UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERIA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERIA CIVIL

PROYECTO PROFESIONAL

"PAVIMENTACIÓN DE LAS URBANIZACIONES SARITA, ALAN PERÚ LAS MARGARITAS; Y CALLES DEL BARRIO SAN JOSÉ"

PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO CIVIL

PRESENTADO POR LOS BACHILLERES: ERNESTO HILARIO MUÑOZ SÁNCHEZ OMAR MAGUÍN JAIME REBAZA

> CAJAMARCA PERU 2013

A mis padres, Alfonso y Regina, quienes con su cariño y apoyo incondicional, me impulsaron para poder concluir este proyecto.

Ernesto.

A mis padres, Juan y Eva, a quienes estaré eternamente agradecido, pues sin su apoyo y paciencia, no habría sido posible culminar este proyecto.

Omar.

ÍNDICE

RESUMEN	001
CAPÍTULO I: INTRODUCCIÓN	003
1.1 OBJETIVOS	003
1.2 ANTECEDENTES	003
1.3 ALCANCES.	004
1.4 CARACTERÍSTICAS LOCALES.	004
1.4.1 Ubicación	004
1.4.2 Limites	004
1.4.3 Descripción de la zona	004
1.4.4 Información socio económica y poblacional	005
1.5 JUSTIFICACIÓN.	005
CAPÍTULO II: REVISIÓN DE LITERATURA	006
2.1 ESTUDIO TOPOGRÁFICO	006
2.1.1 GENERALIDADES	006
2.1.2 TRABAJO DE CAMPO	006
a) Reconocimiento	006
b) Ubicación de vértices	006
c) Medición de lados.	007
d) Medición de ángulos	007
e) Azimut de uno de los lados	007
f) Nivelación de las estaciones de la poligonal	007
g) Radiación	007
2.1.3 TRABAJO DE GABINETE	008
A) Fundamentos para el cálculo de una poligonal	008
B) Tipo de topografía	011
C) Escala del plano topográfico.	011
D) Equidistancia entre curvas de nivel	011
2.1.4 NIVELACIÓN DE EJES LONGITUDINALES.	012
2.1.5 SECCIONAMIENTO	012
2.2 DISEÑO GEOMÉTRICO DE LAS VÍAS	013
2.2.1 GENERALIDADES.	013
2.2.2 ELEMENTOS BÁSICOS PARA EL DISEÑO GEOMÉTRICO DE VÍAS	014
2.2.3 DISEÑO DEL EJE EN PLANTA	015
2.2.4 TRAZADO DE PERFILES LONGITUDINALES.	016
2.2.5 SECCIONES TRANSVERSALES	016
a) Algunas normas para el diseño de vías locales en habilitaciones urbanas	017
b) Adecuación urbanística para limitados físicos	017
2.2.6 CARACTERÍSTICAS DE LOS VEHÍCULOS	018
2.3 ESTUDIO DE SUELOS Y MATERIALES PARA LA PAVIMENTACIÓN	026
2.3.1 EXPLORACIÓN DE SUELOS	026
2.3.2 ESTUDIO DE SUELOS: ENSAYOS DE LABORATORIO.	028
a) Contenido de Humedad	028
b) Peso Específico.	028
c) Análisis Granulométrico	030
d) Límites de Consistencia	031
e) Compactación.	033
f) Ensayo CBR	034
2.3.3 CLASIFICACIÓN DE SUELOS	035
A) Sistema de Clasificación de Suelos de la AASHTO	035
B) Sistema de Clasificación Unificada de Suclos (SUCS)	036
C) Métodos de Identificación de Campo para suelos	-JJC
o fracciones de grano fino	038
2.3.4 PERFILES ESTRATIGRÁFICOS	039

PAVIMENTACIÓN DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS; Y CALLES DEL BARRIO SAN JOSÉ

	042
2.3.5 ESTUDIO DE MATERIALES	042
2.4 PAVIMENTOS	044
2.4.1 DEFINICIÓN DE PAVIMENTO	044
2.4.2 ESTRUCTURA DEL PAVIMENTO	044
2.4.3 PAVIMENTOS USADOS EN VÍAS URBANAS	045
2.4.4 ASPECTOS A TENER EN CUENTA EN LA ELECCIÓN	
DEL TIPO DE PAVIMENTO	046
2.4.5 SUELOS DE SUBRASANTE	047
2.4.5.1 Subrasantes de baja plasticidad	048
2.4.5.2 Subrasantes de alia plasticidad	048
2.4.6 ESTUDIO DEL TRÁFICO PARA FINES DE DISEÑO DEL PAVIMENTO	049
2.4.6 ESTUDIO DEL TRAFICO PARA FINES DE DISENO DEL PAVIMENTO	051
2.4.7.1 Principales funciones de la sub base	052
2.4.7.2 Esfuerzos que actúan en los pavimentos rígidos	053
2.4.7.3 Coeficientes de Seguridad	053
2.4.7.4 Juntas	053
a) Agrietamiento	055
b) Eficiencia de la junta	057
c) Factores que contribuyen a la transferencia de carga	058
d) Tipos de juntas	059
2.4.7.5 Barras de amarre	067
2.4.7.6 Pasajuntas	069
2.4.7.7 Diseño de pavimentos: Método de la Asociación de Cementos Portland (PCA)	071
a) Factores de diseño	071
a)1. Resistencia a la Flexión del concreto	071
a)2. Теттепо de Apoyo o Base	073
a)3. Periodo de Diseño	074
a)4. Número de Repeticiones esperadas para cada eje	075
Factor de Crecimiento Anual (FCA)	076
Factor de Sentido (FS)	077
Factor de Carril (FC)	078
b) Procedimiento de Diseño	078
Análisis por Fatiga.	079
Análisis por Erosión.	080
2.4.8 DISEÑO DE MEZCLAS	088
2.5 HIDROLOGÍA Y DISEÑO DE OBRAS DE ARTE	093
2.5.1 ESTUDIO HIDROLÓGICO	094
a)Periodo de Retorno	094
b) Tiempo de Concentración	095
c) Caudales.	098
d) Cálculo de las capacidades hidránticas.	100
e)Cálculo de los caudales de diseño en cada tramo.	101
2.5.2 DISEÑO DE OBRAS DE ARTE	102
a) Sumideros.	102
a)1 Procedimiento General.	102
a)2 Localización final	102
a)3 Tipos de sumidero	103
a) 3.1 Sumidero de ventana	103
a) 3.2 Sumidero de reja sobre Calzada	108
b) Diseño Hidráulico de Canales Rectangulares	112
2.6 SEÑALIZACIÓN	114
2.6.1 GENERALIDADES	114
2.6.2 SEÑALES VERTICALES	114
2.6.2.1 Generalidades	114
2.6.2.2 Señales reguladoras o de reglamentación.	117
2.6.2.3 Señales preventivas.	120
2.6.2.4 Señales informativas.	120
2.6.3 MARCAS EN EL PAVIMENTO	127
2.6.3.1 Generalidades.	127
2.6.3.2 Marcas en el pavimento y bordes de pavimento.	127
2.0.3.2 Marcas ch ci paviniciae y unius us pavinicae	127

PAVIMENTACIÓN DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS; Y CALLES DEL BARRIO SAN JOSÉ

2.6.3.3 Demarcación de bordes de aceras e islas	133
2.6.4 SEMÁFOROS PARA EL CONTROL DE TRÁNSITO DE VEHÍCULOS	134
2.6.4.1 Clasificación.	134
2.6.4.2 Significado de las indicaciones	134
2.6.5 SEMÁFOROS PARA PASOS PEATONALES	134
2.6.5.1 Significado de las indicaciones	134
CAPÍTULO III: RECURSOS MATERIALES Y HUMANOS	136
3.1 RECURSOS MATERIALES.	136
3.2 RECURSOS HUMANOS	136
CAPÍTULO IV: METODOLOGÍA Y PROCEDIMIENTO	137
4.1 LEVANTAMIENTO TOPOGRÁFICO	137
4.1.1 TRABAJO DE CAMPO	137
a) Reconocimiento	137
b) Ubicación de vértices	137
c) Medición de lados	137
d) Medición de ángulos	137
e) Medición del azimut de uno de los lados	137 137
f) Nivelación de las estaciones de la poligonal	137
4.1.2 TRABAJO DE GABINETE	138
Cálculo de los ángulos promedio y compensación de los mismos	138
Cálculo de azimut y rumbos.	138
Cálculo de las proyecciones de los lados	138
Compensación de las proyecciones	138
Cálculo de las coordenadas	138
Compensación de las cotas de las estaciones	138
Cálculo de la nivelación taquimétrica.	139
Equidistancia y Escala del plano topográfico	139
	176
4.2 DISEÑO GEOMÉTRICO DE LAS VÍAS.	177
4.2.1 DISEÑO DE LOS EJES LONGITUDINALES EN PLANTA	177
4.2.2 DIBUJO DE PERFILES 4.2.3 CALZADA	177 177
4.2.4 VEREDAS.	177
4.2.5 RAMPAS PARA LIMITADOS FÍSICOS	177
4.2.6 VÍAS LOCALES PRINCIPALES	177
4.2.7 VÍAS LOCALES SECUNDARIAS	177
4.3 ESTUDIO DE SUELOS Y MATERIALES PARA LA PAVIMENTACIÓN	178
4.3.1 ESTUDIO DE SUELOS	178
4.3.1.1 Ubicación y apertura de calicatas	178
4.3.1.2 Ensayos de laboratorio	178
a) Contenido de Humedad.	178
b) Peso Específico	179
c) Análisis Granulométrico	179
e) Compactación	181 183
f) Ensayo CBR.	184
Exploración Geotécnica.	229
4.3.2 MATERIAL DE CANTERA	240
4.4 DISEÑO DEL PAVIMENTO	246
4.4.1 ELECCIÓN DEL TIPO DE PAVIMENTO.	246
4.4.2 DISEÑO DEL PAVIMENTO.	246
a) Vías Principales	246
Análisis del Tráfico	246
Cálculo de las repeticiones esperadas	247
Cálculo del Módulo de Sub reacción (k) de diseño	251
Esfuerzo equivalente Esfuerzo equivalente	252 252
Relación de Esfuerzos.	252 252

PAVIMENTACIÓN DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS; Y CALLES DEL BARRIO SAN JOSÉ

Análisis por Fatiga	252
Análisis por Erosión	253
Cálculo del espesor del pavimento	254
b) Vías Secundarias	255
Cálculo de las repeticiones esperadas	256
Esfuerzo equivalente.	258
Relación de Esfuerzos.	258
Análisis por Fatiga	258
Análisis por Erosión	258
Cálculo del espesor del pavimento	259
4.4.3 DISEÑO DE JUNTAS	259
4.4.3.1 Juntas transversales de contracción	259
4.4.3.2 Juntas longitudinales.	263
4.4.5.3 Juntas transversales de construcción.	264
4.4.5.4 Juntas de aislamiento	264
4.4,5.5 Juntas de expansión	264
•	
4.5 DISEÑO DE MEZCLAS	265
4.6 HIDROLOGÍA Y DISEÑO DE OBRAS DE ARTE	283
4.6.1 ESTUDIO HIDROLÓGICO	283
a) Período de Retorno	283
b) Tiempo de Concentración.	283
c) Coeficiente de Escorrentía.	284
4.6.2 CÁLCULO DE CAUDALES	284
A) Caudal en cada tramo	284
B) Caudales acumulados	284
C) Capacidades hidráulicas	284
4.6.3 VELOCIDAD EN CADA TRAMO	285
Cuadro: Resumen de caudales y capacidades hidráulicas para las diferentes calles.	286
4.6.4 DISEÑO DE SUMIDEROS Y CANALES	291
Cuadro: Resumen de cálculos para el sistema de drenaje	318
4.6.5 DISEÑO ESTRUCTURAL	323
4.7 SEÑALIZACIÓN	338
a) Señales Reguladoras	338
b) Señales Preventivas.	338
c) Marcas en la calzada	338
CAPÍTULO V: PRESENTACIÓN DE RESULTADOS	339
5.1 ESTUDIO TOPOGRÁFICO	220
	339
5.2 GEOMETRÍA VIAL	339 339
Cuadro: Resumen de parámetros físicos y mecánicos, obtenidos del análisis de suelos	340
	341
CAPÍTULO VI: CONCLUSIONES Y RECOMENDACIONES	342
6.1 CONCLUSIONES.	342
6.2 RECOMENDACIONES	343
	- ,-
BIBLIOGRAFÍA	345
ANEXOS	346
ANÁLISIS DE COSTOS UNITARIOS	347
PRESUPUESTO DE OBRA	382
FÓRMULA POLINÓMICA	385
PROGRAMACIÓN DE OBRA	388
ESPECIFICACIONES TÉCNICAS	392

TÍTULO: "Pavimentación de las urbanizaciones: Sarita, Alan Perú, Las Margaritas; y calles del barrio San José".

RESUMEN

El estudio comprende seis capítulos, los cuales han sido desarrollados de manera práctica y resumida, para su mejor comprensión y aplicación.

El primer capítulo es la introducción al proyecto y en él se mencionan los objetivos que se persiguen, antecedentes y características locales y la respectiva justificación.

El segundo capítulo trata de la bibliografía necesaria para la realización del presente estudio. Cabe indicar que se ha puesto énfasis en lo concerniente a drenaje urbano.

El tercer capítulo menciona los recursos humanos y materiales que han hecho posible la realización de este proyecto.

El cuarto capítulo enfoca la metodología, procedimiento de datos, las dimensiones y valores a utilizarse en la ejecución de los diferentes aspectos que comprende el proyecto. Así, podemos decir que para efectuar el levantamiento topográfico se utilizó, como red de apoyo, una poligonal cerrada (6 polígonos) más dos polígonos auxiliares; en lo que respecta a la geometría de las vías sólo se tuvo que realizar el análisis de calzadas, bermas y aceras, puesto que los alineamientos y dimensiones de éstas ya están establecidos.

Para el estudio de suelos, se procedió con la apertura de 11 calicatas y la toma de muestras de cada una de ellas para luego efectuar los ensayos de laboratorio respectivos.

Con el análisis de suelos se determinó que el suelo más desfavorable es el correspondiente al estrato E-2 de la calicata C-11, con CBR = 4.25 %, valor que se utilizó en el diseño del pavimento. El material de cantera para la construcción del pavimento, es el de la cantera Venecia, ubicada en el río Mashcón, cerca al área del proyecto (800 metros aproximadamente), cuyo análisis arrojó resultados satisfactorios (Clasificación A-1a, GP; CBR = 63 %).

Para determinar la carga vehicular a utilizar en el diseño del pavimento, se efectuó un control de cantidad y tipo de vehículos en la intersección de las calles Chanchamayo y Huancavelica. El tipo de pavimento seleccionado fue el rígido y para el diseño de la losa se utilizó el Método de la Asociación del Cemento Portland (PCA) que dio como resultado un espesor de losa de 20 cm., para las vías principales y de 17.5 cm. para las vías secundarias.

Debido a que una apreciable cantidad de vehículos que circulan por la zona es de carga considerable y los suelos de fundación son de mala calidad, se consideró pasajuntas en el diseño del pavimento para las calles Chanchamayo y Miguel Iglesias, con la finalidad de distribuir mejor las cargas y reducir las deflexiones y esfuerzos en las losas de concreto.

Se ha considerado el diseño de un sistema de drenaje consistente en canales recolectores de aguas de lluvia, con sus respectivos sumideros.

En lo concerniente a la señalización, ésta se ha basado en las normas para el diseño y utilización de los dispositivos de control del tránsito, contenidas en el "Manual de Dispositivos de Control del Tránsito Automotor para Calles y Carreteras", revisado y actualizado por el Ministerio de Transportes, Comunicaciones, Vivienda y Construcción.

El quinto capítulo abarca la presentación de resultados de todos los aspectos desarrollados en el presente estudio.

En el sexto capítulo se indican las conclusiones y recomendaciones finales con la intención de optimizar los procedimientos al momento de ejecutar la obra y así obtener una mejor calidad de la misma.

La parte de anexos contiene el análisis de costos unitarios, la cantidad de insumos requeridos, el presupuesto de obra, fórmula polinómica y programación de obra, y las especificaciones técnicas.

CAPITULO I: INTRODUCCIÓN.

Uno de los factores de mayor importancia que influye directamente en el desarrollo de una ciudad es su sistema vial. La funcionalidad y tiempo de duración de un pavimento dependen directamente de su correcto diseño y construcción.

Un estudio de pavimentación para ciudades como Cajamarca, donde las lluvias son de intensidad considerable y están presentes durante gran parte del año, no sólo debe ser una propuesta de solución a la falta de pavimento sino también al problema ocasionado por el escurrimiento de las aguas superficiales, especialmente en zonas ubicadas en la parte baja de la ciudad; problema que si no es tratado, y de manera conveniente, va ha agravarse aún más con la expansión urbana.

Tomando en cuenta estos aspectos, se decidió elaborar el presente trabajo, esperando sea un aporte más para el desarrollo y bienestar de la zona y por consiguiente de la ciudad de Cajamarca.

1.1 OBJETIVOS.

- Colaborar en el mejoramiento del sistema vial de la ciudad de Cajamarca, facilitando el tránsito vehicular y peatonal. Con lo cual se estará brindando la posibilidad de que las líneas de transporte urbano consideren en su recorrido a algunas calles de la zona y así brinden un mejor servicio a la colectividad en general.
- Elaborar un estudio de pavimentación donde prime el aspecto técnico, tratando en lo posible de optimizar costos y recursos, para obtener resultados que realmente garanticen la calidad y duración de la obra.
- Cumplir con los fines de extensión y proyección social hacia la comunidad por parte de la Universidad Nacional de Cajamarca.

1.2 ANTECEDENTES

La zona en estudio carece de un proyecto integral de pavimentación. Sin embargo, se tiene conocimiento que existen estudios de algunos sectores, los cuales se refieren sobre todo al diseño del pavimento, restándole importancia al estudio de suelos y generalmente dejando de lado el estudio del drenaje de aguas superficiales.

Los moradores, sobre todo en la parte baja de la zona, en épocas de lluvia, siempre sufren de incomodidades en su desplazamiento y hasta a veces sus viviendas se ven severamente afectadas (esto mismo ocurre en toda la parte baja de la ciudad), por lo que en diversas oportunidades han solicitado a la municipalidad local, tome en cuenta este problema cuando efectúe la pavimentación de las calles.

1.3 ALCANCES

Este proyecto se propone servir a la comunidad en general, presentando una alternativa de solución a la problemática ocasionada por la carencia de pavimento en las calles y el escurrimiento de las aguas de lluvia.

1.4 CARACTERISTICAS LOCALES

1.4.1 UBICACIÓN

La zona en estudio forma parte del casco urbano de la ciudad de Cajamarca, ubicada al norte con respecto a la plaza de armas, a un costado de la Av. Vía de Evitamiento Norte y rodeando a la urbanización José Sabogal (FONAVI I), con una altitud que varía entre 2,742 y 2,724 m.s.n.m.

1.4.2 LÍMITES

NORTE

Av. Vía de Evitamiento.

ESTE

Jr. Miguel Iglesias.

SUR

Jr. Chepén y Jr. Sara Mc Dougall.

OESTE

Jr. Angamos.

1.4.3 DESCRIPCION DE LA ZONA

- a) Topografía.- La topografía del terreno es llana de superficie levemente ondulada y cuya inclinación aproximada de suroeste a noreste y de sureste a noroeste es de 2.85 % y 0.50 %, respectivamente.
 - b) Vías de acceso.- Las principales vías de acceso a la zona son las calles Angamos, Chanchamayo y Miguel Iglesias.
 - c) Clima.- El clima de Cajamarca es templado, variando a lo largo de todo el año, con diferencias notorias de una estación a otra. Las temperaturas diarias varían entre 22°C y 5°C. Presenta una humedad relativa promedio anual de 74%. Las precipitaciones pluviales son mínimas entre junio y setiembre y máximas entre diciembre y abril, siendo la precipitación promedio anual de 700 mm.

1.4.5 INFORMACIÓN SOCIO ECONÓMICA Y POBLACIONAL

a) Vias de comunicación.

La zona cuenta con tres vías principales que comunican con el centro de la ciudad y que son las calles Angamos, Chanchamayo y Miguel Iglesias.

b) Vivienda.

Las edificaciones son de material noble en su mayoría (60 %), existiendo también las de tapial (30 %) y algunas de adobe (10 %).

1.4.5 INFORMACIÓN SOCIO ECONÓMICA Y POBLACIONAL

a) Vías de comunicación.

La zona cuenta con tres vías principales que comunican con el centro de la ciudad y que son las calles Angamos, Chanchamayo y Miguel Iglesias.

b) Vivienda.

Las edificaciones son de material noble en su mayoría (60 %), existiendo también las de tapial (30 %) y algunas de adobe (10 %).

c) Educación.

La zona no cuenta con centros educativos, sin embargo existen varios ubicados muy cerca a ella.

d) Servicios.

Existe un puesto policial en la cuadra 5 del Jr. Chepén. Además, se cuenta con los servicios de alcantarillado, agua potable, alumbrado eléctrico y servicio telefónico. La zona no cuenta con un puesto de salud.

e) Población.

El número de familias beneficiadas con la ejecución del proyecto se estima en 650. Teniendo en cuenta que cada núcleo familiar está conformado por un promedio de 6 personas, la población beneficiada será aproximadamente de unos 3,900 habitantes.

1.5 JUSTIFICACION

La ejecución del proyecto, además de proporcionar comodidad y seguridad en el desplazamiento de los pobladores, sobre todo en épocas lluviosas, facilitará el ingreso de vehículos de carga, abastecedores de los principales mercados y centros comerciales, evitando su circulación por el centro histórico de la ciudad. Por otro lado, es necesario contar con un estudio de pavimentación con propuestas viables y que sea solución a la problemática ya mencionada.

CAPÍTULO II: REVISIÓN DE LITERATURA.

2.1 ESTUDIO TOPOGRÁFICO

2.1.1 GENERALIDADES

Un levantamiento topográfico es un conjunto de operaciones cuyo objetivo es tomar datos de campo necesarios para la elaboración de un plano topográfico, en el que se muestre el relieve del terreno y la posición de objetos naturales o no, sobre él. Estas operaciones consisten principalmente en:

Ubicar, a través de medición de ángulos y distancias, los puntos que forman la red o esqueleto del levantamiento (*planimetría*) y mediante nivelación, determinar la altura de ciertos puntos de referencia (*altimetría*).

Establecer, en planimetría y altimetría, puntos importantes para el dibujo del plano topográfico correspondiente.

Situar todos los detalles que requiere el levantamiento.

Con los datos obtenidos en el campo, determinar, a través del cálculo matemático, distancias, ángulos, orientaciones, coordenadas, alturas, áreas y volúmenes. Así mismo, gran parte de los datos de campo pueden ser representados gráficamente, en forma de mapas, perfiles longitudinales, secciones transversales, diagramas, etc.

El proceso completo de un levantamiento topográfico se divide en dos partes: *Trabajo de campo*, para la obtención de datos y *Trabajo de gabinete*, para el cálculo y dibujo, apropiados para los fines del levantamiento.

Para el caso, es recomendable utilizar como red de apoyo para el levantamiento, una poligonal cerrada del tipo III, aplicable para planos de poblaciones, porque la topografía y características del terreno permiten la medición directa de los lados de la misma.

2.1.2 TRABAJO DE CAMPO

a) Reconocimiento.

Es la inspección directa en el terreno, a fin de determinar sus características y la conveniencia del tipo de red de apoyo a emplear en el levantamiento topográfico. También se determinará la ubicación de las estaciones y el equipo, personal y tiempo necesarios para ejecutar el trabajo.

b) Ubicación de Vértices.

Estos serán ubicados en lugares donde no puedan ser removidos ni confundidos y desde donde se puedan visualizar los vértices adyacentes.

Es recomendable, siempre que sea posible, ubicar a los vértices de tal manera que las longitudes de los lados de la poligonal sean similares y las aberturas de los ángulos internos no sean menores de 30° ni mayores a 150°.

c) Medición de los Lados.

Existen varios métodos para medir los lados de una poligonal, dependiendo de la precisión requerida. Se pueden medir utilizando wincha u otro método manual, siempre teniendo en cuenta las correcciones respectivas. En levantamientos topográficos donde se requiere de bastante precisión, la medición de los lados se realiza electrónicamente.

d) Medición de los Ángulos.

Las visuales deben ser totalmente definidas y claras. En una poligonal cerrada generalmente se miden los ángulos internos, pero en poligonales de precisión se tienen que medir también los ángulos externos para poder efectuar las compensaciones de vértice.

e) Medición del Azimut de uno de los Lados.

Con el fin de referir la orientación de una poligonal respecto a los puntos cardinales, se debe medir el azimut de uno de los lados de la misma. Este viene a ser el ángulo que forma dicho lado con el meridiano, contado en sentido positivo (de las agujas del reloj) a partir del extremo norte del meridiano. Para ello, generalmente se emplea la brújula de teodolito.

f) Nivelación de las Estaciones de la Poligonal.

Es necesario conocer los desniveles entre estaciones para poder calcular sus cotas respectivas, efectuándose circuitos de nivelación para cada polígono, tomando como referencia un punto de cota conocida.

El error de cierre máximo tolerable, en metros, es:

$$e_{m\acute{a}x} = 0.04\sqrt{D_{Km}}$$
 2.1.2 - 1

Donde:

 $e_{m\acute{a}x}$: error máximo de cierre, en metros.

 D_{Km} : distancia total acumulada, en kilómetros.

g) Radiación (Nivelación Taquimétrica).

Utilizando teodolito y mira, se tomarán distancia, ángulo horizontal y vertical, de cada uno de los puntos y detalles, necesarios para el dibujo del plano topográfico, registrándose estos datos en una libreta de campo.

2.1.3 TRABAJO DE GABINETE

Las labores que comprende son:

- ① Cálculo de los ángulos promedio y compensación de los mismos.
- ② Cálculo de la longitud promedio de los lados.
- ③ Cálculo de azimut y rumbos.
- ⑤ Compensación de las proyecciones.
- © Cálculo de las coordenadas de las estaciones.
- ⑦ Cálculo de las cotas de las estaciones.
- ® Cálculo de la nivelación taquimétrica.
- Dibujo del plano con curvas de nivel.
- A) Fundamentos para el cálculo de una poligonal.
- a) Condición de Ángulo.

En toda poligonal cerrada:

$$\Sigma$$
 (Ángulos Internos) = $180^{\circ} \times (n-2)$

2.1.3 - 1

$$\Sigma$$
 (Ángulos Externos) = $180^{\circ} \times (n+2)$

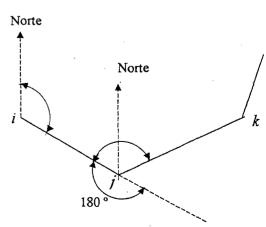
siendo n el número de ángulos o vértices de la poligonal.

Si el error angular de cierre es menor que el máximo permisible, el criterio más generalizado de compensación es el reparto equitativo de la corrección total a aplicarse.

b) Azimut.

Conocido el azimut de uno de los lados de la poligonal y los ángulos compensados de los siguientes vértices de la misma, es posible calcular el azimut de los lados restantes por simple suma o resta de ángulos, tal como se indica a continuación.

Si se conoce el azimut Z_{ij} y los ángulos que forman los lados siguientes, entonces:


$$Z_{ji} = Z_{ij} + 180$$
°, si $Z_{ij} < 180$ °, o

$$Z_{ji} = Z_{ji} - 180^{\circ}$$
, si $Z_{ij} > 180^{\circ}$

$$\Rightarrow Z_{jk} = Z_{ji} + \acute{A}nguloj$$
 2.1.3 - 2

luego,

$$Z_{kj} = Z_{jk} \pm 180^{\circ}$$

Para calcular los azimut de los lados restantes, se sigue el mismo proceso, de manera secuencial.

c) Rumbo.

El rumbo de un lado es el ángulo medido desde el norte o bien desde el sur y hacia el este o el oeste y sin que su valor sea mayor a 90°. Si se conoce el azimut de un lado, por simple operación aritmética, es posible encontrar el valor de su rumbo, ya que existe una estrecha relación entre ambos. Dicha relación, según el cuadrante, es:

Si $0^{\circ} \le Azimut < 90^{\circ}$, el rumbo se encuentra en el cuadrante noreste y tiene por valor:

$$Rumbo = Azimut$$

 $Si 90^{\circ} \le Azimut < 180^{\circ}$, el rumbo se encuentra en el cuadrante sur este y tiene por valor:

Si $180^{\circ} \le Azimut < 270^{\circ}$, el rumbo se encuentra en el cuadrante sur oeste y tiene por valor:

Si $270^{\circ} \le Azimut < 360^{\circ}$, el rumbo se encuentra en el cuadrante noroeste y tiene por valor:

$$Rumbo = 360^{\circ} - Azimut$$

d) Relación entre los Puntos Cardinales y el Sistema de Coordenadas.

El sistema de puntos cardinales no es más que un sistema de coordenadas cartesianas, por lo que para el desarrollo por coordenadas de una poligonal, se toma la dirección del eje X paralela a la dirección oeste este y la dirección del eje Y paralela a la dirección sur norte.

e) Cálculo de Proyecciones y Coordenadas.

Proyección en
$$X = Lado \times Seno$$
 Rumbo

2.1.3 - 3

Proyección en Y = Lado × Coseno Rumbo

El signo de la proyección en X o en Y, de cada lado, depende de la ubicación que tome su respectivo rumbo en el sistema de coordenadas.

Las coordenadas se obtienen tomando como origen un punto conveniente y se calculan las coordenadas de todos los vértices, sumando algebraicamente las proyecciones, en X y en Y, de las líneas de unión del origen con tales vértices.

f) Condiciones que deben cumplir las Proyecciones de una poligonal cerrada.

$$\sum Proyecciones\ en\ X=0$$

2.1.3 - 4

 $\sum Proyecciones\ en\ Y=0$

Si estas condiciones no se cumplieran, deberá procederse a la compensación de proyecciones, siempre y cuando los errores sean inferiores a los máximos tolerables.

Los criterios más empleados para la compensación de proyecciones en una poligonal son:

Regla de la Brújula. La corrección que debe aplicarse a la proyección de un lado, en uno u otro eje, es igual a:

$$Corrección Parcial = \frac{Corrección Total \times Lado}{\sum Longitud de Lados}$$
 2.1.3-5

Esta regla está basada en el supuesto: 1) de que los errores cometidos son accidentales y, por lo tanto, que su valor es proporcional a la raíz cuadrada de las longitudes de los lados; 2) de que el efecto de los errores angulares es igual al de los errores lineales. *Regla del Teodolito*. La corrección que debe aplicarse a la proyección de un lado, en

$$Corrección \ Parcial = \frac{Corrección \ Total \times Proyección \ del \ Lado}{\sum Proyecciones \ de \ los \ Lados} \qquad 2.1.3 - 6$$

Esta regla se funda en el supuesto: 1) de que todos los errores cometidos en la poligonal son accidentales; 2) de que las mediciones angulares son más precisas que las lineales.

g) Corrección de las proyecciones de los lados de una red de poligonales por el método de aproximación sucesiva.

El método consiste en compensar las proyecciones de la primera poligonal; estas proyecciones corregidas sirven para calcular el error de cierre de la siguiente poligonal adyacente y así sucesivamente se va repitiendo las compensaciones de poligonal en poligonal hasta lograr que las proyecciones de los lados comunes de todas las poligonales adyacentes sean iguales, así como que el error de cierre en cada uno de los circuitos parciales sea igual a cero. Los valores de las proyecciones de los lados, en cada poligonal, serán expresadas en %.

h) Error Absoluto y Error Relativo de la Poligonal.

$$e_c = \sqrt{e_x^2 + e_y^2}$$
 2.1.3 - 7

donde:

 e_c : error de cierre o error absoluto de la poligonal.

 e_x : error de las proyecciones en el eje X.

 e_{ν} : error de las proyecciones en el eje Y.

uno u otro eje, es igual a:

El error relativo de una poligonal es la relación entre el error de cierre y la suma de las longitudes de los lados de la misma y se expresa:

$$e_r = \frac{e_c}{\sum Lados}$$
 2.1.3 - 8

Los errores angular, de cierre y error relativo, determinan el grado de precisión de las poligonales.

En una poligonal tipo III, el error relativo máximo tolerable no excederá a 1/5,000 y el error angular máximo no debe exceder a $30"\sqrt{n}$, siendo n el número de ángulos.

i) Corrección de redes de circuitos de nivelación por el método de aproximación sucesiva.

La corrección se efectuará de circuito en circuito; para cada circuito la corrección total será repartida proporcionalmente a los lados. Al pasar de ciclo en ciclo se tendrá en cuenta la corrección anteriormente efectuada y aún en un mismo ciclo, si existen tramos iguales para diferentes circuitos y que su corrección se ha efectuado anteriormente. Las distancias serán expresadas en %, o sea es la misma relación L/P de la fórmula de correcciones.

B) Tipo de topografía del terreno.

La topografia del terreno se clasifica de acuerdo a la siguiente tabla:

TABLA 2.1.3 (1): Tipo de topografía en función de la inclinación del terreno.

INCLINACIÓN DEL TERRENO	TOPOGRAFIA
0° a 10°	Llana
10 ⁰ a 20 ⁰	Ondulada
20° a 30°	Accidentada
Mayor de 30 ⁰	Montañosa

FUENTE: Normas Peruanas para el Diseño de Carreteras. Ministerio de Transportes y Comunicaciones.

C) Escala del plano topográfico.

En la adopción de la escala, además de la precisión, hay que tener en cuenta: 1) la claridad con que deben representarse todos los detalles; 2) la relación entre los datos y el plano topográfico; 3) los elementos físicos que intervienen en el levantamiento, como son el tipo de detalles a representar y la equidistancia conveniente o necesaria entre las curvas de nivel.

D) Equidistancia entre curvas de nivel.

La equidistancia es la distancia vertical entre dos curvas de nivel consecutivas, y que se encuentran representadas en un plano topográfico. La elección de una equidistancia

adecuada a cada levantamiento, depende de: 1) la escala del plano; 2) la pendiente o topografía del terreno; 3) el objetivo de la ejecución del plano.

TABLA 2.1.3 (2): Relación entre la escala del plano, la pendiente del terreno y la equidistancia entre curvas de nivel.

ESCALA DEL PLANO	TOPOGRAFIA DEL TERRENO	EQUIDISTANCIA (m)
Grande (1/1000 a menor)	Llana Ondulada Accidentada	0.10 , 0.25 0.25 , 0.50 0.50 , 1.00
Mediana (1/1000 - 1/10000)	Llana Ondulada Accidentada	0.25 , 0.50 , 1.00 0.50 , 1.00 , 2.00 2.00 , 5.00
Pequeña (1/1000 a mayor)	Llana Ondulada Accidentada	0.50 , 1.00 , 2.00 2.00 , 5.00 5.00 , 10.00 , 20.00

FUENTE: Normas Peruanas para el Diseño de Carreteras. Ministerio de Transportes y Comunicaciones.

La equidistancia y la escala del plano son interdependientes; mientras menor sea la escala, mayor es la equidistancia entre las curvas de nivel.

2.1.4 NIVELACION DE EJES LONGITUDINALES

Una vez definidos los ejes longitudinales en el plano, en el terreno se efectúa el trazo de los mismos, estacándolos cada 20 metros. En seguida se procede con la nivelación, en circuitos cerrados, tomando vista atrás un punto de cota conocida y vista adelante las respectivas estacas del eje, y que cumpla con lo especificado para una nivelación ordinaria (punto 2.1.2- f; capítulo II).

2.1.5 SECCIONAMIENTO

Se realiza con el fin de obtener las secciones transversales correspondientes a las estacas de los ejes longitudinales y poder determinar volúmenes de movimientos de tierras. Se emplea nivel y mira, tomando vista atrás un punto de cota conocida y vista adelante los extremos de cada estaca del eje, de acuerdo al ancho de cada vía.

4.2 DISEÑO GEOMÉTRICO DE LAS VÍAS.

2.2.1 GENERALIDADES.

Los criterios de diseño a tener en cuenta son los siguientes:

Criterio socioeconómico.

Si los pobladores son los que van a financiar parcial o totalmente la obra, el diseño geométrico no debe arrojar un costo que esté fuera del alcance de los mismos. Para lo cual se tendrá en cuenta la información obtenida del estudio socioeconómico.

Criterio administrativo.

Se tendrá en consideración las restricciones administrativas y limitaciones que impone el Gobierno Local con el Plan Regulador.

Criterio arquitectónico.

Las vías que se diseñan deben concordar con la arquitectura de la ciudad, tratando de incluir áreas verdes.

Criterio técnico.

Deben estar, en concordancia o en todo caso primar sobre los anteriores y de acuerdo a las normas especificadas en el Reglamento Nacional de Construcciones, siempre que sea esto posible.

Concepto de Via.

Vía es el camino o dirección que se ha de seguir para ir de un lugar a otro, pasando por puntos determinados. Dentro del concepto general de vía, tenemos las vías públicas, las cuales son fajas de terreno acondicionadas para el tránsito vehicular y/o peatonal.

Según REGLAMENTO DE NOMENCLATURA VIAL Y ÁREAS DE RECREACIÓN PÚBLICA; D.S. Nº 04-95-MTC; cap. III: DE LA CLASIFICACIÓN DE VÍAS Y ÁREAS DE RECREACIÓN PÚBLICA; artículo 8º (R.N.C.), las vías públicas se clasifican en:

Via Expresa o Autopista.

Vía que sirve principalmente para el tránsito de paso y cuyos accesos y salidas están totalmente controlados. Sus intersecciones con otras vías se realizan a diferente nivel.

<u>Avenida.</u>

Vía vehicular de tres o más sendas de circulación, en uno o dos sentidos de tránsito, preferentemente con vías de servicio laterales para acceso a las propiedades.

Alameda o Vía Parque.

Vía cuyo diseño, con criterio paisajista, considera tratamiento especial de jardinería o arborización de ancho constante o variable como parte de su sección transversal.

Jirón.

Vía vehicular de servicio local, de una o dos sendas, con una longitud de un frente de manzana o cuadra.

Calle.

Vía vehicular de servicio local, de una o dos sendas, con una longitud de un frente de manzana o cuadra.

Pasaje.

Sendero o pasaje peatonal, vedado al paso de vehículos, con excepción de ambulancias, carros de bomberos y policiales.

El diseño geométrico de vías en zonas urbanas, donde las calles ya están definidas, se basará en el plano topográfico, el plano catastral y el de planeamiento de la zona, dependiendo del servicio que van a prestar las vías y del tipo y volumen de tráfico proyectado.

2.2.2 ELEMENTOS BÁSICOS PARA EL DISEÑO GEOMÉTRICO DE VÍAS.

Previsión del tráfico.

Cuando se proyecta una vía o un sistema vial, se toma en consideración el tráfico actual, el previsible en un futuro próximo y el tipo de vehículos que van a transitar por dicha vía o vías. El proyectista deberá estudíar y planificar cuidadosamente un plan de realización escalonada, a medida que las necesidades del tráfico lo vayan exigiendo.

Volumen de tráfico.

Se tiene por volumen de tránsito cierta cantidad de vehículos de motor que transitan por un camino en determinado tiempo y en el mismo sentido. Las unidades comúnmente empleadas son: vehículos/día o vehículos/hora. Se suelen considerar los siguientes valores:

Tráfico total por año (T.T.).

Número total de vehículos de todas clases, que pasarán por el punto considerado durante un año. Esta medida del tránsito no sirve para dimensionar la vía, pues es plazo demasiado largo y de ninguna manera el reparto del tráfico en el tiempo es homogéneo; tomar esta cifra como punto de partida podría llevar a diseñar vías que durante el año en periodos de varios meses estuviesen congestionadas y que, por tanto, no fueran funcionales; sin embargo sirve para valorar la importancia de la vía.

Tráfico medio diario.

Se llama así al promedio de los volúmenes de tránsito que circulan durante 24 horas en un cierto periodo de tiempo. Normalmente éste periodo de tiempo es el año, a no ser que se indique otra cosa.

El tráfico medio diario sirve para valorar la influencia de la vía, para dar una idea de la importancia económica y justificar las inversiones a realizar, más no se puede emplear para determinar las características geométricas de la vía, pues no es un valor sensitivo a los cambios significantes de los volúmenes y no indica las variaciones de tráfico que pueden presentarse en las horas, días y meses del año.

Al tráfico medio diario, también se le denomina: Tráfico Promedio Diario (TMD) o Indice Medio Diario (IMD).

Volumen de tráfico por hora.

Es el tiempo que resulta de dividir el número de vehículos que pasan por un determinado punto en un periodo de tiempo, entre el valor de ese periodo de tiempo en horas.

Los volúmenes horarios máximos son los que se emplean para proyectar los aspectos geométricos de las vías y se le denomina: *Volumen Directriz*.

Para proyectos donde las vías ya están definidas, este valor es sólo referencial.

Velocidad Directriz.

Es la velocidad que ha sido escogida para gobernar y correlacionar las características y el proyecto geométrico de una vía en su aspecto operacional.

La elección de la velocidad directriz se determina teniendo en cuenta principalmente el relieve del terreno, el tipo de vía a construirse, los volúmenes y tipo de tránsito que se espera y otras consideraciones de orden económico.

2.2.3 DISEÑO DEL EJE EN PLANTA.

Después de haber definido el plano de geometría de las vías, se procede con el diseño del eje en planta; generalmente el eje longitudinal es trazado en el centro de cada vía. Para una buena definición del mismo, es necesario tomar en cuenta el ancho de las aceras, la ubicación de los postes de alumbrado, el ancho de las bermas de estacionamiento, si estas últimas van a existir a un solo lado o a ambos lados; y otros detalles que sean importantes para el diseño. Todas las consideraciones de diseño adoptadas, irán de acuerdo con lo establecido en el R.N.C y las N.P.D.C.

2.2.4 TRAZADO DE PERFILES LONGITUDINALES.

Los perfiles longitudinales se construyen mediante los datos de la nivelación del mismo ó a partir de las cotas tomadas de un plano con curvas de nivel. La línea o eje del perfil se construye uniendo todos los puntos, a medida que se van situando con sus cotas.

Con absoluta seguridad se puede decir que los perfiles longitudinales constituyen la base para el estudio de las pendientes.

El perfil de una vía nos permite visualizar con cierta exactitud, las características más importantes que nos llevarán a determinar el mayor o menor costo de la obra, dotar de adecuados sistemas de drenaje y agregar, según sea el caso, obras complementarias que permitan su funcionalidad, seguridad, resistencia y durabilidad.

LA LÍNEA DE RASANTE EN VÍAS URBANAS.

Como las vías urbanas presentan limitaciones, estas impiden la aplicación de las NPDC, las cuales se ven restringidas por las características propias de las mismas. Las calles presentan en sus márgenes edificaciones que hacen imposible el movimiento efectivo de suelo, que sí se logra en una carretera y que corresponde únicamente al ancho de la vía, sin perjudicar la estabilidad de la propiedad privada e instalaciones subterráneas. La rasante en un cruce de calles obliga a condicionarse a las otras. Hay que dar preferencia a las calles principales, pero sin perder de vista la influencia que ellas pueden tener en las secundarias que, obligadas por sus puntos de cruce con las principales, pueden resultar de pendientes inadmisibles.

2.2.5 SECCIONES TRANSVERSALES.

El diseño de la sección transversal de una vía influye tanto en el costo de la obra como en su capacidad de tránsito. Una sección reducida será económica, pero su capacidad de tránsito será también reducida. Por otro lado una amplia sección tendrá magnífica capacidad de tránsito, pero será costosa, de ahí que el proyecto deba coordinar ambas necesidades para encontrar la solución más adecuada, posiblemente ésta sea proyectando a futuro, considerando sólo lo estrictamente necesario.

La sección transversal de una vía puede adoptar, en la superficie de rodadura, la forma parabólica o la forma de cuña, a lo cual se le denomina *bombeo*; éste va a permitir el desplazamiento de las aguas hacia los laterales, evitando estancamientos que dificulten el tránsito e infiltraciones en el pavimento. Según las N.P.D.C., para zonas lluviosas el bombeo tendrá una pendiente entre el 1% y 2%.

El ancho de cada carril de circulación pavimentado en una vía depende de las dimensiones máximas de los vehículos que harán uso de ella así como de la velocidad directriz, tal como lo estipulan las normas.

a) Algunas normas para el diseño de vias locales en habilitaciones urbanas.

Según el Reglamento Nacional de Construcciones:

- Las secciones transversales de las Vías Locales se determinarán en base a los módulos siguientes:

CALZADAS: 3.60 ml., 3.00 ml. y 2.70 ml.

VEREDAS: 0.60 ml.

ESTACIONAMIENTO: 5.40 ml., 3.00 ml., 2.20 ml. y 1.80 ml.

- Las calzadas de las Vías Locales Principales tendrán como mínimo dos módulos de 3.00 ml.; las veredas dos módulos cada una y las bermas de estacionamiento un módulo de 2.20 ml. cada una.
- Las calzadas de las Vías Locales Secundarias tendrán como mínimo dos módulos de 2.70 ml.; las veredas dos módulos cada una y las bermas de estacionamiento un módulo de 1.80 ml. cada una.
- En las zonas multifamiliares las vías locales, debidamente jerarquizadas, tendrán calzadas con características similares a las vías locales principales. Deberá incrementarse el número de módulos señalados para las veredas y se determinará el módulo a utilizar para estacionamiento, teniendo en cuenta el volumen de tránsito de peatones y vehículos que podría generar la habilitación.
- En ciudades con reducido volumen de tránsito podrá eliminarse o considerarse estacionamiento a un solo lado de las vías locales.
- En zonas lluviosas, el diseño de la sección transversal de las vías locales deberá considerar un sistema de drenaje.

b) Adecuación urbanística para limitados físicos.

En toda construcción o remodelación de obras urbanas es obligatorio considerar el diseño de rampas para limitados físicos. Estas serán ubicadas en las esquinas e intersecciones de vías en donde exista cruce peatonal a nivel, las veredas deberán salvar su desnivel con el de las pistas mediante rampas, interrumpiendo las bermas laterales, centrales y sardineles, o cuando no existieran éstos, dentro de la vereda misma, en ningún caso ocupando la pista. Las dimensiones serán las especificadas en el R.N.C.

2.2.6 CARACTERÍSTICAS DE LOS VEHÍCULOS

Para el diseño vial son importantes las dimensiones de los diferentes tipos de vehículos, por el espacio que ocupan, los radios de giro mínimos que necesitan para que puedan inscribirse en las curvas del camino y sus pesos por la acción destructiva que producen en el pavimento.

Por Decreto Supremo Nº 013-98-MTC y Resolución Ministerial Nº 375-98-MTC/15.02 se aprobó las Normas de Pesos y Dimensiones de Vehículos para la Circulación en las Carreteras de la Red Vial Nacional.

En el Art. 5° se especifica el peso máximo por eje simple o conjunto de ejes, permitido a los vehículos para su circulación por la Red Vial Nacional y es el siguiente:

EJE(S)	NEUMÁTICOS	KILOS
SIMPLE	2	7,000
SIMPLE	4	11,000
DOBLE	6	16,000
DOBLE	8	18,000
TRIPLE	10	23,000
TRIPLE	12	25,000

La dimensión máxima permitida a los vehículos y/o combinaciones, con carga para su circulación en las vías del país, incluido el enganche o barra de tiro, es:

- Ancho 2.60 m dimensión máxima que no incluye los espejos retrovisores.
- Altura 4.10 m para carga normal.
- Altura 4.65 m para contenedores
- Altura 4.30 para furgones cerrados tipo semi remolque.
- Longitudes máximas entre parachoques:
 - Camión simple de dos ejes, hasta 12.30 m.
 - Camión de tres ejes 13.20 m.
 - Omnibus convencionales de 2 ejes, hasta 13.20 m.
 - Omnibus convencionales de 3 ejes, hasta 14.00 m.
 - Omnibus integral de 4 ejes, hasta 15.00 m.
 - Omnibus articulado 18.30 m.
 - Camión remolque 23.00 m.
 - Camión remolque balanceado 20.50 m.
 - Remolque 10.00 m.
 - Remolque balanceado 10.00 m.

- Semi remolque 14.00 m.
- Tractor Camión semi remolque 20.50 m.
- Longitudes máximas entre ejes:
 - En un conjunto de dos ejes cuyas distancias entre los centros de las ruedas sea superior a 2.40 m cada eje será considerado como independiente.
 - Eje doble es un conjunto de dos ejes, cuya distancia entre centros de ruedas es superior a 1.20 m e inferior a 2.40 m.
 - Eje triple es un conjunto de tres ejes, cuya distancia entre centros de ruedas extremas es superior a 2.40 m. e inferior a 3.60 m.

TABLA 2.2.6: Características de los vehículos: Pesos y medidas máximas permitidas.

Config.					Peso			
vehicular	Descripción gráfica de los vehículos	Long. Máx.	Eje	C	bruto máx.			
		(m.)	Delant.	1º eje	poste 2º eje		4º eje	(t)
C2	I I	12.30	7	41			**************************************	18
C3	I II	13.20	7	18			and the state of t	25
C4	Georgi III	13.20	7	23 ⁽¹⁾	NATIONAL PROPERTY OF THE PROPE		ourum certificationalis 25 mar obblicition et es	30
8×4	II II	13.20	7+7 ⁽⁵⁾	18	and the state of t	A CONTRACTOR OF THE PROPERTY O	assaussa Wildelfreymp (criticassus aprairitearaida) (1	32
T2S1	I I I	20.50	7	1 1	T T	Andreas de la company de l	arause (languagea, calacus de l'ipàcica de la participa de l'apparent de l'apparent de l'apparent de l'apparen	29
T2S2	I I II	20.50		1	1.8	erie manageria estado de la composição de l	de maior de la companya de la compa	36
T2Se2	I I I I	20.50	7	——————————————————————————————————————	11	11	addi (tan martuur Bilgetten idiraasinid varasuur Bellette	40
T2S3	I III	20.50	7	1	25	and the state of t	el para esta de la companya de la co	43
T2Se3	T I II	20.50	7	11	11(4)	18	d printerpassante anno en la lemma martel per printerpassa del del despera consentrate de	47

a second				Peso	máximo	(t)		Peso
Config. vehicular	Descripción gráfica de los vehículos	Long. Máx.	Eje	Conjunto de ejes posteriores				bruto máx,
		(m.)	Delant.	1º eje		3º eje	4° eje	(t)
T3S1 ·	I II I	20.50	7	18	11		Andreas and the state of the st	36
T3S2	I II II	20.50	7	18	18	Andrews and the second	And the second s	43
T3Se2	I II I I	20.50	7	18	11		A CONTRACTOR AND A CONT	47
T3S3	I III III	20.50	7	18	25	eras i massa padilyti saas amerika distributi mendi saas amerika distributi perangan saas di	The second secon	48 ⁽²⁾
T3Se3	I II I II	20.50	7	18	11(4)	18	A CONTRACTOR OF THE PROPERTY O	48 ⁽²⁾
C2R2	I I I	23.00	7	**************************************	7- 7- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	4	AND THE PROPERTY OF THE PROPER	40
C2R3	I I II	23.00	7	4- 4- 1	7	8	tropping measures to construct and the construction of the constru	47

				Peso i	máxim	o (t)		Peso
Config.	Descripción gráfica de los vehículos	Long. Máx.	Eje	Conjunto de ejes posteriores				bruto máx.
vehicular		(m.)	Delant.	1° eje		3° eje	4° eje	(t)
C3R2	I II I	23.00	7	18	11	**************************************	artiin, pirat, maantatatatatatatatatatatatatatatatatata	47
C3R3	I II I II	23.00	7	18	Term	8	tited benedikken eithe benedikken kan de	48 ⁽²⁾
C3R4	I II II II	23.00	7	18	18	18	anadėminininkas aras aras aras aras aras aras aras a	48 ⁽²⁾
C4R2	I III I I	23.00	7	23 ⁽¹⁾	1 1	1.	rakun munaditirin terrisi matrikisti iliki terisi ina metelijiten ilika matri	48 ⁽²⁾
C4R3	I III I II	23.00	7	23(*)	1 1	18	от при	48 ⁽²⁾
8×4R2	II II I I	23.00	7+7 ⁽⁵⁾	18	dan	To the statement of the	A THE STATE OF THE	48 ⁽²⁾
8×4R3	II II III	23.00	7+7 ⁽⁵⁾	18	T	18	described a manufactual described as described	48 ⁽²⁾

		-		Peso r	náxim	o (t)		Peso
Config.	Descripción gráfica de los vehículos	Long. Máx.	Eje	Conjunto de ejes posteriores				bruto máx.
vehicular		(m.)	Delant.	1º eje		3º eje	4º eje	(t)
8×4R4	II II II II	23.00	7+7 ⁽⁵⁾	18	18	90)	and the same and t	48 ⁽²⁾
C2RB1		20.50	7	11	1	regalitationalistikasi perikamanak dilikulikalikalikalikalikalikalikalikalikalika	estadora del didicio de la francessa del distribución del	29
C2RB2	I III	20.50	7	11	18		n mangement di in mandrilla data dan pampal di Deriga persidian parti di Educa	36
C3RB1	I II I	20.50	7	18	1	ransında karılı derinde karılı derinde karılı derinde karılı derinde karılı derinde karılı derinde karılı deri	rapropriete printere de la companya	36
C3RB2	I II II	20.50	7	18	18	กรริกาสตร์สาธาการยุสพิสภิสสาธารณกรรมการการการการการการการการการการการการการก	(EEE), 1805-Language (State Control of Contr	43
C4RB1	I III I	20.50	7	23 ⁽¹⁾	A Commence of the Commence of	они лини больший применя (Принятия политерия принятия принятия).	Sommation in the state of management of the state of the	41
C4RB2	I III II	20.50	7	23 ⁽¹⁾	18	errengeren und den geschen unter den geschen der der geschen der geschen der geschen der geschen der geschen d	energy philine and shift the burney state that the state of the state	48

				Peso	máxim	o (t)		Peso
Config.	Descripción gráfica de los vehículos	Long. Máx.	Eje		s	bruto máx.		
vehicular		(m.)	Delant.	1º eje	poste 2° eje		4º eje	(t)
8×4 RB1	II II I	20.50	7+7 ⁽⁵⁾	18	11		and the state of t	43
8×4 RB2	II II II	20.50	7+7 ⁽⁵⁾	88	8	near the state of	andra i i i i i i i i i i i i i i i i i i i	48 ⁽²⁾
T3S2 S2	I II II II	23.00	7	18	18	18	na and different victor of the control of the contr	48 ⁽²⁾
T3Se2 Se2	I II I I I	23.00	7	18	11 + 11 ⁽³⁾	11 11 (3)	e de la companya de l	48 ⁽²⁾
T3S2 S1S2	I II II II II	23.00	7	48	18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	48 ⁽²⁾
T3Se2 S1Se2	I II I I I I I	23.00	7	**************************************	11 + 11 (3)	mattanatanatanatanatatatatatatananatanat	11 (3)	48 ⁽²⁾
B2	I	14.00	7	The state of the s			engermanning i komen de kongress og en	18

Config. vehicular	Descripción gráfica de los vehículos	Long. Máx. (m.)	Peso máximo (t)					Peso
			Eje Delant.	Conjunto de ejes posteriores				bruto máx.
				1º eje	2° eje	3° еје	4º eje	(t)
B3-1		14	7	18	111111111111111111111111111111111111111	All Final Park		- 23
						Actività i i i i i i i i i i i i i i i i i i	The section of the se	L
B4-1		15.00	7+7 ⁽⁵⁾	16	TO DUTA TO THE PROPERTY OF THE	SSSS volkamponistitisti jas karattas vai ddikaan	Vičišaienia pra vastustististististististististististististis	30
	II II				The same of the sa	10 mart de constitut de la con	Killedinasionalaggerent tradesistis Trees	To the state of th
BA-1	I I I	18.30	7	7	7	and the state of t	Anniania (Claretei Claretei C	25

- (1) Conjunto de ejes con un eje direccional.
- (2) Vehículos con facilidad de distribución de peso por eje.
- (3) Conjunto de ejes separados, compuesto por dos ejes simples donde la distancia entre centros de ruedas es superior a 2.40 m.
- (4) Eje direccional.
- (5) Carga máxima para conjunto de ejes direccionales compuestos por dos ejes simples donde la distancia entre centros de ruedas es superior a 1.70 m.

2.3 ESTUDIO DE SUELOS Y MATERIALES PARA LA PAVIMENTACIÓN.

2.3.1 EXPLORACIÓN DE SUELOS.

Toda obra de construcción civil, por pequeña o grande que sea la estructura, se inicia y apoya teniendo siempre como medio de fundación un suelo. El suelo es el material más antiguo y complejo con que cuenta el hombre para realizar sus construcciones. El pavimento transmite los esfuerzos, debidos a las cargas que inciden en él, al terreno de fundación. Dichos esfuerzos producen deformaciones en el suelo, que se reflejan en el comportamiento estructural del pavimento. Existen además factores independientes, como el agua, que influyen en el comportamiento del suelo de cimentación.

Terreno de cimentación. Es la parte de la corteza terrestre que sustenta una obra vial y cuya función es soportarla en condiciones favorables de resistencia y deformación.

El terreno de sustentación puede estar constituido por roca o suelo. En general, cimentar una obra vial en roca no plantea mayores problemas pues los esfuerzos transmitidos son de muy baja intensidad comparativamente con la resistencia del material; los problemas que dichos esfuerzos representarían estarían referidos al costo de excavación y explanación, requiriendo una capa de material con la finalidad de eliminar las irregularidades que quedan tras el proceso de explanación en los cortes.

La cimentación en gravas, arenas, limos no plásticos o en mezclas de ellos, tampoco plantea mayores dificultades puesto que son suficientemente resistentes y estables. Las arenas y limos muy sueltos pueden plantear problemas de erosión y asentamiento, sobre todo en presencia de agua; sin embargo, las deformaciones son absorbidas por el pavimento sin mayores consecuencias.

En suelos constituidos por limos plásticos y arcillas de baja compresibilidad (CL, ML, OL), los pavimentos absorben eficientemente las deformaciones que las cargas vehiculares imponen, así mismo, su resistencia es comparativamente suficiente.

Cuando el terreno de soporte está constituido por limos o arcillas compresibles (MH, CH, OH), es importante analizar su resistencia a fin de tomar las precauciones debidas y plantear soluciones adecuadas. La geología, en este caso, juega un papel importante, ya que determinará las zonas dificiles y orientará los estudios específicos. Posiblemente el problema más grave que presenta un suelo de cimentación fino y compresible sea el asentamiento debido no tanto a la sobrecarga que representa el tránsito, sino al que le comunican las diferentes capas que constituyen el pavimento.

Recopilación de información. Previo a la ejecución de los trabajos de exploración en campo, se tratará de obtener la mayor cantidad de información posible referente a la zona de estudio, con la finalidad de orientar las actividades de campo. Dicha información puede ser algún estudio de suelos y/o geológico ejecutado en o cerca de ella, presencia de napa freática y otros que sean importantes para el estudio. Además, se debe proyectar la relación de asuntos a estudiar, los ensayos que deberán ejecutarse y la aplicación que se hará de los mismos.

Espaciamiento y profundidad de las perforaciones. El espaciamiento de las perforaciones y su profundidad varían de acuerdo a la topografía del terreno, ubicación de la sub rasante de diseño y características observadas en cada perforación (secuencia y número de capas de suelos, espesor, color, consistencia, presencia de napa freática).

Si el perfil del suelo es uniforme (generalmente en zonas llanas), la separación máxima puede variar de 100 a 500 metros en el sentido longitudinal (en el eje o a 3.50 metros del mismo), considerándose el primer valor para zonas lluviosas y el segundo para zonas áridas.

Si las características del perfil del suelo varían (generalmente en zonas de montaña), la separación máxima puede variar de 50 a 250 metros.

La profundidad mínima será de 0.60 metros debajo de la sub rasante de diseño.

Para detectar el nivel de la napa freática, la profundidad será de 1.20 a 1.50 metros bajo el nivel de la sub rasante o terreno natural (12 a 24 horas luego de efectuada la perforación).

Registro de la información de perforaciones. Se llevará un registro completo y sistemático de las características geotécnicas de los suelos encontrados en cada perforación, indicándose: espesor de cobertura orgánica, posición y espesor de los estratos, su clasificación geotécnica de campo, consistencia, humedad, presencia de materia orgánica, sales y carbonatos, ubicación de la napa freática, así como indicar la facilidad de compactar.

Toma de muestras de suelo. El número y cantidad de muestras de suelo a obtenerse para su análisis están en función de su importancia y representatividad, correspondiendo a los ubicados a 0.60 metros, como mínimo, bajo el nivel de la sub rasante, los más importantes para definir el valor de soporte (CBR) de diseño de la sub rasante para las condiciones de humedad y densidad a esperarse en obra. En pavimentación de zonas urbanas, será suficiente para definir la resistencia de diseño de la sub rasante de las vías, obtener una muestra (o más si las circunstancias lo requieren) de 80 a 100 kilogramos.

Un mayor número de muestras podrán obtenerse, con la finalidad de estudiar su posible empleo para conformar rellenos, mejorar la sub rasante, detallar el perfil estratigráfico y analizar problemas de asentamiento si en la zona hay presencia de suelos blandos. En general, se tenderá a obtener muestras alteradas en una cantidad de 10 kilogramos aproximadamente para clasificar el suelo y determinar su contenido de humedad especialmente. Estas muestras serán colocadas en bolsas plásticas herméticas dobles, debidamente identificadas.

2.3.2 ESTUDIO DE SUELOS: ENSAYOS DE LABORATORIO.

Los ensayos de laboratorio ha realizarse serán:

- Contenido de humedad
- Peso específico.
- Análisis granulométrico.
- Límites de consistencia:

Límite líquido.

Límite plástico.

- Compactación.
- CBR (relación de soporte).

a) Contenido de Humedad.

Es la relación entre el peso del agua contenida en un suelo y el peso de su fase sólida, completamente seca.

Se expresa mediante la ecuación:

$$w \% = \frac{W_W}{W_S} \times 100 \; ; \; W_W = W_h - W_S$$
 2.3.2 - 1

donde:

w (%): Contenido de humedad expresado en porcentaje.

: Peso del agua contenida en la muestra de suelo (gr.)

 W_h : Peso de la muestra húmeda (gr.)

: Peso de la muestra seca (gr.)

b) Peso Específico.

El peso específico de cualquier sustancia se define como el peso unitario del material en cuestión dividido por el peso unitario del agua destilada a 4º C.

$$G = \frac{\gamma_{material}}{\gamma_{agua\ a\ 4^{\circ}C}}$$
 2.3.2 - 2.

Así, si se considera solamente los granos del suelo se obtiene G como:

La misma forma de ecuación se utiliza para definir el peso específico del conjunto, la única diferencia en esa definición es el $\gamma_{\rm del\ material}$. El peso específico del material puede también calcularse utilizando cualquier relación de peso de la substancia al peso del agua siempre y cuando se consideren volúmenes iguales de material y substancia:

$$G = \frac{W_s / V}{W_{...} / V}$$
 2.3.2 - 3

Es evidente en la ec. (2.3.2 - 3), que esto es cierto ya que los términos de volúmenes se cancelan. Si no se cancela V en la ec. (2.3.2 - 3), se obtiene la ec. (2.3.2 - 2).

Como el método de trabajo del laboratorio para determinar el peso específico del suelo utilizando un frasco volumétrico es en realidad un método indirecto (se desplaza indirectamente el volumen del material), se derivará a continuación una expresión para calcular el peso específico:

- 1. Sea W_f = peso del frasco volumétrico vacío (y seco).
- 2. Sea W_{fw} = peso del frasco volumétrico más agua destilada o agua común hasta la marca de volumen.
- 3. Colocar el peso de sólidos seco W_s en el frasco y nuevamente llenar el frasco hasta la marca de volumen y pesarlo. Sea este valor W_{fws} .
- 4. Si el agua no fuera desplazada dentro de la botella por los sólidos de suelo, cuando se le añade W_s , el peso total debería ser:

$$W_T = W_{fw} + W_s \tag{2.3.2 - 4}$$

Como el agua es reemplazada (es decir, una cantidad igual a W_{fw} no puede añadirse al frasco debido a que W_s ocupa parte de su volumen), al completar el volumen del frasco, el peso del agua que ha sido desplazada por las partículas de suelo y no cabe ahora en el frasco será:

$$W_{w} = W_{T} - W_{fws} = W_{fw} + W_{s} - W_{fws}$$
 2.3.2 - 5

5. De la definición de G en la ec. 2.3.2 - 3, y si no se considera un cambio en la densidad (ni en volumen) con la temperatura, el peso específico es:

$$G = \frac{W_s}{W}$$
 2.3.2 - 6

pues se involucran volúmenes iguales.

Es posible expresar la ecuación anterior de la siguiente forma:

$$G = \frac{W_s}{W_{fw} + W_s - W_{fws}}$$

c) Análisis Granulométrico.

Llamado también análisis mecánico, sirve para estudiar la granulometría o distribución del tamaño de las partículas de un suelo. Con este análisis es posible cuantificar las proporciones en peso de las partículas de diferente tamaño que hay en el suelo.

Si el material es granular, los porcentajes de piedra, grava y arena se determinan fácilmente mediante el empleo de tamices. Pero si el suelo contiene un porcentaje apreciable de material fino que pasa el tamiz Nº 200, el análisis granulométrico se basará en el principio de sedimentación; siendo el Método Hidrométrico o AASHO Standard el más reconocido y usado. Sin embargo, si no fuese posible realizar este ensayo, ya sea por falta de tiempo, de equipo u otro motivo, existe el Método de Sifoneado, con el que se obtienen, con un mínimo de equipo, resultados muy semejantes a los que se logran con el Método Standard.

Método de Sifoneado.

Consiste en:

- Tomar una muestra representativa de suelo y mezclar bien el material, desbaratando los terrones, tratando de no romper las partículas. Emplear aproximadamente 100 gramos del material secado al horno, que pase la malla Nº 10.
- Colocar la tierra en un vaso de cristal y añadir uno 300 ml de agua, removiendo hasta que la muestra se halle totalmente empapada. Dejar la muestra remojando una hora por lo menos.
- 3. Vaciar la mezcla cuidadosamente en el vaso dispersador y luego batir en el dispersador eléctrico, durante un minuto.
- 4. Una vez dispersado el material, se lo coloca en un graduado de cristal, llenando con agua hasta una altura de 20 centímetros. Luego se sacude bien la mezcla durante un minuto volteando repetidas veces el graduado (la palma de una mano se colocará sobre la boca del graduado tomando la base con la otra mano).
- 5. Si se considera como *Limo*, la fracción de suelo que pasa la malla Nº 200 (0.075 mm) y cuyas partículas son menores de 0.005 mm (clasificación ASTM), se colocará el graduado en reposo, sobre una mesa, durante 15 minutos, para permitir que el suelo en suspensión se vaya sedimentando

- 6. Si se considera como Limo, la fracción de suelo que pasa la malla Nº 200 (0.075 mm) y cuyas partículas son mayores de 0.002 mm (AASHTOM-146), se colocará el graduado en reposo durante 30 minutos, para permitir la sedimentación del suelo en suspensión.
- 7. Terminado el periodo de sedimentación, según se indica en los dos párrafos anteriores, introducir cuidadosamente el disco metálico hasta el material que se ha sedimentado al fondo, con el objeto de separar el material sedimentado del que todavía se encuentra en suspensión.
- 8. Cuidadosamente, utilizando un tubo de goma, sifonear el material que todavía se halla en suspensión.
- Trasladar a un vaso de cristal el material que se ha sedimentado en el fondo del graduado, empleando un frasco lavador y procurando no utilizar mucha agua, a fin de facilitar el secado de la muestra.
- 10. Colocar en el horno el vaso conteniendo la muestra, hasta obtener el completo secado de la misma
- 11. Tamizar el material seco en las mallas Nº 60 y 200, registrándose los pesos del material que pasa por cada una de estas mallas. Pueden usarse otros tamices si se desea obtener más puntos para el dibujo de la curva o si las especificaciones así lo exigen.

d) Límites de Consistencia.

Consistencia es el grado de cohesión de las partículas de un suelo y su resistencia a aquellas fuerzas exteriores que tienden a deformar o destruir su estructura.

Los límites de consistencia están representados por contenidos de humedad. Los más importantes para el presente trabajo son:

Límite líquido (LL). Es el contenido de humedad por debajo del cual el suelo se comporta como un material plástico. A este nivel de contenido de humedad el suelo está en el vértice de cambiar su comportamiento al de un fluido viscoso. El límite líquido se determina usando una técnica basada en el uso de la copa de Casagrande. Es posible determinar el límite líquido a través de la fórmula:

$$LL = \frac{w}{1.419 - 0.3 \log S} = \frac{w}{DN}$$
 2.3.2 - 8

donde:

w: Contenido de humedad que tiene la muestra que se une a los S golpes.

S: Número de golpes al cabo de los cuales se unen las mitades del suelo.

TABLA 2.3	3.2 (1):	Valores de	DN para a	liferentes S.
-----------	----------	------------	-----------	---------------

IADUA 2	J.Z (1). ratores de Dr	v puru uijer	emes D.		
S	DN	S	DN	S	DN
1	1.4190000	21	1.0223342	41	0.9351649
2	1.3286910	22	1.0162732	42	0.9320252
3	1.2758637	2	1.0104817	43	0.9289595
4	1.2383820	24	1.0049367	44	0.9259642
5	1.2093090	25	0.9996180	45	0.9230363
6	1.1855547	26	0.9945080	46	0.9201727
7	1.1654706	27	0.9895909	47	0.9173707
8	1.1480730	28	0.9848526	48	0.9146277
9	1.1327273	29	0.9802806	49	0.9119412
10	1.1190000	30	0.9758637	50	0.9093090
11	1.1065822	31	0.9715915	51	0.9067290
12	1.0952457	31	0.9674550	52	0.9041990
13	1.0848170	33	0.9634459	53	0.9017173
14	1.0751616	34	0.9595564	54	0.8992819
15	1.0661727	35	0.9557796	55	0.8968912
16	1.0577640	36	0.9521093	56	0.8945436
17	1.0498654	37	0.9485395	57	0.8922376
18	1.0424183	38	0.9450650	58	0.8899716
19	1.0353740	39	0.9416806	59	0.8877444
20	1.0286910	40	0.9383820	60	0.8855547

FUENTE: Carreteras, Calles y Aeropistas. Raúl Valle Rodas.

 Límite plástico (LP). Es el contenido de humedad por debajo del cual el suelo puede ser considerado como material no plástico.

Los ensayos de *Límite líquido* y *Límite plástico* deben hacerse sobre suelos tamizados a través de la malla Nº 40.

Indice de plasticidad (Ip). Es el rango plástico de un suelo y está definido por:

$$Ip = LL - LP 2.3.2 - 9$$

Un índice de plasticidad elevado, indica mayor plasticidad. Cuando un material no tiene plasticidad (por ejemplo arena), se considera el índice de Plasticidad como cero y se indica: IP = NP (No plástico).

ÍNDICE DE PLASTICIDAD	PLASTICIDAD	TIPO DE SUELO	COHESIVIDAD
$I_P = 0$	No plástico	Arenoso	No cohesivo
<i>Ip</i> < 7	Baja plasticidad	Limoso	Parcialmente cohesivo
$7 \le lp \le 17$	Plasticidad media	Arcillo limoso	Cohesivo
<i>Ip</i> > 17	Altamente plástico	Arcilloso	Cohesivo

TABLA 2.3.2 (2): Características de suelos según índices de plasticidad.

e) Compactación.

En los pavimentos la causa de muchas fallas es la falta de adecuada compactación. Las diferentes capas de un pavimento deben hallarse debidamente compactadas, para asegurar la estabilidad de una obra vial. Para que el material a compactarse alcance la mayor densidad posible en el terreno, deberá tener una humedad adecuada en el momento de la compactación. Esta humedad, previamente determinada en laboratorio se llama humedad óptima y la densidad obtenida se llama densidad máxima.

Cuando un suelo es compactado, aumenta su valor de soporte y se hace más estable; y su capacidad absorbente de agua quedará grandemente reducida.

Para determinar, en laboratorio, *la humedad óptima* y *densidad máxima*, se emplean mayormente los métodos dinámicos y algunos estáticos. Los primeros utilizan cargas dinámicas aplicadas mediante pisones o martillos, y los segundos, cargas estáticas aplicadas mediante prensas hidráulicas.

La densidad seca se determina con la fórmula:

$$D_s = \frac{D_h}{w + 100} \times 100$$
 2.3.2 - 10

donde:

 D_s : Densidad seca en gramos por centímetro cúbico del suelo compactado.

 D_h : Densidad seca en gramos por centímetro cúbico de suelo compactado.

w: % de humedad en la muestra, referido al peso del suelo secado al horno.

La humedad óptima y la densidad seca máxima se hallan mediante un gráfico. En un sistema de coordenadas se determinan e indican, las densidades secas como ordenadas y los correspondientes contenidos de humedad como abscisas. Uniendo los puntos marcados se obtiene una curva. El contenido de humedad correspondiente al máximo de ésta curva se indica como *Humedad Óptima* del suelo compactado y la densidad seca respectiva será la *Densidad Seca Máxima* del suelo compactado.

f) Ensayo CBR (Relación de Soporte de California).

El ensayo CBR (o ensayo de relación de soporte) tiene por objeto evaluar la calidad relativa del suelo para sub rasante, sub base y base de pavimentos. Mide la resistencia al corte de un suelo bajo condiciones de humedad y densidad controladas.

El valor CBR se obtiene como la relación de la carga unitaria necesaria para lograr una cierta profundidad de penetración del pistón de penetración dentro de la muestra compactada de suelo a un contenido de humedad y densidad dadas con respecto a la carga unitaria patrón requerida para obtener la misma profundidad de penetración en una muestra estándar de material triturado. Esto se expresa mediante la siguiente ecuación:

$$CBR (\%) = \frac{carga\ unitaria\ del\ ensayo}{carga\ unitaria\ patr\'on} \times 100$$
 2.3.2 - 11

Este ensayo se aplica a la muestra de suelo de condiciones más desfavorables.

Los suelos gravosos y arenosos, con baja cantidad o nada de material fino, sin cohesión, generalmente de índices de plasticidad inferiores a 2, pueden ser compactados rápidamente en el campo. Así mismo, ya que su capacidad de soporte no se altera de manera considerable con los cambios de humedad, su CBR puede ser determinado directamente después de compactarlos, sin sumergirlos previamente en agua.

En suelos cohesivos, plásticos y expansivos, no siempre la humedad óptima y densidad máxima son las más adecuadas. Muchas veces el hinchamiento de ellos es menor cuando se los compacta con humedades y a densidades distintas a la óptima y máxima respectivamente, obtenidas en laboratorio. Por lo que el CBR seleccionado será el correspondiente a la humedad y densidad bajo las cuales el suelo presenta menor hinchamiento.

TABLA 2.3.2 (3): Clasificación de suelos según CBR.

CBR	CLASIFICACION	USOS	SISTEMA DE CLASIFICACIÓN		
	GENERAL		Unificado (SUCS)	AASHTO	
0-3	Muy pobre	Sub rasante	OH, CH, MH, OL	A-5, A-6, A-7	
3-7	Pobre a regular	Sub rasante	OH, CH, MH, OL	A-4, A-5, A-6, A-7	
7 - 20	Regular	Sub base	OL, CL, ML, SC, SM, SP	A-2, A-4, A-6, A-7	
20 - 50	Bueno	Base, sub base	GM, GC, SW, SM, SP, GP	A-1b, A-2-5, A-3, A-2-6	
> 50	Excelente	Base.	GW, GM	A-1a, A-2-4, A-3	

FUENTE: Manual de Laboratorio de Suelos en Ingenieria Civil. Joseph E. Bowles.

2.3.3 CLASIFICACIÓN DE SUELOS.

Existen varios métodos de clasificación de suelos, siendo los más ampliamente usados el conocido como Sistema Unificados de Clasificación de Suelos (SUCS) y el de la Asociación Americana de Agencias Oficiales de Carreteras y Transportes (AASHTO). Todos los sistemas de clasificación utilizan los límites de Atterberg (por lo menos los límites líquido y plástico) con un análisis total o parcial de granulometría, y el proceso de eliminación para la clasificación de un suelo.

A) Sistema de Clasificación de Suelos de la AASHTO.

La Fig. 2-1a muestra el sistema de clasificación de la AASHTO en la conveniente forma de tabla. La Fig. 2-1b provee una forma de utilizar los límites plástico y líquido para obtener la clasificación de los suelos entre los grupos A-4 y A-7, para los cuales el hecho de tener más de un 35 % de material que pasa la malla Nº 200, es un factor esencial de clasificación. Este factor también puede utilizarse para obtener la clasificación de sub grupo de los suelos A-2, para los cuales el hecho de tener menos del 35 % de material que pasa la malla Nº 200, es un factor esencial de clasificación. La designación de los sub grupos en el grupo A-2 se logra determinando si el suelo es A-2 clasificado según su análisis granulométrico, pero tiene propiedades plásticas (LL y LP) características de los suelos A-4, A-5, A-6 o A-7. La Fig. 2-1a se utiliza procediendo de izquierda a derecha hasta encontrar el primer tipo de suelo que tenga las propiedades del suelo en consideración. El suelo tipo A-8 (no se muestra) se clasifica visualmente como *turba* (material excesivamente orgánico).

El sistema de clasificación AASHTO utiliza además un índice de grupo para comparar diferentes suelos dentro de un mismo grupo. El índice de grupo se calcula con la ecuación (2.14) o a partir de la Fig. 2-1c. El índice encontrado de esa forma se redondea al entero siguiente y se coloca entre paréntesis después del número de clasificación correspondiente. Por ejemplo, A-2-6(3) que quiere decir un suelo A-2 con propiedades plásticas del grupo A-6 y con un índice de grupo igual a 3. El índice de grupo IG es una modificación de la AASHTO a la clasificación original BPR (Oficina de Carreteras Públicas), para establecer una categoría dentro de la clasificación de grupo. Si dos suelos de un mismo grupo tienen diferente índice de grupo, tendrá mejor comportamiento como material de carretera o vía urbana aquel cuyo índice de grupo sea menor; es decir que un suelo A-2-6(2) debe ser un mejor material que un A-2-6(4).

La ecuación para determinar el índice de grupo es:

$$IG = 0.2a + 0.005ac + 0.01bd$$
 2.3.3 - 2 donde:

- a: porcentaje de material que pasa la malla N° 200 mayor que el 35 % pero menor que el 75%, expresado como un número entero positivo (1 $\leq a \leq$ 40).
- b: porcentaje de material que pasa la malla N° 200 mayor que el 15 % pero menor que 75%, expresado como un número entero positivo $(1 \le b \le 40)$.
- c: porción del límite líquido mayor que 40 pero no mayor que 60, expresada como un número entero $(1 \le c \le 40)$.
- d: porción del índice de plasticidad mayor que 10 pero no excedente a 30, expresado como un número positivo entero (1 $\leq d \leq$ 20).

Como esta ecuación es lineal, se ve fácilmente que la parte superior de la Fig. 2-1c, resuelve el término 0.01bd y que la parte inferior de la figura resuelve el término 0.2a + 0.005ac de la ec. (2.17). De forma que la suma de los valores obtenidos de las dos partes del cuadro redondeada al siguiente entero positivo constituye el índice de grupo IG del suelo.

B) Sistema de Clasificación Unificada de Suelos (SUCS).

Los elementos esenciales del sistema de clasificación fueron propuestos inicialmente por Arturo Casagrande (1942). Actualmente, este sistema se utiliza con modificaciones mínimas en la mayoría de paises. La tabla 2.5 presenta los factores a considerar en la clasificación de suelos con el Sistema Unificado de Clasificación de Suelos. Básicamente un suelo es:

	El material se considera grueso si se retiene más del 50 %				
	es retenido	0.075 mm	Pasa		
Grava	Arena		Limo o Arcilla		
Si más del 50 % de	Si más del 50 % de	-	El suelo fino es:		
la fracción gruesa	la fracción gruesa		Limo (M)		
queda retenida	pasa por el tamiz	1	Arcilla (C)		
en el tamiz Nº 4	N° 4		Orgánico (O)		

A continuación se consideran estas subdivisiones en más detalle:

1. Gravas o Arenas son:

GW, GP, SW o SP

si menos del 5 % del material pasa a través del tamiz Nº 200; G = grava o suelo gravoso; S = arena o suelo arenoso; W = bien gradada; P = mal gradada o pobremente gradada. La designación bien gradada o pobremente gradada depende

de dos valores característicos para Cu y Cc definidos en el análisis granulométrico y con valores numéricos como se muestra en la tabla 2.5.

2. Gravas y arenas son:

GM, GC, SM o SC

si más del 12 % del material pasa a través del tamiz Nº 200.

M = limo inorgánico o arena muy fina; C = arcilla inorgánica. La designación limo o arcilla se determina después de obtener los valores de los límites líquido y plástico de la fracción menor al tamiz Nº 40, y utilizando los criterios de la carta de plasticidad (gráfico de plasticidad en la tabla 2.5). Este gráfico es otra contribución de Casagrande al sistema, y la línea A que se encuentra en él, es conocida como la línea A de Casagrande. Este mismo gráfico ha sido modificado de acuerdo con las sugerencias del Cuerpo de Ingenieros en el sentido de que, hasta el momento, no se han encontrado suelos con coordenadas superiores a las determinadas por la línea "límite superior" mostrada.

3. Las gravas y las arenas se pueden clasificar en:

GW-GC	SW-SC	GP-GC	SP-SC
GW-GM	SW-SM	GP-GM	SP-SM
a: autor 5 - 12.0/	4-1	NO 200	

si entre 5 y 12 % del material pasa a través del tamiz Nº 200.

4. Los suelos de grano fino, (más del 50 % pasa el tamiz Nº 200), de baja o mediana plasticidad, son:

ML, OL, o CL

si los límites líquidos son menores que 50 %; M = limo inorgánico o arena muy fina; O = limos, arcillas y mezclas limo arcillosas con alto contenido de materia orgánica; C = arcilla inorgánica; L = baja o mediana plasticidad.

5. Los suelos de grano fino, de alta plasticidad, son:

MH, OH, o CH

si los límites líquidos son superiores a 50 %; H = alta plasticidad.

6. Los suelos turbosos y otros suelos altamente orgánicos de plasticidad excesiva se designan con las siglas Pt (Peat).

Los límites líquido y plástico se ejecutan sobre material correspondiente a la fracción menor del tamiz Nº 40 de todos los suelos, incluyendo gravas, arenas, y suelos finos. Estos límites se utilizan con la carta de plasticidad (cuadro A de Casagrande) para determinar el prefijo M, O, ó C, dependiendo de la localización de las coordenadas de plasticidad del suelo dentro de la carta.

Siempre se debe incluir una descripción visual del suelo conjuntamente con el símbolo unificado para completar la clasificación igual que en el sistema AASHTO.

C) Métodos de Identificación de Campo para suelos o fracciones de grano fino.

Estos procedimientos deben ejecutarse con las partículas que pasan el tamiz Nº 40 (aproximadamente 0.4 mm). A fines de clasificación en el campo, no es necesario el tamiz, basta con eliminar a mano las partículas gruesas que estorban para la prueba.

a. Dilatancia (reacción a la concusión o reacción a la agitación).

Después de eliminar las partículas de tamaño superior al del tamiz Nº 40, se prepara una pastilla de suelo húmedo de un volumen aproximado de 10 cm³. Si es necesario añádase agua suficiente para que quede el suelo blando, pero no pegajoso.

Colóquese la pastilla en la palma abierta de la mano y agítese horizontalmente, golpeando vigorosamente varias veces contra la otra mano. La reacción positiva consiste en la aparición de agua en la superficie de la pastilla, la cual adquiere una consistencia gelatinosa y de aspecto brillante. Cuando se aprieta con los dedos, el agua y el brillo desaparecen de la superficie, la pastilla se endurece y, finalmente se agrieta y se desmorona. La rapidez de aparición de agua en la agitación y de desaparición al apretarla, sirve para identificar el carácter de los finos que contiene un suelo.

Las arenas muy finas dan la reacción más rápida y clara, mientras que una arcilla plástica no tiene reacción. Los limos inorgánicos, como un polvo de roca típico, muestran una reacción moderadamente rápida.

b. Resistencia del material en estado seco (a la disgregación).

Después de eliminar las partículas que no pasan por el tamiz Nº 40, se moldea una pastilla de suelo hasta alcanzar la consistencia de una masilla, añadiendo agua si es necesario. Se deja secar la pastilla completamente en una estufa o expuesta al sol y al aire, probando después su resistencia rompiéndola y desmoronándola entre los dedos. Esta resistencia es la medida del carácter y proporción de la fracción coloidal que contiene el suelo. La resistencia el material (en estado) seco aumenta al aumentar la plasticidad.

Una elevada resistencia (en estado seco) es característica de las arcillas del grupo CH. Un limo inorgánico típico posee una resistencia (en estado seco) muy ligera. Las arenas finas limosas y limos tienen aproximadamente la misma resistencia (en estado seco) ligera pero pueden distinguirse por el tacto al pulverizar la muestra

seca. La arena fina se siente áspera al tacto mientras que el limo típico da la sensación suave de la harina.

c. Tenacidad (consistencia cerca del límite plástico).

Después de eliminar las partículas mayores que el tamiz Nº 40, se moldea una muestra de aproximadamente 10 cm³ hasta alcanzar la consistencia de masilla. Si el suelo está seco debe agregarse agua, pero si está pegajoso debe extenderse formando una capa delgada que permita una cierta pérdida de humedad por evaporación. Posteriormente se arrolla con la mano sobre una superficie lisa o entre las palmas de las manos, formando un cilindro de aproximadamente 3 mm. de diámetro doblándolo y volviéndolo a arrollar varias veces. Durante esta manipulación se va reduciendo la humedad gradualmente y la muestra adquiere una consistencia dura, acaba perdiendo su plasticidad y se desmorona al llegar al límite plástico.

Después de desmoronarse el cilindro se vuelven a agrupar los trozos, continuando el amasado ligeramente hasta que se vuelva a desmoronar.

Cuando más tenaz es el rodillo cerca del límite plástico y cuantos más duros son los trozos al desmoronarse, más importante es la fracción de arcilla coloidal del suelo. La debilidad del rollito en el límite plástico y la rápida pérdida de coherencia de los trozos por debajo del límite plástico indican que se trata de una arcilla inorgánica de baja plasticidad o de materiales como las arcillas del tipo caolín o las arcillas orgánicas que se encuentran por debajo de la línea A.

Las arcillas con elevada proporción de material orgánico dan un tacto esponjoso en el límite plástico.

2.3.4 PERFILES ESTRATIGRÁFICOS.

En base a los perfiles topográficos, el trabajo de geología, el estudio de suelos, y ya definida la sub rasante, es posible determinar los perfiles estratigráficos. Con ello, se podrá identificar los diferentes tipos de materiales que forman el subsuelo a diferentes profundidades.

Clasificación General		Materiales granulares Materiales limo arcillosos (35% o menos pasa la malla Nº 200) (más del 35% pasa la malla Nº									
Grupos	A-	-1	A-3		Α-	-2		A-4	A-5	A-6	A-7
Sub Grupos	A-1a	A-1b		A-2-4	A-2-5	A-2-6	A-2-7				A-7-5* A-7-6*
Porcentaje de material que pasa la malla: Nº 10 Nº 40 Nº 200	50 máx. 30 máx. 15 máx.	50 máx. 25 máx.	51 mín. 10 máx.	35 máx.	35 máx.	35 máx.	35 máx.	36 mín.	36 mín.	36 mín.	36 mín.
Características de la fracción que pasa la maila Nº 40: Límite líquido, LL Indice plástico, I _p	6 máx.	6 máx.	N.P.	40 máx. 10 máx.	41 mín. 10 máx.	40 máx. 11 mín.	41 mín. 11 mín.	40 máx. 10 máx.	41 mín. 10 máx.	40 máx. 11 mín.	41 mín. 11 mín.
indice de grupo**	0	0	0	0	0	4 máx.	4 máx.	8 máx.	12 máx.	16 máx.	20 máx.
Tipos de material	, -	s de plectra, y arena	Arena fina	G		nas Ilmosa Iosas	s y	S	uelos limos	×O\$	Suelos arcillosos
Terreno de fundación	1	ente a eno	Excelente a bueno		Excelente	e a bueno			Reguk	ar a malo	

^{*} Ver figura 2-1b

(a) Sistema de Clasificación AASHTO.

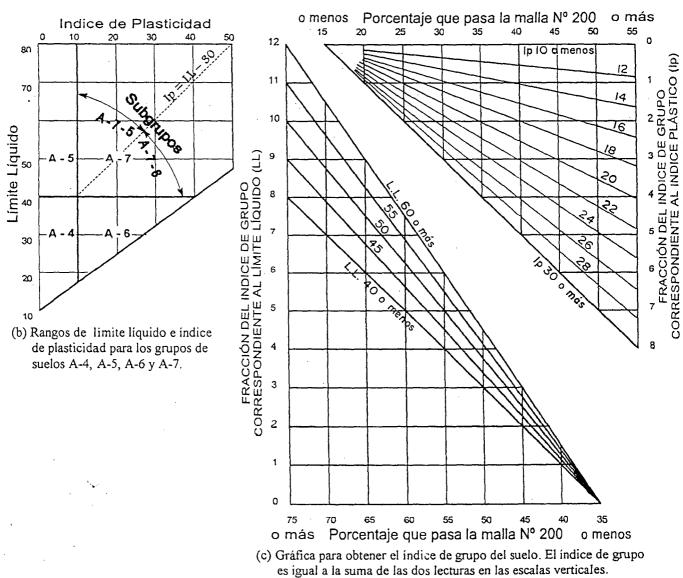


Figura 2-1: Cuadros para utilización en el sistema de clasificación AASHTO.

^{**}Indice de Grupo = IG = 0.2a + 0.005ac + 0.01 bd (Ver Fig. 2-1c)

Proyecto: "Pavimentación de las urbanizaciones: Sarita, Alan Perú, Las Margaritas; y calles del barrio San José"

	2.5 : Sistema Unificado de Clasificación de Suelos (Incluyendo identificación y c	

	PROCE	DIMIENTOS D	DE IDENTIFICACIO	ON EN EL CAMI	0	Símbolo del	NOMBRES TÍPICOS	Información requerida para la descripción de los suelos	CRITERIOS DE C	LASIFICACIÓN EN EL LA	BORATORIO
	0 5 a	T		el tamaño de los	es por peso estimado) granos y cantidades os tamaños	GŴ	Gravas bien graduadas, mezclas de grava y arena, con pocos finos o sin ellos.	Dése el nombre típico, Indiquense los porcentajes	étrica. los	$C_u = D_{60} / D_{10}$ $C_c = (D_{30})^2 / D_{60} \times D_{60}$	mayor de 4 entre 1 y 3
el tamiz Nº 200.	de la mitad de lesa es mayor miz Nº 4.	Gravas limpias (pocos o ningún fino)	Predominando las	partículas de ui encia de algunos	n tamaño o un tipo de tamaños intermedios.	GP	Gravas mal gradadas, mezclas de grava y arena, con pocos finos o sin ellos.	aproximados de grava y arena, tamaño máximo, angulosidad, condición de su superficie y dureza de los granos gruesos;	el campo. granulome la N° 200),	No satisfacen todos los gradación para GW.	
SO que el tar	Más Más ngr el ta le la	s con s dad dad ole de s)	Finos no plásticos más abajo).	(para la identifica	ción ver el grupo ML	GM	Gravas limosas, mezclas mal gradadas de grava, arena y limo.	nombre local o geológico y cualquier otra información o descripción pertinente, y el símbolo entre paréntesis.	identificación en en en a de la curva que pasa la mallicomo sigue:	Limites de Atterberg por debajo de la linea "A" ó Ip < 4	A los materiales sobre la linea A con 4< lp < 7 se considera de
E GRANO GRUESO mayor en tamaño que arionala apreciable a sin	GRAV/ la frac q uponerse	Gravas con finos (Cantidad apreciable de finos)	Finos plásticos (pa abajo).	ra la identificació	n ver el grupo CL más	GC	Gravas arcillosas, mezclas mal gradadas de grava, arena y arcilla.	Para los suelos inalterados agréguese información sobre	arena, de n que pa como sig	Limites de Atterberg arriba de la linea "A" con lp > 7.	frontera y se les asigna doble símbolo.
DE GRAP es mayor e	a fa tamız l puede sı	Arenas limpias (pocos o ningún fino)	Gran variación en apreciables de tod	el tamaño de los os los tamaños in	granos y cantidades termedios.	SW	Arenas bien gradadas, arenas con grava, con pocos finos o sin ellos.	estratificación, compacidad, cementación, condiciones de humedad y de drenaje.	columna de de grava y ar nos (fracción e clasifican e SW, SP SM, SC	$C_u = D_{60} / D_{10}$ $C_c = (D_{30})^2 / (D_{60} \times D_{10})^2$	
JELOS I	50% de por el 1 1 visual	Are limp (poc			tamaño o variación de tamaños intermedios.	SP	Arenas mai gradadas, arenas con grava, con pocos finos o sin ellos.	Ejemplo: Arena limosa, con grava; alrededor de 20% de	en la co tajes de de fino eso se c GP, SV GC, SN	No salisfacen todos los gradación para SW.	
del ma	ás de a pass N° 4. Ircació	n finos apre- finos)	Finos no plásticos más abajo).	(para la identifica	ción ver el grupo ML	SM	Arenas limosas, mezclas mal gradadas de arena y limo.	partículas de grava angulosa duras de tamaño máximo de ½ pulgada; granos de arena redondeados y sub angulares; alrededor de 15% de finos no	se indica os porcen orcentaje grano gru 5% GW,	Los límites de Atterberg por debajo de la línea "A" con Ip < 4.	SI el material está en la zona sombreada con 4 ≤ Ip ≤ 7
Más del 50% e	ARENAS: I fracción grue (Para la clas	Arenas con finos (cantidad apre- ciable de finos)	Finos plásticos (pa abajo).	ra la identificació	n ver el grupo CL más	SC	Arenas arcillosas, mezclas mai gradadas de arena y arcilla.	plásticos con baja resistencia en estado seco, bien compactados y húmedos en su estado natural; arena aluvial; (SM).	Hallense Ic Según el p suelos de ig Menos del Más del 1747	Los límites de Atterberg arriba de la línea "A" con Ip > 7.	se considera de frontera y se le asigna doble símbolo.
xi		os de identifica	ción para la fracció	n que pasa por	la malla Nº 40.				9 60		
Jac			Resistencia en estado seco (a la disgregación)	Dilatancia (reacción a la concusión)	Tenacidad (consistencia cerca del límite plástico)			Dése el nombre típico; indíquese el grado y carácter de plasticidad, proporción y	Line 50 Line 50	ea limite superior	
5 FINO el tarniz N° 200. corresponde por	LIMOS Y ARCILLAS	uido < 50,	Nula a ligera	Rápida a Jenta	Nula	ML	Limos inorgánicos y arenas muy finas, polvo de roca, arenas finas limosas o arcillosas, o limos arcillosos con ligera plasticidad.	tamaño máximo de los granos gruesos, color cuando esté mojado, olor si lo tiene, nombre local o geológico, cualquier	r las	СН	
S DE GRANO FI naterial pasa el	LIMOS Y.	(Límite líq	Media a alta	Nula a muy lenta	Media	CL	Arcillas inorgánicas de plasticidad baja a media, arcillas gravosas, arcillas arenosas, arcillas ilmosas, arcillas magras.	otra información descriptiva pertinente y el símbolo entre paréntesis.		77 04 04 04 04 04	
S DE (materi			Ligera a madia	Lenta	Ligera	OL	Limos orgánicos, arcillas limosas orgánicas de baja plasticidad.	Para los sualos inalterados anádase información sobre la	de p	ot ot	у МН
SUELOS DE GRANO del 50% del material pasa a	3 }	(09 ^	Ligera a media	Lenta a nula	Ligera a media	МН	Limos inorgánicos, suelos limosos o arenosos finos micáceos o diatomáceos, suelos elásticos.	estructura, estratificación, consistencia, tanto en estado inalterado como remoldeado, condiciones de humedad y de	Indice de plas	CL S	
Más del		e liquido	Alta a muy alta	Nula	Alta	СН	Arcillas inorgánicas de alta plasticidad, arcillas grasas.	drenaje. Ejemplo: <i>Limo ercilloso</i> ,	E 10 7 0	E XIL OL y ML	
		(Límit	Media a alta	Nula a muy lenta	Ligera a media	ОН	Arcillas orgánicas de plasticidad media a alta limos orgánicos.	marrón, ligeramente plástico; porcentaje reducido de arena fina, numerosos agujeros	0 10	20 30 40 50 60 7 Limite liquido	0 80 90 100
Sue	alos altamente or	-	esponjosa y po	r su textura frec	color, olor, sensación uentemente fibrosa.	Pt	Turba y otros suelos altamente orgánicos. or ejemplo: GW-GC, mezcla bien g	verticales de las raíces; firme y seco in situ, loes; (ML).		ÁFICO DE PLASTICIE)AD

Los suelos que poseen características de dos grupos se designan con la combinación de los dos símbolos. Por ejemplo: GW-GC, mezcla bien graduada de arena y grava en una matriz arcillosa (cementante de arcilla). Todos los tamaños de tamices se refieren al U.S. Standard.

2.3.5 ESTUDIO DE MATERIALES.

Es de suma importancia conocer las propiedades físicas del material de cantera que se va a utilizar en la construcción de un pavimento, para tener la absoluta seguridad de que va a soportar todos los esfuerzos a que va a estar sometido. La ubicación de la cantera o canteras debe ser la más cercana a la obra, de fácil acceso, para que el transporte del material sea el más económico.

Los ensayos de laboratorio a realizarse son los mismos que los efectuados para el estudio de suelos, agregando el ensayo de desgaste por abrasión.

Ensayo de desgaste por abrasión.

Consiste en colocar una muestra de agregado de granulometría especificada en un cilindro rotatorio horizontal (Máquina Los Angeles), conjuntamente con un número de esferas de acero, aplicando al tambor un determinado número de vueltas. El porcentaje del material fragmentado constituye un indicador de calidad.

Para determinar el desgaste por abrasión existen dos métodos. El primero que corresponde a agregados gruesos mayores de ¾" que comprende tamaños hasta de 3" y para agregados menores de 2". La carga abrasiva consiste en esferas de acero, cada una aproximadamente de 4.7 cm. de diámetro y un peso entre 390 y 455 gr.

Luego, tanto la cantidad de muestra representativa (peso inicial) como la carga abrasiva, se colocan en la Máquina Los Angeles y se hace girar el tambor a una velocidad de 30 a 35 revoluciones por minuto, hasta alcanzar las 500 revoluciones, para el primer caso y 1,000 revoluciones para el segundo. La máquina debe ser accionada de modo que las revoluciones sean uniformes. Concluido esto, se extrae el material del tambor, sometido al desgaste, se lo tamiza por la malla Nº 12 y se pesa el material retenido.

El porcentaje de desgaste se calcula con la fórmula:

$$\%$$
 Desgaste = $\frac{Peso\ Inicial\ -\ Peso\ Retenido}{Peso\ Inicial} \times 100$ 2.3.3 - 1

Los siguientes cuadros se refieren a los tipos de muestras que se utilizan en el ensayo de desgaste por abrasión.

Cuadro 2.3.3 - 1

	TAM	MICES		G		DE LAS MUESTRA gramos)	S
PA	\SA	RE	TENIDO	А	В	С	D
Pulg.	mm	Pulg.	mm				
1 1/2	38.10	1	25.00	1250 ± 25			
1	25.00	3/4	19:00	1250 ± 25			
3/4	19.00	1/2	12.50	1250 ± 25	2500 ± 10		
1/2	12.50	3/8	9.50	1250 ± 25	2500 ± 10		
3/8	9.50	1/4	6.30	1		2500 ± 10	
1/4	6.30	Nº 4	4.76			2500 ± 10	
Nº 4	4.76	Nº 8	2.36				5000 ± 10
	T.	OTAL		5000 ± 10	5000 ± 10	5000 ± 10	5000 ± 10

Cnadro 2.3.3 - 2

,				GRANULO	METRÍA DE LAS MU	ESTRAS
	TAN	MICES		•	(peso en gramos)	
P/	PASA RE		ENIDO	А	В	С
Pulg.	Mm	Pulg.	mm			
3	76.20	21/2	63.00	2500 ± 50		
21/2	63.00	2	50.80	2500 ± 50		
2	50.80	1 1/2	38.10	5000 ± 50	5000 ± 50	
1 ½	38.10	1	25.00		5000 ± 50	5000 ± 50
1	25.00	3/4	19.00		l	5000 ± 50
TOTAL				10000 ± 100	10000 ± 100	10000 ± 100

Cuadro 2.3.3 – 3 Desgaste permisible en materiales sometidos al ensayo de abrasión.

UTILIDAD	PORCENTAJE DE DESGASTE (D)
El material no sirve	Si D > 60
Sirve para capas de rodadura	Si D < 60
Sirve para concreto	Si D < 50
Sirve para sub base o afirmado	. Si D < 40
Sirve para cualquier uso	Si D < 30

2.4 PAVIMENTOS.

2.4.1 DEFINICIÓN DE PAVIMENTO.

Es toda estructura constituida por una capa o conjunto de capas de materiales apropiados, comprendidas entre la subrasante y la superficie de rodadura, cuya función principal es la de proporcionar una superficie de rodamiento uniforme y resistente a la carga vehicular u otro tipo de carga o agente perjudicial que sobre él actúe, debiendo transmitir los esfuerzos producidos, a la subrasante o terreno de fundación.

2.4.2 ESTRUCTURA DEL PAVIMENTO.

Un pavimento está conformado por las siguientes capas:

a) Subrasante.

La subrasante se encuentra bajo la sub base y sirve de apoyo al pavimento. Después de realizado el movimiento de tierras, ésta debe ser compactada. Sus secciones transversales y pendientes son las especificadas en los planos de diseño.

El espesor de un pavimento depende de la capacidad de soporte de la subrasante. Si ésta tiene un alto contenido de materia orgánica, la capacidad relativa de soporte es pésima, debiendo desecharse o sustituirse por un material de mejor calidad. Si está conformada por un suelo fino limoso o arcilloso, susceptible a saturación, la capacidad relativa de soporte será mala y habrá que colocar una sub base granular de material seleccionado antes de colocar la base. Si está constituida por un suelo bien graduado que no ofrece peligro de saturación, o por un material de granulometría gruesa, la capacidad relativa de soporte será regular o buena y es probable que no se requiera de una capa de sub base. Finalmente, si la subrasante tiene un nivel de soporte elevado y no existe la posibilidad de que se sature de agua, sólo se tendría que colocar sobre la superficie de rodadura; en este caso la capacidad relativa de soporte será excelente.

b) Sub base.

