfica, tenemos las opciones de realizar un **NUEVO** o **CONTINUAR** con un proceso. Además, tenemos el botón de **SALIR** para abandonar el programa.

DATOS GENERALES

En esta ventana (**DATOS GENERALES**) deberá ingresar los parámetros solicitados, tales como: Nombre de la cuenca, el área de la cuenca, el perímetro de la cuenca y la longitud de su máximo recorrido en las unidades correspondientes.


TABLA DE CONTORNO

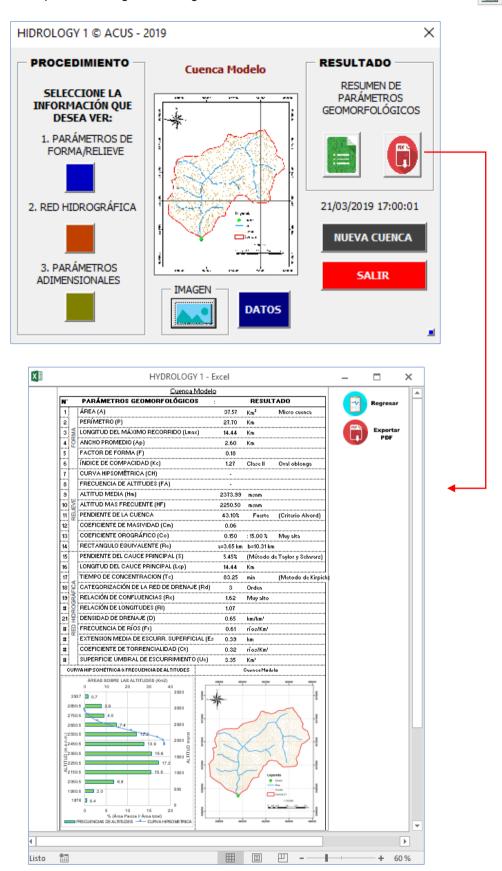
Si le damos en botón (*SIGUIENTE*) nos apertura la siguiente ventana, encontramos el botón para *PEGAR* los datos solicitados, el botón para *BORRAR* todos de esta ventana. Copiamos un conjunto de datos (Cotas de las curvas, debemos conocer su longitud total en metros y en kilómetros) ya existentes en algún archivo de Excel.


TABLA DE RELIEVE

Si le damos en botón (*SIGUIENTE*) nos apertura la siguiente ventana, encontramos la opción para *PEGAR* los datos solicitados, el botón para *BORRAR* todos de esta ventana. De la misma manera copiamos un conjunto de datos (Cota Inferior, Cota Superior, Área Parcial (Km2) y Longitud parcial (Km)).

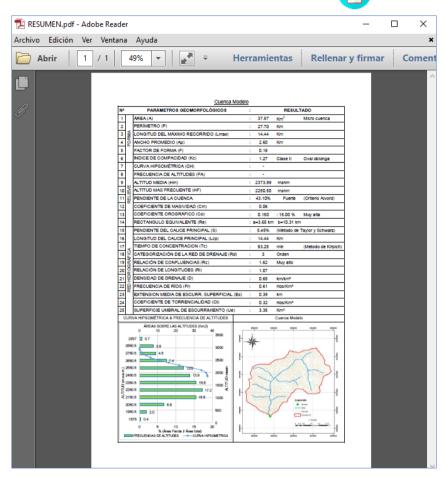
TABLA DE LA RED HÍDRICA

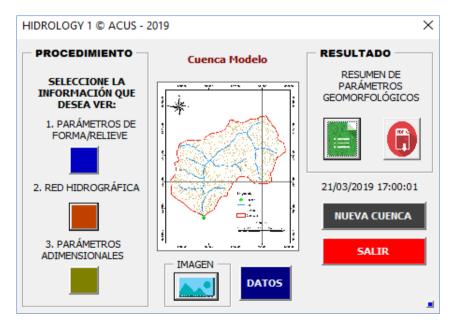
Esta la última ventana de ingreso de datos, se apertura por el botón (*SIGUIENTE*). De igual manera, encontramos la opción para *PEGAR* los datos solicitados, el botón para *BORRAR* todos de esta ventana. Los datos solicitados serán de la Red Hídrica (Orden de ríos, Número de ríos y su Longitud (Km)).