Es la capa de material seleccionado que se coloca encima de la subrasante para: 1) servir de drenaje al pavimento, 2) controlar en lo posible los cambios de volumen, elasticidad y plasticidad perjudiciales, que pudiera tener el material de la subrasante y 3) controlar la ascensión capilar del agua proveniente de las napas freáticas cercanas o de otras fuentes.

El material utilizado para esta capa, debe tener mayor capacidad de soporte que el terreno de fundación compactado y sus características deberán ser las de un suelo A-1 ó A-2 (AASHTO) con un LL inferior al 35 %, IP no mayor de 6 y CBR no menor de 15 %.

c) Base.

Su finalidad es la de absorber los esfuerzos transmitidos por las cargas de los vehículos y a su vez transmitirlos a la sub base y al terreno de fundación.

Las bases pueden ser granulares o tratadas con cemento, cal o mezcla bituminosa. Las características del material que se emplea en la base deberán ser las siguientes:

- Resistencia a los cambios de humedad y temperatura
- El porcentaje de desgaste por abrasión inferior al 50 %.
- La fracción de material que pasa el tamiz Nº 40 debe tener un LL menor de 25 % y un IP inferior a 6.
- El CBR. deberá ser superior a 50 %.
- d) Superficie de Rodadura.

Su principal función es la de proteger a la base, impermeabilizando la superficie y evitando posibles infiltraciones de agua y mejorar la calidad del tránsito vehicular.

En ciertos tipos de pavimentos y si las circunstancias así lo permiten, puede omitirse alguna o algunas de estas capas; de ser así, las funciones se reparten en las efectivamente colocadas.

2.4.3 PAVIMENTOS USADOS EN VIAS URBANAS.

a) Pavimentos Flexibles.

La superficie de rodadura es una carpeta asfáltica colocada sobre una capa o capas de material granular de buena calidad. Su comportamiento estructural flexible permite que las cargas que recibe sean transmitidas hacia la subrasante únicamente en las áreas próximas a la zona de aplicación de éstas.

Su costo de primera inversión es intermedio y su mantenimiento debe ser continuo.

b) Pavimentos Rígidos.

Constituidos por una losa de concreto de cemento Portland y pueden, o no, tener una capa de base entre la losa y la subrasante.

La losa de concreto; por su rigidez y alto módulo de elasticidad, distribuye las cargas debidas al tránsito sobre áreas relativamente extensas del suelo, por lo que la capacidad estructural del pavimento mayormente es provista por la propia losa.

Su uso y tecnología son más difundidos que los flexibles, pero su costo de primera inversión es alto.

c) Pavimentos Mixtos.

Son una combinación del pavimento rígido y el flexible. Estos pavimentos se ejecutan como resultado de estudios para rehabilitar y reconstruir pavimentos existentes, en los que se necesita refuerzo tanto de pavimento flexible como de rígido. Así mismo, esta clase de pavimentos se construyen cuando, por razones de resistencia, se desea lograr una estructura especial.

d) Pavimentos Adoquinados.

Construidos a base de adoquines de concreto de formas geométricas diversas; éstos se colocan en hileras con juntas uniformes o alternadas.

e) Pavimentos Empedrados.

Su elemento básico es el canto rodado de tamaño regular que cuando menos una de sus caras sea casi plana. Son malos para soportar tránsito considerable a velocidades regulares y altas. Se emplean en obras de tipo turístico o para calles de poblaciones pequeñas de poco tránsito.

2.4.4 ASPECTOS A TENER EN CUENTA EN LA ELECCIÓN DEL PAVIMENTO.

- A) Aspectos Técnicos.
- Capacidad de soporte de la subrasante.
- Clima de la zona.
- Durabilidad.
- Volumen de tráfico.
- Disponibilidad de materiales requeridos.
- Maquinaria.
- B) Aspectos Económicos.
- Costo de la inversión.
- Duración del Periodo de diseño.
- Mantenimiento.

Ventajas y desventajas de los pavimentos rígidos.

- a) Ventajas:
- a) 1 Durabilidad.

Es una de las ventajas más significativas de los pavimentos de concreto. Para lograr que un pavimento sea durable, es importante considerar, además de la resistencia adecuada ante las solicitaciones mecánicas, todos los agentes externos de exposición a los que éste estará sujeto para elaborar la mezcla apropiada y definir las recomendaciones.

Es importante, también, conocer las características de los materiales que forman la estructura de soporte y contar con suficiente información, para estimar de forma precisa el volumen de tráfico y las cargas vehiculares que estarán transitando por el pavimento.

a)2 Bajo costo de mantenimiento.

Los pavimentos de concreto hidráulico se han caracterizado por requerir de un mínimo mantenimiento a lo largo de su vida útil. La significativa reducción en los costos de mantenimiento de una vía, permiten que el concreto sea una opción muy económica.

a)3 Seguridad.

El concreto colocado adecuadamente, permite lograr una superficie de rodamiento con alto grado de planicidad, y dada su rigidez, esta superficie será plana durante toda su vida útil.

El color del pavimento concreto, permite una mejor visibilidad en caso de transitar de noche o en días nublados.

a)4 Altos índices de servicio.

Los pavimentos de concreto hidráulico permiten ser construidos con altos índices de servicio, por su grado de seguridad y, adicionalmente, siguiendo las recomendaciones de construcción adecuadas, se puede proveer al pavimento de una superficie altamente antiderrapante.

El uso de pasajuntas permite mantener estos índices de servicio, evitando la presencia de escalonamientos en las losas, sobre todo en tramos donde el tráfico es más pesado.

a) 5 Mejor distribución de esfuerzos bajo las losas.

Por la rigidez de la losa, los esfuerzos que se transmiten a las capas inferiores del pavimento se distribuyen de una manera prácticamente uniforme, cosa contraria a lo que sucede con los pavimentos flexibles, en donde las cargas vehiculares concentran un gran porcentaje de su esfuerzo exactamente debajo del punto de aplicación de la carga y que disminuyen conforme se alejan de la misma. La distribución uniforme de cargas permite que los esfuerzos máximos que se transmiten al cuerpo de soporte sean mucho menores en magnitud, lo que permite una mejor condición y menor deterioro de los suelos de soporte.

b) Desventajas:

Principalmente su elevado costo.

Si las condiciones climáticas y topográficas y el tipo de suelo de una determinada zona son desfavorables, al elegir el tipo de pavimento a construir deben primar los aspectos técnicos ante el costo del mismo, pues de nada sirve un pavimento con bajo costo de construcción si su mantenimiento va a ser continuo y su duración demasiado corta.

2.4.5 SHELO DE SUBRASANTE.

La subrasante, también llamada suelo de fundación, es el suelo preparado y compactado para soportar la estructura del pavimento. La preparación de la sub rasante debe hacerse cuando se haya concluido con el movimiento de tierras y todas las estructuras y drenajes adyacentes hayan sido terminados.

La subrasante mejorada consiste en una o varias capas de material, colocadas entre el suelo natural y la estructura del pavimento.

2.4.5.1 SUBRASANTES DE BAJA PLASTICIDAD.

Se evalúan con los siguientes ensayos de laboratorio:

ENSAYO		MÉTODO		
	USO	AASHTO	ASTM	
Límite Líquido Límite Plástico Índice de Plasticidad Análisis Mecánico Compactación	Identificación Identificación Identificación Identificación Rel.: Humedad - Densidad	T89 T90 T90 T88 T180 T99	D 4318 D 4318 D 4318 D 422 D 1557 D 698	
C.B.R.	Diseño de espesores	T193	D 1883	

FUENTE: Manual de Diseño Estructural de Pavimentos Asfálticos y de Concreto Ing. Javier Llorach Vargas.

Los valores CBR deben ser los correspondientes a las densidades previstas. Los requisitos de compactación para la construcción de carreteras, son los siguientes:

- Cuando el suelo granular tiene 10 % (máximo) que pasa la malla N° 200 e I.P. ≤ 6, la compactación será no menor del 95% de la Máxima Densidad obtenida del Método AASH TOTI80 (pisón de 10 lbs y 18" de caída).
- Cuando el suelo es limoso, limo-arenoso o arcilloso, con I.P. < 10, la compactación será
 no menor del 95% de la Máxima Densidad obtenida del Método AASHTOT-99 (pisón de
 5.5 las y 12" de caída).
- Si el suelo es arcilloso con $10 \le I$. $P \le 25$; la compactación será igual al caso anterior.
- Aquellos suelos que tengan un I. P. > 25 deberán ser cubiertos con un espesor adecuado de material selecto o estabilizado con algún agente apropiado.

2.4.5.2 SUBRASANTES DE ALTA PLASTICIDAD.

Los suelos de alta o mediana plasticidad en zona tropical pueden ser susceptibles a cambios en sus propiedades si se secan al horno antes de los ensayos de laboratorio, induciendo a su sobre estimación.

TABLA 2.4.5.2 (1): Requisitos de Compactación de la subrasante.

ESPESOR SOBRE LA SUBRASANTE (cm.)	COMPACTACION
0 – 25	100 % AASHTO Mod.
25 – 45	95 % Proctor Mod.
45 60	100 % Proctor Std.
60 – 90	95 % Proctor Std.

FUENTE: Manual de Diseño Estructural de Pavimentos Asfálticos y de Concreto. Ing. Javier Llorach Vargas.

2.4.6 ESTUDIO DEL TRÁFICO PARA FINES DE DISEÑO DEL PAVIMENTO.

El tráfico en caminos y calles varía tanto en la cantidad de vehículos como en la magnitud de las cargas. No puede establecerse en forma precisa modelos del tráfico actual y futuro para un nuevo camino o calle, igualmente sobre facilidades existentes; las estimaciones sobre tráfico futuro son sólo aproximadas.

a) CARACTERÍSTICAS DEL TRÁNSITO.

Las características del tránsito que es necesario conocer para el proyecto de pavimentos son:

- 1. Tránsito promedio diario anual (TPDA).
- 2. Tránsito en el carril de diseño.
- 3. Composición del tránsito por tipos de vehículos.
- 4. Pesos de los vehículos cargados y vacíos.
- 5. Número y posición de ejes y llantas.
- 6. Incremento del tránsito.
- a) 1 Tránsito Promedio Diario Anual (TPDA).

Es el número de vehículos que transitan por una vía en ambos sentidos durante un año, dividido entre 365 días.

Para determinar el TPDA de una vía en operación, se cuenta en forma directa el tránsito; el conteo puede efectuarse durante todo el año o sólo en ciertas temporadas y luego proyectarlo a un año. Para conocer el TPDA de una vía que se va a construir, se recurre a estimarlo en base al tránsito inducido y tránsito generado.

El tránsito inducido es aquel que en la actualidad está utilizando otras vías, pero que al construirse la nueva, hará uso de él para llegar al mismo destino.

El tránsito generado, es aquel que se va a originar debido al desarrollo propio de la zona de influencia de la nueva vía.

El TPDA para vías futuras se calcula con la siguiente fórmula:

TDPA = TI + TG

Donde:

TI = Tránsito inducido.

TG = Tránsito generado.

a)2 Tránsito en el carril de diseño.

Del TPDA se necesita conocer el porcentaje que hace uso del carril en donde se carga más el movimiento, el cual se toma como carril de diseño.

Se ha llegado a la conclusión que para una vía de dos carriles, el carril de diseño lleva de 60 a 65% del TPDA; para una de cuatro carriles 50% del TPDA; para seis carriles 40% del TPDA.

a)3 Composición del tránsito.

Es importante conocer la cantidad de vehículos de los diferentes tipos que circulan por las vías, pues su peso total puede variar de según las diferentes combinaciones en la posición de sus ejes y llantas.

a) 4 Pesos de los vehículos cargados y vacíos.

De cada uno de los vehículos es necesario conocer sus pesos cargados y vacíos; principalmente los vehículos de carga pueden estar compuestos por una unidad de tracción, una caja y un remolque, cada uno conteniendo varios ejes en diferentes combinaciones y con una o dos llantas.

a)5 Número y posición de ejes y llantas.

La importancia de conocer el tipo de vehículos, sus pesos y la posición y número de ejes y ruedas, es para estudiar la magnitud de los esfuerzos en la estructura vial y proyectar adecuadamente su diseño.

a) 6 Incremento de Tránsito.

El incremento del tránsito es el volumen de tránsito que se espera use la nueva vía en el año futuro seleccionado como de proyecto. Este incremento se compone del crecimiento normal del tránsito, del tránsito generado y del tránsito desarrollado.

El crecimiento normal del tránsito es el incremento del volumen de tránsito debido al aumento normal en el uso de los vehículos.

El tránsito generado es el tránsito vehicular, distinto al del transporte público, que no se realizaría si no se construyera la nueva vía. El tránsito generado se compone de tres categorías: el tránsito inducido o nuevos viajes no realizados previamente por ningún modo de transporte; el tránsito convertido o nuevos viajes que previamente se hacían masivamente en taxi, autobús y que por razones de la nueva vía se harían en vehículos particulares y el tránsito trasladado, consistente en viajes previamente hechos a destinos totalmente diferentes, atribuibles a la atracción de la nueva vía y no al cambio en el uso del suelo. Al tránsito generado se le asigna tasas de incremento entre el 5 y el 25 % del tránsito actual.

El tránsito desarrollado es el incremento del volumen de tránsito debido a las mejoras en vías adyacentes.

TASA ANUAL DE CRECIMIENTO, PORCENTAJE (r) * Periodo de diseño años (n) 8 2 5 10 0 4 6 1.00 1.01 1.0 1.00 1.00 1.00 2 2.06 2.07 2.08 2.10 2.0 2.02 2.04 2.05 3.0 3.06 3.12 3.15 3.18 3.21 3.25 3.31 4 4.0 4.25 4.31 4.37 4.44 4.51 4.64 4.12 5 5.53 5.64 5.75 5.87 6.11 5,0 5.20 5.42 6 7 6.0 6.31 6.63 6.80 6.98 7.15 7,34 7.72 7.0 7.43 7.90 8.14 8.39 8.65 8.92 9.49 8 8.0 8.58 9.21 9.55 9.90 10.26 10.64 11.44 13.58 9 9.0 9.75 10.58 11.03 11.49 11.98 12.49 10 10.0 10.95 12.01 12.58 13.18 13.82 14.49 15.94 18.53 11 11.0 12.17 13.49 14.21 14.97 15.78 16.65 12 13 18.98 21.38 12.0 13.41 15.03 15.92 16.87 17.89 21.50 24.52 18 88 20 14 13.0 14.68 16.63 17 71 21.01 24.21 27.97 14 15 16 17 14.0 15.97 18 29 19.16 22 55 27.15 25.13 31.77 15.0 17 29 20.02 21 58 23.28 18 64 21.82 23.66 25.67 27.89 30.32 35.95 16.0 23.70 25.84 28.21 30.84 33.75 40.55 17.0 20.01 18 19 25.65 30.91 34.00 37.45 45.60 18.0 21.41 28.13 22.84 27.67 30.54 33.76 37.38 41.45 51.16 19.0 20 25 30 35 20.0 24,30 29.78 33.06 36.79 41.00 45.76 57.28 25.0 32.03 41.65 47.73 54.86 63.25 73.11 98.35 30.0 40.57 56.08 66.44 79.06 94.46 113.28 164.49 35.0 49,99 73.65 90.32 111.43 138.24 172.32 271.02 40 95.02 120.80 154.75 199.64 259.06 442.59 40.0 60.40 50.0 84.58 152.70 209.30 290.34 406.53 573.77

TABLA 2.4.6 (1): Factor de Crecimiento multiplicado por el periodo de diseño.

Si la tasa anual es cero, el Factor de Crecimiento = Periodo de Diseño

*Factor =
$$\frac{(1+r)^n-1}{r}$$
; donde $r = \frac{\tan a}{100}$

FUENTE: Manual de Diseño Estructural de Pavimentos Asfálticos y de Concreto. Ing. Javier Llorach Vargas.

2.4.7 DISEÑO ESTRUCTURAL DE PAVIMENTOS RÍGIDOS.

Los pavimentos de concreto, están constituidos por una losa de concreto de cemento Portland y pueden o no tener una capa de base entre la losa y la subrasante. La losa de concreto por su rigidez y alto módulo de elasticidad, distribuye las cargas de tránsito sobre áreas relativamente extensas del suelo subyacente, por lo que, la mayor parte de la capacidad estructural del pavimento es provista por la misma losa.

Las capas de base, a menudo llamadas sub bases, se emplean para prevenir el bombeo del material de subrasante a través de las juntas, controlar la acción de las heladas, proveer de drenaje y disminuir las retracciones y entumecimientos de la subrasante.

El bombeo es el desalojamiento violento de una mezcla de suelo y agua que ocurre debajo de las juntas de las losas, en las grietas y bordes de los pavimentos. Lo produce la deflexión frecuente de las losas, debida a las cargas vehiculares, cuando los suelos de grano fino de la sub rasante están saturados. Esta expulsión cuando es continua y no se controla, al final puede desalojar un volumen de suelo tal que destruye la uniformidad del apoyo. Deben concurrir tres factores para que éste se produzca: sub rasantes constituidas

por suelos que puedan entrar en suspensión, presencia de agua libre entre la losa y la subrasante, y aplicación de cargas de ruedas pesadas y frecuentes.

Para evitar que se produzca este fenómeno, se debe considerar en el diseño:

- a) Una sub base granular debajo de la losa.
- b) El uso de elementos de transmisión de carga entre las juntas.
- c) Un drenaje eficaz.
- d) El sellado de juntas y grietas con material bituminoso u otro elemento.
- e) Reforzar el pavimento.

Las consideraciones a, b y c, son medidas a tomar en la construcción del pavimento; d y e, para combatir el fenómeno.

2.4.7.1 PRINCIPALES FUNCIONES DE LA SUB BASE

- 1. Proporcionar apoyo uniforme a la losa de concreto.
- 2. Incrementar la capacidad portante de los suelos de apoyo, respecto a lo que es común en los cimientos y capa sub rasante.
- 3. Reducir a un mínimo las consecuencias de los cambios de volumen que puedan tener lugar en el suelo y forma del terreno de fundación.
- 4. Reducir al mínimo las consecuencias de la congelación del suelo de fundación.
- 5. Evitar el bombeo o surgencia.

Los materiales de base y sub base deben cumplir con lo señalado en las tablas 2.4.7.1

(1) ó 2.4.7.1 (2); las capas de base y/o sub base deben compactarse al 100 % de la densidad AASHTO T-99 (Proctor Estándar).

Los pavimentos de concreto no requieren de subrasantes o bases muy resistentes, pero es importante que tengan un valor de soporte razonablemente uniforme.

TABLA 2.4.7.1 (1): Especificaciones Instituto del Asfalto.

TEST	SUB BASE	BASE
CBR mínimo	20	80
Límite líquido, máximo	25	25
Índice de Plasticidad, máximo	6	NP
Equivalente de arena, mínimo	25	35
% que pasa la malla Nº 200, máximo	12	7

FUENTE: Manual de Diseño Estructural de Pavimentos Asfálticos y de Concreto. Ing. Javier Llorach Vargas.

Se recomienda efectuar el ensayo "Equivalente de arena".

TABLA 2.4.7.1 (2): Especificaciones AID.

TEST	CLASIFICACIÓN BASE				SUB BASE		
	ı	11	111	IV	٧	VI	
CBR de diseño	100	90	80	70	60	50	25 – 40
L.L., máximo	6	9	9	9	12	12	16
I.P., máximo	2	4	4	4	6	6	8
Módulo granulométrico, máximo	490	525	550	580	600	615	630

Módulo granulométrico: Porcentajes acumulados de material que pasa las mallas 1", 3/4", 1/2", 3/8", N° 4, N° 10, N° 40 v N° 200

FUENTE: Manual de Diseño Estructural de Pavimentos Asfálticos y de Concreto. Ing. Javier Llorach Vargas.

2.4.7.2 ESFUERZOS QUE ACTÚAN EN LOS PAVIMENTOS RÍGIDOS.

- 1. Esfuerzos directos de compresión y tensión que resultan de las deflexiones de las losas bajo las cargas de las ruedas.
- 2. Esfuerzos abrasivos causados por las llantas de los vehículos.
- 3. Esfuerzos de compresión y tensión debido al alabeo de las losas por efectos de los cambios de temperatura y de humedad.

2.4.7.3 COEFICIENTES DE SEGURIDAD

1. Anteriormente se consideraba que era necesario aumentar en 20 % el valor de las cargas debido al efecto de impacto, en todos los casos. Últimamente, ensayos de laboratorio y comprobaciones experimentales han demostrado que los esfuerzos producidos por las cargas móviles de los vehículos son menores que los causados por cargas estáticas de igual magnitud. Esto nos indica que no tiene sentido afectar a las primeras por el factor de impacto, sin embargo, como en otro tipo de estructuras, es conveniente adoptar factores de seguridad para las cargas y cuyos valores dependerán sobre todo del volumen de tránsito pesado.

2.4.7.4 JUNTAS.

El diseño de juntas en los pavimentos de concreto tiene como objetivo el de controlar el agrietamiento en las losas y mantener la capacidad estructural del pavimento y también su calidad de servicio en los más altos niveles al menor costo anual:

Además las juntas tienen funciones más específicas:

- Control del agrietamiento transversal y longitudinal provocado por las restricciones de contracción, combinándose con los efectos de pandeo o alabeo de las losas, así como las cargas del tráfico.
- Dividir el pavimento en incrementos prácticos para la construcción (por ejemplo los carriles de circulación).

- Absorber los esfuerzos provocados por los movimientos de las losas.
- Proveer una adecuada transferencia de carga. Darle forma al depósito para el llenado de la junta.

Una construcción adecuada y a tiempo, así como un diseño apropiado de las juntas incluyendo un efectivo sellado, son elementos claves para el buen comportamiento del sistema de juntas.

En orden, para el diseño adecuado de un sistema de juntas es recomendable evaluar las siguientes recomendaciones:

- Consideraciones ambientales: Los cambios en la temperatura y humedad inducen movimientos de la losa, resultando en concentraciones de esfuerzos y en alabeos.
- Espesor de losa: Afecta los esfuerzos de alabeo y las deflexiones para la transferencia de carga.
- Transferencia de carga: La transferencia de carga es necesaria a lo largo de cualquier junta de pavimento, sin embargo la cantidad requerida de transferencia de carga varía para cada tipo de junta. Cuando se empleen barras de amarre o pasajuntas, el tipo y el tamaño de las barras influyen en el diseño de las juntas.
- Tráfico: El tráfico es muy importante para el diseño de juntas. Su clasificación, canalización y la predominancia de cargas en el borde influyen en los requerimientos de transferencia de carga para el comportamiento a largo plazo.
- Características del concreto: Los componentes de los materiales afectan la resistencia del concreto y los requerimientos de juntas. Los materiales seleccionados determinan las contracciones de la losa, por ejemplo del agregado grueso influye en el coeficiente térmico del concreto, en adición a esto los agregados finos tienen una influencia perjudicial en el comportamiento de las juntas. En muchas ocasiones el despostillamiento se debe a concentraciones de materiales malos a lo largo de las juntas.
- Tipo de subrasante: Los valores de soporte y las características friccionantes en la interfase del pavimento, con el terreno de apoyo para diferentes tipos de suelos, afectan los movimientos y el soporte de las losas.
- Características del sellador: El espaciamiento entre juntas influye en la selección del tipo de sellador. Otras consideraciones, como costos, adecuados factores de forma y ciclos de vida, también deben tomarse en cuenta para la selección del mismo.
- Apoyo lateral: El tipo de acotamiento (de concreto y amarrado, de asfalto, de material granular) afecta el soporte de la orilla del pavimento y la habilidad de las

juntas centrales para realizar la transferencia de carga.

Experiencia pasada: Los datos locales del comportamiento de los pavimentos son una excelente fuente para establecer un diseño de juntas, sin embargo las mejoras a los diseños del pasado con la tecnología actual pueden mejorar significativamente su comportamiento.

a) Agrietamiento.

La función básica de un adecuado sistema de juntas es la de controlar el agrietamiento que ocurre de manera natural en el pavimento de concreto y las juntas son colocadas en el pavimento para controlar su ubicación y su geometría.

a) 1 Contracción.

La mayor parte de la contracción anticipada del concreto ocurre a muy temprana edad en la vida del pavimento, provocado principalmente por cambios de temperatura. El calor de hidratación y temperatura normalmente alcanza su valor máximo muy poco tiempo después de su colocación y una vez alcanzado, la temperatura del concreto baja debido a la reducción de la actividad de hidratación y también debido al efecto de la baja temperatura ambiente durante la primera noche del pavimento. Otro factor que contribuye a la contracción inicial es la reducción de volumen por la pérdida de agua en la mezcla.

La fricción de la subrasante o terreno de apoyo se resiste a la contracción del pavimento por lo que se presentan en el interior, algunos esfuerzos de tensión, los cuales, de no ser considerados, pueden provocar grietas transversales.

El espaciamiento de las grietas iniciales del pavimento varían entre 1.20 y 5.00 metros y dependen de las propiedades del concreto, espesor, fricción de la base y de las condiciones climáticas durante y después de su colocación.

Los intervalos de las grietas son más cortos cuando los pavimentos se apoyan en bases rígidas o estabilizadas por lo que hay menor abertura en cada grieta, mientras que la separación entre ellas será mucho mayor para pavimentos sobre bases granulares, por lo que al tener una separación mayor en las grietas iniciales se puede anticipar una mayor abertura y movimiento para cada una.

a)2 Gradientes.

Los esfuerzos provocados por gradientes de temperatura y de humedad en el interior del pavimento, también pueden contribuir al agrietamiento, sólo que estos ocurren generalmente después de fraguado el concreto. La cara superior del pavimento (expuesta a la superficie) experimenta diariamente grandes variaciones en temperatura y en contenido de humedad, y estos cambios diarios son mucho menores en el fondo o cerca

del fondo del pavimento.

El alabeo de las losas es principalmente el resultado del gradiente de temperatura a través de la profundidad de la estructura del pavimento. Estos gradientes de temperatura varían con las condiciones del clima y la hora del día, por ejemplo, el alabeo de las losas en el día se presenta cuando la porción superior se encuentra a una temperatura superior que la porción del fondo, la porción superior de la losa se expande más que en el fondo provocando una tendencia a pandearse.

El peso propio de la losa opone resistencia al pandeo e induce esfuerzos de tensión en dirección al fondo de la losa y esfuerzos de compresión hacia la parte superior de la losa (figura 2.4.7.4.1). De noche el patrón de esfuerzos se presenta de manera inversa, es decir que se presentan esfuerzos de tensión hacia la parte superior de la losa y esfuerzos de compresión hacia el fondo del pavimento.

El alabeo por humedad es un factor que intenta contrarrestar el alabeo por gradientes de temperatura de día. Este pandeo por humedad es provocado por un diferencial de ella desde la parte superior hasta el fondo de la losa. La parte superior se encuentra más seca que el fondo y un decremento en el contenido de humedad provoca una contracción, mientras que un incremento provoca una expansión. El diferencial tiende a presentar esfuerzos de compresión en la base de la losa donde contrarresta a la carga y a los esfuerzos de tensión inducidos por el alabeo de día.

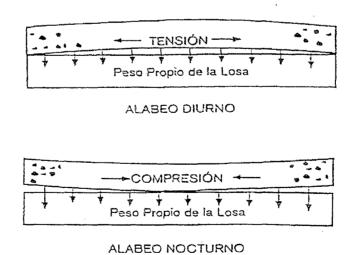


Figura 2.4.7.4 - 1 Alabeo de las losas de los pavimentos de concreto.

Sin embargo es sumamente complicado evaluar el efecto combinado de los alabeos por temperatura y los provocados por gradientes de humedad, debido a su natural contradicción. Es principalmente por esto que los esfuerzos de alabeo calculados con

fórmulas que únicamente consideran gradientes de temperatura son muy altos comparados con valores medidos en el comportamiento de un pavimento.

La combinación de las restricciones que provocan los cambios de humedad y de temperatura con las cargas, también provocarán grietas transversales, adicionales a las grietas iniciales y en pavimentos con dos carriles de circulación además se formará una grieta longitudinal a lo largo de la línea central del pavimento.

La figura 2.4.7.4.2(a) muestra el resultado de un patrón natural de agrietamiento, mientras que un adecuado sistema de juntas, figura 2.4.7.4.2 (b), provee una serie de juntas espaciadas para controlar (ubicación y geometría) la formación de estas grietas.

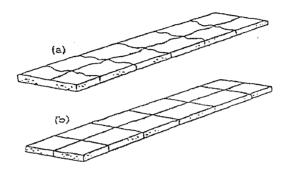


Figura 2.4.7.4 - 2 Patrón de agrietamiento provocado por el medio ambiente y los esfuerzos de las cargas en un pavimento de concreto sin juntas. (b) Diseño adecuado de las juntas para controlar la ubicación y geometría de las grietas en un pavimento de concreto.

b) Eficiencia de la junta.

La transferencia de carga es la habilidad de la junta de transferir una parte de la carga aplicada de uno al otro lado de la junta, figura 2.4.7.4 - 3, y se mide por lo que llamamos como "eficiencia de la junta".

Una junta es 100 % efectiva si logra transferir la mitad de la carga aplicada al otro lado de la junta, mientras que un 0 % de efectividad significa que ninguna parte de la carga es transferida a través de la junta.

La evaluación en campo de la transferencia de carga se realiza midiendo las deflexiones en cada lado de la junta dada una aplicación de carga.

De manera que conociendo las deflexiones en una junta, por medio de la siguiente ecuación podemos conocer su % de eficiencia (E):

$$E = \frac{2 \Delta_{U}}{\Delta_{L} + \Delta_{LL}} 100$$
 2.4.7.4 - 1

Donde:

 Δ_1 = Deflexión del lado cargado de la junta.

 Δ_U = Deflexión del lado no cargado de la junta.

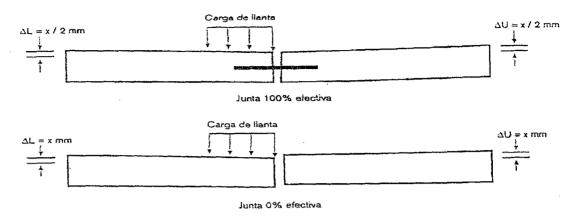


Figura 2.4.7.4 - 3: Eficiencia de las juntas.

- c) Factores que contribuyen a la transferencia de carga.
- c) 1 Trabazón de agregados.

Esta depende de la resistencia al cortante entre las partículas del agregado en las caras de la junta, debajo del corte inducido.

Para incrementar la trabazón de agregados y minimizar la diferencia de elevación en las juntas se recomienda:

- Losas con espesores grandes, pues una mayor área para trabazón de agregado provee una mejor transferencia de carga.
- Poca separación de juntas, menor a 4.5 metros.
- Bases rígidas (estabilizadas) con valores altos de módulos de sub reacción k del suelo.
- Apoyo lateral mediante acotamiento de concreto.
- Subrasantes con suelos de agregado grueso (drenaje).
- Mejoras al drenaje, mediante drenes colectores y subrasantes permeables.
 - c)2 Transferencia de carga mecánica pasajuntas –

Las pasajuntas reducen las deflexiones y los esfuerzos en las losas de concreto, así como el potencial de diferencias de elevación en las juntas, bombeo (expulsión de finos a través de las juntas) y rupturas en las esquinas.

c)3 Bases estabilizadas.

Reducen las deflexiones en las juntas, mejoran y mantienen la efectividad de la junta bajo la repetición de las cargas del tráfico. Además son una muy estable y suave plataforma de apoyo para los trabajos de pavimentación.

d) Tipos de juntas.

d) 1 Juntas Transversales de Contracción.

Son las juntas transversales al eje central del pavimento para controlar el agrietamiento provocado por los efectos de las contracciones como por los cambios de temperatura y de humedad.

El espaciamiento es un factor crítico para el comportamiento de una junta transversal de contracción. Un adecuado diseño especificará el intervalo de juntas que va a controlar las grietas y proveer una adecuada transferencia de carga entre ellas. En los pavimentos de concreto, la junta es diseñada para formar un plano de debilidad y controlar la formación de grietas transversales. La separación entre juntas se diseña para evitar se formen grietas transversales intermedias o aleatorias.

Lo recomendable es que el espaciamiento se base en experiencias locales, ya que un cambio en el tipo de agregado grueso puede tener un efecto significativo en el coeficiente térmico del concreto y, por lo tanto, en el espaciamiento adecuado para las juntas.

La modulación de las losas va a estar regida por la separación de las juntas transversales, que a su vez depende del espesor del pavimento.

Existe una regla práctica que nos permite dimensionar los tableros de losas para inducir el agrietamiento, sin necesidad de colocar acero de refuerzo continuo:

 $S_{JT} = (21 \text{ a } 24) \text{ D}$

Donde:

2.4.7.4 - 2

 S_{JT} = Separación de juntas transversales (≤ 5.0 m.)

D = Espesor del Pavimento

Se utiliza el valor 21 cuando tenemos mayor fricción entre la sub base y el pavimento de concreto, como en los casos donde se .tiene bases estabilizadas, bases con textura muy cerrada o Whitetopping. ¹

El valor 24 se utiliza cuando la fricción entre sub base y pavimento corresponde a valores normales como en el caso de sub bases granulares.

La separación de juntas transversales que arroja esta fórmula no debe ser mayor de 5.0 m., en tal caso deberá limitarse a este valor.

La otra dimensión que tiene que ver con la modulación de losas es la separación de juntas longitudinales cuyo valor debe estar entre 3.0 m. y 4.5 m., sin embargo está referenciada a la forma de los tableros de losas.

¹ El término utilizado se refiere a rehabilitaciones con pavimentos de concreto convencional, tomando como estructura de soporte el pavimento asfáltico que se tiene en el lugar.

La forma ideal de un tablero de losa es la cuadrada, sin embargo no siempre es posible y conveniente tener las losas perfectamente cuadradas, por lo que nos vemos obligados a considerar un cierto grado de rectangularidad.

La relación entre largo y ancho de un tablero de losas no deberá estar fuera de los límites: 0.71 a 1.4.

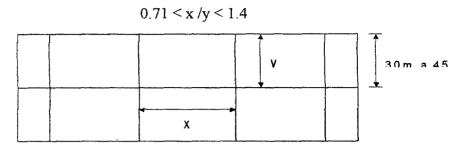


Figura 2.4.7.4 - 4: Relación largo-ancho de losa.

Las juntas de contracción pueden o no llevar pasajuntas; sin embargo, cuando los pavimentos son destinados a tránsito pesado éstos deben ser colocados.

La junta sin pasador se usa normalmente en pavimentos que no tienen tránsitos pesados y frecuentes, porque no ofrece una efectiva transferencia de carga de una losa a la adyacente y ello debe ser tomado en cuenta en el diseño del espesor de la losa. Cuando el pavimento tiene juntas de dilatación, debe usarse juntas con pasador.

Los pasadores son de acero liso común y deben engrasarse en la mitad de su longitud para permitir el libre movimiento longitudinal de las placas, de lo contrario se producirían grietas paralelas a la junta, cercanas a los extremos de los pasadores.

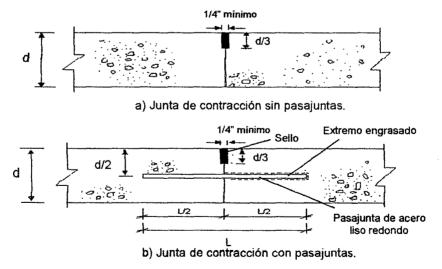


Figura 2.4.7.4–5: Junta transversal de contracción con y sin pasajuntas.

La longitud recomendada de pasadores es de 40 cm.; su efectividad se extiende a ocho veces su diámetro, por tanto es inútil prolongarlos más allá de esa longitud. El diámetro de los pasadores no debe pasar de una pulgada para evitar que se rompa el

concreto. La separación entre pasadores no debe ser superior a 45 cm. ni inferior a 25 cm. Hay una regla práctica que recomienda que cuando la separación entre pasadores es de 30 cm., el diámetro de éstos debe ser, aproximadamente, 1/8 del espesor de la losa.

Los pasadores deben ser ubicados y mantenidos en función correcta durante el proceso constructivo. Esto es: paralelos al eje de la calzada, colocados en el plano medio de la losa y adecuadamente engrasados. Si estos requisitos no se cumplen, se trabará el libre movimiento de las placas y aparecerán agrietamientos.

d)2 Junta Transversal de Construcción.

Las juntas transversales de construcción son las empleadas en interrupciones ya planeadas de los trabajos de pavimentación, como el final de una jornada, en accesos o aproches de un puente y también en donde imprevistos suspenden los trabajos por algún periodo de tiempo considerable.

Las juntas de transversales de construcción ya planeadas, como las del final de una jornada, son construidas en las ubicaciones normales de las juntas y al ser empalmadas a tope, requieren de pasajuntas (de acero liso redondo), ya que no podrán contar con la trabazón de agregado para la transferencia de carga.

En el caso de que las juntas de construcción no planeadas se presenten en una junta de contracción ya planeada o muy cerca de ella, se recomienda que la junta se empalme a tope con pasajuntas. Si la interrupción no planeada se presenta en los dos primeros tercios de la separación normal de las juntas, la junta deberá ser endientada con barras de amarre (barras de acero corrugado), para prevenir que la junta no agriete la losa adyacente.

FORMACIÓN DE LA JUNTA DE CONSTRUCCIÓN

El método más común de construir una junta transversal de construcción es terminando los trabajos de pavimentación en una cimbra cabecera. Sin embargo, como la colocación de esta cimbra requerirá de mano de obra, esto puede provocar que en esa zona la superficie del pavimento quede un poco más áspera, así que se recomienda un cuidado especial a los trabajos de terminado en esta zona para asegurarnos de tener una superficie suave.

Las barras pasajuntas se colocan a través de la cimbra en unos agujeros previamente perforados en ella y se recomienda efectuar una consolidación adicional del concreto para asegurar un satisfactorio encajonamiento. Deberá quitarse esta cimbra cabecera antes de reanudar los trabajos de pavimentación.

La junta transversal de construcción que caiga en donde originalmente se planeó construir una junta de contracción o de aislamiento, deberá ser sellada de acuerdo a las

especificaciones de la junta originalmente planeada, con la excepción de que las juntas transversales de construcción no requieren de un corte inicial. Para junta de construcción no prevista (endientada y amarrada) se realiza y se sella un corte de una pulgada (25 mm.).

d)3 Juntas Longitudinales.

Evitan la formación del agrietamiento longitudinal que normalmente se desarrolla por los efectos combinados de las cargas y las restricciones del alabeo de la losa una vez que el pavimento está sujeto al tránsito. En las pavimentaciones de proyectos de dos o más carriles, el espaciamiento, que es de 3 a 4 metros, tiene un propósito doble y es el de controlar el agrietamiento y la delineación de los carriles.

Los dos tipos de juntas longitudinales que se pueden presentar en un pavimento de concreto, la junta longitudinal en el eje central de la vía o la junta que divide los carriles de circulación, se presentan en la figura 2.4.7.4-6.

En la parte superior de la figura se muestra una junta longitudinal usada cuando se pavimenta de franja en franja (o carril). Esta junta también se aplica para carriles adyacentes, acotamientos, guarniciones y cunetas. La junta podrá estar endientada o no, dependiendo del espesor de la losa y de los volúmenes del tráfico.

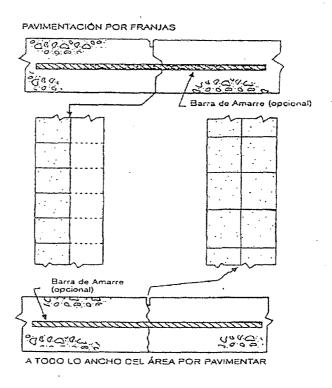


Figura 2.4.7.4–6 Secciones de juntas longitudinales, para cuando se pavimenta por franjas y a todo lo ancho del área

La junta longitudinal mostrada al fondo de la figura es la usada cuando el ancho de pavimentación es tal que incluye dos o varios carriles en una sola pasada. Estas juntas dependen de la barra de amarre para mantener la trabazón del agregado, su capacidad estructural y su serviciabilidad.

En la mayoría de las calles, el pavimento es lateralmente restringido y no es necesario amarrar las juntas longitudinales con barras de amarre, sin embargo, en las calles que no tengan restricciones de movimiento lateral, las barras de amarre, las cuales no deberán ser cubiertas con grasa, aceite o algún otro material que impida la liga con el concreto, serán colocadas a la mitad del espesor de la losa para evitar que se abra la junta debido a la contracción de las losas de concreto.

FORMACIÓN DE LAS JUNTAS LONGITUDINALES.

Las juntas longitudinales de construcción son las empleadas en el medio de los carriles o franjas de construcción y generalmente son juntas endientadas.

Una junta endientada se forma en el borde de la losa ya sea por una protuberancia con una pavimentadora de cimbra deslizante o uniéndole a la cimbra una cuña o diente de metal o madera de la forma, dimensiones y profundidad adecuada.

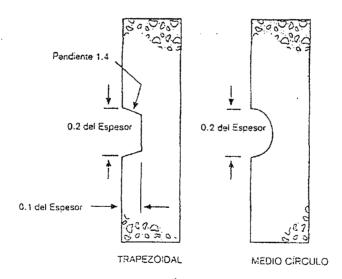


Figura 2.4.7.4 – 7 Secciones endientadas estándar para juntas longitudinales.

Las juntas longitudinales de contracción se pueden hacer cortando con disco en el concreto endurecido o formando una ranura en el concreto fresco de una manera muy similar al caso de las juntas transversales de contracción, sin embargo la profundidad del corte o de la ranura deberá ser de un tercio del espesor (D/3) y el tiempo o el momento para hacer el corte inicial no es tan crítico como en el caso de las juntas transversales de contracción ya que el movimiento de contracción longitudinal no es tan grande como el transversal.

El corte de las juntas longitudinales deberá realizarse antes de 48 horas y de que cualquier equipo pesado o vehículo circule sobre el pavimento. Sin embargo, bajo ciertas condiciones, como una fuerte caída en la temperatura ambiente durante la primera o segunda noche, se pueden presentar agrietamientos longitudinales más temprano, por lo que es una buena práctica el realizar el corte tan pronto como se pueda hacer.

TABLA 2.4.7.4 (1): Separación de Juntas por Contracción y Alabeo.

TIPO DE AGREGADO GRUESO	Ĺ SEPARACIÓN MÁXIMA JUNTAS TRANSVERSALES	A SEPARACIÓN MÁXIMA JUNTAS LONGITUDINALES
Piedra partida granítica.	6.00 m.	4.00 m.
Piedra partida calcárea.	6.50 m.	4.00 m.
Grava silícea.	4.50 m.	4.00 m.
Grava ¾"	4.50 m.	4.00 m.
Canto rodado	4.50 m.	4.00 m.

En pavimentos sin pasadores se recomienda, en cualquier caso, una separación máxima entre juntas transversales de 4.50 m.

FUENTE: Manual de Diseño Estructural de Pavimentos Asfálticos y de Concreto. Ing. Javier Llorach Vargas.

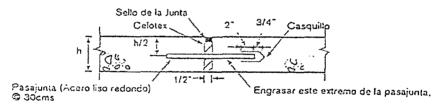
d)4 Juntas de Aislamiento y de Expansión.

Las juntas de aislamiento y de expansión permiten que se presenten diferenciales anticipados de movimientos verticales y horizontales entre un pavimento y otra estructura sin dañarlos y dado que el comportamiento puede afectarse significativamente por el uso y la ubicación planeada de estas juntas, se deberá tener mucho cuidado en el proceso de diseño. Aunque los términos se intercambian frecuentemente, las juntas de aislamiento no son iguales a las juntas de expansión.

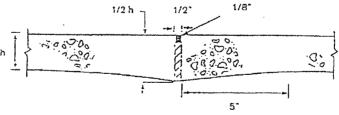
Juntas de Aislamiento.

Su objetivo principal es de aislar el pavimento de una estructura, otra área pavimentada o cualquier objeto inamovible.

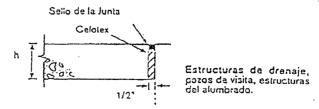
El uso adecuado de estas juntas disminuye los esfuerzos a compresión que se presentan entre el pavimento y una estructura o entre dos secciones de pavimento. Las juntas de aislamiento incluyen las juntas a toda la profundidad y a todo lo ancho sobre los apoyos o estribos del puente, intersecciones T o asimétricas, rampas, entre pavimentos existentes y pavimentos nuevos, así como también para juntas alrededor de estructuras en el interior del pavimento como pozos de visita, alcantarillas y estructuras de alumbrado público.


Las juntas de aislamiento en intersecciones T, intersecciones asimétricas y en rampas, no deberán tener pasajuntas porque se debe permitir el movimiento horizontal sin dañar el pavimento colindante.

En el caso de las juntas de aislamiento sin pasajuntas, son construidas, generalmente, con ensanchamiento de bordes, figura 2.4.7.4–8 (B), para reducir los esfuerzos desarrollados al fondo de la losa. Los bordes colindantes de ambos pavimentos son ensanchados en un 20 % iniciando a una distancia de 1.5 m. de la junta y el material de filtro en la junta deberá extenderse completamente por todo el borde ensanchado de la losa.

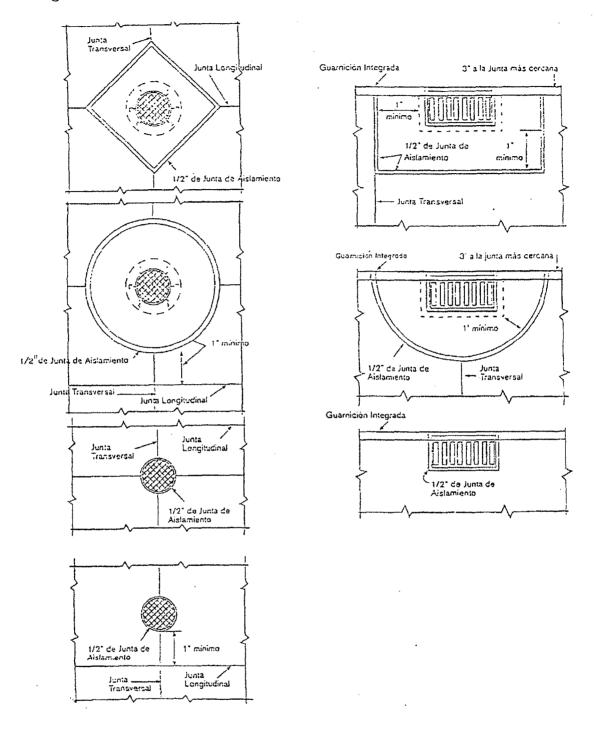

Las juntas de aislamiento usadas en pozos de visita, alcantarillas, estructuras de alumbrado y edificios, no tienen ni bordes ensanchados ni pasajuntas, debido a que estas son colocadas alrededor de otros objetos y no requieren transferencia de carga. Ver figura 2.4.7.4 - 8(C).

El ancho recomendable de las juntas de aislamiento es de ½" a 1" (12 a 25 mm.), ya que con anchos superiores se pueden presentar movimientos excesivos.


Se usa un material prefabricado como relleno de la abertura entre las losas. Este relleno es un material no absorbente ni reactivo, que normalmente es celotex; será colocado mediante estacas en la base y una vez que el concreto ha endurecido se retirarán ³/₄" (20 mm.) del relleno para dejar espacio al sello de la junta.

(A) JUNTA DE AISLAMIENTO CON PASAJUNTAS

(8) JUNTA DE AISLAMIENTO CON ENSANCHAMIENTO DE BORDES



(C) JUNTA DE AISLAMIENTO SIN PASAJUNTAAS

Figura 2.4.7.4 – 8: Secciones de juntas de Aislamiento.

Figura 2.4.7.4 – 9 Pozos de Visita.

Figura 2.4.7.4 – 10 Alcantarillas.

Juntas de Expansión.

Un buen diseño, construcción y mantenimiento de las juntas de construcción, ha eliminado prácticamente la necesidad de las juntas de expansión, excepto en algunos casos especiales. Un uso incorrecto de las juntas de expansión trae consigo altos costos de construcción y de mantenimiento, apertura de las juntas de contracción adyacentes, pérdida de la trabazón de agregado, fallas en el sellado de las juntas, infiltración en ellas y en general, el buen comportamiento de los pavimentos.

En los pavimentos de concreto sólo son necesarias las juntas de expansión cuando:

- 1. El pavimento es construido a temperatura ambiente inferior a los 4 °C.
- 2. Las juntas de contracción permiten la infiltración de materiales incompresibles.
- 3. Los materiales usados en el pavimento han mostrado, en experiencias pasadas, notorias características expansivas.

Sin embargo, bajo condiciones normales de trabajo, no es necesaria la utilización de las juntas de expansión.

2.4.7.5 BARRAS DE AMARRE.

Las barras de amarre se colocan a lo largo de la junta longitudinal para amarrar dos losas, con la finalidad de que se mantengan juntas y asegurar que la carga se transfiera a través de la junta. Por tanto, deben ser de fierro corrugado y sin engrasar. Se colocan y mantienen, durante el vaciado, en posición normal al plano de la junta, a la mitad del espesor de la losa.

El acero requerido para las barras de amarre se determina de la siguiente manera:

$$A_{s} = \frac{G_{c} h L' f_{a}}{f_{c}}$$
 2.4.7.5 - 1

Donde:

As = Área requerida de acero por unidad de longitud de la losa.

G_c = Peso volumétrico del concreto.

h = Espesor de pavimento.

f_a = Coeficiente promedio de fricción entre la losa y el terreno de soporte, que normalmente se considera de 1.5

 f_s = Esfuerzo permisible en el acero.

L' = Distancia desde la junta longitudinal hasta el borde libre donde no existe barra de amarre. Para autopistas de dos o tres carriles, L' es el ancho del carril. Si las barras de amarre se usan en las tres juntas longitudinales de una carretera de cuatro carriles, L' es igual al ancho del carril para las dos juntas exteriores y el doble del ancho para la junta interna.

La longitud de la barra de amarre está determinada por el esfuerzo de adhesión permitido. Este esfuerzo para barras corrugadas, se puede asumir en 350 lb/plg². La longitud de la barra se debe basar en su resistencia total.

$$t = 2 (A_1 \times f_s / \mu \times \Sigma_p)$$
 2.4.7.5 - 2

Donde:

t = Longitud de la barra de amarre.

μ = Esfuerzo de adhesión permisible.

 $A_1 =$ Área transversal de una barra.

 Σ_0 = Perímetro de la barra.

Para un diámetro de barra d, $A_1 = \pi d$; por lo que la ecuación anterior se simplifica a:

$$t = [(f_s \times d)/\mu]/2$$

2.4.7.5 - 3

La longitud "t" se debe incrementar en 3 pulg. (7.5 cm.), por desalineamiento.

Es común utilizar las barras de 1/2 pulgada de diámetro por 36 pulgadas de longitud y separación de 30 a 40 pulgadas.

TABLA 2.4.7.5 (1): Recomendaciones de espaciamiento máximo.

Espesor de Pavimento	Tamaño de varilla		Distancia al	extremo libre	
(cm.)	(cm.)	305 cm.	366 cm.	427 cm.	732 cm.
12.7	1.27 x 61	76 cm.	76 cm.	76 cm.	71 cm.
14.0	1.27 x 64	76 cm.	76 cm.	76 cm.	64 cm.
15.2	1.27 x 66	76 cm.	76 cm.	76 cm.	58 cm.
16.5	1.27 x 69	76 cm.	76 cm.	76 cm.	53 cm.
17.8	1.27 x 71	76 cm.	76 cm.	76 cm.	51 cm.
19.1	1.27 x 74	76 cm.	76 cm.	76 cm.	46 cm.
20.3	1.27 x 76	76 cm.	76 cm.	76 cm.	43 cm.
21.6	1.27 x 79	76 cm.	76 cm.	76 cm.	41 cm.
22.9	1.59 x 76	91 cm.	91 cm.	91 cm.	61 cm.
24.1	1.59 x 79	91 cm.	91 cm.	91 cm.	58 cm.
25.4	1.59 x 81	91 cm.	91 cm.	91 cm.	56 cm.
26.7	1.59 x 84	91 cm.	91 cm.	91 cm.	53 cm.
27.9	1.59 x 86	91 cm.	91 cm.	91 cm.	51 cm.
29.2	1.59 x 89	91 cm.	91 cm.	91 cm.	48 cm.
30.5	1.59 x 91	91 cm.	91 cm.	91 cm.	46 cm.

FUENTE: Pavimentos de Concreto. . cemex CONCRETOS.

No es conveniente colocar barras de unión en más de tres placas contiguas, pues se formarían grandes paños monolíticos susceptibles a fisuración.

También se usa para el diseño de barras de amarre:

$$As = 0.017 \, h \, a$$

2.4.7.5 - 4

$$L = 64 \phi + 5$$

2.4.7.5 - 5

έ τη το

As = Area de acero por metro lineal de junta.

h = Espesor del pavimento, en centímetros.

a = Ancho de losa, en metros.

L =Longitud de barra.

 ϕ = Diámetro de la barra.

2.4.7.6 PASAJUNTAS.

El diseño de pasajuntas se basa mucho en la experiencia. El tamaño de las pasajuntas depende del espesor de la losa. La tabla 2.4.7.6 (1) muestra el diámetro y longitud de las pasajuntas para diferentes espesores de losa como lo recomienda la PCA (1975). En una edición de diseño de juntas, la PCA (1991) recomienda el uso de pasajuntas de 1.25" de diámetro para pavimentos de autopistas con espesores menores a 10" y de 1.5" para pavimentos con espesores mayores a 10" se necesitan pasajuntas con un diámetro mínimo de 1.25 a 1.5 pulgadas para controlar fallas mediante la reducción del esfuerzo de carga en el concreto.

Las pasajuntas se usan en las juntas transversales para transferir las cargas a las losas adyacentes. El esfuerzo y la deflexión en la junta son mucho más pequeños cuando las cargas son soportadas por dos losas. El uso de pasajuntas puede minimizar las fallas de bombeo y de diferencia de elevación de juntas., las cuales han sido considerados por la PCA como factores importantes en el diseño de espesor.

TABLA 2.4.7.6 (1): Diámetros y longitudes recomendadas en pasajuntas.

		BARRAS PASAJUNTAS												
ESPESOR	DE LOSA	Diái	netro	Long	gitud	Sepa	ración							
cm.	Pulg.	mm. Pulg.		cm.	Pulg.	cm.	Pulg.							
13 a 15	5 a 6	19	3/4	41	16	30	12							
15 a 20	6 a 8	25	1	46	18	30	12							
20 a 30	8 a 12	32	1 1/4	46	18	30	12							
30 a 43	12 a 17	38	1 1/2	51	20	38	15							
43 a 50	17 a 20	45	1 3/4	56	22	46	18							

FUENTE: Pavimentos de Concreto. cemex CONCRETOS.

a) Esfuerzo de carga permisible.

Debido a que el concreto es más débil que el acero, el tamaño y separación que se requiere de pasajuntas se controla por el esfuerzo de carga entre ésta y el concreto.

El esfuerzo de carga permitido se determina de la siguiente manera:

$$fb = \frac{(4-d)}{3}fc'$$
 2.4.7.6-1

Donde:

f b = Esfuerzo permisible de carga en lb/ pulg².

d = Diámetro de las pasajuntas en pulgadas.

fc' = Resistencia a la compresión del concreto en lb/ pulg².

b) Esfuerzo de carga en pasajuntas.

Si la carga que se aplica en la pasajuntas se conoce, el esfuerzo máximo de carga se puede determinar, teóricamente, asumiendo que sean una viga y el concreto una cimentación Winkler. Basado en la solución original de Timoshenko, Frierberg (1940) indica que la máxima deformación del concreto debajo de la pasajunta se puede expresar de la siguiente manera:

Yo = Pt
$$(2 + \beta z) / (4 \beta^3 \text{ Ed Id})$$

2.4.7.6 - 2

Donde:

Yo = Deformación de la pasajunta en la cara de la junta

Pt = Carga sobre la pasajunta

Z = Ancho de junta

Ed = Módulo de Young de la pasajunta

ld = Momento de inercia de la pasajunta

 β = Resistencia a la compresión del concreto.

 $1d = 1/64 \pi d^4$

 $\beta = (Kd / 4 Ed Id)^{0.25}$

Donde:

K = Módulo de soporte de la pasajunta, el cual varía de 300,000
 a 1'500,000 lb/pulg³ (8,000 a 40,000 Kg/cm³)

d = Diámetro de la pasajunta.

El esfuerzo de carga σ_b es proporcional a la deformación:

$$\sigma_b = K Y_0$$
 2.4.7.6 - 3

El esfuerzo de carga se debe comparar con el esfuerzo de carga permisible. Si el esfuerzo de carga es mayor al permisible, entonces se deben usar pasajuntas más grandes o separaciones más pequeñas. Estudios recientes han demostrado que el esfuerzo de carga se relaciona a la falla de la losa; si se limita, el grado de la falla se puede reducir a un límite permisible.

Cuando una carga W se aplica en una losa cerca de la junta, parte de la carga se transfiere a la losa adyacente a través de las pasajuntas; ambas losas se deflexionan la misma cantidad si su eficiencia es del 100 % y las fuerzas debajo de las losas serán las mismas, siendo cada una de 0.5 W, la cual es también el total de la fuerza cortante que se transfiere mediante las pasajuntas; si su eficiencia es menor del 100%, como es el caso para pavimentos viejos, donde algunas pasajuntas se desprenden, las fuerzas que reaccionan bajo la losa serán menores a 0.5 W; como resultado, el total del esfuerzo

cortante sobre las pasajuntas es menor a 0.5 W. Por lo tanto para su diseño, el uso de 0.5 W es más conservativo.

Basado en la solución de Westergaard, Frierberg (1940), se encontró que el momento máximo negativo, tanto para cargas internas o externas, ocurre a una distancia de 1.8 L desde la carga, donde L es el radio de rigidez relativa. Cuando el momento es máximo, la fuerza cortante es igual a cero. Por lo tanto, es razonable asumir que el cortante en cada pasajunta se reduce inversamente con la distancia de esta, desde el punto de carga, siendo el máximo para la pasajunta debajo o cerca al punto de la carga y cero a una distancia de 1.8 L.

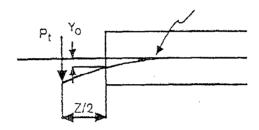


Figura 2.4.7.6 (a): Deformación de la pasajunta debido a una carga.

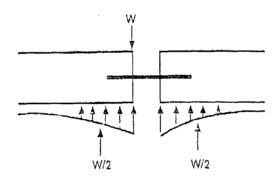


Figura 2.4.7.6 (b) Transferencia de carga de las pasajuntas.

2.4.7.7 DISEÑO DE PAVIMENTOS POR EL MÉTODO DE LA ASOCIACIÓN DE CEMENTOS PORTLAND (PCA).

a) Factores de Diseño.

a) 1 Resistencia a la Flexión del Concreto.

La consideración de la resistencia a la flexión del concreto es aplicable en el procedimiento de diseño para el criterio de fatiga que controla el agrietamiento del pavimento bajo la repetición de cargas.

El alabeo del pavimento de concreto, bajo las cargas del tráfico, provoca esfuerzos tanto de compresión como de flexión. Sin embargo, la proporción de los esfuerzos a compresión contra la resistencia a la compresión del concreto, es mínima como para influir en el diseño del espesor de la losa. En cambio la relación de los esfuerzos a flexión

contra la resistencia es mucho más alta y frecuentemente excede valores de 0.5. Por este motivo los esfuerzos y la resistencia a la flexión, que se le conoce como resistencia a la flexión por tensión o Módulo de Ruptura, normalmente especificada a los 28 días, son los empleados para el diseño de espesores.

El módulo de ruptura puede encontrarse aplicando la carga en cantiliver, punto medio o en tres puntos. Una diferencia importante en estos métodos de prueba es que al aplicar la carga en tres puntos se obtiene la mínima resistencia del tercio medio de la viga de prueba, mientras que los otros dos métodos muestran la resistencia en un solo punto. El valor determinado por el método de aplicación de carga de tres puntos (American Society for Testing and Materials, ASTM C78) es el empleado en este método de diseño. ²

La prueba del módulo de ruptura es llevada a cabo a los 7, 14, 28 y 90 días. Los resultados a los 7 y 14 días son comparados contra especificaciones de control de calidad y para determinar cuándo puede ser abierto al tránsito un pavimento.

Los resultados a los 28 días son usados, generalmente, para el diseño de espesores de autopistas y calles; mientras que los resultados a los 90 días se usan para el diseño de aeropistas, esto es debido a que se presentan muy pocas repeticiones de esfuerzos durante los primeros 28 o 90 días del pavimento, comparado contra los millones de repeticiones de esfuerzos que ocurrirán posteriormente. Es conocido que el concreto continúa ganando resistencia con el paso del tiempo, como se puede apreciar en la figura 2.4.7.7-1(a). Esta ganancia de resistencia se muestra en la curva que representa valores de módulo de ruptura (MR) promedios para varias series de pruebas de laboratorio, pruebas de vigas curadas en campo y secciones de concreto tomadas de pavimentos en servicio.

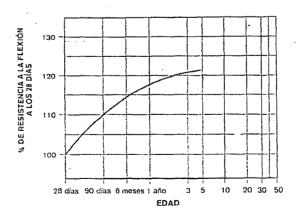


Figura 2.4.7.7-1(a): Curva de desarrollo de resistencia a la flexión a través del tiempo FUENTE: *Pavimentos de Concreto*. Cemex CONCRETOS.

² Para una viga estándar de 30", los valores de la prueba aplicándose la carga en el punto central serán de aprox. 75 psi más altos. Y si se aplica la carga en cantiliver los valores serán de aprox. 160 psi más altos que aplicando la carga en tres puntos. No se recomienda usar estos valores altos para propósitos de diseño. Si se usan otros métodos de prueba se deberá hacer un ajuste de reducción estableciendo una correlación a los resultados de la prueba aplicando la carga en tres puntos.

En este procedimiento de diseño los efectos de las variaciones en la resistencia del concreto, de punto a punto del pavimento, y el incremento de resistencia con el paso del tiempo, están incorporados en las gráficas y tablas de diseño. El diseñador no aplica directamente estos efectos, sino que simplemente ingresa el valor de la resistencia promedio a los 28 días, que es aproximadamente equivalente al 20 % de la resistencia a la compresión y que varía desde los 41 Kg/cm² (583 psi) hasta los 50 Kg/cm² (711psi). En la siguiente tabla se muestran valores recomendados, que el diseñador deberá elegir de acuerdo a un buen criterio.

Tabla 2.4.7.7-a: Módulo de Ruptura Recomendado.

Tipo de Pavimento	MR recomendado								
_	Kg/cm ²	psi							
Autopistas	48.0	682.7							
Carreteras	48.0	682.7							
Zonas Industriales	45.0	640.1							
Urbanas Principales	45.0	640.1							
Urbanas Secundarias	42.0	597.4							

FUENTE: Pavimentos de Concreto. cemex CONCRETOS.

a)2 Terreno de apoyo o Base.

El terreno de apoyo está definido en términos del módulo de reacción de la subrasante de Westergaard (k). Es igual a la carga en libras por pulgada cuadrada (sobre un plato de 30" de diámetro) dividido entre la deformación en pulgadas que provoca dicha carga. Los valores de k son expresados en libras por pulgada cuadrada por pulgada (psi/in) o más comúnmente, por libras por pulgada cúbica (pci). Se debe tomar en cuenta el efecto de la sub base que se colocará sobre la subrasante, por medio de una corrección del valor de k (k combinado).

La figura 2.4.7.7-1(b) nos muestra una ilustración de la prueba de placa regulada por la norma ASTM D1195 y D1196.

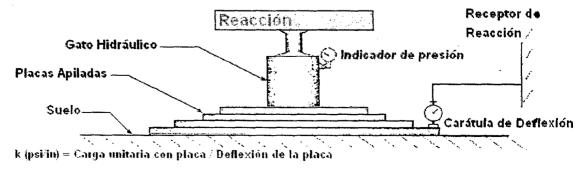


Figura 2.4.7.7-1(b): Prueba de Placa (ASTM D1195 y D1196).

El valor de k puede obtenerse con el empleo de tablas a partir de la relación de soporte de California (CBR). El resultado es válido porque no se requiere una exacta determinación del valor k; ya que variaciones normales de éste no afectan de manera significativa los requerimientos del espesor del pavimento.

TABLA 2.4.7.7 -b: Equivalencia entre CBR y k.

CBR	,	k CBR		1	(CBR	ħ	(CBR	k		
%	Kg/cm ³	pci	%	Kg/cm³	pci	%	Kg/cm³	pci	%	Kg/cm ³	pci	
2.0	2.0	72.3	7.0	5.3	191.5	14.0	7.2	260.1	33.0	10.0	.361.3	
2.1	2.1	75.9	7.6	5.6	202.3	15.0	7.3	263.7	35.0	10.5	379.3	
2.8	2.8	101.2	8.0	5.7	205.9	16.0	7.5	271.0	39.0	11.2	404.6	
3.0	3.0	108.4	9.0	6.0	216.8	18.0	7.8	281.8	43.0	12.0	433.5	
4.0	3.9	140.9	10.0	6.2	224.0	20.0	8.0	289.0	47.0	13.0	469.7	
4.7	4.2	151.7	11.0	6.5	234.8	22.0	8.4	303.5	52.0	14.0	505.8	
5.0	4.4	159.0	12.0	6.7	242.1	25.0	8.8	317.9	57.0	15.0	541.9	
6.0	4.9	177.0	13.0	6.9	249.3	30.0	9.6	346.8	64.0	16.8	606.9	

FUENTE: Manual de Diseño Estructural de Pavimentos Asfálticos y de Concreto. Ing. Javier Llorach Vargas.

Tabla 2.4.7.7-c: Incremento en el valor de k del suelo, según el espesor de una base granular.

	K - Suelo -	- Sub base (pci)										
	Espesor de la Sub base											
k del Suelo (pci)	4"	6"	9"	12"								
50	65	75	85	110								
100	130	140	160	190								
200	220	230	270	320								
300	320	330	370	430								

FUENTE: Pavimentos de Concreto. cemex CONCRETOS.

Tabla 2.4.7.7-d: Incremento en el valor de k del suelo, según el espesor de una base granular cementada.

k – Suelo – Sub base (pci)

	Espesor de la Sub base											
k del Suelo (pci)	4"	6"	3ª	12"								
50	170	230	310	390								
100	280	400	520	640								
200	470	640	830									

FUENTE: Pavimentos de Concreto. Cemex CONCRETOS.

a)3 Periodo de Diseño.

El término *Periodo de diseño* se usa en este proyecto en vez de vida del pavimento. Este último término no tiene una definición precisa. Algunas entidades consideran que la vida de un pavimento de concreto finaliza al colocar la primera sobrecapa. La vida de los pavimentos de concreto varía desde menos de 20 años en proyectos con tráfico mayor al

originalmente estimado o que han tenido defectos de diseño, materiales o construcción, a más de 40 años en otros proyectos donde no existen tales defectos.

El término periodo de diseño es considerado a veces como sinónimo del término periodo de análisis del tráfico. Debido a que el tráfico puede probablemente no ser predicho con mucha exactitud para un periodo largo, comúnmente se usa un periodo de diseño de 20 años en procedimientos de diseño de pavimentos. Se considera que el periodo de diseño para vías rurales y urbanas puede estar entre 30 y 40 años.

El periodo de diseño adoptado afecta el espesor de diseño pues determina por cuántos años y por lo tanto para cuántos camiones deberá servir el pavimento. La elección del periodo de diseño para un proyecto específico está basada en criterios técnicos y en el análisis económico de los costos del pavimento y los servicios en todo el periodo.

a)4 Número de repeticiones esperadas para cada eje.

La información referente al tráfico es usada para conocer el número de repeticiones esperadas, durante el periodo de diseño, de cada tipo de eje. Para ello se tendrá que conocer varios factores referentes al tránsito, tales como el tránsito promedio diario anual (TPDA), el % que representa cada tipo de eje en el TPDA, el factor de crecimiento del tráfico, el factor de sentido, el factor de carril y el periodo de diseño.

Repeticiones esperadas.

Donde:

TPDA = Tránsito Promedio Diario Anual.

% Te = % del TPDA para cada tipo de eje.

FS = Factor de sentido.

FC = Factor de carril.

Pd = Periodo de diseño.

FCA = Factor de Crecimiento Anual.

365 = días de un año.

Tránsito Promedio Diario Anual (TPDA).

El TPDA se obtiene de aforos especiales del tráfico o de algún organismo relacionado con el transporte. Lo importante es que se especifique la composición de este tráfico, es decir que se detalle el tráfico por tipo de vehículo, para que pueda identificarse los tipos y los pesos de los ejes que van a circular sobre el pavimento.

Factor de Crecimiento Anual (FCA).

Para conocer el factor de crecimiento anual se requiere únicamente el periodo de diseño y la tasa de crecimiento anual, Con estos datos se calcula de manera rápida, utilizando la tabla 2.4.7.7-c, que presenta relaciones entre tasas de crecimiento anual y factores de crecimiento anual para periodos de diseño de 20 y 40 años.

El factor de crecimiento anual del tráfico (FCA) se obtiene de manera exacta a partir de la fórmula:

$$FCA = \frac{(1+g)^n - 1}{(g)(n)}$$

Donde

FCA = Factor de Crecimiento Anual.

n = Vida útil en años.

g = Tasa de crecimiento anual.

El TPDA de diseño representa el valor promedio para el periodo y se obtiene multiplicando el TPDA presente por el factor de proyección.

La tasa de crecimiento puede variar de acuerdo a los tipos de vehículos que pueden crecer más unos tipos que otros.

Dependiendo de muchos factores, como el desarrollo económico social, la capacidad de la vía, etc., es normal que el tráfico vehicular aumente con el tiempo hasta llegar a un punto tal de saturación en el que se mantiene prácticamente sin crecer.

Los factores que influyen en las tasas de crecimiento anual y proyecciones de tráfico son los siguientes:

- 1. El tráfico atraído o desviado. El incremento del tráfico existente debido a la rehabilitación de alguna vía.
- Crecimiento normal de tráfico, provocado por el incremento del número de vehículos.
- 3. Tráfico generado. El incremento provocado por los vehículos que no circularían por la vía si la nueva facilidad no se hubiese construido.
- 4. Tráfico por desarrollo. El incremento provocado por cambios en el uso del suelo debido a la construcción de la nueva vía.

Los efectos combinados provocan tasas de crecimiento anual de 2 al 6 %.

A medida que un camino se va congestionando de tráfico su crecimiento se va haciendo más lento. Este efecto también debe ser considerado estimando una tasa de crecimiento equivalente, para tener en cuenta las variaciones en el crecimiento durante la vida útil.

Es importante investigar adecuadamente la tasa de crecimiento apropiada para el caso particular que se esté considerando. A continuación se muestran algunos valores de tasas de crecimiento, los mismos que pueden variar según el caso.

Caso	Tasa de Crecimiento
Crecimiento Normal	1% a 6%
Vías Completamente saturadas	0 % a 1 %
Con tráfico inducido*	4% a 5%
Alto crecimiento*	mayor al 5 %

^{*} Solamente durante 3 a 5 años.

FUENTE: Pavimentos de Concreto.

cemex CONCRETOS.

Tabla 2.4.7.7-e: Factores de Crecimiento Anual, según la tasa de crecimiento anual.

TASAS DE CRECIMIENTO ANUAL DE TRÁFICO Y SUS CORRESPONDIENTES FACTORES DE CRECIMIENTO

TASA DE CRECIMIENTO ANUAL DEL TRÁFICO, %	FACTOR DE CRECIMIENTO ANUAL PARA 20 AÑOS	FACTOR DE CRECIMIENTO ANUAL PARA 40 AÑOS
1.0	1.1	1.2
1.5	1.2	1.3
2.0	1.2	1.5
2.5	1.3	1.6
3.0	1.3	1.8
3.5	1.4	2.0
4.0	1.5	2.2
4.5	1.6	2.4
5.0	1.6	2.7
5,5	1.7	2.9
6.0	1.8	3.2

FUENTE: Pavimentos de Concreto. cemex CONCRETOS.

Factor de Sentido (FS).

Se emplea para diferenciar las vialidades de un sentido de las de doble sentido. Para vialidades en doble sentido se usa un factor de 0.5 y para vialidades en un solo sentido un factor de 1.0.En vialidades de doble sentido, generalmente se asume que el tránsito, en sus diferentes tipos y pesos, viaja en igual cantidad para cada dirección (FS = 0.5). En casos especiales en que muchos de los camiones viajan cargados en una dirección y regresan vacíos esto puede no aplicarse; si éste es el caso, se deberá hacer el ajuste adecuado y tomar en cuenta el sentido con mayor tráfico.

Factor de Carril (FC).

Después de ser afectado el tráfico por el factor de sentido, también debemos de analizar el número de carriles por sentido mediante el factor de carril. Este factor da el porcentaje de vehículos que circulan por el carril de la derecha que es el de más tráfico. Para esto, la PCA recomienda emplear la figura 2.4.7.7-2, en donde este factor depende del número de carriles por sentido o dirección del tráfico y del tránsito promedio diario anual en un solo sentido.

a) 5 Factor de Seguridad de Carga (FSC).

Una vez que se conoce la distribución de carga por eje, es decir ya que se conoce cuántas repeticiones se tendrán para cada tipo y peso de eje, se utiliza el factor de seguridad de carga para multiplicarse por las cargas por eje.

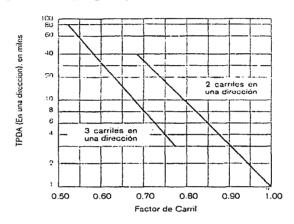


Figura 2.4.7.7-2: Proporción de vehículos circulando por el carril de baja velocidad en una vialidad de dos o tres carriles.

Los factores de seguridad de carga recomendados son:

- 1.3 Casos especiales con muy altos volúmenes de tráfico pesado y ningún tipo de mantenimiento.
- Para autopistas o vialidades de varios carriles en donde se presentará un flujo ininterrumpido de tráfico y altos volúmenes de tráfico pesado.
- 1.1 Autopistas y vialidades urbanas con volúmenes moderados de tráfico pesado.
- 1.0 Caminos y calles secundarias con muy poco tráfico pesado.

b) Procedimiento de diseño.

El método descrito es empleado una vez que ya se tiene los datos del tráfico esperado, como el tránsito diario promedio anual y la composición vehicular del tráfico. Con esta información se obtiene el número de repeticiones esperadas para cada tipo de eje durante el periodo de diseño.

Se requiere conocer algunos factores de diseño:

- Tipo de junta y acotamiento.
- Resistencia a la flexión del concreto (MR) a los 28 días.
- Valor del módulo de reacción k del terreno de apoyo.
- Factor de seguridad de carga (FSC).
- Número de repeticiones esperadas durante el periodo de diseño para cada tipo y peso de eje.

El método considera dos criterios de diseño:

- Fatiga
- Erosión.

El Análisis por fatiga (para controlar el agrietamiento), influye principalmente en el diseño de pavimentos de tráfico ligero (calles residenciales y caminos secundarios independientemente de si las juntas tienen o no pasajuntas) y pavimentos con tráfico mediano con pasajuntas.

El análisis por erosión (para controlar la erosión del terreno de soporte, bombeo y diferencia de elevación de las juntas), influye principalmente en el diseño de pavimentos con tráfico de mediano a pesado, con transferencia de carga por trabazón de agregados (sin pasajuntas) y pavimentos de tráfico pesado con pasajuntas.

Para pavimentos que tienen una mezcla normal de pesos de ejes, las cargas en los ejes sencillos son usualmente más severas en el análisis por fatiga y las cargas en ejes tandem son más severas en el análisis por erosión.

El espesor de losa del pavimento se calcula por tanteos con ayuda del formato de diseño de espesores por el método de la PCA, tabla 2.4.7.7-1. Los pasos en el procedimiento de diseño son: primero cargamos los datos de entrada en la columna 1 y 3; los datos de la columna 2 son las cargas por eje multiplicadas por el factor de seguridad de carga.

Análisis por fatiga.

Se emplean las mismas tablas y figuras para pavimentos con y sin pasajuntas, mientras que la única variable es si se cuenta o no con apoyo lateral, de manera que: Sin apoyo lateral.

1 3

- Usar la tabla 2.4.7.7-g y la figura 2.4.7.7-3
- Con apoyo lateral.
 - Usar la tabla 2.4.7.7-h y la figura 2.4.7.7-3

Procedimiento:

1. Introducir como datos los valores de esfuerzo equivalente en las celdas 8, 11, 14

- del formato de diseño de espesores. Estos valores se obtienen de las tablas apropiadas de factores de esfuerzos equivalentes (tablas 2.4.7.7-g y 2.4.7.7-h), dependiendo del espesor inicial y el valor de k.
- 2. Dividir los valores de esfuerzo equivalente entre el módulo de ruptura del concreto; al resultado le llamamos relación de esfuerzos y se obtendrá una para cada tipo de eje (sencillo, tandem y tridem). Estos valores serán anotados en el formato de diseño de espesores, en las celdas 9, 12 y 15.
- 3. Llenar la columna 4 de repeticiones permisibles obtenidas en la fig. 2.4.7.7-3.
- 4. Obtener el % de fatiga de cada eje. Este valor se anota en la columna 5 y se obtiene dividiendo las repeticiones esperadas, (columna 3), entre las repeticiones permisibles; (columna 4), por 100; esto se hace para cada eje y posteriormente se suman todos los porcentajes de daño por fatiga para obtener el porcentaje total.

Análisis por erosión.

Sin apoyo lateral.

- Para pavimentos con pasajuntas, emplear la tabla 2.4.7.7-i y la fig. 2.4.7.7-4.
- En los pavimentos en que la transferencia de carga se realiza exclusivamente mediante la trabazón de agregados, usar la tabla 2.4.7.7-j y la fig. 2.4.7.7-4

Con apoyo lateral.

- Para pavimentos con pasajuntas o continuamente reforzados, emplear la tabla 2.4.7.7-k y la figura 2.4.7.7-5.
- En los pavimentos en que la transferencia de carga se realiza exclusivamente mediante la trabazón de agregados, usar la tabla 2.4.7.7-m y la fig. 2.4.7.7-5.

Procedimiento:

- 1. Anotar en las celdas 10, 13 y 16, del formato de diseño de espesores, los correspondientes factores de erosión obtenidos de las tablas adecuadas (tablas 2.4.7.7-4 a 2.4.7.7-7).
- 2. Calcular las repeticiones permisibles con ayuda de la figura 2.4.7.7-3 y la figura 2.4.7.7-4 y anótelos en la columna 6 del formato de diseño de espesores.
- 3. El porcentaje de daño por erosión (columna 7), para cada eje, se calcula dividiendo las repeticiones esperadas (columna 3) entre las repeticiones permitidas (columna 6) y multiplicando el resultado por 100, para luego totalizar el daño por erosión.

Al emplear las gráficas, no es necesaria una exacta interpolación de las repeticiones permisibles. Si la línea de intersección corre por encima de la parte superior de la gráfica, se considera que las repeticiones de carga permisibles son ilimitadas.

Tabla 2.4.7.7-f: Formato para el diseño de espesores por el método de la PCA.

CÁLCULO DEL ESPESOR DEL PAVIMENTO

PROYECTO			• • • • • • • • • • • • • • • • • • • •							
ESPESOR INICIAL				Р	ASAJUNTAS	SI NO				
MÓDULO DE REAC	CIÓN K DE LA SU	BRASANTE		A	POYO LATERAL	SI NO				
MÓDULO DE RUPT	URA, MR			PE	ERIODO DE DISEÑO	años				
FACTOR DE SEGU	RIDAD DE CARGA	A, LSF		BA	ASE					
			Análisis de F	 atiga	Análisis de E	rosión				
Carga del eje en kips	Multiplicada por LSF	Repeticiones Esperadas	Repeticiones Permisibles (Fig. 2.4.7.7-2)	% de Fatiga	Repeticiones Permisi (Fig. 2.4.7.7-2 ó 2.4.7.	ibles % de				
1	2	3	. 4	5	6	7				
8. Esfue	erzo equivalente				10. Factor de Erosión					
	or de relación de									
Ejes Sencillos										
				1						
			-							
Ejes Tandem	11. Esfuerzo ed 12. Factor de re	uivalente elación de esfuerz	 0		13. Factor de Erosión					
L	<u> </u>									
				,						
	14. Esfuerzo ed	quivalente elación de esfuerz			16. Factor de Erosión	1				
Ejes Tridem					16. Factor de Erosión	1				
Ejes Tridem					16. Factor de Erosión	1				
Ejes Tridem					16. Factor de Erosión	1				

Tabla 2.4.7.7-g: Esfuerzo Equivalente para Pavimentos Sin Apoyo Lateral.

Esfuerzo Equivalente – Sin Apoyo Lateral Eje Sencillo / Eje Tandem / Eje Tridem

Espesor de									de د	la su	ıbras	ante	e, pc	i							
Losa		50			100			150			200			300			500			700	
(pulgadas)	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri .	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri
4.0	825	679	510	726	585	456	671	542	437	634	516	428	584	486	419	523	457	414	484	443	412
4.5	699	586	439	616	500	380	571	460	359	540	435	349	498	406	339	488	378	331	417	363	328
5.0	602	516	387	531	436	328	493	399	305	467	376	293	432	349	282	390	321	272	363	307	269
5.5	526	461	347	464	387	290	431	353	266	409	331	253	379	305	240	343	278	230	320	264	226
6.0	465	416	315	411	348	261	382	316	237	362	296	223	336	271	209	304	246	198	285	232	193
6.5	417	380	289	367	317	238	341	286	214	314	267	201	300	244	186	273	220	173	256	207	168
7.0	375	349	267	331	290	219	307	262	196	292	244	183	272	222	167	246	199	154	231	186	148
7.5	340	323	247	300	268	203	279	241	181	265	224	168	246	203	153	224	181	139	210	169	132
8.0	311	300	230	274	249	189	255	223	168	242	208	156	225	188	141	205	167	126	192	155	120
8.5	285	281	215	252	232	117	234	208	158	222	193	145	206	174	131	188	154	116	177	143	109
9.0	264	264	200	232	218	166	216	195	148	205	181	136	190	163	122	174	144	108	163	133	101
9.5	245	248	187	215	205	157	200	183	140	190	170	129	176	153	115	161	134	101	151	124	93
10.0	228	235	174	200	193	148	186	173	132	177	160	122	164	144	108	150	126	95	141	117	87
10.5	213	222	163	187	183	140	174	164	125	165	151	115	153	136	103	140	119	89	132	110	82
11.0	200	211	153	175	174	132	163	155	119	154	143	110	144	129	98	131	113	85	123	104	78
11.5	188	201	142	165	165	125	153	148	113	145	136	104	135	122	93	123	107	80	116	98	74
12.0	177	192	133	155	158	119	144	141	108	137	130	100	127	116	89	116	102	77	109	93	70
12.5	168	183	123	147	151	113	136	135	103	129	124	95	120	111	85	109	97	73	103	89	67
13,0	159	176	114	139	144	107	129	129	98	122	119	91	113	106	81	103	93	70	97	85	64
13.5	152	168	105	132	138	101	122	123	93	116	114	87	107	102	78	98	89	67	92	81	62
14.0	144	162	97	125	133	96	116	118	89	110	109	83	102	98	75	93	85	65	88	78	59

FUENTE: Pavimentos de Concreto.

cemex CONCRETOS.

Tabla 2.4.7.7-h: Esfuerzo Equivalente para Pavimentos Con Apoyo Lateral.

Esfuerzo Equivalente – Con Apoyo Lateral Eje Sencillo / Eje Tandem / Eje Tridem

Espesor de								1	k de	la su	bras	ante	e, pc	<u> </u>							
Losa		50			100			150			200			300			500			700	
(pulgadas)	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri
4.0	640	534	431	559	468	392	517	439	377	489	422	369	452	403	362	409	388	360	383	384	359
4.5	547	461	365	479	400	328	444	371	313	421	356	305	390	338	297	355	322	292	333	316	291
5.0	475	404	317	417	349	281	387	323	266	367	308	258	341	290	250	311	274	244	294	267	242
5.5	418	360	279	368	309	246	342	285	231	324	271	223	302	254	214	276	238	208	261	231	206
6.0	372	325	249	327	277	218	304	255	204	289	241	196	270	225	187	247	210	180	234	203	178
6.5	334	295	225	294	251	196	274	230	183	260	218	175	243	203	166	223	188	159	212	180	15€
7.0	302	270	204	266	230	178	248	210	165	236	198	158	220	184	149	203	170	142	192	162	138
7.5	275	250	187	243	211	162	226	193	151	215	182	143	201	168	135	185	155	127	176	148	124
8.0	252	232	172	222	196	149	207	179	138	197	168	131	185	155	123	170	142	116	162	135	112
8.5	232	216	159	205	182	138	191	166	128	182	156	121	170	144	113	157	131	106	150	125	10:
9.0	215	202	147	190	171	128	177	155	119	169	146	112	158	134	105	146	122	98	139	116	94
9.5	200	190	134	176	160	120	164	146	111	157	137	105	147	126	98	136	114	91	129	108	87
10.0	186	179	127	164	151	112	153	137	104	146	129	98	137	118	91	127	107	84	121	101	81
10.5	174	170	119	154	143	105	144	130	97	137	121	92	128	111	86	119	101	79	113	95	76
11.0	164	161	111	144	135	99	135	123	92	129	115	87	120	105	81	112	95	74	106	90	71
11.5	154	153	104	136	128	93	127	117	86	121	109	82	113	100	76	105	90	70	100	85	67
12.0	145	146	97	128	122	88	120	111	82	114	104	78	107	95	72	99	86	66	95	81	63
12.5	137	139	91	121	117	83	113	106	78	108	99	74	101	91	68	94	82	63	90	77	60
13.0	130	133	85	115	112	79	107	101	74	102	95	70	96	86	65	89	78	60	85	73	57
13.5	124	124	80	109	107	75	102	97	70	97	91	67	91	83	62	85	74	57	81	70	54
14.0 ·	118	122	75	104	103	71	97	93	67	93	87	63	87	79	59	81	71	54	77	67	5

FUENTE: Pavimentos de Concreto.

cemex CONCRETOS.

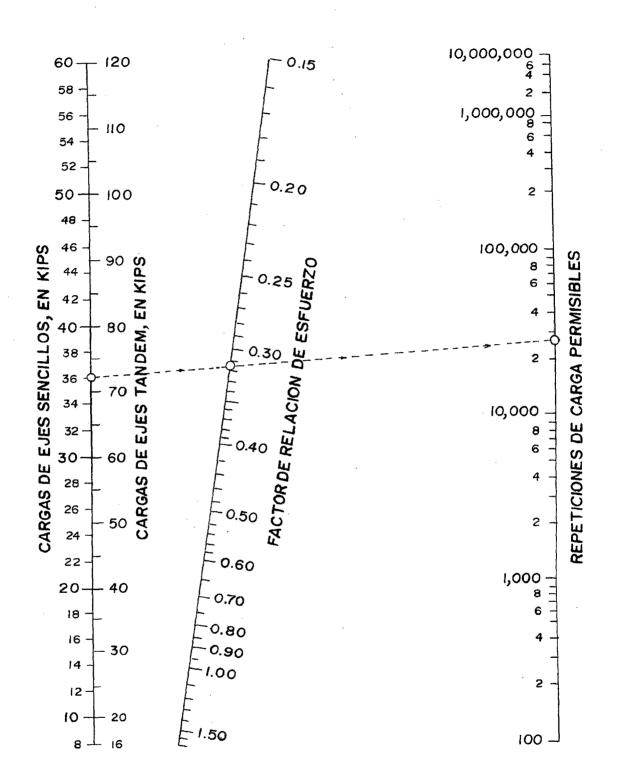


Figura 2.4.7.7-3: Análisis de fatiga (Repeticiones permisibles basadas en el factor de relación de esfuerzo, con o sin apoyo lateral).

Tabla 2.4.7.7-i: Factores de Erosión, Pavimentos Con Pasajuntas y Sin Apoyo lateral.

Factores de Erosión – Con Pasajuntas – Sin Apoyo Lateral Eje Sencillo / Eje Tandem / Eje Tridem

Espesor de								de la	a sub	rasan	te, po	i						
Losa		50			100			200			300			500			700	
(pulgadas)	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri
4.0	3.74	3.83	3.89	3,73	3.79	3.82	3.72	3.75	3.75	3.71	3.73	3.70	3.70	3.70	3.61	3.68	3.67	3.53
4.5	3.59	3.70	3.78	3.57	3.65	3.69	3.56	3.61	3.62	3.55	3.58	3.57	3.54	3.55	3.50	3.52	3.53	3.44
5.0	3.45	3.58	3.68	3.43	3.52	3.58	3,42	3.48	3.50	3.41	3.45	3.46	3.40	3.42	0.40	3.38	3.40	3.34
5.5	3.33	3.47	3.59	3.31	3.41	3.49	3.29	3.36	3.40	3.28	3.33	3.36	3.27	3.30	3.30	3.26	3.28	3.25
6.0	3.22	3.38	3.51	3.19	3.31	3.40	3.18	3.26	3.31	3.17	3.23	3.26	3.15	3.20	3.21	3.14	3,17	3.16
6.5	3.11	3.29	3.44	3.09	3.22	3.33	3.07	3.16	3.23	3.06	3.13	3.18	3.05	3.10	3.12	3.03	3.07	3.08
7.0	3.02	3.21	3.37	2.99	3.14	3.26	2.97	3.08	3.16	2.96	3.05	3.10	2.95	3.01	3.04	2.94	2.98	3.00
7.5	2.93	3.14	3.31	2.71	3.06	3.20	2.88	3.00	3.09	2.87	2.97	3.03	2.86	2.93	2.97	2.84	2.90	2.93
8.0	2.85	3.07	3.26	2.82	2.99	3.14	2.80	2.93	3.03	2.79	2.89	2.97	2.77	2.85	2.90	2.76	2.82	2.86
8.5	2.77	3.01	3.20	2.74	2.93	3.09	2.72	2.86	2.97	2.71	2.82	2.91	2.69	2.78	2.84	2.68	2.75	2.79
9.0	2.70	2.96	3.15	2.67	2.87	3.04	2.65	2.80	2.92	2.63	2.76	2.86	2.62	2.71	2.78	2.61	2.68	2.73
9.5	2.63	2.90	3.11	2.60	2.81	2.99	2.58	2.74	2.87	2.56	2.70	2.81	2.55	2.65	2.73	2.54	2.62	2.68
10.0	2.56	2.85	3.06	2.54	2.76	2.94	2.51	2.68	2.83	2.50	2.64	2.76	2.48	2.59	2.68	2.47	2.56	2.63
10.5	2.50	2.81	3.02	2.47	2.71	2.90	2,45	2.63	2.78	2.44	2.59	2.72	2.42	2.54	2.64	2.41	2.51	2.58
11.0	2.44	2.76	2.98	2.42	2.67	2.86	2.39	2.58	2.74	2.38	2.54	2.68	2.36	2.49	2.59	2.35	2.45	2.54
11.5	2.38	2.72	2.94	2.36	2.62	2.82	2.33	2.54	2.70	2.32	2.49	2.64	2.30	2.44	2.55	2.29	2.40	2.50
12.0	2.33	2.68	2.91	2.30	2.58	2.79	2.28	2.49	2.67	2.26	2.44	2.60	2.25	2.39	2.51	2.23	2.36	2.46
12.5	2.28	2.64	2.87	2.25	2.54	2.75	2.23	2.45	2.63	2.21	2.40	2.56	2.19	2.35	2.48	2.18	2.31	2.42
13.0	2.23	2.61	2.84	2.20	2.50	2.72	2.18	2.41	2.60	2.16	2.36	2.53	2.14	2.30	2.44	2.13	2.27	2.39
13.5	2.18	2.57	2.81	2.15	2.47	2.68	2.13	2.37	2.56	2.11	2.32	2.49	2.09	2.26	2.41	2.08	2.23	2.35
14.0	2.13	2.54	2.78	2.11	2.43	2.65	2.08	2.34	2.53	2.07	2.29	2.46	2.05	2.23	2.38	2.03	2.19	2.32

FUENTE: Pavimentos de Concreto.

cemex CONCRETOS.

Tabla 2.4.7.7-j: Factores de Erosión, Pavimentos Sin Pasajuntas y Sin Apoyo Lateral.

Factores de Erosión – Sin Pasajuntas – Sin Apoyo Lateral Eje Sencillo / Eje Tandem / Eje Tridem

Espesor de								de la	a sub	rasar	ite, p	ci						
Losa		50		100		200		300			500			700				
(pulgadas)	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri
4.0	3.94	4.03	4.06	3.91	3.95	3.97	3.88	3.89	3.88	3.86	3.86	3.82	3.82	3.83	3.74	3.77	3.80	3.67
4.5	3.79	3.91	3.95	3.76	3.82	3.85	3.73	3.75	3.76	3.71	3.72	3.70	3.68	3.68	3.63	3.64	3.65	3.56
5.0	3.66	3.81	3.85	3.63	3.72	5.00	3.60	3.64	3.66	3.58	3.60	3.60	3.55	3.55	3.52	3.52	3.52	3.46
5.5	3.54	3.72	3.76	3.51	3.62	3.66	3.48	3.53	3.56	3.46	3.49	3.51	3.43	3.44	3.43	3,41	3.40	3.37
6.0	3.44	3.64	3.68	3.40	3.53	3.58	3.37	3.44	3.48	3.35	3.40	3.42	3.32	3.34	3.35	3.30	3.30	3.29
6.5	3,34	3.56	3.61	3.30	3.46	3.50	3.26	3.36	3.40	3.25	3.31	3,34	3.22	3.25	3.27	3.20	3.21	3.21
7.0	3.26	3.49	3.54	3.21	3.39	3.43	3.17	3.29	3.33	3.15	3.24	3.27	3.13	3.17	3.20	3,11	3.13	3.14
7.5	3.18	3.43	3.48	3.13	3.32	3.37	3.09	3.22	3.26	3.07	3.17	3.20	3.04	3.10	3.13	3.02	3.06	3.08
8.0	3.11	3.37	3.42	3.05	3.26	3.31	3.01	3.16	3.20	2.99	3.10	3.14	2.96	3.03	3.07	2.94	2.99	3.01
8.5	3.04	3.32	3.37	2.98	3.21	3.25	2.93	3.10	3.15	2.91	3.04	3.09	2.88	2.97	3.01	2.87	2.93	2.96
9.0	2.98	3.27	3.32	2.91	3.16	3.20	2.86	3.05	3.09	2.84	2.99	3.03	2.81	2.92	2.95	2.79	2.87	2.90
9.5	2.92	3.22	3.27	2.85	3.11	3.15	2.80	3.00	3.04	2.77	2.94	2.98	2.75	2.86	2.90	2.73	2.81	2.85
10.0	2.86	3.18	3.22	2.79	3.06	3.11	2.74	2.95	3.00	2.71	2.89	2.93	2.68	2.81	2.85	2.66	2.76	2.80
10.5	2.81	3.14	3.18	2.74	3.02	3.06	2.68	2.91	2.95	2.65	2.84	2.89	2.62	2.76	2.81	2.60	2.72	2.76
11.0	2.77	3.10	3.14	2.69	2.98	3.02	2.63	2.86	2.91	2.60	2.80	2.84	2.57	2.72	2.77	2.54	2.67	2.71
11.5	2.72	3.06	3.10	2.64	2.94	2.98	2.58	2.82	2.87	2.55	2.76	2.80	2.51	2.68	2.72	2.49	2.63	2.67
12.0	2.68	3.03	3.07	2.60	2.90	2.95	2.53	2.78	2.83	2.50	2.72	2.76	2.46	2.64	2.68	2.44	2.59	2.63
12.5	2.64	2.99	3.03	2.55	2.87	2.91	2.48	2.75	2.79	2.45	2.68	2.73	2.41	2.60	2.65	2.39	2.55	2.59
13.0	2.60	2.96	3.00	2.51	2.83	2.88	2.44	2.71	2.76	2.40	2.65	2.69	2.36	2.56	2.61	2.34	2.51	2.56
13.5	2.56	2.93	2.97	2.47	2.80	2.84	2.40	2.68	2.73	2.36	2.61	2.66	2.32	2.53	2.58	2.30	2.48	2.52
14.0	2.53	2.90	2.94	2.44	2.77	2.81	2.36	2.65	2.69	2.32	2.58	2.63	2.28	2.50	2.54	2.25	2.44	2.49

FUENTE: Pavimentos de Concreto.

cemex CONCRETOS.

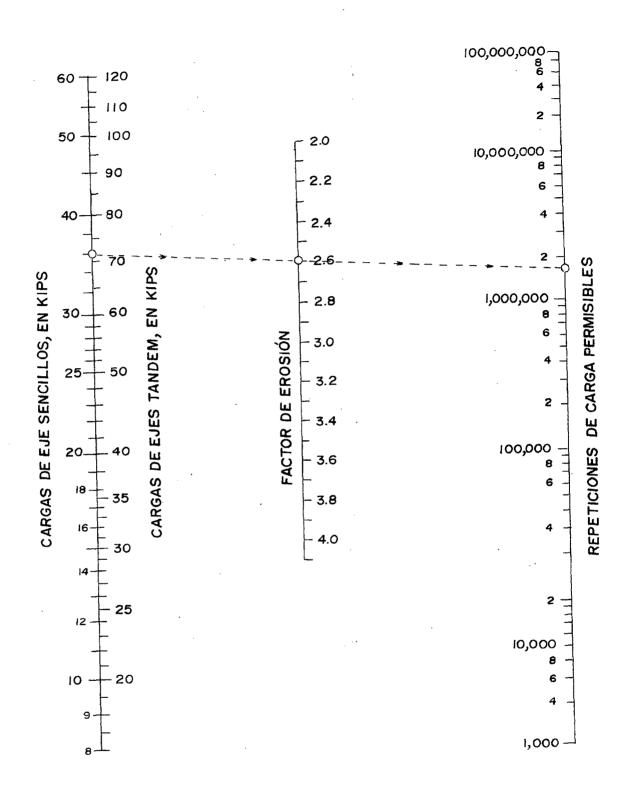


Figura 2.4.7.7-4: Análisis de Erosión (Repeticiones permisibles basadas en el factor de erosión, sin apoyo lateral).

Tabla 2.4.7.7-k: Factores de Erosión, Pavimentos Con Pasajuntas y Con Apoyo lateral

Factores de Erosión – Con Pasajuntas – Con Apoyo Lateral Eje Sencillo / Eje Tandem / Eje Tridem

Espesor de							k	de la	sub	rasar	ite, p	ci						
Losa		50			100			200			300			500			700	
(pulgadas)	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri
4.0	3.28	3.30	3.33	3.24	3.20	3.20	3.21	3.13	3,13	3.19	3.10	3.10	3.15	3.09	3.05	3.12	3.08	3.00
4.5	3.13	3.19	3.24	3.09	3.08	3.10	3.06	3.00	2.99	3.04	2.96	2.95	3.01	2.93	2.91	2.98	2.91	2.87
5.0	3.01	3.09	3,16	2.97	2.98	3.01	2.93	2.89	2.89	2.90	2.84	2.83	2.87	2.79	2.79	2.85	2.77	2.75
5.5	2.90	3.01	3.09	2.85	2.89	2.94	2.81	2.79	2.80	2.79	2.74	2.74	2.76	2.68	2.67	2.73	2.65	2.64
6.0	2.79	2.93	3.03	2.75	2.82	2.87	2.70	2.71	2.73	2.68	2.65	2,66	2.65	2.58	2.58	2.62	2.54	2.54
8.5	2.70	2.88	2.97	2.65	2.75	2.82	2.61	2.63	2.67	2.58	2.57	2.59	2.55	2.50	2.50	2.52	2.45	2.45
7.0	2.61	2.79	2.82	2.58	2.68	2.76	2.52	2.58	2.61	2.49	2.50	2.53	2.46	2.42	2.43	2.43	2.38	2.37
7.5	2.53	2.73	2.87	2.48	2.62	2.72	2.44	2.50	2.56	2.41	2.44	2.47	2.38	2.36	2.37	2.35	2.31	2.31
8.0	2.46	2.68	2.83	2.41	2.56	2.67	2.36	2.44	2,51	2.33	2.38	2.42	2.30	2.30	2.32	2.27	2.24	2.25
8.5	2.39	2.62	2.79	2.34	2.51	2.63	2.29	2.39	2.47	2.26	2.32	2.38	2.22	2.24	2.27	2.20	2.18	2.20
9.0	2.32	2.57	2.75	2.27	2.46	2.59	2.22	2.34	2.43	2.19	2.27	2.34	2.16	2.19	2.23	2.13	2.13	2.15
9.5	2.26	2.52	2.71	2.21	2.41	2.55	2.16	2.29	2.39	2.13	2.22	2,30	2.09	2.14	2.18	2.07	2.08	2.11
10.0	2.20	2.47	2.67	2.15	2.36	2.51	2.10	2.25	2.35	2.07	2.18	2.26	2.03	2.09	2.15	2.01	2.03	2.07
10.5	2.15	2.43	2.64	2.09	2.32	2.48	2.04	2.20	2.32	2.01	2.14	2.23	1.97	2.05	2.11	1.95	1.99	2.04
11.0	2.10	2.39	2.60	2.04	2.28	2.45	1.99	2.16	2.29	1.95	2.09	2.20	1.92	2.01	2.08	1.89	1.95	2.00
11.5	2.05	2.35	2.57	1.99	2.24	2.42	1.93	2.12	2.26	1.90	2.05	2.16	1.87	1.97	2.05	1.84	1.91	1.97
12.0	2.00	2,31	2.54	1.94	2.20	2.39	1.88	2.09	2.23	1.85	2.02	2.13	1.82	1.93	2.02	1.79	1.87	1.94
12.5	1.95	2.27	2.51	1.89	2,16	2.36	1.84	2.05	2.20	1.81	1.98	2.11	1.77	1.89	1.99	1.74	1.84	1.91
13.0	1.91	2.23	2,48	1.85	2.13	2.33	1.79	2.04	2.17	1.76	1.95	2.08	1.72	1.86	1.96	1.70	1.80	1.88
13.5	1.86	2.20	2.46	1.81	2.09	2.30	1.75	1.98	2.14	1.72	1.91	2.05	1.68	1.83	1,93	1.65	1.77	1.86
14.0	1.82	2.17	2.43	1.76	2.06	2.28	1.71	1.95	2.12	1.67	1.88	2.03	1.64	1.80	1.91	1.61	1.74	1.83

FUENTE: Pavimentos de Concreto.

cemex CONCRETOS.

Tabla 2.4.7.7-m: Factores de Erosión, Pavimentos Sin Pasajuntas y Con Apoyo Lateral.