PROCESAMIENTO DE DATOS

Una vez ingresados los datos solicitados, serán procesados haciendo clic en el botón (*CALCULAR*). Al finalizar el procesamiento de datos, se apertura una ventana de resultados automáticamente.

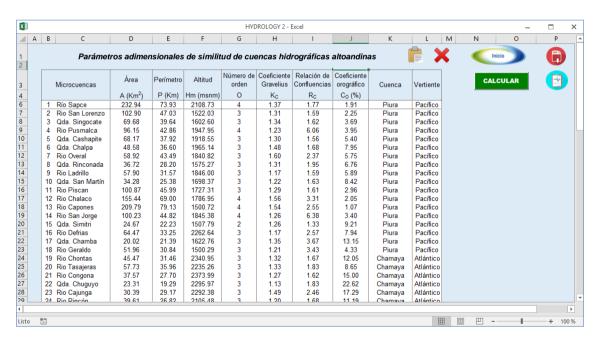
RESULTADOS


En esta ventana podremos visualizar los **RESULTADOS**, **PROCEDIMIENTOS** descrito en esta **TESIS** y además podemos cargar una imagen de la delimitación de la cuenca en el botón

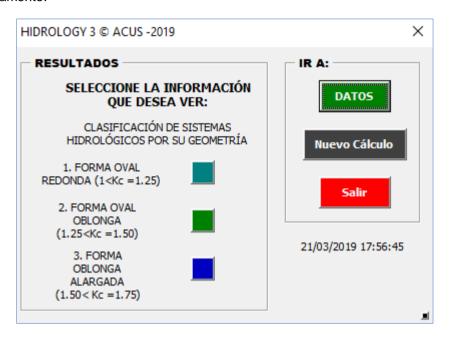

GENERACIÓN DE REPORTE

La generación de reporte de **RESULTADOS**, **PROCEDIMIENTOS** será en el botón tenemos la opción de regresar a cualquier ventana con el botón

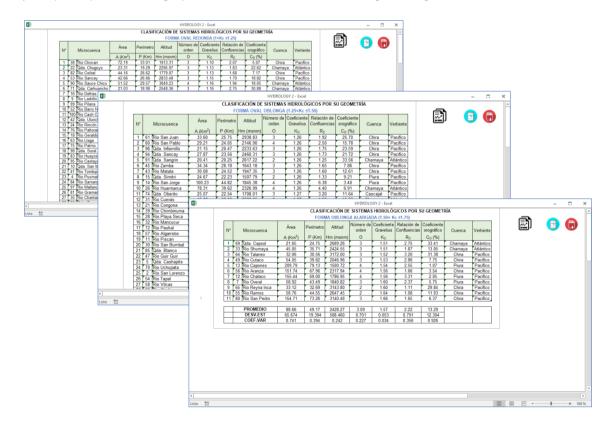
Finalmente, en lo que respecta a HYDROLOGY 1 © ACUS, tienen las opciones de realizar un nuevo cálculo con la opción **NUEVA CUENCA**, regresar a **DATOS**, o **SALIR** guardando o no el cálculo realizado.


V. VENTANA HYDROLOGY 2 © ACUS

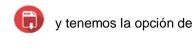
En esta ventana se Inicia de los cálculos de Clasificación y agrupamiento de sistemas hidrológicos similares, tenemos las opciones de realizar un **NUEVO** o **CONTINUAR** con un proceso. Además, tenemos el botón de **SALIR** para abandonar el programa.