Factores de Erosión – Sin Pasajuntas – Con Apoyo Lateral

Eje Sencillo / Eje Tandem / Eje Tridem

Espesor de	k de la subrasante, pci																	
Losa		50		100		200			300			500			700			
(pulgadas)	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri	Sen	Tan	Tri
4.0	3.46	3.49	3.50	3.42	3.39	3.38	3.38	3.32	3.30	3.36	3.29	3.25	3.32	3.26	3.21	3.28	3.24	3.16
4.5	3.32	3.39	3.40	3.28	3.28	3.28	3.24	3.19	3.18	3.22	3.16	3.13	3.19	3.12	3.08	3.15	3.09	3.04
5.0	3.20	3.30	3.32	3.16	3.18	3.19	3.12	3.09	3.08	3.10	3.05	3.03	3.07	3.00	2.97	3.04	2.97	2.93
5.5	3.10	3.22	3.26	3.05	3.10	3.11	3.01	3.00	3.00	2.99	2.95	2.94	2.96	2.90	2.87	2.93	2.86	2.83
6.0	3.00	3.15	3.20	2.95	3.02	3.05	2.90	2.92	2.92	2.88	2.87	2.86	2.86	2.81	2.79	2.83	2.77	2.74
6.5	2.91	3.08	3.41	2.86	2.96	2.99	2.81	2.85	2.86	2.79	2.79	2.79	2.76	2.73	2.72	2.74	2.68	2.67
7.0	2.83	3.02	3.09	2.77	2.90	2.94	2.73	2.78	2.80	2.70	2.72	2.73	2.68	2.66	2.65	2.65	2.61	2.60
7.5	2.76	2.97	3.05	2.70	2.84	2.89	2.65	2.72	2.75	2.62	2.66	2.67	2.60	2.59	2.59	2.57	2.54	2.54
8.0	2.69	2.92	3.01	2.60	2.79	2.84	2.57	2.67	2.70	2.55	2.61	2.62	2.52	2.53	2.54	2.50	2.48	2.48
8.5	2.63	2.88	2.97	2.56	2.74	2.80	2.51	2.62	2.65	2.48	2.55	2.58	2.45	2.48	2.49	2.43	2.43	2.43
9.0	2.57	2.83	2.94	2.50	2.70	2.77	2.44	2.57	2.61	2.42	2.51	2.53	2.39	2.43	2.44	2.36	2.38	2.38
9.5	2.51	2.79	2.91	2.44	2.65	2.73	2.38	2.53	2.58	2.36	2.46	2.49	2.33	2.38	2.40	2.30	2.33	2.34
10.0	2.46	2.75	2.88	2.39	2.61	2.70	2.33	2.49	2.54	2.30	2.41	2.46	2.27	2.34	2.36	2.24	2.28	2.29
10.5	2.41	2.72	2.85	2.33	2.58	2.67	2.27	2.45	2.51	2.24	2.38	2.42	2.21	2.30	2.32	2.19	2.24	2.26
11.0	2.36	2.68	2.83	2.28	2.54	2.65	2.22	2.41	2.48	2.19	2.34	2.39	2.16	2.26	2.29	2.14	2.20	2.22
11.5	2.32	2.65	2.80	2.24	2.51	2.62	2.17	2.37	2.45	2.14	2.31	2.36	2.11	2.22	2.26	2.09	2.16	2.19
12.0	2.28	2.62	2.78	2.19	2.48	2.59	2.13	2.34	2.43	2.10	2.27	2.33	2.06	2.19	2.23	2.01	2.13	2.16
12.5	2.24	2.59	2.76	2.15	2.45	2.57	2.09	2.31	2.40	2.05	2.24	2.31	2.02	2.15	2.20	1.99	2.10	2.13
13.0	2.20	2.56	2.74	2.11	2.42	2.55	2.04	2.28	2.38	2.01	2.21	2.28	1.98	2.12	2.17	1.95	2.06	2.10
13.5	2.16	2.53	2.72	2.08	2.39	2.53	2.00	2.25	2.35	1.97	2.18	2.26	1.93	2.09	2.15	1.91	2.03	2.0
14.0	2.13	2.51	2.70	2.04	2.36	2.51	1.97	2.23	2.33	1.93	2.15	2.24	1.89	2.06	2.12	1.87	2.00	2.0

FUENTE: Pavimentos de Concreto.

cemex CONCRETOS.

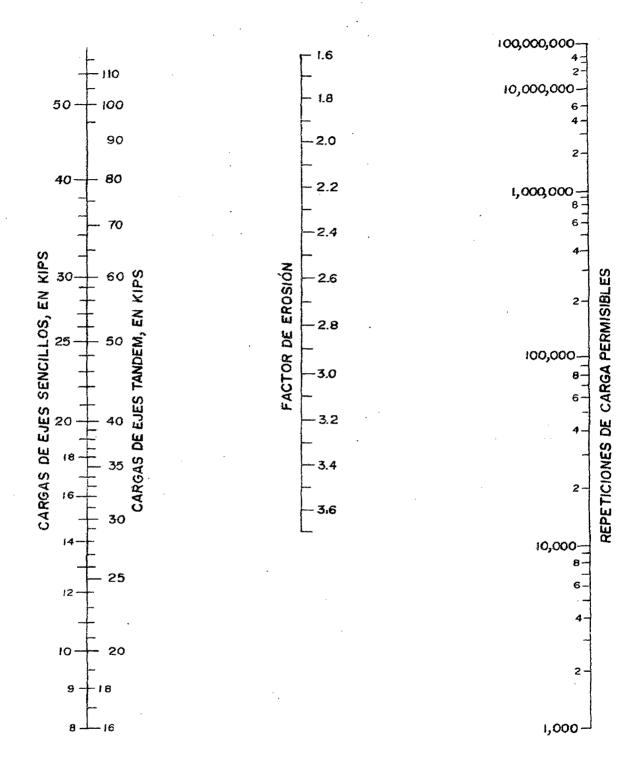


Figura 2.4.7.7-5: Análisis de erosión (Repeticiones permisibles basadas en el factor de erosión, con apoyo lateral).

2.4.8 DISEÑO DE MEZCLAS

El diseño de mezclas consiste en determinar las proporciones de cemento, agua y agregados, que produzcan la consistencia y resistencia deseadas del concreto a emplear. Se elaborará de acuerdo a las recomendaciones del ACI.

El agua está en función del asentamiento del concreto, del tamaño máximo del agregado y según los criterios siguientes:

- 1. El concreto se debe dosificar para una consistencia plástica con un asentamiento entre tres y cuatro pulgadas, si la consolidación es por vibración; y de cinco pulgadas o más, si el método de consolidación es diferente al de vibración.
- 2. Los parámetros de diseño se seleccionarán de las siguientes tablas:

TABLA 2.4.8 (a): Asentamientos recomendados para diferentes tipos de estructuras.

	ASENTA	MIENTO
TIPO DE CONSTRUCCIÓN	MÁXIMO	MÍNIMO
Zapatas y muros de cimentación armados.	3"	1"
Cimentaciones simples, cajas y subestructuras de muros.	3"	1"
Vigas y muros armados.	3"	1"
Columnas de edificios.	4"	1"
Losas y pavimentos.	3"	1"
Concreto ciclópeo	2"	1"
	· · · · · · · · · · · · · · · · · · ·	1 .

FUENTE: Tablas ACI

TABLA 2.4.8 (b): Requisitos aproximados de agua de mezclado y contenido de aire para diferentes valores de asentamiento y tamaño nominal máximo del agregado.

	Agua, e	-	•		oico de co do gruesa			amaños
ASENTAMIENTO	3/8 "	1/2 "	3/4"	1"	1 1/2 *	2*	3"	6"
	Concr	etos Sin	Aire Inco	rporado				
1" a 2"	207	199	190	179	166	154	130	113
3" a 4"	228	216	205	193	181	169	145	124
6" a 7"	243	228	216	202	190	178	160	
Contenido de aire atrapado (%)	3.0	2.5	2.0	1.5	1.0	0.5	0.3	0.2
	Conc	retos Con	Aire Inco	porado				
1" a 2"	181	175	168	160	150	142	122	107
3" a 4"	202	193	184	175	165	157	133	119
6" a 7"	216	205	197	184	174	166	154	_
Promedio recomendable Para el Contenido Total de Aire (%)	8	7	6	5	4.5	4	3.5	3

Estos valores se emplean en la determinación del factor cemento en mezclas preliminares de prueba. Son valores máximos y corresponden al agregado grueso de perfil angular y granulometría dentro de los límites de la norma ASTM C33. Si el valor del tamaño máximo del agregado es mayor de 1½", el asentamiento se determinará después de retirar, por cernido húmedo, las partículas mayores de 1½". FUENTE: Tablas ACI.

TABLA 2.4.8 (c): Requisitos de Agua para Mezclado.

Volumen Unitario de agua, expresado en lt/m³, para los asentamientos y perfiles del agregado grueso indicados

Tamaño	1" a	2"	3" a	4"	6" a 7"		
máximo del agregado	Agregado Redondeado	Agregado Angular	Agregado Redondeado	Agregado Angular	Agregado Redondeado	Agregado Angular	
3/8"	185	212	201	227	230	250	
1/2"	182	201	197	216	219	238	
3/4"	170	189	185	204	208	227	
1"	163	182	178	197	197	216	
11/2"	155	170	170	185	185	204	
2"	148	163	163	178	178	197	
3"	136	151	151	167	163	182	

Los valores de la tabla corresponden a concretos sin aire incorporado.

FUENTE: Tablas ACI.

TABLA 2.4.8 (d): Relación agua - cemento y Resistencia a la Compresión del Concreto.

Resistencia a la Compresión	RELACIÓN AGUA/CI	EMENTO EN PESO
a los 28 días (fc) (Kg/cm²)	Concreto Sin Aire Incorporado	Concreto Con Aire Incorporado
450	0.38	
400	0.43	
350	0.48	0.40
300	0.55	0.46
250	0.62	0.53
200	0.70	0,61
150	0.80	0.71
· ·		t .

Los valores de resistencia corresponden a ensayos de probetas cilíndricas de 15 × 30 cm., curadas durante 28 días de acuerdo a lo indicado en la sección 9 (b) de la Norma ASTM C31. Las relaciones agua/cemento se basan en tamaños máximos del agregado, comprendidos entre 3/4" y 1". La resistencia producida por una relación agua/cemento dada deberá incrementarse conforme el tamaño máximo disminuye. FUENTE: Tablas ACI.

TABLA 2.4.8 (e): Relación agua - cemento por Resistencia.

Resistencia a la Compresión a los 28 días (fc)	Estimación de la Relación agua/cemento, para agregado grueso del tamaño máximo nominal indicado						
(Kg/cm²)	3/8"	3/4"	1½"				
140	0.87	0.85	0.80				
175	0.79	0.76	0.71				
210	0.72	0.69	0.64				
245	0.66	0.62	0.58				
280	0.64	0.58	0.53				
315	0.57	0.53	0.49				
350	0.53	0.49	0.45				

Los valores de la tabla corresponden a concretos sin aire incorporado. En concretos con aire incorporado, la relación agua/cemento deberá estimarse sobre la base de la reducción del 5 % en la resistencia por cada 1 % de aire incorporado.

FUENTE: Tablas ACI

TABLA 2.4.8 (f): Relación agua - cemento por Resistencia.

Resistencia a la Compresión a los 28 días (fcr)	Relación agua/cemento en Peso, para diversos contenidos de aire total								
(Kg/cm ²)	0 %	2 %	4 %	6 %	8 %				
140	0.80	0.76	0.71	0.67	0.60				
175	0.71	0.67	0.62	0.58	0.51				
210	0.61	0.60	0.55	0.51	0.45				
245	0.58	0.53	0.49	0.45	0.37				
280	0.53	0.49	0.45	0.40	0.33				
315	0.49	0.45	0.40	0.35	0.29				
350	0.45	0.40		····					

FUENTE: Tablas ACI.

TABLA 2.4.8 (g): Relación agua - cemento por Resistencia.

RELACIÓN	RESISTENCIA PROBABLE A LOS 28 DÍAS						
AGUA/CEMENTO	Concreto Sin Aire Incorporado	Concreto Con Aire Incorporado					
0.35	420	335					
0.45	350	280					
0.54	280	225					
0.63	225	180					
0.71	175	140					
0.80	140	110					

FUENTE: Tablas ACI.

TABLA 2.4.8 (h): Concreto resistente a las Heladas. Aire total.

TAMAÑO MÁXIMO	CONTENIDO DE AIRE EN PORCENTAJE								
NOMINAL	Exposición Suave 0 °C a -4 °C	Exposición Moderada -4 °C a -10 °C	Exposición Severa Menos de -10 ºC						
3/8"	4.5	6.0	7.5						
1/2"	4.0	5.5	7.0						
3/4"	3.5	5.0	6.0						
1"	3.0	4.5	6.0						
11/2"	2.5	4.5	5.5						
2" +	2.0	4.0	5.0						
3" +	1.5	3.5	4.5						

Los valores de la tabla corresponden al contenido de aire de la mezcla. Es decir, aire atrapado más el aire intencionalmente incorporado.

++ Cuando se ensaya estos concretos, sin embargo, el agregado mayor de 1½" es remolido manualmente o por cernido húmedo y el contenido de aire es determinado por la fracción menor de 1½", aplicándose las tolerancias, en el contenido de aire, a este valor. El contenido total de aire de la mezcla es computado a partir del valor de la fracción menor de 1½".

FUENTE: Tablas ACI.

TABLA 2.4.8 (i): Máxima Relación agua/cemento permisible para concretos sometidos a exposición severa.

ON PODICION DO 1	V. W.	
TIPO DE ESTRUCTURA	Estructuras frecuente o continuamente húmedas y expuestas a congelación y deshielo*	Estructuras expuestas a la acción de agua de mar o sulfatos
Secciones delgadas y todas aquellas		
secciones con menos de 3		·
centímetros de recubrimiento.	0.45	0.40**
Cualquier otro tipo de estructuras	0.50	0.45**

^{*} El concreto deberá ser con aire incorporado.

FUENTE: Tablas ACI.

TABLA 2.4.8 (i): Volumen de agregado grueso por unidad de volumen.

Volumen de agregado grueso, seco y compacto por unidad de volumen de concreto para diferentes módulos de finura del agregado fino				
2.4	2.6	2.8	3.0	
0.50	0.48	0.46	0.44	
0.59	0.57	0.55	0.53	
0.66	0.64	0.62	0.60	
0.73	0.69	0.67	0.65	
0.76	0.74	0.72	0.70	
0.78	0.76	0.74	0.72	
0.81	0.79	0.77	0.75	
1.87	0.85	0.83	0.81	
	2.4 0.50 0.59 0.66 0.73 0.76 0.78	2.4 2.6 0.50 0.48 0.59 0.57 0.66 0.64 0.73 0.69 0.76 0.74 0.78 0.76 0.81 0.79	2.4 2.6 2.8 0.50 0.48 0.46 0.59 0.57 0.55 0.66 0.64 0.62 0.73 0.69 0.67 0.76 0.74 0.72 0.78 0.76 0.74 0.81 0.79 0.77	

El agregado grueso se encuentra en la condición de seco compactado, tal como define la Norma ASTM C29. Estos volúmenes han sido seleccionados de relaciones que permiten obtener concretos con un grado de trabajabilidad adecuada para construcciones armadas usuales.

Para concretos menos trabajables, tales como los que se requiere en pavimentos, la relación puede incrementarse en un 10 %. Para concretos más trabajables, tales como concretos bombeados, los valores pueden reducirse en un 10 %.

FUENTE: Tablas ACI.

TABLA 2.4.8 (k): Primera Estimación del Peso del concreto.

Resistencia a la Compresión a los 28 días (fcr)	PRIMERA ESTIMACIÓN DEL PESO DEL CONCRETO, Kg/m			
(Kg/cm³)	Concreto Sin Aire Incorporado	Concreto Con Aire Incorporado		
3/8"	2280	2200		
1/2"	2310	2230		
3/4 "	2345	2275		
1"	2380	2290		
1 1/2"	2410	2350		
2"	2445	2395		
3"	2490	2405		
6"	2530	2435		

Los valores han sido calculados empleando la ecuación:

U = 10Ga(100 - A) + C(1 - Ga/Gc) - V(Ga - 1)

Donde:

U:

Peso del concreto fresco en Kg/m³.

^{**} Si se emplea cemento resistente a los sulfatos (tipo II o V de la Norma ASTM C150), la relación agua/ – cemento permisible puede incrementarse en 0.05.

Ga: Peso específico promedio de la combinación de agregado fino y grueso, en condición de peso específico de masa, saturado superficialmente seco.

Gc: Peso específico del cemento.

A: Contenido de aire, %.

V: Requisitos de agua de mezclado en Kg/m³.

C: Requisitos de cemento en Kg/m³.

La ecuación anterior ha sido calculada para concretos de riqueza media (330 Kg de cemento por metro cúbico) y un asentamiento medio, para agregados con peso específico de 2.7. Los requisitos de la cantidad de agua se han basado en los valores de la tabla 2.4.8 (b), para valores del asentamiento de 3" a 4". Si se desea, la estimación del peso puede ser refinada como sigue:

Por cada 5 Kg. de diferencia en el contenido de agua en relación con la tabla 2.4.8 (b) para valores del asentamiento de 3" a 4", corregir el peso por metro cúbico, en 8 Kg. en la dirección opuesta; por cada 20 Kg. de diferencia en el contenido de cemento, corregir el peso por metro cúbico, en 8 Kg. en la misma dirección; por cada 0.1 de variación en el peso específico del agregado en relación a 2.7, corregir 70 Kg. en la misma dirección.

FUENTE: Tablas ACI.

TABLA 2.4.8 (m): Módulo de Finura de la Combinación de agregados.

TAMAÑO DEL AGREGADO	Módulo de Finura de la Combinación de agregados. El cual da las mejores condiciones de trabajabilidad para los contenidos de cemento en saco por metro cúbico indicados			
AGREGADO	6	7	8	9
3/8"	3.96	4.04	4.11	4.19
1/2 "	4.46	5.54	4.61	4.89
3/4 "	4.96	5.04	5.11	5.19
1"	5.26	5.34	5.41	5.49
1 1/2"	5.56	5.64	5.71	5.79
2"	5.86	5.94	6.01	6.09
3"	6.16	6.24	6.31	6.39

Los valores están referidos a agregado grueso de perfil angular, adecuadamente graduado, con un contenido de vacíos del orden del 35 %. Los valores deben incrementarse o disminuirse en 0.1 por cada 5 % de disminución o incremento en el porcentaje de vacíos.

Así mismo, estos valores pueden dar mezclas ligeramente sobre arenosas para pavimentos o estructuras ciclópeas. Si las condiciones de colocación son favorables, estos valores pueden ser incrementados en 0.2. FUENTE: *Tablas ACI*.

2.5 HIDROLOGÍA Y DISEÑO DE OBRAS DE ARTE.

Para diseñar un sistema de drenaje urbano, es necesario tomar en cuenta varios aspectos, tales como:

- Topografía de la zona.
- Geometría vial
- Perfiles longitudinales, transversales e intersecciones de las vías.
- Materiales de revestimiento.
- Datos hidrológicos reales y actualizados.
- Ubicar los lugares que han sufrido daños por causa de precipitaciones.
- Tipo de pavimento y tipo de coberturas de las viviendas.

El objetivo principal de un sistema de drenaje urbano es el de evacuar, en el menor tiempo posible, las aguas que discurran por las vías, encausarlas a través de canales de evacuación, si fuera necesario, y conducirlas hacia un colector. En zonas lluviosas es recomendable diseñar canales de evacuación, para evitar el uso de cunetas, pues estas no son recomendables en zonas urbanas por ser un peligro constante para los vehículos y transeúntes.

Para calcular los caudales máximos de diseño, se deben incluir tanto las aguas que se precipitan directamente sobre el área en estudio, como aquellas sobre otras áreas, pero que discurren a través de la primera.

2.5.1 ESTUDIO HIDROLÓGICO.

Los registros de precipitaciones, de la estación meteorológica más cercana, son tratados estadísticamente para obtener intensidades máximas medias, para tiempos de duración, de 05, 10, 30, 60 y 120 minutos. Así mismo dichos datos analizados, se extienden hasta el número de años conveniente.

a) Período de Retorno (TR).

Es el número promedio de años que transcurren para que un evento de ciertas características se repita con igual o mayor magnitud.

La probabilidad de ocurrencia (J) en un año cualquiera (j) está ligada a la ocurrencia para el mismo periodo, mediante la relación:

$$J = \frac{1}{TR}$$
 2.5.1 - 1

En el caso de drenaje urbano, el evento a considerar son los excedentes de aguas de lluvia, es decir, el escurrimiento que ellas generan.

El método apropiado para determinar el período de retorno sería evaluar la relación Beneficio – Costo para diferentes alternativas de protección. Sin embargo, resulta dificultosa la estimación de beneficios para el futuro. Naturalmente las vidas humanas deben ser protegidas contra todo riesgo, lo cual resulta imposible. Entonces, se ve la necesidad de establecer ciertas reglas basadas exclusivamente en la experiencia y en el buen juicio.

En las siguientes tablas se indican los periodos de retorno recomendables, en función del uso de la tierra y del tipo de vía.

TABLA 2.5.1 (1): Usos de la tierra y periodos de retorno.

T.11	PO DE USO	TR (años)
a)	Zonas de actividad.	10
b)	Zonas de actividad Industrial.	10
c)	Zonas de Edificios públicos.	10
d)	Zonas residenciales multifamiliares de alta densidad.	05
e)	Zonas residenciales unifamiliares y multifamiliares de baja densidad.	02
f)	Zonas recreativas de alto valor e intenso uso por el público.	02
g)	Otras áreas recreativas.	01

Esta tabla debe emplearse con flexibilidad, pues su aplicación estricta en cuanto a usos puede llevar a una subdivisión excesiva de las áreas urbanas y complicar innecesariamente la fijación de los períodos de retorno. Por ello, cuando se mencione el tipo de uso, debe entenderse el dominante y si en el área no existe uso predominante, se puede tomar conservadoramente el de mayor período de retorno.

TABLA 2.5.1 (2): Tipo de vía y Periodo de retorno mínimo.

TIPO DE VIA	TR (años)
VIALIDAD ARTERIAL. Autopistas urbanas y avenidas que garantizan la comunicación básica de la ciudad.	10
VIALIDAD DISTRIBUIDORA. Vías que distribuyen el tráfico proveniente de la vialidad arterial o que la alimentan.	05
VIALIDAD LOCAL. Avenidas y calles cuya importancia no traspasa la zona servida.	02
VIALIDAD ESPECIAL. Acceso a instalaciones de seguridad nacional y servicios públicos vitales.	10

La tabla (2) es un complemento de la tabla (1).

FUENTE: Drenaje Pluvial Urbano.

Ing. Francisco Huamán Vidaurre.

Una vez establecidos los períodos de retorno de acuerdo a la tabla (1), debe comprobarse si dentro de las diferentes áreas existen vías terrestres a las que les corresponden en la tabla (2), unos periodos de retorno mayores, y si este fuese el caso, se utilizarían estos últimos para la vía en cuestión.

b) Tiempo de concentración.

En el caso del método racional (Q = CIA), el tiempo de concentración es importante para obtener la intensidad máxima media de las curvas Intensidad—Frecuencia — Duración. Estas curvas se preparan haciendo un análisis de tormentas en caso de disponer de registros pluviográficos de una estación representativa para la zona urbana en estudio. El tiempo de concentración para drenaje urbano puede determinarse con la siguiente fórmula:

$$t_c = t_{cs} + t_v$$
 2.5.1 -2

Donde

- t_{cs} = Tiempo de concentración de flujo superficial. Se puede determinar empleando el ábaco de la figura 2.4.8 (a), que da valores en función del coeficiente de rugosidad n, la distancia de flujo y la pendiente promedio de la superficie.
- t_v = Tiempo de viaje de los colectores hasta el punto deseado. Su valor depende de la velocidad del agua en los conductos. En este sentido, resulta práctico escoger una velocidad media para cada tramo, igual a la del flujo a sección llena, comprobando luego a nivel de proyecto, si ella está dentro de los límites aceptables de exactitud.

El tiempo de concentración t_c se utiliza como duración de la precipitación para obtener la intensidad de la misma.

b)1 Coeficiente de Escorrentía (C).

La tabla 2.5.1 (4) presenta los valores C recomendados por la sociedad Americana de Ingenieros Civiles. La tabla da valores para usos indicativos de la tierra y para tipos de superficies.

b)2 Delimitación de las áreas tributarias.

Se deberá establecer, en el plano catastral a curvas a nivel, el sentido del escurrimiento superficial en las diferentes calles, avenidas y demás vías terrestres de la ciudad, así como la ubicación de los puntos de entrada a las vías del escurrimiento proveniente de las zonas verdes o de áreas por urbanizar. Se delimitan las áreas tributarias, siguiendo el criterio de subdividir las manzanas por las bisectrices de las esquinas, para las zonas urbanizadas, y tomando en cuenta la topografía para las que no lo fueren.

TABLA 2.5.1 (3): Intensidades – Estación Weberbauer.

Intensidades máximas (mm/h) para diferentes periodos de duración.

Estación: Augusto Weberbauer. CATEGORÍA: MAP Nº 304

DISTRITO: PROVINCIA: CAJAMARCA CAJAMARCA

DEPARTAMENTO:

CAJAMARCA CAJAMARCA

LATITUD: 07° 10' S LONGITUD: 78° 30' ALTITUD: 2,680 m.s.n.m.

m	AÑO	5 min.	10 min.	30 min.	60 min.	120 min.
1	1973	101.00	71.00	24.00	14.00	11.00
. 2	1974	73.00	58.00	34.00	18.00	9.10
3	1975	90.00	50.00	24.00	16.00	10.00
4	1976	68.00	63.00	37.00	19.00	9.00
5	1977	65.00°	53.00	37.00	21.00	. 11.00
6	1978	26.00	24.00	21.00	12.00	6.00
.7	1979	60.00	60.00	38.00	23.00	14.00
8	1980	73.02	60.10	33.80	21.08	13.02
9	1981	67.20	54.80	29.13	15.54	9.28
10	1982	88.29	75.15 ·	37.20	23.10	13.27
11	1983	75.30	50.40	31.40	23.71	13.99
12	1984	112.80	71.80	27.60	15.63	9.80
13	1985	59.31	54.40	25.56	14.70	8.05
14	1986	84.60	65.40	30.11	15.60	8.23
[*] 15	1987	76.00	49.20	21.60	13.20	7.95
16	1988	-	52.80	23.00	13.79	7.85
17	1989	73.60	47.80	28.00	16.00	9.60
18	1990	111.60	75.00	37.94	23.00	12.00
19	1991	83.00	73.00	41.00	26.00	14.00
20	1992	56.00	39.00	19.00	10.00	5.00
21	1993	58.00	51.00	28.00	18.00	10.00
22	1994	91.49	64.18	36.22	19.04	12.91
23	1995	71.11	56.25	28.66	16.72	9.32
24	1996	81.30	60.21	32.44	17.88	11.12
25	1997	82.20	68.10	35.04	17.86	8.94
26	1998	92.00	66.34	40.60	27.10	13.50
	1	ł		1	i	

FUENTE: SENAHMI

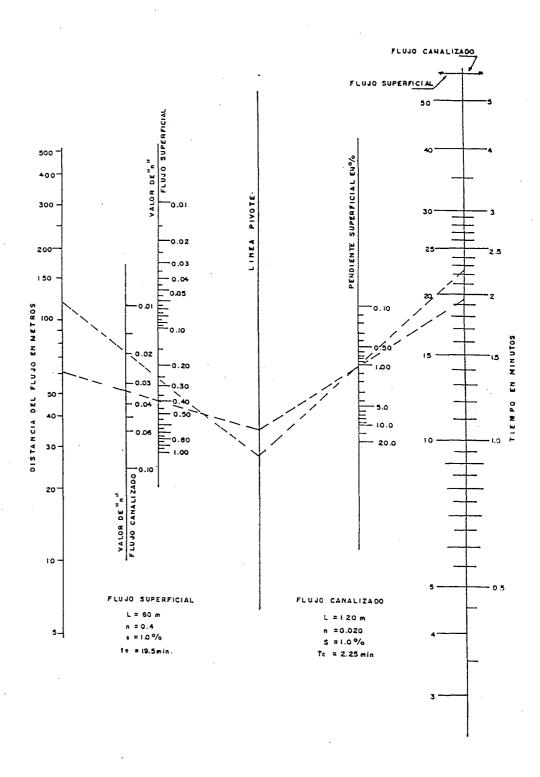


Figura 2.5.1 (a): Abaco para el cálculo del tiempo de concentración superficial.

TABLA 2.5.1. (4): Coeficientes de Escorrentía.

	TIPO DE AREA	VALOR DE C
а.	Comercial	
۳.	- Centro de ciudad	0.70 a 0.95
	- Alrededores	0.50 a 0.70
b.	Residencial	0.50 a 0.70
٥.	- Unifamiliar	0.30 a 0.50
	- Multifamiliar separado	0.40 a 0.60
		0.40 a 0.00 0.60 a 0.75
	- Multifamiliar agrupados	
_	- Sub Urbana	0.25 a 0.40
C.	<u>Industrial</u>	
	- Liviana	0.50 a 0.80
	- Pesada	0.60 a 0.90
d.	Otros	
	- Parques y cementerios	0.10 a 0.25
	- Parques para juegos	0.20 a 0.35
	TIPO DE SUPERFICIE	VALOR DE C
а.	Pavimentos	
	- Asfalto o Concreto	0.70 a 0.95
	- Ladrillos	
b.	Techos y Azoteas	0.70 a 0.95
C.	Caminos de grava	0.70 a 0.95
d.	Areas de suelo arenosos	0.30
٩.	- Llanas (2%)	
	- Medianas (20% a 70%)	0.05 a 0.10.
	- Medianas (2% a 7%)	0.10 a 0.15.
	- Inclinadas (7% ó más)	0,15 a 0.20.
	Areas de Suelo pesado	
e.	11 (20/)	
e.	- Llanas (2%)	0.13 a 0.17.
е.	- Llanas (2%) - Medianas (2% a 7%) - Inclinadas (7% ó más)	0.13 a 0.17. 0.18 a 0.22.

FUENTE: Drenaje Pluvial Urbano.

Ing. Francisco Huamán Vidaurre.

c) Caudales.

De acuerdo al método racional, el caudal se determina con la siguiente expresión:

$$Q = \frac{CIA}{360}$$

2.5.1 - 3

Donde:

Q = Gasto máximo en m³/seg.

I = Intensidad de lluvia en mm/h, para una duración igual al tiempo de concentración, del área tributaria.

A = Area tributaria en hectáreas.

C = Coeficiente de escorrentía.

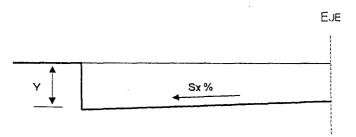
El método Racional supone que si sobre un área determinada ocurre una precipitación de intensidad uniforme en el tiempo y en el espacio, llegará un momento en que, la cantidad de agua que cae, equivale a la que sale del área colectora, siempre y

cuando, ésta sea impermeable. El tiempo en el cual se alcanza la equivalencia se denomina tiempo de concentración (t_c).

De acuerdo a lo anterior, el método tiene una serie de limitaciones:

- a. La lluvia es uniforme en el tiempo; es decir, su intensidad es constante, lo cual,
 en la práctica, es sólo verdad para duraciones muy cortas.
- b. La lluvia es uniforme en el espacio, es decir, tiene la misma intensidad, al mismo tiempo sobre toda el área tributaria. Estos es prácticamente válido para áreas muy pequeñas.
- c. Ignora el efecto de almacenamiento o retención temporal en las superficies, conductos, cauces, etc., el cual es mayor mientras menos impermeable sea el área.
- d. El coeficiente de escorrentía es constante, lo cual es sólo cierto para áreas impermeables.
- e. Supone que el gasto calculado tiene la misma frecuencia de la precipitación, lo cual es más cierto en áreas impermeables, donde las conducciones previas de humedad del subsuelo no influyen significativamente en la escorrentía.

Las limitaciones anteriores llevan a la conclusión de que la fórmula racional puede arrojar resultados aceptables sólo si el área es pequeña y tiene un alto porcentaje de impermeabilidad, además el tiempo de concentración es corto. De allí que no es recomendable su aplicación para superficies mayores de 20 Has. 80 % urbanizadas, y tiempos de concentración superiores a 15 minutos. Cuando estas recomendaciones no se observan, la fórmula tiende a dar valores mayores que los reales.


Una vez escogidos los valores de t_c y $\,C$, debe únicamente seleccionarse el valor de la intensidad ($\,I$) de la familia de curvas Intensidad $\,-$ Frecuencia $\,-$ Duración , y aplicar la fórmula racional.

Cuando existan áreas tributarias en zonas de diferentes valores de C , se utilizará un coeficiente ponderado (C_P) de acuerdo a la magnitud del área de cada zona.

$$C = \frac{C_1 A_1 + C_2 A_2 + \ldots + C_n A_n}{A_1 + A_2 + \ldots + A_n}$$
 2.5.1 - 4

d) Cálculo de las capacidades hidráulicas.

Se efectúa el chequeo de la capacidad hidráulica de cada calle, en sus diferentes tramos, para los diferentes caudales acumulados. La figura 2.5.1 (b), indica la mitad de la sección transversal de una calle cuya capacidad se quiere determinar para un nivel de agua que alcanza hasta el borde de la acera.

Sx % = Pendiente transversal de la calle.

La capacidad hidráulica se calcula con la fórmula de IZZARD, para conductos triangulares, figura 2.5.1 (c).

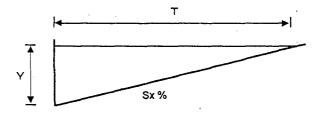


Figura 2.5.1 (c)

$$Q = 0.00175(\frac{Z}{p})S_0^{1/2}Y^{8/3}$$
 2.5.1 - 5

Donde:

Q = Caudal, en lt/ seg.

 $Z = 1/S_x$; ($S_x = pendiente transversal$).

Y = Profundidad del agua en el brocal, en cm

 S_0 = Pendiente longitudinal de la calle

n = Coeficiente de rugosidad de Manning.

Para el caso de calles con pendiente transversal nula, se recurre a la fórmula de Manning, correspondiente a un conducto rectangular, muy ancho, poco profundo, cuya expresión es:

$$Q = \frac{b}{n} Y^{5/3} S_0^{1/2}$$
 2.5.1 - 6

donde "b" es el ancho de la calle.

Para proceder ha calcular el caudal Q, que puede conducir una calle, se supone que el agua llega hasta el borde de la vereda, entonces se tiene:

$$\frac{Q}{2} = Q_t - Q_f \qquad 2.5.1 - 7$$

 Q_t y Q_f se calculan con la ecuación 2.5.1 – 5, variando el valor del tirante, para Q_t será la altura Y de la vereda y para Q_f será Y_C

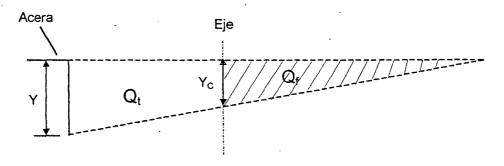


Figura 2.5.1 (d)

e) Cálculo de los caudales de diseño en cada tramo.

Se tendrá en cuenta el sentido de flujo y lo explicado en la siguiente figura:

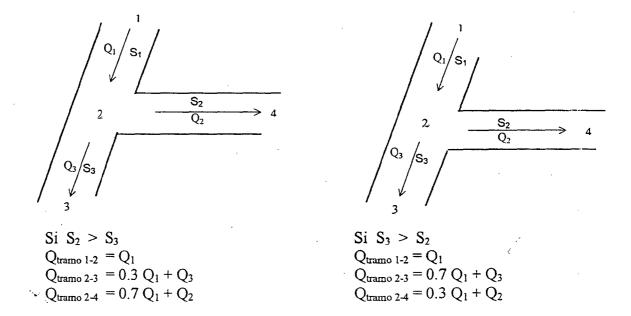


Figura 2.5.1 (e)

2.5.2 DISEÑO DE OBRAS DE ARTE.

a) Sumideros.

Son las entradas que conectan el drenaje superficial con el secundario (colector). Estas entradas son estructuras fundamentales en un sistema de drenaje, pues de su buen funcionamiento depende la eficiencia de aquél.

- a)1 Procedimiento General. La localización de las entradas de los excesos de aguas a los colectores, esta gobernada por la función complementaria (se refiere a incomodidades en el tráfico de personas y vehículos), pero deberá comprobarse para la función básica (se refiere a daños a personas o propiedades). El criterio fundamental consiste en colocar sumidero cuando la capacidad del drenaje superficial es insuficiente. Dicho criterio sería:
- 1. Determinar los gastos escurridos partiendo de las divisorias de agua y de acuerdo a las áreas tributarias respectivas. Esta determinación puede hacerse generalmente aplicando el método racional, pues rara vez en estos casos son excedidos sus límites de aplicabilidad. Estos gastos se comparan con las capacidades de las respectivas calles, colocándose los primeros sumideros, cuando sean iguales. Las capacidades de las calles corresponden a los límites de inundación aceptables para la función complementaria.
- Se calcula el gasto captado o interceptado, de acuerdo al tipo de sumidero, y por diferencia con el escurrimiento total de la calle, los gastos que sobrepasan los primeros sumideros.
- 3. En forma similar al punto 1, se calculan los gastos de las áreas tributarias aguas debajo de los primeros sumideros y se les agrega los gastos que sobrepasaron a los situados aguas arriba. En realidad el gasto que sobrepasa un sumidero sufre amortiguación y desfase en su tránsito hacia aguas abajo, pero salvo que la distancia entre sumideros sea muy grande, este efecto puede despreciarse. Cuando la suma de caudales indicada, iguale la correspondiente capacidad de la calle, se ubican los segundos sumideros y así sucesivamente.

Con frecuencia, resulta práctico y conveniente efectuar el proceso anterior suponiendo un sumidero tipo de dimensiones constantes y determinar la separación entre ellos.

a)2 Localización Final. Existe una serie de reglas adicionales de localización general, las cuales son: colocar sumideros en puntos bajos y depresiones, en lugares

donde se reduzca la pendiente longitudinal de las calles, justo antes de puentes y terraplenes y preferiblemente antes de los cruces de calles o de pasos de peatones.

Los criterios anteriores, aunados a la localización general, permiten realizar la localización final. Sin embargo para este último paso es importante tener en cuenta un conjunto de recomendaciones adicionales, aunque en muchos casos ellas sólo puedan llevarse a la práctica durante la etapa de construcción.

- Analizar la geometría de cada calle, particularmente su sección transversal, de tal
 forma de decidir si se debe o no poner un sumidero a cada lado o solamente en el
 lado bajo. Este análisis es importante en calles antiguas o repavimentadas, es decir,
 donde el drenaje superficial es deficiente.
- En las intersecciones de calles y en especial cuando deba impedirse el flujo transversal, pueden crearse pequeñas depresiones con aguas estancadas, de tal manera de garantizar la completa captación de las aguas.
- No localizar sumideros donde interfieran con otros servicios públicos como son las tanquillas de electricidad y de teléfonos.
- La existencia de árboles cercanos a la vía, particularmente aquellos con raíces superficiales, puede perturbar significativamente la eficiencia de interceptación del sumidero.

a)3 Tipos de sumidero.

En general, los sumideros pueden ser de cuatro tipos: sumideros de ventana, de rejas, mixtos y especiales.

a) 3.1 Sumidero de ventana.

Se utilizan como elementos de captación de la escorrentía en vías confinadas por brocales. Estos elementos y la pendiente transversal de la calzada, determinan una sección triangular para el flujo de aproximación al sumidero, la cual tiene poca profundidad y un ancho superficial (ancho de inundación) condicionado por las normas que limitan el grado de interferencia con el tránsito de vehículos. Es prudente aceptar un ancho máximo de inundación de 3 metros, que corresponde a la longitud transversal normal de un canal de circulación, y significa para una pendiente transversal de una calle de 2 % una altura máxima de 6 cm, que no crea inconvenientes significativos.

Las condiciones del flujo en el sumidero están caracterizadas por una derivación lateral de parte o de todo el gasto que proviene de la vía.

La longitud de este tipo de sumidero puede ser de 1.50 m., 3.00 m. y 4.50 m. y con una depresión mínima de 2.50 cm.

El funcionamiento hidráulico de este tipo de sumidero es ineficiente, sobre todo cuando no existe la depresión o cuando la pendiente longitudinal de la calle es pronunciada, pero tiene la ventaja de que no interfiere con el tránsito de vehículos.

Para decidir el empleo de este tipo de sumideros se debe tomar en cuenta lo siguiente:

- Utilizarlo preferentemente cuando su eficiencia sea al menos de un 75 %, lo cual puede ocurrir para pendientes longitudinales inferiores al 3 % y anchos de inundación de menos de 3 metros.
- Su utilización debe ser, preferentemente, en vías arteriales y distribuidoras.
- Es recomendable, para todo tipo de sumidero, suponer como área efectiva el 80 % del área de la ventana.
- No deben ser empleados cuando se tengan indicios de que existe la posibilidad de acarreo cuantioso de sedimentos y desperdicios.

Cálculo de la capacidad.

Esta dependerá principalmente de los siguientes factores:

- Condiciones de flujo de aproximación, expresadas por el gasto Q_A y la profundidad en el brocal y_A, a su vez interrelacionados por la geometría de la vía, su pendiente longitudinal S_o y rugosidad n.
- 2. Longitud de la ventana L.
- 3. Para un mismo gasto Q_A y haciendo referencia a un sumidero de longitud L, su capacidad de captación Q_I disminuye con la pendiente longitudinal de la vía, puesto que y_A se hace menor y, por lo tanto se reducen las cargas hidráulicas que inducen al alivio lateral.
- 4. Especificado Q_A, L y S_o, la capacidad de los sumideros de ventana aumenta con incrementos de la pendiente transversal de la vía.

Utilizando los resultados de investigaciones experimentales se obtendrá mayor precisión, que procediendo con un cálculo teórico por las siguientes razones:

1. Está demostrado que la eficiencia del sumidero de ventana mejora sensiblemente si en su proyecto se especifica una depresión en un sector adyacente a la abertura. Esta alteración puede determinar una condición de flujo cuyas características no estén debidamente consideradas en las ecuaciones derivadas de la simplificación del régimen gradualmente variado, debido a la curvatura apreciable de las líneas de corrientes, a las pérdidas de energía localizadas y a la posibilidad de ahogamiento parcial o total de la ventana.

- 2. El efecto de las ondas superficiales que se generan en las alteraciones de los contornos, si el régimen de aproximación es supercrítico.
- 3. La dispersión de datos y, por consiguiente, la dificultad en la selección del coeficiente de descarga que interviene en la ecuación del flujo de descarga lateral.
- 4. En los trabajos existentes sobre hidráulica de sumideros, de la Johns Hopkins University, se establece el método de cálculo de sumidero de ventana, sin depresión o con ella. La figura 2.5.2 (a) resume la nomenclatura utilizada.

El gasto interceptado por un *sumidero de ventana sin depresión* se puede expresar mediante la relación:

$$K = \frac{Q_1}{L y_A \sqrt{g y_A}}$$
 2.5.2 - 1

donde K depende sólo de la pendiente transversal de la calzada S_X . Para valores de S_X de 8 %, 4 % y 2 %, K resultó ser 0.23, 0.20 y 0.20, respectivamente. La ecuación puede aplicarse con seguridad hasta un valor de $V/(g y)^{1/2}$ igual a 3, correspondiente al límite superior ensayado.

Para sumideros de ventana con depresión, la capacidad Q₁ del sumidero se expresa mediante la ecuación:

$$K + C = \frac{Q_1}{L y \sqrt{g y}}$$
 2.5.2 - 2

donde K es el parámetro definido en el caso de los sumideros sin depresión. El valor de C, ver figura 2.5.2 (a), viene determinado por la expresión siguiente:

$$C = \frac{0.45}{1.12^{M}}$$
 2.5.2 - 3

donde

$$M = \frac{L F^2}{a t g \theta}$$
; $F^2 = \frac{V^2}{g y}$ 2.5.2 - 4

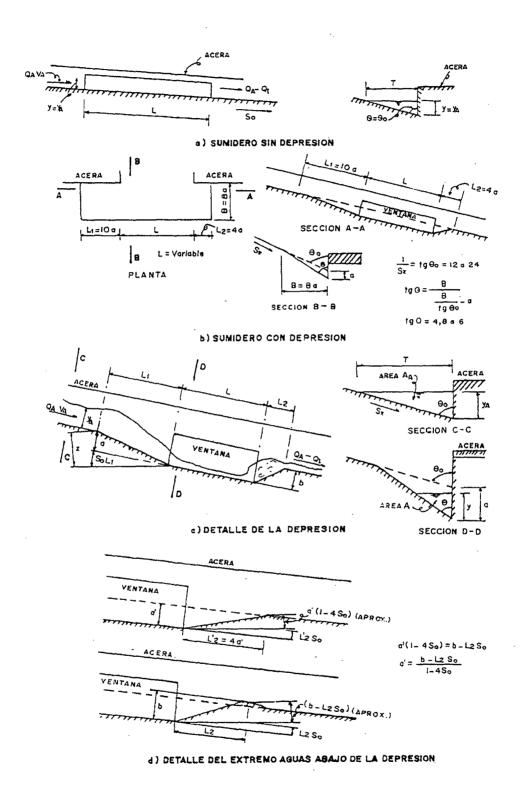


Figura 2.5.2 (a): Sumideros de ventana

Debe mencionarse que la longitud L debe ser por lo menos 10 veces la profundidad de la depresión a. Así mismo, las ecuaciones se han obtenido con la longitud de la transición aguas abajo L_2 igual a cuatro veces la depresión a. Para los casos donde la distancia b es diferente de a, ó cuando L_2 , es diferente de 4a, se recomienda utilizar la siguiente expresión modificada de la ecuación 2.5.2-3.

$$C = \frac{0.45}{1.12^{N}}$$
 2.5.2 - 5

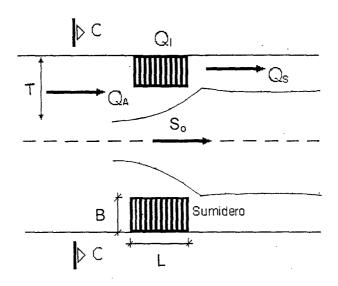
donde,

$$N = \frac{LF^2}{a'tg\theta}$$
; $F^2 = \frac{V^2}{gy}$ 2.5.2 - 6

$$a' = \frac{b - L_2 S_0}{1 - 4 S_0}$$
 2.5.2 - 7

El parámetro a' es ahora el valor de la profundidad de una depresión tal que con una transición aguas abajo de longitud 4a', determina la misma elevación vertical, que aquella correspondiente a la depresión específica con dimensiones b y L₂.

Con las ecuaciones anteriores se puede determinar las curvas de cálculo de sumideros de ventana con depresión, para diversas dimensiones de la estructura, con el siguiente procedimiento:


- Seleccionar las características generales del sumidero, así como la pendiente longitudinal y transversal de la calzada, el ancho de inundación T y el coeficiente de rugosidad n. Con estos datos se determinan los factores hidráulicos propios del régimen de aproximación, tales como y_A, Q_A y V_A.
- 2. Determinar la energía específica H₀ del flujo, justamente en la sección de entrada de la ventana, suponiendo las pérdidas de carga despreciables.

$$H_0 = y + \frac{V^2}{2q} = Y_A + \frac{V_A^2}{2q} + a$$
 2.5.2 - 8

Esta ecuación última permite calcular la altura de agua Y, en la sección aguas arriba de la ventana (generalmente debe seleccionarse la altura alterna supercrítica).

- 3. Con los valores de θ y θ_0 , las características de la depresión a y de las transiciones, se determinan los valores de C y K a partir de la ecuación 2.5.2-3 ó 2.5.2-5.
- 4. Calcular Q_1 con la ecuación correspondiente (ecuación 2.5.2 1 ó 2.5.1 2).

a)3.2 Sumidero de reja sobre calzada.

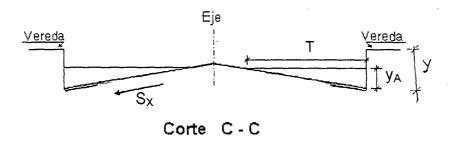


Figura 2.5.2 (b)

Q_A : Caudal de aproximación, que corresponde a la mitad del caudal que circula por la calle.

y_A : Altura de aproximación. Corresponde a la altura que ocupa el agua en el borde de la vereda para el caudal de aproximación.

n : Coeficiente de rugosidad de Manning.

 $S_{\,o}\,:\,$ Pendiente longitudinal de la calle.

 S_x : Pendiente transversal de la calle.

Q₁: Caudal interceptado por el sumidero.

T: Ancho de Inundación.

y : Altura de la vereda.

 Q_S : Caudal de sobrepaso ($Q_S = Q_A - Q_I$).

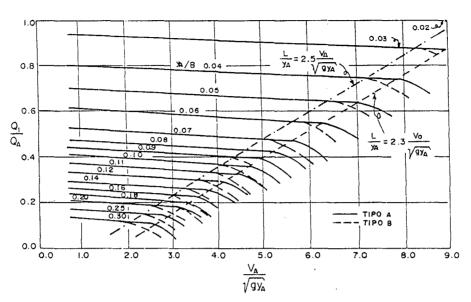
B : Ancho de sumidero.

L : Longitud de sumidero.

En este tipo de sumidero, el agua que fluye por la vía es interceptada mediante una reja constituida por pletinas metálicas separadas por una distancia, tal que, sin resultar incómoda para el tráfico, permita una máxima captación del escurrimiento. Desde el canal recolector inferior del sumidero de reja, el agua es conducida a los colectores, hasta el sitio de disposición final.

Generalmente, el flujo puede asimilarse a un flujo espacialmente variado. Sin embargo, la compleja configuración del movimiento, la dificultad de una cuantificación precisa del coeficiente de descarga de fondo, y la gran variedad de formas y dimensiones de las pletinas que se utilizan, hacen imposible cualquier intento de desarrollar un procedimiento general para el diseño de este tipo de sumideros.

Cálculo de la capacidad.


Igual que en los sumideros de ventana, las investigaciones experimentales serán la mejor ayuda para determinar capacidades de sumideros de reja.

Uno de los métodos de cálculo para sumideros de reja es el conocido como el método del *Highway Research Board*, que sirve para demostrar las muchas variables que deben ser consideradas al tratar de definir capacidades de sumideros de reja. En el desarrollo de este método se analizaron seis tipos de reja, con diferencias en área neta de orificios y en tamaño y forma de las barras que las conforman. Aunque los experimentos fueron desarrollados con rejas de forma cuadrada, su propio autor recomienda su uso para cualquier forma geométrica, siempre que la relación de longitud a profundidad sea:

$$\frac{L}{y_A} > K \frac{V_A}{\sqrt{gy_A}},$$
 2.5.2 - 9

donde K depende de la configuración y distribución de las barras.

En los gráficos de las figuras 2.5.2 (c), 2.5.2 (d), se reproducen cuatro de las seis rejas de la experiencia citada en el párrafo anterior. En estos gráficos puede apreciarse que la relación Q_I/Q_A para un valor de y_A/B es prácticamente constante para valores de $V_A/(g y_A)^{1/2}$ menores de cierta cantidad, lo que significa que esas cantidades representan la ecuación 2.5.5 – 9, cuando $L = L_o$, que es el valor mínimo que debe emplearse.

d) REJAS EN VIAS CON PENDIENTE TRANSVERSAL Sx = 2 %

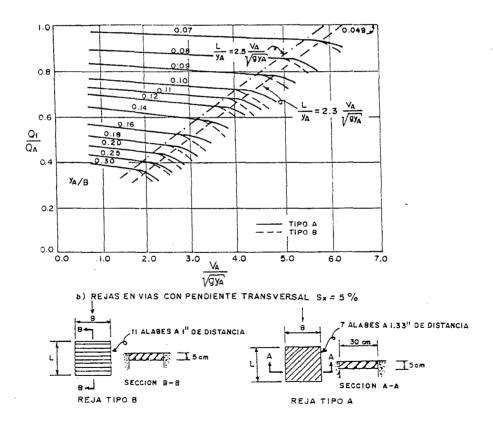
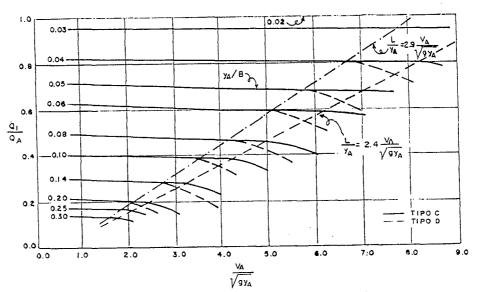
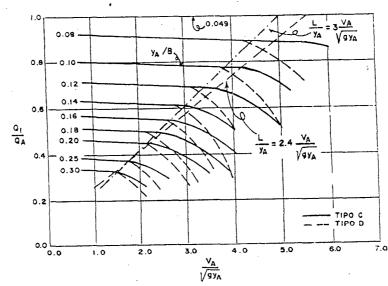




Figura 2.5.2 (c): Funcionamiento de rejas con barras alabeadas.

b) REJAS EN VIAS CON PENDIENTE TRANSVERSAL Sx = 5 %

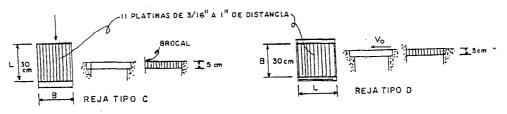
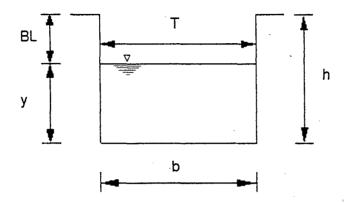



Figura 2.5.2 (d): Funcionamiento de rejas con barras rectas.

b) Diseño hidráulico de canales rectangulares.

BL			(Borde libre)
h			(Altura total)
Т	=	b ·	(Ancho superficial).
Ah	=	bу	(Area hidráulica).
Ρm	=	b + 2y	(Perímetro mojado).
Rh	=	h y / (h + 2y)	(Radio hidráulico)

El caudal se calcula con la fórmula de Manning:

$$Q = \frac{A_h}{D} \times R_h^{\frac{2}{3}} S^{\frac{1}{2}}$$
 2.5.2 - 9

donde:

 $Q = Caudal en m^3 / seg.$

 A_h = Area hidráulica en m^2 .

S = Pendiente hidráulica.

R_h = Radio hidráulico en metros.

Para una sección rectangular de máxima eficiencia hidráulica:

Area hidráulica : $Ah = 2y^2$

Perímetro mojado : Pm = 4y

Radio hidráulico: Rh = 0.5y

Borde Libre.

Es la distancia vertical entre la superficie libre del agua y la parte superior del canal o de su recubrimiento. Su propósito es prevenir el derrame sobre el revestimiento o el canal, por fluctuaciones en la superficie del agua causadas principalmente por la ocurrencia de tirantes mayores que los de diseño debidos a la sedimentación o no operación temporal del sistema de canales o a otros factores no esperados. Generalmente, para pequeños canales revestidos, en zonas urbanas donde las conexiones domiciliarias de agua y desagüe se encuentran a poca profundidad, se considera un borde libre de 20 a 30 centímetros.

2.6 SEÑALIZACIÓN.

2.6.1 GENERALIDADES.

El "Manual de Dispositivos de Control del Tránsito Automotor para Calles y Carreteras", revisado y actualizado por el Ministerio de Transportes Comunicaciones Vivienda y Construcción (de acuerdo con lo normado en el Manual Interamericano de Dispositivos de Control del Tránsito en Calles y Carreteras), aprobado por Resolución Ministerial Nº 210-2000-MTC/15.02 del 3 de mayo de 2000, publicado en el Diario Oficial El Peruano el 6 de Mayo de 2000, es el documento técnico oficial que establece las normas para el diseño y utilización de los dispositivos de control del tránsito. Así mismo expone el empleo de los diferentes dispositivos y establece los diseños y principios fundamentales que deben regir.

Para que un dispositivo de control de tránsito sea efectivo, debe cumplir con las siguientes condiciones:

- Que exista una necesidad para su utilización.
- Que llame positivamente la atención.
- Que encierre un mensaje claro y conciso.
- Que su localización permita al usuario un tiempo adecuado de reacción y respuesta.
- Infundir respeto y ser obedecido.
- Uniformidad.

Estas condiciones se cumplirán siempre que se tenga en cuenta un correcto diseño, ubicación, uso y uniformidad y sobre todo un buen mantenimiento para su eficiente operación y legibilidad.

2.6.2 SENALES VERTICALES

2.6.2.1 GENERALIDADES

a) DEFINICIÓN

Las señales verticales, dispositivos instalados a nivel de la vía o sobre ella, están destinadas a reglamentar el tránsito, advertir o informar a los usuarios mediante palabras o símbolos determinados.

b) CLASIFICACIÓN

Se clasifican en:

- Señales reguladoras o de reglamentación.
- Señales de prevención.

- Señales de información.

Las señales de reglamentación tienen por objeto notificar a los usuarios de la vía, de las limitaciones, prohibiciones o restricciones que gobiernan el uso de ella.

Las señales de prevención tienen como función la de advertir al usuario de la existencia de algún peligro y la naturaleza del mismo.

Las señales de información tienen como objetivo identificar las vías y guiar al usuario proporcionándole la información que pueda necesitar.

c) FORMA

Las señales de reglamentación tendrán la forma circular inscrita en una placa rectangular en la que también está contenida la leyenda explicativa del símbolo, con excepción de la señal de "PARE", de forma octogonal, y de la señal "CEDA EL PASO", de la forma de un triángulo equilátero con el vértice hacia abajo.

Las señales de prevención serán de forma romboidal, un cuadrado con la diagonal correspondiente en posición vertical, con excepción de las de delineación de curvas "CHEVRON", de forma rectangular correspondiendo su mayor dimensión al lado vertical y las de "ZONA DE NO ADELANTAR", que tendrán forma triangular.

Las señales de información tendrán la forma rectangular con su mayor dimensión horizontal, a excepción de los indicadores de ruta y de las señales auxiliares.

d) COLORES

Amarillo. Se utilizará como fondo para las señales de prevención.

Naranja. Se utilizará como fondo para las señales en zonas de construcción y mantenimiento de calles y carreteras.

Azul. Se utilizará como fondo en las señales para servicios auxiliares al conductor y en las señales informativas direccionales urbanas. También se empleará como fondo en las señales turísticas.

Blanco. Se utilizará como fondo para las señales de reglamentación así como para las leyendas o símbolos de las señales informativas tanto urbanas como rurales y en la palabra "PARE".

Negro. Se utilizará como fondo en las señales informativas de dirección de tránsito así como en los símbolos y leyendas de las señales de reglamentación, prevención, construcción y mantenimiento.

Marrón. Puede ser utilizado como fondo para señales guías de lugares turísticos, centros de recreo e interés cultural.

Rojo. Se utilizará como fondo en las señales de "PARE", "NO ENTRE"; en el borde de la señal "CEDA EL PASO" y para las orlas y diagonales en las señales de reglamentación.

Verde. Se utilizará como fondo en las señales de información en carreteras principales y autopistas. También puede emplearse para señales que contengan mensajes de índole ecológico.

Los colores indicados están de acuerdo con las tonalidades de la Standard Federal 595 de los E.E.U.U. de Norteamérica.

e) DIMENSIONES

Las dimensiones serán las suficientes para que el mensaje sea fácilmente visible y comprensible, no siendo éstas de ningún modo inferiores a las mínimas recomendadas y deberán ser aplicadas en forma uniforme para todas las señales.

f) REFLECTORIZACIÓN

Las señales deben ser legibles tanto de día como de noche. El material reflectorizante deberá reflejar un alto porcentaje de la luz que recibe y deberá hacerlo de manera uniforme en toda la superficie de la señal y en un ángulo que alcance la posición normal del conductor.

g) LOCALIZACIÓN

Las señales de tránsito por lo general deben estar colocadas a la derecha en el sentido del tránsito. En algunos casos estarán colocadas en lo alto sobre la vía (señales elevadas). En casos excepcionales, como señales adicionales, se podrán colocar al lado izquierdo en el sentido del tránsito.

Las señales deberán colocarse a una distancia lateral de acuerdo a lo siguiente:

Zona rural. La distancia del borde de la calzada al borde próximo de la señal no deberá ser menor de 1.20 m ni mayor de 3.00 m.

Zona urbana. La distancia del borde de la calzada al borde próximo de la señal no deberá ser menor de 0.60 m.

h) ALTURA

La altura que deberán colocarse las señales estará de acuerdo a lo siguiente:

Zona rural. La altura mínima permisible entre el borde inferior de la señal y la superficie de rodadura fuera de la berma será de 1.50m; así mismo, en el caso de colocarse varias señales en el poste, el borde inferior de la señal más baja complirá la altura permisible.

Zona urbana. La altura mínima permisible entre el borde inferior de la señal y el nivel de la vereda no será menor de 2.10m.

Señales elevadas. En el caso de las señales colocadas en lo alto de la vía, la altura mínima entre el borde inferior de la señal y la superficie de rodadura es 5.30m.

i) ÁNGULO DE COLOCACIÓN

Las señales deberán formar con el eje del camino un ángulo de 90°, pudiéndose variar ligeramente, en el caso de las señales con material reflectorizante, de 8 a 15° en relación a la perpendicular de la vía.

j) POSTES O SOPORTES

De acuerdo a cada situación se podrán utilizar como soporte de las señales, tubos de fierro redondos o cuadrados, perfiles omega perforados o tubos plásticos rellenos de concreto.

Todos los postes para las señales preventivas o reguladoras deberán estar pintados de franjas horizontales blancas con negro, de anchos de 0.50m para la zona rural y 0.30 m para la zona urbana. Pudiendo los soportes ser en este caso de color gris.

En el caso de las señales informativas, los soportes laterales de doble poste, los pastorales, así como los soportes tipo bandera y los pórticos irán pintados de color gris.

2.6.2.2 SEÑALES REGULADORAS O DE REGLAMENTACIÓN

a) CLASIFICACIÓN

Las señales de reglamentación se dividen en:

- Señales relativas al derecho de paso.
- Señales prohibitivas o restrictivas.
- Señales de sentido de circulación.

b) FORMA

- Señales relativas al derecho de paso:

Señal de "PARE" de forma octogonal.

Señal de "CEDA EL PASO" de forma triangular con uno de sus vértices en la parte inferior.

- Señales prohibitivas o restrictivas de forma circular inscritas en placa rectangular con la leyenda explicativa del mensaje que encierra la simbología utilizada.

- Señales de sentido de circulación, de forma rectangular y con su mayor dimensión horizontal

c) COLORES

- Señales relativas al derecho de paso:

Señal de "PARE" de color rojo, letras y marco blanco.

Señal de "CEDA EL PASO" de color blanco con franja perimetral roja.

- Señales prohibitivas o restrictivas de color blanco con símbolo y marco negros, el círculo de color rojo, así como la franja oblicua trazada del cuadrante superior izquierdo al cuadrante inferior derecho que representa prohibición.
- Señales de sentido de circulación, de color negro con flecha blanca; la leyenda, en caso de utilizarse llevará letras negras.

d) DIMENSIONES

Señal de "PARE". Octágono de 0.75m. × 0.75m.

Señal de "CEDA EL PASO". Triángulo equilátero de lado 0.90m.

Señales prohibitivas:

Placa rectangular de $0.60 \text{m} \times 0.90 \text{m}$ y de $0.80 \text{m} \times 1.20 \text{m}$.

Las dimensiones de los símbolos estarán de acuerdo al diseño de cada una de las señales de reglamentación normadas.

La prohibición se indicará con la diagonal que forma 45° con la vertical y su ancho será igual al ancho del círculo.

Las dimensiones de las señales de reglamentación podrán variar de acuerdo a lo siguiente:

- d)1 Carreteras, avenidas y calles: 0.60m × 0.90m.
- d)2 Autopista, caminos de alta velocidad: $0.80 \text{m} \times 1.20 \text{m}$.

e) UBICACIÓN

Deberán colocarse a la derecha en el sentido del tránsito, en ángulo recto con el eje de la vía, en el lugar donde exista la prohibición o restricción y de acuerdo a lo indicado en 2.6.2.1-g a 2.6.2.1-i.

Algunas de las señales reguladoras o de reglamentación, utilizadas en zona urbana, son las siguientes:

SEÑAL PARE

Se usará exclusivamente para indicar a los conductores que deberán efectuar la detención de su vehículo. De forma octogonal de 0.75m entre lados paralelos, de color rojo con letras y marco blanco.

Se colocará donde los vehículos deban detenerse a una distancia del borde más cercano de la vía interceptada no menor de 2m; generalmente se complementa esta señal con las marcas en el pavimento correspondiente a la línea de parada, cruce de peatones.

SEÑAL PROHIBIDO SEGUIR DE FRENTE O DIRECCIÓN PROHIBIDA

De forma y colores correspondientes a las señales prohibitivas. Se utilizará para indicar que no está permitida la circulación en la dirección señalada por la flecha. Prohibe el paso de vehículos en la misma dirección que el conductor ha venido siguiendo.

Se colocará a una distancia no menor de 30m antes del inicio de la prohibición.

SEÑAL PROHIBIDO VOLTEAR EN "U"

De forma y colores correspondientes a las señales prohibitivas. Se utilizará para indicar al conductor que no podrá efectuar un volteo en "U" o volverse.

SEÑAL SENTIDO DEL TRÁNSITO

La señal será de forma rectangular con su mayor dimensión horizontal, de $0.25m \times 0.75m$ pudiéndose aumentar dichas dimensiones, respetando la proporción. Será de fondo negro con flecha color blanco, llevando optativamente la leyenda TRANSITO en letras negras.

SEÑAL DOBLE SENTIDO DE TRÁNSITO

Se usará para indicar al conductor que circula por una vía de un solo sentido de circulación, el cambio a dos sentidos de circulación.

La señal deberá ubicarse a la altura del cambio de sentido de circulación.

Generalmente es utilizada en el caso de la transición de una vía de calzadas con separador central a una vía de una calzada con tránsito en ambos sentidos.

SEÑAL PROHIBIDO ADEI ANTAR

Se utilizará para indicar al conductor la prohibición de adelantar a otro vehículo, motivada generalmente por limitación de visibilidad.

Se colocará al comienzo de las zonas de limitación.

120

SEÑAL ESTACIONAMIENTO PERMITIDO

De forma y colores correspondientes a las señales prohibitivas o restrictivas.

Se utilizará para indicar al usuario, las horas del día en que está permitido el estacionamiento en la vía.

La placa auxiliar que contiene la leyenda indicará lo reglamentado.

SEÑAL ESTACIONAMIENTO PROHIBIDO

De forma y colores correspondientes a las señales prohibitivas o restrictivas.

Se utilizará para indicar al conductor la prohibición de estacionarse en la vía.

SEÑAL VELOCIDAD MÁXIMA

De forma y colores correspondientes a las señales prohibitivas o restrictivas.

Se utilizará para indicar la velocidad máxima a la cual podrán circular los vehículos.

Se emplea generalmente para recordar al usuario del valor de la velocidad reglamentaria y cuando, por razones de las características geométricas de la vía o aproximación a determinadas zonas (urbana, centros educativos), debe restringirse la velocidad.

2.6.2.3 SEÑALES PREVENTIVAS

Se utilizan para indicar con anticipación la aproximación de ciertas condiciones de la vía o concurrentes a ella que implican un peligro real o potencial que puede ser evitado tomando ciertas precauciones necesarias.

a) FORMA

De forma cuadrada con uno de sus vértices hacia abajo formando un rombo, a excepción de las señales especiales de "ZONA DE NO ADELANTAR" que serán de forma triangular tipo banderola horizontal, las de indicación de curva "CHEVRON" que serán de forma rectangular y las de "PASO A NIVEL DE LINEA FERREA" (Cruz de San Andrés) que será de diseño especial.

b) COLOR

Fondo y borde: Amarillo caminero.

Símbolos, letras y marco: Negro.

c) DIMENSIONES

Las dimensiones de las señales de prevención serán tales que el mensaje transmitido sea fácilmente comprendido y visible, variando su tamaño de acuerdo a la siguiente recomendación:

- c)1 Carreteras, avenidas y calles: 0.60m × 0.60m.
- c)2 Autopistas, caminos de alta velocidad: $0.75m \times 0.75m$.

En casos excepcionales, y cuando se estima necesario llamar preferentemente la atención como consecuencia de alto índice de accidentes, se utilizarán señales de $0.90 \text{m} \times 0.90 \text{m}$ ó de 1.20 m. $\times 1.20 \text{m}$.

d) UBICACIÓN

Deberán colocarse a una distancia del lugar que se desea prevenir, de modo tal que permitan al conductor tener tiempo suficiente para disminuir su velocidad; la distancia será determinada de tal manera que asegure su mayor eficacia tanto de día como de noche, teniendo en cuenta las condiciones propias de la vía.. Se ubicarán a la derecha en ángulo recto frente al sentido de circulación y de acuerdo a lo indicado en 2.6.2.1-i.

Las distancias recomendadas son:

- d)1 En zona urbana 60m 75m
- d)2 En zona rural 90m 180m
- d)3 En autopista 250m 500m

Algunas de las señales preventivas más utilizadas en zona urbana son las siguientes:

SEÑAL ZONA ESCOLAR

Se utilizará para indicar la proximidad de una zona escolar. Se empleará para advertir la proximidad de un cruce escolar.

SEÑAL NIÑOS

Se utilizará para indicar la proximidad de niños como en el caso de parques y jardines para niños.

SEÑAL BOMBEROS

Esta señal se utilizará para prevenir al conductor de la proximidad de una estación de bomberos por la cual puede producirse la salida de emergencia de los vehículos utilizados por dicho cuerpo.

SEÑAL PROXIMIDAD DE UN SEMÁFORO

Se utilizará para advertir de la proximidad de una intersección aislada controlada por un semáforo.

2.6.2.4 SEÑALES INFORMATIVAS

Se utilizan para guiar al conductor de un vehículo a través de una determinada ruta, dirigiéndolo al lugar de su destino. También tienen por objeto identificar puntos notables tales como: ciudades, ríos, lugares históricos, etc. y dar información que ayude al usuario en el uso de la vía.

a) CLASIFICACIÓN

Las señales de información pueden ser:

- Señales de dirección.
- Señales de destino.
- Señales de destino con indicación de distancias.
- Señales de indicación de distancias.
- Señales Indicadoras de Ruta.
- Señales de Información general.
- Señales de Información
- Señales de Servicios Auxiliares.

b) FORMA

Señales de Dirección y Señales de Información General, a excepción de las señales auxiliares, serán de forma rectangular con su mayor dimensión horizontal.

Señales indicadores de Ruta, serán de forma especial, como se indica en los diseños mostrados en el Manual de Dispositivos de Control de Tránsito Automotor para Calles y Carreteras.

Las Señales de Servicios Auxiliares serán rectangulares con su mayor dimensión vertical; de acuerdo a los diseños establecidos por el Manual de dispositivos de control de tránsito ya mencionado.

c) COLORES

Señales de dirección:

En las autopistas y carreteras importantes, en el área rural, el fondo será de color verde con letras, flechas y marco blanco.

En las carreteras secundarias, la señal tendrá fondo blanco, letras y flechas negras.

En las autopistas y avenidas importantes, en el área urbana, el fondo será de color azul con letras, flechas y marco blanco.

Señales Indicadores de Ruta: De acuerdo a lo indicado en el diseño establecido en el Manual de dispositivos de control de tránsito mencionado.

Señales de Información General: Similar a las señales de dirección, a excepción de las señales de servicios auxiliares.

Señales de Servicios Auxiliares: Serán de fondo azul con un recuadro blanco, símbolo negro y letras blancas. La señal de primeros auxilios llevará como símbolo una cruz de color rojo sobre fondo blanco.

d) DIMENSIONES

Señales de dirección y Señales de dirección con distancias:

El tamaño de la señal dependerá de la longitud del mensaje, altura y serie de las letras utilizadas para obtener una adecuada legibilidad.

Señales Indicadores de Ruta:

De dimensiones especiales según diseño mostrado en el Manual de dispositivos de control de tránsito mencionado.

Señales de Información General:

Similar a las señales de Indicadores de Ruta.

e) NORMAS DE DISEÑO

En lo concerniente a las señales de Dirección e Información General, se seguirán las siguientes normas de Diseño:

- El borde y marco de la señal, tendrá un ancho mínimo de 1 cm y máximo de 2 cm.
- Las esquinas de las placas de las señales se redondearán con un radio de curvatura de 2 cm. como mínimo y 6 cm. como máximo, de acuerdo al tamaño de la señal.
- La distancia de la línea interior del marco a los límites superior e inferior de los renglones inmediatos será de 1/2 a 3/4 de la altura de las letras mayúsculas.
- La distancia entre renglones será de 1/2 a 3/4 de la altura de la altura de las letras mayúsculas.
- La distancia de la línea interior del marco a la primera o la última letra del renglón más largo variará entre 1/2 a 1 de la altura de las letras mayúsculas.
- La distancia entre palabras variará entre 0.5 a 1.0 de la altura de las letras mayúsculas.
- Cuando haya números, la distancia mínima horizontal entre palabra y número será igual a la altura de las letras mayúsculas.
- Cuando haya flechas, la distancia mínima horizontal entre palabra y flecha será igual a la altura de las letras mayúsculas.

- Cuando haya flecha y escudo, la distancia entre la flecha y el escudo será de 1/2 de la altura de las letras mayúsculas.
- Las letras a usarse, sean mayúsculas o minúsculas, serán diseñadas de acuerdo a lo indicado en el alfabeto modelo establecido en el anexo del Manual de dispositivos de control de tránsito mencionado. Asimismo, las distancias entre letras deberán cumplir con lo indicado en dicho alfabeto modelo.
- El orden en que se colocarán los puntos de destino será el siguiente: primero el de dirección recta; segundo el de dirección izquierda y el tercero en dirección derecha.
- Cuando la señal tenga dos (2) renglones con flecha vertical, se podrá usar una sola flecha para las dos regiones, con una altura equivalente a la suma de las alturas de las letras más el espacio entre renglones.
- Para dos (2) renglones con flechas en posición diagonal, se podrá usar una sola flecha de longitud equivalente a la suma de las alturas de las letras más el espacio entre renglones y aumentada en una cuarta parte de la suma anterior.
- Las señales informativas de dirección deben limitarse sólo a tres (3) renglones de leyendas; en el caso de señales elevadas sólo dos.
- En las autopistas, la altura de las letras será mínimo de 0.30 m. si son mayúsculas y de 0.20 m. si son minúsculas. En las avenidas y demás carreteras la altura de las letras será, como mínimo las mayúsculas de 0.15 m. y 0.10 m. las minúsculas.

f) UBICACIÓN

Por regla general, las señales de información deben ser colocadas en el lado derecho de la carretera o avenida.

Bajo algunas circunstancias, las señales podrán ser colocadas sobre las islas de canalización o sobre el lado izquierdo de la carretera.

Los requerimientos operacionales en las carreteras o avenidas hacen necesaria la instalación de señales elevadas en diversas localizaciones.

Los factores que justifican la colocación de señales elevadas son las siguientes.

- 1) Alto volumen de tránsito
- 2) Diseño de intercambios viales
- 3) Tres o más carriles en cada dirección
- 4) Restringida visión de distancia
- 5) Desvíos muy cercanos
- 6) Salidas multi carril
- 7) Alto porcentaje de camiones

- 8) Alta iluminación en el medio ambiente
- 9) Tránsito de alta velocidad
- 10) Consistencia en los mensajes de las señales durante una serie de intercambios
- 11) Insuficiente espacio para colocar señales laterales
- 12) Rampas de salida en el lado izquierdo.

Algunas de las señales informativas más utilizadas son las siguientes:

INDICADORES DE RUTA

Se complementan con señales auxiliares que indican dirección de las rutas, así como la intersección con otra u otras rutas; dichas señales auxiliares pueden ser de advertencia o de posición.

POSTE DE KILOMETRAJE

Se utilizarán para indicar la distancia al punto de origen de la vía. Para establecer el origen de cada carretera se sujetará a la reglamentación respectiva, elaborada por la Dirección general de caminos.

Los postes de kilometraje se colocarán a intervalos de 1 a 5 kms considerando a la derecha los números pares y a la izquierda los impares.

Especificaciones:

Concreto

: 140 kg/cm²

Armadura

: 3 fierros de 3/8" con estribos de alambre Nº 8 a 0.20m. Longitud

de 1.20m.

Inscripción

: en bajo relieve de 12mm. de profundidad.

Pintura

: los postes serán pintados en blanco con bandas negras de acuerdo

al diseño, con tres manos de pintura al óleo.

Cimentación : 0.50m. × 0.50m. de concreto ciclópeo.

SEÑALES DE LOCALIZACIÓN

Servirán para indicar lugares de interés tales como: ríos, poblaciones, límite vial, lugares históricos, etc. Serán de forma rectangular con su mayor dimensión horizontal.

SEÑAL ÂREA PARA ESTACIONAMIENTO

En zonas urbanas se utilizará para indicar donde hay playas de estacionamiento el de áreas específicamente fuera de la vía pública y, en zonas rurales, acondicionadas a un lado de la carretera.

En las autopistas y carreteras deberá colocarse en lugar de acceso a dicha área, a una distancia no mayor de 100 m. ni menor de 50 metros de desvío.

En el área urbana se colocará en el lugar de acceso a la playa de estacionamiento y en localizaciones que ayuden al usuario a encontrar la playa de estacionamiento.

Se podrán usar una placa adicional de 0.20 m. de alto por 0.45 m. de ancho para mostrar la distancia en kilómetros a recorrer para encontrar el acceso a dicha área.

SEÑAL PARADERO DE ÓMNIBUS

Se utilizará para indicar los paraderos de servicio colectivo de transporte público de pasajeros. A esta señal se le podrá adicionar una placa complementaria para indicar las líneas de transporte público que utilizan el paradero; la placa adicional será del mismo ancho y de una altura no mayor de 0.30m.

SEÑAL AEROPUERTO

Se utilizará para informar la existencia del servicio indicado.

SEÑAL PUESTO DE PRIMEROS AUXILIOS

Se utilizará para indicar al usuario la existencia de establecimientos de primeros auxilios o d establecimientos hospitalarios donde pueden recibir atención médica de emergencia.

ZONA DE MINUSVÁLIDOS

Esta señal se utilizará para indicar la ubicación de zonas de uso referencial para minusválidos, por ejemplo rampas, estacionamientos, etc.

g) SEÑALES ELEVADAS

En autopistas y carreteras de gran velocidad, en las vías principales así como en las vías exclusivas para el transporte público en el área urbana, se utilizan señales elevadas y suspendidas de estructuras especiales que permiten ubicarlas encima del tránsito vehicular para el cual está diseñado el mensaje informativo.

El diseño a adoptar dependerá de cada caso debiéndose, en lo referente al diseño de las letras, elegir un tamaño que esté de acuerdo a la distancia de legibilidad requerida; generalmente letras de altura no menor de 15 cm. son utilizadas y cuando el mensaje se refiere a un determinado carril o carriles, la flecha será en dirección vertical hacia abajo.

2.6.3 MARCAS EN EL PAVIMENTO

2.6.3.1 GENERALIDADES

Las marcas en el pavimento o en los obstáculos se utilizan para reglamentar el movimiento de vehículos e incrementar la seguridad en su operación.

Sirven, en algunos casos, como complemento a las señales y semáforos en el control del tránsito.

a) UNIFORMIDAD

Las líneas y marcas en el pavimento deberán ser uniformes en su diseño, posición y aplicación, a fin de que sean fáciles de reconocer e interpretar rápidamente.

b) CLASIFICACIÓN

Según el propósito, las marcas en el pavimento se clasifican en:

- b)1 Marcas en el pavimento.
- 1. Línea central
- Línea de carril
- 3. Marcas de prohibición de alcance y paso a otro vehículo.
- Línea de borde de pavimento.
- Líneas canalizadoras del tránsito.
- 6. Marcas de aproximación de obstáculos.
- 7. Demarcación de entradas y salidas de autopistas.
- 8. Líneas de parada.
- 9. Marcas de paso peatonal.
- 10. Aproximación de cruce a nivel con línea férrea.
- 11. Estacionamiento de vehículos.
- 12. Letras y símbolos.
- 13. Marcas para el control de uso de los carriles de circulación.
- 14. Marcas en los sardineles, de prohibición de estacionamiento en la vía pública.
- b)2 Marcas en los obstáculos.
- Obstáculos en la vía.
- Obstáculos fuera de la vía.
- b)3 Demarcadores reflectores.
- 1. Demarcadores de peligro
- Delineadores.

c) MATERIALES

Los materiales que pueden ser utilizados para la demarcación son la pintura convencional de tráfico TTP-115 F (caucho clorado alquídico), base al agua para tráfico (acrílica), epóxica, termoplástica, concreto coloreado o cintas adhesivas para pavimento. Para efectuar correcciones y/o borrado se podrá emplear la pintura negra. TTP-110 C (caucho clorado alquídico) u otras que cumplan la misma función.

d) COLORES

Los colores de pintura de tráfico u otro elemento demarcador a utilizarse en las marcas del pavimento serán blanco y amarillo, cuyas tonalidades deberán ser las especificadas.

- Las líneas blancas indican separación de las corrientes vehiculares en el mismo sentido de circulación.
- Las amarillas indican separación de las corrientes vehiculares en sentidos opuestos de circulación.
- En los demarcadores reflectivos, los colores que se pueden emplear, además del blanco y del amarillo, son el rojo y el azul, por lo siguiente:

Rojo: indica peligro o contra el sentido del tránsito.

Azul: indica la ubicación de hidrantes contra incendios.

e) TIPO Y ANCHO DE LAS LINEAS LONGITUDINALES

- Líneas discontinuas, para demarcar los carriles de circulación vehicular.
- Líneas continuas, sirven para demarcar la separación de las corrientes vehiculares, restringiendo la circulación vehicular de tal manera que no deba ser cruzada.
- El ancho normal de las líneas es de 0.10m a 0.15m, para las líneas longitudinales de línea central y línea de carril, así como de las líneas de barrera.
- Las líneas continuas dobles indican máxima restricción.

Las líneas de borde del pavimento tendrán un ancho de 0.10 m.

f) REFLECTORIZACIÓN

En el caso de la pintura de tráfico TTP-115 F, para que sean visibles las marcas en el pavimento en la noche, deberá llevar microesferas de vidrio integradas a la pintura o esparcidas en ella en el momento de su aplicación.

Dosificación de esferas de vidrio recomendadas:

Pistas de Aeropuertos

: 4.5 kgs/Gal.

Carreteras y autopistas

: 3.5 kgs/Gal.

Vías Urbanas

: 2.5 kgs/Gal.

2.6.3.1 MARCAS EN EL PAVIMENTO Y BORDES DE PAVIMENTO

a) LINEA CENTRAL

Si una calzada es de dos carriles de circulación, con tránsito en ambos sentidos, se utilizará una línea discontinua cuando es permitido cruzar y cuyo segmentos serán de 4.50 m. de longitud espaciados 7.50 m. en carreteras; en la ciudad será de 3 m. y 5 m. respectivamente.

En el caso de una calzada de cuatro o más carriles de circulación, con tránsito en ambos sentidos y sin separador central, se usará, como línea central, la doble línea continua de 0.10 m ó 0.15 m de ancho espaciadas en 0.10 m. y de color amarillo.

La doble línea amarilla demarcadora del eje de la calzada, significa el establecer una barrera imaginaria que separa las corrientes de tránsito en ambos sentidos; el eje de la calzada coincidirá con el eje del espaciamiento entre las dos líneas continuas y paralelas.

Es recomendable el marcado de la línea central en todas las calzadas de dos o más carriles de circulación que soportan tránsito en ambos sentidos sin separador central, cuyo volumen de tránsito sea significativo y cuando la incidencia de accidentes lo ameriten.

b) LINEA DE CARRIL

Las líneas de carril se utilizan para separar los carriles de circulación que con tránsito en una misma dirección.

Las líneas de carril son discontinuas, de ancho 0.10 m - 0.15 m, de color blanco y cuyos segmentos serán de 4.50 m de longitud espaciadas 7.50 m en carreteras; en la zona urbana serán de 3 m y 5 m, respectivamente.

c) ZONAS DONDE SE PROHIBE ADELANTAR

El marcado de líneas que prohiben adelantar tiene por objeto el señalar aquellos tramos de la vía cuya distancia de visibilidad es tal que dificulta la maniobra de alcance y paso a otro vehículo.

La distancia de visibilidad en una curva vertical es la distancia en que un objeto a 1.20 m de la superficie del pavimento puede ser vista desde otro punto a 1.20 m sobre la superficie del pavimento. Asimismo, la distancia de visibilidad de pase en una curva horizontal es la distancia medida a lo largo de la línea central (o línea del carril derecho en una carretera de tres carriles) entre dos puntos a 1.20 m sobre el

pavimento en una línea tangente a la obstrucción que corta la visibilidad hacia dentro de la curva. Las zonas donde la distancia de visibilidad es igual o menor que la numeración abajo señalada para valores predominantes de Velocidad Directriz (el que sea más alto), deben ser demarcadas:

VELOCIDAD DIRECTRIZ (Km/h)	DISTANCIA MÍNIMA DE VISIBILIDAD PARA ADELANTAR (m)
40	150
60	, 180
80	250
100	320
120	400

Se utilizará una línea continua paralela a la línea central, espaciada 0.10 m hacia el lado correspondiente al sentido del tránsito que se está regulando, de ancho 0.10 m y de color amarillo. Antes del inicio de la línea continua, existirá una zona de preaviso variable entre 50 m (V<60 km/h) y 100 m (V>60 km/h), donde la línea discontinua estará constituida por segmentos de 4.5 m. de longitud espaciado 7.5 m. en el caso de carreteras y en la zona urbana será de 3 m. y 1 m. respectivamente.

El demarcado de la zona donde se prohibe adelantar será complementado con la señal PROHIBIDO ADELANTAR.

d) LINEA DE BORDE DE PAVIMENTO

Se utilizará para demarcar el borde del pavimento a fin de facilitar la conducción del vehículo. Deberá ser línea continua de 0.10 m. de ancho de color blanco.

e) TRANSICIONES EN EL ANCHO DEL PAVIMENTO

Cuando el ancho del pavimento sufra transiciones, deberá demarcarse claramente dicha transición así como los carriles de circulación automotor.

f) LINEAS DE CANALIZACIÓN DEL TRÁNSITO

Se utilizan para conformar líneas canalizadoras del tránsito que circula en una misma dirección. Para el demarcado se usará líneas de un ancho de 0.20 m. de color blanco.

g) DEMARCACIÓN DE ENTRADAS Y SALIDAS EN AUTOPISTAS

Influye en el conductor a incorporarse al tránsito rápido, en el caso de ingresar a una autopista, con más eficiencia y, a la salida, reduce la posibilidad de riesgos en su maniobra correspondiente.

Para la demarcación de las salidas se usará una línea de ancho mínimo de 0.10 m. a todo lo largo del lado correspondiente a la autopista del área triangular neutral formada por la vía de la autopista y la rampa de ingreso a ésta. En el caso de existir un carril de aceleración, se deberá marcar éste con línea de carril hasta aproximadamente la mitad de su longitud.

Para la demarcación de las entradas se pintarán líneas blancas de 0.20 m. mínimo de ancho a todo lo largo del perímetro del área triangular neutral y opcionalmente, líneas diagonales.

h) APROXIMACIÓN A OBSTÁCULOS

Las marcas de aproximación a obstáculos deberán usarse complementariamente con las señales correspondientes, y las marcas de aproximación en el pavimento serán el suplemento de aquellas adecuadas a la misma obstrucción.

La demarcación consistirá en una o varias líneas diagonales que se extiendan desde el centro de la calzada o de la línea de carril hacia el punto de obstrucción pasando por su derecha o por ambos lados a una distancia de 0.30 m. – 0.60 m. de la obstrucción. El largo de la línea diagonal se calculará con la siguiente fórmula:

 $L = S \times W$

L = Longitud en metros

S = Velocidad directriz en kms/hora

W = Ancho del obstáculo en metros

La longitud mínima en zona rural será de 80 m. y en zona urbana de 30 m.

En el caso de que el tránsito circule por ambos lados del obstáculo, es conveniente adicionar líneas diagonales en el área triangular conformada.

Ejemplo: Casetas de peaje.

i) LINEAS DE "PARE"

Se usarán tanto en zonas urbanas como rurales, donde se debe indicar al conductor la localización exacta de la línea de parada del vehículo de acuerdo a lo indicado, sea por una señal de "PARE" o un semáforo.

Deberá ser una línea de color blanco, sólida, de ancho 0.50 m. colocada transversalmente al eje de la calzada, extendiéndose a través de todos los carriles de aproximación.

La línea de "PARE" deberá pintarse paralelamente y a una distancia, anterior al paso peatonal, de 1.00 m; en caso que no existiera el marcado de paso peatonal a una distancia mínima de 1.50 m. de la esquina más cercana a la vía que se cruza.

Si se usa el marcado de la calzada con la línea de "PARE", ambas deberán coincidir en cuanto a localización.

j) LINEAS O MARCAS PARA PASOS PEATONALES

Se usarán tanto en áreas urbanas como rurales para guiar al conductor por donde debe cruzar la calzada. Se utilizarán franjas de 0.50 m, de color blanco, espaciadas 0.50 m. y de un ancho entre 3.00 m. y 8.00 m. según sea el caso.; las franjas estarán a una distancia no menor de 1.50 m de la línea más próxima de la vía interceptante. El ancho de la demarcación peatonal se rige generalmente por el ancho de las aceras que conecta.

En caso que se diseñe pasos peatonales en localizaciones donde el tránsito vehicular que interceptan no esté controlado por semáforo o señal de PARE, las franjas podrán utilizarse de más de 0.50 m. de ancho a fin de llamar más la atención; los pasos en estos casos sirven para prevenir a los conductores y de salvaguarda de los peatones. Deberán demarcarse pasos peatonales en lugares donde exista gran movimiento de peatones, o donde los peatones no puedan reconocer con facilidad el sitio correcto para cruzar.

k) DEMARCACIÓN DE ESPACIOS PARA ESTACIONAMIENTO

Para el marcado de los espacios destinados al estacionamiento de vehículos en la vía pública se utilizarán líneas de color blanco de 0.10 m. a 0.15 m.

En el caso de estacionamiento paralelo, deberá marcarse una línea continua paralela al eje de la vía a una distancia del borde de la acera de 2.40 m. y con líneas transversales, delimitando los espacios individuales de los vehículos, distanciados 6.00 m; se deberá dejar libre de estacionamiento los primeros y últimos diez metros de la cuadra para evitar dificultades con las maniobras de volteo.

El estacionamiento en ángulo podrá darse siempre y cuando el ancho de la vía y las condiciones del tránsito vehicular lo permitan.

2.6.3.3 DEMARCACIÓN DE BORDES DE ACERAS E ISLAS

Todas las islas dentro del pavimento deben ser pintadas de color amarillo en su borde vertical. También será conveniente pintar los bordes de aceras frente a una intersección en "T" y similares.

2.6.4 SEMÁFOROS PARA EL CONTROL DEL TRÁNSITO DE VEHÍCULOS

Para determinar si se justifica la instalación de semáforos y para proporcionar los datos necesarios para el diseño y la operación apropiada de un semáforo, se debe efectuar previamente una investigación de las condiciones del tránsito y de las características físicas de la intersección.

2.6.4.1 CLASTFICACIÓN

- Semáforos pre sincronizados o no accionados por el tránsito.
- Semáforos accionados por el tránsito, que pueden ser totalmente accionados o parcialmente accionados.

2.6.4.2 SIGNIFICADO DE LAS INDICACIONES

a) COLOR

Las lentes de los semáforos son de color rojo, amarillo y verde. Cuando se utilicen flechas, éstas también serán rojas, amarillas y verdes sobre fondo negro.

Las lentes de las caras de un semáforo deberán formar una línea vertical. El rojo debe encontrarse sobre la parte alta, inmediatamente debajo debe encontrarse el amarillo y el verde de último.

b) SIGNIFICADO Y APLICACIÓN DE LOS COLORES

b)1 VERDE

- 1. Los conductores de los vehículos, y el tránsito vehicular que observe esta luz podrá seguir de frente o girar a la derecha o a la izquierda, a menos que alguna señal (reflectorizante o preferentemente iluminada) prohiba dichos giros.
- 3. Los peatones que avancen hacia el semáforo y observen esta luz podrán cruzar la vía (dentro de los pasos, marcados o no) a menos que algún otro semáforo indique lo contrario.

b)2 AMARILLO

1. Advierte que está a punto de aparecer la luz roja y que el flujo vehicular que regula la luz verde debe detenerse.

- 2. Advierte a los peatones que no disponen de tiempo suficiente para cruzar la vía, excepto cuando exista algún semáforo indicándoles que pueden realizar el cruce.
- 3. Sirve para despejar el tránsito en una intersección y para evitar frenadas bruscas.

b)3 ROJO FIJO

- 1. Los conductores y el tránsito vehicular deben detenerse antes de la línea de "PARE" (1.00 m. antes del paso peatonal) y si no la hay 2.00 m. antes de la intersección
- 2. Ningún peatón frente a esta luz debe cruzar la vía, a menos que esté seguro de no interferir con algún vehículo o que un semáforo peatonal indique su paso.

En algunos casos el faro que emite la luz roja lleva una flecha negra, lo cual indica que a pesar de estar en rojo, se puede voltear hacia el lugar que indique la flecha.

b)4 INTERMITENTES

- 1. Rojo Intermitente: Cuando se ilumine una lente roja con destellos intermitentes, los conductores de los vehículos harán un alto obligatorio y se detendrán antes de la raya de paso peatonal. El rojo intermitente se empleará en el acceso a una vía preferencial.
- 2. Amarillo Intermitente (señal de precaución): Cuando se ilumine la lente amarilla con destellos intermitentes, los conductores de los vehículos realizarán el cruce con precaución. El amarillo intermitente se empleará en le vía que tenga preferencia. El amarillo fijo no debe ser usado como señal de precaución.
- 3. Verde Intermitente: Cuando la lente verde funcione con destellos intermitentes, advierte a los conductores el final de tiempo de luz verde.

2.6.5 SEMÁFOROS PARA PASOS PEATONALES

Los semáforos para peatones son señales instaladas exclusivamente para dirigir el tránsito de peatones en intersecciones donde se registra un alto volumen peatonal.

2.6.5.1 SIGNIFICADO DE LAS INDICACIONES

a) COLOR

Las lentes de los semáforos peatonales deben ser de color rojo y verde

b) SIGNIFICADO Y APLICACIÓN DE LOS COLORES

b)1 La indicación PARE iluminada en color rojo quiere decir que el peatón no deberá atravesar la calle en dirección a la señal, mientras ésta se encuentra encendida.

b)2 La indicación de PASE, iluminada en color verde fijo, significa que los peatones que se encuentran frente al semáforo pueden cruzar la calle en dirección del mismo. b)3 La indicación de PASE en color verde intermitente significa que un peatón no deberá empezar a cruzar la calle en dirección de la señal, porque la luz de ésta va a cambiar a la indicación de PARE.

CAPITULO III: RECURSOS MATERIALES Y HUMANOS.

3.1 RECURSOS MATERIALES.

3.1.1 Material de campo para el levantamiento topográfico.

Estacas, pintura, brocha, comba y libreta de campo.

3.1.2 Equipo topográfico.

Teodolito Wild T1-A, nivel de ingeniero, brújula, wincha de fibra de vidrio de 50 metros, mira, jalones.

3.1.3 Material para reconocimiento y recolección de muestras (Geología y Estudio de suelos).

Libreta de campo, pico, palana, bolsas de polietileno.

3.1.4 Equipo de laboratorio (Mecánica de suelos y Ensayo de materiales).

Recipientes de latón (taras), estufa (110° C), juego de tamices y bandeja, Copa de Casagrande, herramienta ranuradora, probeta, fiola, espátula, bomba de vacíos, dispersador eléctrico, moldes PROCTOR, Balanza electrónica (1,800gr.), Balanza grande (20 Kg.), máquina de Los Ángeles, máquina universal (cap. 20 Ton.).

3.2 RECURSOS HUMANOS.

3.2.1 Tesistas.

Ernesto H. Muñoz Sánchez.

Omar M. Jaime Rebaza.

3.2.1 Asesor.

Ing. José M. Céspedes Abanto.

Ing. Sergio Huamán Sangay.

3.2.1 Colaboradores.

Ing. Raúl Valera Guerra.

Ing. José Lezama Leiva.

Ing. Lucio Sifuentes Inostroza.

Ing. Gilberto Cruzado Vásquez.

Ing. Francisco Huamán Vidaurre.

Ing. Frank Alva Lescano.

Ing. Javier Colina Bernal (Técnico de Laboratorio de Mecánica de Suelos).

Sr. Juan Villanueva Zumarán (Técnico de Laboratorio de Ensayo de Materiales).

CAPITULO IV: METODOLOGÍA Y PROCEDIMIENTO.

4.1 LEVANTAMIENTO TOPOGRÁFICO.

4.1.1 TRABAJO DE CAMPO

a) Reconocimiento.

Contando con un plano de ubicación, se llevó a cabo un recorrido completo por las calles de la zona, contando con un plano de ubicación. Se pudo observar que éstas fueron trazadas, en su mayoría, sin criterio técnico alguno y que presentan cambios de dirección y ancho variable, presentando serios problemas en el drenaje de aguas de lluvia, como lo manifestaron los moradores de la zona. Se determinó la conveniencia de utilizar, para el levantamiento, una red de apoyo de seis polígonos.

b) Ubicación de Vértices.

Concluido con el reconocimiento, se ubicó y fijó los vértices de los polígonos, según las recomendaciones ya especificadas.

c) Medición de los Lados.

Se efectuó utilizando teodolito, wincha y jalones; éstos previamente alineados. La longitud promedio es la media aritmética del número de mediciones repetidas, para cada lado.

d) Medición de los Ángulos.

Se realizó empleando el método de repeticiones. Consiste esencialmente en medir varias veces un ángulo en forma acumulativa, registrándose la primera y última lectura. Esta se divide entre el número de lecturas, obteniéndose un ángulo promedio que deberá ser comparado con el de la primera lectura. Si la diferencia entre ambos es considerable, deberá repetirse el proceso. En el campo, después de haber realizado el proceso de medición para cada ángulo, se calculó el ángulo promedio y una vez medidos y calculados los ángulos promedios de cada polígono, se determinó el error angular de cierre.

e) Medición del Azimut de uno de los Lados.

Se midió el azimut del lado E 4 – E 3 (332° 59' 00"), correspondiente al polígono I, según lo señalado en el punto 2.1.2- e) del capítulo II.

f) Nivelación de las Estaciones de la Poligonal.

Para ello se empleó nivel de ingeniero y mira. Como punto de referencia se tomó la estación El de la poligonal I, buzón ubicado en la esquina Jr. Niño Jesús – Av. Vía de

Evitamiento (Urb. Sarita), cuya cota es 2728.170 m.s.n.m., dato obtenido de los planos de instalación de desague de la zona, existentes en SEDACAJ. La nivelación de las estaciones se ejecutó según lo señalado en el punto 2.1.2- f) del capítulo II, efectuándose en el campo, inmediatamente después de haber llevado a cabo cada circuito de nivelación, los cálculos de las cotas de sus estaciones y del respectivo error de cierre de nivelación, usando la ecuación 2.1.2 – 1

g) Radiación (Nivelación Taquimétrica).

Se realizó según se indica en el punto 2.1.2- g) del capítulo II.

4.1.2 TRABAJO DE GABINETE.

Cálculo de los ángulos promedio y compensación de los mismos.

Esta operación se efectuó en el campo, inmediatamente de realizada la medición de cada ángulo de la poligonal, empleando la ecuación 2.1.3 - 1.

Cálculo de Azimut v Rumbos.

Se realizó de acuerdo a lo señalado en los puntos 2.1.3-B) y 2.1.3-C) del capítulo II.

Cálculo de las Proyecciones de los Lados.

Fueron calculadas según lo indicado en el punto 2.1.3- E) del capítulo Π.

El error de cierre y error relativo de cada poligonal se calculó con las ecuaciones

$$2.1.3 - 4$$
, $2.1.3 - 7$ y $2.1.3 - 8$.

Compensación de las Proyecciones.

La compensación de los seis polígonos que conforman la red (poligonal), se realizó según lo señalado en el punto 2.1.3- G) del capítulo II, y la de las poligonales auxiliares (VII y VIII), según lo indicado en el punto 2.1.3- F.2) del capítulo II.

Cálculo de las Coordenadas.

Con las proyecciones compensadas de los lados, se calcularon las coordenadas de las estaciones de cada polígono, según se indica en el punto 2.1.3- E) del capítulo II.

Compensación de las Cotas de las estaciones.

Las cotas de las estaciones correspondientes a los polígonos principales que conforman la red de apoyo fueron compensadas como se indica en el punto 2.1.3- I) ,del capítulo II y las cotas correspondientes a los polígonos auxiliares VII y VIII, usando la ecuación:

$$C_1 = \frac{d_1}{D} \times e$$
 ; $C_2 = \frac{d_2}{D} \times e$; $C_3 = \frac{d_3}{D} \times e$; ... ; $C_n = \frac{d_n}{D} \times e$

donde:

 C_1 : Corrección para la cota inicial

 C_n : Corrección para la cota de estación final.

 $d_1; d_2; d_3; ...; d_n$: Distancias acumuladas.

D : Distancia total del circuito.

e : Error de cierre de nivelación.

Cálculo de la nivelación taquimétrica (Altimetría).

Con los datos de distancia y ángulo vertical se calcularon las cotas de cada punto radiado, en función de la cota de la estación respectiva. Para ello se empleó las siguientes fórmulas:

Cota P = Cota E + (i - m) + h

 $h = K L 1/2 sen 2\alpha$

donde:

Cota P : Cota del punto radiado.

Cota E : Cota de la estación.

i : Altura del instrumento.

M : Altura registrada en la mira, en la intersección

del hilo diametral horizontal.

H : Distancia vertical. Positiva si el ángulo α es de elevación

y negativa si α es de depresión.

K : Constante estadimétrica (K = 100)

L : Lectura de distancia.

Si i = m:

Cota P = Cota E + h

Equidistancia y Escala del plano topográfico.

De las tablas 2.1.3 (1) y 2.1.2 (2):

Equidistancia : 0.25 m.

Escala del plano topográfico : 1/1,000

POLÍGONO I

ESTAC.	ANGULO COMPENSADO	LADO	LONG. PROMEDIO (m)	AZIMUT	RUMBO	PROYECCION EJE X (m)	PROYECCION EJE Y (m)
E 5	90° 17' 04''	E5-E4	158.186	60° 40' 14"	N 60° 40' 14" E	+ 39.909	+ 77.484
E 4	92° 18' 46''	E4-E3	75.051	332° 59' 00"	N 27° 01' 00" O	- 34.092	+ 66.861
E 3	115° 52' 08"		129.640	268° 51' 08"	S 88° 51' 08" O	- 129.614	- 2.597
E 2	152° 51' 46"	E3-E2					
E 1	88° 40' 16"	E2-E1	137.130	241° 42' 54"	S 61° 42′ 54″ O	- 41.996	- 22.598
		E1-E5	82.749	150° 23' 10"	S 29° 36' 50" E	+ 67.163	- 119.217
SUMA	540 ⁰ 00' 00''		547.697			- 0.030	- 0.067

 $e_c = 0.073$

Suma de proyecciones en X = 411.374

 $e_r = 1/7,500$

Suma de proyecciones en Y = 288.757

POLÍGONO II

ESTAC.	ANGULO COMPENSADO	LADO ·	LONG. PROMEDIO (m)	AZIMUT	RUMBO	PROYECCION EJE X (m)	PROYECCION - EJE Y (m)
E 5	185° 59' 23''	E5-E11	13.040	246° 39' 37''	S 66° 39' 37'' O	- 11.973	- 5.166
E 11	76° 35' 12''	E 11 – E 10	109.124	143° 14' 49"	S 36° 45' 11" E	+ 65.296	- 87.443
E 10	105° 59' 28"			-			
E 9	164° 47' 22''	E 10 - E 9	50.740	69° 14' 17"	N 69º 14'17" E	+ 47.445	+ 17.897
E 8	201° 28' 54"	E9-E8	29.420	54° 01' 39"	N 54° 01'39" E	+ 23.810	+ 17.281
E 7	108° 16' 48"	E8-E7	30.445	75° 30' 33" ·	N 75° 30' 33" E	+ 29.476	+ 7.618
E 6	162° 47' 43"	E7-E6	46.870	3° 47' 21''	N 3º 47'21"E	+ 3.097	+ 46.768
E 4	74° 05' 10''	E6-E4	82.749	346° 35' 04"	N 13° 24' 56" O	- 19.199	+ 80.491
	,, 00 10	E4-E5	158.186	240° 40' 14''	S 60° 40' 14" O	- 137.909	- 77.484
SUMA	1080° 00' 00''		520.574	* Company 1		+ 0.043	+ 0.062

 $e_c = 0.075 \,\mathrm{m}.$

Suma de proyecciones en X = 338.205 m.

 $e_r = 1/6,500$

Suma de provecciones en Y = 340.228 m.

POLÍGONO III

ESTAC.	ANGULO COMPENSADO	LADO	LONG. PROMEDIO (m)	AZIMUT	RUMBO	PROYECCIÓN EJE X (m)	PROYECCIÓN EJE Y (m)
E 10	68° 10' 08''	F 40 F 40	100 100	4070 0 41 05"	0.400.051.0511.5	. 00 700	75.047
E 13	88° 07' 53"	E 10 - E 13	103.123	137° 24' 25"	S 42° 35' 35" E	+ 69.792	- 75.917
		E 13 – E 12	58.735	45° 32' 18''	N 45° 32' 18" E	+ 41.920	+ 41.140
E 12	126° 23' 44"	E 12 - E 7	78,410	351° 56′ 02″	N 8° 03' 58" O	- 11.002	+ 77.634
E 7	83° 34' 31"	L 12 - L /	70.410	331 30 02	14 0 03 30 0	- 11.002	7 //.034
		E7-E8	30.445	255° 30' 33"	S 75° 30′ 33″ O	- 29.476	- 7.168
E 8	158° 31' 06"	E8-E9	29,420	234° 01' 39"	S 54° 01' 39" O	- 23.810	- 17.281
E 9	195° 12' 38"		20.720	204 01 00	0 0 7 0 1 0 0	- 25.010	- 17.201
***************************************		E9-E10	50.740	249° 14' 17"	S 69º 14' 17" O	- 47.445	- 17.987
SUMA	720° 00' 00''		350.873			- 0.021	- 0.029

 $e_c = 0.036 \text{ m}.$

Suma de proyecciones en X = 223.445 m

 $e_r = 1/9,500$

Suma de proyecciones en Y = 237.577 m.

POLÍGONO IV

ESTAC.	ANGULO COMPENSADO	LADO	LONG. PROMEDIO (m)	AZIMUT	RUMBO	PROYECCION EJE X (m)	PROYECCION EJE Y (m)
E 10	113° 39' 19"	E 10 - E 19	68.385	251° 03' 44''	S 71° 03' 44" O	- 64.683	- 22.194
E 19	173° 25' 19"		52.467	244° 29' 03"	S 64° 29' 03" O	- 47.350	- 22.601
E 18	170° 21' 42"	E 19 – E 18					
E 17	88° 10' 09''	E 18 - E 17	108.775	234° 50' 45"	S 54° 50′ 45′′ O	- 88.935	- 66.630
E 16	174° 53' 07"	E 17 – E 16	103.452	143° 00' 44"	S 36° 59' 06" E	+ 62.237	- 82.637
E 15	86° 38′ 35''	E 16 - E 15	65.055	137° 54' 01"	S 42º 05' 59" E	+ 43.614	- 48.269
E 14	183° 47' 30''	E 15 – E 14	177.110	44° 32' 36''	N 44° 32' 36" E	+ 124.234	+ 126.230
		E 14 - E 13	54.543	48° 20' 06"	N 48° 20' 06" E	+ 40.746	+ 36.259
E 13	89° 04' 19"	E 13 – E 10	103.123	317° 24′ 25″	N 42º 35' 35" O	- 69.792	+ 75.917
SUMA	1080° 00' 00''		732910			+ 0.071	+ 0.075

 $e_c = 0.103 \text{ m}.$

Suma de proyecciones en X = 541.591 m.

POLÍGONO V

ESTAC.	ANGULO COMPENSADO	LADO	LONG. PROMEDIO (m)	AZIMUT .	RUMBO	PROYECCION EJE X (m)	PROYECCION EJE Y (m)
E 17	17 4° 57' 10"	E 47 E 22	40.070	2470 501048	N 400 041 5011 0	20.224	. 25 050
E 23	99° 23' 53"	E 17 – E 23	48.273	317° 58' 04"	N 42° 01' 56" O	- 32.321	+ 35.856
E 22	86° 49' 22"	E 23 – E 22	139.665	237° 21' 57"	S 57° 21' 57" O	- 117.616	- 75.318
E 21	162° 14' 04"	E 22 – E 21	162.357	144° 11' 19"	S 35° 48' 41" E	+ 94.998	- 131.663
E 20	110° 02′ 59″	E 21 – E 20	58.895	126° 25' 23''	S 53° 34' 37" E	+ 47.390	- 34.968
E 15	81° 25' 39''	E 20 – E 15	135.978	56° 28' 22"	N 56° 28' 22" E	+ 113.354	+ 75.105
E 16	185° 06' 53"	E 15 – E 16	65.055	317° 54′ 01″	N 42º 05' 59" O	- 43.614	+ 48.269
		E 16 - E 17	103.452	323° 00' 54"	N 36º 59' 06" O	- 62.237	+ 82.637
SUMA	900° 00' 00''		713.675			- 0.046	- 0.082

 $e_c = 0.094 \text{ m}.$

Suma de proyecciones en X = 511.530 m.

 $e_r = 1/7,500$ Suma de proyecciones en Y = 483.816 m.

POLÍGONO VI

ESTAC.	ANGULO COMPENSADO	LADO	LONG. PROMEDIO (m)	AZIMUT	RUMBO	PROYECCION EJE X (m)	PROYECCION EJE Y (m)
E 22	192° 26' 32''	,					
E 27	82° 05' 41"	E 22 – E 27	30.400	336° 37' 51"	N 23° 22' 09" O	- 12.058	+ 27.906
E 26	92° 27' 20''	E 27 – E 26	129.378	238° 43' 32''	S 58° 43' 32" O	- 110.578	- 67.165
		E 26 – E 25'	94.600	151° 10′ 52″	S 28º 49' 08" E	+ 45.601	- 82.884
E 25	160° 41' 40"	E 25 – E 24	100.793	131° 52' 32"	S 48° 07' 28" E	+ 75.050	- 67.281
E 24	107° 19' 57"	E 24 E 21	112.962	59° 12' 29"	N 59° 12' 29" E	+ 97.038	+ 57.828
E 21	84° 58' 50''						
		E 21 – E 22	162.357	324° 11' 19''	N 35° 48' 41" O	- 94.998	+ 131.663
SUMA	720 ⁰ 00' 00''		630.490			+ 0.055	- 0.067

 e_c = 0.087 m.; e_r = 1/7,000; Suma de proyecciones en X = 435.323 m.; Suma de proyecciones en Y = 434.727 m.

 $e_r = 1/7,000$ Suma de provecciones en Y = 476.737 m.

PROYECTO: "Pavimentación de las urbanizaciones: Sarita, Alan Perú, Las Margaritas; y calles del barrio San José" COMPENSACIÓN DE LAS PROYECCIONES - EJE X : POLÍGONOS I, II, III, IV, V, VI (Método de Aproximación Sucesiva).

		PROYEC	CIÓN		CICLO 1			CICLO 2			CICLO 3			CICLO 4			CICLO 5	_		CICLO	3
POLIGONO	LADO	LONG.	%	PROYEC.	CORREC.	PROYEC.	PROYEC.	CORREC.	PROYEC.	PROYEC.	CORREC.	PROYEC.	PROYEC.	CORREC.	PROYEC.	PROYEC.	CORREC.	PROYEC.	PROYEC.	CORREC	PROYEC
		(m.)				CORREG			CORREG.			CORREG.	<u> </u>		CORREG.		<u> </u>	CORREG.			CORREC
	E5 - E4	137.909	33.5	137.909	0.010	137.919	137.927	-0.003	137.924	137.927	-0.001	ł	137.928	-0.001 0.000	137.927	137.928	-0.001 0.000	137.927	137.928	0.000	
1	E4 - E3	34.092	8.3	-34.092	0.003	-34.089	-34.089	-0.001	-34.090	-34.090	0.000	i	-34.090 -129.608	-0.001	-34.090	-34.090 -129.609	0.000	-34.090	-34.090 -129.609	0.000 -0.001	1
I	E3 - E2	129.614	31.5	-129.614	0.009	-129.605	-129.605	-0.002	-129.607	-129.607	-0.001 0.000	-129.608 -41.994	-41.994	0.000	-129.609 -41.994	-41.994	0.000	-129.609 -41.994	-41.994	0.000	-129.61 -41.99
- '	E2 - E1	41.996	10.2	-41.996	0.003	-41.993	-41.993	-0.001	-41.994 67.767	-41.994	-0.000	67.766	67.766	0.000	67.766	67,766	0.000	67.766	67,766	0.000	1
,	E1 - E5	67.763	16.5	67.763	0.005	67.768 0.000	67.768	-0.001 -0.008	0.000	67.767 0.003	-0.003	0.000	0.002	-0.002	0.000	0.001	-0.001	0.000	0.001	-0.001	0
	TOTAL	411.374	100.0	-0.030	0.030 -0.002	-11.975	-11.975	0.000	-11.975	-11.975	0.000	-11.975	-11.975	0.000	-11.975	-11.975	0.000	-11.975	-11.975	0	-11.975
	E5 - E11	11.973	3.6 19.3	-11.973 65.296	-0.002	65,288	65.288	-0.001	65.287	65.287	-0.001	65.286	65.286	-0.001	65.285	65.285	0.000	65.285	I .	ő	65.285
	E11 - E10	65.296 47.445	14.0	47.445	-0.006	47.439	47.441	-0.001	47.440	47.441	-0.001	47.440	47,441	0.000	47.441	47.441	0.000	47.441	47.441	٥	47.44
	E10 - E9		7.0	23.810	-0.003	23.807	23.808	-0.001	23.807	23.808	0.000	23.808	23.808	0.000	23.808	23.808	0.000	23.808	23.808	0	23.808
YY	E9 - E8	23.810	8.7	29.476	-0.003	29.472	29.473	-0.001	29.472	29.473	0.000	29.473	29.473	0.000	29.473	29.473	0.000	29.473	29.473	0	29.473
II	E8 - E7	29.476		3.097	0.004	3.097	3.097	0.000	3.097	3.097	0.000	3.097	3.097	0.000	3.097	3.097	0.000	3.097	3.097	0	3.097
!	E7 - E6	3.097	0.9				-19.201	0.000	-19.201	-19.201	0.000	-19.201	-19.201	0.000	-19.201	-19.201	0.000	-19.201	-19.201	0	-19.201
i	E6 - E4	19.199	5.7	-19.199	-0.002	-19.201 -137.927	-137.924	-0.003	-137.927	-137.926	-0.002	-137.928	-137.927	-0.001	-137.928	-137.927	-0.001	-137.928	-137.928	0	-137.928
	E4 - E5	137.909	40.8	-137.909	-0.018			-0.003	0.000	0.004	-0.002	0.000	0.002	-0.001	0.000	0.001	-0.001	0.000	0.000	0	0
	TOTAL	338.205	100.0	0.043	-0.043	0.000	0.007	-0.007	69.800	69.801	-0.004	69.800	69.800	0.002	69.800	69.800	0.001	69.800	69.800	0	69.800
	E10 - E13	69.792	31.2	69.792	0.007	69.799	69.801	-0.001	41.923	41.923	0.000	41.923	41.923	0.000	41.923	41.923	0	41.923	41.923	0	41.923
,	E13 - E12	41.920	18.8	41.920	0.004	41.924 -11.001	41.924 -11.001	0.000	-11.001	-11.001	0.000	-11.001	-11.001	0.000	-11.001	-11,001	0	-11.001	-11.001	0	-11.001
. 177	E12 - E7	11.002	4.9	-11.002 -29.476	0.001 0.003	-11.001	-29.472	-0.001	-29.473	-29.473	0.000	-29.473	-29.473	0.000	-29.473	-29.473	ρ	-29.473	-29.473	0	-29.473
m	E7 - E8	29.476	13.2 10.7	-29.476 -23.810	0.003	-29.473 -23.808	-23.807	-0.001	-23.808	-23.808	0.000	-23.808	-23.808	0.000	-23.808	-23.808	ő	-23.808	-23.808	٥	-23.808
i	E8 - E9	23.810	21.2	-23.810 -47.445	0.002	-23.608 -47.441	-47.440	-0.001	-47.441	-47.440	-0.001	-47.441	-47.441	0.000	-47.441	-47.441	0	-47.441	-47.441	o	-47.441
,	E9 - E10	47.445 223.445	100.0	-0.021	0.004	0.000	0.005	-0.001	0.000	0.002	-0.002	0.000	0.000	0.000	0.000	0.000	0	0	0.000	0	0
	E10 - E19	64.683	12.0	-64.683	-0.009	-64.692	-64.692	-0.001	-64.693	-64.693	0.000	-64.693	-64.693	0.000	-64.693	-64.693	0	-64.693	-64.693	0	-64.693
;	E10 - E19	47.350	8.7	-47.350	-0.006	-47.356	-47.356	0.000	-47.356	-47.356	0.000	-47,356	-47.356	0.000	-47.356	-47,356	ō	-47.356	-47.356	0	-47.356
,	E18 - E17	88.935	16.4	-88.935	-0.012	-88.947	-88.947	-0.001	-88.948	-88.948	-0.001	-88.949	-88.949	0.000	-88.949	-88,949	0	-88.949	-88.949	0	-88.949
:	E17 - E16	62.237	11.5	62.237	-0.008	62.229	62.231	-0.001	62.230	62.231	0.000	62.231	62.231	0.000	62.231	62.231	0	62.231	62.231	0	62.231
IV	E16 - E15	43.614	8.1	43.614	-0.006	43.608	43.610	0.000	43.610	43.610	0.000	43.610	43.610	0.000	43.610	43.610	0	43.610	43.610	0	43.610
1 4	E15 - E14	124.234	22.9	124.234	-0.016	124.218	124.218	-0.001	124.217	124.217	-0.001	124.216	124.216	0.000	124.216	124.216	0	124.216	124.216	0	124.216
	E14 - E13	40.746	7.5	40.746	-0.005	40.741	40.741	0.000	40.741	40.741	0.000	40.741	40.741	0.000	40.741	40.741	0	40.741	40.741	0	40.741
	E13 - E10	69.792	12.9	-69.792	-0.009	-69.801	-69.800	-0.001	-69.801	-69.800	0.000	-69,800	-69,800	0.000	-69,800	-69,800	0	-69.800	-69.800	0	-69.800
	TOTAL	541.591	100.0	0.071	-0.071	0.000	0.005	-0.005	0.000	0.002	-0.002	0.000	0.000	0.000	0.000	0.000	0	0	0.000	0	0
	E17 - E23	32.321	6.3	-32.321	0.003	-32.318	-32.318	0.000	-32.318	-32.318	0.000	-32.318	-32.318	0	-32.318	-32.318	0	-32.318	-32.318	0	-32.318
	E23 - E22	117.616	23.0	-117.616	0.011	-117.605	-117.605	-0.001	-117.606	-117.606	0.000	-117.606	-117.606	0	-117.606	-117.606	0	-117.606	-117.606	0	-117.606
	E23 - E22 E22 - E21	94.998	18.6	94.998	0.009	95.007	95.010	-0.001	95.009	95.009	0.000	95.009	95.009	0	95.009	95.009	0	95.009	95.009	0	95.009
	E21 - E20	47.390	9.3	47.390	0.004	47.394	47.394	-0.001	47.393	47.393	0.000	47.393	47.393	0	47.393	47.393	0	47.393	47.393	0	47.393
V	E20 - E15	113.354	22.1	113.354	0.010	113.364	113.364	-0.001	113.363	113.363	0.000	113.363	113.363	0	113.363	113.363	0	113.363	113.363	0	113.363
	E15 - E16	43.614	8.5	-43.614	0.004	-43.610	-43.610	0.000	-43.610	-43.610	0.000	-43.610	-43.610	0	-43.610	-43.610	0	-43.610	-43.610	0	-43.610
	E16 - E17	62.237	12.2	-62.237	0.006	-62.231	-62.230	-0.001	-62.231	-62.231	0.000	-62.231	-62.231	0	-62.231	-62.231	0	-62.231	-62.231	0	-62.231
	TOTAL	511.530	100.0	-0.046	0.046	0.000	0.005	-0.005	0.000	0.000	0.000	0.000	0.000	0	0	0.000	0	0	0.000	0	0
	E22 - E27	12.058	2.8	-12.058	-0.002	-12.060	-12.060	-0.001	-12.061	-12.061	0.000	-12.061	-12.061	0	-12.061	-12.061	0	-12.061	-12.061	0	-12.061
	E27 - E26	110.578	25.4	-110.578	-0.014	-110.592	-110.592	0.000	-110.592	-110.592	0.000	-110.592	-110.592	0	-110.592	-110.592	0	-110.592	-110.592	0	-110.592
	E26 - E25	45.601	10.5	45.601	-0.006	45.595	45.595	0.000	45.595	45.595	0.000	45.595	45.595	0	45.595	45.595	0	45.595	45.595	0	45.595
VI	E25 - E24	75.050	17.2	75.050	-0.009	75.041	75.041	0.000	75.041	75.041	0.000	75.041	75.041	0	75.041	75.041	0	75.041	75.041	0	75.041
	E24 - E21	97.038	22.3	97.038	-0.012	97.026	97.026	0.000	97.026	97.026	0.000	97.026	97.026	0	97.026	97.026	0	97.026	97.026	0	97.026
	E21 - E22	94.998	21.8	-94.998	-0.012	-95.010	-95.009	0.000	-95.009	-95.009	0.000	-95.009	-95.009	0	-95.009	-95.009	0	-95.009	-95.009	0	-95.009
	TOTAL	435.323	100.0	0.055	-0.055	0.000	0.001	-0.001	0.000	0.000	0.000	0.000	0.000	0	0	0.000	0	0	0.000	0	Ó

PROYECTO: "Pavimentación de las urbanizaciones: Sarita, Alan Perú, Las Margaritas; y calles del barrio San José"

COMPENSACIÓN DE PROYECCIONES - EJE Y: POLÍGONOS I, II, III, IV, V, VI (Método de Aproximación Sucesiva).

		COMP	ENS	ACIO	A DE L	ROYE	CCIOI	152-E	JE 1 .	i OLIC	CINO	5 1, 11,	111, 10,			TIPIOXI	macion .		/:		
		PROYEC	CIÓN		CICLO 1			CICLO 2			CICLO 3			CICLO 4			CICLO 5			CICLO 6	
POLIGONO	LADO	LONG.	%	PROYEC.	CORREC.	PROYEC.	PROYEC.	CORREC.	PROYEC.	PROYEC.	CORREC.	PROYEC.	PROYEC.	CORREC.	PROYEC.	PROYEC.	CORREC.	PROYEC.	PROYEC.	CORREC.	PROYEC.
ŀ		(m.)	70	PROTEC.	CORREC.	CORREG.	PROTEG.		CORREG.			CORREG.			CORREG.			CORREG.	1		CORREG.
	E5 - E4	77.484	26.8	77.484	0.018	77.502	77.498	0.001	77.499	77.499	0.000	77.499	77.499	0	77.499	77.499	0	77.499	77.499	0	77.499
	E4 - E3	66.861	23.2	66.861	0.016	66.877	66.877	0.001	66.878	66.878	0.000	66.878	66.878	0	66.878	66.878	0	66.878	1	0	66.878
	E3 - E2	2.597	0.9	-2.597	0.000	-2.597	-2.597	0.000	-2.597	-2.597	0.000	-2.597	-2.597	0	-2.597	-2.597	0	-2.597	-2.597	0	-2.597
I	E2 - E1	22.598	7.8	-22.598	0.005	-22.593	-22.593	0.000	-22.593	-22.593	0.000	-22,593	-22.593	0	-22.593	-22.593	0	-22.593	-22.593	0	-22.593
	E1 - E5	119.217	41.3	-119.217	0.028	-119.189	-119.189	0.002	-119.187	-119.187	0.000	-119.187	-119.187	0	-119.187	-119.187	0	-119.187	-119.187	0	-119.187
1	TOTAL	288.757	100.0	-0.067	0.067	0.000	-0.004	0.004	0.000	0.000	0.000	0.000	0.000	0	0	0.000	0	0	0.000	0	0
	E5 - E11	5.166	1.5	-5.166	-0.001	-5.167	-5.167	0.000	-5.167	-5.167	0.000	-5.167	-5.167	0	-5.167	-5.167	0	-5.167	-5.167	0	-5.167
	E11 - E10	87.433	25.7	-87.433	-0.016	-87.449	-87.449	-0.001	-87.450	-87.450	0.000	-87.450	-87.450	0	-87.450	-87.450	0	-87.450	-87.450	0	-87.450
	E10 - E9	17.987	5.3	17.987	-0.003	17.984	17.985	0.000	17.985	17.985	0.000	17.985	17.985	0	17.985	17.985	0	17.985	17.985	0	17.985
	E9 - E8	17.281	5.1	17.281	-0.003	17.278	17.279	0.000	17.279	17.279	0.000	17.279	17.279	0	17.279	17.279	0	17.279	17.279	0	17.279
II	E8 - E7	7.618	2.2	7.618	-0.001	7.617	7.617	0.000	7.617	7.617	0.000	7.617	7.617	0	7.617	7.617	0	7.617	7.617 46.759	0	7.617 46.759
ł	E7 - E6	46.768	13.7	46.768	-0.009	46.759	46.759	0.000	46.759	46.759	0.000	46.759	46.759	0	46.759 80.476	46.759 80.476	0	46.759 80.476	80.476	0	80.476
	E6 - E4	80.491	23.7	80.491	-0.015	80.476	80.476	0.000	80.476	80.476	0.000	80.476	80.476	0		-77.499	0	-77.499	-77.499	0	-77.499
1	E4 - E5	77.484	22.8	-77.484	-0.014	-77.498	-77.499	0.000	-77.499	-77.499	0.000	-77.499 0.000	-77.499 0.000	0	-77.499 0	0.000	0	0	0.000	0	-17.499
	TOTAL	340.228	100.0	0.062	-0.062	0.000	0.001	-0.001	0.000	0.000	0.000		-75.906		-75.906	-75.906	0	-75.906	-75.906	0	-75.906
	E10 - E13	75.917	31.9	-75.917	0.009	-75.908	-75.905	-0.001	-75.906	-75.906	0.000	-75.906		0		41.144	0	41.144	41.144	٥	41.144
	E13 - E12	41.140	17.3	41.140	0.005	41.145	41.145	-0.001	41.144	41.144	0.000	41.144	41.144	-	41.144		0			0	77.643
	E12 - E7	77.634	32.7	77.634	0.010	77.644	77.644	-0.001	77.643	77.643	0.000	77.643	77.643	0	77.643	77.643	0	77.643	77.643	0	-7.617
III	E7 - E8	7.618	3.2	-7.618	0.001	-7.617	-7.617	0.000	-7.617	-7.617	0.000	-7.617	-7.617	0	-7.617	-7.617		-7.617	-7.617	, ,	1
1	E8 - E9	17.281	7.3	-17.281	0.002	-17.279	-17.279	0.000	-17.279	-17.279	0.000	-17.279	-17.279	0	-17.279	-17.279	0	-17.279	-17.279	0	-17.279
	E9 - E10	17.987	7.6	-17.987	0.002	-17.985	-17.985	0.000	-17.985	-17.985	0.000	-17.985	-17.985	0	-17.985	-17,985	0	-17.985	-17.985	0	-17.985 0
	TOTAL	237.577	100.0	-0.029	0.029	0.000	0.003	-0.003	0.000	0.000	0.000	0.000	0.000	0	0	0.000	0	0	0.000	0	
	E10 - E19	22.194	4.7	-22.194	-0.003	-22.197	-22.197	0.000	-22.197	-22.197	0.000	-22.197	-22.197	0.000	-22.197	-22.197	0	-22.197	-22.197	0	-22.197 -22.605
	E19 - E18	22.601	4.8	-22.601	-0.004	-22.605	-22.605	0.000	-22.605	-22.605	0.000	-22.605	-22.605	0.000 0.000	-22.605 -62.640	-22.605 -62.640	0	-22.605 -62.640	-22.605 -62.640	0	-62.640
]	E18 - E17	62.630	13.1	-62.630	-0.010	-62.640	-62.640	0.000	-62.640	-62.640	0.000	-62.640	-62.640	0.000	-82.652	-82.652	0	-82.652	-82.652	0	-82.652
	E17 - E16	82.637	17.3	-82.637	-0.013	-82.650	-82.651	0.000	-82.651	-82.652	0.000	-8 2.652	-82.652	0.000	-82.652 -48.277	-02.052 -48.277	0	-82.052 -48.277	-02.052 -48.277	0	-62.652 -48.277
IV	E16 - E15	48.269	10.1	-48.269	-0.008	-48.277	-48.277	0.000	-48.277	-48.277	0.000	-48.277	-48.277	0.000	126.212	126.212	0	126.212	126.212	0	126.212
	E15 - E14	126,230	26.5	126.230	-0.020	126.210	126.210	0.001	126.211	126.211	0.001	126.212	126.212 36.253	0.000	36.253	36.253	0	36.253	36.253	0	36.253
	E14-E13	36.259	7.6	36.259	-0.006	36.253	36.253	0.000	36.253	36.253	0.000	36.253 75.906	75.906	0.000	75.906	75.906	0	75,906	75.906	0	75.906
İ	E13 - E10	75.917	15.9	75.917	-0.012	75.905	75.906	0.000	75.906 0.000	75.906 -0.001	0.000	0.000	0.000	0.000	0.000	0.000	0	0	0.000	0	0
	TOTAL	476.737	100.0	0.075	-0.075	0.000	-0.001	0.001	35.862	35,862	0.000	35.862	35.862	0.000	35.862	35,862	0.000	35.862	35.862	0	35.862
	E17 - E23	35.856	7.4	35.856	0.006	35.862	35.862 -75.305	0.000	-75.305	-75.305	0.000	-75.305	-75.305	0.000	-75.305	-75.305	0.000	-75.305	-75.305	ő	-75.305
1	E23 - E22	75.318	15.6	-75.318	0.013 0.022	-75.305 -131.641	-75.305 -131.643	0.000	-131.642	-131.643	0.001	-131.642	-131.643	0.001	-131.642	-131.642	0.000	-131.642	-131.642	ō	-131.642
	E22 - E21	131.663	27.2	-131.663		-131.641 -34.962	-131.643 -34.962	0.000	-34.962	-34.962	0.000	-34.962	-34.962	0.000	-34.962	-34.962	0.000	-34.962	-34.962	0	-34.962
V	E21 - E20	34.968	7.2	-34.968	0.006		75.118	0.000	75.118	75.118	0.000	75.118	75.118	0.000	75.118	75.118	0.000	75.118	75.118	ō	75.118
	E20 - E15	75.105	15.5	75.105	0.013	75.118	1 1	0.000	48.277	48.277	0.000	48.277	48.277	0.000	48.277	48.277	0.000	48.277	48.277	0	48.277
1	E15 - E16	48.269	10.0	48.269	0.008	48.277	48.277	0.000	82.652	82.652	0.000	82.652	82.652	0.000	82.652	82.652	0.000	82.652	82.652	0	82.652
	E16 - E17	82.637	17.1	82.637	0.014	82.651	82.651	0.001	0.000	-0.001	0.000	0.000	-0.001	0.001	0.000	0.000	0.000	0.000	0.000	0	0
	TOTAL	483.816	100.0	-0.082	0.082	0.000	-0.002	0.002	27.902	27.902	0.000	27.902	27.902	0.000	27.902	27,902	0.000	27.902	27.902	0	27.902
	E22 - E27	27.906	6.4	27.906	-0.004	27.902	27.902		-67.175	-67.175	0.000	-67.175	-67.175	0.000	-67.175	-67,175	0.000	-67.175	-67.175	ő	-67.175
	E27 - E26	67.165	15.4	-67.165	-0.010	-67.175	-67.175	0.000		-82.897	0.000	-82.897	-82.897	0.001	-82.896	-82.896	0.000	-82.896	-82.896	0	-82.896
	E26 - E25	82.884	19.1	-82.884	-0.013	-82.897	-82.897	0.000	-82.897 -67.292	-82.897 -67.292	0.000	-62.097 -67.292	-67.292	0.000	-67.292	-67.292	0.000	-67.292	-67.292	0	-67.292
VI	E25 - E24	67.281	15.5	-67.281	-0.011	-67.292 57.840	-67.292 57.910	0.000	-67.292 57.819	-67.292 57.819	0.000	57.819	57.819	0.000	57.819	57,819	0.000	57.819	57.819	0	57.819
	E24 - E21	57.828	13.3	57.828	-0.009	57.819	57.819		131.643		0.001	131.643	131,642	0.000	131.642	131.642	0.000	131.642	131.642	Ö	131.642
	E21 - E22	131.663	30.3		-0.020	131.643	131.642 -0.001	0.001 -0.001	0.000	131.642 -0.001	0.001	0.000	-0.001	0.000	0.000	0.000	0.000	0.000	0.000	0	0
	TOTAL	434.727	100.0	0.067	-0.067	0.000	-0.001	-0.001	0.000	-0.001	5.557	0.000	0.001	0,001	0.000						

POLÍGONO VII

ESTAC.	ANGULO COMPENS.	LADO	LONG. PROMEDIO (m)	AZIMUT	RUMBO	PROYEC. EJE X (m)	PROYEC. EJE Y (m)
E 8	104° 55' 15"	E 8 - E 6 (aux)	84.960	338° 56′ 54″	N 21° 03' 06" O	- 30.518	+ 79.290
E 6 (aux)	84° 59′ 42″	`					
E 5 (aux)	79° 12' 06"	E 6 (aux) - E 5 (aux)	53.473	243° 56' 36"	S 63° 56' 36" O	- 48.038	- 23.488
E 9	90° 52' 57"	E 5 (aux) - E 9	91.300	143° 08' 42"	S 36° 51' 18" E	+ 54.761	- 73.054
	30 32 31	E9-E8	29.420	54° 01′ 39"	N 54° 01' 39" E	+ 23.810	+ 17.281
SUMA	360° 00' 00"		259.153			0.015	0.029

^{*}Buzón

 $e_c = 0.033 \text{ m.}$; $e_r = 1/7,500$

Suma de proyecciones en X = 157.127 m.

Suma de proyecciones en Y = 193.113 m.

Corrección en $X = (Error de cierre en X) \times (Proyección en X) \div (Suma de proyecciones en X).$ Corrección en $Y = (Error de cierre en Y) \times (Proyección en Y) \div (Suma de proyecciones en Y).$

COMPENSACIÓN DE LAS PROYECCIONES

		EJE X			EJE Y	
LADO	Proyección	Corrección	PROYECCIÓN COMPENSADA	Proyección	Corrección	PROYECCIÓN COMPENSADA
E 8 - E 6 (aux)	- 30.518	- 0.003	- 30.521	+ 79.290	- 0.012	+ 79.278
E 6 (aux) - E 5 (aux)	- 48.038	- 0.005	- 48.043	- 23.488	- 0.004	- 23.492
E 5 (aux) - E 9	+ 54.761	- 0.005	+ 54.756	- 73.054	- 0.011	- 73.065
E9-E8	+ 23.810	- 0.002	+ 23.808	+ 17.281	- 0.002	+ 17.279
SUMA	+ 0.015	- 0.015	0.000	+ 0.029	- 0.029	0.000

<u>POLÍGONO VIII</u>

ESTAC.	ANGULO COMPENS.	LADO	LONG. PROMEDIO (m)	AZIMUT	RUMBO	PROYEC. EJE X (m)	PROYEC. EJE Y (m)
E 15 (aux)	82° 43′ 02″						
E 19 (aux)	134° 24' 00"	E 15 (aux) – E 19 aux)'	44.500	298° 53′ 12″	N 6.1° 06' 48" O	- 38.963	+ 21.497
E 18 (aux)	106° 55' 46"	E 19 (aux) - E 18 (aux)	153.690	253° 17' 12"	S 73° 17' 12" O	- 147.197	- 44.199
• •		E 18 (aux) - E 17 (aux)	90.600	180° 12' 58"	S 0º 12' 58" O	- 0.342	- 90.599
E 17 (aux)	63° 26' 56"	E 17 (aux) – E 16 (aux)	181.350	63° 39′ 54″	N 63° 39' 54" E	+ 162.529	+ 80.450
E 16 (aux)	152° 30' 16"	E 16 (aux) - E 15 (aux)	40.650	36° 10' 10"	N 36° 10′ 10" E	+ 23,991	+ 32.816
SUMA	540° 00' 00"	- 10 (ddx) - 2 10 (ddx)	510.790	33 10 10	10 10 10	+ 0.018	- 0.035

 $e_c = .0.039 \text{ m}.$

 $e_r = 1/12,900$

Suma de proyecciones en X = 373.022 m. Suma de proyecciones en Y = 269.561 m.

COMPENSACIÓN DE LAS PROYECCIONES:

		EJE X		EJE Y			
LADO	Proyección	Corrección	PROYECCION COMPENSADA	Proyección	Corrección	PROYECCION COMPENSADA	
E 15 (aux) – E 19 aux)'	- 38.963	- 0.002	- 38.965	+ 21.497	+ 0.003	+ 21.500	
E 19 (aux) – E 18 (aux)	- 147.197	- 0.007	- 147.204	- 44.199	+ 0.006	- 44.193	
E 18 (aux) - E 17 (aux)	- 0.342	- 0.000	- 0.242	- 90.599	+ 0.012	- 90.587	
E 17 (aux) – E 16 (aux)	+ 162.529	- 0.008	+ 162.521	+ 80.450	+ 0.010	+ 80.460	
E 16 (aux) - E 15 (aux)	+ 23.991	- 0.001	+ 23.990	+ 32.816	+ 0.004	+ 32.820	
SUMA	+ 0.018	- 0.018	0.000	- 0.035	0.035	0.000	

Se realizó la compensación de vértice en las estaciones: T y S'.

NIVELACIÓN

Polígono I

Circuito de nivelación E1-E5-E4-E3-E2-E1

PUNTO	V. ATRÁS (m)	V. ADEL. (m)	DESNIVEL (m)	COTA (m.s.n.m.)	DESNIVEL ENTRE ESTACIONES (m)	DESNIVEL COMP. ENTRE ESTACIONES (m)	COTA COMPENSADA (m:s:n:m.)
E 1 *	1.554		·	2,728.170	0.000	0.000	2,728.170
1*	1.329	1.023	0.531	2,728.701	· ,		
E 5	0.432	1.721	- 0.392	2,728.309	0.139	0.135	2,728.305
2*	0.520	1.978	- 1.546	2,726.763	·		
3*	0.794	1.906	- 1.386	2,725.397			
E 4	1.143	1.842	- 1.048	2,724.329	- 3.980	- 3.980	2,724.325
E 3	1.961	1.273	- 0.130	2,724.199	- 0.130	- 0.131	2,724.194
4*	1.949	0.648	1.313	2,725.542			-
5*	1.088	0.582	1.367	2,726.879			
E 2	1.667	0.646	0.442	2,727.321	3.122	3.120	2,727.314
E 1 *		0.811	0.856	2,728.177	0.856	0.856	2,728.170

12.437 12.430

Perímetro (distancia nivelada) = 547.697 m. = 0.547697 Km.

$$e_{\text{mix}} = 0.04 \sqrt{0.547697} = 0.030 \, \text{m}.$$

Error de Cierre =
$$12.437 - 12.430 = 0.007 \text{ m}$$
.
 $0.007 < 0.030 \checkmark$

^{*} Buzón

Polígono II Circuito de nivelación E 4 – E 6 – E 7 – E 8 – E 9 – E 10 – E 11 – E 5 – E 4

PUNTO	V. ATRÁS (m)	V. ADEL.	DESNIVEL (m)	COTA (m.s.n.m.)	DESNIVEL ENTRE ESTACIONES (m)	DESNIVEL COMP. ENTRE ESTACIONES (m)	COTA COMPENSADA (m:s:n:m.)
					The state of the s		
E 4	1.538			2,724.325	0.000	0.000	2,724.325
E 6	1.606	1.339	0.199	2,724.524	0.199	0.199	2,724.524
E 7	1.784	0.950	0.656	2,725.180	0.656	0.656	2,725.180
E 8	1.967	1.173	0.611	2,725.791	0.611	0.611	2,725.791
E 9	1.888	1.010	0.957	2,726.748	0.959	0.959	2,726.748
1	1.688	0.657	1.231	2,727.979	,		
E 10 *	1.438	0.976	0.712	2,728.691	1.943	1.943	2,728.691
E 11 *	1.013	1.217	0.221	2,728.912	0.221	0.221	2,728.912
E 5	0.432	1.620	- 0.607	2,728.305	- 0.607	- 0.607	2,728.305
2*	0.520	1.978	- 1.546	2,726.759			6
3*	0.744	1.906	-:1.386	2,725.373			Annual services and annual
E 4		1.842	- 1.048	2,724.325	- 3.980	- 3.980	2,724.325

14.668 14.668

Error de Cierre = 0.000 m. ✓

Polígono III Circuito de nivelación E 10 – E 13– E 12 – E 7 – E 8 – E 9 – E10

PUNTO	V. ATRÁS (m)	V. ADEL. (m)	DESNIVEL (m)	COTA (m.s.n.m.)	DESNIVEL ENTRE ESTACIONES (m)	DESNIVEL COMP. ENTRE ESTACIONES (m)	COTA COMPENSADA (m:s:n:m.)
T 40 *	4 000			0.700.604	0.000	0.000	0.700.004
E 10 *	1.093			2,728.691	0.000	0.000	2,728.691
E 13	0.160	1.878	- 0.785	2,727.909	- 0.785	- 0.785	2,727.906
1	1.348	1.841	- 1.681	2,726.225			
E 12	1,148	1.596	- 0.248	2,725.977	- 1.929	- 1.929	2,725.977
E 7	1.784	1.945	- 0.797	2,725.180	- 0.797	- 0.797	2,725.180
E 8	1.967	1.173	0.611	2,725.791	0.611	0.611	2,725.791
E9	1.888	1.010	0.957	2,726.748	0.957	0.957	2,726.748
2	1.688	0.657	1.231	2,727.979			
E 10 *		0.976	0.712	2,728.691	1.943	1.943	2,728.691
	11.076	11.076	!	·	!		

* Buzón

^{*} Buzón

Polígono IV Circuito de nivelación E 10 – E 19 – E 18 – E 17 – E 16 – E 15 – E 14 – E 13 – E 10

	1	(m)	DESNIVEL (m)	COTA (m.s.n.m.)	DESNIVEL ENTRE ESTACIONES (m)	ENTRE ESTACIONES (m)	COTA COMPENSADA (m:s:n:m.)
E 10 *	1.850	:		2,728.691	0.000	0.000	2,728.691
E 19	1.882	0.937	0.913	2,729.604	0.913	0.912	2,729.603
E 16 *	1.917	0.447	1.435	2,731.039	1,435	1.435	2,731.038
1	1.906	0.690	1.227	2,732.266			
2	1.818	0.775	1.131	2,733.397			
E 17 *	1.271	0.952	0.866	2,734.263	3.224	3.222	2,734.260
E 16	0.930	0.903	0.368	2,734.631	0.368	0.367	2,734.627
E 15	0.614	1.083	- 0.153	2,734.478	- 0.153	- 0.153	2,734.474
3	0.810	1.834	- 1.220	2,733.258		4	
4	0.930	1.963	- 1.153	2,732.105			
5	0.784	1.967	- 1.037	2,731.068			
6	1.025	1.907	- 1.123	2,729.945	_		
E 14	0.724	1.724	- 0.699	2,729.246	- 5.232	- 5.234	2,729.240
7	1.209	1.593	- 0.869	2,728.377			
E 13	1.878	1.674	- 0.465	2,727.912	- 1.334	- 1.334	2,727.906
E 10 *		1.093	- 0.785	2,728.697	0.785	0.785	2,728.691
		and the state of t					

19.548 19.542

Perímetro (distancia nivelada) = 0.732910 Km.

 $e_{\text{mix}} = 0.04 \sqrt{0.732910} = 0.034 \, \text{m}$

Error de Cierre = 0.006 m.

0.006 < 0.034 ✓

Polígono V

Circuito de nivelación E 15 – E 20 – E 21 – E 22 – E 23 – E 17 – E 16 – E 15

	_				DESNIVEL ENTRE	DESNIVEL COMP.	COTA
PUNTO	V. ATRÁS (m)	V. ADEL. (m)	DESNIVEL (m)	COTA (m.s.n.m.)	ESTACIONES (m)	ESTACIONES (m)	(m:s:n:m.)
		1	1				
E 15*				2,734.474	0.000	0.000	2,734.474
1	1.884	0.335	1.549	2,736.023			2,736.023
2	1.975	0.987	0.988	2,737.011			2,737.011
E 20	1.887	1.047	0.840	2,737.851	3.377	3.377	2,737.851
E 21*	1.727	1.522	0.205	2,738.056	0.205	0.205	2,738.056
3	1.333	1.713	- 0.380	2,737.676			2,737.676
E 22	1,201	1.613	- 0.412	2,737.264	- 0.792	- 0.789	2,737.264
4	0.348	1.830	- 1.482	2,735.782			2,735.782
5	0.481	1.504	- 1.023	2,734.759			2,734.759
E 23*	1.167	1.780	- 0.613	2,734.146	- 3.118	- 3.118	2,734.146
E 17*	1.322	1.211	0.111	2,734.257	0.111	0.111	2,734.257
E 16 🔩	1.271	0.903	0.368	2,734.625	0.368	0.368	2,734.625
E 15*	0.930	1.083	- 0.153	2,734.472	- 0.153	- 0.153	2,734.472
	45.500	45.500			·	<u></u>	

15.526 15.528

Perímetro (distancia nivelada) = 0.713675 Km.

^{*} Buzón

^{*} Buzón

$$e_{\text{mix}} = 0.04 \sqrt{0.713675} = 0.034 \,\text{m}$$

Error de Cierre = 0.002 m.

0.002 < 0.034 ✓

Polígono VI:

Circuito de nivelación E 22 - E 27 - E 26 - E 25 - E 24 - E 21 - E 22

PUNTO	V. ATRÁS (m)	V. ADEL.	DESNIVEL (m)·	COTA (m.s.n.m.)	DESNIVEL ENTRE ESTACIONES (m)	DESNIVEL COMP. ENTRE ESTACIONES (m)	COTA COMPENSADA (m:s:n:m.)
E 22	1.482			2,737.267	0.000	0.000	2,737.267
E 27	1.918	1.375	0.107	2,737.374	0.107	0.107	2,737.374
1	1.828	0.536	1.382	2,738.756			
2	1.819	0.623	1.205	2,739.961			
E 26	1.482	0.751	1,068	2,741.029	3.655	3.657	2,741.031
E 25	1.589	0.870	0.612	2,741.641	0.612	0.613	2,741.644
E 24	0.649	1.572	0.017	2,741.658	0.017	0.019	2,741.663
3	1.004	1.870	- 1.221	2,740.437			
4	0.494	1.628	- 0.624	2,739.813			
5	1.307	1.785	- 1.291	2,738.522		1	-
E 21 *	1.333	1.780	- 0.473	2,738.049	- 3.609	- 3.607	2,738.056
6	1.201	1.713	- 0.380	2,737.669			
E 22		1,613	- 0.412	2,737.257	- 0.792	- 0.789	2,737.257

16.106 16.116

Perímetro (distancia nivelada) = 0.630490 Km.;

$$e_{mix} = 0.04 \sqrt{0.630490} = 0.032 \, m$$

Error de Cierre = 0.010 m.

0.010 < 0.032 ✓

Polígono VII

Circuito de nivelación E8-E6 (aux) - E5 (aux) - E9-E8

PUNTO	V. ATRÁS (m)	V. ADEL (m)	DESNIVEL (m)	COTA (m.s.n.m.)	DIST. desde E 8 (m)	COMPENSACIÓN (m) ,	COTA COMPENSADA (m:s:n:m.)
E 8	1.339			2,725.791	0.000	0.003 (0.000 / 259.153) = 0.000	2,725.791
E 6 (aux) *	1.949	1,434	- 0.095	2,725.696	84.960	0.003 (84.960 / 259.153) = 0.001	2,725.697
E 5 (aux) *	0.031	0.443	1.506	2,727.202	138.433	0.003 (138.433 / 259.153) = 0.002	2,727.204
E 9	0.010	1.488	- 0.457	2,726.745	229.733	0.003 (229.733 / 259.153) = 0.000	2,726.748
E 8		1.967	- 0.957	2,725.788	259.153	0.003 (259.153 / 259.153) = 0.003	2,725.791
	5 000	T 000	<u> </u>	<u> </u>		<u> </u>	<u> </u>

5.329 5.332

Perímetro (distancia nivelada) = 0.259153 Km.

$$e_{\text{max}} = 0.04 \sqrt{0.259153} = 0.020 \text{ m}.$$

Error de Cierre = - 0.003 m.

0.003 < 0.020 ✓

^{*} Buzón

COTAS DE ESTACIONES AUXILIARES:

ESTACIÓN	COTA (m.s.n.m.)	ESTACIÓN	COTA (m.s.n.m.)
E 9 (aux)	2,729.384	E 12 (aux)N'	2,729.612
E 4 (aux)	2,726.759	E 11 (aux)O'	2,733.869
E 3 (aux)	2,725.373	E 10 (aux)P'	2,732.397
E 2 (aux)	2,725.507	E 14 (aux)Q'	2,735.786
E 1 (aux)	2,726.874	E 13 (aux)R'	2,737.680
E 8 (aux)	2,728.486	E 15 (aux)S'	2,733.393
E 7 (aux)	2,726.580		

Polígono VIII

Circuito de nivelación E 15 (aux) - E 16 (aux) - E 17 (aux) - E 18 (aux) - E 19 (aux) - E 15 (aux)

PUNTO	V. ATRÁS (m)	V. ADEL. (m)	DESNIVEL (m)	COTA (m.s.n.m.)	DIST. desde E 15 (aux) (m)	COMPENSACIÓN (m)	COTA COMPENS. (m:s:n:m.)
E 15 (aux)	1.380			2,733.393	0.000	- 0.006 (0.000 / 510.790) = - 0.000	2,733.393
E 16 (aux)	1.766	0.425	0.955	2,734.348	40.650	- 0.006 (40.650 / 510.790) = - 0.000	2,734.348
1	1.877	0.677	1.089	2,735.437			2,735.437
2	1.777	0.570	1.307	2,736.744			2,736.744
3	1.819	0.134	1.643	2,738.387			2,738.387
E 17 (aux)	1.325	1.325	0.494	2,738.881	222.000	- 0.006 (222.000 / 510.790) = - 0.003	2,738.881
E 18 (aux)	0.382	1.754	- 0.429	2,738.452	312.600	- 0.006 (312.600 / 510.790) = - 0.004	2,738.452
4	0.429	1.876	- 1.494	2,736.958			2,736.958
5	0.428	1.910	- 1.481	2,735.477			2,735.477
6	0.345	1.580	- 1.152	2,734.325	-		2,734.325
E 19 (aux)	0.877	0.877	- 0.532	2,733.793	466.290	- 0.006 (466.290 / 510.790) = - 0.005	2,733.793
E 15 (aux)		1.271	- 0.394	2,733.399	510.790	- 0.006 (510.790 / 510.790) = - 0.006	2,733.399

12.405 12.399

Perímetro (distancia nivelada) = 0.510790 Km.

$$e_{\text{mix}} = 0.04 \sqrt{0.510790} = 0.028 \text{ m}$$

Error de Cierre =
$$0.006 \text{ m}$$
.
 $0.006 < 0.028 \checkmark$

PROYECTO: "Pavimentación de las urbanizaciones: Sarita, Alan Perú, Las Margaritas; y calles del barrio San José" COMPENSACIÓN DE LA NIVELACIÓN : POLÍGONOS I, II, III, IV, V, VI (*Método de Aproximación Sucesiva*).

		DISTANC			CICLO 1	E LA MIN		CICLO 2			CICLO 3			CICLO 4			CICLO 5	
CIRCUITO	LADO	METROS	%	DESNIVEL	CORREC.	DESNIVEL CORREG.	DESNIVEL	CORREC.	DESNIVEL CORREG.	DESNIVEL	CORREC.	DESNIVEL CORREG.	DESNIVEL	CORREC.	DESNIVEL CORREG.	DESNIVEL	CORREC.	DESNIVEL CORREG.
-	E1 - E5	158.186	25.0	0.139	-0.002	0.137	0.137	-0.001	0.136	0.136	0.000	0.136	0.136	-0.001	0.135	0.135		0.135
E1 - E5	E5 - E4	137.130	28.9	-3.980	-0.002	-3.982	-3.980	-0.001	-3,981	-3.980	-0.001	-3.981	-3.980	1	i	-3.980	į.	-3.980
E4 - E3	E4 - E3	75.051	13.7	-0.130	-0.001	-0.131	-0.131	0.000	-0.131	-0.131	0.000	-0.131	-0.131	0.000	1	-0.131		-0.131
E3 - E2	E3 - E2	129.640	23.7	3.122	-0.002	3.120	3.120	0.000	3.120	3.120	0.000	3.120	3.120	I .	l .	3.120	1	3.120
El	E2 - E1	47.690	8.7	0.856	0.000	0.856	0.856	0.000	0.856	0.856	0.000	0.856	0.856	0.000	l	0.856		0.856
l }	TOTAL	547.697	100.0	0.007	-0.007	0.000	0.002	-0.002	0.000	0.001	-0.001	0.000	0.001	-0.001	0.000	0.000	<u> </u>	0 0.199
	E4 - E6	82.749	15.9	0.199	0.000	0.199	0.199	0.000	0.199	0.199	0.000	0.199	0.199	1	1	0.199	1	0.199
1	E6 - E7	48.870	9.0	0.656	0.000	0.656	0.656	0.000	0.656	0.656	0.000	ſ	0.656	1	1	0.656	0	0.630
E4 - E6	E7 - E8	30.445	5.8	0.611	0.000	0.611	0.611	0.000	0.611	0.611	0.000	0.611	0.611	0.000	1	0.611	_	0.957
E7 - E8	E8 - E9	29.420	5.7	0.957	0.000	0.957	0.957	0.000	0.957	0.957	0.000	0.957	0.957	0.000	3	0.957	1	1.943
E9 - E10	E9 - E10	50.740	9.7	1.943	0.000	1.943	1.943	0.000	1.943	1.943	0.000	1.943	1.943	0.000		1.943		0.221
E11 - E5	E10 - E11	109.124	21.0	0.221	0.000	0.221	0.221	0.000	0.221	0.221	0.000	0,221	0.221	0.000	t	0.221	Į.	-0.607
E4	E11 - E5	13.040	2.5	-0.607	0.000	-0.607	-0.607	0.000	-0.607	-0.607	0.000	-0.607	-0.607	0.000	-0.607	-0.607	III.	-0.607
	E5 - E4	158.186	30.4	-3.980	0.000	-3.980	-3.981	0.001	-3.980	-3.981	0.001	-3.980	-3.980	0.000	-3.980	-3.980		-3.900
!	TOTAL	520.574	100.0	0.000	0.000	0.000	-0.001	0.001	. 0.000	-0.001	0.001	0.000	0.000	0.000	-0.785	0.000 -0.785		-0.785
	E10 - E13	103.123	29.4	-0.785	0.000	-0.785	-0.784	-0.001	-0.785	-0.785	0.000	-0.785	-0.785	1	-0.765	-0.783	i	-1.929
E10 - E13	E13 - E12	58.735	16.7	-1.929	0.000	-1.929	-1.929	0.000	-1.929	-1.929	0.000	ł .	-1.929	0	-0.797	-0.797	1	-0.797
E12 - E7	E12 - E7	78.410	22,3	-0.797	0.000	-0.797	-0.797	0.000	-0.797	-0.797	0.000	-0.797	-0.797	0	0.611	0.611	0	0.611
E8 - E9	E7 - E8	30.445	8.7	0.611	0.000	0.611	0.611	0.000	0.611	0.611	0.000	0.611 0.957	0.611 0.957	0	0.957	0.957	1	0.957
E10	E8 - E9	29.420	8.4	0.957	0.000	0.957	0.957	0.000	0.957	0.957	0.000	1.943	1.943	0	1.943	1.943	1	1.943
	E9 - E10	50.740	14.5	1.943	0.000	1.943	1.943	0.000	1.943	1.943 0.000	0.000	0.000	0.000	0	0	0.000	J	0
	TOTAL	350.873	100.0	0.000	0.000	0.000	0.001	-0.001	0.912	0.000	0.000	0.000	0.912	0	0.912	0.912	<u> </u>	0.912
1	E10 - E19	68.385	9.3	0.913	-0.001	0.912	0.912 1.435	0.000	1.435	1.435	0.000	1.435	1.435		1,435	1.435	0	1.435
l	E19 - E18	52.467	7.2	1.435	0.000	1.435 3.223	3.223	-0.001	3.222	3.222	0.000	3,222	3.222	0	3.222	3.222	0	3,222
	E18 - E17	108.775	14.8	3.224	-0.001 -0.001	0.367	0.368	-0.001	0.367	0.367	0.000	0.367	0.367	0	0.367	0.367	0	0.367
1	E17 - E16	103.452	14.1	0.368	-0,001	-0.154	-0.153	0.000	-0.153	-0.153	0.000	-0.153	-0.153	0	-0.153	-0.153	0	-0.153
, 200	E16 - E15	65.055	8.9	-0.153	-0.001	-5.233	-5.233	-0.001	-5.234	-5.234	0.000	-5.234	-5.234	0	-5.234	-5.234	0	-5.234
21	E15 - E14	177.110	24.2	-5.232	0.000	-1,334	-1.334	0.000	-1.334	-1.334	0.000	-1.334	-1.334	0	-1,334	-1.334	0	-1.334
E10	E14 - E13	54.543	7.4	-1,334 0.785	-0.001	0.784	0.785	0.000	0.785	0.785	0.000	0.785	0.785	0	0.785	0.785	0	0.785
l }	E13 - E10	103.123	14.1	0.006	-0.001	0.000	0.003	-0.003	-0.001	0.000	0.000	0.000	0.000	0	0	0.000	0	0
 	TOTAL E15 - E20	732.910 135.978	19.1	3,377	0.000	3.377	3.377	0.000	3.377	3.377	0.000	3.377	3.377	0	3.377	3.377	1	3.377
	E20 - E21	58.895	8.2	0.205	0.000	0.205	0.205	0.000	0.205	0.205	0.000	0.205	0.205	0	0.205	0.205		0.205
E15 - E20	E21 - E22	162.357	22.7	-0.792	0.001	-0.791	-0.789	-0.001	-0.790	-0.789	0.000	-0.789	-0.789	0	-0.789	-0.789	1	-0.789
E21 - E22	E22 - E23	139.665	19.6	-3,118	0.001	-3.117	-3.117	0.000	-3.117	-3.117	-0.001	-3.118	-3.118	0	-3.118	-3.118	J	-3.118
E21 - E22 E23 - E17	E23 - E17	48.273	6.8	0.111	0.000	0.111	0.111	0.000	0.111	0.111	0.000	0.111	0.111	0	0.111	0.111	0	0.111
E16 - E15	E17 - E16	103.452	14.5	0.368	0.000	0.368	0.367	0,000	0.367	0.367	0.000	0.367	0.367	0	0.367	0.367	1	0,367
E20	E16 - E15	65.055	9.1	-0.153	0.000	-0.153	-0.153	0.000	-0.153	-0.153	0.000	-0.153	-0.153	0	-0.153	-0.153		-0.153 0
	TOTAL	713.675	100.0	-0.002	0.002	0.001	0.001	-0.001	0.000	0.001	-0.001	0.000	0.000		0.000	0.000		0.107
	E22 - E27	30.400	4.8	0.107	0.000	0.107	0.107	0.000	0.107	0.107	0.000	0.107	0.107	0	0.107	0.107		3.657
E22 - E27	E27 - E26	129.378	20.5	3.655	0.002	3.657	3.657	0.000	3.657	3.657	0.000	!	3.657	ł	3.657	3.657 0.613	1	0.613
E26 - F25	E26 - E25	94.600	15.0	0.612		0,613	0.613	0.000	0.613	0.613	0.000	0.613	0.613	1	0.613			0.013
E24 - E21	E25 - E24	100.793	16.0	0.017	0.002	0.019	0.019	0.000	0.019	0.019	0.000	0.019	0.019	ł	0.019	0.019	1	-3.607
E22	E24 - E21	112.962	17.9	-3.609	0.002	-3.607	-3.607	0.000	-3.607	-3.607	0.000	-3.607	-3.607	0	-3.607	-3.607 -0.789	1	-0.789
!	E21 - E22	162.357	25.8	-0.792		-0.789	-0.790	0.001	-0.789	-0.789	0.000	-0.789	-0.789		-0.789 0	0.000	1	0.769
1 1	TOTAL	630.490	100.0	-0.010	0.010	-0.001	-0.001	0.001	0.000	0.000	0.000	0.000	0.000	U		0.000	'	

TOPOGRAFÍA: RADIACIÓN - COORDENADAS Y COTAS

Punto	DIST	ANG. HORIZ.	ANG. VERT.			Observación	COTA	ESTE	NORTE
	(m)	0 1 #		i	m		m.s.n.m.		
. E ₁	Ceros en	E ₂		1.420		Estación (buz.)	2728.170	774156,964	9209728.011
1	33.75	79° 36' 30"	89° 44′ 10"			Borde calle	2728.015	774178.055	9209701.663
2	33.90	81* 49' 30"	89* 22' 25"			Poste	2727.799	774177.109	9209700.746
3	33.25	88° 07' 00"	89" 38' 40"				2727.964	774173.673	9209699.264
4	33.20	93° 41′ 40″	89° 38' 00"				2727.958	774170.779	9209697.822
5	33.20	96* 40' 40"	89° 23' 45"		1	Borde calle	2727.820	774169.189	9209697.144
6	5.85	14° 53' 00"	89° 20' 00"			Borde calle (esq.)	2728.102	774162.654	9209729.367
7	20.75	13° 39' 40"	91° 40' 20"			Borde calle	2728.775	774177.041	9209733.250
8	3.80	352° 56' 00"	91° 14' 00"				2728.252	774160.063	9209730.209
9	3.85	349° 40' 40"	93° 29' 10".				2728.404	774159.972	9209730.413
10	5.05	318° 36' 00"	91° 36' 40"				2728.312	774158.717	9209732.747
11	4.60	271° 07' 00"	90° 27' 20"				2728.207	774154.863	9209732.103
12	1.80	271° 00' 00"	92° 06' 45"				2728.236	774156.138	9209729.611
13	6.00	225° 56' 10"	89° 19' 25"				2728.099	774151.246	9209729.830
14	5.10	206° 45' 00"	90° 03' 40"				2728.175	774151.865	9209727.874
15	5.20	203° 26' 10"	87° 30' 10"			Borde calle (esq.)	2727.944	774151.782	9209727.571
16	4.70	202° 33' 15"	89° 39' 20"			23. 22 30.10 (534.)	2728.142	774152.287	9209727.541
17	4.80	187° 13' 10"	89° 37' 10"		1.20		2728.358	774152.484	9209726.286
18	5.05	124° 43' 20"	89° 13' 40"		1.20		2728.102	774156.397	9209722.993
19	4.75	176° 13' 25"	88° 17' 50"			Borde calle	2728.029	774152.938	9209725.489
<u> </u>		·	100 17 30	1.380			2726.874	774211.656	9209740.264
E ₁ (aux)	Ceros er	185* 36' 10"	90° 20' 50"	1.300		Estación (buz.)		774225.325	9209726.710
20	l .	Į.	89° 29' 50"			Borde calle	2726.705	ĺ	i
21	18.70	189° 52' 40"	90° 06' 40"		}	-	2726.910	774223.916	9209726.144
22	20.30	201° 31' 45"	90° 01' 50"				2726.885	774221.595	9209722.563
23	25.00	209° 13' 30"	89, 30, 00,				2726.656	774220.867	9209717.023
24	25.25	212° 22' 40"	89° 04' 30"			Borde calle	2726.466	774219.654	9209716.314
25	15.50	214° 44' 40"	90° 09′ 10″				2726.915	774215.954	9209725.372
26	13.55	189° 10' 20"	91° 24' 10"				2727.206	774220.665	9209730.143
27	6.45	236° 47' 10"	89° 55' 20''	-		_ :	2726.865	İ	9209733,848
28	8.90	166° 16' 30"	89° 41' 30"			Borde calle	2726.826	1	9209736,442
29	8.50	170° 53' 50"	91° 10' 00"				2727.047	774219.013	9209736,007
30	6.00	142° 45' 20"	91° 54' 25"			Borde calle (esq.)	2727.074		9209740.064
31	10.10	134° 39' 10"	91° 26' 00"	1		Borde calle	2727.127	774221.697	9209741.353
32	9.80	126° 07' 10"	92° 22' 20"				2727.279		9209742.755
33	5.50	119° 38' 10"	91° 07' 10"		1.70		2726.661	774216.783	9209742,254
34	5.65	116° 20' 55"	90° 53' 50"		1.70		2726.642		9209742.606
35	7.25	81° 20' 05"	91° 52' 30"	1			2727.111	1	9209746.511
36	6.25	35° 11' 20"	90° 47' 10"				2726.960	l	9209746.282
37	8.20	342* 18' 50"	89" 52' 20"				2726.856		9209743.265
38	4.90	331° 47' 00"	91° 28' 00"				2726.999	1	9209741.194
39	4.70	329° 05' 20"	92° 39' 00"		}		2727.091	1	9209740,938
40	4.70	328° 26' 40"	90° 11' 10"				2726.889	774206.997	9209740.885
41	5.40	310° 54' 50"	89° 30' 55"			Borde calle (esq.)	2726.828	774206.337	9209739.333
42	4.55	258° 22' 10"	90° 17' 15"		1		2726.897	774209.553	9209736.229
43	4.45	324° 15' 30"	91° 00' 10"				2726.952	774207.214	9209740.529
44	7.65	37° 22' 10"	92° 21' 30"		1.55		2727.019	774209.873	9209747.703
E ₂ (aux)	Ceros e	n E ₂		1.450	1	Estación (buz.)	2725.507	774267.112	9209747.732
45	24.00	226° 34' 00"	89" 44' 15"			Borde calle	2725.397	774282.863	9209729.624
46	23.90	229° 44' 00"	90° 07' 35"				2725.397	774281.778	9209728.861
47	22.80	236° 36' 50"	90° 04' 10"				2725.560	774278.845	9209728.183
48	18.10	250° 15' 30"	89" 48" 05"				2725.535	774272.503	9209730,453
	18.40	254° 12' 30"	89° 32° 20″	1	1	1	2725.444	774271.369	9209729.831

Dunto	DICT								
Punto	DIST	ANG. HORI	Z. ANG. VERT.	1		Observación	COTA	ESTE	NORTE
	(m)			<u> </u>	m		m.s.n.m.		
50	10.25	268° 03' 40	,			Borde calle	2725.359	774267.027	9209737.482
51	9.70	260* 39' 40					2725.202	774268.281	9209738.103
52	5.76	238* 00' 30					2725.444	774269.955	9209742.722
53	8.30	202" 31' 00				Borde calle (esq.)	2725.526	774274.638	9209744.233
54	5.70	200° 32° 45	' ∫91° 37' 30 "				2725.434	774272.360	9209745.508
55	9.25	186° 00' 20	' 91° 11' 50"			Borde calle	2725.669	774276.262	9209746.378
56	9.00	174° 34' 00	91° 59' 25"				2725.700	774276.099	9209748.206
57	8.85	172° 33' 40	' 91° 48' 10"				2725.819	774275.928	9209748.507
58	4.05	171° 37' 25	92° 51' 10"	ļ			2725.785	774271.140	9209748.153
59	4.80	131° 54' 40	91° 58' 35"				2725.708	774270.466	9209751.166
60	4.40	175° 26' 00	93° 04' 20"		}		2725.672	774271.509	9209747.897
61	1.65	249° 17' 20	' 91° 56' 20"				2725.742	774267.630	9209746.165
62	5.40	227° 15' 20	90° 16' 30"				2725.563	774270.607	9209743.615
63	8.80	214° 41' 40	90° 41' 40"				2725.533	774274.130	9209742.423
64	4.15	350° 56' 05	90° 57' 40"				2725.614	774262.990	9209747.251
65	4.20	356° 38' 30	90° 42' 40"		{		2725.577	774262.912	9209747.663
66	4.80	20° 44' 30	90° 06' 40"				2725.559	774262.698	9209749.619
67	4.95	88° 18' 00	91° 18' 00"			·	2725.516	774267.173	9209752.681
68	5.25	338° 38' 40	88° 54' 50"		1.25	Borde calle (esq.)	2725.749	774262.146	9209746.028
69	3.75	329° 06′ 10	85° 34' 10"				2725.408	774263.816	9209745.943
E 3	Ceros en	Ε.		1.365		Estación	2724.194	774328.568	9209753.201
70	36.30	348° 46' 40	90° 14' 00"	1		Borde calle	2724.342	774351.035	9209724.689
71	35.00	349° 43' 50				30.43 04.10	2724.535	774349.770	9209725.354
72	34.00	350° 57' 30	_				2724.285	774348.580	
73	31.05	358° 06' 10					1		9209725.715
74	31.40	3° 42' 00					2724.197	774343.580	9209726.021
75	32.30	7° 03' 40'					2724.125 2724.217	774340,996	9209724.365
76	19.50	12* 28' 15				Borde caile	2723.904	774339.591 774333.465	9209722.840
77	19.35	9° 23' 20	1			Doi de Calle	2723.946		9209734.326
78	18.00	3° 46' 20		}				774334.427 774335.671	9209734.759
79	17.90	0° 12' 30	1	ł			2724.419		9209736.662
80	21.00	343° 58' 50] -				2724.254	774336.641	9209737.225
81	20.90	341* 37' 50	Î				2724.323	774342.899	9209737.851
82	22.00	337° 41' 20				Rordo collo	2724.638	774343.445	9209738.522
83	12.85	314° 07' 50	1		ļ	Borde calle	2724.084	774345.254	9209738.863
84	11.75	316° 54' 50				Borde calle	2724.399	774340.849	9209749.419
85	16.80	294° 58' 20	1		1.55	Poste	2724.402	774339.616	9209749.202
86	9.80	295° 50' 10]		الك.،	Poste	2724.401	774345.357	9209753.800
87	9.75	293° 05' 00	1				2724.562	774338.366	9209753.403
88	9.85	277° 41' 35	1				2724.529	774338.295	9209753.870
89	3.50	233° 09' 40					2724.452	774337.863	9209756.460
90	3.40	292° 15' 35	ĺ		}	-	2724.308	774330.110	9209756.343
91	3.40	297° 38' 35	1				2724.306	774331.956	9209753.483
92		ļ	1		}		2724.345	774331.967	9209753.164
93	4.50	157° 31' 50	\				2724.237	774325.147	9209756.124
94	2.28	116° 41' 50					2724.293	774326.288	9209753.188
	2.10	108° 39' 00	1		1.60		2724.241	774326.490	9209752.895
95	2.05	94° 43' 00				! [2724.226	774326.671	9209752.423
96,	3.25	107° 08' 40	-		}		2724.099	774325.366	9209752.644
97	9.50	15° 48' 00	1				2724.277	774330.416	9209743.882
98	9.45	356° 55' 10					2724.389	774333.307	9209745.025
99	4.75	321° 18' 30'	1		1		2724.366	774332.897	9209751.247
100	8.50	307° 30' 00	91" 28' 30"				2724.413	774336.926	9209751.654
101	10.75	323* 30* 40	91° 42′ 50"				2724.515	774338.189	9209748.405

	T				-							
Punto	DIST		. HORI		IG. VE	ERT.			Observación	COTA	ESTE	NORTE
	(m)			°			i	m		m.s.n.m.		
E ₄	Ceros er	E ₆					1.510		Estación	2724.325	774362.658	9209686.323
102	39.85	176°	44' 10'	90	15'	35"			Borde calle	2724.506	774351.220	9209724.496
103	41.20	175°	11' 45'	90	29	30"				2724.679	774349.776	9209725.457
104	28.30	174°	22' 10"	90	34'	15"				2724.607	774353.423	9209713.074
105	38.35	173°	51' 05"	90	09'	20"				2724.429	774349.816	9209722.459
106	39.00	166°	53' 00'	90	, 03,	40"	!			2724.367	774345.236	9209721.215
107	37.00	159°	26' 00'	90	. 03.	40"				2724.364	774341.977	9209717.004
108	36.30	157°	39' 10'	89	42	10"	ļ ,		Borde calle	2724.137	774341.443	9209715,778
109	15.25	178°	59' 30'	91	, 09,	05"				2724.631	774358.859	9209701.092
110	15.10	177°	03' 50'	91	16'	35"				2724.661	774358.407	9209700.812
111	15.00	172°	40' 40'	90	07'	45"				2724.359	774357.346	9209700.351
112	12.75	157°	26' 00'	90	03,	20"				2724.337	774355.167	9209696.640
113	14.15	İ	15' 10'	1						2724.213	774352.451	9209696.123
114	14.60	[25' 20'				!		~	2724.428		
115	10.60	120°		1					Pardo anlla (ann.)		774351.474	9209695.709
116	8.30	114°	33' 40'	-] !		Borde calle (esq.)	2724.154	774352.544	9209689,497
117	11.00	109°	20' 30'	1					DanieU- 4	2724.407	774354.514	9209687.927
118	32.50	84°	49' 40'	1					Borde calle (esq.)	2724.135	774351.716	9209687.459
119	l	1					ł i			2723.737	774331.853	9209675.963
}	25.75	84°	39' 40'	ļ			1			2723.859	774338.275	9209678.044
120	20.80	76°	40' 50'							2723.865	774344.081	9209676,966
121	19.60	65°		- 1		00"				2723.972	774347.114	9209674.383
122	20.30	63°	24, 20,	- 1					Borde calle	2723.869	774347.109	9209673.271
123	32.20	82°	37' CO'			20"				2723.794	774332.556	9209674.889
124	9.20	85°	46' 45'	89	, 08,	10"	}		•	2724.186	774353.890	9209683.535
125	10.85	54°	17' 40'	88	, 08,	50"	}	Į	Borde calle (esq.)	2723.974	774355.557	9209678.119
126	10.15	59°	01' 30'	88	44'	20"				2724.102	774355.405	9209679.222
127	10.25	42°	43' 10'	88	04'	55"			Borde calle (esq.)	2723.982	774357.641	9209677.384
128	9.20	41°	25' 00'	89	59	20"				2724.323	774358.338	9209678.200
129	43.50	2°	27' 10'	89	36,	50"	,		Borde calle	2724.032	774370.930	9209643,617
130	43.10	0°	22' 25'	89	55'	10"	}			2724.264	774372.384	9209644.335
131	43.00	359°	16' 30'	89	44'	15"				2724.128	774373.163	9209644.626
132	43.45	355°	09' 40'	90	01'	10"				2724.340	774376.268	9209645.059
133	41.85	350°	23, 50,	89	53'	50"		ĺ		2724.250	774379.028	9209647.807
134	41.20	349°	03, 30,	89	49'	40"			Borde calle	2724.201	774379.650	9209648,790
135	34.50	347°	30' 20'	90	11'	40"			Borde calle	2724.442	774377.733	9209655.291
136	34.40	349°	06' 40'	90	19'	00"		ļ		2724.515	774376.816	9209654.972
137	29.80	354°	37' 40'	89	56'	00"			Buzón	2724.290	774372.255	9209658,111
138	29.40	6°	59' 20'	89	14'	10"			Borde caile	2723.933	774365.948	9209657.108
139	29.00	3°	35' 10'	89	59	15"			·	2724.319	774367.608	9209657.749
140	28.80	2°	12' 20"	89	40'	20"				2724.160	774368.257	9209658.072
141	24.30	356°	54' 00'	89	33'	20"				2724.137	774369.566	9209663.025
142	23.00	351°	13' 20'	90	02	45"				2724.343	774371.346	9209665.027
143	21.75	1	43' 20"	l					•	2724.618	774372.087	9209666.723
144	5.10	1	05' 50'				}			2724.349	774362.597	9209681,223
145	7.00	110°		ì					·	2724.299	774355.713	9209687.198
146	6.15	57°	33' 20'	1						2724.278	774358.375	9209681,909
147	2.65	86°		1	27'					2724.276	774360.122	
E ₃ (aux)	Ceros en						1.500		Estación (buz.)			9209685,551
148	8.45	T	06, 00,	an	24'	05"	1.500			2725.373	774316.267	9209661.025
149	7.60		18' 00'	1	23			ļ	Borde calle (esq.)	2725.314	774319.500	9209668.832
150	8.55	307°		l l				ļ	Dand	2725.321	774319.799	9209667.754
151	7.75	1		1	51'		}	ļ	Borde calle	2725.395	774317.628	9209669.466
152	ĺ	302°		1	41'					2725.279	774316.794	9209668.757
	7.20	273°		1	27'					2725.316	774313.185	9209667.532
153	49.70	∠o9°	41' 50"	1 89,	45	10"			Buzón	2725.587	774292.242	9209704.532

Dunta	DIST	A110	100:-			1					
Punto	DIST	ANG. F	ORIZ.	ANG	. VERT.	1.1		Observación	COTA	ESTE	NORTE
151	(m)	200	OL 40**	 		i	m		m.s.n.m.		
154	43.45	274° 21		ļ.	50' 20"				2725.495	774298.506	9209700.679
155	42.30	276° 1		l	30' 20"			Borde calle	2725.738	774300.182	9209700.147
156	43.85	265° 0		1	51' 50"				2725.477	774292.005	9209697.551
157	45.00	263° 2		(18' 40"			Borde calle	2725.914	774290.342	9209697,807
158	25.70	270° 0		89°	57' 40"			*	2725.390	774303.995	9209683.606
159	17.25	283° 2	0' 10"	90°	04' 10"				2725.352	774311.724	9209677.666
160	16.50	258° 2	8' 40"	90°	07' 45"				2725.336	774305.633	9209673,641
161	7.70	233° 1	5' 20"	88°	23' 40"			Borde calle (esq.)	2725.589	774309.268	9209664.236
162	6.15	236° 2	9' 45"	90°	07' 20"				2725,360	774310.831	9209663,902
163	7.35	222° 1	8' 45"	88°	27' 00"			Borde calle (esq.)	2725.572	774309.126	9209662.767
164	6.00	220° 3	0, 00,	89°	49' 05"			n	2725.392	774310.396	9209662.262
165	10.80	159° 0	5' 30"	89°	00, 30,				2725.560	774309.254	9209652.811
166	9.70	149° 0	1' 00"	88°	46' 00"			Borde calle	2725,582	774311.356	9209652.659
167	15.20	160° 4	1' 40"	88°	15' 45"			Borde calle (esq.)	2725.834	774306.078	9209649.745
168	13.80	165° 0	3' 25"	88°	31' 15"				2725.729	774306.264	9209651.517
169	15.75	179° 4	0' 50"	88*	21' 10"				2725.826	774302.481	9209653,407
170	14.20	196° 0	0' 45"	87*	54' 35"				2725.891	774302.408	9209657.929
171	9.20	155° 4	0' 30"	89°	09' 20"				2725.509	774310,721	9209653,684
172	12.60	157° 0	1' 20"	88*	35' 10"				2725,684	774308.437	9209651.153
173	4.60	98° 4	7' 25"	87°	26' 35"			Borde calle	2725.578	774317.826	9209656.697
174	8.70	24° 1:	3' 30"	92°	06' 40"				2725.053	774324.941	9209661,689
175	9.10	29° 5	5' 05"	91°	00' 50"			Borde calle	2725.212	774325.364	9209660.816
176	6.10	356° 36	6' 30"	1	41' 50"			33.23 333	2725.192	774321.440	9209664.257
E ₄ (aux)	Ceros en			<u></u>		1.485		Estación (buz.)	2726.759	774272.109	9209635.789
177	22,00	T	2' 00"	88*	13' 50"	1.100		Louisin (Buz.)	2727.438	774252,857	9209625,141
178	7.05	1	5' 50"	1	26' 55"			Borde calle (esq.)	2726.950	774265.238	9209637.369
179	7.10	313° 2		1	24' 45"	{		Borde calle	2727.079	774270.423	9209628.892
180	6.20	321° 1:		ĺ	01' 55"			Dorde calle	2726.864	774269,828	9209630.024
181	7.80	218° 4		}	25' 20"	}		Borde calle	2726.838	774279.812	
182	5.00	214° 1:		Į.	14' 25"	}		DOI de Calle	2726.651	774277.093	9209634,562
183	5.55	180° 4		ĺ	21' 10"				2726.628		9209635,391
184	21.50	182° 0		1	21' 10"				2726.252	774276.971 774291.172	9209638.464
185	15.60	161° 4		(45' 20"			Banda salta			9209645.731
186	15.25	166° 4)	09' 40"			Borde calle	2726.826	774282.569	9209647,362
187	14.75	189° 1		1	20' 30"				2726.450	774283.269	9209646.131
188	18.55	194° 4			57" 30"			Danda salla	2726.414	774285.927	9209640.947
189	6.55	1		ì				Borde calle	2726.449	774290.039	9209640,544
190	7.75	148° 1		}	13' 20"			Rando11- ()	2726.734	774275.238	9209641.543
191	6.85	118° 3		ļ				Borde calle (esq.)	2727.016	774274.955	9209642,997
191	[ĺ		i	30' 10"	}		}	2726.818	774271.991	9209642.638
	7.95	125° 0		}	33, 00	-			2727.099	774272.853	9209643.704
193	6.20	1	2' 40"	1	57' 30"	1			2726.764	774268.783	9209641.022
194	5.90	Į	9' 30"	1	01' -40"				2726.859	774266.364	9209637.134
195	60.80	i	3' 20"	{	32' 00"			Buzón	2727.254	774241.933	9209688.572
196	59.30	{	7' 20"				}		2727.199	774239.503	9209685.320
197	59.00]	5' 20"	1	19' 55"				2727.447	774238.502	9209684,282
198	56,40		8' 30"	ł	26' 25"				2727.310	774247.234	9209686.407
199	57.00	94° 4	13" 10"	89°	17' 00"			Borde calle	2727.472	774248.086	9209687,479
500	32.50	89° 2	:5' 20"	89°	21' 30"				2727.123	774255.749	9209663.871
201	32,00	83° 1	6' 10"	89°	20' 00"				2727.131	774253.130	9209661.553
202	32.05	80° 4	6' 30"	88°	54' 20"	{		Borde calle	2727.371	774251.995	9209660.742
203	30.85	96° 1	8' 40"	89°	22" 40"	}			2727.094	774259.889	9209664,116
1	31.20	98° 4	6' 00"	88°	50' 40"	}		Borde calle	2727.388	774260.989	9209664.940
204											
204 205	17.35		6' 20"	89°	15' 20"			`	2726.984	774263.555	9209650,884

Punto	DIST	ANG. HORIZ.	ANC VEDT			Observation	COTA	FOTE	NODES
1 ditto	(m)	ANG. HURIZ.	ANG. VERT.			Observación	COTA	ESTE	NORTE
207	15.70	70° 53' 05"	079 481 501	i	m		m.s.n.m.		
	 	l	87° 48' 50"	4 405		Borde calle	2727.357	774260.303	9209646.138
E ₅	Ceros er 66,50	T	200 (0) 05"	1.465		Estación (buz.)	2728.305	774224.730	9209608.824
{		0° 15' 15"	89° 43' 35"			Buzón.	2728.623	774192.125	9209666.782
209	65.25	4° 40' 30"	89° 32' 10"	}		Borde calle	2728.833	774197.217	9209667.990
210	65.00	3° 52' 50"	89° 41' 20"				2728.658	774196.508	9209667.377
211	63.80	355* 55' 50"	89° 37' 20"	{		Borde calle	2728.726	774189.346	9209661.913
212	46.90	359° 56' 00"	89° 29' 40"				2728.719	774201.506	9209649.571
213	46.60	354° 28' 00"	89° 18' 20"	1		Borde calle	2728.870	774197.903	9209646.927
214	46.30	355° 46' 30"	89° 26' 10"				2728.761	774198.947	9209647.281
215	49.30	6, 03, 00,	89° 27' 00"			Borde calle	2728.778	774205.021	9209654.013
216	49.30	4° 54' 40"	89* 34' 40"				2728.668	774204.127	9209653.612
217	22,30	348° 37' 20"	89* 26' 30"	ļ		Borde calle	2728.522	774210.102	9209625.656
218	15.50	19° 51' 40"	89° 32' 40"			Borde calle	2728.428	774222.104	9209624.100
219	15,00	15° 49' 50"	89° 56' 40"				2728.320	774221.156	9209623.392
220	11.35	333° 57' 10"	89° 02' 25"				2728.495	774215.358	9209615.226
221	8.95	306° 39' 10"	88° 29' 50"				2728.540	774215.847	9209609.921
222	10.15	289° 16' 10"	87* 40' 00"	1		•	2728.718	774214.745	9209607.001
223	6.05	295" 28' 20"	88° 45' 30"				2728.436	774218,695	9209608.387
224	6.60	243° 36' 30"	88° 27' 40"			-	2728.482	774221.040	9209603.352
225	8.80	233* 16' 40"	87° 28' 00"				2728.694	774221.198	9209600.764
226	8.25	354° 22' 20"	89° 32' 20"			•	2728.371	774219.969	9209615.562
227	8.95	36° 58' 00"	89° 11' 30"			Borde calle (esq.)	2728.431	774225.875	9209617.700
228	7.80	32° 14' 40"	91° 00' 10"]			2728.169	774225.088	9209616.616
229	9.15	58° 37' 40"	89* 47' 20"	İ		Borde calle (esq.)	2728.339	774229.168	9209616.825
230	8.30	64° 34' 50"	91° 42' 00"				2728.059	774229.486	9209615.626
231	6.55	86° 48' 40"	91° 09' 40"				2728.172	774230.235	9209612.372
232	6.70	141° 39' 20"	90* 09' 40"	,		Borde calle	2728.286	774230.940	9209606.309
233	5.68	134° 48' 20"	91* 24' 40"	}			2728.165	774230.211	9209607.335
234	17.30	106° 54' 40"	90° 33' 20"			Borde calle	2728.137	774241.606	9209612.628
235	17.00	102° 54' 30"	91° 20' 20"				2727.908	774241,012	9209613.711
236	16.30	88° 54' 40"	91° 27' 00"				2727.893	774238.745	9209617.146
237	16.50	77° 08' 30"	91° 33' 50"				2727.855	774236.900	9209619.965
238	16.50	72° 49' 50"	90° 29' 10"	}		Borde calle	2728.165	774236.028	9209620.848
239	21,80	212" 13' 27"	88° 55' 30"			Buzón	2728.714		9209607.431
E ₆	Ceros en	E.		1.480		Estación	2724.524	774381.859	9209605.847
240	33.70	14° 19' 25"	90° 38' 00"			Borde calle	2724.152	774382.393	9209639.543
241	33.75	12° 28' 00"	91° 05' 25"			2 3. 20 00110	2723,882		9209639.592
242	33.80	9° 56' 40"	90° 11' 25"			l ·	2724.412		9209639.585
243	32.70	4° 33' 40"	90° 14' 25"			i I	2724.387		9209638.158
244	21.45	350° 25' 20"	89* 29' 10"			Borde calle	2724.716		9209625.593
245	21.40	353° 54' 00"	90° 15' 20"			Solue Cane	2724.716		
246	16.30	355° 57' 40"	90° 04' 30"			! !	}		9209626.017
247	18.35	18° 16' 00"	91* 33' 40"	{		Bordo colla	2724.503		9209621.396
248	18.30	15° 28' 30"	91° 50' 35"			Borde calle	2724.024		9209624.131
249	17.50	10° 31' 00"	90° 33' 10"	!		i i	2723.936		9209624.135
250	16.25	0° 59' 40"				i . I	2724.355		9209623.324
250	5.70		90° 32' 25"		4 75	Danie # 1 1	2724.371		9209621,716
		43° 11' 40"	92° 15' 00"	}	1.70	Borde calle (esq.)	2724.080	774384.690	9209610.794
252 253	19.00	76° 35' 10"	91° 55' 30"		1.75	i I	2723.616	}	9209614.422
1	17.75	87° 46' 10"	92° 05' 20"	}	1.80		2723.557	774398.951	9209610.634
254	21.65	95° 04' 00"	92° 14' 20"	}			2723.679	774403.279	9209608.990
255	11.10	104° 17' 20"	92° 05' 10"		1.85	· 	2723.750		9209605.678
256	3.60	128° 18' 20"	92° 18' 40"		1.75	Borde calle (esq.)	2724.109	774385.124	9209604.332
257	3.40	80° 35' 00"	91° 52' 35"	}	1.80		2724.093		9209607.166
258	7.10	209* 23' 40"	90° 09' 20"	<u> </u>			2724.505	774379,904	9209599.021

Busto	DIST	AND HODIZ	4110 1/202						
Punto	DIST	ANG. HORIZ.	ANG. VERT.			Observación	COTA	ESTE	NORTE
260	(m)		<u> </u>	i	m		m.s.n.m.		
259	11.65	330° 24' 30"	88° 38' 40"	}		Borde calle	2724.800	774373.912	9209614.366
260	11.00	334° 40' 20"	89* 40' 30"	-			2724.586	774374.974	9209614.426
261	10.40	338° 57' 30"	90° 32' 10"	1			2724.427	774375.974	9209614.422
262	9.70	341° 15' 20"	89° 56' 00"				2724.535	774376.695	9209614.058
263	5.60	349° 05' 40"	90° 50' 30"			-	2724.442	774379.552	9209610.950
E ₇	Ceros er			1.440		Estación	2725.180	774378.762	9209559.088
264	15.45	6° 18' 40"	88° 14' 50"			Borde calle	2725.652	774363.469	9209556,890
265	15.40	2° 00' 25"	89° 33' 20"	}			2725.299	774363.726	9209555.759
266	15.10	358° 34' 00"	88° 38' 40"				2725.537	774364.241	9209554.945
267	14.80	346° 11' 40"	88° 44' 00"				2725.507	774365.730	9209552.072
268	18.35	336° 04' 20"	89* 00' 00"				2725.500	774364.385	9209547.685
269	19.45	331° 37' 40"	88° 41' 40"			Borde calle	2725.623	774364.505	9209545.857
270	9.85	306° 46' 20"	88* 45' 40"			Borde calle (esq.)	2725.393	774375.027	9209549.973
271	6.30	286° 39' 30"	90° 15' 40"				2725.151	774378.523	9209552.792
272	10.75	292° 19' 10"	88° 34' 20"			Borde calle (esq.)	2725.448	774377.297	9209548.438
273	11.50	280° 38' 40"	89* 55' 20"				2725.196	774379.533	9209547.614
274	15.00	288° 46′ 10″	88° 25' 40"			Borde calle	2725.591	774377.643	9209544.130
275	29.25	281° 37' 00"	89° 18' 20"				2725.534	774380.228	9209529.875
276	31.30	276° 15' 00"	89* 11' 40"				2725.620	774383.248	9209528.111
277	40.40	271° 28' 20"	89° 49′ 10"			Borde calle (esq.)	2725.307	774387.862	9209519.726
278	40.20	273° 23' 20"	90° 07' 40"				2725.090	774386.502	9209519.640
279	40.50	269° 36' 00''	89* 49' 20"	i		Borde calle	2725.306	774389.169	9209519.948
280	32.70	266° 51′ 10"	89" 49" 30"			Borde calle	2725.280	774388.670	9209527.925
281	34.70	273° 30' 20"	89° 10' 50"				2725.676	774385.374	9209525,024
282	18.50	263° 31' 40"	89° 30' 25"				2725.339	774385.380	9209541.812
283	18.85	260° 15' 05"	90° 48' 40"	}			2724.913	774386,501	9209541.900
284	16.40	269° 19' 50"	89° 21' 00"				2725.366	774383.051	9209543.259
285	13.55	241° 13' 30"	90° 25' 00"			Borde calle (esq.)	2725.081	774388.049	9209549,221
286	12.55	246° 04' 15"	91° 04' 50"				2724.943	774386.560	9209549,255
287	12.80	238° 07' 00"	91° 01' 20"				2724.952	774388.027	9209550,256
288	11.50	232° 31' 20"	90° 38′ 50°	}			2725.050	774387.820	9209552.003
289	10.30	221° 40′ 10″	90° 34' 50"			Borde calle (esq.)	2725.076	774387.924	9209554.383
290	9.50	225° 00' 40"	91° 52' 50"	}			2724.868	774386,945	9209554.263
291	8.50	230° 18' 40"	90° 37' 50"				2725.086	774385.654	9209554.113
292	16.20	228° 14' 10"	90° 06' 10"			Borde calle	2725.151	774392.232	9209550.089
293	15.60	225° 36' 00"	90° 52' 40"				2724.941	774392.118	9209551.028
294	14.40	222° 09' 20"	90° 53' 10"				2724.957	774391.515	9209552,402
295	8.00	253° 38' 50"	90° 44' 10"				2725.077	774382.863	9209552.219
296	19.45	125° 47' 40"	91° 59' 10"				2724.506	774385.828	9209577.209
297	19.90	128° 26' 50"	91° 15' 20"			Borde calle	2724.744	774386.842	9209577.274
298	18.80	122° 37' 20"	91° 15' 25"				2724.768	774384.612	9209576.954
299	19.00	110° 35' 10"	91° 24' 40"				2724.712	774380.779	9209577.980
300	18.80	103° 07' 00"	91° 40' 20''				2724.632	774378.311	9209577.882
301	19.25	97° 43' 00"	90° 38' 10"			Borde calle	2724.966	774376,491	9209578.203
302	35.10	116° 34' 10"	91° 14' 30"			Borde calle	2724.420	774386.106	9209593,411
303	34.80	114° 43' 30"	91° 41' 10"				2724.156	774384.945	9209593,334
304	34.65	112° 52' 20"	90° 54' 20"		i		2724.632	774383.812	9209593.368
305	4.00	86° 26′ 00"	90° 34' 40"			Borde calle (esq.)	2725.140	774377.522	9209562,891
306	3.85	128° 04' 50''	92° 04' 40"				2725.041	774380.302	9209562,616
307	2.05	89° 45' 40"	91° 08' 20"		1.65		2724.929	774378,240	9209561,070
308	4.35	298° 18' 40"	90° 55' 30"				2725.110	774377.723	9209554,864
309	8.20	150° 47' 20"	91° 51' 50"				2724.913	774384.690	9209564.753
310	9.70	155° 33' 40"	91° 43' 00"		1.80		2724.530	774386.307	9209565,183