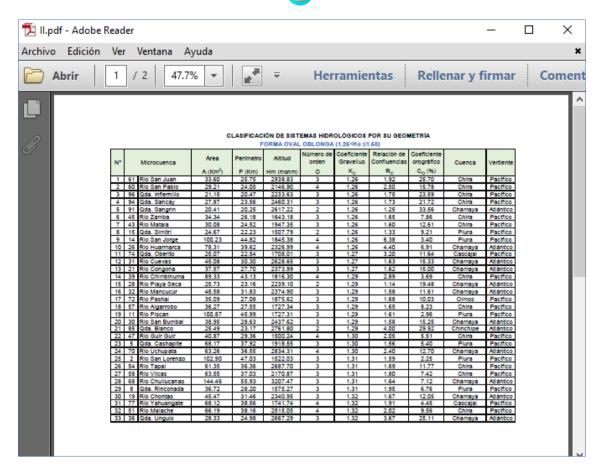

DATOS GENERALES

Si le damos en botón (*CONTINUAR*) nos apertura la siguiente ventana, encontramos el botón para *PEGAR* los datos el botón para *BORRAR* todos de esta ventana. Copiamos un conjunto de datos solicitados en una regionalización morfométrica adimensional según el encabezado de la tabla ya existentes en algún archivo de Excel.


PROCESAMIENTO DE DATOS

Una vez ingresados los datos solicitados, serán procesados haciendo clic en el botón (*CALCULAR*). Al finalizar el procesamiento de datos, se apertura una ventana de resultados automáticamente.

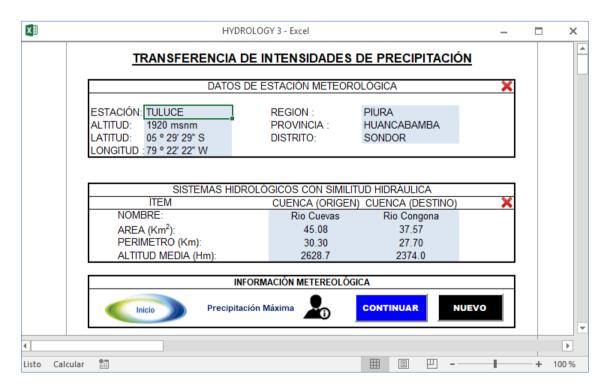

RESULTADOS


En esta ventana podremos visualizar los *RESULTADOS* descrito en esta *TESIS* cuencas de la forma Oval Redonda, Oval Oblonga, Oblonga Alargada (en función al coeficiente de Gravelius) y la opción para formar grupo con similitud sistemas hidrológicos según sea el caso.

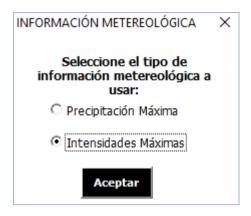
GENERACIÓN DE REPORTE

La generación de reporte de **RESULTADOS** será en el botón regresar a cualquier ventana con el botón

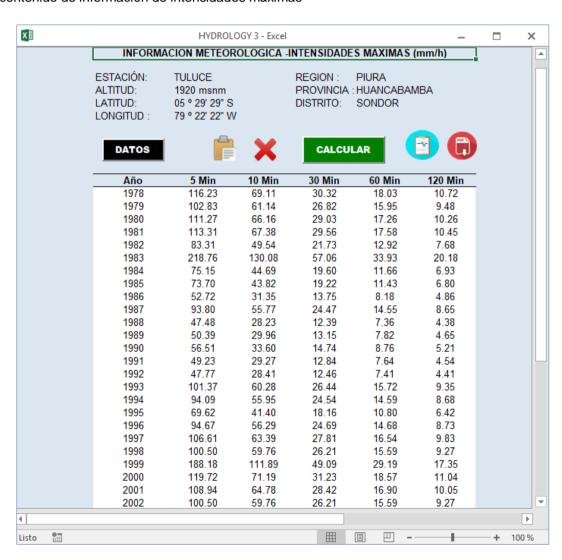
Finalmente, en lo que respecta a HYDROLOGY **2** © ACUS, tienen las opciones de realizar un **NUEVO CÁLCULO**, regresar a **DATOS**, o **SALIR** guardando o no el cálculo realizado.