Estacion	Punto	DIST	ANG. HORIZ	ANG VERT			Observación	COTA	ESTE	NORTE
Estación 772,779 774,442,256 92,00551,471 311 49,50 267 27 27 57 57 57 57 57 5					i	m	Observacion]]	ESIE	NORTE
911	Ea	 ` 	1 E 7	1		- '''	Estación	İ	774349 289	9209651 471
312		 	T	89° 53' 50"			}			
313	312	49.60		1			20.00 32.15			
314	313	49.45	266° 09' 40"					l i		
315	314	47.00	262° 33' 40"							İ
316 34.00 285° 38° 35° 90° 01° 20°	315	47.00	261° 24' 10"				Borde calle			
317 34.15 262" 47 20" 88" 58 40" 7725.841 774336.661 9209858.200 318 8 35.00 261" 14" 50" 89" 45 20" 86 742 20" 87.00 88 50.2 260" 38 10" 85" 54" 10" 87.00 87.70 88 2725.853 774324.039 9209857.768 920 920 920 920 920 920 920 920 920 920	316	34.00	265° 39' 35"				30.40 34.6	l i		i
318 35.20 261° 14′ 50° 89° 45′ 20° 80° 45′ 20° 80° 45′ 20° 80° 45′ 20° 80° 54′ 10° 80° 54′ 10° 80° 54′ 10° 80° 54′ 10° 80° 54′ 10° 80° 55′ 20° 20° 80° 50° 20° 20° 80° 50° 20° 20° 80° 50° 20° 20° 80° 20° 80° 30° 80° 20° 80° 30° 80° 30° 80° 30° 80° 30° 80° 30° 30° 80° 30° 80° 30° 80° 30° 30° 80° 30° 30° 80° 30° 80° 30° 80° 30° 30° 80° 30° 80° 30° 30° 80° 30° 30° 80° 30° 30° 80° 30° 80° 30° 30° 80° 30° 30° 80° 30° 80° 30° 80° 30° 30° 80° 30° 30° 80° 30° 30° 80° 30° 30° 80° 30° 30° 80° 30° 30° 80° 30° 30° 80° 30° 30° 80° 30° 30° 80° 30° 30° 80° 30° 80° 30° 30° 80° 30° 30° 80° 30° 30° 80° 30° 30° 30° 80° 30° 30° 80° 30° 30° 30° 30° 30° 30° 30° 30° 30° 3	317	34.15	262° 47' 20"	1						}
319 36.50 240° 39° 10° 88° 54° 10° 2775.983 77424.08 9709577.788 320 25.00 22° 24° 44° 40° 89° 50° 20° 2775.983 2775.986 774327.489 9709575.718 321 30.15 237° 57° 59° 89° 50° 20° 2775.986 774327.489 9709575.214 3275.986 774327.489 9709575.214 3275.986 774327.489 9709575.214 3275.986 774327.489 9709575.214 3275.986 774327.489 9709575.244 3275.386 774327.489 9709575.244 3275.386 3275.214 3774337.248 9709575.948 3275.214 3275.214 3774337.248 9709575.948 3275.214 37743737.248 9709575.948 3275.214 37743737.248 9709575.948 3275.214 37743737.248 9709575.948 3275.214 37743737.248 9709575.948 3275.214 37743737.248 9709575.948 3275.214 37743737.248 9709575.948 3275.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3774374.248 3709 9709575.214 3709575.214 3774374.248 3709 9709575.214 3709575.214 3774374.248 3709 9709575.214 3709575.214 3774374.248 3709 9709575.214 3709575.214 3709575.214 3709575.214 3709575.214 3709575.214 3709575.214 3709575.214 3709575.214 37	318	35.20	\	1			Borde calle (esq.)	}		
32.0 32.50 242"	319	36.50	240° 39' 10"	89° 54' 10"				1		
321 30.10 260 49 40 90 66 30 272 573 57 50 89 50 20 272 573 774337.248 3005678.342 323 320 30.00 260 49 40 30 66 30 00 30 00 3272 5743 774337.248 3005678.342 325 326 25 60 270 50 00 90 07 40 3272 573 774337.868 3205678.342 325 326 326 327 50 30 30 30 30 30 30 32 32 32 32 32 32 32 32 32 32 32 32 32	320	32.50	242° 44' 40"	89* 42' 30"] !		
322 30.00 260° 49° 40° 90° 06° 30° 2725 743 774337.248 9209578.948 323 275 0260° 10° 40° 30° 03° 00° 30° 40° 2725 757 774337.968 9209578.948 324 2560 270° 50° 00° 30° 40° 40° 2725 757 774343.244 9209578.948 325 24.00 273° 52° 30° 90° 39° 20° 32° 2725 753 77434.048 9209578.948 328 19.60 280° 17 00° 89° 40° 40° 40° 2725 750 774344.089 9209578.060 328° 19.60 328° 17° 20° 30° 31° 40° 40° 40° 40° 40° 40° 40° 40° 40° 40	321	30.15	237° 57' 50"	89° 50' 20"				(:		
323	322	30.00	260° 49' 40"	ļ					1	1
324	323	27.50	260° 10′ 40"	1			,	1 .		
325	324	25.60	270* 50' 00"	90° 07' 40"						ļ
326	325	24.00	}	ļ				1		ĺ
327	326	19.60		_			Borde calle	}		
328	327	11.90	j				Dordo Gano	1		}
329 7.80 325° 17 20° 90° 31° 40° Borde calle (esq.) 2725.719 774354.487 9209557.286 330 6.70 352° 40′ 00° 91° 05° 40° Borde calle (esq.) 2725.655 774355.508 9209553.962 331 5.70 358° 22 30° 93° 11° 10° 30° 33° 11° 30° 33° 11° 30° 33° 35° 362° 32° 32° 31° 10° 30° 33° 35° 362° 32° 32° 32° 31° 32° 33° 33° 30.55 163° 07° 50° 41° 20° 32° 33° 34° 6.00 169° 10° 20° 88° 15° 20° 2725.881 77434.8792 9209551.235 334 6.00 169° 10° 20° 88° 15° 20° 2725.975 774344.193 9209544.852 335 6.25 159° 06° 50° 88° 18° 40° 2725.975 774344.193 9209544.852 336 7.70 135° 35° 10° 88° 13° 25° 31° 20° 2725.891 774345.310 9209544.852 337 8.75 6.7° 30° 00° 89° 52° 10° 2725.891 774315.788 9209544.482 E_g(aux) Ceros en E_g(aux) 1520 Estación 2725.893 774318.768 920953.734 338 23.50 93° 07° 10° 90° 05° 00° 30° 320954.878 920953.734 339 24.10 98° 24° 30° 90° 25° 50° 80° 40° 40° 40° 40° 40° 40° 40° 40° 40° 4	328	}		1			,	ļ		
330 6.70 352° 40′ 00° 91° 09′ 40° 80° 80° 80° 81° 10° 90° 40° 80° 81° 81° 81° 81° 81° 81° 81° 81° 81° 81	329	7,80					Borde calle)
331 5.70 358° 22′ 30° 93° 11′ 10° 2725 475 774354 765 9209633 053 332 2.30 351° 22′ 00° 90° 14′ 00° 2725 782 774351 404 9209652 374 333 0.55 168° 07′ 50° 90° 41′ 20° 2725 784 774348,792 9209651 235 334 6.00 169° 10′ 20° 89° 15′ 20° 2725 889 774343,186 9209654 895 335 6.25 158° 06′ 50° 88° 18′ 18′ 40° 2725 879 774344,193 9209641,878 337 8.75 67′ 30′ 00° 89′ 52′ 10° 1520 Estación 2725 889 774345,310 9209643,878 338 22.50 93° 07′ 10° 90° 09′ 00° 89′ 52′ 10° 1520 Estación 2725 889 774345,310 920963,313 340 22.30 98° 22′ 00° 89′ 52′ 50° 88′ 50° 52′ 50° 88′ 52′ 50° 88′ 52′ 50° 88′ 52′ 50° 88′ 52′ 50° 88′ 50° 52′ 50° 88′ 52′ 50° 88′ 52′ 50° 88′ 52′ 50° 88′ 52′ 50° 88′ 50° 52′ 50° 88′ 52′ 50° 88′ 52′ 50° 88′ 52′ 50° 88′ 52′ 50° 80′ 50° 50′ 50° 50′ 50′ 50′ 50′ 50′ 50′ 50′ 50′ 50′ 50′	330	6,70	j				1	ì		
332 2.30 351* 22 00" 90* 14' 00" 2725.782 774351.404 9209552.374 333 0.55 169° 07' 50" 90* 41' 20" 2725.784 774348.792 9209551.235 334 6.00 169° 10' 20" 89* 15' 20" 2725.869 774343.865 9209548.905 335 6.25 159' 06' 50" 88* 18' 40" 2725.975 774344.193 9209547.852 336 7.70 135* 36' 10" 88* 18' 40" 2725.975 774344.193 9209544.878 337 8.75 67' 30' 00" 89* 52' 10" 2725.837 774345.310 9209544.878 338 23.50 93* 07' 10" 90" 09' 00" 89* 52' 50" 80rde calle (esq.) 2725.522 774310.864 9209563.331 340 22.30 98* 23' 00" 89* 52' 50" 80rde calle (esq.) 2725.523 774309.899 9209565.588 342 22.60 81* 58' 00" 90" 00" 40" 80rde calle (esq.) 2725.535 774306.809 9209565.588 342 22.60 81* 58' 00" 90" 00" 40" 80rde calle (esq.) 2725.537 774316.010 9209649.450 344 9.85 106" 23' 00" 90" 45' 20" 80rde calle (esq.) 2725.557 774316.010 9209649.450 344 9.85 106" 23' 00" 90" 45' 20" 80rde calle (esq.) 2725.557 774316.010 9209649.450 344 9.85 106" 23' 00" 90" 45' 20" 80rde calle (esq.) 2725.557 774310.93 9209641.800 347 2.80 30" 44' 50" 90" 44' 25" 80rde calle (esq.) 2725.611 774315.977 9209641.800 347 2.80 30" 44' 50" 90" 48' 20" 80rde calle (esq.) 2725.611 774315.977 9209630.963 351 43.00 0" 44' 50" 88* 13' 30" 88* 18' 20" 80rde calle (esq.) 2725.341 774307.343 9209621.251 349 14.75 346" 16' 00" 87" 29' 40" 80rde calle (esq.) 2726.341 774307.343 9209623.361 351 43.00 0" 44' 50" 88* 13' 30" 88* 18' 20" 80rde calle (esq.) 2726.341 774307.343 9209623.671 352 38.50 355' 43' 10" 88* 05' 20" 80rde calle (esq.) 2726.341 774307.343 9209621.251 352 38.50 355' 43' 10" 88* 05' 20" 80rde calle (esq.) 2726.341 774307.343 9209621.251 353 353 37.25 359' 02' 25' 88* 10' 40" 88* 13' 30" 88* 18' 10" 32725.868 774308.893 9209665.860 9209665.	331	(1	ì			Dorde Calle (esq.)	ļ		
333	332	i	Ì							
334 6.00 169° 10° 20° 89° 15° 20° 2725.880 774343.865 9209548.905 3735 6.25 159° 06′ 50° 88° 18° 40° 2725.975 774344.193 9209547.852 3736 7.70 135° 36′ 10° 88° 13° 25° 2726.030 774345.310 9209544.878 3737 8.75 67° 30′ 00° 89° 52′ 10° 2725.811 774316.583 9209544.882	333	ł								
335 6.25 159° 06′ 50° 88° 18° 40° 2725.975 774344,193 9209547.852 336 7.70 135° 36′ 10° 88° 13′ 25° 2726.030 774345,310 9209544.878 337 8.75 67° 30′ 00° 88° 52′ 10°. 2725.831 774344,193 9209544.482 82725.831 774354.553 9209544.482 82725.831 774354.553 9209544.482 82725.831 774354.553 9209544.482 82725.832 774309.609 920952.376 838 22.50 93° 07′ 10° 90° 09′ 00° 89° 52′ 50° 80° 80° 24′ 30° 90° 25′ 50° 80° 80° 80° 30° 40° 40° 80° 40° 30° 40° 40° 80° 40° 40° 80° 40° 40° 80° 40° 40° 80° 40° 40° 80° 40° 40° 80° 80° 80° 80° 80° 80° 80° 80° 80° 8	334	6.00	ĺ							
336 7.70 135' 36' 10" 88" 13' 25" 2726.030 774345.310 9209544.878 337 8.75 67" 30' 00" 89" 52' 10" 2725.811 774354.553 9209630.734 338 23.50 93" 07' 10" 90" 93" 00" 30" 30" 30" 30" 30" 30" 30" 30" 3	335	6.25						[·	
337	336	7.70	l	}				!		
E_6(aux)	337	8.75	67° 30' 00"	i i						
338 23.50 93° 07 10" 90° 09 00" Grifo 2725.635 774309.609 9209652.376 339 24.10 96° 24' 30" 90° 25' 00" Borde calle (esq.) 2725.522 774310.664 9209653.431 340 22.30 98° 23' 00" 89° 52' 50" 2725.743 774311.998 9209651.981 341 22.40 88° 22' 00" 90° 00' 40" 2725.635 774308.359 9209650.668 342 22.60 81° 58' 00" 90° 52' 00" Borde calle (esq.) 2725.635 774308.100 9209649.450 343 7.90 95° 56' 35" 90° 52' 00" Borde calle (esq.) 2725.578 774316.051 9209638.152 344 9.85 106° 23' 00" 90° 45' 20" Borde calle 2725.567 774317.113 9209640.444 345 11.55 98° 37' 10" 91° 13' 40" 2725.450 774315.307 9209641.753 346 14.00 78° 17' 10" 90° 18' 20" Borde calle (esq.) 2725.681 774315.307 9209641.800 347 2.80 30° 44' 50" 90° 44' 25" Borde calle (esq.) 2725.681 774306.391 9209623.671 349 14.75 346° 16' 00" 87° 29' 40" Borde calle (esq.) 2725.31 774300.070 9209623.636 351 43.00 0° 44' 50" 88° 05' 20" Borde calle (esq.) 2726.316 774300.070 9209623.636 352 38.50 355° 43' 10" 88° 05' 20" Borde calle (esq.) 2726.881 774285.540 920961.284 353 37.25 359° 02' 25" 88° 10' 40" Borde calle 2726.984 774285.540 920961.288 356 3.30 335' 45' 00" 87° 28' 35" Borde calle 2726.984 774285.540 920961.381 357 26.20 279° 11' 40" 89° 55' 40" Borde calle 2725.730 774326.368 920961.636 358 22.00 274° 01' 40" 89° 55' 40" Borde calle 2725.730 774326.368 920961.0340 359 21.70 268° 24' 45" 00" 50" 24' 40" Borde calle 2725.541 77430.009 9209628.95	E ₆ (aux)	Ceros er	E ₅ (aux)		1.520		Estación	 	i	
339	338	23.50	93° 07' 10"	90° 09' 00"				 		
340	339	24.10	96° 24' 30"	90" 25' 00"			i		ļ	,
341	340	22.30	98° 23' 00"	89° 52' 50"				[ĺ	1
342	341	22.40	88° 22' 00"	90° 00' 40"				1	į.	
343	342	22.60	81° 58' 00"	90° 09' 30"	}		Borde calle (esq.)	1	1	;
344 9.85 106° 23' 00" 90° 45' 20" Borde calle 2725.567 774317.113 9209640.444 345 11.55 98° 37' 10" 91° 13' 40" 2725.450 774315.307 9209641.753 346 14.00 78° 17' 10" 90° 18' 20" Borde calle (esq.) 2725.622 774310.193 9209641.800 347 2.80 30° 44' 50" 90° 44' 25" Borde calle (esq.) 2725.661 774315.977 9209630.963 348 14.25 356° 20' 40" 88° 18' 20" 2726.118 774306.391 9209623.671 349 14.75 346° 16' 00" 87° 29' 40" Borde calle (cerco) 2726.341 774307.434 9209621.294 350 20.00 5° 16' 10" 88° 13' 30" Borde calle (cerco) 2726.316 774300.070 9209623.636 351 43.00 0° 44' 50" 88° 05' 20" 2727.130 774279.895 9209612.351 352 38.50 355° 43' 10" 88° 05' 00" Borde calle 2726.881 774285.540 9209611.288 353 37.25 359° 02' 25" 88° 10' 40" 2726.881 353 353 2° 04' 30" 88° 18' 10" 2726.881 353 353 2° 04' 30" 88° 18' 10" 2726.881 353 353 356 3.30 335° 45' 00" 87° 28' 35" 357 26.20 279° 11' 40" 89° 55' 40" Borde calle 2725.692 774327.019 9209610.340 359 21.70 268° 24' 45" 90° 24' 40" 2725.541 774328.836 9209611.511 360 3250 325 325 325 325 325 325 325 325 325 325	343	7.90	95° 56' 35"	90° 52' 00"				1	Į.	1
345	344	9.85	106° 23' 00"	90° 45' 20"			Borde calle	2725.567		
346	345	11.55	98° 37' 10"	91° 13' 40"				}	1	
347	346	14.00	78° 17' 10"	90° 18' 20"			Borde calle	l		(
348	347	2.80	30° 44' 50"	90" 44' 25"			Borde calle (esq.)		Į.	9209630.963
349	348	14.25	356° 20' 40"	88* 18' 20"				2726.118	774306.391	
350	349	14.75	346° 16' 00"	87° 29' 40"			Borde calle	2726.341	1	ĺ
351 43.00 0° 44′ 50″ 88° 05′ 20″ 2727.130 774279.895 9209612.351 352 38.50 355° 43′ 10″ 88° 05′ 00″ 88° 06′ 00″ 2726.984 774285.540 9209611.288 353 37.25 359° 02′ 25″ 88° 10′ 40″ 2726.744 774286.469 9209616.366 355′ 4.75 307° 45′ 50″ 87° 28′ 35″ 2725.906 774317.804 9209626.083 356 3.30 335° 45′ 00″ 87° 43′ 15″ 2725.828 774316.660 9209628.195 357 26.20 279° 11′ 40″ 89° 55′ 40″ 89° 55′ 40″ 80° 20″ 2725.692 774326.368 9209605.660 358 22.00 274° 01′ 40″ 90° 00′ 50″ 2725.692 774328.836 9209611.511 360 275.541 774328.836 9209611.511	350	20.00	5° 16' 10"	88° 13' 30"			Borde calle (cerco)			
352 38.50 355* 43' 10" 88* 05' 00" Borde calle 2726.984 774285.540 9209611.288 353 37.25 359* 02' 25" 88* 10' 40" 2726.881 774285.582 9209613.813 354 35.35 2* 04' 30" 88* 18' 10" 2726.744 774286.469 9209616.366 355, 4.75 307* 45' 50" 87* 28' 35" 2725.906 774317.804 9209626.083 356 3.30 335* 45' 00" 87* 43' 15" 2725.828 774316.660 9209628.195 357 26.20 279* 11' 40" 89* 55' 40" Borde calle 2725.730 774326.368 9209605.660 358 22.00 274* 01' 40" 90* 00' 50" 2725.692 774327.019 9209610.340 359 21.70 268* 24' 45" 90* 24' 40" 2725.541 774328.836 9209611.511	351	43.00	0° 44' 50"	88° 05' 20"				2727.130		
353 37.25 359° 02′ 25" 88° 10′ 40" 2726.881 774285.582 9209613.813 354 35.35 2° 04′ 30" 88° 18′ 10" 2726.744 774286.469 9209616.366 355 4.75 307° 45′ 50" 87° 28′ 35" 2725.906 774317.804 9209626.083 356 3.30 335° 45′ 00" 87° 43′ 15" 2725.828 774316.660 9209628.195 357 26.20 279° 11′ 40" 89° 55′ 40" 89° 55′ 40" 80° 20° 50° 2725.692 774327.019 9209610.340 359 21.70 268° 24′ 45″ 90° 24′ 40″ 2725.541 774328.836 9209611.511	352	38.50	355° 43′ 10"	88° 05' 00"] 	Borde calle	2726.984		
355, 4.75 307° 45′ 50″ 87° 28′ 35″ 2725.906 774317.804 9209626.083 356 3.30 335° 45′ 00″ 87° 43′ 15″ 2725.828 774316.660 9209628.195 357 26.20 279° 11′ 40″ 89° 55′ 40″ 80° 50″ 2725.692 774326.368 9209605.660 358 22.00 274° 01′ 40″ 90° 00′ 50″ 2725.692 774327.019 9209610.340 359 21.70 268° 24′ 45″ 90° 24′ 40″ 2725.541 774328.836 9209611.511	353	37.25	359° 02' 25"	88° 10' 40"				2726.881	774285.582	1
356 3.30 335° 45' 00" 87° 43' 15" 2725.828 774316.660 9209628.195 357 26.20 279° 11' 40" 89° 55' 40" Borde calle 2725.730 774326.368 9209605.660 358 22.00 274° 01' 40" 90° 00' 50" 2725.692 774327.019 9209610.340 359 21.70 268° 24' 45" 90° 24' 40" 2725.541 774328.836 9209611.511	354	35.35	2° 04' 30"	88° 18' 10"				2726.744	774286.469	9209616.366
357 26.20 279° 11' 40" 89° 55' 40" Borde calle 2725.730 774326.368 9209605.660 358 22.00 274° 01' 40" 90° 00' 50" 2725.692 774327.019 9209610.340 359 21.70 268° 24' 45" 90° 24' 40" 2725.541 774328.836 9209611.511	355	4.75	307° 45' 50"	87" 28' 35"				2725.906	774317.804	9209626.083
357 26.20 279° 11' 40" 89° 55' 40" Borde calle 2725.730 774326.368 9209605.660 358 22.00 274° 01' 40" 90° 00' 50" 2725.692 774327.019 9209610.340 359 21.70 268° 24' 45" 90° 24' 40" 2725.541 774328.836 9209611.511	356	3.30	335° 45' 00"	87° 43' 15"				2725.828	774316.660	9209628.195
358	357	26.20	279° 11' 40"	89° 55' 40"			Borde calle	2725.730		
359 21.70 268° 24' 45" 90° 24' 40" 2725.541 774328.836 9209611.511	358	22.00	274° 01' 40"	90° 00′ 50″				2725.692	774327.019	
350 23.50 255 207 508 207 508	359	21.70	268° 24' 45"	90° 24' 40"				2725.541		
	360	22.50	265° 29′ 50″	89° 51' 30"			Borde calle	2725.753	774330.207	

Punto	DIST	ANG. HORIZ.	ANG. VERT.			Observación	COTA	ESTE	NORTE
<u> </u>	(m)	0 1 7	0 1 1	i	m		m.s.n.m.		
361	4.50	254° 38' 20"	90° 14' 40"				2725.678	774321.745	9209627.359
362	4.75	273° 48' 10"	89° 37' 40"				2725.728	774320.567	9209626.338
363	1.80	265° 13' 00"	90° 54' 50"			Buzón	2725.668	774319.690	9209629.188
364	3.05	152° 46' 10"	88, 06, 30,,				2725.798	774320.591	9209633,179
E ₅ (aux)	Ceros er	E ₆ (aux)	·	1.530		Estación (buz.)	2727.204	774270.725	9209607.246
365	43.20	84° 39' 20"	90° 07' 00"			Borde calle	2727.116	774293.233	9209570.373
366	42.00	83° 16' 20''	90° 23' 50"				2726.913	774293.467	9209571,936
367	36.15	76° 52' 50"	90° 21' 30"			Borde calle	2726.978	774293.561	9209579,222
368	35.75	78° 27' 20"	90° 30' 30"				2726.887	774292.538	9209578.922
369	27.15	90° 01' 20"	90* 07' 40"			Borde calle	2727.143	774282.641	9209582.851
370	25.00	88° 26' 10"	90° 09' 15"			Poste	2727.137	774282.315	9209585,095
371	22.55	83° 15' 50"	90° 23' 30"		. }		2727.050	774282.938	9209588.289
372	15.40	76° 28' 20"	90° 12' 20"				2727.149	774280.538	9209595.377
373	15.50	73° 19' 40"	90° 06' 15"			Borde calle	2727.176	774281.242	9209595,860
374	17.00	86° 35' 00"	90° 09' 10"				2727.159	774279.089	9209592.446
375	97.00	97° 48' 40"	89° 37' 55"				2727.304	774275.609	9209592,430
376	11.75	103° 53' 20"	89° 36' 00"				2727.286	774273.201	9209595,760
377	9.70	93° 09' 00"	90° 07' 40"			•	2727.182	774274.500	9209598.311
378	8.00	106° 06' 00"	89° 49' 00"				2727.230	774272.108	9209599.366
379	3.80	55° 10' 30"	91° 54' 30"				2727.078	774274.044	9209605.397
380	4.65	45° 31' 25"	90° 11' 20"			Borde calle (esq.)	2727.189	774275.109	9209605,696
381	5.25	28° 38' 00"	91° 01' 50"			Borde calle (esq.)	2727.110	774275.969	9209607.010
382	4.90	17° 52' 40"	92° 24' 30"				2726.998	774275.575	9209607.943
383	13.80	4° 29' 10"	90° 56' 50"			•	2726.976	774283,558	9209612,319
384	10.70	357° 01' 20"	91" 05' 40"				2727.000	774280.080	9209612,439
385	2.25	8° 50' 15"	91° 41' 20"		1.65		2727.018	774272.874	9209607.912
386	4.60	226° 45' 20"	89° 32' 10"			• •	2727.241	774266.422	9209608,872
387	2.30	189° 28' 10"	89° 14' 30"		1.40	· Poste	2727.234	774268.520	9209606,589
388	3.80	148° 15' 40"	89° 24' 50"			-	2727.243	774268.699	9209604,030
389	5.00	122° 14' 15"	89° 21' 50"			Borde calle (esq.)	2727.260	774270.186	9209602.275
390	2.45	98° 42' 20"	92° 03' 30"			, ,,	2727.116	774271.455	9209604.907
Eg	Ceros er	Ε ₁₀	***************************************	1.440		Estación	2726.748	774325.481	9209534.192
391	37.70	258° 05' 40"	90° 08' 50"				2726.651	774345.830	9209502.455
392	45.80	262° 04' 30"	90* 03' 30"		į	Borde calle	2726.701	774347.466	
393	36.00	253° 18' 00"	90° 06' 50"			Borde calle	2726.676	774347.377	9209505,617
394	6.90	220° 05' 40"	91° 57' 00"			Borde calle (esq.)	2726.513	774331.992	1
395	8.00	197° 50' 10"	92* 34' 00"			` ',	2726.390	774333.470	
396	5.00	205° 35' 20"	93° 23' 00"				2726.453	774330.463	9209533.771
397	23.00	188° 03' 25"	91° 22' 40"	}		Borde calle	2726.195	774347.918	i 1
398	23.00	182° 32' 40"	91° 48' 00"				2726.026	774347.328	9209541.382
399	18.45	171° 51' 40"	91° 44' 00"				2726.190	774341.633	9209543,109
400	17.75	157° 13' 40"	92° 05' 30"	ļ			2726.101	774338.349	9209546.418
401	5.90	101° 46' 40"	91° 17' 20"		-	Borde calle (esq.)	2726.615	774324.559	9209540.019
402	35.20	77° 43' 00"	89° 57' 10"			Borde calle (esq.)	2726.777	774306.286	9209563,698
403	39.00	77° 59' 40"	90° 07' 00"			• • • • • • • • • • • • • • • • • • • •	2726.669	774304.373	9209566.986
404	34.80	95° 30' 00''	90° 44' 40"	}			2726.296	774316.320	9209567.764
405	41.30	94° 30' 00"	90° 41' 20"	}			2726.251	774313.915	9209573.839
406	38.55	98° 50' 40"	90° 40' 30"	ĺ			2726.294	774317.520	9209571,911
407	43.20	101° 20' 20"	90° 35' 50"	Ì		Borde calle	2726.298	774318.408	9209576.809
408	42.70	. 77" 02" 40"	89* 52" 10"			Borde calle (esq.)	2726.845	774301.778	
409	41.70	76° 04' 00"	90° 04' 35"			(,)	2726.692	774301.745	
410	55.40	75° 25' 00"	89° 44' 30"				2726.998	774293.432	9209579.381
411	54.35	72° 14' 30"	89° 47' 20"			Borde calle	2726.948	774291.632	9209576.715
412	53.30	74° 19' 40"	89° 49' 00"				2726.919	774293.826	9209577.074

F		,										. J J
Punto	DIST		. HORIZ.	ANG	3. VE	RT.			Observación	COTA	ESTE	NORTE
	(m)		1 .	•	,	*	i	m		m.s.n.m.		
413	36.70	68°	47' 40"	89°	30'	40"			Borde calle	2727.061	774300.939	9209561.479
414	37.30	70°	12' 20"	89°	47	50"				2726.880	774301.228	9209562,531
415	34.85	74°	17' 20"	89°	55'	10"				2726,797	774304.764	9209562.216
416	6.70	77°	15' 20"	90°	16'	00"				2726.717	774321.782	9209539.778
417	5.15	81°	05' 40"	91°	07'	45"				2726.647	774322.932	9209538,667
418	9.00	63°	36' 40"	88°	35'	00"			Borde calle (esq.)	2726,970	774318.882	9209540.312
419	8.30	52°	50' 25"	87°	31'	20"		Ì	Borde calle (esq.)	2727.106	774318.448	9209538,600
420	5.60	64°	53' 20"	90°	14'	40"			,	2726.724	774321.461	9209538,091
421	4.00	28°	01' 00"	87°	16'	00"				2726.939	774321.513	9209534.697
422	4.10	298°	23' 20"	87°	16'	40"			Borde calle (esq.)	2726.943	774324.936	9209530.128
423	4.75	277°	25' 20"	88°	26'			ļ	Borde calle (esq.)	2726.877	774326.577	9209529.570
424	2.35	268°	55' 20"	91°	46'				20/20 04.0	2726.675	774326.355	9209532.010
425	2.15	126°	40' 20"	92°	33'			1.85		2726.242	774326.070	9209536.259
E 10	Ceros er			1			1.440	1.50	Estación (buz.)	2728.691		9209516.207
426	34.55	T	09. 00.,	89°	38'	50"	1.710		Borde calle		774278.040	
427	64.50		11' 40"	89°		20".			Borde Calle	2729.088	774231.773	9209561.219
428	58.00	l	57' 50"	89°	41'				n :	2729.004	774232.636	9209562.019
429	49.90	71°						1	Buzón	2729.000	774238.503	9209558.643
430	ļ	ł	36' 40"	89°	49' :			}		2728.846	774247.782	9209555.887
)	48.80	76°	21' 50"	89°	43'				Borde calle	2728.920	774251.766	9209557.330
431	48.30	75°	31' 30"	89°	50'			1		2728.820	774251.442	9209556.524
432	41.00	77°	35' 40"	89°	46'				Borde calle	2728.850	774256.713	9209551.223
433	36.80	68°	49' 35"	89°	58'	05"		[2728.712	774254.330	9209544.351
434	33.40	80°	02' 25"	89°	51'	50"		}	Borde calle	2728.770	774261.899	9209545,448
435	33.15	78°	53' 35"	89°	55'	50"				2728.731	774261.442	9209544.903
436	17.70	89°	11' 15"	89°	39'	00"			Borde calle	2728.799	774272.058	9209532.866
437	17.15	84°	32' . 55"	89°	24'	40"			•	2728.867	774270.958	9209531.826
438	20.90	66°	40' 00"	89°	51'	00"		l		2728.746	774263.981	9209531.672
439	30.10	59°	27' 10"	89°	46'	45"		[2728.807	774255.157	9209535.761
440	23,70	54°	31' 00"	89°	37'	30"			Borde calle	2728.846	774258.764	9209529.996
441	11.25	38°	50' 50"	89°	30,	40"		}	Borde calle (esq.)	2728.787	774267.462	9209520.038
442	11.20	25°	32' 35"	89°	28'	00"			Borde calle (esq.)	2728.795	774266.914	9209517.495
443	7.35	32°	23' 30"	90°	35'	30"				2728.615	774270.891	9209517.917
444	3.10	34°	28' 00"	91°	43'	20"			Buzón	2728.598	774275.053	9209517.037
445	6.15	3°	47' 20"	90°	17'	25"				2728.660	774272.103	9209514.600
446	8.30	321°	55' 50"	89°	05'	45"			Borde calle (esq.)	2728.822	774273.520	9209509.245
447	7.35	306°	36' 45"	88°	45'	00"		{	Borde calle (esq.)	2728.851	774275.808	9209509.204
448	4.80	307°	50' 20"	92°	14'	20"				2728.504	774276.485	9209511.666
449	22.60	264°	07' 25"	89°	23'	00"		1		2728.934	774287.524	9209495.693
450	22.70	261°	41' 25"	89°	37'	40"		1		2728.838	774288.433	9209496.026
451	22.70	258°	25' 00"	90°	30'	20"		1	•	2728,491	774289.568	9209496.652
452	25.70	229°	45' 30"	90°	22'			}	Borde calle	2728.523	774300.110	9209503.039
453	25.85	235°	24' 10"	90°	41'			,		2728.379	774298.829	9209500.843
454	25.40	1	38' 50"	91°	104			}	Borde calle	2728.170	774299.878	9209503.235
455	22.15	1	38' 40"	91°	53'			}	Doi do Calle		l	(
456	15.15	ĺ	12' 30"	92°	02'				Borde calls ()	2727.963	774297.279	9209505.230
457	14.45	{	34' 40"	(50'				Borde calle (esq.)	2728.151	774292.722	9209512.472
458	12.50	1	29' 20"	93°				}		2727.978	774291.885	9209512.069
459	13.45	1		1	16'					2727.979	774290.539	9209516.305
460	İ		32' 20"	92°	29'			1	Borde calle (esq.)	2728.106	774291.489	9209516.066
	13.50		43' 00"	93°	19'				_	2727.910	774291.401	9209518.137
461	26.20	l	28' 35"	92°	21'			.	Borde calle	2727.611	774303.717	9209521.413
462	26.20	ļ	31' 20"	92°	49'				•	2727.403	774303.297	9209523.171
463	16.50	ĺ	50' 40"	92°	24'			ļ		2727.996	774292.858	9209523.464
464	20.00	ļ	11' 20"	93°	09.			Ì		2727.591	774295.047	9209526.731
465	22.30	163°	02' 00"	92°	12'	30,			Borde calle	2727.832	774296.103	9209529.284

Pure										100
1.00	Punto	DIST					Observación	COTA	ESTE	NORTE
467 7.70 122* 10 25 90* 45 40		(m)	• • •	0 1 H	i	m		m.s.n.m.		
488	466	7.85	136° 27' 30"	91* 14' 30"			Borde calle (esq.)	2728.521	774281.667	9209523.169
10.30 214* 31* 30* 32* 22* 24* 01 278.23* 37* 474278.96* 1 3006513.439 30065	467	7.70	123° 10' 25"	90° 45' 40"			• •	2728.589	774279.933	9209523.670
469	468	4.75	132* 31' 30"	92° 21' 10"		1.63				
470	469	10.30	214° 31' 30"	92° 32′ 40″						
471	470	4.20	263° 05' 40"	92° 05' 40"		1.60		j		
472	471	1.20	44° 23' 15"	91° 23' 45"		1.50		1	1	
E11	472	1.30	135* 19' 20"	91° 19' 50"		1.60		}	}	
E11	473	2.95	203, 08, 50,,	91° 47' 50"		ļ ļ				
474	E 11	Ceros er	1 E 5	!—— <u> </u>	1,485		Estación (buz.)	 		
475		8.80	42° 45' 30"	91° 25' 20"						
476	475	30.50	1	1			` ',	1	ļ	
477 27.50 83° 55° 30° 80° 20° 30° 80° 48′ 50° 80° 48′ 50° 80° 48′ 50° 80° 48′ 50° 80° 48′ 40° 40° 42724.24.24.24.24.24.24.24.29.209571.971 478 33.00 81° 45′ 50° 80° 48′ 40° 80° 25′ 20° 88′ 48′ 50° 80° 48′ 40° 40° 42724.24.24.24.24.24.24.24.24.24.24.24.24.2	476	28.65	f				Doi de Dalle)	ì	
478 33.70 33 25 50 88 46 50 Borde calle (cldir.) 2729.041 774224.83 3293671.971 479 33.00 91* 45 50* 90* 14* 40* 2728.771 774224.890 9208572.988 480 24.75 38* 25* 20* 88* 34* 35* Borde calle (cldir.) 2729.065 774219.126 9209573.741 481 24.55 86* 01* 10* 90* 25* 25* 2728.845 774215.122 920959.742 482 9.20 88* 25* 40* 90* 25* 25* 2728.845 774215.122 920959.743 484 11.15 116* 50* 40* 88* 04* 10* Borde calle 2729.867 774212.073 920955.081 485 5.50 154* 58* 20* 88* 13* 40* Borde calle 2729.867 774212.073 920955.081 486 5.30 156* 13* 45* 91* 47* 50* Borde calle 2728.807 77420.9148 9209599.774 487 5.00 162* 43* 00* 88* 13* 00* Borde calle 2728.807 77420.9148 9209599.774 488 25.70 176* 26* 30* 88* 00* 30* Borde calle 2729.365 774190.651 9209590.004 489 25.60 173* 02* 35* 88* 00* 30* 22729.365 774190.651 9209500.004 491 3.30 8* 32* 10* 92* 02* 20* 1.70 E1; Cerose n E; 1.1415 Estación 2725.977 774388.743 9209448.404 493 38.80 174* 59* 45* 88* 14* 00* Borde calle (esq.) 2728.687 774405.144 9209448.89 25.60 173* 25* 68* 00* 30* 8* 38* 25* 20* 20* 20* 20* 20* 20* 20* 20* 20* 20	477	27.50	ļ					İ	1	
479 33.00 91" 45" 50" 90" 14" 40" Borde calle (cdir.) 2728,745 77421,9128 9209579,741 481 24.55 98" 25" 20" 88" 34" 35" Borde calle (cdir.) 2728,730 77422,030 5209572,963 482 9.20 88" 25" 40" 90" 25" 25" 25" 2728,745 774215,122 9209579,741 483 12.85 107" 35" 50" 90" 43" 55" Borde calle 2729,787 47421,040 9209590,871 484 11.15 116" 50" 40" 88" 04" 10" Borde calle 2729,787 474212,073 9209595,528 485 5.50 154" 58" 20" 88" 13" 40" Borde calle 2729,787 474212,073 9209595,528 486 5.30 155" 13" 45" 91" 47" 50" Borde calle 2729,355 774218,083 9209595,774 487 5.00 182" 43" 00" 89" 13" 00" Borde calle 2729,355 774218,083 9209595,774 489 25.00 170" 25" 35" 88" 00" 30" Borde calle 2729,355 774189,385 9209590,774 490 6.10 60" 07" 45" 92" 18" 40" 2728,666 774217,640 9209590,004 491 3.30 8" 32" 10" 92" 02" 20" 1.70 E1; Ceros en E; 1.415 Estación 2725,777 77439,763 920950,774 491 33.00 18" 38" 05" 10" 10" Buzón 2728,580 774215,945 9209500,004 493 38.40 166" 46" 25" 89" 48" 20" 1.70 494 38,85 172" 50" 00" 89" 38" 25" 1.70 495 34.40 166" 46" 25" 89" 45" 20" 1.70 Borde calle (esq.) 2728,666 774217,640 9209500,004 494 38.85 172" 50" 00" 89" 38" 25" 1.70 Buzón 2728,666 774217,640 9209500,004 494 38.85 172" 50" 00" 89" 38" 25" 1.70 1.415 Estación 2725,649 774399,745 9209448,389 495 34.40 166" 46" 25" 89" 45" 20" 1.70 497 32.75 161" 45" 00" 89" 38" 25" 1.70 499 21.85 164" 49" 05" 88" 52" 00" 1.70 800 800 40" 80" 31" 40" 1.70 800 800 40" 80" 31" 40" 1.70 800 800 40" 80" 31" 40" 1.70 800 800 40" 80" 31" 40" 1.70 800 800 40" 80" 51" 50" 1.70 800 800 40" 80" 51" 50" 1.70 400 400 40" 80" 51" 50" 1.70 400 400 40" 80" 51" 50" 1.70 400 400 40" 80" 51" 50" 1.70 400 400 40" 80" 51" 50" 1.70 400 400 40" 80" 51" 50" 1.70 400 400 40" 80" 51" 50" 1.70 400 400 40" 80" 51" 50" 1.70 400 400 40" 40" 80" 51" 50" 1.70 400 400 40" 40" 80" 51" 50" 1.70 400 400 40" 40" 80" 51" 50" 1.70 400 400 40" 40" 80" 51" 50" 1.70 400 400 40" 40" 40" 50" 50" 50" 50" 50" 50" 50" 50" 50" 5		{	1		{		Basia salla (s/dis))	
480	1	1]			ĺ	borde calle (c/dir.)	ĺ		
481	1	}	!				Danie - N. (./ P.)	}	ļ	
482 9.20 98° 25° 40° 90° 25' 05° 229° 483 31 12 85 107° 35' 50° 90° 43' 55° 87' 4483 12 85 107° 35' 50° 90° 43' 55° 88' 04' 10° 80rde calle 2729.287 774212.073 9209595.288 485 5.55 154' 58' 20° 88' 13' 40° 80rde calle 2729.287 774212.073 9209595.288 486 5.30 156' 13' 45' 91' 47' 50° 80rde calle 2729.384 774209.089 920959.599 489 2550 176' 26' 30° 30° 89' 10' 80rde calle 2729.384 774209.089 920959.099 489 25.50 176' 26' 30° 30° 30° 80' 10' 80rde calle 2729.385 774190.651 9209509.742 491 3.300 8' 32' 10' 92' 02' 20' 1.70 2728.666 774217.049 9209509.742 491 3.300 8' 32' 10' 92' 02' 20' 1.70 80rde calle (esq.) 2729.786 774393.487 9209604.500 499 3.84 01 174' 59' 45' 89' 14' 00' 80rde calle (esq.) 2729.386 774217.049 9209600.450 499 3.84 01 174' 59' 45' 89' 14' 00' 80rde calle (esq.) 2728.186 774314.049 920944.893 38.40 174' 59' 45' 89' 14' 00' 80rde calle (esq.) 2728.186 774314.049 920944.893 38.40 174' 59' 45' 89' 14' 00' 80rde calle (esq.) 2728.197 47499.449 38.85 172' 50' 00' 89' 38' 25' 40' 50' 89' 39' 30' 40' 89' 39' 31' 40' 80rde calle (esq.) 2726.491 774398.479 9209445.899 495 34.40 166' 46' 25' 89' 45' 20' 80rde calle (esq.) 2726.191 77439.449 9209445.899 31' 40' 80rde calle (esq.) 2726.191 774401.44 920944.393 494 32.80 160' 66' 04' 89' 39' 31' 40' 80rde calle (esq.) 2726.191 774401.44 920944.393 494 32.80 160' 66' 04' 89' 39' 39' 49' 20' 80rde calle (esq.) 2726.191 774401.44 920944.393 494 32.80 160' 66' 04' 89' 39' 39' 49' 20' 80rde calle (esq.) 2726.190 774401.44 920944.393 500 500 18.30 165' 14' 50' 89' 30' 00' 05' 10' 80rde calle (esq.) 2726.207 774391.507 9209458.899 499 21.85 184' 40' 00' 88' 52' 40' 80rde calle (esq.) 2725.007 774391.507 9209458.803 500 500 18.30 165' 14' 50' 88' 30' 40' 88' 52' 40' 80rde calle (esq.) 2725.007 774391.507 9209458.803 500 500 18.30 165' 14' 50' 88' 50' 88' 54' 20' 80rde calle (esq.) 2725.007 774385.809 9209458.803 500 500 18.30 165' 14' 40' 00' 88' 10' 10' 80rde calle (esq.) 2726.207 774385.609 9209468.809 500 500 18.30 150' 88' 50' 00' 50' 00' 50' 00' 50' 00' 88' 50	1	}]				borde calle (c/dir.)			
483 12.85 107 35 50 90 43 55 48 04 10" Borde calle 2729.287 774214.040 9205590.871 484 41.1.5 116" 50" 40" 88" 04" 10" Borde calle 2729.287 774212.073 9205590.871 486 5.50 154" 58" 20" 88" 13" 40" Borde calle 2729.04 774209.088 920559.089 486 5.50 156" 13" 45" 91" 47" 50" Borde calle 2729.364 774209.148 9205590.891 488 25.70 176" 26" 30" 88" 10" 50" Borde calle 2729.354 774208.075 9205695.074 489 25.60 173" 02" 25" 18" 40" Port 2728.066 774217.640 9205695.074 489 25.60 173" 02" 25" 18" 40" Port 2728.666 774217.640 9205695.074 489 25.65 50 154" 59" 45" 88" 14" 00" Port 2728.666 774217.640 9205600.004 491 38.85 172" 50" 00" Borde calle (esq.) 2728.666 774217.440 9205600.004 491 38.85 172" 50" 00" 89" 38" 25" 14" 00" Borde calle (esq.) 2728.680 774215.945 9205600.004 494 38.85 172" 50" 00" 89" 38" 25" 14" 00" Borde calle (esq.) 2728.680 774421.5445 9205443.040 494 38.85 172" 50" 00" 89" 38" 25" 14" 00" Borde calle (esq.) 2728.168 774399.478 9205445.040 494 38.85 172" 50" 00" 89" 38" 25" 92" 14" 40" Borde calle (esq.) 2728.164 774402.254 9209440.040 494 38.85 172" 50" 00" 89" 38" 25" 92" 14" 40" Borde calle (esq.) 2728.167 774400.144 9205452.475 161" 45" 00" 89" 49" 20" 12" 20" 14" 40" 14" 40" 155 14" 40" 155 14" 40" 155 14" 40" 155 14" 40" 155 14" 40" 155 14" 50" 88" 37" 40" Borde calle (esq.) 2728.797 774402.254 9209452.475 150" 155 10" 155 10" 155 10" 155 10" 155 10" 155 10" 155 10" 155 10" 155 10" 155 10" 155 10" 155 10" 155 10" 155 10" 155 10" 156" 40" 150 10" 150 150 11 151 151 150" 150 151 14" 40" 10" 10" 150 151 14" 40" 10" 10" 150 151 14" 40" 10" 10" 10" 10" 10" 10" 10" 10" 10" 1	}		}					1	ļ	
484 11.15 116' 50' 40' 88' 04' 10' Borde calle 2729.287 774212.073 2029692.528 485 5.55 154' 58' 20' 88' 13' 40' Borde calle 2729.384 77420.068 920599.509 486 5.30 156' 13' 45' 91' 47' 50' Borde calle 2729.384 77420.075 920690.886 225.88 13' 40' Borde calle 2729.384 77420.075 920690.886 225.88 13' 40' 2729.385 774210.073 920690.004 491 3.30 6' 32' 10'' 92' 02' 20'' 1.70 2728.580 774215.945 920690.004 491 3.30 6' 32' 10'' 92' 02' 20'' 1.70 2728.580 774215.945 920690.004 491 3.30 6' 32' 10'' 92' 02' 20'' 1.70 2728.580 774215.945 920690.004 491 38.85 172'' 50'' 88'' 65' 10'' Borde calle (esq.) 2728.580 774398.475 920445.889 495 33.40 174' 59' 45'' 89'' 45'' 20'' Borde calle (esq.) 2728.285 774400.251 9209445.040 494 38.85 172'' 50'' 89'' 45'' 20'' Borde calle (esq.) 2726.124 774402.251 9209445.040 494 38.85 172'' 50'' 89'' 45'' 20'' Borde calle (esq.) 2726.124 774402.254 9209445.040 494 38.85 172'' 50'' 89'' 45'' 20'' Borde calle (esq.) 2726.124 774402.254 920945.889 495 32.80 160'' 66' 64'' 25'' 89'' 45'' 20'' Borde calle (esq.) 2726.124 774402.254 920945.889 499 21.85 184'' 49'' 65'' 89'' 40'' 89'' 50'' Borde calle (esq.) 2726.079 774402.277 9209458.889 499 21.85 184'' 49'' 65'' 89'' 40'' 89'' 50'' Borde calle (esq.) 2726.500 774390.600 9209452.675 9209458.889 500'' 15.35 151'' 50'' 00'' 90'' 6'' 10'' Borde calle (esq.) 2726.500 774390.000 9209452.675 9209458.889 500'' 15.35 151'' 50'' 00'' 90'' 6'' 10'' Borde calle (esq.) 2726.500 774390.000 9209458.899 9209468.899 9209458.89 50'' 90'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 00'' 90'' 91'' 02'' 90'' 91'' 02'' 90'' 91'' 02'' 90'' 91'' 02'' 90'' 91'' 02'' 90'' 91'' 02'' 90'' 91'' 02'' 90'' 91'' 02'' 90'' 91'' 02'' 90''	[i	{						1	
485 5.55 154* 58* 20" 88* 13* 40" Borde calle 2729.84 774209.068 9209599.509 486 5.30 166* 13* 45" 91* 47* 50" Borde calle 2729.850 774208.075 9209599.509 487 5.00 182* 43* 00" 88* 13* 00" Borde calle 2728.354 774209.068 9209599.714 488 25.70 176* 26* 30" 88* 00" 50" Borde calle 2728.355 774190.651 9209601.836 489 25.60 173* 02 35* 89* 00 30" 2728.355 774190.651 9209600.004 490 6.10 60* 07* 45" 92" 18* 40" 2728.580 774215.945 9209600.004 491 3.30 8* 32* 10" 92" 02 20" 1.70 Estación 2725.977 774398.763 9209600.004 491 3.30 18* 32* 10" 92" 02 20" 1.70 Estación 2725.977 774398.763 9209645.500 E 12 Ceros en E 7 1.415 Estación 2725.977 774398.763 9209445.500 493 38.40 174* 59* 45* 88* 14* 00" Borde calle (esq.) 2726.269 774399.445 9209445.889 496 32.60 160* 60* 64* 82* 89* 49* 20" Borde calle (esq.) 2726.124 774402.274 9209445.889 498 21.85 184* 49* 65* 88* 37* 40" Borde calle 2725.976 774398.680 9209458.683 500 13.30 165* 14* 50 0" 90* 65* 10" Borde calle (esq.) 2726.500 774399.680 9209445.680 500 13.30 165* 14* 50 0" 90* 65* 10" Borde calle (esq.) 2726.500 774399.800 9209468.893 500 113.00 158* 00* 90* 65* 10" Borde calle (esq.) 2726.500 774399.800 9209468.893 500 113.00 158* 00* 90* 65* 10" Borde calle (esq.) 2726.500 774399.800 9209468.893 500 113.00 158* 00* 90* 65* 10" Borde calle (esq.) 2726.500 774399.800 9209468.893 500 113.00 158* 00* 90* 65* 10" Borde calle (esq.) 2726.500 774399.800 9209468.893 500 113.00 158* 00* 90* 65* 10" Borde calle (esq.) 2726.28 774398.800 9209468.893 500 113.00 158* 00* 90* 88* 52* 40" Borde calle (esq.) 2726.293 774398.796 9209468.893 500 13.30 203* 33* 40" 88* 53* 50" Borde calle (esq.) 2726.293 774398.796 9209468.893 500 13.30 203* 33* 40" 88* 53* 50" Borde calle (esq.) 2726.238 774398.300 9209468.893 500 13.30 203* 33* 40" 88* 53* 50" Borde calle (esq.) 2726.239 774398.796 9209468.893 500 500 500 500 50* 88* 50* 00" 88* 50* 00" Borde calle (esq.) 2726.238 774398.306 9209468.893 500 500 500 500 50* 88* 50* 00" 80* 50* 00" Borde calle (esq.) 2726.238 774398.306 9209468.893 500	1	}	ļ					1		9209590.871
486 5.30 156* 13' 45" 91* 47 50" Borde calle 2728.980 774208.075 9209599.714 487 5.00 182* 43' 00" 89* 13' 00" Borde calle 2728.980 774208.075 9209599.734 489 25.60 173* 07 35" 89* 00' 30" 2728.666 774217.640 9209600.742 490 6.10 60* 07' 45" 92" 18' 40" 2728.666 774217.640 9209600.742 491 3.30 8* 32' 10" 92" 02' 20' 20' 1.70 2728.580 774399.763 9209401.405 E1: Ceros en E. 1.415 Estación 2725.977 774389.763 9209431.445 492 65.65 234* 07' 50" 88* 05' 10" Borde calle (esq.) 2726.491 774398.447 9209444.040 494 38.85 172" 50" 08' 89* 45' 20" Borde calle (esq.) 2726.289 774399.445 9209445.849 496 32.80 160" 66" 46" 89" 31" 40" Borde calle (esq.) 2726.297 774402.254 9209445.894 497 32.75 161" 45' 00" 89" 49" 20" Borde calle (esq.) 2726.297 774402.214 9209452.475 499 21.85 184" 49" 05" 88" 59" 45" Borde calle 2725.979 774402.277 9209459.830 500 18.30 165" 14" 50" 89" 20" 00" 50" 89" 65" 65" 80" 50" 50" 50" 50" 50" 50" 50" 50" 50" 5		ĺ	1			[[2729.287		9209592.528
487 5.00 182° 43 00" 89° 13 00" Borde calle 2729.9355 774298.0559.000 489 25.00 173° 02 35" 89° 00' 50" Borde calle 2729.355 774199.651 9209590.742 490 6.10 60° 07 45" 92° 18° 40" 2728.966 774217.640 9209590.742 491 3.30 8° 32′ 10" 92" 02 20" 1.70 2728.566 774217.5945 9209590.742 491 3.30 8° 32′ 10" 92" 02 20" 1.70 2728.560 774215.945 9209590.742 491 3.30 8° 32′ 10" 92" 02 20" 1.70 2728.560 774215.945 9209590.742 491 3.30 18° 32′ 10" 92" 02 20" 1.70 2728.560 774215.945 9209590.742 491 3.30 18° 32′ 10" 92" 02 20" 1.70 2728.560 774215.945 9209590.450 491 3.30 174° 59′ 45" 89° 14′ 00" 80° 30° 50° 40° 89° 38′ 25° 45° 494 20° 494 36.85 172° 50′ 00° 89° 38′ 25° 497 497 32.75 161° 45′ 00" 89° 49′ 20° 498 25.10 158° 09° 40" 89° 59′ 45" 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 89° 45° 80° 40° 89° 59° 45° 80° 40° 80° 50° 50° 13.30 165° 14′ 50° 09° 00° 50° 10° 80° 50° 11.30 165° 14′ 50° 89° 20° 00° 50° 88° 32° 20° 00° 50° 11.30 159° 00° 50° 88° 52′ 40° 50° 50° 11.30 159° 00° 50° 88° 52′ 40° 50° 50° 11.30 159° 00° 50° 88° 52′ 40° 50° 50° 11.30 159° 00° 50° 88° 52′ 40° 50° 50° 11.30 159° 65° 50° 88° 52′ 40° 50° 50° 66° 223° 16° 00° 89° 10° 10° 80° 40° 89° 10° 10° 80° 40° 89° 10° 10° 80° 40° 40° 40° 40° 40° 40° 40° 40° 40° 4	1	}					Borde calle	2729.084	774209.068	9209599.509
488				91° 47' 50"				2728.746	774209.148	9209599.774
489				89° 13' 00"		}	Borde calle	2728.980	774208.075	9209601.896
490 6.10 60° 07 45° 92° 18' 40" 2728,666 774217,640 9209600.004 491 3.30 8° 32′ 10" 92° 02° 20° 1.70 2728,580 774215,945 9209600.004 2728,580 774215,945 9209600.004 2728,580 774215,945 9209600.004 2728,580 774215,945 92094604,500 2728,580 774215,945 92094604,500 2728,580 774215,945 92094604,500 2728,580 774215,945 9209481,445 492 65,65 234° 07 50° 88° 05° 10" 80rde calle (esq.) 2728,481 774398,447 9209444,040 494 38,85 172° 50° 00° 89° 38° 25° 2726,124 774402,254 9209444,939 496 32,80 160° 06° 04° 89° 31′ 40" 80rde calle (esq.) 2726,124 774402,254 9209449,393 498 25,10 158° 09′ 40° 89° 59′ 45° 80rde calle (esq.) 2726,247 774402,254 9209452,475 2726,124 774396,860 9209452,577 2726,124 774396,860 9209452,577 2726,124 774396,860 9209452,577 2726,124 774396,860 9209452,577 2726,124 774396,860 9209452,577 2726,124 774396,860 9209452,577 2726,124 774396,860 9209468,829 2726,198 774395,250 9209468,829 2726,198 774395,250 9209452,475 2726,198 774395,250 9209452,475 2726,198 774395,250 9209452,475 2726,198 774395,250 9209452,475 2726,198 774395,250 9209452,475 2726,198 774395,250 9209452,475 2726,198 774395,250 9209452,475 2726,198 774395,250 9209452,475 2726,198 774395,250 9209452,475 2726,198 774395,250 9209452,475 2726,198 774395,250 9209452,475 2726,198 774395,250 9209452,475 2726,198 774395,250 9209452,475 2726,198 774395,250 9209452,475 2726,198 774395,25	1	1		89° 00' 50"			Borde calle	2729.354	774189.835	9209592.030
491 3.30 8° 32′ 10" 92" 02' 20" 1.70 2728.580 774215.945 9209604.500 E 1	1	į i		89, 00, 30,,				2729.355	774190.651	9209590.742
E 12 Ceros en E 7	1)		92° '18' 40"		}		2728.666	774217.640	9209600.004
492 65.65 234° 07 50° 88° 05 10° 81 80 27 28.168 774342.487 9209435.894 93 38.40 174° 59′ 45° 89° 14° 00° 89° 38 25° 276.208 774399.445 9209445.899 936.85 172° 50′ 00° 89° 38′ 25° 276.208 774399.445 9209445.899 936.85 172° 50′ 00° 89° 31′ 40° 89° 40° 89° 49′ 20° 276.214 77440.227 9209452.475 936.899 9209459.687 936.899 9209459.689 936.899 9209459.689 936.899 9209459.689 936.899 9209459.689 936.899 9209459.689 936.899 9209459.689 936.899 9209459.689 936.899 9				92° 02' 20"		1.70		2728.580	774215.945	9209604.500
493			E ₇		1.415		Estación	2725.977	774389.763	9209481.445
494 36.85 172° 50' 00" 89° 38' 25" 2726.208 774393.445 9209445.849 9209445.849 9209445.849 9209445.849 9209445.849 9209445.849 9209452.849 9209445.849 9209452.849	1	65.65	234° 07' 50"	88° 05' 10"			Buzón	2728.168	774342.487	9209435.894
495		38.40	174° 59' 45"	89° 14' 00"			Borde calle (esq.)	2726.491	774398,447	9209444.040
496 32.80 160° 06° 04" 89° 31' 40" 497 32.75 161° 45' 00" 89° 49' 20" 498 25.10 158° 09' 40" 89° 59' 45" 499 21.85 184° 49' 05" 88° 37' 40" 500 18.30 166° 14" 50" 99° 05' 10" 501 15.35 151° 50' 00" 90° 05' 10" 502 15.10 154° 44' 00" 91° 02' 00" 503 11.30 159° 00' 50" 88° 52' 40" 504 10.80 178° 20' 20" 89° 31' 50" 505 13.15 195° 56' 50" 88° 54' 20" 506 13.30 203° 33' 40" 88° 53' 50" 507 6.60 223° 16' 00" 89° 10' 10" 508 7.00 276° 03' 35" 88° 09' 20" 509 6.55 299° 37' 10" 88° 44' 20" 509 6.55 299° 37' 10" 88° 44' 20" 500 6.55 299° 37' 10" 88° 44' 20" 501 6.50 276° 03' 35" 88° 09' 20" 502 6.55 299° 37' 10" 89° 51' 30" 503 6.55 299° 37' 10" 89° 51' 30" 504 6.50 276° 03' 35" 88° 09' 20" 505 6.51 287° 20" 507 6.60 276° 03' 35" 88° 09' 20" 508 7.00 276° 03' 35" 88° 09' 20" 509 6.55 299° 37' 10" 89° 51' 30" 500 6.55 299° 37' 10" 89° 51' 30" 501 6.50 299° 37' 10" 89° 51' 30" 502 6.55 299° 37' 10" 89° 51' 30" 503 6.55 299° 37' 10" 89° 51' 30" 504 6.50 276° 03' 35" 88° 09' 20" 505 6.51 287° 276.073 774385.958 507 6.60 276° 03' 35" 88° 09' 20" 508 7.00 276° 03' 35" 88° 09' 20" 509 6.55 299° 37' 10" 89° 51' 30" 500 6.55 299° 37' 10" 89° 51' 30" 500 6.55 299° 37' 10" 89° 51' 30" 500 6.55 299° 37' 10" 89° 51' 30" 500 6.55 299° 37' 10" 89° 51' 30" 500 774385.425 9209482.182 510 6.55 299° 37' 10" 89° 51' 30" 510 6.56 20° 20° 89° 51' 30" 510 6.57 276.03 31' 30" 510 6.58 346° 13' 20" 89° 51' 30" 510 6.59 20° 31' 50" 510 6.50 31' 30" 89° 59' 20" 510 6.50 31' 30" 89° 51' 30" 511 6.50 31' 30' 89° 59' 20" 512 6.774385.404 920950.575 574385.404 920950.575 574385.404 920950.507 5743	494	36.85	172° 50' 00"	89° 38' 25"			·	2726.208	774399.445	9209445.889
497 32.75 161° 45′ 00° 89° 49° 20° 2726.079 774404.281 9209452.089 498 25.10 158° 09° 40° 89° 59° 45° 88° 37′ 40° 89° 59° 45° 88° 37′ 40° 89° 20° 00° 2726.099 774402.277 9209459.687 9209459.680 9209	495	34,40	166° 46' 25"	89° 45' 20"				2726.124	774402.254	9209449.393
498	496	32.80	160° 06' 04"	89° 31' 40"			Borde calle (esq.)	2726.247	774405.144	9209452.475
499	497	32.75	161° 45' 00"	89° 49' 20"				2726.079	774404.281	9209452.089
499	498	25.10	158° 09' 40"	89° 59' 45"		[]	Borde calle	2725.979	774402.277	9209459.687
500	499	21.85	184° 49' 05"	88° 37' 40"			Borde calle	2726.500	l	
501	500	18.30	165° 14' 50"	89° 20' 00".		[}	,	
502	501	15.35	151° 50' 00"	90° 05' 10"			Borde calle	[
503	502	15.10	154° 44' 00"	91° 02' 00"				}		1
504	503	11.30	159° 00' 50"	88° 52' 40"		} }		1	{	
505	504	10.80	178° 20' 20"	89° 31' 50"		[]		ł		
506	505	13.15	195° 56' 50"	88° 54' 20"			Borde calle (esa.)	1		
507 6.60 223° 16' 00" 89° 10' 10" 2726.073 774385.958 9209476.052 2726.073 774385.958 9209476.052 508 7.00 276° 03' 35" 88° 09' 20" Borde calle (esq.) 2726.202 774382.767 9209481.200 509 6.55 299° 37' 10" 88° 44' 20" 80° 2725.936 774385.425 9209482.182 510 4.40 287° 43' 00" 90° 31' 50" 2725.936 774385.425 9209482.182 511 28.35 345° 13' 20" 89° 51' 30" 80° 67' 00" 2725.921 774380.869 9209507.571 512 27.70 349° 20' 20" 90° 07' 00" 2725.921 774380.869 9209507.678 513 41.00 350° 31' 00" 89° 59' 20" Borde calle 2725.985 774377.400 9209520.537 514 39.00 1° 39' 00" 90° 22' 50" 2725.718 774385.404 9209520.201 515 34.15 5° 03' 50" 90° 23' 00" Borde calle 2725.749 774387.974 9209515.548	506	13.30					_	l		
508 7.00 276° 03' 35" 88° 09' 20" Borde calle (esq.) 2726.202 774382.767 9209481.200 509 6.55 299° 37' 10" 88° 44' 20" Borde calle (esq.) 2725.936 774385.425 9209482.182 511 28.35 345° 13' 20" 89° 51' 30" Borde calle 2726.047 774378.757 9209507.571 512 27.70 349° 20' 20" 90° 07' 00" 2725.921 774380.869 9209507.678 513 41.00 350° 31' 00" 89° 59' 20" Borde calle 2725.985 774377.400 9209520.537 514 39.00 1° 39' 00" 90° 22' 50" Borde calle 2725.718 774385.404 9209520.201 515 34.15 5° 03' 50" 90° 23' 00" Borde calle 2725.749 774387.974 9209515.548				٠			25. 25 odilo (63q.)	ļ		
509 6.55 299° 37' 10" 88° 44' 20" Borde calle (esq.) 2726.121 774383.671 9209483.851 2725.936 774385.425 9209482.182 511 28.35 345° 13' 20" 89° 51' 30" Borde calle 2726.047 774378.757 9209507.571 512 27.70 349° 20' 20" 90° 07' 00" 2725.921 774380.869 9209507.678 513 41.00 350° 31' 00" 89° 59' 20" Borde calle 2725.985 774377.400 9209520.537 514 39.00 1° 39' 00" 90° 22' 50" Borde calle 2725.718 774385.404 9209520.201 515 34.15 5° 03' 50" 90° 23' 00" Borde calle 2725.749 774387.974 9209515.548	1					[]	Borde calle (and)	i	Ì	
510	1					} }	, ,,	Į.		
511 28.35 345° 13' 20" 89° 51' 30" Borde calle 2726.047 774378.757 9209507.571 512 27.70 349° 20' 20" 90° 07' 00" 2725.921 774380.869 9209507.678 513 41.00 350° 31' 00" 89° 59' 20" Borde calle 2725.985 774377.400 9209520.537 514 39.00 1° 39' 00" 90° 22' 50" 2725.718 774385.404 9209520.201 515 34.15 5° 03' 50" 90° 23' 00" Borde calle 2725.749 774387.974 9209515.548							DUI UB Calle (esq.)	1	ĺ	
512 27.70 349° 20' 20" 90° 07' 00" 2725.921 774380.869 9209507.678 513 41.00 350° 31' 00" 89° 59' 20" Borde calle 2725.985 774377.400 9209520.537 514 39.00 1° 39' 00" 90° 22' 50" 2725.718 774385.404 9209520.201 515 34.15 5° 03' 50" 90° 23' 00" Borde calle 2725.749 774387.974 9209515.548]							ļ		
513 41.00 350° 31′ 00" 89° 59′ 20" Borde calle 2725.985 774377.400 9209520.537 514 39.00 1° 39′ 00" 90° 22′ 50" 2725.718 774385.404 9209520.201 515 34.15 5° 03′ 50" 90° 23′ 00" Borde calle 2725.749 774387.974 9209515.548	1 1						borde calle		1	
514 39.00 1° 39' 00" 90° 22' 50" 2725.718 774385.404 9209520.201 515 34.15 5° 03' 50" 90° 23' 00" Borde calle 2725.749 774387.974 9209515.548	!							ł		
515 34.15 5° 03' 50" 90° 23' 00" Borde calle 2725.749 774387.974 9209515.548							Borde calle	i		9209520.537
546 24 00 05 00 00 00 00 00 00 00 00 00 00 00	}	!						2725.718	774385.404	9209520.201
516 34.00 2° 00′ 20" 91° 18′ 20"	1	1					Borde caile	2725.749	774387.974	9209515.548
1 647 1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1							2725.203	774386.173	9209515.255
517 33.75 1° 14' 30" 90° 24' 00" 2725.741 774385.752 9209514.956	517	33.75	1° 14' 30"	90° 24' 00"				2725.741	774385.752	9209514.956

													TOT
Punto	DIST	ANG.	HO.	RIZ.	ANG	3. V	ERT.			Observación	COTA	ESTE	NORTE
	(m)	•	'		·	<u>'</u>	-	i	m		m.s.n.m.		
518	12.35	358°	17'	10"	90°	48'	00"	Į			2725.805	774387.665	9209493.615
519	12.45	4°	25'	40"	89°	49'	20"				2726.016	774388.973	9209493.870
520	12.75	8°	30,	50"	91°	40	00"	[1.80		2725.221	774389.862	9209494.194
521	13.35	15°	17	10"	92°	40′	00"			Borde calle	2725.357	774391.440	9209494.689
522	10.10	142°	10'	25"	91*	29'	50"				2725.713	774397.015	9209474.415
523	9.00	147°	18'	40"	91°	45'	20"		1.75		2725,366	774395.638	9209474.627
524	6.20	154°	06,	40"	88°	05'	40"	'			2726.183	774393.226	9209476.302
E ₇ (aux)	Ceros er	ι Ε ₁₂				_		1.455		Estación	2726.580	774372.205	9209461.026
525	38.70	189°	11'	00"	87°	51'	40"				2728.023	774342.613	9209436.086
526	29.25	175*	18'	20"	87°	21'	40"			Borde calle (esq.)	2727.925	774355.013	9209437.361
527	28.00	188°			87°		55"		}	,	2727.744	774351.038	9209442.696
528	26.30	200°			87°		00"				2727.749	774349.226	9209448.232
529	26.00	204°			89°		50"		0.45	Borde calle (esq.)	2728.032	774348.646	9209450.026
530	19.50	190°	33'		87°		20"		0.40	Doi de Calle (esq.)	2727.445	774356.996	9209448.821
	9.15	i			1)			ļ		
531 532	l	195°			87°		50"]		Rords s="-	2726.902	774364.579	9209455.969
532	19.50	209°		40"	87°		00"			Borde calle	2727.345	774353.859	9209454.416
533	14.65	167°			88*		30"	1	}	Borde calle	2727.089	774365.368	9209448.069
534	8.30	255°			89°		00"			Borde calle (esq.)	2726.679	774364.747	9209464.670
535	8.35	297°	52'		90°	44'		Ì		Borde calle (esq.)	2726.472	774369.152	9209468.798
536	9.20	279°			91°		40"				2726.391	774366.262	9209468.049
537	30.00	291°	09,	20"	89°	55'	15"				2726.621	774358.050	9209487.477
538	29.90	285°	47'	40"	90°	15	00"			ļ	2726.450	774355.696	9209485.955
539	25.75	278°	35'	00"	89°	54	20"			Borde calle	2726.622	774355.405	9209480.541
540	11.50	324°	35'	20"	90°	37	. 00.			Borde calle	2726.456	774373.263	9209472.477
541	10.50	29°	31'	20"	90°	33	20"	}		Borde calle	2726.478	774382.085	9209464.580
542	9.60	169°	40'	40"	89°	07	20"				2726.727	774367.351	9209452.743
E ₇ (aux)	Ceros e	n E ₁₂						1.450		Estación	2726.580	774372.205	9209461.026
543	32.80	188°	18	10"	87°	54	40"			Buzón	2727.775	774347.452	9209439.505
544	24.45	0°	53'	40"	92°	31	30"			Buzón	2725.504	774388.433	9209479.313
545	26.80	0°	00.	00"	91°	22	20"	}		Estación E 12	2725.938	774389.678	9209481.346
546	2.15	259°	47'	10"	90°	38	, 00.,		1.40	Buzón	2726.606	774370.352	9209462.116
E g(aux)	Ceros e	n E 10						1.420		Estación (buz.)	2728.486	774305.792	9209485.634
547	56.65	179°	17'	35"	90°	44	' 45"			Borde pav.	2727.749	774344.382	9209444.161
548	55.00	178°	59'	00"	90°	31	' 40"				2727.979	774343.475	9209445.572
549	54.30	174°	56'	10"	90°	30	40"			-	2728.002	774345.694	9209448.806
550	54.25	173°	10'	40"	90°	23	20"			Borde calle (esq.)	2728.118	774346.768	9209450.081
551	56.40	184°	23'	10"	90°	20	, 30.,				2728.150	774340.394	9209441.096
552	56.00	1		20"	90°		10"			Borde calle (esq.)	2728.353		
553	19.95	}		20"	89°		15"			Borde calle	2728.572		
554	20.00	1		20"	89°		45"			}	2728.755	i	
555	17.60	1		20"	90°		15"				2728.259	ļ	1
556	6.60			20"	89°		3' 40"	ļ		Borde calle (esq.)	2728.494	Ì	Į.
557	4.55	}		35"	89°		25"			Buzón	2728.497		
558	24.20	1		35"	89*		" 05"			Borde calle	2728.858	1	
559	i	1			1		5' 40"			DOI GE Calle	j		
	24.05	(25"	89°					Daida aalla	2728.726	1	· l
560	25.25	292°		20"	89°	-	3' 00"			Borde calle	2728.890	}	
561	8.35	312°		40"	89°		5' 00"			Borde calle (esq.)	2728.595	j	
562	6.35	1		20"	909		5' 20"				2728.458	·	1
563	12.70			' 00"	89		2' 20"			Borde calle	2728.588		
564	8.00		15	35"	90	25	5' 20"			ļ	2728.427		
E ₉ (aux)	Ceros e	n E 14						1.440)	Estación	2729.384	774290.317	9209417.02
565	7.10	32	° 48	. 50.	90	. 03	25"			Borde calle (esq.)	2729.379	774292.686	9209410.328
566	5.80	26°	38	' 20"	90	4	1, 00,			-	2729.315	774292.828	9209411.793
567	16.70	17	° 28	40"	89	46	5' 40"	<u></u>	1	Borde calle (esq.)	2729.449	774299.852	9209403.31

										102
Punto	DIST	ANG.	HORIZ.	ANG. VERT.			Observación	COTA	ESTE	NORTE
	(m)	۰	1 11	0 , 11	i	m		m.s.n.m.		
568	18.00	13°	16' 00"	90° 16' 40"			Borde calle (esq.)	2729.297	774301.652	9209403.038
569	30.50	312° :	20' 20"	91° 41' 10"			Borde pav.	2728.487	774320.357	9209422,295
570	30.30	309°	51' 35"	91° 07' 00"			Borde calle (esq.)	2728.794	774319.906	9209423.546
571	28.40	308°	37' 00"	90° 55' 30"			Borde calle (esq.)	2728,926	774317.911	9209423.737
572	30.50	311°	57' 20"	91° 08' 10"			, , ,	2728.779	774320.321	9209422,496
573	27.20	299°	57' 10"	90° 29' 50"			Borde calle	2729.148	774315.475	9209427.361
574	25.80	298° .	41' 10"	91° 10' 30"				2728.855	774313.957	9209427.354
575	26.85	284° :	26' 00"	90° 12' 50"			Borde calle (esq.)	2729,284	774311.514	9209433.501
576	25.00	286°	45' 40"	91° 08' 35"			,	2728.885	774310.661	9209431.551
577	20.00	292°	44' 50"	90° 49' 40"				2729.095	774307.715	9209426,884
578	22.65	323°	18' 10"	91° 13' 20"				2728,901	774312,963	9209416.623
579	20.85	335°	02' 25"	92° 08' 20"			Borde pav.	2728.606	774310.653	9209412.421
580	13.35	343° (01' 00"	91° 06' 10"				2729.127	774302.803	9209412,297
581	24.03	357° (04' 00"	91° 01' 45"			Buzón	2728,952	774310.056	9209403.317
582	51.20	103° :	20' 30"	88° 31' 00"			Borde calle (esq.)	2730.709	774250.501	9209384.831
583	50.10	103°	49' 05"	88° 35' 40"				2730.613	774251.096	9209385.848
584	42.30	102°	19' 40"	88° 31' 30"			Borde calle (esq.)	2730.472	774257.898	9209389.849
585	43.70	104° (07' 40"	88° 41' 00"			20.20 02.00 (004.)	2730.388	774255.960	9209390.015
586	47.30	ł	40' 35"	88° 46' 40"			Buzón	2730.393	774250.477	9209390.013
587	12.00	j	42' 10"	91° 23' 30"			542011	2729.093	774300.952	9209422.579
E 10(aux)	Ceros er			1	1.460		Estación (buz.)	2732,397	774192,766	9209358.232
588	63.10		13' 50"	87° 58' 00"	1. 100		Buzón	2734.634	774139,144	9209338.232
589	19.30	[30' 30"	88° 23' 10"			502011	2732.940	774176.142	
590	20.20	}	24' 50"	89° 10' 40"			÷	2732.687	774173.410	9209348.426
591	20.30		49' 25"	88° 48' 20"				2732.820)	9209352.451
592	20.55	1	32' 10"	88° 47' 15"			Borde calle (esq.)	2732.832	774173.274 774172.784	9209352.562
593	11.70	}	59' 40"	88° 18' 10"			borde calle (esq.)	2732.743	774181.082	9209353.432 9209357.610
594	6.15	ĺ	03' 20"	88° 36' 50"			Borde calle (esq.)	2732,546	774191,381	
595	6.30	ļ	04' 40"	89° 02' 40"			Borde calle (esq.)	2732.502	774193.091	9209352.240 9209351.940
596	4.30	1	35' 40"	90° 43' 20"			borde calle (esq.)	2732.343	774192,350	
597	44.30	}	45' 00"	90° 08' 20"			Borde calle (esq.)	2732.290	774220.820	9209353.952 9209323.947
598	44.15		13' 20"	90° 20' 20"			Borde calle (esq.)	2732.136]	9209323.947
599	7.10	Į.	20' 00"	89° 57' 50"			Borde calle (esq.)	2732,401	774199.675	9209356,600
600	4.50	ì	04' 10"	93° 39' 25"			borde calle (esq.)	2732,111] .	9209355.398
601	5.40	1	48' 20"	93° 08' 25"				2732.111	774196.261 774197.963	1
602	9.60	ļ	15' 50"	88° 38' 10"				2732.625		9209356,765
603	9.40	1	47' 10"	91° 45' 40"				2732.108	774183.199	9209357.432
604	27.00	ļ	39' 20"	91° 17' 00"			Borde calle	2731.792	774201.640 774218.387	9209361.332 9209366.748
605	17.60	{	55' 20"	92" 12' 00"			Doi do Calle	2731.792	774209.070	9209364,859
606	26.75	Į	54' 30"	91° 39' 10"				2731.626	774216.983	9209369,594
607	28.25	}	29' 10"	91° 39' 10"				2731.583	774214.857	9209369,594
608	29.00	l	17' 05"	91° 29' 00"			Borde calle	2731.647	774214.637	
609	62,30		00' 20"	91° 50' 40"			Borde calle (esq.)	2730.393		9209377.165
610	60.60	ſ	03' 00"	91° 35' 00"			corde cane (esq.)	j	774248.743	9209385.578
611	61.00	ļ	29' 30"	91° 29' 20"				2730.723 2730.813	774246.764	9209385,737
612	61.70	[56' 15"	91° 44' 20"]	9209389.238
613	62,00	1	53' 40"	91° 24' 10"			Bordo colla	2730.526	774243.854	9209392.828
614	36.30	1	38' 20"	91° 26' 50"			Borde calle	2730.880	774243,461	9209393.925
E ₁₆	Ceros en		20	31 20 50	1.463		Estació -	2731.480	774221.212	9209380.781
615	25.00	1	55' 35"	89° 55' 50"	1.403		. Estación	2734.627	774139.273	9209326.113
616	25.80		15' 50"	90° 13' 00"			Borde calle	2734.657	774151.838	9209304.500
617	25.00	j	51' 35"	90° 18' 50"				2734.529	774153.638	9209304.682
618	26.50	[42' 40"	90° 18' 50"		į		2734.490	774157.921	9209309.463
619	29.65		13' 10"	90° 47° 25° 91° 39' 50"				2734.262	774162.537	9209313.423
	. 20.00	323	.5 .0	31 33 30	ليسيط			2733.766	774167.609	9209317.385

Carlo Carl	Punto	DIST	ANG. HORIZ.	ANG VERT			Observación	0.575		
Second S				7410. 721(1.	Į.		Observacion	COTA	ESTE	NORTE
621 19.30 301* 07 47* 52* 15* 15* Borde calle (esq.) 2733.868 774168.202 9009339.4 26* 30 200° 30 5* 22* 50* 10* 2733.159 774168.202 9009339.4 26* 30 200° 30 200° 30 5* 22* 50* 10* 2733.338 774167.202 9009339.4 26* 30 201* 43 00* 92* 16* 15* 2733.349 774168.393 900930.6 26* 28. 20. 21* 14* 30* 95* 16* 15* 20* 95* 40* 86* 22* 44. 25* 40* 95* 12* 25* 10* 95* 65* 23. 20* 25* 17* 10* 90* 19* 30* 9* 10* 20* 95* 65* 20* 20* 21* 42* 60* 95* 40* 20* 95* 65* 20* 20* 25* 17* 10* 90* 19* 30* 9* 20* 20* 9* 20* 20* 27* 55* 77414.32* 900933.6 8* 30* 30* 20* 27* 10* 90* 19* 30* 9* 20* 20* 9* 20* 20* 27* 30* 9* 20* 20* 20* 27* 30* 9* 20* 20* 20* 27* 30* 9* 20* 20* 20* 27* 30* 9* 20* 20* 20* 27* 30* 9* 20* 20* 20* 27* 30* 20* 20* 20* 27* 30* 20* 20* 20* 27* 30* 20* 20* 20* 20* 27* 30* 20* 20* 20* 20* 27* 30* 20* 20* 20* 20* 20* 20* 20* 20* 20* 2		(m)	o 1 H	о і и	i	m		m.s.n.m.		
622 30.35 292* 16 00* 92* 21* 40* Borde calle 7733.136 774167.822 900933.4 624 29.40 887 48* 05* 92* 16* 15* 774168.271 900938.7 625 29.0	620	31.00	326° 29' 50"	91° 30' 00"			Borde calle	2733.816	774169.299	9209318.405
623 29.70 290° 03° 39° 12° 50° 10° 39° 12° 50° 10° 7733.58 774165.690 200333.72 3003333.72 3003333.72 3003333.72 3003333.72 3003333.72 3003333.72 3003333.72 3003333.72 3003333.	621	19.30	301° 07' 40"	92° 15' 15"			Borde calle (esq.)	2733.868	774158.220	9209329.786
624 29.10 287° 24° 10° 92° 29′ 20° 273.389 774165.711 200333.2 020333.2 11° 40° 92° 16° 15° 15° 2733.389 774165.711 20° 282° 12° 40° 98° 13° 30° 20° 2734.89 774143.39 320333.2 11° 30° 24° 28° 31° 30° 30° 30° 30° 30° 30° 30° 30° 30° 30	622	30.35	292° 16' 00"	92° 21' 40"	ļ		Borde calle	2733.378	774167.822	9209336.410
625 28.70 281° 34° 05° 92° 16° 15° 666 20.30 211° 49° 00° 89° 29° 40° 740° 666 20.30 211° 49° 00° 89° 29° 40° 80° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 60° 13° 30° 80° 80° 80° 80° 80° 80° 80° 80° 80° 8	623	29.70	290° 03' 35''	92° 50' 10"				2733.159	774166.802	9209337.258
Section Sect	624	29.10	287° 24' 10"	92° 25' 20"				2733.398	774165.711	9209338.271
627 12.00 232 12 407 89 13 507	625	28.70	281° 34' 05"	92° 16' 15"				2733.491	774163.993	9209340.693
Section	626	20.30	211° 49' 00"	89° 29' 40"			Borde calle	2734.806	774135.649	9209346.087
S29	627	12.00	232° 12' 40"	89* 13' 30"	}		Borde calle	2734.789	774141.379	9209337.926
830 17.15 254* 16' 06" 90" 40 20" 80rde calle (esq.) 2734.426 77.1418.40 39.09346.8 631 16.30 262* 47' 06" 92' 44' 25" 80rde calle (esq.) 2733.849 77418.418 89 9209346.8 632 32.00 273' 03' 40" 92' 22' 20" 80rde calle (esq.) 2733.649 77418.418 89 9209346.8 634 32.10 272' 14' 15" 91" 42' 20" 80rde calle (esq.) 2733.649 77416.418 59 9209346.8 636 16.55 268' 540" 93' 00' 50" 80" 80" 80" 80" 80" 80" 80" 80" 80" 8	628	13.50	244° 28' 40"	90° 12' 25"			Poste	2734.578	774144.412	9209338.596
631 16.30 262 47 06 92 44 25' 632 32.00 273' 03 40' 92' 22' 20'' 633 32.00 271' 05' 15' 91' 42' 20'' 634 32.10 272' 14' 15' 91' 45' 40'' 635 32.00 273' 53' 50' 92' 52' 00'' 636 16.35 266' 25' 40' 93' 07' 50'' 637 10.20 285' 34' 20'' 91' 35' 40'' 638 17.15 285' 45' 60' 93' 07' 50'' 639 17.46 419 39.99346.8 630 17.15 285' 34' 20'' 91' 35' 40'' 630 17.15 285' 45' 50' 92' 31' 50'' 641 7.85 33' 49' 55'' 92' 31' 50'' 641 7.85 38' 49' 55'' 92' 31' 50'' 642 8.90 40'' 11' 10' 88' 57' 30'' 643 40.90 86' 38' 50'' 88' 52' 30'' 644 40.85 88' 25'' 08' 88' 52' 30'' 645 41.50 86' 24'' 50'' 88' 32' 20'' 646 48.40 103' 35' 20'' 88' 07'' 647 43.40 104' 41' 50'' 88' 32' 20'' 648 10.75 128' 31'' 50'' 88' 32'' 20'' 649 10.00 126' 52' 10'' 88' 32' 00'' 649 10.00 126' 52' 10'' 88' 32'' 20'' 650 3.70 146'' 52'' 10'' 88' 32'' 20'' 651 20.35 144'' 15'' 40'' 88' 15'' 40'' 652 3.70 122'' 03'' 60'' 89' 51'' 00'' 653 24.50 172'' 57'' 00'' 88' 51'' 60'' 654 24.30 104'' 41'' 50'' 88' 32'' 20'' 655 27.30 203'' 48' 50'' 98'' 51'' 69'' 50'' 50'' 656 3.460 25'' 17'' 69'' 20'' 88'' 16'' 00'' 80'' 80'' 2734.891 77413.418,399 3209321.2 653 24.55 17'' 66'' 20'' 88'' 51'' 60'' 50'' 80'' 2734.691 77410.742 9209306.1 656 3.70 166'' 52'' 10'' 88'' 20'' 00'' 80'' 80'' 2734.691 77410.742 9209306.1 657 8.00 25'' 13'' 50'' 88'' 51'' 00'' 80'' 80'' 2734.691 77413.415 97' 9209331.2 658 3.86 13'' 17'' 66'' 20'' 88'' 16'' 00'' 80'' 80'' 2734.691 77413.415 97' 9209331.2 659 5.85 131'' 17'' 60'' 20'' 88'' 16'' 00'' 80'' 80'' 2734.691 77413.415 97' 9209331.2 650 5.70 165' 01'' 10'' 88'' 53'' 50'' 80'' 2734.691 77413.415 90'' 9209331.2 660 5.70 165' 01'' 10'' 88'' 53'' 50'' 80'' 80'' 2734.691 77413.415 90'' 9209331.2 660 5.70 165' 01'' 10'' 88'' 53'' 50'' 80'' 2734.691 77413.415 90'' 9209331.2 660 5.70 165' 01'' 10'' 88'' 50'' 92'' 11'' 00'' 20'' 80'' 80'' 2734.691 77413.415 90'' 9209331.2 660 5.70 165' 01'' 10'' 88'' 53'' 50'' 92'' 11'' 00'' 20'' 80'' 80'' 2734.691 77413.415 90'' 9209331.2 660 5.70 165' 01'' 01'' 89'' 50'' 90'' 90'' 90'' 90'' 90'' 90'' 9	629	12.30	251° 17' 10"	90° 19' 35"			Poste	2734.557	774145.271	9209336.851
632 32.00 273° 03 40° 92° 22° 20° 2733.04 774164.128 9208346.2 633 32.00 271° 09 15° 91° 42° 20° 80rde calle (esq.) 2733.683 774163.584 9208347.2 634 32.10 272° 14° 15° 91° 45° 40° 80rde calle (esq.) 2733.681 774163.919 9208345.8 635 32.00 273° 53° 50° 22° 52° 00° 2733.375 774164.419 9208337.8 636 16.35 266° 25° 40° 93° 07° 50° 2733.375 774164.419 9208337.8 637 10.20 285° 34° 20° 91° 35° 40° 80° 03° 03° 03° 03° 03° 03° 03° 03° 03° 0	[17.15	254° 16' 05"	90° 40' 20"			Borde calle	2734.426	774148.403	9209340.630
633 32.0 271* 09 15* 91* 42 20* Borde calle (esq.) 2733.684 774163.912 9209346.8 635 32.00 272* 14* 15" 91* 45 40" Borde calle (esq.) 2733.684 774163.912 9209346.8 636 16.35 266* 25 40" 93" 07 50" 2733.75 774150.897 29209376.8 637 10.20 265* 34* 20" 91* 35 40" Buzón 2733.735 774150.897 9209376.8 638 17.15 288* 46* 05" 93* 03 00" 2734.33 774150.897 9209376.8 639 14.40 328* 32* 45" 90" 22 00" 2734.535 774150.897 9209376.8 640 9.60 304* 58* 55" 92" 31* 50" Borde calle (esq.) 2734.634 77418.799 9209377.8 641 7.85 38* 49* 05" 90" 10 30" Borde calle (esq.) 2734.789 77413.779 9209377.8 642 8.90 40" 11" 10" 88* 57 30" Borde calle (esq.) 2734.789 77410.791 9209377.8 643 40.90 86* 38* 50" 88* 50 20" Borde calle (esq.) 2735.430 77410.561 9209377.8 644 40.85 88* 25* 00" 88* 50 20" Borde calle (esq.) 2735.307 77410.561 9209378.8 645 41.50 96* 24* 50" 88* 33 20" Borde calle (esq.) 2735.603 77406.742 9209378.8 646 48.40 103* 35* 20" 88* 50* 30" Borde calle (esq.) 2735.721 77410.740 9209378.8 647 43.40 104* 41* 50" 88* 33 20" 2734.694 77419.731 9209378.8 648 10.75 122* 31* 50" 88* 07 30" Borde calle (esq.) 2734.832 77410.565 9209303.0 650 9.70 146* 23* 55" 88* 47* 15" Borde calle (esq.) 2734.834 77419.373 92093278.8 651 20.35 144* 15* 40" 88* 35 50" Borde calle (esq.) 2734.834 77412.934 9209328.8 652 9.70 192* 03* 00" 88* 53 50" Borde calle (esq.) 2734.841 77412.934 9209328.8 653 24.55 171* 06* 20" 89* 15* 00" Borde calle (esq.) 2734.841 77412.934 9209333.0 659 4.60 9.70 146* 23* 55" 88* 47* 15" Borde calle (esq.) 2734.841 77412.934 9209333.0 659 5.85 131* 17* 40" 89* 43* 50" 50" Borde calle (esq.) 2733.897 77411.818 9209333.0 659 5.80 131* 17* 40" 89* 43* 50" 50" Borde calle (esq.) 2733.897 77411.819 9209338.8 660 5.70 165* 01* 10" 89* 28* 50" 50" 2734.891 77412.397 9209333.0 661 5.70 185* 01* 10" 89* 28* 50" 50" 2734.891 77412.398 9209333.0 662 2734.891 77412.418 9209333.0 663 24.55 171* 06* 20" 89* 51* 00" 20" 2734.891 77412.398 9209333.0 664 17.00 203* 58* 20" 93* 55* 00" 20* 50" 2734.891 77412.418 9209333.0 665 17.70 122*	631	16.30	262° 47' 05"	92° 44' 25"			Borde calle (esq.)	2733.849	774149.899	9209338.473
634 32.10 272* 14* 15* 91* 45* 40* Borde calle (esq.) 2733.641 774163.912 9209345.9 636 16.35 266* 26* 40* 93* 07* 50* Buzón 2734.343 774164.419 9209345.9 637 10.20 265* 24* 40* 91* 35* 40* Buzón 2734.343 774165.666 9209337.8 638 17.15 298* 46* 65* 93* 03* 00* 2734.535 774153.083 9209330.6 639 14.40 328* 32* 45* 90* 22* 00* 2734.535 774153.083 9209320.6 640 9.60 304* 55* 55* 92* 31* 50* Borde calle (esq.) 2734.624 774139.729 9209318.2 642 8.90 40* 11* 10* 88* 57* 30* Borde calle (esq.) 2734.789 774105.656 9209317.8 643 40.90 86* 38* 50* 88* 52* 00* Borde calle (esq.) 2734.789 774105.650 9209317.8 644 40.65 88* 25* 00* 89* 00* 20* 2735.330 774106.731 9209297.8 645 41.50 96* 24* 50* 88* 53* 45* 2735.633 774106.731 9209297.8 646 48.40 103* 35* 20* 88* 53* 45* 2735.633 774106.742 9209300.1 647 43.40 104* 41* 50* 88* 33* 20* 2735.721 774100.742 9209300.1 648 10.75 122* 31* 50* 88* 70* 30* Borde calle (esq.) 2734.979 774128.533 9209328.5 649 10.00 126* 52* 10* 88* 20* 00* 20* 2734.832 774129.373 9209328.5 650 9.70 146* 22* 55* 88* 47* 15* 25* 25* 25* 25* 25* 25* 25* 25* 25* 2	1		273° 03' 40"	92" 22' 20"				2733.304	774164.128	9209346,268
635 32 00 273 53 50" 92" 52" 00" 2733 029 774164 419 9209345.9 636 16.35 266" 25 40" 93" 07" 50" 8uzón 2733.735 774164 419 9209345.6 637 10.20 285" 34" 20" 91" 35" 40" 8uzón 2733.735 774163.939 320330.6 638 17.15 288" 48" 05" 93" 03" 00" 2734.533 774155.969 9209337.8 640 9.60 3.04" 58" 55" 92" 31" 50" 2734.533 774153.083 3209327.3 641 7.85 38" 49" 05" 00" 10" 30" 8uzón 2734.533 774153.083 3209327.3 641 7.85 38" 49" 05" 00" 10" 30" 8uzón 2734.533 774184.8799 920937.3 641 7.85 38" 49" 05" 00" 10" 30" 8uzón 2734.624 774139.722 9209318.2 642 8.90 40" 11" 10" 88" 57" 30" 8uzón 2735.420 774110.879 9209371.2 643 40.90 86" 38" 50" 88" 52" 30" 8uzón 2735.427 774105.569 9209317.2 644 40.95 88" 25" 00" 88" 53" 45" 2735.427 774105.569 920930.3 00" 644 40.05 88" 25" 00" 88" 53" 45" 2735.427 774105.569 920930.3 00" 649 10.75 122" 31" 50" 88" 30" 20" 2735.721 774100.742 9209303.0 644 40.00 103" 35" 20" 88" 30" 20" 2735.721 774100.742 9209303.0 649 10.00 126" 52" 10" 88" 20" 00" 20" 2734.979 774128.933 9209325.6 650 9.70 146" 23" 55" 88" 47" 15" 8uzón 2734.979 774129.314 9209325.6 650 9.70 146" 23" 55" 88" 47" 15" 8uzón 2734.979 774129.314 9209325.6 651 20.35 144" 15" 40" 88" 15" 40" 8uzón 2734.999 774129.314 9209325.6 653 24.55 17" 62" 20" 88" 51" 00" 8uzón 2734.991 774120.992 920934.2 0 655 27.30 203" 48" 20" 88" 51" 00" 8uzón 2734.691 774120.195 920934.2 0 655 27.30 203" 48" 20" 88" 51" 00" 8uzón 2734.691 774120.195 920934.2 0 655 27.30 203" 48" 20" 88" 51" 00" 8uzón 2734.691 774120.195 9209332.6 650 9.30 253" 29" 50" 90" 49" 50" 8uzón 2734.691 774130.703 9209332.6 650 9.30 253" 29" 50" 90" 49" 50" 8uzón 2734.261 77413.402 9209332.6 650 9.30 253" 29" 50" 90" 49" 50" 8uzón 2734.261 77413.402 9209332.6 650 9.30 253" 29" 50" 90" 49" 50" 8uzón 2734.261 77413.402 9209332.6 650 9.30 253" 29" 50" 90" 49" 50" 8uzón 2734.261 77414.118 9209332.6 666 9.30 253" 29" 50" 90" 49" 50" 90" 40" 2734.261 77414.418 9209332.6 666 9.30 253" 29" 50" 90" 40" 50" 50" 90" 40" 2733.362 77414.418 9209335.6 666 9.30 253" 29" 50" 90" 40" 50" 50" 90" 40"	1	32.20	271° 09' 15"	91° 42′ 20"			Borde calle	2733.669	774163.594	9209347.215
636 16.35 266 25 40" 83° 07' 50" Buzón 2734.343 77418.399 920930.6 638 17.15 298' 46' 05" 93' 03' 00" 2734.751 774150.687 9209337.6 639 14.40 328' 32' 45" 90' 22' 00" 2734.753 774150.687 9209337.2 641 7.85 38' 49' 05" 90' 22' 00" Borde calle (esq.) 2734.769 774139.77 9209337.6 641 7.85 38' 49' 05" 90' 01' 30" Borde calle (esq.) 2734.789 774139.77 920937.7 92' 92' 92' 92' 92' 92' 92' 92' 92' 92'	1	-	272° 14' 15"	91° 45' 40"	,		Borde calle (esq.)	2733.641	774163.912	9209346.687
637 10.20 285 34 20" 91" 35" 40" Buzón 2734.343 774148.399 9209330.6 638 17.15 298" 46 05" 93" 03' 00" 2734.343 774148.399 9209330.0 639 14.40 328" 32" 45" 90" 22" 00" 2734.204 774148.799 9209327.3 640 9.60 304" 58" 55" 92" 31" 50" Borde calle (esq.) 2734.204 774148.799 9209372.3 641 7.75 38" 49" 05" 05" 05" 05" 05" 05" 05" 05" 05" 05	1							2733.029	774164.419	9209345.903
638 17.15 298" 46" 65" 93" 03" 00" 22" 20" 2733.716 774155.980 920333.0 639 14.40 328" 32 45" 90" 22" 00" 2734.535 774153.083 920332.0 640 9.60 304" 58" 55" 92" 31" 50" 30" 30" 30" 30" 45" 55" 92" 31" 50" 30" 30" 30" 30" 30" 30" 30" 30" 30" 3	1							2733.735	774150.697	9209337.809
639 14.40 328* 32* 45* 90* 22* 00* 2734.535 774153.083 9209322.0 640 9.60 304* 58* 55* 92* 31* 50* 2734.04 774148.799 9209327.3 641 7.85 33* 49* 05* 90* 01* 30* Borde calle (esq.) 2734.624 774139.722 9209318.2 642 8.90 40* 11* 10* 83* 57* 30* Borde calle (esq.) 2734.789 774139.570 9209317.3 643 40.90 86* 38* 50* 88* 52* 30* Borde calle (esq.) 2735.330 774103.570 9209318.2 644 40.85 88* 25* 00* 88* 50* 20* 2735.335 774103.731 9209297.8 645 41.50 96* 24* 50* 88* 53* 45* 2735.427 774105.565 9209301.9 646 48.40 103* 35* 20* 88* 53* 30* Borde calle (esq.) 2735.721 774106.742 9209306.1 648 10.75 129* 31* 50* 88* 20* 00* 2735.721 774100.742 9209306.1 648 10.00 126* 52* 10* 88* 20* 00* 649 10.00 126* 52* 10* 88* 20* 00* 650 9.70 146* 23* 55* 88* 47* 15* 650 9.70 146* 23* 55* 88* 47* 15* 655 9.70 192* 03* 00* 88* 53* 50* 655 24.55 171* 06* 20* 88* 51* 00* 655 2734.681 774129.813 9209325.6 656 9.30 172* 57* 00* 88* 51* 00* 656 9.30 172* 57* 00* 88* 51* 00* 656 9.30 253* 28* 50* 90* 49* 50* 656 9.30 253* 28* 50* 90* 49* 50* 656 9.30 253* 28* 50* 90* 49* 50* 656 9.30 253* 28* 50* 90* 49* 50* 656 9.30 253* 28* 50* 90* 49* 50* 656 9.30 253* 28* 50* 90* 49* 50* 656 9.30 253* 28* 50* 90* 49* 50* 656 9.30 253* 28* 50* 90* 49* 50* 656 9.30 253* 28* 50* 90* 49* 50* 656 9.30 253* 28* 50* 90* 49* 50* 656 9.30 253* 28* 50* 90* 49* 50* 656 9.30 253* 28* 50* 90* 49* 50* 656 9.30 253* 28* 50* 90* 49* 50* 656 9.30 253* 28* 50* 90* 49* 50* 656 9.30 253* 28* 50* 90* 49* 50* 666 5.70 165* 01* 10* 89* 28* 00* 2733.89\$ 774113.402 9209332.6 660 5.70 165* 01* 10* 89* 28* 00* 2733.922 774118.612 9209337.2 663 3.85 215* 47* 10* 89* 33* 30* 666 2.3.40 18* 22* 20* 92* 36* 50* 90* 19* 15* 92* 36* 50* 90* 19* 15* 92* 30* 40* 92* 20* 30* 40* 92* 20* 50* 90* 19* 15* 92* 64* 90* 20* 50* 90* 19* 15* 90* 19* 15* 92* 64* 90* 20* 50* 90* 19* 15* 92* 64* 90* 20* 50* 90* 19* 15* 92* 64* 90* 20* 50* 90* 19* 15* 92* 64* 90* 20* 50* 90* 19* 15* 92* 64* 90* 20* 50* 90* 19* 10* 90* 20* 50* 90* 19* 10* 90* 20* 50* 90* 19* 10* 90* 20* 50* 90* 19* 10* 90* 20* 50* 90	; l	1		91° 35' 40"			Buzón	2734.343	774148.399	9209330.668
640 9.60 304° 55′ 55′ 92° 31′ 50″ Borde calle (esq.) 2734.624 77418.799 9209327.3 88° 49′ 05° 90′ 01′ 30″ Borde calle (esq.) 2734.789 774139.722 9209318.2 89′ 40.90 86° 38′ 50″ 88° 52′ 30″ Borde calle (esq.) 2735.336 774105.81 920926.9 41.50 96° 24′ 50″ 88° 53′ 40″ 2735.603 774105.81 920926.9 41.50 96° 24′ 50″ 88° 53′ 40″ 2735.336 774105.81 920926.9 41.50 96° 24′ 50″ 88° 53′ 40″ 2735.336 774105.85 2009301.2 2735.603 774096.742 9209301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.721 774105.65 2009301.2 2735.60 3 774096.742 9209303.1 2734.918 774129.314 9209305.1 2734.918 774129.314 9209325.6 200° 2734.918 774129.314 2009325.6 200° 2734.83 2774128.83 2009325.6 200° 2734.83 2774128.83 2009325.6 200° 2734.84 200° 2734.8	1	- 1	1					2733.716	774155.960	9209330.067
641 7.85 38* 49 05* 90* 01* 30* Borde calle (esq.) 2734.624 774139.723 9209318.2 642 8.90 40* 11* 10* 88* 57 30* Borde calle (esq.) 2734.789 774105.51 9209317.2 643 40.90 86* 38* 50* 88* 52* 30* Borde calle (esq.) 2735.336 77410.581 920926.9 644 40.85 88* 25* 00* 88* 00* 20* 2735.336 774109.731 9209297.8 645 41.50 96* 24* 50* 88* 53* 45* 2735.603 774096.742 9209306.1 648 40.75 129* 31* 50* 88* 30* 20* 2735.603 774096.742 9209306.1 648 10.75 129* 31* 50* 88* 20* 00* Borde calle (esq.) 2734.979 774128.533 9209325.6 649 10.00 126* 52* 10* 88* 20* 00* Borde calle (esq.) 2734.979 774128.533 9209325.6 650 9.70 146* 23* 55* 88* 47* 15* 80* 80* 80* 2735.603 774096.742 9209306.1 80* 80* 53* 50* 80* 65* 20.35 144* 15* 40* 88* 15* 40* Borde calle (esq.) 2734.941 774129.379 9209334.5 653 24.55 171* 66* 20* 88* 16* 00* Borde calle (esq.) 2734.941 77412.9 39* 9209334.5 653 24.55 171* 66* 20* 88* 16* 00* Borde calle (esq.) 2734.941 774120.959 9209342.0 655 27.30 203* 48* 20* 89* 51* 00* Borde calle (esq.) 2734.941 774120.959 9209342.0 655 27.30 203* 48* 20* 89* 51* 00* Borde calle (esq.) 2734.941 774120.959 9209342.0 655 27.30 203* 48* 20* 89* 51* 00* 2734.691 774120.892 9209342.0 655 27.30 203* 48* 20* 89* 51* 00* 2734.691 774120.892 9209342.0 655 27.30 203* 48* 20* 89* 51* 00* 2734.691 774120.892 9209334.5 659 8.00 257* 13* 50* 92* 37* 30* 14.60 Estación 2733.899 774118.612 9209334.6 660 5.70 165* 01* 10* 89* 28* 00* 2733.754 774118.20 9209334.6 660 5.70 165* 01* 10* 89* 28* 00* 2733.754 774118.612 9209334.6 660 5.70 165* 01* 10* 89* 28* 00* 2733.754 774118.612 9209338.4 666 17.70 192* 06* 40* 90* 20* 50* 90* 19* 15* Borde calle (esq.) 2733.754 774113.489 9209356.6 666 17.70 192* 05* 40* 90* 20* 50* 90* 19* 15* 9209336.6 666 17.70 192* 05* 40* 90* 20* 50* 90* 19* 15* 9209336.6 666 17.70 192* 05* 40* 90* 20* 50* 90* 19* 15* 9209336.6 666 17.70 192* 05* 40* 90* 20* 50* 90* 19* 15* 9209336.6 666 17.70 192* 05* 40* 90* 20* 50* 90* 19* 15* 9209336.6 666 17.70 192* 05* 50* 90* 19* 15* 9209336.9 80* 920936.8 80* 9209336.9 80* 9209	1							2734.535	774153.083	9209322.036
642 8.90 40° 11' 10" 88° 57' 30" Borde calle (esq.) 2734.789 77413.5712 920937.82	1							2734.204	774148.799	9209327.302
643	1	ĺ						2734.624	774139.722	9209318.276
644 40.85 88* 25* 00* 89* 00* 20* 2735.338 774109.731 9209297.8 645 41.50 96* 24* 50* 88* 53* 45* 2735.338 774109.731 9209297.8 646 48.40 103* 35* 20* 88* 50* 40* 2735.603 774096.742 9209303.0 2735.721 774105.565 9209301.9 2735.721 774105.742 9209303.0 2735.721 774100.742 9209303.0 2735.721 774100.742 9209306.1 90.00 126* 52* 10* 88* 20* 00* 2734.918 774129.314 9209325.2 2734.939 774128.533 9209325.6 649 10.00 126* 52* 10* 88* 15* 40* 80* 89* 16* 00* 80* 174120.195 9209304.5 653 24.55 171* 06* 20* 89* 16* 00* 80* 174120.195 9209341.5 654 24.30 172* 57* 00* 89* 51* 00* 2734.694 774120.195 9209341.5 655 27.30 203* 48* 20* 89* 51* 00* 2734.694 774120.195 9209342.0 655 27.30 203* 48* 20* 89* 51* 00* 2734.694 774120.195 9209342.0 656 9.30 253* 29* 50* 90* 49* 50* 2734.694 77413.876 9209332.6 657 8.00 257* 13* 50* 92* 37* 30* 2734.694 774113.876 9209332.6 658 4.60 90* 24* 20* 92* 11* 00* 1.75 80* 2733.699 774113.402 9209379.4 668 5.70 165* 01* 10* 89* 28* 00* 2733.537 774118.80 9209331.6 660 5.70 165* 01* 10* 89* 28* 00* 2733.754 774119.166 9209371.0 661 5.30 118* 04* 00* 93* 35* 50* 2733.754 774114.418 9209337.0 663 3.65 215* 47* 10* 89* 43* 30* 664 17.45 187* 37* 50* 90* 19* 15* 80* 666 17.00 203* 56* 30* 89* 00* 40* 666 5.70 192* 06* 40* 90* 20* 50* 666 666 17.00 203* 56* 30* 89* 00* 40* 666 666 17.00 203* 56* 30* 89* 00* 40* 666 17.45 187* 37* 50* 90* 19* 15* 80* 666 17.00 203* 56* 30* 89* 00* 40* 666 17.45 187* 37* 50* 90* 19* 15* 80* 666 17.00 203* 56* 50* 83* 32* 20* 50* 666 17.00 203* 56* 50* 83* 32* 20* 50* 666 17.00 203* 56* 50* 83* 32* 20* 50* 666 17.00 203* 56* 50* 83* 32* 20* 50* 666 17.00 203* 56* 50* 83* 32* 20* 50* 666 17.00 203* 56* 50* 83* 32* 20* 50* 666 17.00 203* 56* 50* 83* 32* 20* 50* 666 17.00 203* 56* 50* 83*	1	- 1					Borde calle (esq.)	2734.789	774139.570	9209317.218
645 41.50 96° 24′ 50° 88° 53′ 45° 2735.427 774105.565 9209301.9 646 48.40 103° 35′ 20° 88° 50′ 40° 2735.603 774096.742 9209303.0 647 43.40 104° 41′ 50° 88° 33′ 20° 2735.603 774096.742 9209303.0 2735.603 774096.742 9209305.1 648 10.75 129° 31′ 50° 88° 07′ 30° 80° 07′ 30° 80° 2734.918 774128.533 9209325.6 649 10.00 126° 52′ 10° 88° 20′ 00° 2734.918 774129.314 9209325.2 650 9.70 146° 23′ 55° 88° 47′ 15° 80° 23′ 50	1	ĺ					Borde calle	2735.430	774110.581	9209296.965
646 48.40 103° 35′ 20" 88° 50′ 40" 2735.603 774096.742 9209303.0 647 43.40 104° 41′ 50" 88° 33′ 20" 88° 50′ 40" 2735.721 774100.742 9209306.1 648 10.75 129° 31′ 50" 88° 20′ 00" 80° 24′ 20" 92° 31′ 50" 88° 51′ 00" 88° 51′ 00" 88° 51′ 00" 88° 51′ 00" 88° 51′ 00" 88° 51′ 00" 80° 52 9.70 192° 03′ 00" 89° 51′ 00" 89° 51′ 00" 88° 51′ 00" 80° 51′ 2734.941 77412.9873 9209334.5 653 24.55 171° 06′ 20" 88° 16′ 00" 88° 51′ 00" 2734.644 77413.415 9209342.0 655 27.30 203° 48° 20° 92° 49′ 50" 89° 51′ 00" 80° 51′ 00°	1	}	j				•	2735.336	774109.731	9209297.899
647	1 1	i								9209301.904
648 10.75 129° 31′ 50″ 88° 07′ 30″ Borde calle (esq.) 2734.979 774128.533 9209325.66 649 10.00 126° 52′ 10″ 88° 20′ 00″ 2734.918 774129.314 9209325.2 650 9.70 146° 23′ 55″ 88° 47′ 15″ 2734.832 774129.873 9209325.2 651 20.35 144° 15′ 40″ 88° 15′ 40″ Borde calle (esq.) 2735.244 774119.379 9209325.2 652 9.70 192° 03′ 00″ 89° 53′ 50″ 2734.644 774134.415 9209334.5 653 24.55 171° 06′ 20″ 89° 16′ 00″ Borde calle (esq.) 2734.941 774120.195 9209341.5 654 24.30 172° 57′ 00″ 89° 51′ 00″ 2734.691 774120.892 9209342.0 655 27.30 203° 48′ 20″ 89° 51′ 00″ 2734.693 774130.703 9209332.6 656 9.30 253° 29′ 50″ 90° 49′ 50″ 2734.92 774144.118 9209334.0 657 8.00 257° 13′ 50″ 92° 37′ 30″ 2734.941 77413.402 9209379.4 659 4.60 90° 24′ 20″ 92° 11′ 00″ 1.75 80° 600 5.70 165° 01′ 10″ 89° 28′ 00″ 2733.922 774118.612 9209370.0 661 5.30 118° 04′ 00″ 93° 35′ 50″ 2733.922 774118.612 9209370.0 662 3.40 181° 25′ 20″ 92° 36′ 50″ 2733.887 774112.593 9209375.6 663 3.85 215° 47′ 10″ 89° 43′ 30″ 2733.887 774112.593 9209375.6 666 17.70 192° 06′ 40″ 90° 20′ 50″ 2733.622 774124.535 9209366.7 668 17.70 192° 06′ 40″ 90° 20′ 50″ 2733.888 774124.535 9209365.6 668 17.00 203° 56′ 30″ 89° 00′ 40″ 2733.888 774124.535 9209365.6 668 25.00 191° 49′ 40″ 90° 01′ 30″ 50″ 2733.888 774124.799 9209358.1	1	J						ĺ		9209303.010
649 10.00 126° 52′ 10″ 88° 20′ 00″ 2734.918 774129.314 9293325.2 2734.918 774129.314 9293325.2 2734.918 774129.314 9293325.2 2734.61 774129.314 9293325.2 3233.3 32 2734.61 77412.3 39 229332.6 652 9.70 192° 03′ 00″ 89° 51′ 00″ 89° 51′ 00″ 2734.691 774120.892 929341.5 654 24.30 172° 57′ 00″ 89° 51′ 00″ 2734.691 774120.892 929342.0 2734.693 774120.892 929342.0 2734.693 774134.118 9209332.6 655 27.30 203° 48′ 20″ 89° 51′ 00″ 2734.693 774134.118 9209332.6 657 8.00 257° 13′ 50″ 92° 37′ 30″ 2734.991 774120.392 929332.6 657 8.00 257° 13′ 50″ 92° 37′ 30″ 2734.261 774143.876 9209332.6 659 5.85 131° 17′ 40″ 91° 07′ 20″ 80° 28′ 00″ 2733.593 774118.612 9209370.0 661 5.30 118° 04′ 00″ 93° 35′ 50″ 2733.593 774118.280 9209370.0 663 3.85 215° 47′ 10″ 89° 43′ 30″ 2733.897 774114.418 9209370.0 664 17.45 187° 37′ 50″ 92° 36′ 50″ 92° 36′ 50″ 92° 37′ 30″ 2733.897 774114.418 9209370.0 666 17.70 192° 06′ 40″ 93° 43′ 30″ 80° 43′ 43′ 43′ 43′ 43′ 43′ 43′ 43′ 43′ 43′	1				,			ļ		9209306.138
650 9.70 146° 23′ 55″ 88° 47′ 15″ 2734.832 774129.873 9209328.56 651 20.35 144° 15′ 40″ 88° 15′ 40″ 2735.244 774119.379 9209330.4 652 9.70 192° 03′ 00″ 89° 53′ 50″ 2734.644 774134.415 9209334.5 653 24.55 171° 06′ 20″ 89° 16′ 00″ 2734.691 774120.195 920934.5 654 24.30 172° 57′ 00″ 89° 51′ 00″ 2734.691 774120.195 920934.5 655 27.30 203° 48′ 20″ 89° 51′ 00″ 2734.691 774120.892 9209342.0 655 9.30 253° 29′ 50″ 90° 49′ 50″ 2734.492 774144.118 9209334.0 657 8.00 257° 13′ 50″ 92° 37′ 30″ 2734.492 774144.118 9209334.0 658 4.60 90° 24′ 20″ 92° 11′ 00″ 1.75 859 5.85 131° 17′ 40″ 91° 07′ 20″ 89° 28′ 00″ 2733.922 774118.612 9209377.0 660 5.70 165° 01′ 10″ 89° 28′ 00″ 2733.922 774118.612 9209377.0 661 5.30 118° 04′ 00″ 93° 35′ 50″ 2733.869 2733.887 774119.166 9209381.4 662 3.40 181° 25′ 20″ 92° 36′ 50″ 2733.869 174114.418 9209377.0 664 17.45 187° 37′ 50″ 90° 19′ 15″ 80° 40′ 40″ 90° 20′ 50″ 2733.762 774124.535 9209375.6 666 17.70 192° 06′ 40″ 90° 20′ 50″ 2733.762 774124.535 9209375.6 666 17.70 192° 06′ 40″ 90° 20′ 50″ 2733.886 774124.79 9209385.1 668 25.20 191° 49′ 40″ 90° 01′ 30″ 2733.858 774124.79 9209385.1 668 25.20 191° 49′ 40″ 90° 01′ 30″ 2733.858 774129.349 9209385.8 668 25.20 191° 49′ 40″ 90° 01′ 30″ 2733.858 774129.349 9209385.8 668 25.20 191° 49′ 40″ 90° 01′ 30″	}	1					Borde calle (esq.)	i i		9209325.631
651 20.35 144° 15' 40" 88° 15' 40" 88° 15' 40" 89° 53' 50" 2735.244 774119.379 9209330.4 652 9.70 192° 03' 00" 89° 53' 50" 89° 16' 00" 89° 16' 00" 89° 16' 00" 2734.641 774120.195 9209334.5 654 24.30 172° 57' 00" 89° 51' 00" 2734.691 774120.892 9209342.0 655 27.30 203° 48' 20" 89° 51' 00" 2734.691 774120.892 9209342.0 656 9.30 253° 29' 50" 90° 49' 50" 2734.492 774144.118 9209334.0 657 8.00 257° 13' 50" 92° 37' 30" 2734.691 774130.703 9209332.6 E 11(aux) Ceros en E 17 1.460 Estación 2733.869 774113.402 9209379.4 658 4.60 90° 24' 20" 92° 11' 00" 1.75 80rde calle (esq.) 2733.404 774116.316 9209380.4 660 5.70 165° 01' 10" 89° 28' 00" 2733.537 774118.280 9209377.0 661 5.30 118° 04' 00" 93° 35' 50" 2733.537 774118.280 9209377.0 663 3.85 215° 47' 10' 89° 43' 30" 2733.714 774125.404 9209365.6 664 17.45 187° 37' 50" 90° 19' 15" 80rde calle 2733.771 774125.404 9209365.6 666 17.00 203° 56' 30" 89° 00' 40" 80° 20' 50" 2733.868 774124.779 9209358.1 668 25.20 191° 49' 40" 90° 01' 30" 2733.858 774129.349 9209358.1 668 25.20 191° 49' 40" 90° 01' 30" 2733.858 774129.349 9209358.1 668 25.20 191° 49' 40" 90° 01' 30" 2733.858 774129.349 9209358.1 668 25.20 191° 49' 40" 90° 01' 30" 2733.858 774129.349 9209358.1 668 25.20 191° 49' 40" 90° 01' 30"	1 1	- {	ì							
652 9.70 192° 03′ 00" 89° 53′ 50" 2734.644 774134.415 9209334.5 653 24.55 171° 06′ 20" 89° 16′ 00" 89° 51′ 00" 2734.691 774120.195 9209342.0 655 27.30 203° 48′ 20" 89° 51′ 00" 2734.698 774130.703 9209352.0 656 9.30 253° 29′ 50" 90° 49′ 50" 2734.492 774144.118 9209334.0 657 8.00 257° 13′ 50" 92° 37′ 30" 2734.261 77413.402 9209332.6 E 11(aux) Ceros en E 17 1.460 Estación 2733.869 774113.402 9209379.4 658 4.60 90° 24′ 20" 92° 11′ 00" 1.75 80rde calle (esq.) 2733.754 774119.166 9209380.4 660 5.70 165° 01′ 10" 89° 28′ 00" 2733.537 774118.280 9209377.2 661 5.30 118° 04′ 00" 93° 35′ 50" 2733.714 774115.993 9209375.6 663 3.85 215° 47′ 10′ 89° 43′ 30" 2733.714 774125.404 9209366.7 666 17.00 203° 56′ 30" 89° 00′ 40" 80° 20′ 50" 80° 2733.762 774124.158 9209358.14 668 25.20 191° 49′ 40° 90° 01′ 30" 2733.858 774129.349 9209358.14	1		ļ				Basila salla (a)	1		
653	1 1	l					Boroe calle (esq.)	Į.		
654		ļ	1				Rossle colle	1		
655 27.30 203° 48′ 20" 89° 51′ 00" 2734.698 774130.703 9209352.00 2734.698 774130.703 9209352.00 2734.698 774130.703 9209352.00 2734.492 774144.118 9209334.00 257° 13′ 50" 92° 37′ 30" 2734.261 774143.876 9209332.60 2734.261 774143.876 9209332.60 2734.261 774143.876 9209332.60 2734.261 774113.402 9209379.40 2733.869 774113.402 9209379.40 2733.869 774113.402 9209379.40 2733.404 774116.316 9209382.90 2733.754 774119.166 9209382.90 2733.754 774119.166 9209382.90 2733.3754 774119.166 9209382.90 2733.922 774118.612 9209377.00 2733.537 774118.280 9209377.00 2733.537 774118.280 9209377.00 2733.537 774118.280 9209377.00 2733.714 774115.993 9209377.20 2733.714 774115.993 9209377.20 2733.887 774114.418 9209375.60 2733.771 774125.404 9209366.70 2733.770 192° 06′ 40" 90° 20′ 50" 2733.770 174124.535 9209365.60 2734.485 774124.779 9209368.10 2733.858 774124.779 9209358.10 2733.858 774124.779 9209358.10 2733.858 774129.349 9209359.8	1 1		ŀ				borde calle			
656 9.30 253° 29' 50" 90° 49' 50" 2734.492 774144.118 9209334.0 2734.261 774143.876 9209334.0 2734.261 774143.876 9209334.0 2734.261 774143.876 9209332.6 2734.261 774143.876 9209332.6 2734.261 774143.876 9209332.6 2734.261 774143.876 9209332.6 2734.261 774143.876 9209332.6 2733.869 774113.402 9209379.4 2733.869 774113.402 9209379.4 2733.404 774116.316 9209382.9 2733.754 774119.166 9209382.9 2733.754 774119.166 9209380.4 2733.922 774118.612 9209377.0 2733.922 774118.612 9209377.0 2733.922 774118.612 9209377.0 2733.537 774118.280 9209381.4 2733.714 774115.993 9209377.2 2733.714 774115.993 9209377.2 2733.887 774114.418 9209375.6 2733.714 77412.404 9209365.6 2733.714 77412.5404 9209365.6 2733.714 77412.5404 9209365.6 2733.714 77412.5404 9209365.6 2733.714 77412.5404 9209365.6 2733.714 77412.5404 9209365.6 2733.714 77412.5404 9209365.6 2733.714 77412.5404 9209365.6 2733.714 77412.5404 9209365.6 2733.714 77412.5404 9209365.6 2733.714 77412.5404 9209365.6 2733.714 77412.5404 9209365.6 2733.714 77412.5404 9209365.6 2733.714 77412.5404 9209365.6 2733.715 2733.869 774124.779 9209358.1 2733.858 774124.779 9209358.1 2733.858 774124.779 9209358.1 2733.858 774129.349 9209359.8 2733.858 774129.349 9209	1	- (ĺ					1		
657 8.00 257° 13′ 50″ 92° 37′ 30″ 2734.261 774143.876 9209332.61 E 11(aux) Ceros en E 17 1.460 Estación 2733.869 774113.402 9209379.4 658 4.60 90° 24′ 20″ 92° 11′ 00″ 1.75 659 5.85 131° 17′ 40″ 91° 07′ 20″ 89° 28′ 00″ 2733.754 774119.166 9209382.9 660 5.70 165° 01′ 10″ 89° 28′ 00″ 2733.922 774118.612 9209377.0 661 5.30 118° 04′ 00″ 93° 35′ 50″ 2733.714 774115.993 9209377.2 662 3.40 181° 25′ 20″ 92° 36′ 50″ 2733.714 774115.993 9209377.2 663 3.85 215° 47′ 10″ 89° 43′ 30″ 2733.887 774114.418 9209375.6 664 17.45 187° 37′ 50″ 90° 19′ 15″ 80rde calle 2733.771 774125.404 9209366.7 665 17.70 192° 06′ 40″ 90° 20′ 50″ 2734.485 774124.779 9209368.16 667 24.15 202° 58′ 50″ 88° 32′ 20″ 2733.858 774129.349 9209359.86	1	J	}					(
E 1 (aux) Ceros en E 17	! f				:) !		
658					1.460		Estación	<u> </u>		
659 5.85 131° 17' 40" 91° 07' 20" Borde calle (esq.) 2733.754 774119.166 9209380.44 660 5.70 165° 01' 10" 89° 28' 00" 2733.537 774118.280 9209377.05 661 5.30 118° 04' 00" 93° 35' 50" 2733.714 774115.993 9209377.2 663 3.85 215° 47' 10" 89° 43' 30" 2733.887 774114.418 9209375.65 664 17.45 187° 37' 50" 90° 19' 15" Borde calle 2733.771 774125.404 9209365.65 17.70 192° 06' 40" 90° 20' 50" 2733.762 774124.535 9209365.65 666 17.00 203° 56' 30" 89° 00' 40" 2734.162 774124.779 9209368.16 668 25.20 191° 49' 40" 90° 01' 30" 2733.858 774129.349 9209359.85				92° 11' 00"		1.75				9209382,969
660 5.70 165° 01' 10" 89° 28' 00" 2733.922 774118.612 9209377.00 661 5.30 118° 04' 00" 93° 35' 50" 2733.537 774118.280 9209381.44 662 3.40 181° 25' 20" 92° 36' 50" 2733.714 774115.993 9209377.2 663 3.85 215° 47' 10" 89° 43' 30" 2733.887 774114.418 9209375.6 664 17.45 187° 37' 50" 90° 19' 15" 8orde calle 2733.771 774125.404 9209366.7 665 17.70 192° 06' 40" 90° 20' 50" 2733.762 774124.535 9209365.6 666 17.00 203° 56' 30" 89° 00' 40" 2734.485 774124.779 9209358.10 668 25.20 191° 49' 40" 90° 01' 30" 2733.858 774129.349 9209359.80	659	1	ļ				Borde calle (eso.)	1		9209380.406
661 5.30 118° 04' 00" 93° 35' 50" 2733.537 774118.280 9209381.44 662 3.40 181° 25' 20" 92° 36' 50" 2733.714 774115.993 9209377.2 663 3.85 215° 47' 10" 89° 43' 30" 2733.887 774114.418 9209375.6 664 17.45 187° 37' 50" 90° 19' 15" Borde calle 2733.771 774125.404 9209366.7 665 17.70 192° 06' 40" 90° 20' 50" 2733.762 774124.535 9209365.6 666 17.00 203° 56' 30" 89° 00' 40" 2734.162 774121.158 9209368.7 667 24.15 202° 58' 50" 88° 32' 20" 2734.485 774124.779 9209358.16 668 25.20 191° 49' 40" 90° 01' 30" 2733.858 774129.349 9209359.8	660	ì			!		(ocq.)			
662 3.40 181° 25' 20" 92° 36' 50" 2733.714 774115.993 9209377.2 663 3.85 215° 47' 10" 89° 43' 30" 2733.887 774114.418 9209375.63 664 17.45 187° 37' 50" 90° 19' 15" Borde calle 2733.771 774125.404 9209366.7 2733.762 774124.535 9209365.63 666 17.00 203° 56' 30" 89° 00' 40" 2734.162 774121.158 9209365.63 667 24.15 202° 58' 50" 88° 32' 20" 2734.485 774124.779 9209358.10 668 25.20 191° 49' 40" 90° 01' 30" 2733.858 774129.349 9209359.80	661	5.30	Ì					ì		9209381.483
663 3.85 215° 47' 10" 89° 43' 30" 2733.887 774114.418 9209375.63 864 17.45 187° 37' 50" 90° 19' 15" 80rde calle 2733.771 774125.404 9209365.63 17.70 192° 06' 40" 90° 20' 50" 2733.762 774124.535 9209365.63 17.00 203° 56' 30" 89° 00' 40" 2734.162 774121.158 9209364.21 667 24.15 202° 58' 50" 88° 32' 20" 2734.485 774124.779 9209358.10 668 25.20 191° 49' 40" 90° 01' 30" 2733.858 774129.349 9209359.80	662	1	}					Į		9209377.210
664 17.45 187° 37' 50" 90° 19' 15" Borde calle 2733.771 774125.404 9209366.7. 665 17.70 192° 06' 40" 90° 20' 50" 2733.762 774124.535 9209365.62 666 17.00 203° 56' 30" 89° 00' 40" 2734.162 774121.158 9209364.22 667 24.15 202° 58' 50" 88° 32' 20" 2734.485 774124.779 9209358.10 668 25.20 191° 49' 40" 90° 01' 30" 2733.858 774129.349 9209359.80	663	3.85	215° 47' 10"					1		9209375.697
665 17.70 192° 06' 40" 90° 20' 50" 2733.762 774124.535 9209365.66 666 17.00 203° 56' 30" 89° 00' 40" 2734.162 774121.158 9209364.26 667 24.15 202° 58' 50" 88° 32' 20" 2734.485 774124.779 9209358.10 668 25.20 191° 49' 40" 90° 01' 30" 2733.858 774129.349 9209359.80	664	17.45	187° 37' 50"				Borde calle	!		9209366.744
666 17.00 203° 56' 30" 89° 00' 40" 2734.162 774121.158 9209364.2° 667 24.15 202° 58' 50" 88° 32' 20" 2734.485 774124.779 9209358.10 668 25.20 191° 49' 40" 90° 01' 30" 2733.858 774129.349 9209359.80	665	17.70	192° 06' 40"							9209365,650
667 24.15 202° 58' 50" 88° 32' 20" 2734.485 774124.779 9209358.10 668 25.20 191° 49' 40" 90° 01' 30" 2733.858 774129.349 9209359.80	666	17.00	203° 56' 30"	89° 00' 40"						9209364.283
668 25.20 191° 49′ 40″ 90° 01′ 30″ 2733.858 774129.349 9209359.80	•	24.15	202° 58' 50"							9209358.109
560 77.70 4008 451 004 000 471 504	668	25.20	191° 49' 40"	90° 01' 30"				ĺ		9209359,898
	669	27.70	190° 15' 20"	89° 47' 50"			Borde calle]		9209358.452
670 29.70 4009 201 501 202 571 501	670	28.70	190° 23' 50"	89° 17' 50"		į				9209357.649
671 29.70 4009 541 409 903 903 903	671	28.70	192° 51' 10"	89° 30' 50"						9209356.867
672 40.40 4.04% 500 000 400 000	672	40.10	191° 52' 35"	89° 43' 30"				2734.061	774138.751	9209348.340

									704
Punto	DIST	ANG. HORIZ	ANG. VERT.			Observación	COTA	ESTE	NORTE
	(m)	0 1 11	0 1 4	i	m		m.s.n.m.		
673	39.80	197° 26' 20"	89° 02' 40"			Borde calle (esq.)	2734.533	774135.454	9209346.279
674	24.20	207° 50' 00"	88° 52' 20"	}			2734.345	774122.956	9209357,177
675	27.00	225° 31' 25"	88° 51' 40"	}	}		2734.406	774116.019	9209352.538
676	28.60	229* 55' 30"	88° 36' 05"			Borde calle	2734.567	774113,981	9209350.817
677	39.50	115° 32' 20"	91° 46' 10"			Borde calle	2732.650	774149.040	9209396.445
678	39.50	113° 56' 00"	91° 59' 20"				2732.499	774148.548	9209397.437
679	39.80	110° 05' 15"	91° 56' 00"		}		2732.527	774147.517	9209399.908
680	38.30	105° 43' 30"	91° 58' 40"	ļ	}		2732.548	774144.636	9209401.576
681	37.85	103" 33' 00"	91° 38' 40"			Borde calle	2732.783	774143.416	9209402.471
682	9.15	99° 34' 00"	92° 16' 20"	1	1	Dores sails	2733.507	774120.253	9209385.476
683	9.40	83° 11' 10"	91° 32' 40"		1		2733.616	774118.397	9209387.374
684	10.75	80° 25' 50"	90° 58' 40"			Borde calle (esq.)	2733.686	774118.670	9209388.781
685	11.30	65° 15' 10"	90° 39' 50"		1	Borde calle (esq.)	2733.738	774116.167	
686	10.30	60° 43' 30"	91° 25' 50"		Ì	Dorde Calle (esq.)	2733.612		9209390.367
687	8.10	23° 35' 50"	90° 31' 00"	1	1		1	774115.126	9209389.565
688	16.05	44° 15' 10"	89° 31' 20"		}	Parda salla	2733.796	774109.663	9209386.596
689	15.05	38° 26' 50"	90° 29' 10"	}	}	. Borde calle	2734.003	774111.492	9209395.347
690	13.25	18° 32' 40"		ļ			2733.741	774110.109	9209394.096
691	9.45	}	90° 06' 50"				2733.843	774106.274	9209390.581
692	34.20	335° 27' 10"	89* 26' 30"			_	2733.961	774104.247	9209381,756
693	25.10	343° 20' 10"	89° 35' 35"		1	Borde calle (esq.)	2734.112	774081.748	9209392.361
694	Į	328° 51' 30"	89° 14' 10"		1	Borde calle	2734.204	774088.532	9209382.805
	24.15	329° 43' 50"	89" 33' 30"				2734.055	77'4089.526	9209383.041
695	19.10	282° 10' 00"	88° 43' 20"		ļ		2734.295	774098.541	9209367.412
696	18.00	282° 00' 10"	88° 55' 40"				2734.206	774099.430	9209368.063
697	15.75	281° 08' 20"	88° 34' 50"	-		Borde calle (esq.)	2734.259	774101.327	9209369.298
698	13.30	281° 54' 50"	88° 45' 20"	}	}		2734.158	774103.091	9209371.010
699	12.00	236° 11' 20"	88° 32' 50"				2734.173	774112.334	9209367.458
700	10.30	304° 00' 40"	88° 52' 50"	ļ	 		2734.070	774103.556	9209376.386
E 17	Ceros er			1.410		Estación	2734.260	774077.042	9209408.765
701	35.20	94° 39' 00"	91° 56' 25"	}			2733.069	774105.012	9209430.136
702	35.00	87° 33' 20"	91° 57' 40"				2733.063	774102.015	9209433.286
703	35.00	85" 49' 30"	91° 42' 00"			Borde calle	2733.222	774101.263	9209434.029
704	34.00	100° 51' 10"	91° 57' 00"		{		2733.104	774106.130	9209426.367
705	34.00	102° 41' 30"	91° 35' 10"		}	Borde calle	2733.319	774106.680	9209425.425
706	17.75	109° 29' 30"	91° 14' 20"			Borde calle (esq.)	2733.876	774093,436	9209415.569
707	16.50	106° 56' 20"	92° 07' 10"		}		2733.650	774091.984	9209415.762
708	16.65	101° 33' 45"	91° 42' 00"		}	Buzón (i/teléf.)	2733.766	774091.392	9209417.208
709	16.25	93° 06' 20"	92° 16' 20"		<u> </u>		2733.616	774089.683	9209418.975
710	16.10	78° 16' 30"	92° 03' 30"	1			2733.682	774086.560	9209421.750
711	17.30	75° 35' 20"	91° 12' 20"		-	Borde calle (esq.)	2733.896	774086.604	9209423.182
712	20.35	54° 53' 00"	90° 59' 45"		1	Borde calle	2733.906	774081.568	9209428.605
713	19.50	53° 08' 40"	91° 32' 10"				2733.737	774080.800	9209427.899
714	14.55	37° 21' 25"	91° 27' 20"				2733.891	774075.856	9209423.266
715	11.90	13° 50' 00"	91° 39' 40"]		2733.915	774071.418	9209419.252
716	9.80	0° 47' 20"	91° 12' 20"				2734.054	774070.581	9209416.134
717	15.20	331° 34' 10"	90° 01' 20"		<u> </u>		2734.254	774062.717	9209413,848
718	15.75	327° 54' 50"	89° 00' 40"			Borde calle	2734.532	774061.893	9209413.075
719	10.00	306° 42' 00''	90" 05' 40"				2734.244	774067.085	9209407.835
720	11.35	307° 34' 10"	89° 03' 40"			Borde calle (esq.)	2734.446	774065.726	9209407.882
721	53.50	276° 35' 30"	88° 51' 45"			Buzón	2735.322	774033.454	9209377.742
722	36.75	278° 05' 20"	88° 59' 40"				2734.905	774046.554	9209388.245
723	37.00	283° 18' 30"	88° 55' 35"			•	2734.953	774044.595	9209390.983
724	37.30	285° 52' 50"	88° 45' 40"			Borde calle	2735.066	774043.560	9209392.325
725	38.50	270° 24' 10"	88° 21' 50"			Borde calle	2735.359	774048.265	9209383.189
						,			323333.100

Punto	DIST		. HORIZ.	 	VERT.			Observación	COTA	ESTE	NORTE
	(m)	•	· "		"	i	m		m.s.n.m.		
726	34.80	271°	54' 00"	88° 40)' : 40"				2735.063	774050,435	9209386.334
727	21.00	279°	21' 45"	89° 2	3' 20"	1			2734.484	774059.364	9209397.429
728	6.75	239°	20' 50"	89° 19	9' 40"			Borde calle (esq.)	2734.339	774075.033	9209402.321
729	4.70	246°	53' 00"	92° 3	5' 50"	}.]		2734.047	774075.066	9209404.500
730	2.55	288°	14' 20"	93° 1:	3' 25"	}			2734.117	774074.708	9209407.736
731	6.20	133°	49' 40"	92° 46	5' 00"				2733.961	774083.239	9209408.571
732	6.90	94°	37' 30"	92° 46	5' 20"				2733.927	774082.523	9209412.956
733	16.35	202*	02' 10"	90° 0	' 20"			Borde calle	2734.254	774082.633	9209393.400
734	17,40	169°	37' 10"	91° 2	2' 40"				2733.842	774090.830	9209398.151
735	20.20	148°	07' 30"	1	3' 20"				2733.859	774096.450	9209403.165
736	24.65	140°	06' 20"		5' 10"				2733.936	774101.447	9209405.303
737	25.20	ł	07' 30"	į	2' 40"	1		Borde calle			
E 18	Ceros er			100 0	0	1.440			2734.021	774102.099	9209406.090
738	97.40		41' 50"	89° 5	" 00"	1.440		Estación	2731.038	774165,991	9209471.405
739	97.40	ļ		ļ]	Borde calle	2731.123	774114.638	9209554.168
740	1	264°	21' 15"	Í	3, 00			Borde calle (esq.)	2730.953	774115.591	9209554.751
1	94.40	}	19' 00"	}	5' 20"			Borde calle (esq.)	2730.892	774119.938	9209553.809
741	94.35	1	01' 30"		3' 50"			·	2730.796	774123.905	9209555.849
742	93.10	269°	06, 00"	ì	" 50"			Borde calle (esq.)	2730.826	774124.572	9209554.784
743	89.80	269°	12 10"	90° 08	3, 00			Borde calle	2730.829	774126.185	9209551.900
744	89.90	265°	53' 30"	90° 00	3' 40"				2730.942	774121.552	9209549.554
745	90.00	263°	22' 15"	90° 00)' 10"			Borde calle (esq.)	2731.034	774118.105	9209547.608
746	73.20	266°	21' 30"	89° 54	10"				2731.162	774130.327	9209535.329
747	69.50	269°	58' 50"	89° 5	" 30"			Borde calle	2731.089	774136.032	9209534.116
748	69,40	269°	05' 40"	90° 04	10"			•	2730.954	774135.110	9209533.556
749	64.70	266°	08' 00"	90° 06	9 20"				2730.938	774134.246	9209527.782
750	64.00	262°	58' 30"	89° 57	" 30"				2731.085	774131.565	9209525.357
751	47.60	260°	36' 20"	89° 50	15"			Borde calle (esq.)	2731.173	774138.750	9209510.439
752	47.60	261°	56' 00"	89° 53	55"			, ,,	2731.122	774139,661	9209511.060
753	46.00	260°	13' 40"	89° 58	oo"			Borde calle (esq.)	2731.105	774139.417	9209508.953
754	31.00	264°	58' 20"	89* 45	6' 40"				2731.167	774150.237	9209498.103
755	24.00	272°	08' 40"	90° 07	" 10"				2730.988	774156,470	9209493.436
756	54.00	167°	15' 50"	1	. 00			Borde calle	2732.906		9209437.972
757	54.15	1	24' 40"	}	50"			DOI GO CALIO		***************************************	1200 1071012
758	54.00	İ	33' 15"		15"				2732.709	774122,804	9209438.738
759	55.25	1	46' 00"		25"				2732.620	774120.683	
76 0	45.30		48' 20"	ļ				B. I	2732.605	774117.551	9209444.831
761	45.00	ĺ	30' 00"	ì	20"			Borde calle	2732.548	774125.175	9209451.753
762	40.85	}	39' 40"	}	3' 10"			9	2732.370	774125.901	9209450.964
763	1	ĺ		ĺ	. 40"			Borde calle	2732.514	774134.179	9209445.778
	40.70	1	07' 40"	ļ	. 00			a : ,	2732.328	774133.653	9209446.691
764	34.00	İ	. 22' 10"	ĺ	25"			Borde calle	2732.279	774140.001	9209449.484
765	33.65	1	08' 20"	88° 14]		2732.067	774139.611	9209450.514
766	34.60	ļ	41' 50"	1) 55"				2732.135	774136.590	9209453.163
767	35.60	1	28' 50"	87° 58	1 15"			Borde calle	2732.298	774133.229	9209457.475
768	35.35	180°	33' 50"	88° 04	, 52.				2732.226	774133.940	9209456.492
769	29.40	181°	35' 10"	88° 00	25"				2732.060	774139.118	9209459.480
770	27.15	184°	22' 40"	87° 48	3' 20"			Borde calle (esq.)	2732.077	774140.667	9209461.614
771	25.65	188°	11' 00"	87° 5	' 40"			Borde calle (esq.)	2731.995	774141.505	9209463.763
772	26.50	195*	38' 30"	88° 21	, 00			Borde calle	2731.801	774139.883	9209466.860
773	14.75	149°	36' 00"	87° 20) 50"			Borde calle	2731.720	774157.725	9209459.189
774	14.10	153°	01' 00"	88° 15	i' 40"				2731.466	774157.407	9209460.219
775	30,15	14°	23' 20"	91° 04	, 00.			Borde calle	2730.477	774195.574	9209477.223
776	30.00	12°	17' 25"	91° 24	, 00				2730.305	774195.195	9209478.268
777	29.35	3*	59' 10"	91° 26	; 20"				2730.301	774193.293	9209482.176
778	29.40	356°	51' 30"	91° 36					2730.213		9209485.504

Punto	DIST	ANG. HORIZ.	ANG. VERT.			Observación	COTA	ESTE	NORTE
	(m)	o , ,	o 1 m	i	m		m.s.n.m.		
779	29.20	354° 45' 40"	91° 09′ 20"			Borde calle	2730,449	774191.084	9209486,337
780	5.65	329° 28' 40"	89° 32' 50"			Borde calle (esq.)	2731.083	774169.147	9209476.091
781	5.65	300° 48' 20"	89° 08' 15"			Borde calle (esq.)	2731.123	774166.512	9209477.031
782	2.65	318° 33′ 20"	90° 56' 50"			-	2730.994	774167.028	9209473,843
783	6.45	198° 57' 30"	88° 11' 50"			Borde calle (esq.)	2731.241	774159.583	9209470.668
E 19	Ceros er	E 10		1.455		Estación	2729.603	774213.347	9209494.010
784	73.00	252° 40' 20"	89° 44' 40"			Borde calle (esq.)	2729.929	774170.165	9209552,869
785	73.00	253° 31' 40"	89° 52' 00"			Borde pav.(nivel)	2729.773	774171.049	9209553.507
786	72.50	259° 48' 00"	89° 48' 00"			Borde pav.(nivel)	2729.856	774178.046	9209557.335
787	72.30	260° 44' 00"	89° 40' 30"				2730.013	774179.176	9209557.725
788	72.60	257° 00' 40"	89° 46' 55"			Borde pav.(nivel)	2729.879	774174.953	9209555.627
789	68,60	256° 36' 40"	89° 37' 10"				2730.059	774176.663	9209551.978
790	61.60	252° 52' 10"	89° 39' 40"				2729.967	774177.080	9209543.802
791	61.60	260° 16' 40"	89° 43' 15"				2729,903	774183.803	9209548.063
792	49.00	250° 15' 40"	89° 30′ 45"			Borde calle	2730.020	774182.725	9209532.263
793	49.00	251° 36' 00"	89° 43' 20"				2729.841	774183.628	9209532.968
794	42.50	255° 54' 40"	89° 45' 30"	ļ			2729.782	774190.183	9209529.643
795	41.25	249° 06' 40"	89° 33' 10"			Borde calle	2729.925	774186.927	9209525.689
796	41.20	250° 37' 10"	89° 47' 20"	}			2729.755	774187.801	9209526.334
797	41.25	261° 45' 55"	89° 46' 25"				2729.766	774194.509	9209530.707
798	43.35	262° 54' 40''	89° 31' 40"			Borde calle	2729.960	774194.325	9209532.964
799	20.20	258° 52' 10"	89* 32' 55"	İ			2729.762	774203.226	9209511.491
800	21.25	246° 50' 20"	89° 32' 15"			Borde calle	2729.775	774199.100	9209509.777
801	21.00	249° 50' 30"	89° 51' 15"	}			2729.656	774200.104	9209510.308
802	21.35	271° 31' 40"	90° 01' 20"	}			2729.595	774206.959	9209514.382
803	20.60	275° 34' 00"	89° 31' 50"	<u> </u>		Borde calle	2729.772	774208.583	9209514.051
804	3.90	227° 01' 20"	87° 57' 20"			Borde calle (esq.)	2729.742	774209.906	9209495.846
805	4.00	196° 51' 00"	90° 00' 50"		1.20	Borde calle (esq.)	2729.857	774209.349	9209493.864
806	9.40	185° 12' 10"	87° 25' 50"			Borde calle	2730.024	774204.215	9209491,778
807	89.00	170° 34' 30"	88° 26' 10"			Buzón	2732.031	774135.030	9209451.730
808	53.60	172° 01' 50"	88° 33' 00"			Buzón	2730.959	774165.549	9209469.753
809	11.70	128° 24' 00"	87° 37' 30"			Borde calle	2730.087	774209.448	9209482.978
810	9.55	63° 29' 10"	88° 39' 40"			Borde calle (esq.)	2729.826	774220.153	9209487.310
811	8.85	57° 02' 00"	ao. 08. 00				2729.582	774220.311	9209488.550
812	33.50	62° 43' 10"	89° 40' 30"			Borde calle	2729.793	774237.533	9209470.831
813	32.85	54° 36' 20"	89° 43' 40"				2729.759	774240.034	9209474.855
814	37.25	49° 40' 30"	89° 39' 05"			Borde calle	2729.830	774245.364	9209474.971
815	37.00	51° 16' 00"	89" 50' 40"				2729.703	774244.611	9209474.223
816	23.70	44° 51' 15"	90° 19' 00"	-		•	2729.472	774234.663	9209483.651
817	22.25	53° 03' 20"	89° 44' 35"	}			2729.703	774231,767	9209481.530
818	23.70	60° 20' 50"	89° 30' 30"				2729.806	774231.122	9209478.334
819	17.20	33° 41' 40"	89° 51' 50"	}		Borde calle (esq.)	2729.644	774229.979	9209489.629
820	17.60	26° 29' 00"	90° 06' 00"	}		,	2729.572	774230.794	Ì
821	13,90	30° 15' 50"	90° 43' 00"				2729.429	774226.976	(
822	12,20	46° 17' 40"	90° 03' 30"			Buzón	2729.591	774224.182	9209488.404
823	7.45	23° 05' 50"	92° 39' 40"			Buzón	2729.257	774220.777	9209493.469
824	24.40	5° 22' 30"	90° 32' 00"				2729.376	774237.066	9209499.732
825	30.65	13" 15' 35"	90° 29' 20"				2729.341	774243.846	9209497.042
826	30.30	11° 19' 20"	90° 41' 20"				2729.239	774243.379	1
827	26.50	353° 46' 45"	90° 28' 30"			Borde calle	2729.383	774237.333	9209505.276
828	24.85	356° 01' 10"	90° 30' 00"	ļ			2729.386	774236.235	9209503.687
829	9.80	349° 02' 05"	89° 57' 30"			Borde caile (esq.)	2729.610	774221.842	9209498.895
830	8.35	339° 08' 45"	89° 43' 00"			Borde calle (esq.)	2729.644	774219.763	9209499.354
831	7.55	355° 19' 05"	90° 45' 55"	}		- · · · · · · · · · · · · · · · · · · ·	2729.502	774220.264	}

										107
Punto	DIST	ANG	. HORIZ.	ANG. VER			Observación	COTA	ESTE	NORTE
	(m)	•	. "	0 1 #	i	m		m.s.n.m.		
832	10.10	42°	46' 50"	90° 17' 05"				2729.553	774222.585	9209489.927
833	6.80	33°	28' 40"	89° 50' 10"				2729.622	774219.929	9209492.303
834	3.45	347°	55' 10"	91° 10' 40"				2729.532	774216.303	9209495.788
835	0.75	209°	20' 20"	92° 14' 40"	.			2729.574	774212.609	9209494.145
E ₁₂ (aux)	Ceros er	1 E 19			1,460		Estación	2729.612	774257.734	9209459,417
836	66.00	290°	18' 00"	88° 31' 30"			Borde calle	2731.310	774201.622	9209424.668
837	65.00	291*	12' 20"	88° 46' 30"				2731.001	774201.938	9209426.073
838	64.70	293°	37' 55"	88* 42' 05"				2731.078	774200.840	9209428.607
839	62,15	296°	28' 40"	88" 47' 35"				2730.921	774201.680	9209432.572
840	62.20	Ì	34' 40"	88° 34' 10"			Borde calle	2731.164	774201.130	9209433.632
841	94.00	j	04' 20"	88° 36' 40"			Doi de Calio	2731.890	774176.324	9209412.422
842	93.00	293°	35' 25"	88° 32' 50"				2731.969	!	i i
843	93,00	295°		88° 40' 10"			-	i	774175.987	9209415.072
844	42.40	288°	32' 00"	88" 37' 50"			Panda antia	2731.771	774174.538	9209417.853
845	42.15	289°	54' 20"	88° 55' 25"			Borde calle	2730.625	774222.391	9209435.993
846	42.20	ł			-	ļ		2730.404	774222.052	9209436.979
847	42.70	293°		88° 51' 50"				2730.449	774220.620	9209439.332
		į.	47' 50"	88° 03' 20"		1	_	2731.060	774218.808	9209441.865
848	42.80	ļ	53' 30"	88° 34′ 40′		j	Borde calle	2730.674	774218.388	9209442.572
849	82.00	293°		88" 41' 40"			Buzón	2731.480	774185.386	9209420.819
850	32.70	293°	33' 40"	89° 00' 40"			-	2730.176	774228.998	9209443.810
851	28.70	299°	48' 40"	89° 23' 50'				2729.914	774231.172	9209448.546
852	29.25)	43' 20"	88° 45' 20"			Borde calle	2730.247	774230.309	9209449.247
853	25.55	295°	31' 10"	88° 34' 00"	1	}		2730.251	774234.878	9209447.997
854	13.75	281°	50' 15"	88° 34' 10'		1		2729.955	774247.236	9209450.536
855	10.72	317°	01' 40"	88° 10' 30"			Borde calle (esq.)	2729.953	774247.055	9209458.475
856	9.35	313°	58' 40"	89" 03' 50"	1.			2729.765	774248.477	9209458.101
857	5.45	298°	48' 10"	87° 23' 40'			Buzón	2729.860	774252.727	9209457.264
858	2.90	203•	12' 00"	87° 32' 20"				2729.736	774259.134	9209456.877
859	4.00	199°	30' 40"	89° 12' 20'		1.25	Borde calle	2729.667	774259.886	9209456.045
860	12.30	132°	12' 20"	90° 41' 15'			Borde calle	2729.464	774269.852	9209461.524
861	11.70	114°	41' 50"	91° 47' 05"				2729.248	774268.124	9209464.796
862	14.65	96*	39' 30"	90° 55' 40"			Borde calle	2729.375	774268.018	9209469.850
863	8.25	82°	19' 40"	88° 31' 50"			Borde calle (esq.)	2729.823	774261.891	9209466.543
864	7.80	89*	14' 50"	90° .14' 10'				2729.580	774262.447	9209465.631
865	4.20	30°	59' 00"	87° 00' 40"			Borde calle (esq.)	2729.831	774256.223	9209463.336
866	3.15	19°	22' 45"	90° 04' 15"				2729.608	774256,032	9209462.068
867	5.25	326°	45' 20"	89° 46' 50'				2729.632	774252.501	9209459.846
868	9.65	335°	59' 00"	88° 35' 30'			Poste	2729.849	774248.367	9209461.737
869	6.40	339°	00' 40"	88° 21' 10"				2729.796	774251.611	9209461.282
870	13.35	0°	41' 05"	89° 06' 30'				2729.820	774247.303	9209467.749
871	13.45	11°	15' 00"	89° 24' 30'		1		2729.751	774248.942	9209469.596
872	13.55	15°	33' 50"	88° 57' 20"	1			2729.859	774249.673	9209470,308
873	23.30	354°	17' 10"	89° 52' 05"				2729.666	774238.021	9209471.839
874	18.30	346°	16' 25"	89° 22' 00"				2729.814	774241.043	9209466.920
875	17.85	{	12' 30"	89° 51' 50"	-	1		2729.654	774241.849	9209467.559
E 15	Ceros en	·			1.420	†	Estación (buz.)	2734.474		9209277.836
876	14.40	7	33' 30"	89° 28' 15"	1.720	1	Borde calle	 	774189.983	
877	13.85	ĺ	43' 30"	90° 23' 55"			DOIGE CARE	2734.607	ì	9209265.308
878	12.75	ĺ	17' 45"	90° 39' 30"		1		2734.378	774190.702	9209266.405
879	6.10	1.	47' 00"	į į			Danie n	2734.328	774193.789	9209271.232
880	l	1		l			Borde calle (esq.)	2734.705	774183.659	9209271.785
881	4.50	209°	31' 00"	90° 40' 50"			-	2734.421	774183.863	9209273.444
	3.85	1	04' 20"	88° 30' 40"				2734.574	774179.054	9209277.432
882	10.75	337°	46' 00"	88° 44' 45"			Borde calle (esq.)	2734.709	774173.193	9209282.492
883	9.35	340°	41' 25"	88° 53' 20'		1		2734.655	774174.673	9209282.310

Punto	DIST	ANG.	HORIZ	ANG.	VERT.			Observación	COTA	ESTE	NORTE
	(m)	٥			14	i	m	4	m.s.n.m.		
884	9.60	19°	14' 50"	89° 3	3' 50"				2734.533	774179,154	9209286.682
885	19.30	47°	17' 50"	91° 0	2' 10"				2734,125	774184.631	9209297.056
886	19.70	69°	21' 00"	92° 0	9' 40"			Borde calle (esq.)	2733.732	774191.903	9209295.349
887	18.15	72°		92° 4	4' 40"			(4,7)	2733.606	774192.058	9209293.496
888	16.70	92°		1	2' 00"	:			2733.640	774195.746	9209288.486
889	63.00	1	43' 40"		3' 35"			Buzón	2732.211	774228.678	9209321.100
890	19.70		19' 30"		6, 30,		!	-	2733.635	774201.177	9209285.144
891	22.55	ļ	53' 50"	İ	0' 40"			Borde calle (esq.)	2733.880	774203.906	9209285.991
892	22.00	1	10' 50"	91° 2				, , , , ,	2733.914	774203.930	9209284.238
893	15.35	1	34' 40"	91° 4				Borde calle (esq.)	İ		
894	28.35					;			2734.007	774197.599	9209282.201
İ	İ		15' 40"	91° 3					2733.657	774179.507	9209305.984
895	26.50	1	40' 20"		2' 15"				2733.994	774177.632	9209303.810
896	23.30		59' 50"	190- 0	7' 10"				2734.425	774168.827	9209296.419
E ₂₁	Ceros er	T		Τ		1.390	ļ	Estación (buz.)	2738.056	774022.127	9209237.680
897	100,00		03, 00,	91° 2				Buzón	2735.575	774101.183	9209298.917
898	51.60	84°	57' 10"	91° 2				Buzón	2736.814	774061.153	9209271.436
899	50.30	93*	09' 40"	91° 1	4' 20"		[2736.969	774064.478	9209264.817
900	23.60	79°	23' 50"	91° 2	0' 30"	į t			2737.504	774038.397	9209254.774
901	12.15	21°	58' 30"	89° 0	4' 20"			Borde calle (esq.)	2738.253	774019.221	9209249.477
902	6.10	34°	53' 25"	90° 5	3' 30"	ĺ		Buzón	2737.961	774022.029	9209243.779
903	8.35	100°	55' 00"	90° 1	7' 50"		İ	Borde calle (esq.)	2738.013	774029.701	9209241.195
904	15.65	316°	16' 20"	87° 3	7' 40"			Borde calle (esq.)	2738.703	774006.737	9209240.521
905	15.75	322°	51' 10 "	87° 3	5' 20"		1	Borde calle (esq.)	2738.718	774007.068	9209242.296
906	14.70	325°	21' 50"	88° 3	2 50"				2738.429	774008.274	9209242.599
907	14.45	314°	10' 15"	88° 2	6' 50"				2738.447	774007.830	9209239.781
908	11.15	345°	17' 50"	88° 5	1' 20"				2738.279	774013.521	9209244.770
909	15.15	8°	45' 50"	88° 1	6° 20"			Borde calle (esq.)	2738.513	774015.238	9209251.173
910	16.20	3°	08' 50"	88* 3	8' 35"			Poste	2738.440	774013.383	9209251.318
911	23.60	350°	27' 20"	89* 0	3, 50.,				2738.445	774005.336	9209254.264
912	32.00	340°	04' 00"	89° 2	6' 50"		}		2738.365	773995.677	9209255.692
E 13(aux)	Ceros e	n E 22				1.395		Estación	2737.680	773965.518	9209325.881
913	40.00	91°	45' 40"	91° 1	7' 20"	Ī		Buzón	2736.780	773996.288	9209351.439
914	34.15	95°	59' 00"	90° 4	19' 50"	Ì		Poste	2737.185	773993.323	9209345.708
915	31.40	79°	39' 00"	90* 4	13' 15"			Borde calle	2737.285	773984,925	9209350.565
916	8.70	14°	00' 10"	90° 4	18' 30"			Borde calle (esq.)	2737.557	773961.504	9209333.600
917	7.60	1	31' 10"	l l	21' 50"			}	2737.499		9209332,329
918	6.70	1	38' 50"	1	09' 00"				2737.429	1	
919	16.25	1	58' 15"	1	11' 00"			Borde calle (esq.)	2737.770		
920	15.20	1	08' 00"	- 1	58' 35"				2737.686		9209329.212
921	16.80	1	25' 50"	Į	06" 00"			Borde calle (esq.)	2737.944		
922	15.95	}	33' 00"	Į	12' 45"				2737.760	1	i
923	9.45	1	31' 00"		11' 40"				2737.648	i	
924	6.35	1	52' 00"		54' 30"				2737.690	Į	
925	64.50	İ	10' 40"	1	19' 30"			Ruzón	2739.565	1	
1		1		- 1			1	Buzón Bardo cella	1		
926	56.90	ł	27' 35"	Į.	10' 35"			Borde calle	2739.490		
927	53.20	}	40' 50'	1	20' 00"			Pauda : ":	2739.227		1
928	42.75	1	54' 20'	ĺ	21' 00"			Borde calle	2738.910		}
929	47.15	1	40' 20'	1	40' 00"				2738.777	1	
930	47.00		55' 10'	ļ	18' 20"				2739.069	1	
931	21.75	(10' 50'	[32' 10"				2738.235	1)
932	11.40	269°	28, 50,	88°	21' 10"	İ		Borde calle (esq.)	2738.008	773957.046	9209318.252
933	10.10	275°	19' 20'	89°	40' 30''				2737.737	773957.362	9209319.922
934	45.75	202°	15' 00'	89°	07' 20"			Borde calle	2738.381	773980.582	9209282.682
935	45.50	200°	54' 10'	89°	32' 50"		1		2738.040	773981.506	9209283.282

											103
Punto	DIST	ANG	. HORIZ.	ANG	. VERT.			Observación	COTA	ESTE	NORTE
	(m)	•	1 #	•		i	m		m.s.n.m.		
936	47.20	194*	21' 30"	89*	23' 25"				2738,182	773987.031	9209283.869
937	59.30	187°	41' 40"	89*	14' 25"			Borde calle	2738.466	773998.489	9209276.592
938	38.75	186°	55' 10"	89°	16' 20"			Borde calle	2738.172	773987.497	9209293,967
939	38.75	188°	12' 30"	89*	37" 10"				2737.937	773986.773	9209293,481
940	5.00	254°	02' 30"	90°	02' 50"				2737.676	773962.826	9209321.667
941	1.60	149*	17' 40"	89*	30' 50"		1.30	Borde calle (esq.)	2737.789	773967.041	9209325,391
942	0.95	112°	11' 05"	89*	23' 50"		1.55		2737.535	773966.414	9209326.195
943	0.90	191°	20' 00"	90°	55' 45"		1.45		2737.610	773965.970	9209325,102
E 22	Ceros er					1.510		Estación	2737.267	773927.118	9209369.322
944	9.30	T	32, 50,	90*	34' 20"	1		Borde calle (esq.)	2737.174	773932.069	9209377.194
945	7.80	ł		ļ	14' 00"			20.00 00.0 (004.)	2736.963	773931.785	9209375.571
946	10.55	85°	58' 30"		52' 50"			Buzón	2736.921	773936.485	
947	28.30			{	12' 00"			Borde calle	2736.674		9209374.176
948	28.20	1	22' 30"	1				Dorde Carle	2736.421	773948.387	9209387.990
949	28.50		00' 40"	ĺ	28' 10"		}			773949,341	9209386.681
950	32.30	j	03' 50"	}				5	2736.536	773951.710	9209383.726
951	32.30	į		}	23' 55'			Borde calle	2736.479	773957.001	9209381.581
952	1	89*		i	21' 00"				2736,506	773956.580	9209382.561
	23.65	94°		ĺ	22' 30"			Borde calle	2737.112	773949.559	9209376.787
953	26.00	1	07' 35"	ļ	02' 50"				2736.792	773951.008	9209379.582
954	11.15	105°		91°	30' 20"			_* .	2736.974	773938.163	9209370.847
955	12.00	j	21' 00"	}				Borde calle (esq.)	2737.092	773939.088	9209370.163
956	121.00	121°)	26' 35"			Borde calle (esq.)	2737.177	773938.655	9209367.709
957	122.00	122°		ł	20' 30"	}		,	2737.020	773937.536	9209367,662
958	177.00	177°		89*	33' 55"			Borde calle	2737.435	773936.697	9209349,295
959	175.00	175°	05' 10"	89*	51' 00"				2737.325	773937.637	9209349.772
960	18.00	161°	35' 10"	90°	24' 20"				2737.140	773939.111	9209355.900
961	19.15	145°	42' 30"	90°	32" 30"				2737.086	773943.297	9209359.078
962	19.50	142°	50' 40"	89°	25' 00"			Borde calle	2737.466	773944,094	9209359,727
E ₁₄ (aux)	Ceros er	1 E 22		,		1.450		Estación (buz.)	2735,786	773976.805	9209399.297
963	1.10	120°	18' 40"	93*	35' 30"			Buzón	2735.717	773976.789	9209400.397
964	15.30	346°	59' 35"	88°	40' 40"				2736.139	773965.819	9209388.648
965	6.50	68°	05' 25"	89°	06, 30,,			Borde calle (esq.)	2735.887	773971.613	9209403.208
966	4.90	88°	43' 40"	90°	45' 50"				2735.721	773974,181	9209403.435
967	25.30	85°	02' 10"	89°	34' 40"				2735.972	773961.910	9209419.748
968	25.40	83°	02' 00"	89*	16' 40''			Borde calle	2736.106	773961.143	9209419,294
969	25.30	88°	31' 20"	89°	48' 00"			Borde calle (esq.)	2735.874	773963.182	9209420.616
970	37.25	84*	35' 00"	89°	33' 00"		(Borde calle (esq.)	2736.079	773954.638	9209429,233
971	37.30	86°	14' 30"	89°	35' 50"				2736.048	773955.485	9209429.903
972	37.28	88°	36' 30"	89*	45' 45"				2735.941	773956.778	9209430,741
973	37.10	91°	10' 40"	89*	54' 50"				2735.842	773958.298	9209431,451
974	37.15	92°	25' 30"	89°	31' 50"			Borde calle (esq.)	2736.090	773958.978	9209431.890
975	24.00	92°	37' 35"	89*	51' 50"		}		2735.843	773965.362	9209420.393
976	24.05	94°	36' 10"	89°	31', 00"			Borde calle	2735.989	773966.074	9209420.820
977	6.50	1110	35' 40"	90°	15' 15"			Borde calle (esq.)	2735,757	773975.731	9209405.708
978	5.15	109°	43' 10"	91°	51', 15"		İ		2735.619	773975.788	9209404.346
979	16.10	156°	06' 40"	ł .	27' 20"			Borde calle	2735.658	773986.041	9209412,484
980	15.65	l	17' 00"	1				}	2735.416	773986.692	9209411.428
981	18.40	1	59' 30"	}					2735,493	773991.670	9209410.141
982	22.30	1	13' 25"	1	54' 10"				2735.435	773996,696	9209409.378
983	34.80	1	41' 00"	j				Roma colle			1
984	37.00	l	32' 00"	1	03' 50"			Borde calle	2735.191	774007.971	9209414,780
985	45.45	(10' 20"	ł					2735.099	774009.300	9209416,990
986	47.30	1		1	56' 50"				2735.035	774014.516	9209424.666
987			32' 50"	1	52' 20"			0	2735.066	774017.950	9209422.627
307	51.00	102	28' 10"	90"	43' 00"	<u> </u>		Borde calle	2735.148	774021.568	9209423,735

									1/0
Punto	DIST	ANG. HORIZ.	ANG. VERT.			Observación	COTA	ESTE	NORTE
	(m)	3 I H	0 1 1	į	m		m.s.n.m.		
988	51.65	172° 30' 20"	91° 13′ 50"				2734.677	774017.173	9209431.517
989	51.75	171° 24' 00"	90° 59' 20"			Borde calle	2734.893	774016,620	9209432.354
990	28.90	176° 00' 45"	91° 10' 00"				2735.198	774000.452	9209415.910
991	21.70	165° 36' 20"	91° 36' 10"			l	2735.179	773992.016	9209414.773
992	7.10	201° 21' 25"	91° 35' 45"				2735.588	773983,802	9209400.499
993	7.60	208° 59' 40"	90° 01' 00"			Borde calle	2735.784	773984,400	9209399.576
E 23	Ceros er	1 E 17		1.460		Estación (buz.)	2734.149	774044,724	9209444.627
994	21.60	18° 23' 30"	89° 31' 40"			Borde calle	2734.327	774053.385	9209424.839
995	21.60	15° 23' 40"	90° 00' 30"				2734.146	774054,408	9209425.319
996	20.70	355° 45' 00"	90° 23' 00"				2734.011	774059.685	9209430.321
997	20.60	350° 16' 30"	90° 42' 10"				2733.896	774060.903	9209431.876
998	21.80	336° 23' 45"	90° 45' 30"				2733.861	774064.582	9209435.634
999	25.00	322° 05' 10"	90° 57' 30"				2733.731	774069.340	9209440.262
1000	25.30	319° 06' 10"	90° 34′ 10"			Borde calle	2733.898	774069,831	9209441.513
1001	13.70	315° 29' 00"	91° 22' 10"				2733.822	774058,399	9209443.802
1002	10.25	330° 33' 50"	91° 53' 10"				2733.812	774054.442	9209441.369
1003	8.35	352° 51' 20"	91° 00' 00"				2734.003	774051.042	9209439,168
1004	5.00	51° 45' 15"	90° 44' 50"				2734.084	774043,879	9209439.699
1005	6.50	52° 40' 00"	89° 50' 20"		1.20	Borde calle (esq.)	2734,427	774043.524	9209438.238
1006	5.70	141° 17' 30"	90° 11' 00"			004.)	2734.131	774039.098	9209445.544
1007	7.50	141° 41' 10"	88° 08' 40"			Borde calle (esq.)	2734.392	774037,330	9209445.885
1008	18.90	114° 56' 30"	88° 27' 30"			Borde calle	2734.657	774026,658	9209439.072
1009	18.55	111° 56' 30"	88° 56' 10"			20.00 00.00	2734.493	774027,302	9209438.255
1010	19.35	98° 52' 30"	88° 38' 00"				2734.610	774028.524	9209434.044
1011	29.50	91° 21' 00"	88° 53' 20"				2734.721	774022.353	9209425.397
1012	29.30	89° 30' 35"	88* 39' 40"			Borde calle	2734.833	774023.129	9209424.824
1013	12.25	82° 17' 10"	88° 44' 00"			20.00 00.10	2734.420	774036.808	9209435.278
1014	74.10	179° 37' 30"	89° 53' 20"			Buzón	2734.293	773994.751	9209499.340
1015	71.00	182° 34' 40"	89° 59' 10"]]		2734.166	773999.606	9209499.448
1016	72.50	184° 34' 30"	90° 29' 15"			;	2733.532	774000.631	9209502.178
1017	59.10	195° 29' 35"	90° 31' 20"]		2733.610	774018,317	9209497,499
1018	59.20	194° 05' 00"	90° 36' 10"				2733.526	774016.978	9209496.922
1019	59.00	193° 50' 15"	90° 33' 15"			Borde pav.	2733,578	774016.848	9209496.626
1020	56.90	190° 52' 05"	90° 33' 30"]	Niv. Pav. (centro)	2733.595	774015.278	9209493.315
1021	55.15	186° 49' 00"	90° 31' 10"			Borde pav.	2733.649	774012.921	9209489.684
1022	53.35	183° 44' 50"	90° 11' 05"			, , ,	2733.977	774011.669	9209486.503
1023	52.20	180° 12' 45"	90° 03' 40"				2734.093	774009.917	9209483.529
1024	48.50	175° 09' 40"	90° 04' 10"	}			2734.090	774009.327	9209477.783
1025	48.00	173* 56' 50"	89° 46' 30"			Borde calle	2734.337	774009.005	9209476.692
1026	30.00	170° 55' 45"	89° 43' 00"			Borde calle	2734.297	774021,375	9209463.464
1027	29.70	173° 01' 05"	90° 05' 00"			_	2734.106	774022.304	9209464.106
1028	28.75	181° 00' 20"	90° 15' 10"				2734.022	774025.852	9209466.316
1029	28.70	186° 47' 10"	90* 32' 10"				2733.880	774028,161	9209468.066
1030	29.00	192° 25' 20"	91° 03' 00"			Borde pav.	2733.618	774030.395	9209469.840
1031	31.60	207° 14' 50"	90° 58' 00"			Borde pav.	2733,616	774036.660	9209475.181
1032	30.50	208° 56' 20"	91° 03' 40"	}]		2733.584	774037.814	9209474.334
1033	31.10	211° 35' 30"	90° 54' 20"			Borde calle	2733.658	774039.088	9209475.212
1034	16.75	260° 31' 20"	91° 35' 10"			Borde calle	2733.686	774055,148	9209457.737
1035	15.20	265° 41' 00"	91° 55' 00"				2733.641	774055.216	9209455.625
1036	11.50	264° 40' 20"	92° 27' 40"			Inicio pav. (centro)	2733.656	774052.514	9209453.086
1037	6.60	262° 25' 00"	91° 54' 50"		1.75	Borde pav.	2733.639	774049.000	9209449.654
1038	6.15	220° 29' 10"	91° 26' 20"		5	23.00 par.	2733.995	774044.558	9209450.775
1039	6.20	315° 48' 30"	93° 20' 10"			;	2733.789	774050.910	9209444.218
1040	16.30	276° 03' 40"	91° 28' 00"			Borde calle (esq.)	2733.732	774057.915	
					<u> </u>	care (654.)	, 2, 50, 152	117001.513	7200-0-7.201

									111
Punto	DIST	ANG. HORIZ.	ANG. VERT.			Observación	COTA	ESTE	NORTE
	(m)	0 1 H	0 1 "	i	m		m.s.n.m.		
1041	15.20	276° 51' 40"	91° 51' 40"				2733.656	774057.149	9209453.382
E 25	Ceros en	L		1.495		Estación	2741.644	773850.060	9209247.153
1042	76.60	85° 51' 40"	91° 48' 20" -				2739.232	773914.333	9209288.825
1043	61.60	86° 26' 40"	91° 26' 40"	ĺ			2740.092	773902.085	9209280.137
1044	58.00	78° 06' 40"	91° 21' 50"			Borde calle	2740.264	773894.026	9209284.980
1045	57.00	82° 08' 20"	91° 23′ 40″				2740.257	773895.773	9209281.201
1046	52.00	86° 48' 00"	91° 42' 40"		1.20	Borde calle (esq.)	2740.387	773894.149	9209274.723
1047	41.90	82° 44' 30"	91° 09' 10"			,,,,	2740.801	773883.924	9209271.827
1048	39.30	75° 42' 20"	90* 39* 50"			Borde calle	2741.189	773878.749	9209274.012
1049	14.95	63° 33' 10"	89° 20° 20"			Borde calle (esq.)	2741.816	773858.578	9209259.439
1050	13.28	65° 36' 10"	90° 30′ 40"			Borde pav.	2741.526	773858.012	9209257.789
1051	12.40	81° 25' 00"	90° 31' 00"			Borde pav.	2741.532	773859,910	9209254.685
1052	12.15	102° 18' 00"	90° 24' 40"			Borde pav.	2741.557	773861.708	9209250.607
1053	15.45	97° 21' 40"	90° 11' 30"			Borde calle (esq.)	2741.592	773864,439	9209252.805
1054	14.00	103° 53' 15"	89° 54' 50"				2741.665	773863,587	9209250.760
1055	19.45	130° 41' 00"	89° 51' 00"			Borde calle	2741.695	773869,094	9209243.154
1056	8.65	77° 09' 20"	90° 36′ 40"			Buzón	2741.552	773856,522	9209252.903
E 26	Ceros er		<u> </u>	1.482		Estación	2741.031	773804.465	9209330.049
1057	62.70	274° 55' 50"	91° 31' 50"			Borde calle	2739.357	773861.794	9209355.440
1058	62.40	273° 55' 15"	91* 37' 40"				2739.259	773861.065	9209356.320
1059	56.00	269° 33' 55"	91° 39' 15"			•	2739.415	773853.323	9209357.415
1060	56.35	263° 38' 10"	91° 34′ 10″				2739.488	773850.521	9209362.517
1061	56.70	262° 35' 00"	91° 26' 25"	1		Borde calle	2739.606	773850,199	9209363.565
1062	50.00	276° 30' 00"	91° 04' 30"	İ		Borde calle	2740.093	773850,719	9209349.037
1063	51,10	275° 23' 20"	91° 27' 10"				2739.736		9209350.368
1064	41.75	269° 58' 30"	91° 40′ 20″	}			2739.813	}	9209350.190
1065	41.60	261* 43' 00"	91° 18' 40"			Borde calle	2740.079		9209355.144
1066	41.30	263° 10' 20"	91° 25' 10"				2740.008	773838.026	9209354.118
1067	30.55	271° 28' 10"	91° 40' 40"				2740.137	773831,600	9209344.084
1068	33.40	280° 05' 40"	91° 20' 30"				2740.249]	9209340.771
1069	40.75	278° 49' 40"	91° 09' .20"			Borde calle	2740.209	773842.759	9209343.980
1070	18.70	293° 58' 30"	90° 25' 10"				2740.894	773823.098	9209331.628
1071	15.90	279° 40' 30"	90° 37' 50"				2740.856	773819.485	9209335.263
1072	25.00	259° 43' 10"	91° 16' 30"			Borde calle	2740.475	773823.866	9209345.816
1073	24.70	262* 07' 20"	91* 17' 30"				2740.474	773824.269	9209344.809
1074	16.00	256° 01' 00"	89° 46' 20"			Borde calle (esq.)	2741.095	773816.204	9209340.920
1075	15.15	244° 47' 10"	89° 37' 00"			Borde calle (esq.)	2741.132	773813.363	9209342.310
1076	11.90	259° 25' 00"	91° 19' 30"			Borde pav.	2740.756	773813.660	9209337.602
1077	11.20	281° 58' 20"	91° 14' 45"		}	Borde pav.	2740.788	773815.184	9209333.295
1078	14.75	309° 44' 30"	89° 06' 00"			Borde calle (esq.)	2741.263	773818.947	9209327.254
1079	12,70	307° 57' 10"	90° 54' 35"			Borde pav.	2740.829	773817.004	9209328.033
1080	6.50	316° 07' 10"	91° 34' 40"	1	1	Buzón	2740.852	773810.671	9209328.116
1081	7.65	307° 54' 00"	91° 23' 20"		ļ	Buzón	2740.846	773812.019	9209328.841
E 27	Ceros	n E 22		1.450		Estación	2737.374	773915.058	9209397.224
1082	57.00		88° 23' 00"			Buzón	2738.981	773867.106	9209366.408
1083	46.00	90° 35' 20'	88° 04' 00"			Borde calle	2738.925	773872.646	9209379.413
1084	45.80	89° 00' 20'	88° 08' 30"				2738.858	773873.336	9209378.330
1085	43.30	81° 36′ 00′	88° 15' 20"				2738.692	2 773878.245	9209374.426
1086	39.70	71° 14' 30'	88* 00' 30"			Borde calle	2738.753	773885.614	9209370.594
1087	39.15		88° 13' 00"				2738.592	2 773885.296	9209371.788
1088	15.15				1	}	2737.54	4 773901.840	9209389.819
1089	7.60	107° 02' 25'	1				2737.56		Í
1090	11.50		,			Borde calle (esq.)	2737.65		İ

						_				
Punto	DIST	ANG	. HORIZ.	ANG. VER	Г.		Observación	COTA	ESTE	NORTE
	(m)	•	1 #	0 1 n	<u> </u>	m		m.s.n.m.		
1091	9.70	121°	19' 20"	89* .09' 00"				2737.518	773905.451	9209398.566
1092	14.50	135°	36' 10"	88* 23' 10"			Borde calle (esq.)	2737.782	773901.636	9209402.710
1093	11.20	188°	00' 50"	87° 37' 30"	1		Borde calle (esq.)	2737.838	773912.092	9209408.024
1094	2.90	96°	36" 50"	92° 45' 40"			Buzón	2737.234	773912.281	9209396.388
1095	4.00	289°	29' 00"	90° 02' 45"			Borde calle	2737,371	773919.048	9209397,495
1096	3.40	305°	05' 40"	90° 52' 10"		j		2737.322	773918.387	9209396.533
1097	4.80	50°	01' 15"	89° 48' 40"	4			2737.390	773912.905	9209392.934
1098	14.40	339°	50' 20"	89° 58' 20"				2737.381	773924.975	9209386.784
1099	21.75	341°	11' 40"	89° 53' 50"			Borde calle	2737,413	773929,660	9209381.105
1100	18.70	358°	33' 50"	90° 03' 50"		}	20.200	2737.353	773922.903	9209380.249
1101	2.3,5	10°	42' 10"	89° 23' 20"		Ì	Borde calle	2737.625	773920,211	9209374.296
1102	23.15	8°	22' 30"	89° 47' 10"	Į.		:	2737,460	773921.047	9209374.862
1103	9.70		18' 00"	88* 42' 00"			Borde calle (esq.)	2737.594		
1104	8.20	İ	54' 10"	89° 47' 30"	1	ļ	Dorde Calle (854.)	1	773910.969	9209388.428
1105	6.40	}	36' 40"	88° 32' 20"	- (2737.404	773911.267	9209389.953
E 15(aux)	Ceros er	٠		00 02 20	1.435		Fatasita	2737.537	773909,343	9209394.342
1106	69.00	T	19' 05"	89° 33′ 40″	1.433		Estación Regionalle	2733.393	773937.079	9209585.743
1107	69.10						Borde calle	2733.922	773970.550	9209525.405
1108	69.60		42' 30"	89° 24' 20"	1			2734.110	773966,967	9209523.441
1109			04' 20"	89° 30' 10"	1			2733.997	773967.878	9209523.328
1	67.50		06' 40"	89° 42' 00"	- 1			2733.746	773973.073	9209528.641
1110	67.00	l	28' 20"	90° 08' 10"	- }		Borde pav.	2733.234	773975.378	9209530.769
1111	65.00		15' 30"	90° 11' 50"			Borde pav.	2733.169	773979.790	9209536.745
1112	25.35	Ì	57' 00"	89° 49' 40"			Borde calle (c/dir)	2733.469	773954,168	9209567.019
1113	26.70	!	07' 10'	89° 51' 40'				2733.458	773953.960	9209565.057
1114	23.60		15' 40"	90° 27' 40"	1		Borde pav.	2733.203	773951.633	9209567.165
1115	15.20	1	24' 30"	89° 42' 20"			Borde calle (c/dir)	2733.471	773947.431	9209574.613
1116	15.00		03, 00,	91" 19' 30"				2733.046	773946.166	9209573.809
1117	13.65	1°	30, 00.,	90° 44' 40"			Borde pav.	2733.216	773945,070	9209574.677
1118	3.90	340°	56' 00"	89° 33' 40"	į		Borde calle (c/dir)	2733.423	773940.327	9209583,585
1119	4.00	7°	30' 10"	92° 55' 50"				2733.189	773939.069	9209582.273
1120	27.00	5°	51' 00"	90° 19' 20"				2733.241	773951.181	9209562.718
1121	30.30	12°	36' 40"	90° 16' 10"			Borde pav.	2733.251	773949.752	9209558.221
1122	41.00	13°	58' 30"	89° 13' 20"				2733.949	773953.337	9209548.104
1123	46.35	17°	14' 00"	89° 10' 00"				2734.067	773953,010	9209542.217
1124	46.80	20°	37" 05"	88° .55' 40"			Borde calle	2734.269	773950.542	9209540.921
1125	38.80	26°	20' 10"	89° 12' 50"			Borde calle	2733.925	773944.482	9209547.656
1126	37.00	27°	47' 00"	89* 30' 20"			Borde calle	2733.712	773943.219	9209549.256
1127	32.95	27°	20' 20"	89° 28' 00"				2733.700	773942.799	9209553.293
1128	35.00	22°	53' 50"	88° 16' 40"			Buzón	2734.444	773945,806	9209551.848
1129	26.70	43°	16' 00"	89° 13' 00"			Borde calle (esq.)	2733.758	773934.320	9209559.186
1130	26.00	41°	32' 45"	89° 17' 40"				2733.713	773935.170	9209559.813
1131	25.55	51°	36' 20"	89° 11' 50"			Borde calle (esq.)	2733.751	773930.781	9209560.981
1132	24.50	52°	25' 10"	89° 15' 55"			. (4-)	2733.707	773930,703	9209562.087
1133	29.55	ļ	01' 15"	89" 07' 05"	[Borde calle	2733.848	773926.160	9209558.284
1134	21.50	!	59' 20"	89° 25' 20"	i			2733.610	773927.100	9209566.699
1135	12.00	l	24' 30"	90° 58' 00"	1	ļ	Borde pav.	2733.191	773935.187	9209573.893
1136	18.80	j	30' 50"	89° 10' 10"			Borde calle	2733.665	773920.934	9209575.093
1137	8.35		51' 20"	91° 23' 20"	1	Ì	Borde pav.	2733.191	773929.541	9209576.110
1138	20.80	İ	21' 40"	89° 21' 00"			Borde calle	1	ļ	
1139	15.85	1	01' 05"	90° 07' 40"		-	DOI GE CAIRE	2733.629	773916.433	9209583.217
1140	18.00	ĺ	31' 00"	90° 40' 55"	i		D	2733.358	773921.410	9209588.135
1141	27.70	l		}	į		Borde pav.	2733.179	773921.679	9209595.062
1142	}	ļ	27' 30"	90° 23' 30"			Borde pav.	2733.204	773916.212	9209603.960
	34.35		07' 50"	89° 51' 10"			Borde calle	2733.481	773905.648	9209599.601
1143	29.70	151	30' 50"	88° 58' 50"		1		2733.921	773909,984	9209597.907

														110
!	Punto	DIST		. HOF	RIZ.	ANG	: VE	RT.			Observación	COTA	ESTE	NORTE
		(m)	°	·	-	•	•	*	i	m		m.s.n.m.		
	1144	29.50	143°	36' 3	30°	88°	30' 5	50"			Borde calle	2734.158	773908.760	9209594.008
	1145	26.00	186°	43' 1	5"	90°	15' 4	10"				2733.275	773923.837	9209608.118
	1146	24.65	189°	56° 1	0"	90°	14' C	ю"			Borde calle (esq.)	2733.293	773925.735	9209607.627
	1147	24.85	194°	20' 1	0"	90°	15' 4	10"			Borde calle	2733.280	773927.369	9209608,617
	1148	24.70	185°	34' 2	20"	90°	33' 3	38"			Borde pav.	2733.151	773924.076	9209606.743
	1149	18.30	189°	20' 0	ю"	90°	10' 2	20"			Borde calle	2733.338	773928.486	9209601.900
	1150	14.00	189°	44' 4	ю"	90°	08′ 1	5"			Borde calle	2733.359	773930.594	9209598.151
	1151	8.70	192°	02° 2	20"	90°	05' 0	00"			Borde calle	2733.380	773933.361	9209593,608
	1152	6.25	178°	47' 2	25"	92°	00, 3	30"			Borde pav.	2733.174	773933.184	9209590.631
	1153	6.20	181°		ю"	93*	41' 3	30"				2732.995	773933.444	9209590.766
	E ₁₅ (aux)	Ceros er	1						1.400		Estación	2733.393	773937.079	9209585.743
	1154	22,40	0°	51' 4	15"	89°	10' 0				Borde calle (esq.)	2733.719	773923.588	9209567.861
	1155	19.60	4°	27' 3	30"	89°	03, 0	χο"			Borde calle (esq.)	2733.718	773924.316	9209570.867
	1156	40.60	0°		ю"	88°	41' 0)5"			Estación E 16(aux)	2734.325	773913.118	9209552.967
	1157	44.50	82°	1	55"	89°	30' 1	15"		,	Estación E 19(aux)	2733.778	773898.159	9209607.318
	1158	43.70	84°	i	55"	89*	- 1	0"				2733.760	773899.407	9209607.890
	1159	34.50	75°	1	0"	88°	- 1	10"				2734.059	773905.029	9209598.511
	1160	27.80	72*	'	30"	88°		10"			Poste	2734.212	773910.669	9209594.423
	1161	37.00	72°		35"	89°	j	50"			Poste	2733.933	773901.956	9209597.378
	1162	28.30	95°		0"	90°	}	5"				2733.235	773915.869	9209604,479
	1163	27.00		01' 3	- 1	90°	1	25"			Borde pav.	2733.186	773921.283	9209607.640
	1164	23.60	90°		- 1	90°		0"			Borde pav.	2733.152	773918.075	9209599.736
	1165	30.80	86°		0"	90°	11' (0	00"				2733.294	773911.133	9209602.339
	E ₁₅ (aux)	Ceros en				000	4.00		1.415		Estación	2734.348	773913.089	9209552.923
	1166 1167	10.50		37' 4	ĺ		11' 5				Borde calle	2734.678	773904.952	9209546.286
		33.30	211°	26' 3	ł		36' 5					2735.153	773882.299	9209540.239
	1168	33.10	201°		20"		11' 2				Borde calle	2735.393	773885.201	9209535.094
	1169	33.20	219°	19' 1	-		48' 5			}		2735.035	773880.948	9209544.604
!	1170	60.00	203°	07' 4	-		28' 3				_	2735.944	773861.499	9209522.288
ļ	1171 1172	59.50 65.00	208*		30"		34' 1				Buzón	2735.833	773859.387	9209527,302
į	1173	İ	212°	06' 0			38' 1				Borde calle (esq.)	2735.893	773852.708	9209528.857
	1174	63.60 83.00	1	12' 0	- 1		35' 3				Borde calle (esq.)	2735.911	773853.567	9209530.514
-	1175	82.30		31' 5	i i		43' 0					2736.206	773836.858	9209520.093
,	1176	48.80		12' 4	- 1		47' 4					2736.079	773838.880	9209517.337
	1176	63.00	1	05' 2 16' 4	- 1		22' 1 41' 4			į Į	Poste	2735.736	773870.716	9209528.715
	1178	54.00	į	47' 3	j		41' 3				Borde calle	2735.783	773853.363	9209532.878
	1179	58.20	J	03' 0	ĺ		37' 3				•	2735.581	773862.358	9209534.419
	1180	61.40	231°	30' 2			07' 3				Borde calle	2735.744	773858.675	9209532.274
	1181	56.30	236°	32' 2			17' 4				Dorde Calle	2735.286 2735.041	773851.739 773856.852	9209550.432
	1182	64.50	246°	43' 0	1		16' 0					2735.041	773850.852	9209555.584
	1183	58.10	254°		1		22' 0		•		Poste	2734.990	773850.213	9209567.307
	1184	68.30	254°	59' 1			28' 1		,			2734.990	773849.392	9209573.716 9209577.572
	1185	69.50	256°	39' 5	- 1		35' 4					2734.840	773849.035	9209577.572
	1186	66.10	259*	02' 2	ļ		42' 1					2734.691	773853.284	9209581.076
	1187	62.50	262°	12' 2	į		50' 5					2734.591	773858.098	9209582.625
	1188	60.50	259°	03' 4	- 1		31' 1					2734.855	773858.360	9209578.712
	1189	64.20	256°	40' 0	- 1		27' 0	.				2734.963	773853.921	9209576.712
	1190	12.10	247°		- 1		16' 3				•	2734.501	773901.312	9209577.839
	1191	9.50	227°	46' 0	- 1		43' 1				`	2734.395	773901.512	9209551.919
	1192	10.00	329°		- 1		02' 3			i	Borde calle	2734.166	773914.159	9209562.865
ĺ	E ₁₇ (aux)	Ceros er						-	1.545		Estación	2738.878	773750.568	9209362.663
	1193	57.50	7	17' 5	50"	90°	06' 2	25"			Borde calle (ini/curv)	2738.771	773754.091	9209529.855
	1194	40.00	1	47' 3			12' 1				Borde calle (p/curv)	2738.736	773756.830	9209511.969
						==					(5/00/7)			3203011.000

										1/4
	Punto	DIST		ANG. VERT.			Observación	COTA	ESTE	NORTE
		(m)	• • •	0 1 +	i	m		m.s.n.m.		
	1195	26.80	348° 40' 00"	90" 13' 05"			Borde calle	2738.776	773745.400	9209498.760
į	1196	14.20	52° 51' 50"	89* 20' 00"			Borde calle (esq.)	2739.043	773761.920	9209480.993
	1197	13.40	53° 42' 50"	90° 15' 00″				2738.820	773761.399	9209480.352
	1198	14.60	66° 08' 30"	90° 43' 10"			·	2738.695	773763.942	9209478.318
	1199	14.00	107° 37' 30"	90° 09 ' 30"				2738.839	773763.894	9209468.174
	1200	30.80	145° 50' 10"	89* 16' 10"		-	Borde calle (c/dir)	2739.271	773767.768	9209446.913
	1201	41.10	167° 51′ 20″	89° 14' 45"			Borde calle (esq.)	2739.419	773759.063	9209432.250
	1202	29.30	172° 28' 25"	89° 04' 30"			Borde calle (esq.)	2739.351	773754.296	9209443.401
	1203	15.30	61° 16' 10"	89* 37' 20"			Borde calle (esq.)	2738.979	773764.012	9209479.767
	1204	48.10	61° 03' 10"	91° 07' 40"			Borde calle	2737.931	773792.746	9209495.584
	1205	48.00	62° 26' 00"	91* 15' 50"				2737.820	773793.202	9209494.516
	1206	47.50	66° 15' 30"	91° 24' 50"				2737.706	773794.120	9209491.423
i	1207	43.00	71° 58' 00''	91° 21' 50"				2737.855	773791.505	9209485.620
	1208	42.00	74* 41' 50"	90* 53' 10"			Borde calle	2738.229	773791.120	9209483.395
	1209	32.60	78° 48' 20"	90* 47' 50"			Borde calle	2738.424	773782.571	9209478.671
	1210	13.30	76° 45' 00"	90* 29' 25"				2738.764	773763.525	9209475.462
	1211	12.70	95° 06' 20"	90° 42° 30°		-		2738.721	773763.213	9209471.285
	1212	10.00	116° 41' 30"	89° 31' 40"		į	Borde pav.	2738.960	773759.485	9209467.937
	1213	8.40	89° 17' 10"	89° 30' 40"			Borde pav.	2738.950	773758.967	9209472.536
	1214	8.80	64" 11' 10"	89° 46' 30"			Borde pav.	2738.913	773758,504	9209476.265
	1215	71.60	68° 53' 50"	91° 17' 10"			Borde calle	2737.271	773817.463	9209497.990
ļ	1216	69.00	68° 23' 30"	91° 23' 30"	İ			2737.203	773814.814	9209497.631
	1217	7E.80	64° 38' 10"	91° 35' 40"		-		2736.742	773820.088	9209505.099
	1218	78.50	61° 48' 30"	91* 29' 30"				2736.835	773819.895	9209509.287
	1219	91.00	0, 00, 00,	90° 17' 30"			Estación E 18(aux)	2738.415	773750.911	9209563.462
	E 18(aux)	Ceros er	1 E ₁₉ (aux)		1,515		Estación	2738.448	773750.910	9209563.050
	1220	26.50	98° 48' 50''	89* 53' 50"				2738.496	773754.552	9209536.801
	1221	82.00	82° 14' 30"	90* 45' 10"				2738.181	773759.319	9209544.573
!	1222	69.00	69° 07' 00''	91* 31' 20"				2737.930	773762.807	9209547.599
	1223	45.00	45° 07' 35"	91* 59' 35"				2737.624	773771.755	9209551.773
	1224	22.00	22° 23' 50'	92° 38' 25"	İ			2736.515	773792.703	9209558.890
	1225	12.00	12° 01' 25"	92* 11' 10"				2735.730	773821.971	9209568.879
	1226	353.00	353° 09' 00"	92° 16' 20"				2736.095	773805.357	9209586.796
!	1227	352.00	352° 36' 20"	92* 20' 15*				2736.317	773798.648	9209584.412
	1228	39.00	351° 28' 45"	92° 24' 30"				2736.811	773786.188	9209579.676
	1229	21.60	15* 58' 05"	92° 12' 50"		ļ		2737.614	773772.508	9209563.331
	1230	19.00	344° 20' 10"	92* 13' 40"			Borde calle (c/dir)	2737.710	773766.956	9209573.224
	1231	10.70	323° 14' 15"	91° 26' 30"			Borde calle (c/dir)	2738.179	773757.278	9209571.648
	1232	9.25	302° 13' 25"	91° 41' 20"			Borde calle (c/dir)	2738.175	773753.383	9209571.963
	1233	12.45	267° 54' 20"	90° 04' 55"			Borde calle (c/dir)	2738.430	773746.896	9209574.835
	1234	21.40	229° 32' 00"	90° 15' 30"			Borde calle	2738.352	773732.926	9209574.649
	1235	16.80	167° 25' 40"	89° 42' 15"			Borde calle	2738.535	773736.257	9209554.832
	1236	21.80	144° 41' 25"	89° 41' 25"			Borde calle	2738.566	773737.495	9209545.866
	1237	28.60	132° 19' 40"	89° 45' 25"		İ	Borde calle (esq.)	2738.569	773738.545	9209537.261
	1238	36.20	123° 29' 10"	89° 33' 30"		1	Borde calle (esq.)	2738.727	773740.463	9209528.390
ļ	1239	40.20	136° 24' 30"	89° 20' 05"			Borde calle	2738.915	773730.995	9209528.129
	1240	9.40	88° 06' 40"	90° 02' 50"		}		2738.440	773753.908	9209554.141
i	1241	4.75	231° 53' 40"	88° 54' 40"				2738.538	773747.027	9209565.787
	E 19(aux)	Ceros er	E 15(aux)		1.530		Estación	2733.788		9209607.243
	1242	56.20	119° 52' 10"	88* 40' 15"				2735.091	773850.064	9209578.093
	1243	48.10	117° 20' 00"	89° 12' 35"				2734.451	773858,134	9209580.499
	1244	23.50	99° 03' 10"	89" 01' 10"			Borde calle	2734.190	773883.665	9209588.709
	1245	19.50	90° 52' 50"	88" 43' 15"			Borde calle	2734.223	773888.432	9209590.316
	1246	13.70	17° 24' 20"	89° 45' 40"			Borde calle (esq.)	2733.845	773907.580	9209597.339

Punto	DIST	ANG. HORIZ.	ANG. VERT.			Observación	COTA	ESTE	NORTE
	(m)	o : *	9 . 1 14	ì	m		m.s.n.m.		
1247	57.40	315° 14' 00"	90° 57' 40"			Borde calle	2732.825	773953.323	9209622.949
1248	51.80	292° 11' 10"	91° 05' 20"			Borde calle	2732.804	773938.411	9209639.790
1249	30.00	284° 50′ 30″	91° 36' 20"			Borde calle (esq.)	2732.948	773918.851	9209628.922
1250	37.00	269° 27' 40"	91° 00′ 35″			Borde calle	2733.136	773915.682	9209639.806
1251	13.80	239° 50' 50"	91° 00' 00"			Borde calle (esq.)	2733.547	773897.809	9209621.039
1252	12.10	235° 20' 50"	90° 52' 00"			Borde calle (esq.)	2733.605	773896.898	9209619.282
1253	13.00	197° 58' 00"	90° 31' 45"]		Borde calle	2733.668	773889.223	9209616.728
1254	53.80	146° 45' 50"	89° 00' 20"	! !		Borde calle (esq.)	2734.722	773844.469	9209603.163
1255	48.00	147° 23' 00"	89° 02' 20"				2734.593	773850.215	9209604.120
1256	48.00	131° 48' 10"	88° 38' 40"				2734.923	773852.814	9209591.370
1257	51.80	120° 46' 50"	89° 01' 10"				2734.674	773853,405	9209581.083
1258	55.50	112° 46' 00"	88° 47' 50"			-	2734.953	773854.587	9209572.810
1259	47.30	119° 41' 10"	89° 05' 10"			}	2734.542	773857.752	9209582.580
1260	55.60	121° 29' 00"	88° 57' 50"				2734.793	773849.784	9209579.754
1261	33.50	307° 18' 20"	90° 57' 50"				2733.225	773928.763	9209620.766
1262	56.00	35° 16' 05"	91° 01' 50"				2732.781	773922.526	9209556.844

4.1.3 DIBUJO DEL PLANO TOPOGRÁFICO CON CURVAS DE NIVEL.

Para la elaboración del plano topográfico con curvas de nivel se ha utilizado el programa de topografia INROADS que corre bajo AUTOCAD.

Los valores de coordenadas X, Y y Cota (Z), obtenidos del cálculo de la poligonal y del cálculo de la nivelación taquimétrica, con su respectiva numeración de puntos y su descripción, son ingresados manualmente en un archivo creado en el programa Excel. Se abre el programa INROADS y se importa el archivo de Excel que contiene los datos X, Y, Z y se configura la visualización de puntos para luego generar el plano con curvas de nivel. Luego se identifican los puntos, se definen las manzanas y se procede a trazar los ejes longitudinales. El programa INROADS, dibujará el estacado de los ejes y los perfiles longitudinales y transversales para cada una de las calles ya definidas.

La edición de los planos elaborados con este programa y el dibujo de los planos restantes se realizaron con el programa AUTOCAD.

4.2 DISEÑO GEOMETRICO DE LAS VIAS.

4.2.1 DISEÑO DE LOS EJES LONGITUDINALES EN PLANTA.

Una vez generado el plano topográfico con curvas de nivel mediante el programa INROADS y definidas las manzanas se trazaron los ejes en planta de acuerdo a lo indicado en el punto 2.2.3 del capítulo II.

4.2.2 DIBUJO DE PERFILES.

Definido el diseño de los ejes en planta, el programa INROADS genera los perfiles longitudinales y transversales. Para cada calle, en el perfil longitudinal, se traza la línea de subrasante y el programa proporciona valores de cota de terreno y subrasante, áreas y volúmenes de corte y relleno.

4.2.3 CALZADA.

Ancho de superficie pavimentada. Se han considerado módulos de 3.00 y 3.60 metros.

Estacionamiento. Será paralelo al eje de la vía. En la calle Chanchamayo será a la derecha y en las calles restantes será a la izquierda, regulados por la entidad competente.

Bombeo. Tendrá una inclinación del 2 %.

4.2.4 VEREDAS.

Constarán de módulos de 0.60 m. El canal de drenaje Nº 2 que discurre por la calle Chanchamayo forma parte de la vereda, por lo que las veredas estarán conformadas por cuatro módulos (entre Av. Vía de Evitamiento y Jr. Huancavelica) y por tres en los otros tramos, así mismo en las calles Marañón, Francia y Miguel Iglesias. Las veredas en las calles restantes constarán de dos módulos.

4.2.5 RAMPAS PARA LIMITADOS FÍSICOS.

Se han considerado rampas en las esquinas donde la geometría vial lo permite, con un ancho de 0.90 m. y una pendiente máxima de 10 %.

4.2.6 VÍAS LOCALES PRINCIPALES.

Como vías principales se ha considerado a las calles Angamos, Chanchamayo y Miguel Iglesias debido al considerable volumen de tráfico que soportan: Por ellas circulan vehículos con carga considerable.

4.2.7 VÍAS LOCALES SECUNDARIAS.

Las calles restantes, generalmente de dos carriles y ancho variable.

Se debe mencionar que debido a que la zona está ubicada en el ingreso a la ciudad por la zona norte, estas calles son susceptibles ha soportar tráfico pesado de manera esporádica.

4.3 ESTUDIO DE SUELOS Y MATERIALES PARA LA PAVIMENTACIÓN.

4.3.1 ESTUDIO DE SUELOS.

4.3.1.1 UBICACIÓN Y APERTURA DE CALICATAS.

Se tiene conocimiento que parte de la zona en estudio, las urbanizaciones Sarita y Alan Perú (Los Jazmines), años atrás, fueron pastizales y los terrenos donde hoy está emplazada la urbanización Santa Rosa, que es colindante con la zona en estudio, fueron terrenos pantanosos. Esto nos asegura la existencia de suelos sometidos a una fuerte humedad y bastante críticos. La ubicación de calicatas se realizó teniendo en cuenta lo mencionado y de acuerdo a lo señalado en el punto 2.3.1, capítulo II.

Se aperturaron 11 calicatas, las mismas que se detallan a continuación.

CALICATA	UBICACIÓN	ÁREA (m²)	PROFUNDIDAD (m)	Nº DE ESTRATOS
C-1	Esquina Jr. Angamos - Jr. Las Cucardas	1.0	1.50	3
C-2	Esquina Jr Chanchamayo – Jr. Las Cucardas	1.0	1.50	3
C-3	Esquina Jr. Huancavelica - Jr. Marañón	1.0	1.50	2
C-4	Esquina Jr. Huancavelica - Jr. Chanchamayo	1.0	1.50	2
C-5	Esquina Jr. Huancavelica – Jr. Huaraz	1.0	1.50	2
C-6	Esquina Jr. Huancavelica – Jr. San Jorge	1.0	1.50	3
C-7	Esquina Jr. Los Tres Reyes - Jr. Niño Jesús	1.0	1.65	4
C-8	Esquina Jr. Chepén – Jr. Miguel Iglesias	1.0	1.50	4
C-9	Esquina Jr. Huancavelica - Jr. Miguel Iglesias	1.0	1.55	4
C-10	Esquina Jr. Los Tres Reyes - Jr. Miguel Iglesias	1.0	1.50	4
C-11	Esquina Jr. Los Tres Reyes - Jr. Virgen María	1.0	1.60	4

4.3.1.2 ENSAYOS DE LABORATORIO.

a) Contenido de Humedad.

Normas: ASTM D 2216 - AASHTO T 265

- Se pesa un recipiente de latón (tara), previamente identificado y revisado.
- Se coloca una muestra representativa del suelo húmedo en la tara y se determina el peso del recipiente más el suelo húmedo.
- Se coloca la muestra en la estufa.
- Cuando la muestra se ha secado, se determina el peso del recipiente más el suelo seco.
 Es conveniente utilizar la misma balanza para todas las mediciones de peso.
- El contenido de humedad se calcula mediante la ecuación (2.10) señalada en el acápite 2.3.2 a; capítulo II.

b) Peso Específico.

Normas: ASTM D 854 - AASHTO T 100

Procedimiento:

- Se utiliza un frasco volumétrico (fiola de 500 ml) y se lo pesa vacío.
- Se llena el frasco, con agua de destilada, hasta la marca de 500 ml y luego se pesa.
- En el frasco vacío se coloca la muestra (100 gr. aprox.), evitando botar parte de ella. Se añade agua destilada hasta cubrir la muestra y se agita el frasco con la mano.
- Una vez realizado este último paso, se somete al frasco a la bomba de vacío, con la finalidad de remover el aire entrampado, durante unos 15 minutos hasta que no salgan más burbujas.
- Por último, se agrega agua destilada hasta la marca de 500 ml y la parte exterior del frasco es limpiada y secada con un paño seco y limpio. Se mide el peso nuevamente.
- El cálculo del peso específico se realiza mediante la ecuación (2.11) que corresponde al acápite 2.3.2 b; capítulo II

c) Análisis Granulométrico (Análisis Mecánico Combinado).

Como los suelos contienen suficiente material grueso y fino, se realizará un análisis por tamizado (lavado) y otro por sedimentación, combinados.

Primero se determinará, con suficiente cantidad de muestra (puede ser 1000 gr), la granulometría hasta el tamaño más pequeño de los granos, malla Nº 200 (0.075 mm), empleando el método por tamizado (lavado).

Se utilizará otra cantidad de muestra seca para la prueba de sedimentación, que pase la malla Nº 10 (100 gr). Este material que ha pasado por la malla Nº 10 (< 2.00 mm), deberá tener el mismo porcentaje que en el tamizado (lavado).

Análisis Granulométrico por tamizado (por lavado).

Normas: ASTM D 422 – AASHTO T 88

- 1. Se seca una muestra representativa en la estufa (más o menos 500 gr).
- Se pesa la muestra seca y luego se la remoja en agua por varias horas. El proceso se agiliza si la muestra, antes de ser saturada, es pulverizada y tamizada con la malla Nº 200, descartando la fracción menor.
- 3. Se coloca la muestra saturada sobre la malla Nº 200 y se la lava cuidadosamente, a través de ella, utilizando agua potable. El lavado se efectúa hasta que el agua mantenga su transparencia al pasar a través de la malla. Se debe tener cuidado para

- evitar daños en la malla y la pérdida de suelo que eventualmente pueda salpicar fuera de la malla.
- 4. Se vierte cuidadosamente el residuo, con ayuda de agua, en un recipiente y se le permite que sedimente por un periodo de tiempo suficiente hasta lograr que el agua en la parte superficial de la suspensión se vuelva transparente. Se bota tanto como se pueda de esta agua transparente, y se coloca el recipiente con la suspensión suelo y agua en la estufa para secado.
- 5. Al día siguiente se pesa el residuo ya seco y se averigua la cantidad de suelo perdido durante el lavado.
- 6. Se hace pasar la muestra a través de una serie de mallas que varíen desde los diámetros mayores arriba hasta los diámetros inferiores abajo, agitando constantemente. Como el objetivo es lograr una curva semi logarítmica del porcentaje de material contra el tamaño de las partículas, será necesario obtener una distribución razonable de puntos a lo largo del rango potencial de diámetros presentes en la muestra.
- 7. Se obtiene el peso del material que quedó retenido en cada malla.
- 8. Se calcula los porcentajes de los retenidos parciales.
- 9. Se calcula el porcentaje en cada malla dividiendo el peso retenido en cada una de ellas por el peso de la muestra original utilizado en el paso 2.
- 10. Se acumulan los porcentajes parciales retenidos.
- 11. Se calcula el porcentaje que pasa comenzando por 100 % y sustrayendo el porcentaje retenido acumulado en cada malla.

Análisis Granulométrico por sedimentación (Método de Sifoneado).

- 1. Se toma 100 gr de material, que pase la malla Nº 10 (secado al horno).
- 2. Se coloca la muestra en un recipiente (tara), se la satura dejándola remojar una hora por lo menos.
- 3. Se vacía la mezcla cuidadosamente en el vaso dispersador y luego se la bate en el dispersador eléctrico durante unos 15 minutos.
- 4. Una vez dispersado el material, se lo coloca en un graduado de cristal (probeta), llenando con agua hasta una altura de 20 centímetros. Luego se sacude bien la mezcla durante un minuto volteando repetidas veces el graduado y se lo deja en reposo durante 20 minutos.

- 5. Terminado el periodo de sedimentación, se introduce cuidadosamente el disco metálico hasta el material que se ha sedimentado al fondo, con el objeto de separar el material sedimentado del que todavía se encuentra en suspensión.
- 6. Cuidadosamente, utilizando un tubo de goma, se sifonea el material que todavía se halla en suspensión.
- 7. Se traslada a un recipiente el material que se ha sedimentado en el fondo del graduado, empleando un frasco lavador y procurando no utilizar mucha agua, a fin de facilitar el secado de la muestra.
- 8. Se coloca en el horno el recipiente conteniendo la muestra, hasta obtener el completo secado de la misma.
- 9. Se tamiza el material seco (se emplearon las mallas Nº 60, 100 y 200), registrándose el peso del material que pasa por cada una de las mallas.
- El porcentaje del material que pasa la malla Nº 200 y que se sedimentó se indicará como limo.
- El porcentaje del material que se sifoneó se indicará como arcilla.
- El material utilizado para este ensayo deberá tener el mismo porcentaje que corresponde al material que pasa la malla Nº 10 en el procedimiento de tamizado (lavado).

d) Límites de Consistencia.

Límite Líquido.

Normas: ASTM D 4318 - AASHTO T 89

Equipo: malla Nº 40 y bandeja, copa de Casagrande, ranurador, botella de plástico blando para proveer cantidades controladas de agua, recipientes para contenido de humedad, depósito para preparar la pasta de suelo (mortero), espátula, balanza.

- Pulverizar una cantidad suficiente de suelo secado al aire, para obtener una muestra representativa del material que pasa a través del tamiz Nº 40 de alrededor de 200 gr.
- Verificar que la altura de la copa de Casagrande sea exactamente de 1 cm. Para esta operación se puede utilizar la cabeza en forma de dado de 1 cm en el extremo superior del ranurador patrón (tipo ASTM).
- 3. Colocar los 200 gr de muestra en el depósito de mezclado (mortero), añadir una pequeña cantidad de agua y mezclar cuidadosamente el suelo hasta obtener un color uniforme. Se debe continuar añadiendo pequeñas cantidades adicionales de agua y mezclando cada vez hasta obtener una mezcla homogénea. Cuando se encuentre el

182

suelo en un punto de consistencia (pegajosidad), remover alrededor de 20 gr de esta muestra para determinar posteriormente el límite plástico. A continuación se debe añadir un poco más de agua de manera que la consistencia resultante permita un número de golpes para la falla en el rango de 30 a 40.

- 4. Remover la copa de bronce del aparato de límite líquido y colocar dentro de ella una pequeña cantidad de suelo hasta la profundidad adecuada para el trabajo de la herramienta ranuradora. A continuación se empareja la superficie de la pasta de suelo con una espátula y haciendo uso del ranurador, cortar una ranura clara, recta, que separe completamente la masa de suelo en dos partes. Después de hecha la ranura, se debe retornar rápidamente la copa a su sitio del aparato y hacer el conteo de golpes.
- 5. Tomar una muestra de unos 40 gr para medir contenido de humedad y colocarla en una lata (tara) cuyo peso debió determinarse con anterioridad. La muestra debe corresponder a la zona donde se cerró la ranura. Pesar la lata con la muestra y colocarla en una estufa a 110°C. para que se seque durante la noche. Remover los restos de suelo de la copa y volverlos al recipiente donde se había preparado la muestra. Lavar y limpiar perfectamente la copa de bronce. Añadir una pequeña cantidad de agua al recipiente de preparación de suelo y mezclar cuidadosamente hasta obtener una coloración homogénea y consistencia para obtener un número de golpes entre 25 y 30 aproximadamente. Repetir los pasos 4 y 5 anteriores.
- Repetir la secuencia para dos ensayos adicionales con número de golpes entre 20 y 25, y entre 15 y 20, respectivamente para un total de cuatro determinaciones en el ensayo.

<u>Límite Plástico</u>.

Normas: ASTM 4318 - AASHTO T 90

- Dividir en varias porciones pequeñas la muestra de 20 a 30 gr de suelo que se había separado con anterioridad durante la preparación de la muestra para límite líquido.
- 2. Enrollar el suelo con la mano extendida sobre una placa de vidrio, con presión suficiente para moldearlo en forma de cilindro o hilo de diámetro uniforme. Cuando el diámetro del hilo o cilindro llegue a 3 mm. Se debe romper en pequeños pedazos, y con ellos moldear nuevamente unas bolas o masas que a su vez vuelvan a enrollarse. Este proceso de hacer bolas o masas de suelo y enrollarlas debe

continuarse hasta cuando el hilo o cilindro de suelo se rompa bajo la presión de enrollamiento y no permita que se le enrolle adicionalmente.

- 3. Repetir esta secuencia el número de veces que se requiera para producir suficientes pedazos de cilindro que permitan llenar un recipiente de humedad.
- 4. Determinar el contenido de humedad de cada muestra.

Indice de Plasticidad.

Se determina con la ecuación (2.13) del acápite 2.3.2 – d; capítulo II.

e) Compactación (Ensayo PROCTOR MODIFICADO).

Normas: ASTM D 1557 - AASHTO T 180

Equipo: molde de 6 pulgadas de diámetro, martillo (pisón) de 4.5 Kg, bandeja para preparar la muestra, probeta graduada para el agua.

- 1. Pulverizar una cantidad suficiente de suelo secado al aire, para obtener una muestra representativa del material que pasa a través de la malla ¼"de alrededor de 8 Kg
- 2. Determinar el volumen del molde y su peso (sin incluir la base ni el collar), y el peso de cada uno de los recipientes (taras) para contenido de humedad, a usar.
- 3. A continuación, en la bandeja de preparación, mezclar el material con la cantidad de agua necesaria para hacer el incremento de humedad basado en porcentaje de peso seco. El porcentaje inicial de incremento de agua debería tener en cuenta el contenido de humedad 4 a 5 % por debajo del CHO (contenido de humedad óptimo). El CHO se obtiene por cualquier medio de estimación.
- 4. Se coloca la mezcla en el molde y se compacta el suelo en cinco capas, cada una con 56 golpes y una altura de caída de 45.7 cm.
- 5. Una vez compactado el suelo en cinco capas, se retira el collar del molde y se enrasa la parte superior del cilindro con una regla metálica. Llenar cuidadosamente con suelo o gravas pequeñas cualquier agujero que pudiera haber quedado en la superficie o haberse hecho por remoción de alguna grava al enrasar la superficie.
- 6. Pesar el molde lleno de suelo húmedo y compactado.
- 7. Extraer el cilindro de suelo del molde, partirlo en dos y tomar dos muestras para contenido de humedad, una cercana a la parte superior del molde y otra a la parte inferior, dejando en el recipiente de humedad (tara) tanto material como sea posible (100 gr como mínimo).

- 8. Despedazar la muestra hasta tamaño aproximado de la malla ¼" y añadir 2% (basado en el peso seco original de la muestra) de agua. Mezclar nuevamente y repetir los pasos 4 a 8 hasta que, en base al peso húmedo, se obtengan dos valores de peso de material compactado ligeramente menores que un determinado valor pico.
- 9. Al día siguiente se pesan las muestras de contenido de humedad secadas al horno para encontrar el promedio de contenido de humedad de cada ensayo.
- 10. Se calcula la densidad seca con la ecuación (2.14) del acápite 2.3.2 e, capítulo II. Se hace un gráfico de densidad seca contra contenido de humedad. La densidad seca máxima y el contenido de humedad óptimo serán los valores correspondientes al punto máximo de la curva de compactación.

f) Ensayo CBR (Relación de Soporte de California).

Normas: ASTM D 1883 - AASHTO T 193

Equipo: Bandeja de preparación, moldes con collar y soporte para deformímetro para el ensayo de inmersión, martillo de compactación, base y disco espaciador, placa de expansión con varilla de extensión, pesos para sobrecarga, máquina de compresión equipada con pistón de penetración CBR.