VI. VENTANA HYDROLOGY 3 © ACUS

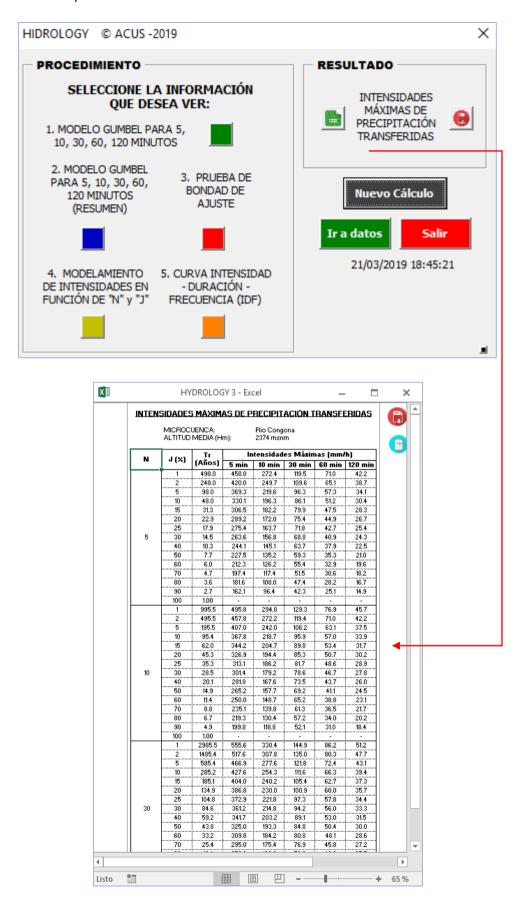
En esta ventana se Inicia de los cálculos Transferencia de información meteorológica entre sistemas hidrológicos similares, tenemos las opciones de *INICIAR* con un proceso, o el botón de *SALIR* para abandonar el programa.



DATOS GENERALES


Si le damos en botón (*INICIAR*) nos apertura la siguiente ventana, Llenamos la información solicitada de la estación como también los sistemas hidrológicos similares. Tenemos el botón para *BORRAR* todos de esta ventana. Podemos *CONTINUAR* o generar un *NUEVO* cálculo.

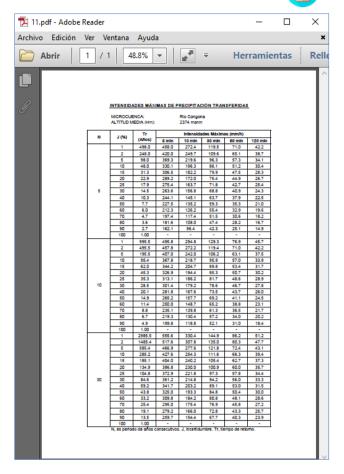
En la opción de **NUEVO** abrirá una ventana, donde nos preguntará con que información meteorológica desea realizar el cálculo.



Esta ventana de ingreso de datos encontramos la opción para *PEGAR* los datos solicitados, el botón para *BORRAR* todos de esta ventana. Se muestra un ejemplo de contenido de información de intensidades máximas

RESULTADOS

En esta ventana podremos visualizar los RESULTADOS Y PROCEDIMIENTOS.



GENERACIÓN DE REPORTE

La generación de reporte de **RESULTADOS**, **PROCEDIMIENTOS** será en el botón

tenemos la opción de regresar a cualquier ventana con el botón

Finalmente, en lo que respecta a HYDROLOGY 3 © ACUS, tienen las opciones de realizar un **NUEVO CÁLCULO**, regresar a **DATOS**, o **SALIR** guardando o no el cálculo realizado.