- Se pulveriza una cantidad suficiente de suelo secado al aire y se lo hace pasar por las mallas ¾" y Nº 4. La fracción retenida en la malla ¾" se descarta y reemplaza, en igual proporción, por el material que pase la malla ¾" y quede retenida en la malla Nº 4. Se necesita obtener alrededor de 20 Kg de muestra.
- 2. Se preparan tres moldes cilíndricos (previamente hay que determinar el volumen y peso de cada uno de ellos, sin el collar). En cada molde se coloca un disco espaciador y se coloca encima de él un papel filtro grueso de 6" de diámetro.
- 3. En una bandeja se coloca los 20 Kg de material obtenido en el paso 1. Luego se añade una cantidad de agua suficiente para obtener una humedad de mezclado igual en ± 0.5 %, a la humedad óptima de la curva de compactación. Se mezcla bien el material para obtener una humedad uniforme.
- 4. Se compactan tres muestras, siguiendo el procedimiento anteriormente descrito. La primera con 56 golpes de pisón, la segunda con 25 y la tercera con 12.
- 5. Efectuada la compactación para cada muestra, se quita el collar, se enrasa la parte superior de la misma, corrigiendo cualquier irregularidad superficial; se voltea el molde y se quita la base metálica perforada y el disco espaciador. Se pesa el molde con

- la muestra y se determina la densidad y humedad de dicha muestra. Tomar una muestra de suelo representativa para determinar el contenido de humedad final del suelo remanente.
- 6. Se coloca un papel filtro grueso de 6" de diámetro sobre la superficie enrasada de cada muestra. Se monta encima de esta superficie la base metálica perforada y se voltea el molde.
- Sobre la superficie libre de cada muestra se coloca un papel filtro ya descrito y se monta la placa de expansión con varilla de extensión. Sobre la placa se colocan varias pesas de plomo (4.5 Kg).
- 8. A continuación se coloca cada molde, uno por uno, dentro de un depósito lleno de agua de manera que el agua tenga acceso tanto a la parte superior como a la parte inferior de la muestra y ajustar el deformímetro en su respectivo soporte.
- 9. Se ajusta en cero el deformímetro de expansión y se registra el tiempo de comienzo del ensayo. Se toman y registran las lecturas cada 24 horas y por un periodo de 96 horas (4 días).
- 10. Al final de las 96 horas de inmersión se toma y anota la lectura final. Se saca las muestras y se las deja drenar por espacio de 15 minutos. Luego se remueve las pesas, la placa y el papel filtro y se pesa las muestras sumergidas.
- 11. Cada molde con muestra y sobrecarga (dos pesas anulares), se colocan debajo de la prensa y se asienta el pistón sobre la superficie de la muestra, aplicando una carga de 4.5 Kg.
- 12. Se coloca en cero el extensómetro que mide la deformación.
- 13. Se hinca el pistón manteniendo una velocidad de 0.05 pulgada por minuto y se leen las cargas totales necesarias para hincar el pistón a 0.025", 0.050", 0.075", 0.1", 0.2", 0.3", 0.4", y 0.5".
- 14. Finalmente, se determina el contenido de humedad de cada muestra. Este será el valor promedio de los contenidos de humedad obtenidos en los extremos y parte media de la muestra.
- 15. Graficar, para cada muestra, una curva de resistencia a la penetración (esfuerzo penetración). Si la curva no es esencialmente lineal a través del origen, extender una línea desde la porción recta de la curva para tratar de interceptar el eje de las abscisas. La diferencia entre este valor y la penetración correspondiente a cero es una corrección que debe utilizarse para calcular el valor de CBR.

- 16. Se calcula en cada una de las curvas, corregidas si fuese necesario, la resistencia a la penetración (esfuerzo) para 0.1" y 0.2" de penetración.
- 17. Se determina el contenido de humedad y la densidad seca de cada una de las muestras antes de saturar y en la condición final luego de saturadas.
- 18. Se obtienen los valores de CBR de los moldes 1, 2 y 3 (12, 25 y 56 golpes respectivamente) para 0.1" y 0.2" de penetración, con la ecuación (2.15) del acápite 2.3.2 f; capítulo II. La carga unitaria patrón para 0.1" de penetración es de 70 Kg/cm² y la correspondiente para 0.2" de penetración es de 105 Kg./cm².
- 19. Se hace un gráfico de densidad seca (antes de saturar) contra los valores de CBR obtenidos en el paso 18.
- 20. Para calcular el CBR de diseño, se entra a la curva obtenida en el paso 19 con un valor de densidad seca igual al 95 % de la densidad seca máxima, obtenida en el ensayo de compactación (Proctor Modificado).

FACULTAD DE INGENIERÍA

LABORATORIO DE MECÁNICA DE SUELOS

CONTENIDO DE HUMEDAD

Normas: ASTM D 2216 - AASHTO T 265

 CALICATA
 C-1
 Prof.: de 0.45 m. a 0.95 m.

 ESTRATO
 E-2

 MUESTRA N°
 1
 2
 3

MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	147.40	130.70	151.20
Peso Seco + Tara (gr)	133.20	118.40	136.60
Peso del Agua (gr)	14.20	12.30	14.60
Peso Tara (gr)	34,60	34.30	35.40
Peso Muestra Seca (gr)	98.60	84.10	101.20
Cont. Humedad (%)	14.40	14.63	14.43
Cont. Hum. Prom. (%)		14.48	

Prof.: de 0.95 m. a 1.50 m. CALICATA C-2 CALICATA C-1 ESTRATO E-3 MUESTRA Nº 1 128.60 135.60 124.10 Peso Húm. + Tara (gr) 112 60 Peso Seco + Tara (gr) 117.10 122.90 11.50 12.70 11.50 Peso del Agua (gr) Peso Tara (gr) 35,70 31.80 30.50 82.10 91.10 81 40 Peso Muestra Seca (gr) 13.94 14.01 Cont. Humedad (%) 14.13

14.03

15.07

Cont. Hum. Prom. (%)

Cont. Hum. Prom. (%)

ESTRATO E-2			
MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	158.20	165.30	152.70
Peso Seco + Tara (gr)	146.70	153.20	141.80
Peso del Agua (gr)	11.50	12.10	10.90
Peso Tara (gr)	33.20	34.10	31.90
Peso Muestra Seca (gr)	113.50	119.10	109.90
Cont. Humedad (%)	10.13	10.16	9.92
Cont. Hum. Prom. (%)		10.07	

Prof.: de 0.30 m. a 0.80 m.

Prof: de 0.50 m, a 1.50 m.

CALICATA C-2 Prof.: de 0.80 m. a 1.50 m.
ESTRATO E-3

MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	131.30	145.30	157.40
Peso Seco + Tara (gr)	117.80	130.20	139.40
Peso del Agua (gr)	13.50	15.10	18.00
Peso Tara (gr)	34.00	34.20	35.60
Peso Muestra Seca (gr)	83.80	96.00	103.80
Cont. Humedad (%)	16.11	15.73	17.34
Cont. Hum. Prom. (%)		16.39	

CALICATA C3 Prof: de 0.40 m a 1.50 m. ESTRATO E-2 MUESTRA Nº 158 70 148.50 142.80 Peso Húm. + Tara (gr) 141.00 Peso Seco + Tara (gr) 133.80 129.80 Peso del Agua (gr) 14.70 13.00 17.70 35.30 34.10 35.10 Peso Tara (gr) 95.70 105.90 Peso Muestra Seca (gr) 98.50 16,71 Cont. Humedad (%) 14.92 13.58

ESTRATO E-2 MUESTRA Nº 3 157 40 166 40 148 20 Peso Húm. + Tara (gr) Peso Seco + Tara (gr) 142.90 151.20 133.90 Peso del Agua (gr) 14.50 15.20 14.30 34.10 33.80 32.60 Peso Tara (gr) Peso Muestra Seca (gr) 109.10 117.10 101.30 Cont. Humedad (%) 13.29 12.98 14.12 Cont. Hum. Prom. (%) 13.46

CALICATA C-4

CALICATA C-5 Prof.: de 0.45 m. a 1.50 m. ESTRATO E-2

LOTRATO E-2			
MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	153.70	162.50	146.70
Peso Seco + Tara (gr)	137.30	144.80	130.80
Peso del Agua (gr)	16.40	17.70	15.90
Peso Tara (gr)	29.90	35.60	31.10
Peso Muestra Seca (gr)	107.40	109.20	99.70
Cont. Humedad (%)	15.27	16.21	15.95
Cont. Hum, Prom. (%)	L	15.81	

 CALICATA
 C-6
 Prof.: de 0.30 m. a 0.80 m.

 ESTRATO
 E-2

 MUESTRA N*
 1
 2
 3

ESTRATO E-Z			
MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	160.80	155.50	149.90
Peso Seco + Tara (gr)	141.60	138.20	132.90
Peso dei Agua (gr)	19.20	17.30	17.00
Peso Tara (gr)	32.80	35.70	33.90
Peso Muestra Seca (gr)	108.80	102.50	99.00
Cont. Humedad (%)	17.65	16.88	17.17
Cont. Hum. Prom. (%)		17.23	

 CALICATA
 C-6
 Prof.: de 0.80 m. a 1.50 m.

 ESTRATO
 E-3

 MUESTRA N*
 1
 2
 3

MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	142.80	159.30	162.00
Peso Seco + Tara (gr)	129.70	145.60	146.50
Peso del Agua (gr)	13.10	13.70	15.50
Peso Tara (gr)	31.00	32.60	34.00
Peso Muestra Seca (gr)	98.70	113.00	112.50
Cont. Humedad (%)	13.27	12.12	13.78
Cont. Hum. Prom. (%)		13.08	

CALICATA C-7 Prof.: de 0.40 m. a 0.85 m. ESTRATO E-2

MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	123.30	138.70	156.10
Peso Seco + Tara (gr)	112.70	126.80	141.30
Peso del Agua (gr)	10.60	11.90	14.80
Peso Tara (gr)	34.70	35.20	35.80
Peso Muestra Seca (gr)	78.00	91.60	105.50
Cont. Humedad (%)	13.59	12.99	14.03
Cont. Hum. Prom. (%)		13.54	

CALICATA C-7 Prof.: de 0.85 m. a 1.30 m.
ESTRATO E-3

MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	158.00	134.00	141.30
Peso Seco + Tara (gr)	148.00	125.10	131.70
Peso del Agua (gr)	10.00	8.90	9.60
Peso Tara (gr)	36.00	32.30	35.80
Peso Muestra Seca (gr)	112.00	92.80	95.90
Cont. Humedad (%)	8.93	9.59	10.01
Cont. Hum. Prom. (%)		9.51	

CALICATA C-7 Prof.; de 1,30 m. a 1.65 m. **ESTRATO** E-4

MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	176.40	164.70	158.00
Peso Seco + Tara (gr)	157.70	148.00	141.00
Peso del Agua (gr)	18.70	16.70	17.00
Peso Tara (gr)	35.00	33.70	31.80
Peso Muestra Seca (gr)	122.70	114.30	109.20
Cont. Humedad (%)	15.24	14.61	15.57
Cont. Hum. Prom. (%)		15.14	

FACULTAD DE INGENIERÍA

LABORATORIO DE MECÁNICA DE SUELOS

CONTENIDO DE HUMEDAD

Normas: ASTM D 2216 - AASHTO T 265

CALICATA C-8	Prof.: de	0.30 m. a	0.65 m.
ESTRATO E-2			·····
MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	170.50	160.00	155.20
Peso Seco + Tara (gr)	146.10	138.60	133.60
Peso del Agua (gr)	24.40	21.40	21.60
Peso Tara (gr)	34.30	35.10	33.60
Peso Muestra Seca (gr)	111.80	103.50	100.00
Cont. Humedad (%)	21.82	20.68	21.60
Cont. Hum. Prom. (%)		21.37	

Prof.: de	0.65 m. a	a 1.20 m.	CALICATA	C-8
			ESTRATO	E-4
1	2	3	MUESTRA Nº	
151.30	146.30	163.40	Peso Húm. + 1	Tara (gı
135.40	130.00	145.20	Peso Seco + T	ara (gr
15.90	16.30	18.20	Peso dei Agua	(gr)
35.00	32.50	36.20	Peso Tara (gr)	
100.40	97.50	109.00	Peso Muestra	Seca (
15.84	16.72	16.70	Cont. Humeda	id (%)
	16.42		Cont. Hum. Pr	om. (%
	1 151.30 135.40 15.90 35,00 100.40	1 2 151.30 146.30 135.40 130.00 15.90 16.30 35.00 32.50 100.40 97.50 15.84 16.72	151.30 146.30 163.40 135.40 130.00 145.20 15.90 16.30 18.20 35.00 32.50 36.20 100.40 97.50 109.00 15.84 16.72 18.70	1 2 3 MUESTRA Nº 151.30 146.30 163.40 Peso Húm. + 7 135.40 130.00 145.20 Peso Seco + 7 15.90 16.30 18.20 Peso del Agua 35.00 32.50 36.20 Peso Tara (gr) 100.40 97.50 109.00 Peso Muestra 15.84 16.72 18.70 Cont. Humeda

CALICATA C-8	Prof.: de 1.20 m. a 1.50 m.		
ESTRATO E-4			
MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	140.30	148.80	153.70
Peso Seco + Tara (gr)	127.10	135.70	138.50
Peso dei Agua (gr)	13.20	13.10	15.20
Peso Tara (gr)	33.20	34.80	34.10
Peso Muestra Seca (gr)	93.90	100.90	104.40
Cont. Humedad (%)	14.06	12.98	14.56
Cont. Hum. Prom. (%)		13.87	

CALICATA	C-9	Prof.: de	0.25 m. a	a 0.85 i
ESTRATO	E-2			
MUESTRA Nº		1	2	3
				I

MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	171.30	159.30	161.40
Peso Seco + Tara (gr)	144.80	135.10	135.80
Peso del Agua (gr)	26.50	24.20	25.60
Peso Tara (gr)	33.70	34.00	33.80
Peso Muestra Seca (gr)	111.10	101.10	102.00
Cont. Humedad (%)	23.85	23.94	25.10
Cont. Hum. Prom. (%)		24.30	

CALICATA C-9	Prof.: de	0.85 m. a	a 1.25 m.	CALICATA C-9
ESTRATO E-3				ESTRATO E-4
MUESTRA Nº	1	2	3	MUESTRA Nº
Peso Húm. + Tara (gr)	119.20	143.20	136.40	Peso Húm. + Tara (g
Peso Seco + Tara (gr)	105.60	124.90	119.30	Peso Seco + Tara (gr
Peso del Agua (gr)	13.60	18.30	17.10	Peso del Agua (gr)
Peso Tara (gr)	32.80	32.90	34.70	Peso Tara (gr)
Peso Muestra Seca (gr)	72.80	92.00	84.60	Peso Muestra Seca (

18.68 19.89 20.21 19.60

ESTRATO E-4			
MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	157.00	128.60	133,70
Peso Seco + Tara (gr)	143.20	116.00	121.90
Peso del Agua (gr)	13.80	12.60	11.80
Peso Tara (gr)	34.60	30.70	32.80
Peso Muestra Seca (gr)	108.60	85.30	89.10
Cont. Humedad (%)	12.71	14.77	13.24
Cont. Hum. Prom. (%)		13.57	

Prof.: de 1.25 m. a 1.55 m.

Prof.; de 0.30 m. a 0.80 m. CALICATA C-10 ESTRATO E-2

MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	161.70	150.60	147.80
Peso Seco + Tara (gr)	148.40	137.60	135.40
Peso del Agua (gr)	13.30	13.00	12.40
Peso Tara (gr)	34.80	34.20	32.00
Peso Muestra Seca (gr)	113.60	103.40	103.40
Cont. Humedad (%)	11.71	12.57	11.99
Cont. Hum. Prom. (%)	12.09		

CALICATA	C-10	Prof.; de	0.80 m.	a 1.20 m
ESTRATO	E-3			
MUESTRA Nº		1	2	3

Cont. Humedad (%)

Cont. Hum. Prom. (%)

F2110410 E-2			
MUESTRA Nº	1	2	3
Peso Húrn. + Tara (gr)	162.50	151.40	160.70
Peso Seco + Tara (gr)	145.90	136,80	144.00
Peso del Agua (gr)	16.60	14.63	16.70
Peso Tara (gr)	32.90	30.40	31.80
Peso Muestra Seca (gr)	113.00	106.40	112.20
Cont. Humedad (%)	14.69	13.72	14.88
Cont. Hum. Prom. (%)		14.43	

ESTRATO	E-4	
CALICATA	C-10	Prof.: de 1.20 m. a 1.50 m

MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	139.20	148.70	159.40
Peso Seco + Tara (gr)	122.80	132.10	140.70
Peso del Agua (gr)	16.40	16.60	18.70
Peso Tara (gr)	33.00	34.90	36.00
Peso Muestra Seca (gr)	89.80	97.20	104.70
Cont. Humedad (%)	18.26	17.08	17.86
Cont. Hurn. Prom. (%)	17.73		

CALICATA C-11 ESTRATO E-2

E0110410 C-2			
MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	170.70	163.40	146.80
Peso Seco + Tara (gr)	148.40	144.10	129.60
Peso del Agua (gr)	22.30	19.30	17.20
Peso Tara (gr)	36.40	35.00	34.10
Peso Muestra Seca (gr)	112.00	109.10	95.50
Cont. Humedad (%)	19.91	17.69	18.01
Cont. Hum. Prom. (%)		18.54	

Prof.: de 0.30 m. a 0.85 m. CALICATA C-11 Prof.: de 0.85 m. a 1.25 m. ESTRATO Ca

ESTRATO ES				
MUESTRA Nº	1	2	3	
Peso Húm. + Tara (gr)	179.50	166.60	157.30	
Peso Seco + Tara (gr)	161.30	148.80	142.00	
Peso del Agua (gr)	18.20	17.80	15.30	
Peso Tara (gr)	33.60	31.70	33.40	
Peso Muestra Seca (gr)	127.70	117.10	108.60	
Cont. Humedad (%)	14.25	15.20	14.09	
Cont. Hum. Prom. (%)	14.51			

CALICATA C-11 Prof.: de 1.25 m. a 1.60 m. ESTRATO E-4

MUESTRA Nº	1	2	3
Peso Húm. + Tara (gr)	150.10	163.30	145.20
Peso Seco + Tara (gr)	130.70	143.00	128.00
Peso del Agua (gr)	19.40	20.30	17.20
Peso Tara (gr)	33.60	35.40	32.50
Peso Muestra Seca (gr)	97.10	107.60	95.50
Cont. Humedad (%)	19.98	18.87	18.01
Cont. Hum. Prom. (%)	18.95		

PESO ESPECÍFICO

Normas: ASTM D 854 - AASHTO T 100

CALICATA C-1 ESTRATO E-2 Prof.: de 0.45 m. a 0.95 m.		CALICATA C-1 ESTRATO E-3 Prof.: de 0.95 m. a 1.50 m.		CALICATA C-2 ESTRATO E-2 Prof.: de 0.30 m. a 0.80 m.		CALICATA C-2 ESTRATO E-3 Prof.; de 0.80 m. a 1.50 m.	
Peso Muestra	109.00	Peso Muestra	115.00	Peso Muestra	100.00	Peso Muestra	108.00
Peso fiola	155.30	Peso fiola	162.50	Peso fiola	162.50	Peso fiola	162.50
Peso (fiola + agua)	651.20	Peso (fiola + agua)	658.40	Peso (fiola + agua)	658.40	Peso (fiola + agua)	658.40
Peso (fiola + agua + muestra)	716.90	Peso (fiola + agua + muestra)	726.90	Peso (fiola + agua + muestra)	717.10	Peso (fiola + agua + muestra)	727.20
Peso Específico (gr/cm³)	2.52	Peso Específico (gr/cm³)	2.47	Peso Específico (gr/cm³)	2.42	Peso Específico (gr/cm³)	2.76
CALICATA C-3 ESTRATO E-2 Prof. de 0.40 m, a 1.50 m.		CALICATA C-4 ESTRATO E-2 Prof.: de 0.50 m. a 1.50 m.		CALICATA C-5 ESTRATO E-2 Prof.: de 0.45 m. a 1.50 m.		CALICATA C-6 ESTRATO E-2 Prof.: de 0.30 m. a 0.80 m.	
Peso Muestra	100.00	Peso Muestra	132.50	Peso Muestra	116.00	Peso Muestra	120.00
Peso fiola	155.30	Peso fiola	162.50	Peso fiola	155.30	Peso fiola	155.30
	651.20	Peso (fiola + agua)	658.40	Peso (fiola + agua)	651.20	Peso (ficia + agua)	651.20
Peso (fiola + agua)	711.60	Peso (fiola + agua + muestra)	738.30	Peso (fiola + agua + muestra)	720.80	Peso (fiola + agua + muestra)	723.10
Peso (fiola + agua + muestra)				•			
Peso Específico (gr/cm³)	2.53	Peso Específico (gr/cm³)	2.52	Peso Específico (gr/cm²)	2.50	Peso Específico (gr/cm³)	2.49
CALICATA C-6 ESTRATO E-3 Prof.: de 0.80 m, a 1.50 m.		CALICATA C-7 ESTRATO E-2 Prof.: de 0.40 m. a 0.85 m.		CALICATA C-7 ESTRATO E-3 Prof.: de 0.85 m. a 1.30 m.		CALICATA C-7 ESTRATO E-4 Prof.: de 1.30 m. a 1.65 m.	
Peso Muestra	133.00	Peso Muestra	102.00	Peso Muestra	102.00	Peso Muestra	111.00
Peso fiola	162.50	Peso fiola	162.50	Peso fiola	162.50	Peso fiola	155.30
Peso (fiola + agua)	658.40	Peso (fiola + agua)	658.40	Peso (fiola + agua)	658.40	Peso (fiola + agua)	651.20
Peso (fiola + agua + muestra)	737.10	Peso (fiola + agua + muestra)	719.50	Peso (fioia + agua + muestra)	718.10	Peso (fiola + agua + muestra)	717.90
Peso Específico (gr/cm³)	2.45	Peso Específico (gr/cm³)	2.49	Peso Específico (gr/cm³)	2.41	Peso Específico (gr/cm³)	2.51
CALICATA C-8 ESTRATO E-2 Prof.: de 0.30 m. a 0.65 m.		CALICATA C-8 ESTRATO E-3 Prof.: de 0.65 m, a 1.20 m.		CALICATA C-8 ESTRATO E-4 Prof.: de 1.20 m. a 1.50 m.		CALICATA C-9 ESTRATO E-2 Prof.: de 0.25 m. a 0.85 m.	
ESTRATO E-2	104.00	ESTRATO E-3	100.00	ESTRATO E-4	100.00	ESTRATO E-2	114.00
ESTRATO E-2 Prof.: de 0.30 m. a 0.65 m.	104.00 155.30	ESTRATO E-3 Prof.: de 0.65 m, a 1.20 m.	100.00 155.30	ESTRATO E-4 Prof.: de 1.20 m, a 1.50 m.	100.00 155.30	ESTRATO E-2 Prof.: de 0.25 m. a 0.85 m.	114.00 1 6 2.50
ESTRATO E-2 Prof.: de 0.30 m. a 0.65 m. Peso Muestra		ESTRATO E-3 Prof.: de 0.65 m, a 1.20 m. Peso Muestra	1	ESTRATO E-4 Prof.: de 1.20 m, a 1.50 m. Peso Muestra	1	ESTRATO E-2 Prof.: de 0.25 m. a 0.85 m. Peso Muestra	1
ESTRATO E-2 Prof.: de 0.30 m. a 0.65 m. Peso Muestra Peso fiola	155.30	ESTRATO E-3 Prof.: de 0.65 m, a 1.20 m. Peso Muestra Peso fiola	155.30	ESTRATO E-4 Prof.: de 1.20 m. a 1.50 m. Peso Muestra Peso fiota	155.30	ESTRATO E-2 Prof.: de 0.25 m. a 0.85 m. Peso Muestra Peso fiola	162.50
Peso (fiola + agua)	155.30 651.20	Peso (fiola + agua)	155.30 651.20	Peso fiola + agua)	155.30 651.20	Peso fiola + agua)	162.50 658.40
Peso fiola + agua + muestra ESTRATO E-2 Prof.: de 0.30 m. a 0.65 m. Peso Muestra Peso fiola Peso (fiola + agua)	155.30 651.20 711.80	Peso (fiola + agua + muestra) PESTRATO E-3 Prof.: de 0.65 m, a 1.20 m. Peso Muestra Peso fiola Peso (fiola + agua)	155.30 651.20 711.40	Peso (fiola + agua + muestra) ESTRATO E-4 Prof.: de 1.20 m, a 1.50 m. Peso Muestra Peso fiola Peso (fiola + agua)	155.30 651.20 711.90	ESTRATO E-2 Prof.: de 0.25 m. a 0.85 m. Peso Muestra Peso fiola Peso (fiola + agua) Peso (fiola + agua + muestra)	162.50 658.40 726.20
Peso fiola + agua + muestra Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-2 Prof.: de 0.30 m. a 0.65 m. Peso Muestra Peso fiola Peso (fiola + agua) Peso Específico (gr/cm³)	155.30 651.20 711.80	Peso Muestra Peso fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-3 Prof.: de 0.65 m, a 1.20 m. Peso Muestra Peso fiola + agua + muestra) Peso Específico (gr/cm³)	155.30 651.20 711.40	Peso fiola + agua + muestra Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-4 Peso ESTRATO E-4 Peso (fiola + agua + muestra)	155.30 651.20 711.90	Peso Muestra Peso fiola + agua + muestra Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-2 Prof.: de 0.25 m. a 0.85 m. Peso Muestra Peso fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³)	162.50 658.40 726.20
Peso fiola + agua + muestra Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-3 Prof.: de 0.85 m. a 1.25 m.	155.30 651.20 711.80 2.40	Peso Muestra Peso fiola + agua) Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-4 Prof.: de 1.25 m. a 1.55 m.	155.30 651.20 711.40 2.51	Peso Muestra Peso fiola + agua) Peso (fiola + agua) Peso Específico (gr/cm²) CALICATA C-10 ESTRATO E-2 Prof.: de 0.30 m. a 0.80 m.	155.30 651.20 711.90 2.54	Peso Muestra Peso fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-3 Prof.: de 0.80 m. a 1.20 m.	162.50 658.40 726.20 2.47
Peso (fiola + agua + muestra) Peso Especifico (gr/cm³) CALICATA C-9 ESTRATO E-3 Prof.: de 0.85 m. a 1.25 m.	155.30 651.20 711.80 2.40	Peso Muestra Peso fiola + agua + muestra Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-4 Prof.: de 1.25 m. a 1.55 m. Peso Muestra .	155.30 651.20 711.40 2.51	ESTRATO E-4 Prof.: de 1.20 m. a 1.50 m. Peso Muestra Peso fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-2 Prof.: de 0.30 m. a 0.80 m. Peso Muestra	155.30 651.20 711.90 2.54	Peso Muestra Peso (fiola + agua) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-3 Prof.: de 0.80 m. a 1.20 m. Peso Muestra	162.50 658.40 726.20 2.47
Peso Muestra Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-3 Prof.: de 0.85 m. a 1.25 m. Peso Muestra Peso fiola	155.30 651.20 711.80 2.40	Peso Muestra Peso fiola + agua + muestra) Peso Específico (gr/cm²) CALICATA C-9 ESTRATO E-4 Prot.: de 1.25 m. a 1.55 m. Peso Muestra . Peso fiola ,	155.30 651.20 711.40 2.51 100.00 155.30	ESTRATO E-4 Prof.: de 1.20 m. a 1.50 m. Peso Muestra Peso fiola Peso (fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-2 Prof.: de 0.30 m. a 0.80 m. Peso Muestra Peso fiola	155.30 651.20 711.90 2.54 114.00 162.50	Peso Muestra Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-3 Prof.: de 0.80 m. a 1.20 m. Peso Muestra Peso fiola	162.50 658.40 726.20 2.47
Peso Muestra Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-3 Prof.: de 0.85 m. a 1.25 m. Peso Muestra Peso fiola Peso (fiola + agua + muestra)	155.30 851.20 711.80 2.40 118.00 162.50 658.40	Peso Muestra Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-4 Prof.: de 1.25 m. a 1.55 m. Peso (fiola + agua) Peso Muestra . Peso fiola , Peso (fiola + agua)	155.30 651.20 711.40 2.51 100.00 155.30 651.20	ESTRATO E-4 Prof.: de 1.20 m, a 1.50 m. Peso Muestra Peso fiola Peso (fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-2 Prof.: de 0.30 m. a 0.80 m. Peso Muestra Peso fiola Peso (fiola + agua)	155.30 651.20 711.90 2.54 114.00 162.50 658.40	Peso Muestra Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-3 Prof.: de 0.80 m. a 1.20 m. Peso Muestra Peso fiola Peso (fiola + agua)	162.50 658.40 728.20 2.47 100.00 155.30 651.20
Peso Muestra Peso (fiola + agua + muestra) Peso fiola Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-3 Prof.: de 0.85 m. a 1.25 m. Peso fiola Peso (fiola + agua) Peso fiola Peso fiola Peso fiola Peso (fiola + agua) Peso (fiola + agua) Peso (fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-4 Prof.: de 1.20 m. a 1.50 m.	155.30 651.20 711.80 2.40 118.00 162.50 658.40 727.40 2.41	Peso Muestra Peso fiola + agua + muestra) Peso fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-4 Prof.: de 1.25 m. a 1.55 m. Peso fiola + agua + muestra) Peso fiola - agua + muestra) Peso fiola - agua + muestra Peso fiola - agua + muestra Peso fiola - agua + muestra Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-11 ESTRATO E-2 Prof.: de 0.30 m. a 0.85 m.	155.30 651.20 711.40 2.51 100.00 155.30 651.20 713.00 2.62	ESTRATO E-4 Prof.: de 1.20 m. a 1.50 m. Peso Muestra Peso fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-2 Prof.: de 0.30 m. a 0.80 m. Peso Muestra Peso fiola + agua) Peso (fiola + agua) Peso (fiola + agua) Peso (fiola + agua) Peso Específico (gr/cm³) CALICATA C-11 ESTRATO E-3 Prof.: de 0.85 m. a 1.25 m.	155.30 651.20 711.90 2.54 114.00 162.50 658.40 727.20 2.52	Peso Muestra Peso fiola + agua + muestra) Peso fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-3 Prof.: de 0.80 m. a 1.20 m. Peso fiola + agua + muestra) Peso fiola Peso fiola + agua + muestra Peso fiola Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-11 ESTRATO E-4 Prof.: de 1.25 m. a 1.60 m.	162.50 658.40 728.20 2.47 100.00 155.30 651.20 712.20 2.56
Peso fiola Peso fiola + agua + muestra) Peso fiola + agua + muestra) Peso Especifico (gr/cm³) CALICATA C-9 ESTRATO E-3 Prof.: de 0.85 m. a 1.25 m. Peso fiola + agua + muestra) Peso fiola Peso fiola Peso fiola Peso fiola Peso fiola + agua + muestra) Peso fiola Peso fiola E-3 Peso fiola Peso (fiola + agua) Peso Especifico (gr/cm³) CALICATA C-10 ESTRATO E-4 Prof.: de 1.20 m. a 1.50 m. Peso Muestra	155.30 851.20 711.80 2.40 118.00 162.50 658.40 727.40 2.41	Peso Muestra Peso fiola + agua + muestra) Peso fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-4 Prot.: de 1.25 m. a 1.55 m. Peso fiola + agua) Peso fiola - agua) Peso fiola - agua) Peso fiola - agua) Peso fiola - agua) Peso (fiola + agua) Peso Específico (gr/cm³) CALICATA C-11 ESTRATO E-2 Prof.: de 0.30 m. a 0.85 m. Peso Muestra	155.30 651.20 711.40 2.51 100.00 155.30 651.20 713.00 2.62	ESTRATO E-4 Prof.: de 1.20 m. a 1.50 m. Peso Muestra Peso fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-2 Prof.: de 0.30 m. a 0.80 m. Peso Muestra Peso fiola + agua) Peso (fiola + agua) Peso (fiola + agua) Peso (fiola + agua) Peso Específico (gr/cm³) CALICATA C-11 ESTRATO E-3 Prof.: de 0.85 m. a 1.25 m. Peso Muestra	155.30 651.20 711.90 2.54 114.00 162.50 658.40 727.20 2.52	Peso Muestra Peso fiola + agua + muestra) Peso fiola + agua + muestra) Peso Especifico (gr/cm³) CALICATA C-10 ESTRATO E-3 Prof.: de 0.80 m. a 1.20 m. Peso fiola + agua + muestra) Peso fiola + agua + muestra) Peso Muestra Peso fiola + agua) Peso (fiola + agua) Peso (fiola + agua + muestra) Peso Especifico (gr/cm³) CALICATA C-11 ESTRATO E-4 Prof.: de 1.25 m. a 1.60 m. Peso Muestra	162.50 658.40 728.20 2.47 100.00 155.30 651.20 712.20 2.56
Peso fiola Peso fiola + agua + muestra) Peso fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-3 Prof.: de 0.85 m. a 1.25 m. Peso Muestra Peso fiola + agua + muestra) Peso fiola Peso (fiola + agua) Peso fiola Peso (fiola + agua) Peso (fiola + agua) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-4 Prof.: de 1.20 m. a 1.50 m. Peso Muestra Peso fiola	155.30 851.20 711.80 2.40 118.00 162.50 658.40 727.40 2.41	Peso Muestra Peso fiola + agua + muestra) Peso fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-4 Prot.: de 1.25 m. a 1.55 m. Peso fiola + agua + muestra) Peso fiola - agua + muestra Peso fiola - agua + muestra Peso fiola - agua + muestra) Peso (fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-11 ESTRATO E-2 Prof.: de 0.30 m. a 0.85 m. Peso Muestra Peso Muestra	155.30 651.20 711.40 2.51 100.00 155.30 651.20 713.00 2.62	ESTRATO E-4 Prof.: de 1.20 m. a 1.50 m. Peso Muestra Peso fiola Peso (fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-2 Prof.: de 0.30 m. a 0.80 m. Peso Muestra Peso (fiola + agua) Peso (fiola + agua) Peso (fiola + agua) Peso Específico (gr/cm³) CALICATA C-11 ESTRATO E-3 Prof.: de 0.85 m. a 1.25 m. Peso Muestra Peso Muestra Peso Muestra	155.30 651.20 711.90 2.54 114.00 162.50 658.40 727.20 2.52	Peso Muestra Peso (fiola + agua + muestra) Peso (fiola + agua + muestra) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-3 Prof.: de 0.80 m. a 1.20 m. Peso Muestra Peso (fiola + agua + muestra) Peso (fiola + agua) Peso (fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-11 ESTRATO E-4 Prof.: de 1.25 m. a 1.60 m. Peso Muestra Peso Muestra Peso Muestra	162.50 658.40 728.20 2.47 100.00 155.30 651.20 712.20 2.56
Peso Muestra Peso fiola + agua + muestra) Peso fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-3 Prof.: de 0.85 m. a 1.25 m. Peso Muestra Peso fiola + agua + muestra) Peso fiola Peso (fiola + agua) Peso (fiola + agua) Peso (fiola + agua) Peso Específico (gr/cm²) CALICATA C-10 ESTRATO E-4 Prof.: de 1.20 m. a 1.50 m. Peso Muestra Peso fiola Peso fiola	155.30 851.20 711.80 2.40 118.00 162.50 658.40 727.40 2.41	Peso Muestra Peso fiola + agua + muestra) Peso fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-4 Prof.: de 1.25 m. a 1.55 m. Peso fiola + agua + muestra) Peso fiola a 1.55 m. Peso fiola + agua + muestra) Peso fiola + agua + muestra) Peso (fiola + agua) Peso (fiola + agua) Peso Específico (gr/cm³) CALICATA C-11 ESTRATO E-2 Prof.: de 0.30 m. a 0.85 m. Peso Muestra Peso fiola Peso (fiola + agua)	155.30 651.20 711.40 2.51 100.00 155.30 651.20 713.00 2.62 118.00 162.50 658.40	ESTRATO E-4 Prof.: de 1.20 m, a 1.50 m. Peso Muestra Peso fiola Peso (fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-2 Prof.: de 0.30 m. a 0.80 m. Peso Muestra Peso fiola Peso (fiola + agua) Peso (fiola + agua) Peso Específico (gr/cm³) CALICATA C-11 ESTRATO E-3 Prof.: de 0.85 m. a 1.25 m. Peso Muestra Peso fiola Peso (fiola + agua)	155.30 651.20 711.90 2.54 114.00 162.50 658.40 727.20 2.52 113.00 155.30 651.20	Peso Muestra Peso fiola + agua + muestra) Peso fiola + agua + muestra) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-3 Prof.: de 0.80 m. a 1.20 m. Peso Muestra Peso fiola + agua + muestra) Peso (fiola + agua) Peso (fiola + agua) Peso Específico (gr/cm³) CALICATA C-11 ESTRATO E-4 Prof.: de 1.25 m. a 1.60 m. Peso Muestra Peso Muestra Peso Muestra Peso Muestra	162.50 658.40 728.20 2.47 100.00 155.30 651.20 712.20 2.56
Peso fiola Peso fiola + agua + muestra) Peso fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-3 Prof.: de 0.85 m. a 1.25 m. Peso Muestra Peso fiola + agua + muestra) Peso fiola Peso (fiola + agua) Peso fiola Peso (fiola + agua) Peso (fiola + agua) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-4 Prof.: de 1.20 m. a 1.50 m. Peso Muestra Peso fiola	155.30 851.20 711.80 2.40 118.00 162.50 658.40 727.40 2.41	Peso Muestra Peso fiola + agua + muestra) Peso fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-9 ESTRATO E-4 Prot.: de 1.25 m. a 1.55 m. Peso fiola + agua + muestra) Peso fiola - agua + muestra Peso fiola - agua + muestra Peso fiola - agua + muestra) Peso (fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-11 ESTRATO E-2 Prof.: de 0.30 m. a 0.85 m. Peso Muestra Peso Muestra	155.30 651.20 711.40 2.51 100.00 155.30 651.20 713.00 2.62	ESTRATO E-4 Prof.: de 1.20 m. a 1.50 m. Peso Muestra Peso fiola Peso (fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-2 Prof.: de 0.30 m. a 0.80 m. Peso Muestra Peso (fiola + agua) Peso (fiola + agua) Peso (fiola + agua) Peso Específico (gr/cm³) CALICATA C-11 ESTRATO E-3 Prof.: de 0.85 m. a 1.25 m. Peso Muestra Peso Muestra Peso Muestra	155.30 651.20 711.90 2.54 114.00 162.50 658.40 727.20 2.52	Peso Muestra Peso (fiola + agua + muestra) Peso (fiola + agua + muestra) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-10 ESTRATO E-3 Prof.: de 0.80 m. a 1.20 m. Peso Muestra Peso (fiola + agua + muestra) Peso (fiola + agua) Peso (fiola + agua) Peso (fiola + agua + muestra) Peso Específico (gr/cm³) CALICATA C-11 ESTRATO E-4 Prof.: de 1.25 m. a 1.60 m. Peso Muestra Peso Muestra Peso Muestra	162.50 658.40 728.20 2.47 100.00 155.30 651.20 712.20 2.56

PAVIMENTACIÓN DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS; Y CALLES DEL BARRIO SAN JOSÉ

UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERIA LABORATORIO DE MECANICA DE SUELOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-1

Prof.: de 0.45 m. a 0.95 m.

ESTRATO E-2

Peso seco inicial

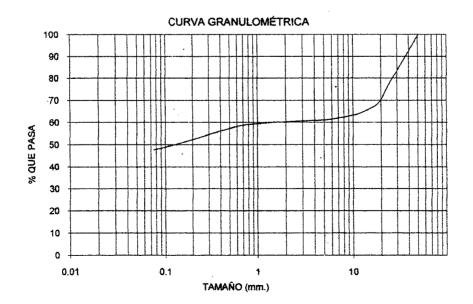
1000.00 gr. 523.30 gr.

Peso seco final Peso menor Nº 200

476.70 gr.

24411.4	Abertura	Peso Ret.	% RET	% QUE PASA	
MALLA (mm.)	(gr.)	Parcial	Acum.	// QUE PASA	
2"	50.800	0.00	0.00	0.00	100.00
1 1/2"	38.100	89.60	8.96	. 8.96	91.04
1"	25.000	131.40	13.14	22.10	77.90
3/4"	19.000	87.20	8.72	30.82	69.18
1/2"	12.500	45.20	4.52	35.34	64.66
3/8"	9.500	15.50	1.55	36.89	63.11
1/4"	6.300	14.20	1.42	38.31	61.69
Nº 4	4.760	6.10	0.61	38.92	61.08
Nº 10	2.000	7.40	0.74	39.66	60.34
Nº 20	0.850	10.80	1.08	40.74	59.26
Nº 30	0.600	10.30	1.03	41.77	58.23
Nº 40	0.425	16.70	1.67	43.44	56.56
Nº 60	0.250	29.50	2.95	46.39	53.61
Nº 100	0.150	27.50	2.75	49.14	50.86
Nº 200	0.075	31.90	3.19	52.33	47.67
Limo	0.002	-			36.14
Arcilla	0.001	-		-	
Cazoleta		476.70	47.67	100.00	

POR SIFONEADO


Peso seco inicial Peso seco final 100.00 gr.

40.10 gr.

Pérdida

59.90 gr.

MALLA	MALLA Abertura (mm.)	Peso Ret. % RETENIDO % C	Peso Ret.	% RETENIDO		% QUE PASA
IVIALLA			Parcial	. Acum.	// QUE FASA	
Nº 60	0.250	8.50	8.50	8.50	55.21	
Nº 100	0.150	10.70	10.70	19.20	48.75	
Nº 200	0.075	5.40	5.40	24.60	45.50	
Limo	0.002	15.50	15.50	40.10	38.14	
Arcilla	0.001	59.90	59.90	100.00	0.00	

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CÁLICATA C-1

Profundidad: de 0.95 m. a 1.50 m.

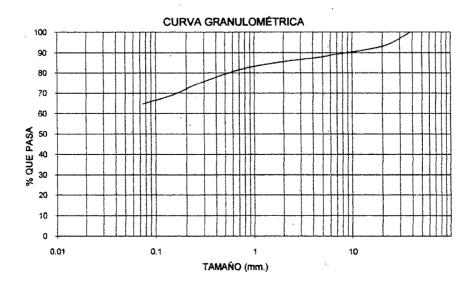
ESTRATO E-3

Peso seco inicial
Peso seco final

1000.00 gr. 352.00 gr. 648.00 gr.

Peso menor Nº 200

240110	Abertura	Peso Ret.	% RETENIDO		% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	/ QUL FAUX
2"	50.800		0.00	0.00	100.00
1 1/2"	38.100	0.00	0.00	0.00	100.00
1"	25.000	50.10	5.01	5.01	94.99
3/4"	19.000	20.20	2.02	7.03	92.97
1/2"	12.500	17.20	1.72	8.75	91.25
3/8"	9.500	9.20	0.92	9.67	90.33
1/4"	6.300	12.60	1.26	10.93	89.07
Nº 4	4.760	11.40	1.14	12.07	87.93
Nº 10	2.000	21.90	2.19	14.26	85.74
Nº 20	0.850	29.70	2.97	17.23	82.77
Nº 30	0.600	20.50	2.05	19.28	80.72
Nº 40	0.425	22.70	2.27	21.55	78.45
Nº 60	0.250	40.00	4.00	25.55	74.45
Nº 100	0.150	50.10	5.01	30.56	69.44
№ 200	0.075	46.40	4.64	35.20	64.80
Limo	0.002				56.59
Arcilla	0,001		-		}
Cazoleta		648.00	64.80	100.00	


POR SIFONEADO

Peso seco inicial Peso seco final 100.00 gr.

34.00 gr. 66.00 gr.

Pérdida

Abertura Peso Ret. % RETENIDO % QUE PASA MALLA Parcia! (mm.) (gr.) Acum. Nº 60 78,19 0.250 8.80 8.80 8.80 Nº 100 0,150 7.80 7.80 16.60 71.51 Nº 200 0.075 21.80 67.05 5.20 5.20 Limo 34.00 56.59 0.002 12.20 12 20 Arcilla 0.001 100.00 0.00 66.00 66.00

ANALISIS GRANULOMETRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-2

Profundidad : de 0,30 m. a 0.80 m.

ESTRATO E-2

Peso seco inicial

500.00 gr.

Peso seco final

231,60 gr.

Peso	menor	Nº	200

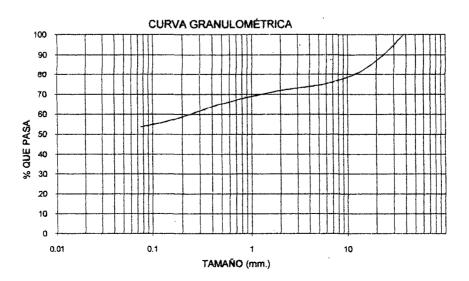
2	88.40	gr.
%	RET	E٨

MALLA	Abertura	Peso Ret.	% RET	ENIDO	% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	70 QUE L'AGA
2"	50.800				
1 1/2"	38.100	0.00	0.00	0.00	100.00
1"	25.000	43.20	8.64	8.64	91.36
3/4"	19.000	24.10	4.82	13.46	86.54
1/2"	12.500	29.20	5.84	, 19.30	80.70
3/8"	9.500	12.10	2.42	21.72	78.28
1/4"	6.300	13.30	2.66	24.38	75.62
Nº 4	4.760	5.50	1.10	25.48	74.52
Nº 10	2.000	12.60	2.52	28.00	72.00
Nº 20	0.850	18.40	3.68	31.68	68.32
Nº 30	0.600	10.20	2.04	33.72	66.28
Nº 40	0.425	9.70	1.94	35.66	64,34
Nº 60	0.250	19.50	3.90	39.56	60.44
Nº 100	0.150	17.50	3.50	43.06	56.94
Nº 200	0.075	16.30	3.26	46.32	53.68
Limo	0.002				49.61
Arcilla	0.001				
Cazoleta		268,40	53.68	100.00	

POR SIFONEADO

Peso seco inicial

100,00 gr.


Peso seco final

31.10 gr.

Pérdida

68.90 gr.

MALLA	Abertura	Peso Ret.	% RET	% QUE PASA		
(mm.)	(gr.)	Parcial	Acum,	76 GOE FAGA		
Nº 60	0.250	6.90	6.90	6.90	67.03	
Nº 100	0.150	5.10	5.10	12.00	83.36	
Nº 200	0.075	3.70	3.70	15.70	60.70	
Limo	0.002	15.40	15.40	31.10	49.61	
Arcilla	0.001	68.90	68.90	100.00	0.00	

ANALISIS GRANULOMETRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-2

Profundidad : de 0.80 m. a 1.50 m.

ESTRATO E-3

Peso seco inicial

500.00 gr. 170.40 gr.

Peso seco final
Peso menor Nº 200

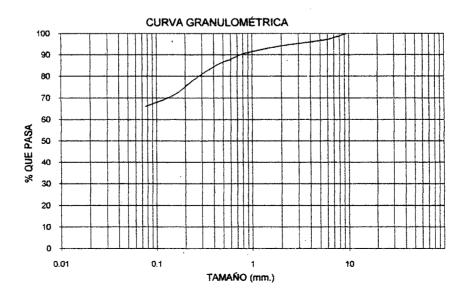
329.60 gr.

44414	Abertura	Peso Ret.	% RET	ENIDO	% QUE PASA
MALLA (mm.)	(gr.)	Parcial	Acum.	% QUE PASA	
2"	50.800				
1 1/2"	38.100				
1"	25.000				
3/4"	19.000				
1/2"	12.500	İ			
3/8"	9.500	0.00	0.00	0.00	100.00
1/4"	6.300	12.50	2.50	2.50	97.50
Nº 4	4.760	5.30	1.06	3,56	96.44
Nº 10	2.000	11.50	2.30	5.86	94.14
Nº 20	0.850	16.80	3.36	9.22	90.78
Nº 30	0.600	13.90	2.78	. 12.00	89.00
Nº 40	0.425	14.00	2.80	14.80	85.20
Nº 60	0.250	32.90	6.58	21.38	78.62
Nº 100	0.150	38.70	7.34	28.72	71.28
Nº 200	0.075	28.80	5.36	34.08	65.92
Limo	0.002				62.23
Arcilla	0.001		-	,	
Cazoleta		329.60	65.92	100.00	

POR SIFONEADO

Peso seco inicial

100.00 gr.


Peso seco final

33.90 gr.

Pérdida

66.10 gr.

MALLA Abertura (mm.)	Abertura	Peso Ret. %1		ENIDO	% QUE PASA		
	(gr.)	Parcial	Acum.	/ QUE FASA			
Nº 60	0.250	7,10	7.10	7.10	87.46		
Nº 100	0.150	6.80	6.80	-13.90	81.05		
Nº 200	0.075	9.80	9.80	23.70	71.83		
Limo	0.002	10.20	10.20	33.90	62.23		
Arcilla	0.001	66.10	66.10	100.00	0.00		

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-3

Profundidad : de 0.40 m. a 1.50 m.

ESTRATO E-2

Peso seco inicial

500.00 gr.

Peso seco final

129.30 gr.

Pe

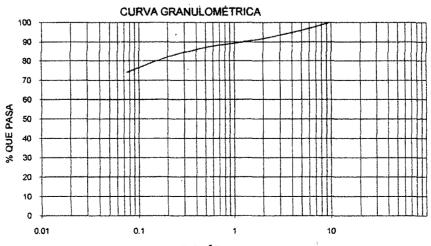
370.70 gr.

			_
30	menor N° 200	:	
	••••		

MALLA	Abertura	Peso Ret.	% RET	ENIDO	% QUE PASA
MACLA	(mm.)	(gr.)	Parcial	Acum.	70 202 77707
2"	50.800				
1 1/2"	38.100				
1"	25.000			' '	
3/4"	19.000				
1/2"	12.500				
3/8"	9.500	0.00	0.00	0.00	100.00
1/4"	6.300	13.40	2.68	2.68	97.32
Nº 4	4.760	7.70	1,54	4.22	95.78
Nº 10	2.000	20.50	4.10	8.32	91.88
Nº 20	0.850	14.00	2.80	11.12	88.88
Nº 30	0.600	4.70	0.94	12.06	87.94
Nº 40	0.425	7.60	1.52	13.58	86.42
Nº 60	0.250	14.90	2,98	16.56	83.44
Nº 100	0.150	17.60	3.52	20.08	79.92
Nº 200	0.075	28.90	5.78	25.86	74.14
Limo	0.002				56.02
Arcilla	0,001		•		
Cazoleta		370.70	74.14	100.00	

POR SIFONEADO

Peso seco inicial


100.00 gr.

Peso seco final

38.90 gr.

OArdida

	. 01.10 gr.				
Abertura	Peso Ret.	% RETENIDO		% QUE PASA	
(mm.)	(gr.)	Parcial	Acum,	70 WOLFASA	
0.250	5,70	5.70	5.70	86.45	
0.150	8.60	8.60	14.30	78.57	
0.075	4.40	4.40	18.70	74.54	
0.002	20.20	20.20	38.90	56.02	
0.001	61.10	61.10	100.00	0.00	
	(mm.) 0.250 0.150 0.075 0.002	(mm.) (gr.) 0.250 5.70 0.150 8.60 0.075 4.40 0.002 20.20	Abertura Peso Ret. % RET (mm.) (gr.) Parcial 0.250 5.70 5.70 0.150 8.60 8.60 0.075 4.40 4.40 0.002 20.20 20.20	Abertura (mm.) Peso Ret. (gr.) % RETENIDO 0.250 5.70 5.70 5.70 0.150 8.60 8.60 14.30 0.075 4.40 4.40 18.70 0.002 20.20 20.20 38.90	

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

:

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-4

Profundidad : de 0.50 m. a 1.50 m.

ESTRATO E-2

Peso seco inicial

1000.00 gr.

Peso seco final

409.50 gr.

Peso menor № 200

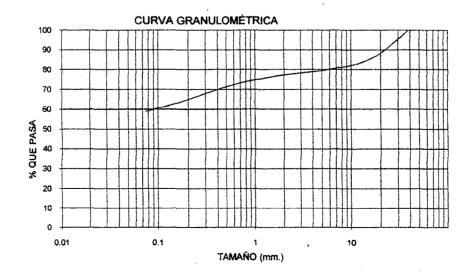
590.50 gr.

MAI 1 A	Abertura	Peso Ret.	Ret. % RETENIDO		% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	/0 GOL / AGA
2"	50,800				
1 1/2"	38.100	0.00	0.00	0.00	100.00
1"	25.000	78.80	7.88	7.88	92.12
3/4"	19.000	44.60	4.46	12.34	87.66
1/2"	12.500	41.10	4.11	1 6 .45	83.55
3/8"	9.500	15.60	1.56	18.01	81.99
1/4"	6.300	15.70	1,57	19.58	80.42
Nº 4	4.760	11.00	1.10	20.68	79.32
Nº 10	2.000	20.10	2.01	22.69	77.31
Nº 20	0.850	30.90 ·	3.09	25.78	74.22
Nº 30	0.600	18.20	1.82	27.60	72.40
Nº 40	0.425	20.00	2.00	29.60	70.40
Nº 60	0.250	38.90	3.69	33.29	66.71
Nº 100	0.150	38.60	3.86	37.15	62.85
Nº 200	0.075	38.00	3.80	40.95	59.05
Limo	0.002				46.08
Arcilla	0.001				
Cazoleta		590.50	59.05	100.00	

POR SIFONEADO

Peso seco inicial :

100.00 gr.


Peso seco final

40.40 gr.

Pérdida

59.60 gr.

MALLA	Abertura	Peso Ret.	% RETENIDO		% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	78 QUE PASA
Nº 60	0.250	13.10	13.10	13.10	67.18
Nº 100	0.150	5.80	5.80	18.90	62.70
Nº 200	0.075	3.30	3.30	22.20	60.15
Limo	0.002	18.20	18.20	40.40	46.08
Arcilla	0.001	59,60	59.60	100.00	0.00

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-5

Profundidad : de 0.45 m. a 1.50 m.

ESTRATO E-2

Peso seco inicial Peso seco final 500.00 gr. 120.30 gr.

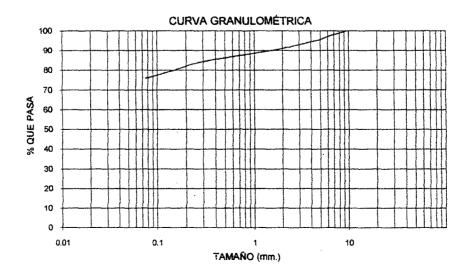
379.70 gr.

Peso menor N° 200 : 379

	Abertura	Peso Ret.	Peso Ret. % RETENIDO		% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	/6 QOL 1 /10/1
2"	50.800				
1 1/2"	38.100				
1"	25.000			ļ.	
3/4"	19.000				
1/2"	12.500				
3/8"	9.500	0.00	0.00	0.00	100.00
1/4"	6.300	12.20	2.44	2.44	97.56
Nº 4	4.760	10,60	2.12	4.58	95.44
№ 10	2.000	21.30	4.26	8.82	91.18
Nº 20	0.850	15.90	3.18	12.00	88.00
Nº 30	0.600	5.70	1.14	13.14	86.86
Nº 40	0.425	5.70	1.14	14.28	85.72
Nº 60	0.250	11.10	2.22	16.50	83.50
№ 100	0.150	17.30	3.46	19.96	80.04
Nº 200	0.075	20.50	4.10	24.08	75.94
Limo	0.002				60.63
Arcilla	0.001			1	
Cazoleta		379.70	75.94	100.00	

POR SIFONEADO

Peso seco inicial Peso seco final


Pérdida

100,00 gr.

33.50 gr.

66.50 gr.

MALLA	Abertura	Peso Ret.	% RET	ENIDO	% QUE PASA
MACEN	(mm.)	(gr.)	Parcial	Acum.	A QUE FAGA
Nº 60	0.250	7.80	. 7.80	7.80	84.07
Nº 100	0.150	5,20	5.20	13.00	79.33
Nº 200	0.075	3.20	3.20	16.20	76.41
Limo	0.002	17.30	17.30	33.50	60.63
Arcilla	0.001	66.50	68.50	100.00	0.00

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-6

Profundidad : de 0.30 m. a 0.80 m.

ESTRATO E-2

Peso seco inicial

500.00 gr.

Peso seco final

69.90 gr.

Peso menor Nº 200

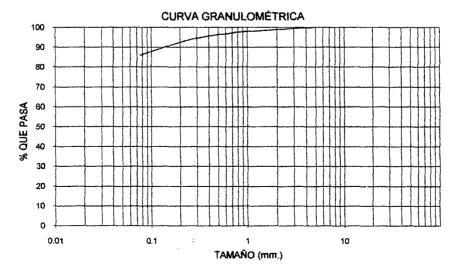
430.10 gr.

MALLA	Abertura	Peso Ret.	% RETENIDO		% QUE PASA
WALLA	(mm.)	(gr.)	Parcial	Acum.	76 QUE 1740
2°	50.800				
1 1/2"	38.100			-	
1"	25.000	1			
3/4"	19.000	·			
1/2"	12.500		•		
3/8 "	9,500	,			}
1/4"	6.300	1		Ì	
Nº 4	4.760	0.00	0.00	0.00	100.00
№ 10	2.000	5.20	1.04	1.04	98.96
Nº 20	0.850	6.40	1.28	2.32	97.68
Nº 30	0.600	4.70	0.94	3.26	96.74
Nº 40	0.425	4.50	0.90	4.16	95.84
Nº 60	0.250	10.70	2.14	6.30	93.70
Nº 100	0.150	15.10	3.02	9.32	90.68
Nº 200	0.075	23.30	4.66	13.98	86.02
Limo	0.002	69.90			68.30
Arcilla	0.001				
Cazoleta	Ì	430.10	86.02	100.00	

POR SIFONEADO

Peso seco inicial

100.00 gr.


Peso seco final

33.10 gr. 66.90 gr.

Pérdida

% RETENIDO Peso Ret. Abertura

MALLA	(mm.)	(gr.)	Parcial	Acum,	% QUE PASA
Nº 60	0.250	4.50	4.50	4.50	94.51
Nº 100	0.150	7.80	7.80	12.30	86.79
№ 200	0.075	3.80	3,80	. 16.10	83.03
Limo	0.002	16.90	16.90	33.00	66.30
Arcilla	0.001	66.90	66.90	99.90	0.10

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-6

Profundidad: de 0.80 m. a 1.50 m.

ESTRATO E-3

Peso seco inicial

1500.00 gr.

Peso seco final

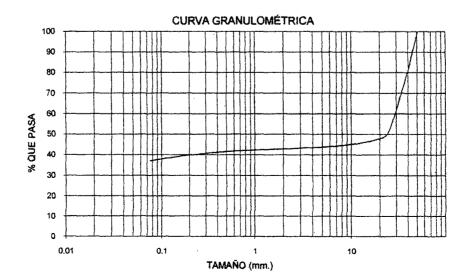
943.50 gr.

Peso menor № 200

556.50 gr.

				•	
344114	Abertura	Peso Ret.	% RETENIDO		% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	70 QUE FASA
2"	50.800	0.00	0.00	0.00	100.00
1 1/2"	38.100	330.50	22.03	22.03	77.97
1"	25.000	399.50	26.63	48.67	51.33
3/4"	19.000	54.20	3.61	52.28	47.72
1/2"	12.500	28.00	1.87	54.15	45.85
3/8"	9.500	11.50	0.77	54.91	45.09
1/4"	6.300	13.40	0.89	55.81	44.19
Nº 4	4.760	6.30	0.42	56.23	43.77
Nº 10	2.000	12.70	0.85	57.07	42.93
Nº 20	0.850	10.40	0.69	57.77	42.23
Nº 30	0.600	5.90	0.39	58.16	41.84
Nº 40	0.425	6.70	0.45	58.61	41.39
Nº 60	0.250	15.30	1.02	59.63	40.37
Nº 100	0.150	18.80	1.25	60.88	39.12
N° 200	0.075	30.30	2.02	62.90	37.10
Limo	0.002				29.79
Arcilla	0.001			-	
Cazoleta		556.50	37.10	100.00	

POR SIFONEADO


Peso seco inicial

100.00 gr.

Peso seco final

30.60 gr.

'érdida	69.40 gr.						
MALLA	Abertura	Peso Ret.	% RETENIDO		% QUE PASA		
INNELLA	(mm.)	(gr.)	Parcial	Acum.	% QUE FASA		
Nº 60	0.250	6.40	6.40	6.40	40.18		
Nº 100	0.150	6.30	6.30	12.70	37.47		
Nº 200	0.075	7.50	7.50	20.20	34.26		
Limo	0.002	10.40	10.40	30.60	29.79		
Arcilla	0.001	69.40	69.40	100.00	0.00		

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

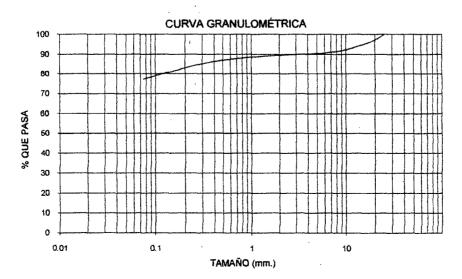
CALICATA C-7

Profundidad: de 0.40 m. a 0.85 m.

ESTRATO E-2

Peso seco inicial Peso seco final 500.00 gr. 113.60 gr. 386.40 gr.

Peso menor № 200


SO INCHOLIN	200	•	300.40 gs.				
1441.1.4	Abertura	Peso Ret.	Ret. % RETENIDO		% QUE PASA		
MALLA	(mm.)	(gr.)	Percial	Acum.	78 QUE 1 740A		
2"	50.800						
1 1/2"	38.100						
1"	25.000	0.00	0.00	0.00	100.00		
3/4"	19.000	15.80	3.16	3.18	96.84		
1/2"	12.500	15.50	3.10	6.26	93.74		
3/8"	9.500	8.20	1.64	7.90	92.10		
1/4"	6.300	6.70	1.34	9.24	90.76		
№ 4	4.780	2.00	0.40	9.64	90.36		
Nº 10	2.000	4.00	0.80	10.44	89.56		
Nº 20	0.850	6.10	1.22	11.66	88.34		
Nº 30	0.600	4.10	0.82	12.48	87.52		
Nº 40	0.425	4.70	0.94	13.42	86.58		
Nº 60	0.250	10.70	2.14	15.56	84.44		
Nº 100	0.150	14.60	2.92	18.48	81.52		
Nº 200	0.075	21.20	4.24	22.72	77.28		
Limo	0.002) .			63.77		
Arcilla	0.001	{					
Cazoleta	Ì	386.40	77.28	100.00	1		

POR SIFONEADO

Peso seco inicial Peso seco final Pérdida 100.00 gr. 28.80 gr.

71.20 gr.

MALLA	MALLA Abertura		% RET	ENIDO	W QUE PASA
MACCA	(mm.)	(gr.)	Parcial	Acum.	// QUE FASA
Nº 60	0.250	3.20	3.20	3.20	86.69
№ 100	0.150	4.90	4.90	8.10	82.31
№ 200	0.075	5.10	5.10	13.20	77.74
Limo	0.002	15.60	15.60	28.80	63.77
Arcilla	0.001	71.20	71.20	100.00	0,00

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-7

Profundidad : de 0.85 m. a 1.30 m.

ESTRATO E-3

Peso seco inicial Peso seco final

500.00 gr.

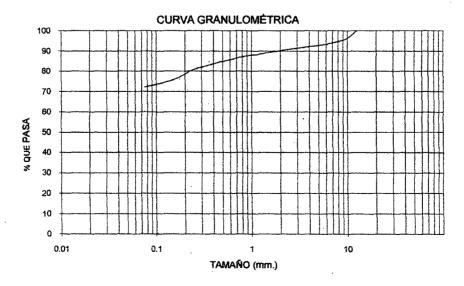
139.30 gr.

Peso menor Nº 200

360.70 gr.

MALLA	Abertura	Peso Ret.	% RET	% RETENIDO		
MALLA (mm.)	(mm.)	(gr.)	Parcial	Acum.	% QUE PASA	
2 "	50.800				-	
1 1/2"	38.100					
1"	25.000					
3/4"	19.000					
1/2"	12.500	0.00	0.00	0.00	100.00	
3/8"	9.500	20.60	4.12	4.12	95.88	
1/4"	6.300	11.60	2.32	6.44	93.56	
Nº 4	4.760	4,30	0.86	7.30	92.70	
Nº 10	2.000	12.10	2.42	9.72	90.28	
Nº 20	0.850	15.00	3.00	12.72	87.28	
Nº 30	0.600	8.10	1.62	14.34	85.66	
Nº 40	0.425	8.70	1,74	16.08	83.92	
Nº 60	0.250	15.50	3.10	19.18	80.82	
Nº 100	0.150	25.40	5.08	24.26	75.74	
Nº 200	0.075	18.00	3.60	27.86	72.14	
Limo	0.002		i		64.55	
Arcilla	0.001					
Cazoleta	1	360.70	72.14	100.00		

POR SIFONEADO


Peso seco inicial

100.00 gr.

Peso seco final 28.50 gr. Pérdida

71.50 gr.

MALLA	Abertura	Peso Ret.	% RETENIDO		% QUE PASA
WALL	(mm.)	(gr.)	Parcial	Acum.	70 QUE PASA
Nº 60	0.250	6.80	6.80	6.80	84.14
№ 100	0.150	7.30	7.30	14.10	77.55
N° 200	0.075	3.10	3.10	17.20	74.75
Limo	0.002	11.30	11.30	28.50	64.55
Arcilla	0.001	71,50	71.50	100.00	0.00

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-7

Profundidad : de 1.30 m. a 1.65 m.

ESTRATO E-4

Peso seco inicial

500.00 gr.

Peso seco final

80.60 gr.

Peso menor № 200

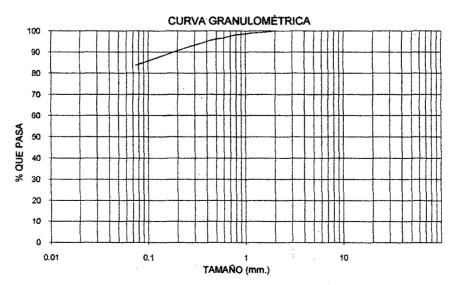
419.40 gr.

	Abertura	Peso Ret.	% RETENIDO		% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	78 QUL 1 AGA
2"	50.800				
1 1/2"	38.100				
1"	25.000			1	
3/4"	19.000				
1/2"	12.500				
3/8"	9.500	}			
1/4"	6.300				
Nº 4	4.760			ļ	
Nº 10	2.000	0.00	0.00	0.00	100.00
Nº 20	0.850	8.20	1.64	1.64	98.36
Nº 30	0.600	7.60	1.52	3.16	96.84
№ 40	0.425	7.20	1.44	4.60	95.40
Nº 60	0.250	15.90	3.18	7.78	92.22
Nº 100	0.150	17.50	3.50	11.28	88.72
Nº 200	0.075	24.20	4.84	16.12	83.88
Limo	0.902				66.00
Arcilla	0.001				
Cazoleta		419.40	83.88	100.00	

POR SIFONEADO

Peso seco inicial

Pérdida


100.00. gr.

Peso seco final

34.00 gr.

66.00 gr.

MALLA	Abertura	Peso Ret.	% RETENIDO		% RETENIDO		% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	% QUE FAGA		
Nº 60	0.250	5.20	5.20	5.20	94.80		
Nº 100	0.150	7.80	7.80	13.00	87.00		
Nº 200	0.075	4.30	4.30	17.30	82.70		
Limo	0.002	16.70	16.70	34.00	66.00		
Arcilla	0.001	66.00	86.00	100.00	0.00		

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-8

Profundidad: de 0.30 m. a 0.65 m.

ESTRATO E-2

Peso seco inicial

500.00 gr.

Peso seco final

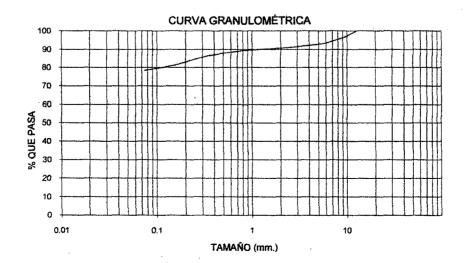
107.90 gr. -392.10 gr.

Peso menor Nº 200

	Abertura	Peso Ret.	% RETENIDO .		% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	70 QUE ! 740 !!
2"	50.800				
1 1/2"	38.100				
1"	25,000				
3/4"	19.000				
1/2"	12.500	- 0.00	0.00	00.0	100.00
3/8"	9.500	15.70	3.14	3.14	96.86
1/4"	6.300	14.80	2.96	6.10	93.90
Nº 4	4.760	5.50	1.10	7.20	92.80
Nº 10	2.000	10.00	2.00	9.20	90.80
Nº 20	0.850	6.10	1.22	10.42	89.58
Nº 30	0.600	5.50	1.10	11.52	88.48
Nº 40	0.425	4.90	0.98	12.50	87.50
Nº 60	0.250	15.20	3.04	15.54	84.46
Nº 100	0.150	16.10	3.22	18.76	81.24
Nº 200	0.075	14.10	2.82	21.58	78.42
Limo	0.002				74.09
Arcilla	0.001				
Cazoleta	1	392.10	78.42	100.00	

POR SIFONEADO

Peso seco inicial


100.00 gr. 26.40 gr.

Peso seco final

Pérdida

73.60 gr.

	MALLA	Abertura	Peso Ret.	Peso Ret. % RETENIDO		% QUE PASA
	MALLA	(mm.)	(gr.)	Parcial	Acum.	78 GUL FAGA
	Nº 60	0.250	4.00	4.00	4.00	87.17
ļ	Nº 100	0,150	3.50	3.50	7.50	83.99
	Nº 200	0.075	, 2.60	2.60	10.10	81.63
	Limo	0.002	8.30	8.30	18.40	74.09
	Arcilla	0.001	73.60	73.60	92.00	7.26

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-8

Profundidad : de 0.65 m. a 1.20 m.

ESTRATO E-3

Peso seco inicial

1000.00 gr.

Peso seco final

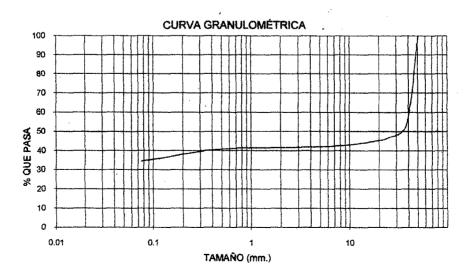
654.80 gr. 345.20 gr. -

Peso menor Nº 200

MALLA	Abertura	Abertura Peso Ret.		ENIDO	% QUE PASA
WINLEM	(mm.)	(gr.)	Parcial	Acum.	70 QUE 17 AUS
2"	50.800	0.00	0,00	0.00	100.00
1 1/2"	38.100	465.70	46.57	46.57	53.43
1"	25.000	66.30	6.63	53.20	46.80
3/4"	19.000	15.80	1.58	54.78	45.22
1/2"	12.500	15.20	1.52	56.30	43.70
3/8"	9.500	7.70	0.77	57.07	42.93
1/4"	6.300	7.10	0.71	57.78	42.22
Nº 4	4.760	2.10	0.21	57.99	42.01
Nº 10	2.000	4.20	0.42	58.41	41.59
Nº 20	0.850	1.70	0.17	58.58	41.42
Nº 30	0.600	3.80	0.38	58.96	41.04
Nº 40	0.425	5.70	0.57	59.53	40.47
Nº 60	0.250	14.00	1.40	60.93	39.07
Nº 100	0.150	20.80	2.08	63.01	36.99
Nº 200	0.075	24.70	2.47	65.48	34.52
Limo	0.002				25.87
Arcilla	0.001				
Cazoleta		345.20	34.52	100.00	

POR SIFONEADO

Peso seco inicial


100.00 gr.

Peso seco final

Pérdida

65.80 gr. 34.20 gr.

MALLA	Abertura	Peso Ret.	% RETENIDO		% QUE PASA
IVIALLA	(mm.)	(gr.)	Parcial	Acum.	- % QUE FASA
Nº 60	0.250	8.10	8.10	8.10	38.22
Nº 100	0.150	7.20 .	7.20	15.30	35.23
Nº 200	0.075	7.90	7.90	23.20	31.94
Limo	0.002	14.60	14.60	37.80	25.87
Arcitta	0.001	34.20	34.20	72.00	11.65

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-8

Profundidad: de 1.20 m. a 1.50 m.

ESTRATO E-4

Peso seco inicial

1500.00 gr.

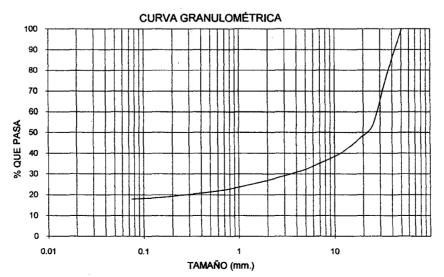
Peso seco final

1231.40 gr.

Peso menor Nº 200

268.60 gr.

MALLA	Abertura	Peso Ret.	% RET	ENIDO	% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	70 QOL 1 AOA
2"	50.800	0.00	0.00	0.00	100.00
1 1/2"	38.100	257.50	17.17	17.17	82.83
1"	25.000	439.90	29.33	46.49	53.51
3/4"	19.000	86.90	5.79	52.29	47.71
1/2"	12.500	98.70	6.58	58.87	41.13
3/8"	9.500	47.60	3.17	62.04	37.96
1/4"	6.300	55.70	3.71	65.75	34.25
Nº 4	4.760	34.60	2.31	68.06	31.94
Nº 10	2.000	75.80	5.05	73.11	26.89
Nº 20	0.850	57.60	3.84	76.95	23.05
Nº 30	0.600	17.10	1.14	78.09	21.91
Nº 40	0.425	14.00	0.93	79.03	20.97
Nº 60	0.250	16.90	1.13	80.15	19.85
Nº 100	0.150	16.50	1.10	81.25	18.75
Nº 200	0.075	12.60	0.84	82.09	17.91
Limo	0.002			,	12.99
Arcilla	0.001				
Cazoleta		268.60	17.91	100.00	


POR SIFONEADO

Peso seco inicial Peso seco final

100.00 gr.

51.70 gr.

Pérdida		: 48.30 gr.				
MALLA	Abertura	Peso Ret.	% RET	ENIDO	% QUE PASA	
INSTLL	(mm.)	(gr.)	Parcial	Acum.	// QUE PAGA	
Nº 60	0.250	16.90	16.90	16.90	22.34	
Nº 100	0.150	10.80	10.80	27.70	19.44	
Nº 200	0.075	7.70	7.70	35.40	17.37	
Limo	0.002	16.30	16.30	51.70	12.99	
Arcilla	0.001	48.30	48.30	100.00	0.00	

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANALISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-9

Profundidad: de 0.25 m. a 0.85 m.

ESTRATO C-2

Peso seco inicial

500.00 gr.

Peso seco final

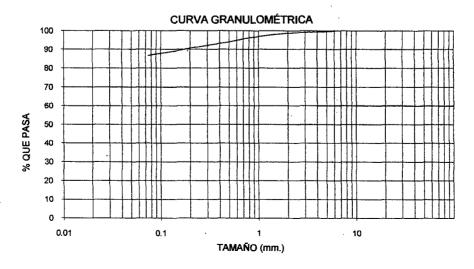
65.90 gr. 434.10 gr.

Peso menor Nº 200 :

MALLA	Abertura	Peso Ret.	% RET	ENIDO	% QUE PASA
WALLA	(mm.)	(gr.)	Parcial	Acum.	% QUE PAGA
2"	50.800	·			
1 1/2"	38.100				
1"	25.000				
3/4"	19.000			-	
1/2"	12.500			ļ	
3/8"	9.500				
1/4"	6.300	0.00	0.00	0.00	100.00
Nº 4	4.760	1.90	0.38	0.38	99.62
Nº 10	2.000	3.90	0.78	1.16	98.84
Nº 20	0.850	11.70	2.34	3.50	96.50
Nº 30	0.600	7.80	1.56	5.06	94.94
Nº 40	0.425	6.70	1.34	6.40	93.60
Nº 60	0.250	10.00	2.00	8.40	91.60
Nº 100	0.150	11.10	2.22	10.62	89.38
Nº 200	0.075	12.80	2.56	13.18	86.82
Limo	0.002				71.76
Arcilla	0.001				
Cazoleta		434.10	86.82	100.00	

POR SIFONEADO

Peso seco inicial


100.00 gr.

Peso seco final

Pérdida

27.40 gr. 72.60 gr.

MALLA	Abertura	Abertura Peso Ret.		% RETENIDO	
IAIWETW	(mm.)	(gr.)	Parcial	Acum.	% QUE PASA
Nº 60	0.250	6.10	6.10	6.10	92.81
Nº 100	0.150	3.70	3.70	9.80	89.15
Nº 200	0.075	3.30	3.30	13.10	85.89
Limo	0.002	14.30	14.30	27.40	71.76
Arcilla	0.001	72.60	72.60	100.00	0.00

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-9

Profundidad : de 1.20 m. a 1.50 m.

ESTRATO E-3

Peso seco inicial

500.00 gr.

Peso seco final

72.30 gr.

Peso menor № 200

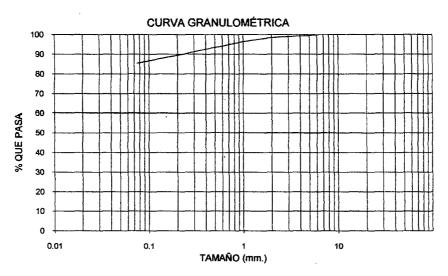
427.70 gr.

MALLA	Abertura	Peso Ret.	% RET	ENIDO	% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	A GOL FAOR
2"	50.800				
1 1/2"	38.100				
1"	25.000				1
3/4"	19,000		•		
1/2"	12.500			[,	
3/8"	9.500	-			
1/4"	6.300	0.00	0.00	0.00	100.00
Nº 4	4.760	2.30	0.46	0.46	99.54
Nº 10	2.000	5.20	1.04	1.50	98.50
Nº 20	0.850	13.60	2.72	4.22	95.78
Nº 30	0,600	8.10	1.62	5.84	94.16
№ 40	0,425	6.60	1.32	7.16	92.84
Nº 60	0,250	12.20	2.44	9.60	90.40
Nº 100	0.150	10.30	2.06	11.66	88.34
Nº 200	0.075	14.00	2.80	14.46	85.54
Limo	0.002				74.66
Arcilla	0.001				
Cazoleta		427.70	85.54	100.00	

POR SIFONEADO

Peso seco inicial

100.00 gr.


Peso seco final

24.20 gr.

Pérdida

75.80 gr.

MALLA	Abertura	Peso Ret.	% RETENIDO		% QUE PASA
IVIALLA	(mm.) (gr.)	Parcial	Acum.	78 QUE I FIOR	
Nº 60	0.250	5.80	5.80	5.80	92.79
Nº 100	0.150	3.40	3.40	- 9.20	89.44
№ 200	0.075	2.80	2.80	12.00	86.68
Limo	0.002	12.20	12.20	24,20	74.66
Arcilla	0.001	75.80	75.80	100.00	0.00

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-9

Profundidad : de 0.25 m. a 0.85 m.

ESTRATO E-4

Peso seco inicial
Peso seco final

1000.00 gr.

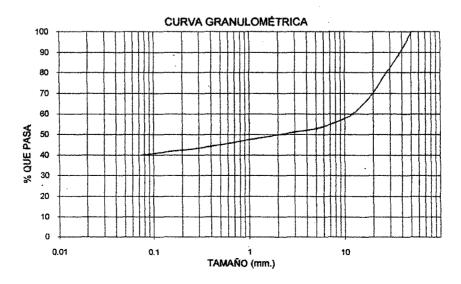
599,50 gr.

Peso menor Nº 200

400.50 gr.

MALLA	Abertura	Peso Ret.	% RET	ENIDO	% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	70 QUE FAGA
2"	50.800	0.00	0.00	0.00	100.00
1 1/2"	38.100	99.70	9.97	9.97	90.03
1"	25.000	128.10	12.81	22.78	77.22
3/4"	19.000	81.00	8.10	30.88	69.12
1/2"	12.500	85.10	8.51	39.39	60.61
3/8"	9.500	31.70	3.17	42.56	57.44
1/4"	6.300	31.30	3.13	45.69	54.31
Nº 4	4.760	14.90	1.49	. 47.18	52.82
Nº 10	2.000	29.50	2.95	50.13	49.87
Nº 20	0.850	29.00	2.90	53.03	46.97
Nº 30	0.600	13.30	1.33	54.36	45.64
Nº 40	0.425	10.90	1.09	55.45	44.55
Nº 60	0,250	15.80	1.58	57.03	42.97
Nº 100	0.150	11.40	1.14	58.17	41.83
Nº 200	0.075	17.80	1.78	59.95	40.05
Limo	0.002		9.82		32.76
Arcilia	0.001				
Cazoleta		400.50	40.05	100.00	1

POR SIFONEADO


Peso seco inicial Peso seco final 100,00 gr.

34.30 gr.

Pérdida

65.70 gr.

MALLA	Abertura	Abertura Peso Ret.		% RETENIDO	
INVELY	(mm.) (gr.)	Parcial	Acum.	% QUE PASA	
Nº 60	0.250	11.30	11.30	11.30	44.23
Nº 100	0.150	6.40	6.40	17.70	41.04
Nº 200	0.075	4.60	4.60	22.30	38.75
Limo	0.002	12.00	12.00	34.30	32.76
Arcilla	0.001	65.70	65.70	100.00	0.00

UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-10

Profundidad: de 1.20 m. a 1.50 m.

ESTRATO E-2

Peso seco inicial Peso seco final 500.00 gr. 154.90 gr.

Peso menor Nº 200

345.10 gr.

	Abertura	Peso Ret.	% RET	% RETENIDO		
(mm.)	MALLA	(mm.)	(gr.)	Parcial	Acum.	% QUE PASA
2"	50.800					
1 1/2"	38.100					
1"	25.000					
3/4"	19.000			1		
1/2"	12.500				and the same of th	
3/8"	9.500					
1/4"	6.300	0.00	0.00	0.00	100.00	
Nº 4	4.760	3.80	0.76	0.76	99.24	
Nº 10	2.000	12.30	2.46	3.22	96.78	
Nº 20	0.850	23.10	4.62	7.84	92.16	
Nº 30	0.600	14.80	2.96	10.80	89.20	
Nº 40	0.425	16.10	3.22	14.02	85.98	
Nº 60	0.250	27.80 ·	5.56	19.58	80.42	
Nº 100	0.150	30.00	6.00	25.58	74.42	
Nº 200	0.075	27.00	5.40	30.98	69.02	
Umo	0.002				57.20	
Arcilla	0.001					
Cazoleta		345.10	69.02	100.00		

POR SIFONEADO

Peso seco inicial
Peso seco final

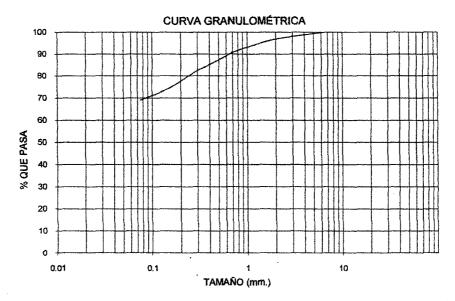
Pérdida

Arcilla

0.001

100.00 gr.

40.90 gr. 59.10 gr.


100.00

0.00

% RETENIDO Peso Ret. Abertura % QUE PASA MALLA (mm.) Parcial Acum (gr.) 11.60 Nº 60 0.250 11.60 11.60 85.55 Nº 100 76.07 9.80 0.150 9.80 21.40 Nº 200 70.84 0.075 5.40 5.40 26.80 Limo 0.002 14.10 14.10 40.90 57.20

59.10

59.10

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-10

Profundidad : de 0.25 m. a 0.85 m.

ESTRATO E-3

Peso seco inicial

1500.00 gr.

Peso seco final

1295.70 gr.

Peso menor Nº 200

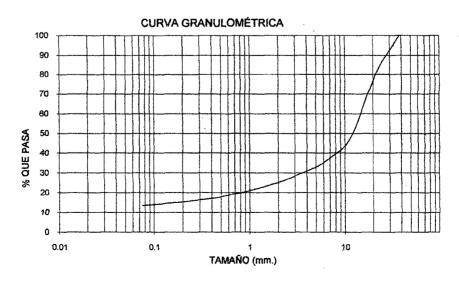
204.30 gr.

MALLA	Abertura	Peso Ret.	% RET	ENIDO	% QUE PASA
MINELL	(mm.)	(gr.)	Parcial	Acum.	
2"	50.800				
1 1/2"	38.100	0.00	0.00	0.00	100.00
1"	25.000	200.20	13.35	13.35	86.65
3/4"	19.000	185.20	12.35	25.69	74.31
1/2"	12.500	344.10	22.94	48.63	51.37
3/8"	9.500	130.10	8.67	57.31	42.69
1/4"	6.300	100.10	6.67	63.98	36.02
Nº 4	4.760	52.10	3.47	67.45	32.55
Nº 10	2.000	109.20	7.28	74.73	25.27
Nº 20	0.850	75.10	5.01	79.74	20.26
Nº 30	0.600	21.30	1.42	81.16	18.84
Nº 40	0.425	21.50	1.43	82.59	17.41
Nº 60	0.250	21.00	1.40	83.99	16.01
Nº 100	0.150	17.20	1.15	85.14	14.86
Nº 200	0.075	18.60	1.24	86.38	13.62
Limo	0.002				12.84
Arcilla	0.001				
Cazoleta		204.30	13.62	100.00	

POR SIFONEADO

Peso seco inicial

100,00° gr.


Peso seco final

49.20 gr.

Pérdida

50.80 gr.

MALLA	Abertura	Peso Ret.	% RETENIDO		% QUE PASA
MULLO	(mm.)	(gr.)	Parcial	Acum.	/4 QUE FASA
Nº 60	0.250	14.00	14.00	14.00	21.73
Nº 100	0.150	8.80	8.80	22.80	19.51
N° 200	0.075	5.10	5.10	27.90	18.22
Limo	0.002	21.30	21.30	49.20	12.84
Arcilla	0.001	50.80	50.80	100.00	0.00

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANALISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-10

Profundidad: de 1.20 m. a 1.50 m.

ESTRATO E-4

Peso seco inicial

500.00 gr.

Peso seco final

101.10 gr.

Peso menor № 200

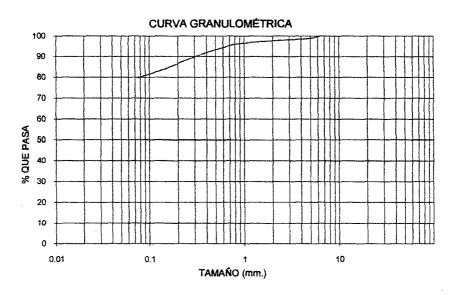
398.90 gr.

0484 LA	Abertura	Peso Ret.	% RET	ENIDO	% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	78 QUE 1 AGA
2"	50.800		!		1
1 1/2"	38.100				
1"	25,000				
3/4"	19.000				
1/2"	12.500				
3/8"	9.500	1			1
1/4"	8.300	0.00	0.00	00,0	100.00
Nº 4	4,760	5.80	1.16	1.18	98.84
Nº 10	2.000	5.90	1,18	2.34	97.66
Nº 20	0.850	7.90	1.58	3.92	98.08
Nº 30	0.600	8.80	1.76	5.68	94.32
Nº 40	0.425	10.30	2.06	7.74	92.26
Nº 60	0.250	18.80	3.76	11.50	88.50
Nº 100	0.150	20.70	4.14	15.64	84.36
Nº 200	0.075	22.90	4,58	20.22	79.78
Limo	0.002				65.92
Arcilla	0.001			1	
Cazoleta		398.90	79,78	100.00	

POR SIFONEADO

Peso seco inicial

100.00 gr.


Peso seco final

32.50 gr.

Pérdida

67.50 gr.

MALLA	Abertura	Peso Ret.	so Ret. % RETEN		% QUE PASA
MACO	(mm.)	(gr.)	Parcial	Acum.	% QUE PASA
Nº 60	0.250	5.80	5.80	5.80	92.00
Nº 100	0.150	4.80	4.80	10.60	87.31
№ 200	0.075	4.10	4.10	14.70	83.30
Limo	0.002	17.80	17.80	32.50	65.92
Arcilla	0.001	67.50	67.50	100.00	0,00

UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-11

Profundidad: de 0.25 m. a 0.85 m.

ESTRATO E-2

Peso seco inicial Peso seco final

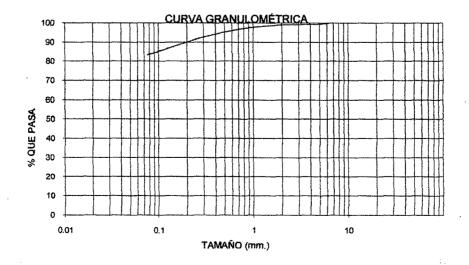
500.00 gr.

84.40 gr.

Peso menor Nº 200

415.60 gr.

וו יטוטוו טכ		•	110.00	•	
MALLA	Abertura	Peso Ret.	% RET	ENIDO	% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	70 QUL I AU
2"	60.800				
1 1/2"	38.100				·
1"	25.000				
3/4"	19.000				
1/2"	12.500				
3/8"	9,500				
1/4"	6.300	0.00	0.00	0.00	100.00
Nº 4	4.760	3.10	0.62	0.62	99.38
Nº 10	2.000	1.70	0.34	0.96	99.04
Nº 20	0.850	7.90	1.58	2.54	97.46
Nº 30	0.600	6.60	1.32	3.86	96.14
Nº 40	0.425	7.60	1.52	5.38	94.62
Nº 60	0.250	14.70	2.94	8.32	91.68
Nº 100	0.150	17.70	3,54	11.86	88.14
Nº 200	0.075	25.10	5.02	16.88	83.12
Limo	0.002				68.73
Arcilla	0.001				
Cazoleta		415.60	83.12	100.00	


POR SIFONEADO

Peso seco inicial Peso seco final

100.00 gr.

30.60 gr.

Pérdida		:	69.40	gr.	
MALLA	MALLA Abertura		% RET	ENIDO	% QUE PASA
MALELA	(mm.)	(gr.)	Parcial	Acum.	% QUE FAOA
Nº 60	0.250	4.10	4.10	4.10	94.98
Nº 100	0.150	5.20	5.20	9.30	89.83
Nº 200	0.075	4.50	4.50	13.80	85.37
Limo	0.002	16,80	16.80	30.60	68.73
Arcilla	0.001	69.40	69.40	100.00	0.00

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA C-11

Profundidad : de 1.20 m. a 1.50 m.

ESTRATO E-3

Peso seco inicial

500.00 gr.

Peso seco final

164.50 gr.

Peso menor N° 200

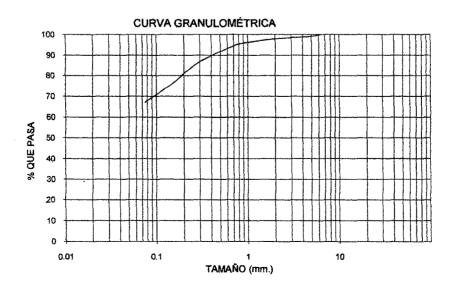
335.50 gr.

	Abertura	Peso Ret.	% RET	ENIDO	% QUE PASA	
MALLA	(mm.)	(gr.)	Parcial	Acum.	% QUE FASA	
2"	50.800					
1 1/2"	38.100					
1"	25.000					
3/4"	19.000					
1/2"	12.500					
3/8"	9.500					
1/4"	6.300	0.00	0.00	0.00	100.00	
Nº 4	4.760	4.70	0.94	0.94	99.06	
Nº 10	2.000	5.90	1.18	2.12	97.88	
Nº 20	0.850	11.00	2.20	4.32	95.68	
Nº 30	0.600	12.30	2.46	6.78	93.22	
Nº 40	0.425	13.90	2.78	9.56	90.44	
Nº 60	0.250	28.80	5.76	15.32	84.68	
Nº 100	0.150	42.10	8.42	23.74	76.26	
Nº 200	0.075	45.80	9.16	32.90	67.10	
Limo	0.002				55.01	
Arcilla	0.001				0.00	
Cazoleta		335.50	67.10	100.00		

POR SIFONEADO

Peso seco inicial

100.00 gr.


Peso seco final

43.80 gr.

Pérdida

56.20 gr.

MALLA	Abertura	Peso Ret.	% RET	% QUE PASA	
MUCL	(mm.)	(gr.)	Parcial	Acum.	76 QUE FASA
Nº 60	0.250	6.50	6.50	6.50	91.52
Nº 100	0.150	10.60	10.60	17.10	81.14
Nº 200	0.075	8.30	8.30	25.40	73.02
Limo	0.002	18.40	18.40	43.80	55.01
Arcilla	0.001	56.20	56.20	100.00	0.00

UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

Normas: ASTM D 422 - AASHTO T 88

CALICATA 11

Profundidad : de 0.25 m. a 0.85 m.

ESTRATO 4

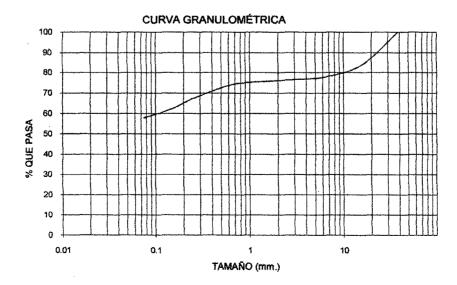
Peso seco inicial
Peso seco final
Peso menor Nº 200

1000.00 gr. 420.60 gr. 579.40 gr.

MALLA	Abertura	Peso Ret.	% RET	ENIDO	% QUE PASA
MALLA	(mm.)	(gr.)	Parcial	Acum.	// QUE LYON
2"	50.800				
1 1/2"	38.100	0.00	0.00	0.00	100.00
1"	25.000	83.90	8.39	8.39	91.61
3/4"	19.000	49.40	4.94	13.33	86.67
1/2"	12.500	51.20	5.12	18.45	81.55
3/8"	9.500	18.50	1.85	20.30	79.70
1/4"	6.300	18.40	1.84	22.14	77.86
Nº 4	4.760	7.40	0.74	22.88	77.12
Nº 10	2.000	10.20	1.02	23.90	76.10
Nº 20	0.850	10.70	1.07	24.97	75.03
Nº 30	0.600	12.90	1.29	26.26	73.74
Nº 40	0.425	22.80	2.28	28.54	71.46
Nº 60	0.250	42.20	4.22	32.76	67.24
Nº 100	0.150	49.10	4.91	37.67	62.33
Nº 200	0.075	43.90	4.39	42.06	57.94
Limo	0.002		İ		45.81
Arcilla	0.001		ı		
Cazoleta		579.40	57.94	100.00	

POR SIFONEADO

Peso seco inicial Peso seco final

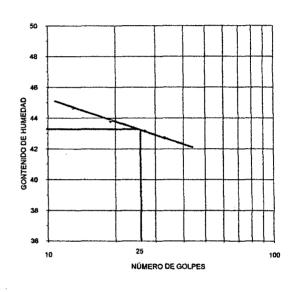

Pérdida

100.00 gr.

39.80 gr.

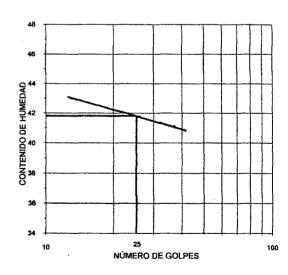
60.20 gr.

MALLA	Abertura	Peso Ret.	% RET	% QUE PASA	
MACLA	(mm.)	(gr.)	Parcial	Acum.	% QUE PAGA
Nº 60	0.250	11.70	11.70	11.70	67.20
Nº 100	0.150	8.30	8.30	20.00	60.88
Nº 200	0.075	5.20	5.20	25.20	56.92
Limo	0.002	14.60	14.60	39.80	45.81
Arcilla	0.001	60.20	60.20	100.00	0.00



LÍMITES DE CONSISTENCIA LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO

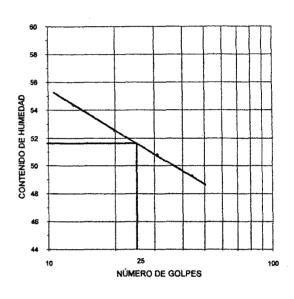
Normas: ASTM D 4318 - AASHTO T 89 - AASHTO T 90


GALICATA C-1 ESTRATO E-2

ENSAYO	LÍMITE LÍQUIDO				LÍMITE PLÁSTICO			
Nº DE TARA	1	2	3	4	1	2	3	
PESO MUESTRA								
HUMEDA + TARA (gr.)	47.30	50.20	46.00	49.10	39,50	42.50	25.80	
PESO MUESTRA								
SECA + TARA (gr.)	43.10	46.30	42.20	44.70	38.10	41.10	24.60	
			,					
PESO DEL AGUA (gr.)	4.20	3.90	3.80	4.40	1.40	1.40	1.20	
PESO DE TARA (gr.)	33.70	37.30	33.40	34.40	31.60	34.30	19.00	
PESO MUESTRA								
SECA (gr.)	9.40	8.90	8.80	10.30	6.50	6.80	5.60	
CONTENIDO DE								
HUMEDAD (%)	44.68	43.82	43.18	42.72	21.54	20.59	21.43	
N° DE GOLPES	13	19	27	33				
LL =	43.35	LP =	21.19	I.P. =	22.16			

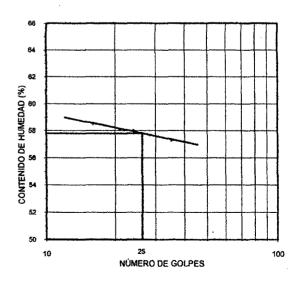
CALICATA C-1 ESTRATO E-3

ENSAYO	L	ÍMITE L	JQUID	0	LÍMIT	E PLAS	тко
Nº DE TARA	1	2	3	4	1	2	3
PESO MUESTRA	<u> </u>		-	-	<u> </u>		
HUMEDA + TARA (gr.)	48.80	49.10	45.10	47.90	23.60	43.40	39.80
PESO MUESTRA							
SECA + TARA (gr.)	44.50	45.30	42.70	43.50	22.80	42.50	38.90
PESO DEL AGUA (gr.)	4.30	3.80	2.40	4.40	0.80	0.90	0.90
PESO DE TARA (gr.)	34.50	36.30	36.90	32.80	19.00	38.00	34.40
PESO MUESTRA							
SECA (gr.)	10.00	9.00	5.80	10,70	3.80	4.50	4.50
CONTENIDO DE							
HUMEDAD (%)	43.00	42.22	41.38	41.12	21.05	20.00	20.00
Nº DE GOLPES	13	20	32	37			


LÍMITES DE CONSISTENCIA

LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO

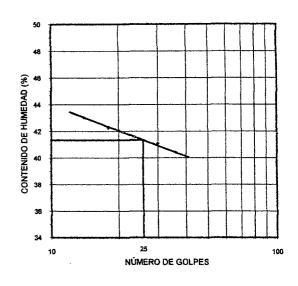
Normas: ASTM D 4318 - AASHTO T 89 - AASHTO T 90


CALICATA C-2 ESTRATO E-2

1 1.50 8.40	2 44.40 41.30	3 41.30 38.20 3.10	4 46.00 42.50 3.50	1 38.00 37.20	2 36.80 36.00	3 42.40 41.40
1.50	44.40	41.30 38.20	46.00 42.50	38.00 37.20	36.00	42.40 41.40
8.40	41.30	38.20	42.50	37.20	36.00	41.40
8.40	41.30	38.20	42.50	37.20	36.00	41.40
3.10	3.10	3.10	3.50	0.80	0.80	1.00
3.10	3.10	3.10	3.50	0.80	0.80	1.00
2.70	35.40	32.10	35.40	33.90	32.80	37.40
5.70	5.90	6.10	7.10	3.30	3.20	4.00
4.39	52.54	50.82	49.30	24.24	25.00	25.00
13	20	31	44			
		1	**************************************		 	
	4.39	4.39 52.54	4.39 52.54 50.82	4.39 52.54 50.82 49.30	4.39 52.54 50.82 49.30 24.24 13 20 31 44	4.39 52.54 50.82 49.30 24.24 25.00

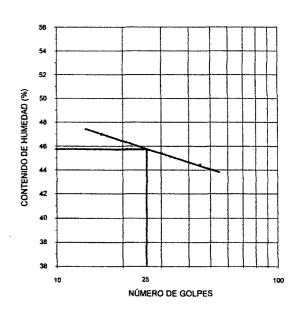
CALICATA C-2 ESTRATO E-3

ENSAYO	LÍMITE LÍQUIDO				ЦМП	LÍMITE PLÁSTICO			
№ DE TARA	1	2	3	4	1	2	3		
PESO MUESTRA									
HUMEDA + TARA (gr.)	46.80	46.20	45.00	49.80	25.20	25.40	27.70		
PESO MUESTRA									
SECA + TARA (gr.)	41.30	41.90	40.30	45.10	23.90	24.10	25.90		
PESÓ DEL AGUA (gr.)	5.50	4.30	4.70	4.70	1.30	1.30	1.80		
PESO DE TARA (gr.)	31.90	34.50	32.20	36.90	19.30	19.60	19.50		
PESO MUESTRA SECA (gr.)	9.40	7.40	8.10	8.20	4.60	4.50	6.40		
CONTENIDO DE									
HUMEDAD (%)	58.51	58.11	58.02	57.32	28.26	28.89	28.13		
Nº DE GOLPES	16	21	24	35					
L.L. =	57.80	L.P. =	28.42	I.P. =	29.38				



LÍMITES DE CONSISTENCIA LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO

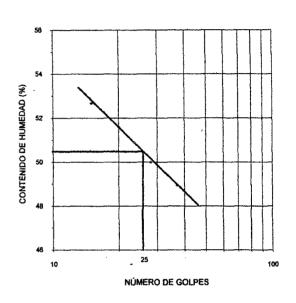
Normas: ASTM D 4318 - AASHTO T 89 - AASHTO T 90


CALICATA C-3 ESTRATO E-2

ENSAYO	LÍMITE LÍQUIDO				LIMITE PLASTIC			
Nº DE TARA	1	2	3	4	1	2	3	
PESO MUESTRA								
HUMEDA + TARA (gr.)	47,50	47.30	48.60	49.70	24.90	22.80	23.10	
PESO MUESTRA								
SECA + TARA (gr.)	43.80	43.20	44.90	46.10	24.00	22.20	22.40	
PESO DEL AGUA (gr.)	3.70	4.10	3.70	3.60	0.90	0.60	0.70	
PESO DE TARA (gr.)	35.20	33.50	35.90	37.20	19.50	19.00	19.20	
PESO MUESTRA								
SECA (gr.)	8.60	9.70	9.00	8.90	4.50	3.20	3.20	
CONTENIDO DE								
HUMEDAD (%)	43.02	42.27	41.11	40.45	20.00	18.75	21.88	
№ DE GOLPES	14	18	30	36	<u> </u>			
L.L. =	41.35	L.P. =	20.21	1.P. ≖	21.14			

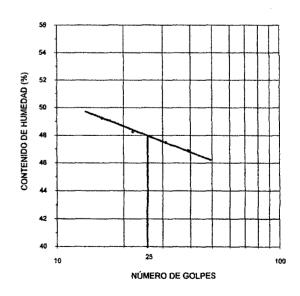
CALICATA C-4 ESTRATO E-2

ENSAYO	LÍMITE LÍQUIDO				LÍMITE PLÁSTICO		
N° DE TARA	1	2	3	4	1	2	3
PESO MUESTRA							
HUMEDA + TARA (gr.)	42.80	46.80	46.30	46.90	24.10	23.40	23.00
PESO MUESTRA							
SECA + TARA (gr.)	39.70	42.70	42.60	42.90	23.20	22.60	22.30
PESO DEL AGUA (gr.)	3.10	4.10	3.70	4.00	0.90	0.80	0.70
PESO DE TARA (gr.)	33.10	33,80	34.40	33.90	19.20	19.00	19.00
PESO MUESTRA							
SECA (gr.)	6.60	8.90	8.20	9.00	4.00	3.60	3.30
CONTENIDO DE							
HUMEDAD (%)	46.97	46.07	45.12	44.44	22.50	22.22	21.2
Nº DE GOLPES	16	22	33	45			


FACULTAD DE INGENIERIA LABORATORIO DE MECANICA DE SUELOS

LÍMITES DE CONSISTENCIA LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO

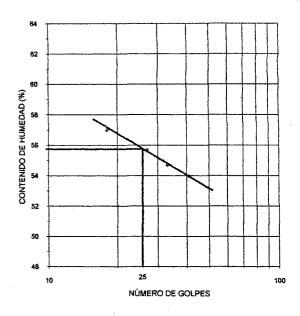
Normas: ASTM D 4318 - AASHTO T 89 - AASHTO T 90


CALICATA C-5 ESTRATO E-2

ENSAYO	ы	MITE L	מוטסו		LÍMITE PLÁSTICO		
							
Nº DE TARA	1	2	Э	4	1	2	3
PESO MUESTRA							
HUMEDA + TARA (gr.)	45.80	48.40	47.20	49.50	24.30	43.50	40.30
PESO MUESTRA							
SECA + TARA (gr.)	40.90	43.60	42.60	44.80	23.30	41.70	39.20
PESO DEL AGUA (gr.)	4.90	4.80	4.60	4.70	1.00	1.80	1.10
PESÓ DE TARA (gr.)	31.60	34.30	33.40	35.20	19.90	35.40	35.50
PESO MUESTRA					ł		
SECA (gr.)	9.30	9.30	9.20	9.60	3.40	6.30	3.70
CONTENIDO DE					1		
HUMEDAD (%)	52.69	51.61	50.00	48,96	29.41	28.57	29.73
Nº DE GOLPES	15	20	28	37	<u> </u>		
L.L. =	50.50	L.P. =	29.24	1.P. =	21.26		

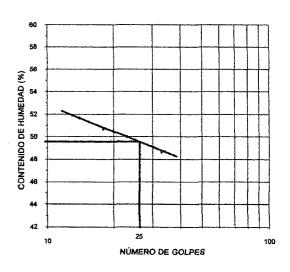
CALICATA C-6 ESTRATO E-2

ENSAYO	Lĺ	MITE L	aiuQl.	0	⊔́міті	E PLAS	TICC		
N° DE TARA	1	2	3	4	1	2	3		
PESO MUESTRA									
HUMEDA + TARA (gr.)	43.70	50.20	44.10	44.70	24.70	25.80	25.20		
PESO MUESTRA									
SECA + TARA (gr.)	40.40	46.00	40.30	40.90	23,60	24.50	24.00		
PESO DEL AGUA (gr.)	3.30	4.20	3.80	3.80	1.10	1.30	1.20		
PESO DE TARA (gr.)	33.70	37.30	32.30	32.80	19.00	19.00	19.20		
PESO MUESTRA			-						
SECA (gr.)	6.70	8.70	8.00	8.10	4,60	5.50	4.8		
CONTENIDO DE									
HUMEDAD (%)	49.25	48.28	47.50	46,91	23.91	23.64	25.00		
№ DE GOLPES	16	22	31	39					
LL = 48.00 LP = 24.18 LP = 23.82									


FACULTAD DE INGENIERIA LABORATORIO DE MECANICA DE SUELOS

LÍMITES DE CONSISTENCIA LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO

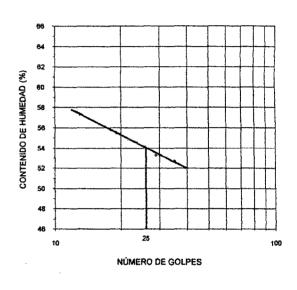
Normas: ASTM D 4318 - AASHTO T 89 - AASHTO T 90


CALICATA C-6 ESTRATO E-3

ENSAYO	L	ÍMITE L	JQUIDO	5	LÍMITE PLÁSTICO				
Nº DE TARA	1	2	3	4	1	2	3		
PESO MUESTRA	1				<u> </u>	-			
HUMEDA + TARA (gr.)	48.70	44.50	47.40	45.30	27.20	23.30	40.20		
PESO MUESTRA					ļ				
SECA + TARA (gr.)	43.40	40.60	43.90	41.90	25.50	22.40	38.40		
PESO DEL AGUA (gr.)	5.30	3.90	3.50	3.40	1.70	0.90	1.80		
PESO DE TARA (gr.)	34.10	33.60	37.50	35.60	18.90	18.90	31.50		
PESO MUESTRA									
SECA (gr.)	9.30	7.00	6.40	6.30	6.60	3.50	6.90		
CONTENIDO DE									
HUMEDAD (%)	56.99	55.71	54.69	53.97	25.76	25.71	26.09		
№ DE GOLPES	18	27	33	41					
L.L. = 55.65 L.P. = 25.85 l.P. = 29.80									

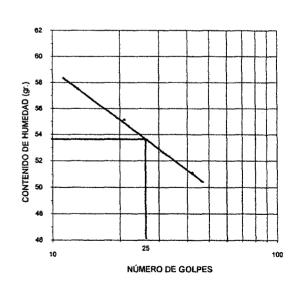
CALICATA C-7 ESTRATO E-2

ENSAYO	L	ĮMITE L	JQUID	0	LIMIT	E PL Á S	тісо
N° DE TARA	1	2	3	4	1	2	3
PESO MUESTRA							
HUMEDA + TARA (gr.)	42.20	44.40	43.40	45.30	34.60	35.90	40.70
PESO MUESTRA							
SECA + TARA (gr.)	39.10	40.80	40.40	41.60	34.10	34.90	39.70
PESO DEL AGUA (gr.)	3.10	3.60	3.00	3.70	0.50	1,00	1.00
PESO DE TARA (gr.)	20.40	20.70	24.42		**		
PESO MUESTRA	33,10	33.70	34.40	34.00	32.20	31.20	35.90
SECA (gr.)	6.00	7.10	6.00	7.60	1.90	3.70	3.80
CONTENIDO DE							
HUMEDAD (%)	51.67	50.70	50.00	48.68	26.32	27.03	26.32
N° DE GOLPES	14	18	23	33			
7. 02.003.20	14	10	23	03	L.,		
L.L. =	49.50	L.P. =	26.55	I.P. =	22.95		


LABORATORIO DE MECANICA DE SUELOS

LÍMITES DE CONSISTENCIA LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO

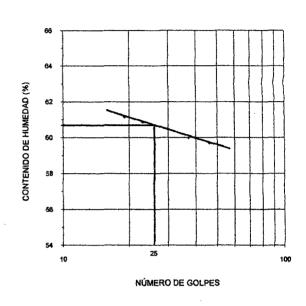
Normas: ASTM D 4318 - AASHTO T 89 - AASHTO T 90


CALICATA C-7 ESTRATO E-3

ENSAYO	L	LÍMITE LÍQUIDO LÍMITE PLÁST					
N° DE TARA	1	2	3	4	1	2	3
PESO MUESTRA							
HUMEDA + TARA (gr.)	43.70	49.20	41.70	43.20	36.70	35.70	42.90
PESO MUESTRA							
SECÁ + TARA (gr.)	40.20	44.70	38.50	40.30	35.90	34.10	41.40
PESO DEL AGUA (gr.)	3.50	4.50	3.20	2.90	0.80	1.60	1.50
PESO DE TARA (gr.)	34.10	36.60	32.50	34.80	33.20	28.80	36.30
PESO MUESTRA							
SECA (gr.)	6.10	8.10	6.00	5.50	2.70	5.30	5.10
CONTENIDO DE							
HUMEDAD (%)	57.38	55.56	53.33	52.73	29.63	30.19	29.41
N° DE GOLPES	13	19	29	35		· · · · · · · · · · · · · · · · · · ·	
L.L. = 54.00							

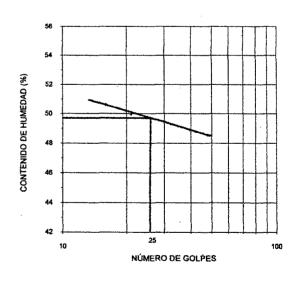
CALICATA C-7 ESTRATO E-4

ENSAYO	L	ÍMITE L	JQUID	0	LÍMIT	E PLAS	TICO
Nº DE TARA	1	2	3	4	1	2	3
PESO MUESTRA							
HUMEDA + TARA (gr.)	48.00	45.00	48.70	49.20	21.50	21.90	22.10
PESO MUESTRA							
SECA + TARA (gr.)	43.80	40.70	43,80	44.60	21.00	21.30	21.50
PESO DEL AGUA (gr.)	4.20	4.30	4.90	4.60	0.50	0.60	0,60
PESO DE TARA (gr.)	36.50	32.90	34.50	35.60	19.40	19.30	19.50
PESO MUESTRA							
SECA (gr.)	7.30	7.80	9.30	9.00	1.60	2.00	2.00
CONTENIDO DE							
HUMEDAD (%)	57.53	55.13	52.69	51.11	31.25	30.00	30.00
N° DE GOLPES	13	24	31	40			
11 02 002 20	13	21	31	42	L		
L.L. =	53.55	L.P. =	30.42	I.P. =	23.13		


UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERIA LABORATORIO DE MECANICA DE SUELOS Emesto H. Muñoz Sánchez / Omar M. Jaime Rebaza

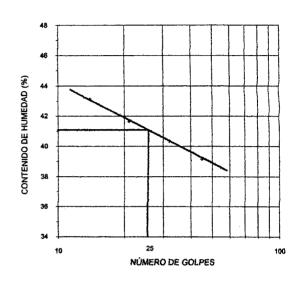
LÍMITES DE CONSISTENCIA LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO

Normas: ASTM D 4318 - AASHTO T 89 - AASHTO T 90

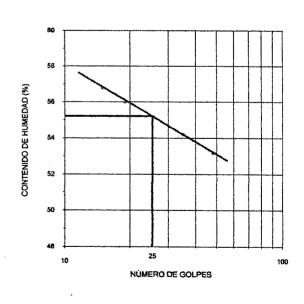

CALICATA C-8 ESTRATO E-2

ENSAYO	L	IMITE L	מועסל	0	LÍMIT	E PLÁS	TICO	
Nº DE TARA	1	2	3	4	1	2	3	
PESO MUESTRA								
HUMEDA + TARA (gr.)	46.50	43.40	43.10	43.90	23.60	23.60	23.90	
PESO MUESTRA								
SECA + TARA (gr.)	41.30	39.20	38.90	39.90	22.60	22.50	22.80	
PESO DEL AGUA (gr.)	5.20	4.20	4.20	4.00	1.00	1.10	1.10	
PESO DE TARA (gr.)	32.80	32.30	31,90	33.20	19.40	19.00	19.20	
PESO MUESTRA								
SECA (gr.)	8.50	6.90	7.00	6.70	3.20	3.50	3.60	
CONTENIDO DE								
HUMEDAD (%)	61.18	60.87	60.00	59.70	31.25	31.43	30.58	
N° DE GOLPES	19	23	37	46				
L.L. =	L.L. = 60.65 L.P. = 31.08 l.P. = 29.57							

CALICATA C-8 ESTRATO E-3


ENSAYO	L	МПЕ	aluol	LÍMIT	E PLÁS	TICO	
N° DE TARA	1	2	3	4	1	2	3
PESO MUESTRA							
HUMEDA + TARA (gr.)	43,60	44.10	50.50	47.80	24.00	23.60	22.40
PESO MUESTRA							
SECA + TARA (gr.)	39.60	40.10	46.00	43.40	23.10	22.80	21.80
PESO DEL AGUA (gr.)	4.00	4.00	4.50	4,40	0,90	0.80	0.60
PESO DE TARA (gr.)	31,70	32.10	36.90	34.40	19.30	19.40	19.30
PESO MUESTRA							
SECA (gr.)	7.90	8.00	9.10	9.00	3.60	3.40	2.50
CONTENIDO DE							
HUMEDAD (%)	50.63	50.00	49.45	48.89	23.68	23.53	24.00
№ DE GOLPES	16	21	30	40			
£.L. =	49.70	L.P. =	23.74	I.P. ≃	25.96		

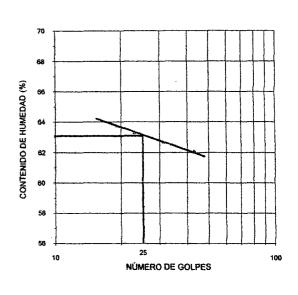
LÍMITES DE CONSISTENCIA LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO Normas: ASTM D 4318 - AASHTO T 89 - AASHTO T 90


CALICATA C-8 ESTRATO E-4

ENSAYO	L	LÍMITE LÍQUIDO LÍMITE PLÁST						
Nº DE TARA	1	2	3	4	1	2	3	
PESO MUESTRA HUMEDA + TARA (gr.)	47.20	45.10	48.40	43.10	22.50	42.10	38.00	
PESO MUESTRA SECA + TARA (gr.)	43.10	41.60	43.80	40.20	21.90	41.40	37.40	
PESO DEL AGUA (gr.)	4.10	3.50	4.60	2.90	0.60	0.70	0.60	
PESO DE TÁRA (gr.)	33.60	33.20	32.40	32.80	19.00	37.90	34.40	
PESO MUESTRA SECA (gr.)	9.50	8.40	11.40	7.40	2.90	3.50	3.00	
CONTENIDO DE HUMEDAD (%)	43.16	41.67	40.35	39,19	20.69	20.00	20.00	
№ DE GOLPES	14	21	32	45				
L.L.=	41.05	41.05 L.P. = 20.23 l.P. = 20.82						

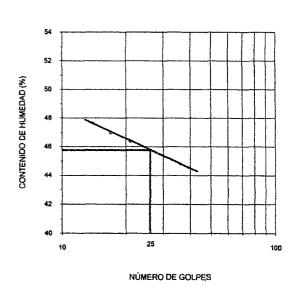
CALICATA C-9 ESTRATO E-2

ENSAYO	L	LÍMITE LÍQUIDO LÍMITE PLÁSTI						
Nº DE TARA	1	2	3	4	1	2	3	
PESO MUESTRA HUMEDA + TARA (gr.)	45.50	47.10	44.90	47.50	42.10	40.10	43.80	
PESO MUESTRA SECA + TARA (gr.)	40.90	42.90	40.40	43.30	40.40	38.60	42.50	
PESO DEL AGUA (gr.)	4.60	4.20	4.50	4.20	1.70	1.50	1.30	
PESO DE TARA (gr.)	32.80	35.40	32.10	35.40	33.80	32.80	37.40	
PESO MUESTRA SECA (gr.)	8.10	7.50	8.30	7.90	6.60	5.80	5.10	
CONTENIDO DE HUMEDAD (%)	56.79	56.00	54.22	53.16	25.76	25.86	25.49	
№ DE GOLPES	15	19	35	48				
LL =	55.25	Ĺ.P. =	25.70	I.P. =	29.55			



LÍMITES DE CONSISTENCIA LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO

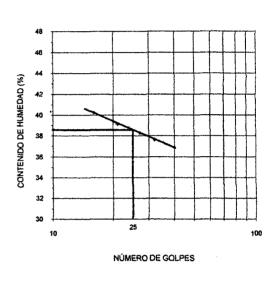
Normas: ASTM D 4318 - AASHTO T 89 - AASHTO T 90


CALICATA C-9 ESTRATO E-3

ENSAYO	L	MITE L	odiupi.	,	LÍMIT	E PLAS	TICO		
Nº DE TARA	1	2	3	4	1	2	3		
PESO MUESTRA HUMEDA + TARA (gr.)	45.70	39.80	42.20	41.00	22.30	22.00	22.20		
PESO MUESTRA SEĆA + TARA (gr.)	41.30	38.70	38.50	37.40	21.60	21.30	21.50		
PESO DEL AGUA (gr.)	4.40	3.10	3.70	3.60	0.70	0.70	0.70		
PESO DE TARA (gr.)	34.40	31.80	32.60	31.60	19.40	19.20	19.30		
PESO MUESTRA SECA (gr.)	6.90	4.90	5.90	5.80	2.20	2.10	2.20		
CONTENIDO DE HUMEDAD (%)	63.77	63.27	62.71	62.07	31.82	33.33	31.82		
№ DE GOLPES	19	23	31	43					
L.L. =	63.15	63.15 L.P. = 32.32 L.P. = 30.83							

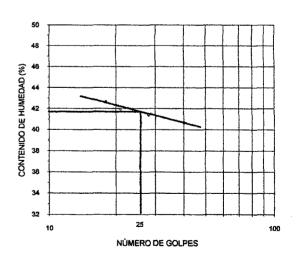
CALICATA C-9 ESTRATO E-4

ENSAYO	L.	IMITE L	JQUID	LIMIT	E PLÁS	TICO	
N° DE TARA	1	2	3	4	1	2	3
PESO MUESTRA							
HUMEDA + TARA (gr.)	49.00	45.00	49,80	51,30	54.00	48.60	44.40
PESO MUESTRA							
SECA + TARA (gr.)	44.90	41.10	45.30	46,10	51.10	46.30	42.60
PESO DEL AGUA (gr.)	4.10	3.90	4.50	5.20	2.90	2.30	1.80
PESO DE TARA (gr.)	36.30	32.80	35.60	34.50	38.00	35.80	34.40
PESO MUESTRA							
SECA (gr.)	8.60	8.30	9.70	11.60	13.10	10.50	8.20
CONTENIDO DE HUMEDAD (%)	47.67	46.99	46.39	44.83	22.14	21.90	21.95
Nº DE GOLPES	14	17	21	36	·		-
L.L. =	45.80	L.P. =	22.00	I.P. ≃	23.80		



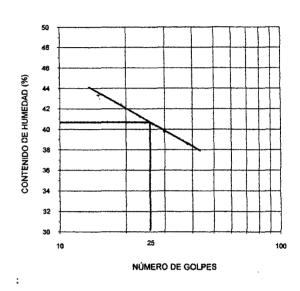
LÍMITES DE CONSISTENCIA LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO

Normas: ASTM D 4318 - AASHTO T 89 - AASHTO T 90

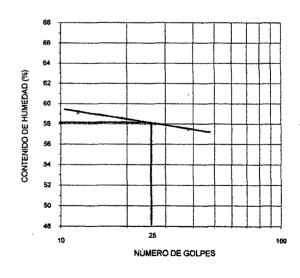

CALICATA C-10 ESTRATO E-2

ENSAYO	L	IMITE L	.iQUIDC	>	LIMIT	EPLAS	TICO
№ DE TARA	1	2	3	4	1	2	3
PESO MUESTRA HUMEDA + TARA (gr.)	47.00	46.40	45.20	48.20	36.10	38.30	41.00
PESO MUESTRA SECA + TARA (gr.)	43.70	42.60	41.60	45.00	35.40	37,30	39.90
PESO DEL AGUA (gr.)	3.30	3.80	3.60	3.20	0.70	1.00	1.10
PESO DE TARA (gr.)	35.50	32.90	32.20	36.50	31.80	32.20	34.00
PESO MUESTRA SECA (gr.)	8.20	9.70	9.40	8.50	3.60	5.10	5.90
CONTENIDO DE HUMEDAD (%)	40.24	39.18	38.30	37.65	19.44	19.61	18.64
№ DE GOLPES	16	21	27	32			
L.L. =	38.50	L.P. =	19.23	{.P. =	19.27		

CALICATA C-10 ESTRATO E-3


ENSAYO	L	Імпе і	aluol)	LÍMIT	E PLÁS	TICO
Nº DE TARA	1	2	3	4	1	2	3
PESO MUESTRA HUMEDA + TARA (gr.)	43.70	43.70	48.40	49.00	37,20	40.30	42.50
PESO MUESTRA SECA + TARA (gr.)	40.20	40.30	44.30	45.50	36.30	39.30	41.20
PESO DEL AGUA (gr.)	3.50	3.40	4.10	3.50	0.90	1.00	1.30
PESO DE TARA (gr.)	32.00	32.20	34.40	36.90	31.60	34.40	35.20
PESO MUESTRA SECA (gr.)	8.20	8.10	9.90	8.60	4.70	4.90	6.00
CONTENIDO DE HUMEDAD (%)	42.68	41.98	41.41	40.70	19.15	20.41	21.67
N° DE GOLPES	18	21	28	40			
LL=	L.L. = 41.65 L.P. = 20.41						

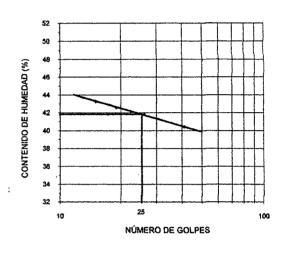
LÍMITES DE CONSISTENCIA LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO Normas: ASTM D 4318 - AASHTO T 89 - AASHTO T 90


CALICATA C-10 ESTRATO E-4

ENSAYO	L	IMITE L	JQUIDO	o .	LÍMIT	E PLÁS	TICO
N° DE TARA	1	2	3	4	1	2	3
PESO MUESTRA HUMEDA + TARA (gr.)	48.30	45.80	48.50	50.10	47.70	46.20	43.60
PESO MUESTRA SECA + TARA (gr.)	44.70	41.90	44.80	45.70	46.10	44.50	42.10
PESO DEL AGUA (gr.)	3.60	3.90	3.70	4.40	1.60	1.70	1.50
PESO DE TARA (gr.)	36.40	32.70	35.50	34,30	38,00	35.80	34.40
PESO MUESTRA SECA (gr.)	8.30	9.20	9.30	11.40	8.10	8.70	7.70
CONTENIDO DE HUMEDAD (%)	43.37	42.39	39.78	38.60	19.75	19.54	19.48
№ DE GOLPES	15	19	30	38			
L.L =	L.L. = 40.65 L.P. = 19.59				21.06		

CALICATA C-11 ESTRATO E-2

ENSAYO	L	ÍMITE L	Jainbl	ɔ	LÍMIT	E PL Á S	TICO
Nº DE TARA	1	2	3	4	1	2	3
PESO MUESTRA							
HUMEDA + TARA (gr.)	50.40	42.70	40.40	45.70	37.10	34.80	39.60
PESO MUESTRA							
SECA + TARA (gr.)	45.20	38.60	35.70	41.10	36.00	34.00	38.80
PESO DEL AGUA (gr.)	5.20	4.10	4.70	4.60	1.10	0.80	0.80
PESO DE TARA (gr.)	36.40	31.60	27.60	33.10	32.20	31,20	35.90
PESO MUESTRA							
SECA (gr.)	8.80	7.00	8.10	8.00	3.80	2.80	2.90
CONTENIDO DE HUMEDAD (%)	59.09	58.57	58.02	57.50	28.95	28.57	27.59
№ DE GOLPES	12	19	27	38			
L.L. =	L.P. =	28.37	I.P. ≈	29.73			



LÍMITES DE CONSISTENCIA LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO

Normas: ASTM D 4318 - AASHTO T 89 - AASHTO T 90

CALICATA C-11 ESTRATO E-3

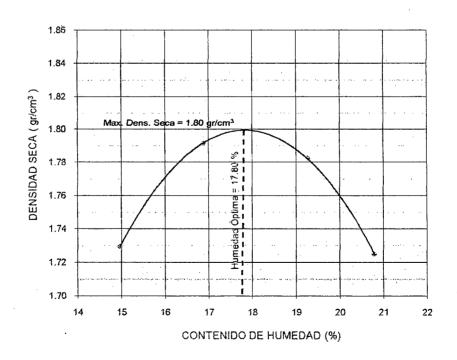
ENSAYO	L	ÍMITE L	Jour	O .	LÍMIT	E PLÁS	TICO
Nº DE TARA	1	2	3	4	1	2	3
PESO MUESTRA HUMEDA + TARA (gr.)	47.80	50.60	44.70	45.10	26.90	24.60	26.50
PESO MUESTRA SECA + TARA (gr.)	43.60	45.70	40.80	41.50	25.60	23,60	25.30
PESO DEL AGUA (gr.)	4.20	4.90	3.90	3.60	1.30	1.00	1.20
PESO DE TARA (gr.)	33.90	34.20	31,50	32.60	19.10	19,10	19.00
PESO MUESTRA SECA (gr.)	9.70	11.50	9.30	8.90	6.50	4.50	6.30
CONTENIDO DE HUMEDAD (%)	43.30	42.61	41.94	40.45	20.00	22.22	19.05
Nº DE GOLPES	15	19	26	41			
L.L.≖	41.80	L.P.=	20.42	l.P.≃	21.38		

CALICATA C-11 ESTRATO E-4

ENSAYO	L,	ÍMITE L	.lQUID	0	LIMIT	E PLÁS	TICO
Nº DE TARA	1	2	3	4	1	2	3
PESO MUESTRA HUMEDA + TARA (gr.)	49.80	50.60	48.00	51.80	25.10	24.30	24.90
PESO MUESTRA SECA + TARA (gr.)	45.30	46.00	43.20	48.70	24.10	23.40	23.90
PESO DEL AGUA (gr.)	4.50	4.60	4.80	5.10	1.00	0.90	1.00
PESO DE TARA (gr.)	35.60	35.90	32.40	35,10	19.40	19.30	19.30
PESO MUESTRA SECA (gr.)	9.70	10.10	10.80	11.60	4.70	4.10	4.60
CONTENIDO DE HUMEDAD (%)	46.39	45.54	44.44	43.97	21.28	21.95	21.74
N° DE GOLPES	16	21	30	35			
L.L = 45.00 L.P. = 21.66 l.P. = 23.34							

ENSAYO DE COMPACTACIÓN

PRUEBA PROCTOR MODIFICADO


Método AASHTO Standard T-180 (ASTM - D1557)

Método A

Energía de Compactación: 27.2 Kg./cm³

CALICATA C-11 ESTRATO E-2

PRUEBA	1		2		3		4	ļ
Peso Húm. + Molde (gr)	5,790	0.00	5,890	0.00	5,920.00		5,88	0.00
Peso Molde (gr)	3,913.00		3,913.00		3,913	3.00	3,91	3.00
Peso Húmedo (gr)	1,87	7.00	1,977	7.00	2,007	7.00	1,96	7.00
Vol. Molde (cm ³)	944	.00	944	.00	944	.00	944	.00
Densidad Húmeda (gr)	1.9	99	2.0	9	2.1	3	2.0	08
NUMERO DE TARA	1-A	1-B	2-A	2-B	3-A	3-B	4-A	4-B
Peso Húm. + Tara (gr)	148.90	154.60	180.40	187.30	186.50	170.00	172.10	180.00
Peso Seco + Tara (gr)	134.30	138.30	158.80	165.30	163.60	147.10	148.10	154.60
Peso Agua (gr)	14.60	16.30	21.60	22.00	22.90	22.90	24.00	25.40
Peso Tara (gr)	33.40	32.80	32.40	33.50	36.80	35.30	32.00	33.20
Peso Muestra Seca (gr)	100.90	105.50	126.40	131.80	126.80	111.80	116.10	121.40
Cont. Humedad (gr/cm ³)	14.47	15.45	17.09	16.69	18.06	20.48	20.67	20.92
CONT. HUM. PROM. (gr/cm ³)	14.96		16.	89	19.27		20	.80
DENSIDAD SECA (gr/cm ³)	1.7	73	1.7	79	1.7	78	1.	72

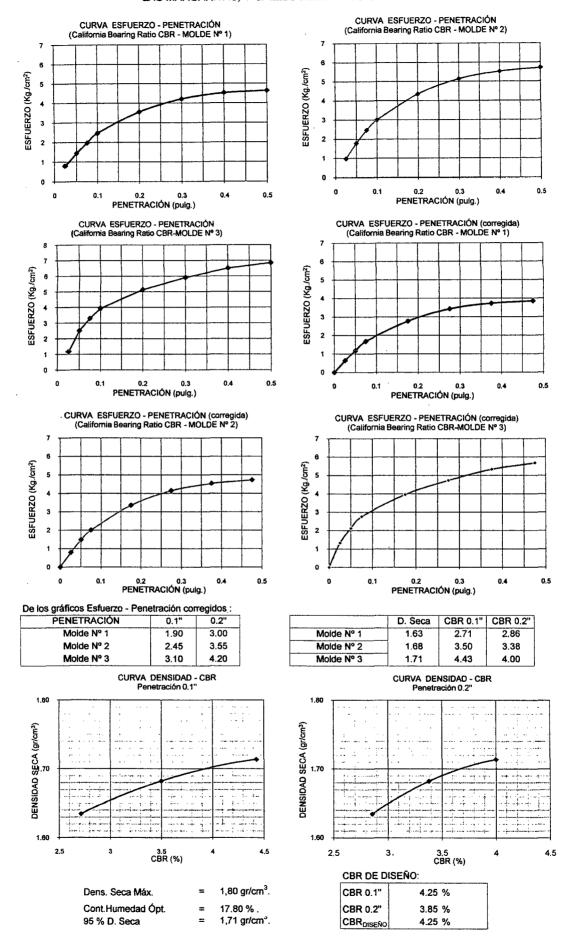
RELACIÓN DE SOPORTE CALIFORNIA

CBR

(CALIFORNIA BEARING RATIO)
Norma ASTM - D1883

COMPACTACIÓN CBR

CALICATA C-11 ESTRATO E-2


NÚMERO DE MOLDE	l	1			2			3	
Altura Molde (cm)	12.		12.93	12.		12.90	12.		13.04
` ´	15.		15.20			15.30			15.50
Diámetro Molde (cm)		-		15.30				15.50	
Nº Capas	5		5	5	i	5		5	5
Nº Goipes por Capa	12	2	12	2	5	25	5	6	56
COND. DE MUESTRA	Antes de	Empapar	Después	Antes de	Empapar	Después	Antes de	Empapar	Después
P. Húm. + Molde (gr)	8430	00.0	8840.00	8675	5.00	9080.00	900	9005.00	
Peso Molde (gr)	4150	00.0	4150.00	4230	0.00	4230.00	4310.00		4310.00
Peso Húmedo (gr)	4280	0.00	4690.00	4445	5.00	4850.00	4695.00		5000.00
Vol. Molde (cm3)	2268	3.23	2345.62	2298.17		2370.80	239	2396.39	
Dens. Húmeda (gr/cm³)	1.8	39	2.00	1.9	1.93		1.9	1.96	
NÚMERO DE TARA	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P. Húmedo + Tara (gr)	207.80	193.90	166.80	132.50	141.70	164.00	166.80	148.30	163.70
Peso Seco + Tara (gr)	184.40	172.50	141.50	119.80	127.50	139.40	150.40	134.10	142.60
Peso Agua (gr)	23.40	21.40	25.30	12.70	14.20	24.60	16.40	14.20	21.10
Peso Tara (gr)	32.90	33.50	36.60	34.60	32.90	32.00	36.30	34.50	34.40
P. Muestra Seca (gr)	151.50	139.00	104.90	85.20	94.60	107.40	114.10	99.60	108.20
Cont. Humedad (%)	15.45	15.40	24.12	14.91	15.01	22.91	14.37	14.37 14.26	
Cont. Hum. Prom. (%)	15.	42	24.12	14.	14.96		14	.32	19.50
Densidad Seca (gr/cm³)	1.6	33	1.61	1.6	58	1.66	1.	71	1.70

Ensayo de hinchamiento

TIE	MPO	N	OLDE Nº	1	N	AOLDE Nº 2	2		MOLDE Nº :	3	
ACUN	MULADO	LECTURA	HINCHAMIENTO		LECTURA	HINCHAMIENTO		LECTURA HINCH		AMIENTO	
Horas	Días	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	
00	0	0,000	0.000	0.00	0.000	0.000	0.00	4.000	0.000	0.00	
24	1	3.790	3.790	3.03	1.570	1.570	1.26	6.050	2.050	1.61	
48	2	4.190	4.190	3.35	2.420	2.420	1.94	6.870	2.870	2.26	
72	3	4.265	4.265	3.41	3.665	3.665	2.93	7.243	3.243	2.55	
96	4	4.265	4.265	3.41	3.950	3.950	3.16	7.420	3.420	2.69	

ENSAYO CARGA - PENETRACION

PENET	RACION	ļ	MOLDE Nº 1		MOLDE Nº 2	ı	MOLDE Nº 3
(mm.)	(pulg.)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO
0.64	0.025	16	0.79	20	0.99	24	1.18
1.27	0.050	29	1.43	36	1.79	51	2.52
1.90	0.075	40	1.97	50	2.48	67	3.31
2.54	0.100	47	2.47	61	3.01	77	3.95
5.08	0.200	62	3.56	83	4.35	101	5.15
7.62	0.300	72	4.22	98	5.14	115	5.92
10.16	0.400	80	4.52	108	5.53	126	6.52
12.70	0.500	86	4.64	116	5.72	133	6.86

EXPLORACIÓN GEOTÉCNICA

PROYECTO: "Pavimentación de las urbanizaciones: Sarita,

Alan Perú, Las Margaritas; y calles del barrio

San José"

CALICATA C-1

	CLASIFIC	CACIÓN					LIM	ITES
PROF. (m.)	A.A.S.H.T.O.		SÍMBOLO GRÁFICO	DESCRIPCIÓN DEL MATERIAL	MUESTRA	(%)	LL (%)	(%)
0.45		,	4 4	RELLENO (Material de cantera)	S/M			
0.50	A-7-6 (4)	CL		Arcilla limosa gravosa de plasticidad media, color marrón oscuro, con 12.67 % de arena y 39.66 % de grava de tamaño máximo 2", bloques sub angulares. Presencia de carbonatos, cuarzo, hematita y limonita. Se encuentra húmeda, medianamente consolidada y contiene moderado porcentaje de sales sulfatadas (reacción moderada al H CL).	C-1 E-2	14.48	43	22
1.00	A-7-6 (13)	CL		Arcilla gravosa de plasticidad media, color marrón amarillento, 20.94 % de arena y apreciable cantidad de grava (14.26 %) de tamaño máximo 1½", bloques angulares. No contiene sales sulfatadas (reacción nula al H CL). Se encuentra húmeda, con minerales claros como: hematita, limonita, carbón.	C-1 E-3	14.03	42	21
2.00							٤	

EXPLORACIÓN GEOTÉCNICA

PROYECTO: "Pavimentación de las urbanizaciones: Sarita,

Alan Perú, Las Margaritas; y calles del barrio

San José"

CALICATA C-2

	CLASIFIC	CA CIÁN	-13.00				LÍM	ITES
PROF. (m.)	A.A.S.H.T.O.		SIMBOLO GRÁFICO	DESCRIPCIÓN DEL MATERIAL	MUESTRA	W (%)	LL (%)	(%)
0.30		0.0.0.0	4 4 4	RELLENO (Material de cantera)	\$/M		(/-)	
0.50	A-7-6 (18)	СН		Arcilla gravosa de alta plasticidad, de color marrón grisáceo; con 18.32 % de arena y apreciable cantidad de grava (28.00 %) de tamaño máximo 1½°, estructura masiva. Presencia de carbonatos , feldespatos (plagiodiasa), micas (biotita), hematita y limonita. Se encuentra húmeda, medianamente consolidada y con moderado porcentaje de sales sulfatadas (reacción moderada al H CL).	C-2 E-2	10.07	52	27
1.00	A-7-6 (24)	СН		Arcilla de alta plasticidad, color marrón amarillento, mezclada con 28.22 % de arena y 5.86 % de grava de tamaño máximo 3/8 ", estructura masiva. Con alto contenido de sales sulfatadas (reacción violenta al H CL). Hhúmeda, con presencia de carbonatos, feldespatos (plagioclasa), micas (biotita), hematita y limonita.	C-2 E-3	16.39	58	29
2.00			:					

EXPLORACIÓN GEOTÉCNICA

PROYECTO : "Pavimentación de las urbanizaciones: Sarita, Alan Perú, Las Margaritas; y calles del barrio San José"

CALICATA C-3

DDOE (m.)	CLASIFI	CACIÓN	SÍMBOLO			w		ITES
PROF. (m.)	A.A.S.H.T.O.	S.U.C.S.	GRÁFICO	DESCRIPCIÓN DEL MATERIAL	MUESTRA	(%)	(%)	IP (%)
0.40			A A A	RELLENO (Material de cantera)	S/M			
1.00	A-7-6 (17)	CL		Arcilla limosa, de plasticidad media, color marrón oscuro, mezclada con 17.54 % de arena y 8.32 % de grava de tamaño máximo 3/8", bloques sub angulares. Húmeda, con alto contenido de sales sulfatadas (reacción violenta al H CL). Minerales: carbonatos, hematita.	C-3 E-2	15.07	41	21
2.00								

EXPLORACIÓN GEOTÉCNICA

PROYECTO: "Pavimentación de las urbanizaciones: Sarita,

Alan Perú, Las Margaritas; y calles del barrio

San José"

CALICATA C-4

	CLASIFICACIÓN		SÍMBOLO	_			LÍM	ITES
PROF. (m.)	A.A.S.H.T.O.		GRÁFICO	DESCRIPCIÓN DEL MATERIAL	MUESTRA	(%)	LL (%)	IP (%)
			4 4	RELLENO (Material de cantera)	S/M			
1.00	A-7-6 (13)	CL		Arcilla limosa gravosa, de plasticidad media, color marrón negruzco, con 18.26 % de arena y apreciable cantidad de grava (22.69 %) de tamaño máximo 1½", bloques sub angulares. Húmeda, con muy alto contenido de sales sulfatadas (reacción extremadamente violenta al H CL). Contiene carbonatos, fragmentos de calcita.	C-4 E-2	13.46	46	24
2.00								

EXPLORACIÓN GEOTÉCNICA

PROYECTO : "Pavimentación de las urbanizaciones: Sarita,

Alan Perú, Las Margaritas; y calles del barrio

San José"

CALICATA C-5

	CLACIE	CA CIÓN					LÍM	ITES
PROF. (m.)	CLASIFIC A.A.S.H.T.O.		SÍMBOLO GRÁFICO	DESCRIPCIÓN DEL MATERIAL	MUESTRA	(%)	LL (%)	IP (%)
0.45			4 4 4	RELLENO (Material de cantera)	S/M			
1.00	A-7-6 (20)	ОН		Arcilla (arcilla orgánica), de plasticidad media, color marrón negruzco, mezclada con 15.24 % de arena y 8.82 % de grava de tamaño máximo 3/8", bloques angulares. Se encuentra húmeda, con alto contenido de sales sulfatadas (reacción violenta al H CL). Presencia de carbonatos.	C-5 E-2	15.81	51	21
2.00								

EXPLORACIÓN GEOTÉCNICA

PROYECTO: "Pavimentación de las urbanizaciones: Sarita,

Alan Perú, Las Margaritas; y calles del barrio

San José"

CALICATA C-6

	CLASIFICACIÓN		SIMBOLO			14/		ITES
PROF. (m.)	A.A.S.H.T.O.	S.U.C.S.	GRÁFICO	DESCRIPCIÓN DEL MATERIAL	MUESTRA	(%)	(%)	(%)
			4	RELLENO (Material de cantera)	S/M			
0.30	A-7-6 (23)	СН		Arcilla ferruginosa, de plasticidad media, color marrón amarillento tenue, mezclada con 12.94 % de arena, 16.90 % de limo y escasa cantidad de grava (1.04 %), tam. max. nominal, bloques angulares. Se encuentra húmeda, medianamente consolidada, con moderado porcentaje de sales sulfatadas (reacción moderada al H CL). Minerales: carbonatos, limonita.	C-6 E-2	17.23	48	24
1.00	A-2-7 (4)	GC		Arcilla gravosa, de plasticidad alta, color marrón negruzco, mezclada con 5.83 % de arena, 10.40 % de limo y 57.07 % de grava de tamaño máximo 2", bloques angulares. Se encuentra húmeda, medianamente consolidada y contiene moderado porcentaje de sales sulfatadas. Presencia de carbonatos, limonita.	C-6 E-3	13.06	56	30
2.00								

EXPLORACIÓN GEOTÉCNICA

PROYECTO: "Pavimentación de las urbanizaciones: Sarita,

Alan Perú, Las Margaritas; y calles del barrio

San José"

CALICATA C-7

CLASIE	CACIÓN	0(110010				LÍM	ITES
		GRÁFICO	DESCRIPCIÓN DEL MATERIAL	MUESTRA	(%)	LL (%)	IP (%)
		4	RELLENO (Material de cantera)	S/M			
A-7-6 (2.1)	СН		Arcilla ferruginosa de plasticidad media, de color marrón amarillento. Mezclada con 12.28 % de arena, 15.60 % de limo y apreciable cantidad de grava (10.44 %) de tamaño máximo 1", bloques sub angulares. Se encuentra húmeda y no contiene sales sulfatadas (reacción nula al H CL). Minerales: hematita, limonita.	C-7 E-2	13.54	50	23
A-7-6 (21)	ОН		Arcilla (arcilla orgánica) ferruginosa de alta plasticidad, color marrón oscuro, mezclada con 18.14 % de arena, 11.30 % de ilmo y 9.72 % de grava, tam. máx. ½ ", bloques angulares. Se encuentra medianamente húmeda, y contiene escaso porcentaje de sales sulfatadas (reacción leve al H CL). Presencia de carbonatos, hematita, limonita.	C-7 E-3	9.51	54	24
A-7-5 (%)	СН		Arcilla (arcilla inorgánica), de alta plasticidad, de color negro grisáceo, mezclada con 16.70 % de limo y 16.12 % de arena, tam. < Nº 10, bloques angulares. Se encuentra húmeda y con alto porcentaje de sales sulfatadas. Minerales: calcita (carbonato).	C-7 E-4	15.14	54	23
	A-7-6 (24)	A-7-6 (23) OH	A.7-6 (24) CH A-7-6 (24) OH	A.A.S.H.T.O. S.U.C.S. GRÁFICO RELLENO (Material de cantera) Arcilla ferruginosa de plasticidad media, de color marrón amarillento. Mezclada con 12.28 % de arena, 15.60 % de limo y apreciable cantidad de grava (10.44 %) de tamaño máximo 1", bloques sub angulares. Se encuentra húmeda y no contiene sales sulfatadas (reacción nula al H CL). Minerales: hematita, limonita. Arcilla (arcilla orgánica) ferruginosa de alta plasticidad, color marrón oscuro, mezclada con 18.14 % de arena, 11.30 % de limo y 9.72 % de grava, tam. máx. ½ ", bloques angulares. Se encuentra medianamente húmeda, y contiene escaso porcentaje de sales sulfatadas (reacción leve al H CL). Presencia de carbonatos, hematita, limonita. Arcilla (arcilla inorgánica), de alta plasticidad, de color negro grisáceo, mezclada con 16.70 % de limo y 16.12 % de arena, tam. < Nº 10, bloques angulares. Se encuentra	A-7-6 (21) OH A-7-6 (21) OH A-7-6 (23) OH A-7-6 (24) OH A-7-6 (25) OH A-7-6 (26) A-7-6 (27) OH A-7-6 (27) A-7-6 (28) OH A-7-6 (28) A-7-6 (28) OH A-7-6 (28) A-7-6 (28) A-7-6 (28) A-7-6 (28) OH A-7-6 (28) A-7-6 (28) A-7-6 (28) A-7-6 (28) OH A-7-6 (28) A-7-6 (28) OH A-7-6 (28) A-7-6 (28) A-7-6 (28) A-7-6 (28) OH A-7-6 (28) A-7-6	A.A.S.H.T.O. S.U.C.S. GRÁFICO RELLENO (Material de cantera) MUESTRA W (%) Arcilla ferruginosa de plasticidad media, de color marrón amarillento. Mezclada con 12.28 % de arena, 15.60 % de limo y apreciable cantidad de grava (10.44 %) de tamaño máximo 1", bloques sub angulares. Se encuentra húmeda y no contiene sales sulfatadas (reacción nula al H CL). Minerales: hematita, limonita. Arcilla (arcilla orgánica) ferruginosa de alta plasticidad, color marrón oscuro, mezclada con 18.14 % de arena, 11.30 % de limo y 9.72 % de grava, tam. máx. ½", bloques angulares. Se encuentra medianamente húmeda, y contiene escaso porcentaje de sales sulfatadas (reacción leve al H CL). Presencia de carbonatos, hematita, limonita. Arcilla (arcilla inorgánica), de alta plasticidad, de color negro grisáceo, mezclada con 16.70 % de limo y 16.12 % de arena, tam. < № 10, bloques angulares. Se encuentra	A.A.S.H.T.O. S.U.C.S. SÍMBOLO GRÁFICO DESCRIPCIÓN DEL MATERIAL MUESTRA W (%) RELLENO (Material de cantera) Arcilla ferruginosa de plasticidad media, de color marrón amarillento. Mezclada con 12.28 % de arena, 15.60 % de limo y apreciable cantidad de grava (10.44 %) de tamaño máximo 1*, bloques sub angulares. Se encuentra húmeda y no contiene sales sulfatadas (reacción nula al H CL). Minerales: hematita, limonita. Arcilla (arcilla orgánica) ferruginosa de alta plasticidad, color marrón oscuro, mezclada con 18.14 % de arena, 11.30 % de limo y 9.72 % de grava, tam. máx. ½ ", bloques angulares. Se encuentra medianamente húmeda, y contiene escaso porcentaje de sales sulfatadas (reacción leve al H CL). Presencia de carbonatos, hematita, limonita. Arcilla (arcilla inorgánica), de alta plasticidad, de color negro grisáceo, mezclada con 16.70 % de limo y 16.12 % de arena, tam. < Nº 10, bloques angulares. Se encuentra Arcilla (arcilla inorgánica), de alta plasticidad, de color negro grisáceo, mezclada con 16.70 % de limo y 16.12 % de arena, tam. < Nº 10, bloques angulares. Se encuentra

EXPLORACIÓN GEOTÉCNICA

PROYECTO: "Pavimentación de las urbanizaciones: Sarita,

Alan Perú, Las Margaritas; y calles del barrio

San José"

CALICATA C-8

, - -		CLASIFIC	CACIÓN	SÍMBOLO				LIM	ITES
PROF.		A.A.S.H.T.O.	S.U.C.S.	GRÁFICO	DESCRIPCIÓN DEL MATERIAL	MUESTRA	(%)	LL (%)	(%)
0.30				4 4	RELLENO (Material de cantera)	S/M			
0.50		A-7-5 (29)	ОН		Arcilla (arcilla orgánica), de alta plasticidad, de color marrón, mezclada con 12.38 % de arena, 8.30 % de limo y 9.20 % de grava, tam. máx. ½ ", bloques sub angulares. Se encuentra húmeda y no contiene sales sulfatadas. Minerales: hematita, limonita.	C-8 E-2	21.37	61	30
1.00	0.65	A - 2 - 7 (2)	GC		Arcilla gravosa de alta plasticidad, color negro grisáceo*, mezciada con 7.07 % de arena, 14.60 % de limo y 58.41 % de grava, tam. máx. 2 ", bloques angulares. Se encuentra medianamente húmeda, moderado escaso porcentaje de sales sulfatadas (reacción moderada al H CL). Presencia de carbonatos, hematia, ilmonita. * La tonalidad grisácea indica que hubo estancamiento de agua por muchos años. Olor a gas metano.	C-8 E-3	18.42	50	26
1.50 -		A - 2 - 7 (c)	ĞС		Arcilla limosa gravosa de plasticidad media, color marrón negruzco, con 8.98 % de arena, 16.30 % de limo y 73.11 % de grava, tam. máx. 2 ", bloques sub angulares. Ae encuentra húmeda, con alto porcentaje de sales sulfatadas. Minerales: carbonato.	C-8 E-4	13.87	41	21
1.30 -									
2.00 -									

EXPLORACIÓN GEOTÉCNICA

PROYECTO: "Pavimentación de las urbanizaciones: Sarita,

Alan Perú, Las Margaritas; y catles del barrio

San José"

CALICATA C-9

	CLASIFIC	CACIÓN	SÍMBOLO				LÍMI	TES
PROF. (m.)	A.A.S.H.T.O.	S.U.C.S.	GRÁFICO	DESCRIPCIÓN DEL MATERIAL		W (%)	LL (%)	(%)
0.25			2 41 44	RELLENO (Material de cantera)	S/M			
0.50	A-7-6 (29)	CH .		Arcilla (arcilla inorgánica), de alta plasticidad, de color marrón oscuro, con 12.02 % de arena, 14.30 % de limo y escasa cantidad de grava (1.16 %) de tam. máx. ¼ ", bloques sub angulares. Húmeda y con alto porcentaje de sales sulfatadas. Minerales: carbonatos, hematita.	C-9 E-2	24.30	55	30
1.00	A-7-5 (39)	МН		Arcilla limosa de alta plasticidad, color negro grisáceo, mezclada con 12.96 % de arena, 12.20 % de limo y 1.50 % de grava, tam. máx. ¼ ", bloques sub angulares. Se encuentra húmeda, con moderado porcentaje de sales sulfatadas. Minerales: carbonatos, cuarzo.	C-9 E-3	19.60	63	31
1.25	A-7-6 (4)	CL		Arcilla limosa gravosa de plasticidad media, color marrón grisáceo, con 9.82 % de arena, 12.00 % de limo y 50.13 % de grava, tam. máx. 1½ ", estructura granular compuesta. Húmeda, con alto porcentaje de sales sulfatadas. Minerales: carbonato.	C-9 E-4	13.57	46	24
2.00			•					

EXPLORACIÓN GEOTÉCNICA

PROYECTO: "Pavimentación de las urbanizaciones: Sarita,

Alan Perú, Las Margaritas; y calles del barrio

San José"

CALICATA C-10

	CLASIFIC	CACIÓN	0(1110)				LÍM	ITES
PROF. (m.)	A.A.S.H.T.O.	S.U.C.S.	SÍMBOLO GRÁFICO	DESCRIPCIÓN DEL MATERIAL		W (%)	LL (%)	IP (%)
0.00			A A . 4	RELLENO (Material de cantera)	S/M			
0.50	A - 6 (13)	CL		Arcilla inorgánica de baja plasticidad media, de color marrón oscuro, mezclada con 27.76 % de arena, 14.10 % de limo y escasa cantidad de grava (3.22 %) de tamaño max. ¼ *, bloques angulares. Se encuentra húmeda y contiene bajo porcentaje de sales sulfatadas. Minerales: Carbonatos, hematita.	C-10 E-2	12.09	39	19
0.80 1.00	A - 2 - 7 (0)	GC		Arcilla gravosa, de plasticidad media, de color marrón amarillento, mezclada con 11.65 % de arena y 74.73 % de grava de tam. máx. ¼ ", bloques angulares. Se encuentra húmeda, con alto porcentaje de sales sulfatadas (reacción violenta al H CL). Minerales: carbonatos, hematita.	C-10 E-3	14.43	42	21
1.50	A-7-6 (18)	CL		Arcilla limosa de plasticidad media, color marrón amarillento, con 17.88 % de arena, 17.80 % de limo y 2.34 % de grava, tam. máx. 2 *, bloques sub angulares. Húmeda, con alto porcentaje de sales sulfatadas. Minerales: carbonatos, limonita.	C-10 E-4	17.73	41	21
1.30							`	
2.00								·

EXPLORACIÓN GEOTÉCNICA

PROYECTO: "Pavimentación de las urbanizaciones: Sarita,

Alan Perú, Las Margaritas; y calles del barrio

San José"

CALICATA C-11

	CLASIFI	CACIÓN	olumoi o				LÍM	ITES
PROF. (m.)	A.A.S.H.T.O.		SÍMBOLO GRÁFICO	DESCRIPCIÓN DEL MATERIAL	MUESTRA	(%)	LL (%)	IP (%)
0.30			4	RELLENO (Material de cantera)	S/M			
0.50	A-7-6 (30)	ОН		Arcilla (arcilla inorgánica), de alta plasticidad, de color marrón oscuro, con 15.92 % de arena, 16.80 % de limo y escasa cantidad de grava (0.96 %), tam. máx. ¼ ", bloques angulares. Se encuentra húmeda y contiene moderado porcentaje de sales sulfatadas. Minerales: carbonatos, hematita.	C-11 E-2	18.54	58	30
1.00	A-7-6 (16)	CL		Arcilla limosa de plasticidad media, color marrón oscuro, con 30.78 % de arena, 18.40 % de limo y 2.12 % de grava de tam. menor a ¼ *, bloques sub angulares. Se encuentra húmeda y contiene alto porcentaje de sales sulfatadas (reacción extremadamente violenta al H CL). Minerales: carbonatos.	C-11 E-3	14.51	42	21
1.25	A-7-6 (11)	CL		Arcilla limosa gravosa de plasticidad media, color marrón oscuro, con 18.16 % de arena, 14.60 % de limo y 23.90 % de grava, tam. máx. 1½ ", bloques sub angulares. Húmeda, con muy alto porcentaje de sales sulfatadas (reacción extremadamente violenta al H CL). Minerales: carbonatos.	C-11 E-4	18.95	45	23
2.00								

4.3.2 MATERIAL DE CANTERA.

El estudio del material de cantera es bastante similar al estudio de suelos. Existen estudios de diferentes canteras de la localidad de Cajamarcas, efectuados anteriormente por egresantes de la Universidad Nacional de Cajamarca, por lo que se hubiese podido utilizar esa información, sin embargo, se ha creído conveniente hacer el estudio de cantera, para entrar al diseño con un poco más de seguridad. El material de cantera analizado es el correspondiente a la cantera Venecia, ubicada en las riberas del río Mashcón, a la altura de la cuadra 16 de la Av. Vía de Evitamiento Norte, cercana a la zona del proyecto (aproximadamente a 800 metros), habiéndose obtenido resultados bastante satisfactorios.

Es necesario señalar que el contenido de humedad del material de cantera varía de acuerdo al estado del clima, por lo que es conveniente que sea determinado en el momento en que se va a efectuar la pavimentación y cuando sea necesario durante la ejecución de la misma y así poder hacer las correcciones que permitan lograr una buena compactación de la base y subrasante y una adecuada mezcla para la construcción de la losa de concreto.

UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

Cantera Venecia (Río Mashcón)

CONTENIDO DE HUMEDAD

ENSAYO N°	1	2	3
PESO MUESTRA			
HUMEDA + TARA (gr.)	278.00	271.70	288.20
PESO MUESTRA			
SECA + TARA (gr.)	261.80	256.20	271.60
PESO DEL AGUA (gr)	16.20	15.50	16.60
PESO DE TARA (gr)	30.40	34.40	35.10
PESO MUESTRA			
SECA (gr.)	231.40	221.80	236.50
CONTENIDO DE			
HUMEDAD (%)	7.00	6.99	7.02
CONTENIDO DE			
HUM: PROM. (%)		7.00	

PESO ESPECÍFICO

1	2	3
100.00	100.00	100.00
155.60	155.60	155.60
651 70	651 70	651.70
051.70	051,70	651.70
714.00	713.80	713.90
2.65	2.64	2.65
	2 65	
	155.60 651.70 714.00	100.00 100.00 155.60 155.60 651.70 651.70 714.00 713.80

LIMITE LÍQUIDO

		-20		
410 DE #4D4	,			
Nº DE TARA	1	2	3	4
PESO MUESTRA	'			
HUMEDA + TARA (gr)	45.00	48.50	43.70	44.80
PESO MUESTRA				
SECA + TARA (gr.)	43.50	46.90	42.40	43.80
PESO DEL AGUA (gr.)	1.50	1.60	1.30	1.00
PESO DE TARA (gr.)	32.20	34.40	31.60	35.00
PESO MUESTRA				
SECA (gr.)	11.30	12.50	10.80	8.80
CONTENIDO DE				
HUMEDAD (%)	13.27	12.80	12.04	11.36
Nº DE GOLPES	7	9	11	15

Es posible calcular el límite líquido utilizando la ecuación 2.3.2 - 8 y la tabla 2.3.2 (1), entrando con el contenido de humedad y su respectivo número de golpes para cada secuencia de ensayo y promediando estos valores de límite líquido así obtenidos. Efectuando tendremos:

L.L. = 11.04%

Ensayo de Abrasión:

La granulometría de la muestra es de tipo B y de acuerdo al cuadro 2.3.3 - 2 :

TAMICES		Granulometría B	Peso ret.en la malla № 10 = 7,120.30 gr.				
PASA	RET.	(peso en gramos)	%Desgaste(D) = $\frac{10,030-7,150.30}{10,030} \times 100$				
2" 1 1/2"	1 1/2" 1"	5,020.00 5,010.00	10,030				
Тс	tal	10,030.00	% Desgaste (D) = 28.91 %				

El porcentaje de desgate es menor que 30, por lo que el material de la cantera Venecia, ubicada en el río Mashcón, sirve para cualquier uso (segúncuadro de desgaste permisible en materiales sometidos a la prueba de abrasión).

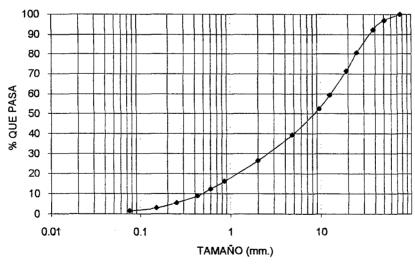
ANÁLISIS GRANULOMÉTRICO

Norma ASTM - 422

CANTERA VENECIA (RIO MASHCON)

PESO SECO INICIAL :

5,049.40 gr.


PESO SECO FINAL

4,967.60 gr.

PESO MENOR Nº 200 :

81.80 gr.

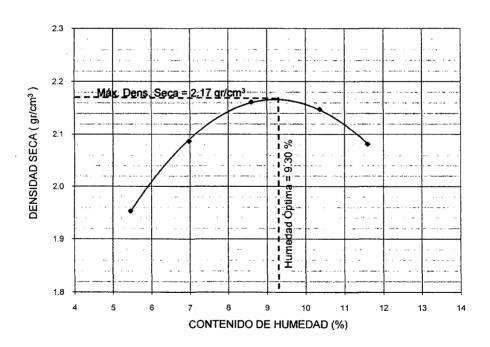
MALLA	ABERTURA	PESO RET.	% RE	% QUE PASA		
IVIALLA	(mm.)	(gr.)	PARCIAL	ACUMULADO	70 QUE FASA	
3"	76.200	0.00	0.00	0.00	100.00	
2"	50.800	152.00	3.01	3.01	96.99	
1 1/2 "	38.100	236.30	4.68	7.69	92.31	
1"	25.000	590.30	11.69	19.38	80.62	
3/4"	19.000	466.10	9.23	28.61	71.39	
1/2"	12.500	603.40	11.95	40.56	59.44	
3/8"	9.500	342.90	6.79	47.35	52.65	
Nº 4	4.760	668.50	13.24	60.59	39.41	
Nº 10	2.000	643.30	12.74	73.33	26.67	
Nº 20	0.850	525.10	10.40	83.73	16.27	
Nº 30	0.600	189.30	3.75	87.48	12.52	
Nº 40	0.425	170.70	3.38	90.86	9.14	
Nº 60	0.250	176.20	3.49	94.35	5.65	
Nº 100	0.150	129.30	2.56	96.91	3.09	
Nº 200	0.075	74.20	1.47	98.38	1.62	
Cazoleta		81.80	1.62	100.00	0.00	

D(60) = 12.50

Cu = 27.78

D(30) = 2.50

Cc = 1.11


D(10) = 0.45

ENSAYO DE COMPACTACIÓN

PRUEBA PROCTOR MODIFICADO Método AASHTO Standard T-180 (ASTM - D1557) Método C

CANTERA VENECIA (Río Mashcón)

Muestra Nº	1		2 3		3	4		5	5		
Peso suelo húm. + Molde (gr)	9,24	5.00	9,660.00 9		9,93	9,935.00		9,990.00		9,875.00	
Peso Molde (gr)	4,31	0.00	4,31	0.00	4,31	0.00	4,310.00		4,31	4,310.00	
Peso suelo húm. (gr)	4,93	5.00	5,350.00		5,625.00		5,680.00		5,565.00		
Vol. Molde (cm³)	2,39	6.39	2,39	2,396.39		2,396.39		2,396.39		6.39	
Densidad suelo húm. (gr/cm3)	2.	2.06		23	2.35		2.37		2.32		
Tara Nº	1-A	1-B	2-A	2-B	3-A	3-B	4-A	4-B	5-A	5-B	
Peso muestra húm. + Tara (gr)	141.10	153.30	184.40	174.10	150.80	176.20	184.10	160.80	136.10	102.30	
Peso muestra seca + Tara(gr)	135.40	147.10	174.60	164.70	140.50	165.70	170.10	148.70	125.60	95.00	
Peso del agua (gr)	5.70	6.20	9.80	9.40	10.30	10.50	14.00	12.10	10.50	7.30	
Peso de Tara (gr)	28.70	35.60	32.30	31.60	30.40	31.80	32.20	34.30	35.60	31.60	
Peso muestra seca (gr)	106.70	111.50	142.30	133.10	110.10	133.90	137.90	114.40	90.00	63.40	
Cont. Humedad (%)	5.34	5.56	6.89	7.06	9.36	7.84	10.15	10.58	11.67	11.51	
Cont. Humedad Prom. (%)	5.45		6.97		8.60		10.36		11.59		
Densidad suelo seco (gr/cm3)	1.	95	2.	09	2.16		2.15		2.08		

UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERIA

LABORATORIO DE MECANICA DE SUELOS

RELACION DE SOPORTE CALIFORNIA

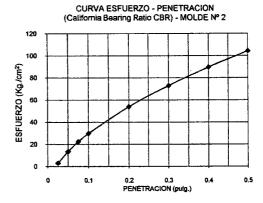
CBR

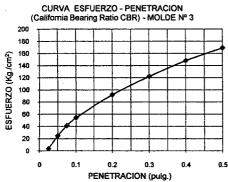
(CALIFORNIA BEARING RATIO)

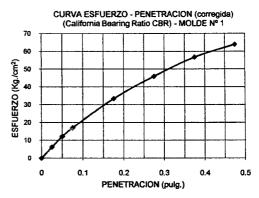
Norma ASTM - D1883

CANTERA VENECIA (Río Mashcón)

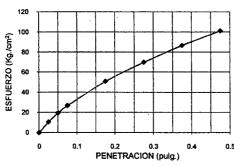

COMPACTACIÓN CBR

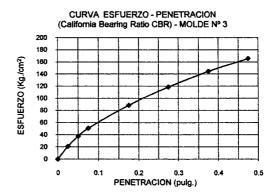

NUMERO DE MOLDE		1			2			3		
Altura Molde (cm.)	12.	12.50		12.5	12.50		12.70		12.70	
Diámetro Molde (cm.)	15.	20	15.20	15.3	10	15.30	15.	.50	15.50	
Nº Capas	5	;	5	5		5	5	5	5	
Nº Golpes por Capa	13	2	12	25		25	5	6	56	
CONDICION DE MUESTRA	Antes de	Empapar	Después	Antes de E	трараг	Después	Antes de	Empapar	Después	
P. Húm. + Molde (gr.)	8,91	0.00	9,020.00	9,290	.00.	9,350.00	9,95	5.00	9,960.00	
Peso Molde (gr.)	4,15	0.00	4,150.00	4,230	.00	4,230.00	4,310.00		4,310.00	
Peso Húmedo (gr.)	4,760.00		4,870.00	5,060.00		5,120.00	5,645.00		5,650.00	
Vol. Molde (cm3)	2,26	2,268.23		2,298.17		2,298.91	2,396.39		2,396.95	
Dens. Húmeda (gr/cm3)	2.	10	2.15	2.2	0	2.23	2.3	36	2.36	
NUMERO DE TARA	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C	
P. Húrnedo + Tara (gr.)	194.30	206.00	261.80	179.10	161.20	260.00	164.20	164.60	246.10	
Peso Seco + Tara (gr.)	180.60	190.80	238.20	167.30	150.70	237.30	153.70	153.90	226.00	
Peso Agua (gr.)	13.70	15.20	23.60	11.80	10.50	22.70	10.50	10.70	20.10	
Peso Tara (gr.)	34.80	27.50	34.50	34.60	33.90	33.10	33.40	32.00	33.90	
P. Muestra Seca (gr.)	145.80	163.30	203.70	132.70	116.80	204.20	120.30	121.90	192.10	
Cont. Humedad (%)	9.40	9.31	11.59	8.89	8.99	11.12	8.73	8.78	10.46	
CONT. HUM. PROM. (%)	9.35		11.59	8.94		11.12	8.	75	10.46	
DENSIDAD SECA (gr/cm3)	1.9	92	1.92	2.0	2	2.00	2.	17	2.13	

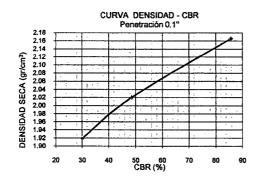

ENSAYO DE HINCHAMIENTO

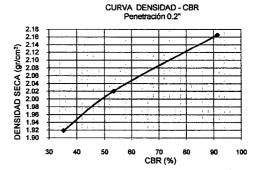

TIEM	TIEMPO ACUMULADO		MOLDE Nº	1	MOLDE N° 2 MOL			MOLDE Nº	LDE Nº 3	
ACUMUL			HINCHAMIENTO		LECTURA	HINCHAMIENTO		LECTURA	HINCHAMIENTO	
Horas	Días	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)
00	0	0.000	0.000	0.00	1.000	0.000	0.00	4.000	0.000	0.00
24	1	0.060	0.060	0.05	1.040	0.040	0.03	4.030	0.030	0.02
48	2	0.060	0.060	0.05	1.040	0.040	0.03	4.030	0.030	0.02
72	3	0.060	0.060	0.05	1.040	0.040	0.03	4.030	0.030	0.02
96	4	0.060	0.060	0.05	1.040	0.040	0.03	4.030	0.030	0.02

	ensayo carga - penetración								
PENETRA	PENETRACION MOLDE № 1		M	IOLDE № 2	MOLDE Nº 3				
(mm.)	(pulg.)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO		
0.64	0.025	42	2.07	60	3.02	75	3.70		
1.27	0.050	148	8.30	233	13.50	395	24.79		
1.90	0.075	253	14.28	445	22.50	735	41.26		
2.54	0.100	348	19.17	606	29.90	1,045	54.56		
5.08	0.200	638	35.48	1,060	54.00	1,768	92.23		
7.62	0.300	894	48.11	1,480	73.02	2,398	122.31		
10.16	0.400	1,132	58.85	1,820	89.80	2,956	148.34		
12.70	0.500	1,318	66.03	2,115	104.35	3,430	169.23		









De los gráficos "Esfuerzo - Penetración" corregidos :

PENETRACION	0.1"	0.2"
Molde Nº 1	21.00	37.00
Molde Nº 2	34.00	56.00
Molde Nº 3	60.00	96.00

	D. Seca	CBR 0.1"	CBR 0.2"
Molde Nº 1	1.92	30.00	35.24
Molde Nº 2	2.02	48.57	53.33
Molde Nº 3	2.17	85.71	91.43

Dens. Seca Máx. 2.17 gr/cm3. Cont.Humedad Opt. =

95 % D. Seca

9,30 %.

2.06 gr/cm3.

CBR DE DISEÑO:

CBRDISEÑO	63.00 %
CBR 0.2"	63.00 %
CBR 0.1"	58.00 %

EL QUE SUSCRIBE, JEFE DE LABORATORIO DE MECANICA DE SUELOS DE LA FACULTAD DE INGENIERIA DE LA UNIVERSIDAD NACIONAL DE CAJAMARCA:

CERTIFICA

Que, los bachilleres Ernesto Hilario Muñoz Sánchez y Omar Maguín Jaime rebaza, ex alumnos de la Facultad de Ingeniería de la Universidad Nacional de Cajamarca, han registrado su asistencia en este laboratorio, desarrollando el capítulo de Mecánica de Suelos de su tesis titulada: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERU, LAS MARGARITAS; Y CALLES DEL BARRIO SAN JOSE", cuyos resultados obran en este laboratorio.

Se expide el presente, a solicitud de los interesados, para los fines que estimen conveniente.

Cajamarca, 11 de agosto del 2000.

4.4 DISEÑO DEL PAVIMENTO.

4.4.1 ELECCIÓN DEL TIPO DE PAVIMENTO.

Los suelos de fundación de la zona son del tipo A-7, altamente plásticos, susceptible a grandes cambios de volumen cuando absorbe agua. Según el cuadro de Clasificación de suelos AASHTO (Compactación y tipo de pavimento), para esta clase de suelos, si es que hay drenaje adecuado y el suelo ha sido estabilizado, puede colocarse un pavimento asfáltico, en caso contrario, es preferible emplear pavimentos de concreto sobre bases granulares. Los aspectos técnicos a tener en cuenta en la elección del tipo de pavimento, descritos en el acápite 2.4.4, nos indican que el tipo de pavimento adecuado es el de concreto hidráulico.

4.4.2 DISEÑO DEL PAVIMENTO.

Método de la Asociación de Cementos Portland (PCA).

a) Vías principales.

Se consideró como vías principales a los jirones Chanchamayo y Miguel Iglesias, que son las que van a soportar mayor tráfico.

Datos:

Vialidad urbana de 1 sentido y 2 carriles.

Sin apoyo lateral, con pasajuntas.

Módulo de ruptura (MR) del concreto = 640 psi (45 Kg/cm²).

Módulo de Sub reacción del Suelo (k) = 180 pci

Espesor inicial: 20 cm. (8")

Base granular de 15 cm (6").

Factor de seguridad de carga de 1.1

Periodo de diseño 40 años y tasa de crecimiento anual del tráfico 2.0 %.

Se realizó un aforo durante varios días. Los puntos elegidos para efectuar el control del tráfico vehicular fueron las intersecciones: Jr. Chanchamayo - Jr. Huancavelica y Jr. Miguel Iglesias - Vía de Evitamiento Norte. Así mismo, se efectuó un análisis del tráfico de otras vialidades en condiciones similares. Finalmente se obtuvo un tránsito con la composición descrita en la tabla 4.4.2-a.

Análisis del tráfico.

Tránsito pesado promedio diario anual (ADTT):

El método de la PCA recomienda no considerar el análisis de todo el tráfico ligero como los vehículos A2 y A'2 (automóviles y pick-ups de 4 llantas), sin embargo, van a ser

considerados en el diseño, debido a que el tráfico ligero no influye demasiado en el diseño de espesores. Por lo que el ADTT estará en función del tránsito promedio diario anual (TPDA) dado.

Tabla 2.4.2-a:	Composición	del tráf	ico vehicular.

TIPO DE VEHÍCULOS	TOTAL DIARIOS	% DEL TDPA	CARGADOS	VACÍOS
A2	932	82.7 %	100 %	0 %
A'2	174	15.4 %	100 %	0 %
C2	5	0.4 %	60 %	40 %
C3 .	4	0.4 %	50 %	50 %
T2S2	2	0.2 %	50 %	50 %
T3S2	5	0.4 %	20 %	80 %
T2S3	3	0.3 %	33.4 %	66.6 %
T3S3	2	0.2 %	50 %	50 %
	1127	100 %		

Factor de sentido:

Los datos el aforo son en un solo sentido, luego el factor de sentido (FS) será 1.00.

Factor de carril:

La vialidad es de un solo sentido y cuenta con 2 carriles, utilizando la figura 2.4.7.7-2 y entrando con el TPDA de 1139 vehículos (incluyendo los ligeros), hasta encontrar la línea de 2 carriles en una dirección se obtiene un 97 % de vehículos circulando por el carril de la derecha, por lo que el factor de carril será 0.97.

Factor de Crecimiento Anual.

El periodo de diseño es de 40 años y la tasa de crecimiento anual de 2 %, entonces el factor de crecimiento anual (FCA) será:

FCA =
$$\frac{(1+0.02)^{40}-1}{(0.02)(40)}$$
 = 1.51

Cálculo de las repeticiones esperadas (Re).

Eje sencillo de 2.20 kips:

En el primer año:

Re = (Rep. Diarias del eje) \times (% Cargado o vacío) \times (Factor de Sentido)

 \times (Factor de Carril) \times (365)

 $Re = 932 \times 1.00 \times 1.0 \times 0.97 \times 365 = 329,975$.

En toda la vida útil:

 $Re = (Rep. 1er año) \times (Periodo de diseño) \times (Factor de Crecimiento Anual)$

 $Re = 329,975 \times 40 \times 1.51 = 19'930,490.$

Eje sencillo de 3.74 kips.

En el primer año:

 $Re = 174 \times 1.00 \times 1.0 \times 0.97 \times 365 = 61,604.7$

En toda la vida útil:

 $Re = 61,604.7 \times 40 \times 1.51 = 3'720,924.$

Eje sencillo de 4.40 kips.

Interviene sólo en el conjunto de ejes delanteros del camión de 2 ejes C2, cuando éste circula vacío.

En el primer año:

$$Re = 5 \times 0.40 \times 1.0 \times 0.97 \times 365 = 708.1$$

En toda la vida útil:

$$Re = 708.1 \times 40 \times 1.51 = 42,770.$$

Eje sencillo de 4.84 kips.

Solo interviene en el conjunto de ejes delanteros del T3S3, cuando éste circula vacío.

En el primer año:

$$Re = 2 \times 0.50 \times 1.0 \times 0.97 \times 365 = 354.05$$

En toda la vida útil:

$$Re = 354.05 \times 40 \times 1.51 = 21,385.$$

Eje sencillo de 5.28 kips.

Interviene en los conjuntos de ejes delanteros de C3, T3S2 y T2S3, cuando éstos circulan vacíos.

En el primer año:

$$Re = (4 \times 0.50 + 5 \times 0.80 + 3 \times 0.67) \times 1.0 \times 0.97 \times 365 = 2,835.9$$

En toda la vida útil:

$$Re = 2,835.9 \times 40 \times 1.51 = 171,291.$$

Eje sencillo de 6.16 kips.

Interviene solamente en el conjunto de ejes delanteros del T2S2, cuando éste circula vacío.

En el primer año:

$$Re = 2 \times 0.50 \times 1.0 \times 0.97 \times 365 = 354.05$$

$$Re = 354.05 \times 40 \times 1.51 = 21,385.$$

Eje sencillo de 8.58 kips.

Interviene sólo en el conjunto de ejes motrices del T2S3, cuando éste circula vacío.

En el primer año:

$$Re = 3 \times 0.67 \times 1.0 \times 0.97 \times 365 = 711.6$$

En toda la vida útil:

$$Re = 711.6 \times 40 \times 1.51 = 42,983.$$

Eje sencillo de 9.24 kips.

Interviene en el conjunto de ejes motrices del T2S2, cuando éste circula vacío.

En el primer año:

$$Re = 2 \times 0.50 \times 1.0 \times 0.97 \times 365 = 354.05$$

En toda la vida útil:

$$Re = 354.05 \times 40 \times 1.51 = 21,385.$$

Eje sencillo de 15.40 kips.

Interviene:

a) En los conjuntos de ejes delanteros de los vehículos C2, C3, T2S2, T3S2, T2S3 y T3S3, cuando éstos circulan cargados.

En el primer año:

Re =
$$(5 \times 0.60 + 4 \times 0.50 + 2 \times 0.50 + 5 \times 0.20 + 3 \times 0.33 + 2 \times 0.50) \times 1.0 \times 0.97 \times 365 = 3,182.9$$

En toda la vida útil:

$$Re = 3.182.9 \times 40 \times 1.51 = 192.248$$
.

b) En el conjunto de ejes posteriores dobles (T2S2), cuando éste circula vacío.

En el primer año:

$$Re = 2 \times 0.50 \times 1.0 \times 0.97 \times 365 = 354.05$$

En toda la vida útil:

$$Re = 354.05 \times 40 \times 1.51 = 21,385.$$

Eje sencillo de 17.60 kips.

Interviene:

a) En el conjunto de ejes posteriores del vehículo C2, cuando éste circula vacío.

En el primer año:

$$Re = 2 \times 0.50 \times 1.0 \times 0.97 \times 365 = 3.182.9$$

$$Re = 3,182.9 \times 40 \times 1.51 = 192,248.$$

b) En el conjunto de ejes posteriores triples del T3S3, cuando éste circula vacío.

En el primer año:

$$Re = 2 \times 0.50 \times 1.0 \times 0.97 \times 365 = 354.05$$

En toda la vida útil:

$$Re = 354.05 \times 40 \times 1.51 = 21,385.$$

Eje sencillo de 24.20 kips.

Interviene en el conjunto de ejes posteriores del C2 y en el conjunto de ejes motrices del T2S2, cuando éstos circulan cargados.

En el primer año:

$$Re = (5 \times 0.60 + 2 \times 0.50) \times 1.0 \times 0.97 \times 365 = 1,416.2$$

En toda la vida útil:

$$Re = 1,416.2 \times 40 \times 1.51 = 85,539.$$

Eje doble de 12.67 kips.

Interviene sólo en el conjunto de ejes motrices dobles del T3S3, cuando éste circula vacío.

En el primer año:

$$Re = 2 \times 0.50 \times 1.0 \times 0.97 \times 365 = 354.05$$

En toda la vida útil:

$$Re = 354.05 \times 40 \times 1.51 = 21,385.$$

Eje doble de 13.86 kips.

Interviene en el conjunto de ejes motrices dobles y posteriores dobles del T3S2, cuando éste circula vacío.

En el primer año:

$$Re = 10 \times 0.80 \times 1.0 \times 0.97 \times 365 = 2,832.4$$

En toda la vida útil:

$$Re = 2.832.4 \times 40 \times 1.51 = 171.077.$$

Eje doble de 21.12 kips.

Interviene únicamente en el conjunto de ejes posteriores dobles del camión de 3 ejes (C3), cuando éste circula vacío.

En el primer año:

$$Re = 4 \times 0.50 \times 1.0 \times 0.97 \times 365 = 708.1$$

$$Re = 708.1 \times 40 \times 1.51 = 42,770.$$

Eje doble de 39.60 kips.

Interviene en el conjunto de ejes posteriores dobles de los vehículos C3, T2S2 y T3S2 y en el conjunto de ejes motrices dobles de los vehículos T3S2 y T3S3, cuando todos éstos circulan cargados.

En el primer año:

$$Re = (4 \times 0.50 + 2 \times 0.50 + 10 \times 0.20 + 2 \times 0.50) \times 1.0 \times 0.97 \times 365 = 2,124.3$$

En toda la vida útil:

$$Re = 2.124.3 \times 40 \times 1.51 = 128.308.$$

Eje triple de 19.36 kips.

Interviene únicamente en el conjunto de ejes posteriores triples de los vehículos de 5 ejes, cuando éste circula vacío.

En el primer año:

$$Re = 3 \times 0.67 \times 1.0 \times 0.97 \times 365 = 711.6$$

En toda la vida útil:

$$Re = 711.6 \times 40 \times 1.51 = 42,983.$$

Eje triple de 55.00 kips.

Interviene en el conjunto de ejes posteriores triples de los vehículos T2S3 y T3S3, cuando éstos circulan cargados.

En el primer año:

$$Re = 3 \times 0.67 + 2 \times 0.50 \times 1.0 \times 0.97 \times 365 = 1,065.7$$

En toda la vida útil:

$$Re = 1.065.7 \times 40 \times 1.51 = 64.368.$$

La tabla 4.4.2-b muestra los resultados de todos los tipos de ejes.

Cálculo del módulo de subreacción (k) de diseño.

El CBR de diseño de la subrasante, obtenido en laboratorio, es 4.25 %, por lo que el valor de k de la subrasante será 145 pci (tabla 2.4.7.7-b).

Como el pavimento irá sobre una base granular de 15 cm. (6"), ésta incrementa el valor de soporte del terreno natural y por consiguiente también incrementa el valor de k. En la tabla 2.4.7.7-c, para k del terreno igual a 145 pci (4.01 Kg/cm³), con 6" (15 cm.) de base, el valor de k de diseño resulta siendo 180 pci (5.51 Kg/cm³).

Entre el terreno y la base se colocará una capa anticontaminante de 10 cm. de espesor (4"), grava de río, tamaño máximo 4", a la que no se le asignará aporte estructural.

Tabla 4.4.2-b: Repeticiones por cada tipo de eje.

TIPO DE EJE	PESO EN KIPS	REPETICIONES AL AÑO	REPETICIONES EN LA VIDA ÚTIL
SENCILLO	2.20	329.975	19'930,490
SENCILLO	3.74	61,605	3'720,924
SENCILLO	4.40	708	42,770
SENCILLO	5.28	2,836	171,291
SENCILLO	6.16	354	21,385
SENCILLO	8.58	712	42,983
SENCILLO	9.24	354	21,385
SENCILLO	15.40	3,183	192,248
SENCILLO	17.60	3,183	192,248
SENCILLO	24.20	1,416	85,539
TANDEM	12.67	354	21,385
TANDEM	13.86	2,833	171,077
TANDEM	15.40	354	21,385
TANDEM	21.12	708	42,770
TANDEM	39.60	2,124	128,308
TRIDEM	17.60	354	21,385
TRIDEM	19.36	712	42,983
TRIDEM	55.00	1,066	64,368

El peso por eje, de los ejes tridem, se dividirá entre tres para poder emplear la escala de los ejes sencillos en los monogramas de repeticiones permisibles, tanto de fatiga como de erosión (figuras 2.4.7.7-3, 2.4.7.7-4 y 2.4.7.7-5).

Esfuerzo Equivalente.

Con los datos de un espesor inicial de 8" y un módulo k de diseño de 180 pci, entrando a la tabla 2.4.7.7-g para encontrar los esfuerzos equivalentes para los ejes sencillos, tandem y tridem e interpolando, se obtienen valores de 247, 214 y 156, respectivamente.

Relación de esfuerzos.

La relación de esfuerzos se calcula dividiendo el esfuerzo equivalente entre el módulo de ruptura, por lo que la relación de esfuerzos para los ejes sencillos será de 0.39, para los ejes tandem de 0.33 y finalmente para los ejes tridem de 0.24.

Análisis por fatiga.

Para el cálculo de las repeticiones permisibles para cada tipo de eje, por el análisis por fatiga, se usa un nomograma, el peso y tipo de eje y su relación de esfuerzos.

Para el caso del eje sencillo de 24.2 kips, se entra a la figura 2.4.7.7 – 3 con la carga ya multiplicada por el factor de seguridad; la carga en el eje será de 26.6 kips, se une con el valor de relación de esfuerzo de 0.39, de manera que uniendo los dos puntos con una línea recta y extendiéndola hasta la escala de repeticiones permisibles, se encontrará el valor de 90,000 de repeticiones permisibles.

Para todos los ejes restantes se sigue el mismo procedimiento.

En el caso de los ejes tridem, la carga total se divide entre tres y el resultado es el valor de carga que se usa en la escala de ejes sencillos para el cálculo de repeticiones permisibles, usando su correspondiente factor de esfuerzo equivalente.

El % de daño por fatiga se calcula expresando como porcentaje la relación entre las repeticiones esperadas y las repeticiones permisibles. Para el caso del eje sencillo de 26.6 kips, el % de daño por fatiga será $(85,539 \div 100,000) \times 100 = 85 \%$.

Análisis por erosión.

Se calcula primero el factor de erosión, utilizando la tabla 2.4.7.7-i, que le corresponde a los pavimentos con pasajuntas y sin apoyo lateral. Con los datos de espesor igual a 8" y un k = 180 se encuentra los valores de erosión de 2.80 para los ejes sencillos, de 2.94 para los ejes tandem y 3.05 para los ejes tandem.

Con los valores de factor de erosión, con las diferentes cargas en el eje y utilizando la figura 2.4.7.7-4 para pavimentos sin apoyo lateral, se hallan las repeticiones permisibles por erosión.

CÁLCULO DEL ESPESOR DEL PAVIMENTO

PROYECTO: PAVIMENTACIÓN DE LAS URBANIZACIONES: SARITA, ALAN PERÚ Y CALLES EL BARRIO SAN JOSÉ.

. CALLES: CHANCHAMAYO Y MIGUEL IGLESIAS.

ESPESOR INICIAL

8" (20 cm.)

PASAJUNTAS

SI ✓ NO......

MÓDULO DE REACCIÓN k DE LA SUBRASANTE

180 pci (5.51 Kg/cm3)

APOYO LATERAL

SI... NO ✓

MÓDULO DE RUPTURA, MR

640 psi (45 Kg/cm2)

PERIODO DE DISEÑO

40 años.

FACTOR DE SEGURIDAD DE CARGA, LSF

Base granular de 6" (15 cm.)

0			Análisis de F	atiga	Análisis de Erosión	
Carga del eje en kips	Multiplicada por LSF	Repeticiones Esperadas	Repeticiones Permisibles (Fig. 2.4.7.7-2)	% de Fatiga	Repeticiones Permisibles (Fig. 2.4.7.7-2 o 2.4.7.7-3)	% de Daño
1	2	3	4	5	6	7

8. Esfuerzo equivalente

247

10. Factor de Erosión

2.80

9. Factor de relación de esfuerzo

0.39

Ejes Sencillos						
2.2	2.4	19'930,490	ilimitadas		ilimitadas	
3.74	4.1	3'720,924	ilimitadas		ilimitadas	
4.4	4.8	42,770	ilimitadas		llimitadas	
4.84	5.3	21,385	ilimitadas		ilimitadas	
5.28	5.8	171,291	ilimitadas		ilimitadas	
6.16	6.8	21,385	ilimitadas		ilimitadas	
8.58	9.4	42,983	llimitadas		llimitadas	
9.24	10.2	21,385	Ilimitadas		Ilimitadas	
15.4	16.9	192,248	llimitadas		. Ilimitadas	
17.6	19.4	192,248	ilimitadas		17'000,000	1.2
24.2	26.6	85,539	90,000	95.0	2'000,000	4.3

11. Esfuerzo equivalente

214

13. Factor de Erosión

2.94

12. Factor de relación de esfuerzo

0.33

Ejes Tandem

12.67	13.9	21,385	llimitadas	ilimitadas	
13.86	15.2	10'333,049	llimitadas	ilimitadas	
15.4	16.9	21,385	ilimitadas	ilimitadas	
21.12	23.2	42,770	ilimitadas	ilimitadas	
39.6	43.6	128,308	ilimitadas	2'500,000	5.1

14. Esfuerzo equivalente

156

16. Factor de Erosión

3.05

15. Factor de relación de esfuerzo

0.24

Ejes Tridem

17.6/3	6.2	21,385	ilimitadas	ilimitadas	
19.36/3	7.1	42,983	ilimitadas	ilimitadas	
55/3	20.2	64,368	ilimitadas	2'000,000	3.2

TOTAL	95.0	TOTAL	13.8

Debido a que los daños totales por fatiga y por erosión son inferiores al 100 %, el diseño es adecuado y por lo tanto, el espesor definitivo del pavimento para las calles Chanchamayo y Miguel Iglesias será 20 cm. (8").

b) Vías secundarias.

Se han considerado como tales las calles: Marañón, Arróspide de Loyola, Sara McDougall, Chepén, Huancavelica, Francia, Santa Victoria, Huaraz, Mariano Melgar, San Jorge, Los Tres Reyes; y los pasajes: Libertad, Cusco, César Vallejo, Niño Jesús, Virgen María y San José.

Datos:

Vialidad urbana de 1 sentido y 2 carriles.

Sin apoyo lateral, sin pasajuntas.

Módulo de ruptura (MR) del concreto = 600 psi (42 Kg/cm²), tabla 2.4.7.7-a.

Módulo de Subreacción del Suelo (k) = 180 pci (5.51 Kg/cm³)

Base granular: 6" (15 cm.)

Factor de seguridad de carga: 1.0

Espesor inicial: 17.5 cm. (7")

Datos del Tráfico:

Periodo de diseño

40 años

Tasa de crecimiento anual del tráfico

2.0 %

La composición del volumen de tráfico vehicular es la siguiente:

TIPO DE VEHÍCULO	TOTAL DIARIOS	% DEL TDPA	CARGADOS	VACÍOS
A2	245	78.3 %	100 %	0 %
A'2	62	19.8 %	100 %	0 %
C2	4	1.3 %	25 %	75 %
С3	2	0.6 %	50 %	50 %
	313	100%		

Factor de sentido:

Los datos el aforo son en un solo sentido, luego el factor de sentido (FS) será 1.00.

Factor de carril:

La vialidad es de un solo sentido y cuenta con 2 carriles, sin embargo, el volumen de tráfico vehicular es menor a 1,000, por lo que el factor de carril será 1.00.

Factor de Crecimiento Anual.

El periodo de diseño es de 40 años y la tasa de crecimiento anual adoptada de 2.0 %, entonces el factor de crecimiento anual (FCA) será 1.51

Factor de Seguridad de carga (FC)

El factor de seguridad de carga será 1.00, puesto que se trata de calles secundarias con escaso volumen de tráfico pesado.

Cálculo de las repeticiones esperadas (Re).

Eje sencillo de 2.20 kips:

En el primer año:

Re = (Rep. Diarias del eje) × (% Cargado o vacío) × (Factor de Sentido)

$$Re = 245 \times 1.00 \times 1.00 \times 1.00 \times 365 = 89,425.$$

En toda la vida útil:

$$Re = 89,425 \times 40 \times 1.51 = 5'401,270.$$

Eje sencillo de 3.74 kips.

En el primer año:

$$Re = 62 \times 1.00 \times 1.00 \times 1.00 \times 365 = 22,630.$$

En toda la vida útil:

$$Re = 22,630 \times 40 \times 1.51 = 1'366,852.$$

Eje sencillo de 4.40 kips.

Interviene sólo en el conjunto de ejes delanteros del camión de 2 ejes C2, cuando éste circula vacío.

En el primer año:

$$Re = 4 \times 0.75 \times 1.00 \times 1.00 \times 365 = 1,095.$$

En toda la vida útil:

$$Re = 1,095 \times 40 \times 1.51 = 66,138.$$

Eje sencillo de 5.28 kips.

Interviene sólo en el conjunto de ejes delanteros del camión de 3 ejes C3, cuando éste circula vacío.

En el primer año:

$$Re = 2 \times 0.50 \times 1.00 \times 1.00 \times 365 = 365$$

En toda la vida útil:

$$Re = 365 \times 40 \times 1.51 = 22,046.$$

Eje sencillo de 15.40 kips.

Interviene en los conjuntos de ejes delanteros de los camiones C2 y C3, cuando éstos circulan cargados.

En el primer año:

$$Re = (4 \times 0.25 + 2 \times 0.50) \times 1.00 \times 1.00 \times 365 = 730$$

En toda la vida útil:

$$Re = 730 \times 40 \times 1.51 = 44,092.$$

Eje sencillo de 17.60 kips.

Interviene sólo en el conjunto de ejes posteriores del camión de 2 ejes C2, cuando éste circula vacío.

En el primer año:

$$Re = 4 \times 0.75 \times 1.00 \times 1.00 \times 365 = 1,095$$

En toda la vida útil:

$$Re = 1,095 \times 40 \times 1.51 = 66,138$$
.

Eje tandem de 21.12 kips.

Interviene solamente en el conjunto de ejes posteriores dobles del camión C3, cuando éste circula vacío.

En el primer año:

$$Re = 2 \times 0.50 \times 1.00 \times 1.00 \times 365 = 365$$

En toda la vida útil:

$$Re = 365 \times 40 \times 1.51 = 22,046$$
.

Eje sencillo de 24.20 kips.

Interviene sólo en el conjunto de ejes posteriores del camión de 2 ejes C2, cuando éste circula cargado.

En el primer año:

$$Re = 4 \times 0.25 \times 1.00 \times 1.00 \times 365 = 365$$

En toda la vida útil:

$$Re = 365 \times 40 \times 1.51 = 22,046.$$

Eje tandem de 39.60 kips.

Interviene solamente en el conjunto de ejes posteriores dobles del camión C3, cuando éste circula cargado.

En el primer año:

$$Re = 2 \times 0.50 \times 1.00 \times 1.00 \times 365 = 365$$

$$Re = 365 \times 40 \times 1.51 = 22,046$$
.

En el siguiente cuadro se presentan los	resultados de todos	los tipos de ejes.
---	---------------------	--------------------

TIPO DE EJE	PESO EN KIPS	REPETICIONES AL AÑO	REPETICIONES EN LA VIDA ÚTIL
SENCILLO	2.20	89,425	5'401,270
SENCILLO	3.74	22,630	1'366,852
SENCILLO	4.40	1,095	66,138
SENCILLO	5.28	365	22,046
SENCILLO	15.40	730	44,092
SENCILLO	17.60	1,095	66,138
SENCILLO	24.20	365	22,046
TANDEM	21.12	365	22,046
TANDEM	39.60	365	22,046

Al igual que para vías principales, entre la subrasante y la base granular, se colocará una capa anticontaminante de 10 cm. (4").

Esfuerzo Equivalente.

Con los datos de un espesor inicial de 7" (17.5 cm.) y k de diseño de 180 pci, entrando a la tabla 2.4.7.7-g, los esfuerzos equivalentes resultaron de 271 para los ejes sencillos y 231 para los ejes tandem.

Relación de esfuerzos.

La tabla 2.4.7.7-a recomienda utilizar un módulo de ruptura de 42 Kg/cm² (600 psi), en el diseño de pavimentos de concreto para calles secundarias. Dividiendo los valores de esfuerzo equivalente entre este último valor, la relación de esfuerzos para los ejes sencillos será de 0.45 y para los ejes tandem de 0.39, respectivamente.

Análisis por fatiga.

El procedimiento de cálculo es el mismo que para el caso de vías principales.

Análisis por erosión.

En este caso se utilizará la tabla 2.4.7.7-j, para pavimentos sin pasajuntas y sin apoyo lateral. Con los datos de espesor igual a 7.5" y k = 180 se encontró los valores del factor de erosión, siendo de 2.80 para los ejes sencillos y 2.94 para los ejes tandem.

Con los valores de factor de erosión, con las diferentes cargas en el eje y utilizando la fig. 2.4.7.7-4, para pavimentos sin apoyo lateral, se hallan las repeticiones permisibles por erosión para cada eje.

CÁLCULO DEL ESPESOR DEL PAVIMENTO

PROYECTO: PAVIMENTACIÓN DE LAS URBANIZACIONES: SARITA, ALAN PERÚ Y CALLES EL BARRIO SAN JOSÉ.

1.0

CALLES: SECUNDARIAS.

ESPESOR INICIAL
MÓDULO DE REACCIÓN k DE LA SUBRASANTE
MODULO DE RUPTURA MR

DULO DE RUPTURA. MR FACTOR DE SEGURIDAD DE CARGA, LSF

7" (17.5 cm.) 180 pci (5.51 Kg/cm3) PASAJUNTAS APOYO LATERAL SI.... NO ✓ SI... NO V

PERIODO DE DISEÑO: 40 años.

600 psi (42 Kg/cm2)

Base granular de 6" (15 cm.)

Carga			Análisis de F	atiga	Análisis de Erosiói	1
del eje en kips	Multiplicada por LSF	Repeticiones Esperadas	Repeticiones Permisibles (Fig. 2.4.7.7-2)	% de Fatiga	Repeticiones Permisibles (Fig. 2.4.7.7-2 ó 2.4.7.7-3)	% de Daño
1	2	3	4	5	6	7

8. Esfuerzo equivalente

271

10. Factor de Erosión

2.80

9. Factor de relación de esfuerzo

0.45

Eies Sencillos

		[
2.2	2.2	5'401,270	ilimitadas		ilimitadas	
3.74	3.74	1'366,852	ilimitadas		ilimitadas	
4.4	4.4	66,138	ilimitadas		llimitadas	
5.28	5.28	22,046	ilimitadas		ilimitadas	
15.4	15.4	44,092	Ilimitadas		llimitadas	
17.6	17.6	66,138	ilimitadas		40'000,000	0.2
24.2	24.2	22,046	30,000	73.5	3'500,000	0.6

11. Esfuerzo equivalente

231

13. Factor de Erosión

2.94

12. Factor de relación de esfuerzo

0.39

Ejes Tandem 21.12 21.12 22,046 ilimitadas ilimitadas 39.6 39.6 22,046 ilimitadas 4'500,000 0.5

> TOTAL 73.5 TOTAL. 1.3

El diseño es adecuado, ya que los daños totales por fatiga y por erosión son inferiores al 100 %, luego el espesor definitivo del pavimento para las vías secundarias será 17.5 cm.

4.4.3 DISEÑO DE JUNTAS.

4.4.3.1 JUNTAS TRANSVERSALES DE CONTRACCION.

Principalmente por las calles Chanchamayo y Miguel Iglesias circulan vehículos de carga considerable, por lo que en estas vías, las juntas transversales de contracción llevarán pasajuntas.

Espaciamiento: El espesor del pavimento es 20 cm., haciendo uso de la ecuación 2.4.7.4-2, con el valor 24, puesto que la sub base es granular, se tendrá:

 $S_{JT} = 24 \times 20 / 100 = 4.80 \text{ m}.$

Consideraremos un espaciamiento máximo de 4.50 metros.

Barras pasajuntas:

La tabla 2.4.7.6 (1) nos recomienda que para losas de 15 a 20 cm. de espesor, se colocarán barras pasajuntas de ϕ 1", de 46 cm de longitud @ 30 cm. (12 pulg).

a) Esfuerzo de carga en pasajuntas.

Espesor del pavimento h = 20 cm. = 8 pulg.

Ancho de junta = 0.236 pulg.

Módulo de reacción de la subrasante $k = 5.51 \text{ Kg/cm}^3$. = 200 lb/ pulg³.

Módulo de soporte de la pasajunta $K = 1.5 \times 10^6$ lb/ pulg³.

Módulo de elasticidad del acero $Ed = 29 \times 10^6 \text{ lb/ pulg}^2$.

Carga que se aplica sobre la pasajunta exterior, a 6" del borde = 8,000 Kg. ≈ 18000 lb.

Módulo de elasticidad de la losa $E = 4 \times 10^6$ lb/ pulg².

Módulo de Poisson $\mu = 0.15$

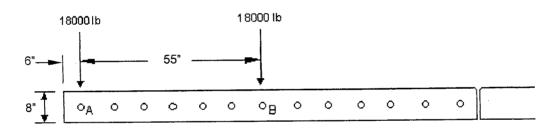


Figura 4.4.3 – 1 Localización de las cargas y de las pasajuntas.

Radio de rigidez relativa:

$$L = \left[\text{E h}^3 \, / \, 12 \, \text{k} \, (1 - \mu^2) \right]^{0.25} = \left[4 \times 10^6 \times (8)^3 \, / \, (12 \times (1 - (0.15)^2) \times 200 \right]^{0.25} = 30.57 \, \text{pulg}.$$

a)1 Considerando la carga de 18000 lb sobre el punto A (a 6 pulg. del borde).

La pasajunta está directamente debajo de la carga y está sujeta a una carga cortante Pt, considerando un factor de carga de 1. Las fuerzas sobre las pasajuntas dentro de una distancia de 1.8 L = 1.8 × 30.57 = 55" se pueden determinar asumiendo una variación lineal, como se muestra en la figura 4.4.3-2. La suma de las fuerzas sobre todas las pasajuntas es de 2.82 Pt, la cual debe ser igual a la mitad de la carga aplicada, considerando una eficiencia de un 100 % de las juntas.

$$Pt = 9,000 / 2.82 = 3,191 lb.$$

a)2. Considerando la carga de 1,8000 lb sobre el punto B.

Si la pasajunta en el punto B tiene un factor de carga de 1, los factores de carga en las otras pasajuntas se pueden determinar mediante una distribución triangular como se muestra en la figura 4.4.3-3. La suma de estos factores es 4.64 y la carga soportada por la pasajunta en B es de 9,000/4.64 = 1940 lb y las soportadas por las otras pasajuntas se determinan por proporción.

Las fuerzas en cada pasajunta debido al efecto combinado de ambas cargas, se muestra en la figura 4.4.3-4. Se puede ver que la más cercana al borde del pavimento es la más crítica, la misma que se usará para el diseño.

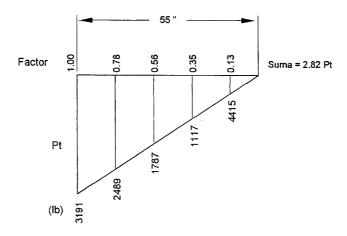


Figura 4.4.3 – 2 Fuerzas en las pasajuntas debido a la carga A.

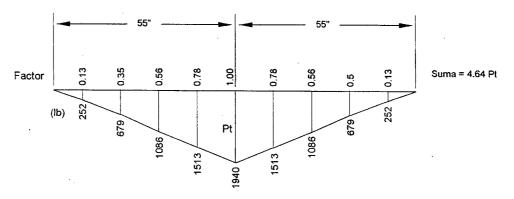


Figura 4.4.3 – 3 Fuerzas en las pasajuntas debido a la carga B.

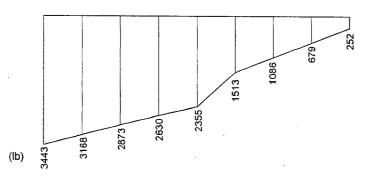


Figura 4.4.3 – 4 Fuerzas en las pasajuntas debido a las dos cargas.

El esfuerzo de carga se calcula con la ecuación 2.4.7.6 – 1:

$$\sigma_b = k \text{ Yo} = k \text{ Pt } (2 + \beta z) / (4 \beta^3 \text{ Ed Id})$$

$$I_{d} = 1/64 \, \pi d^4$$

$$I_d = \pi (1)^4 / 64 = 0.0491 \text{ pulg}^4$$

$$\beta = (Kd/4 Ed I_d)^{0.25}$$

$$\beta = [1.5 \times 10^6 \times 1 / (4 \times 29 \times 10^6 \times 0.0491)]^{0.25} = 0.71637 \text{ pulg.}$$

Reemplazando valores:

$$\sigma_b = [1.5 \times 10^6 \times 3191 (2 + (0.71637 \times 0.236))] / (4 \times (0.71637)^3 \times 29 \times 10^6 \times 0.0491)$$

$$\sigma_b = 4958 \text{ lb/pulg}^2$$

Para un concreto de 210 Kg/cm² (2987 lb/ pulg²), empleando la ecuación 2.4.7.6 – 1, el esfuerzo de carga permisible es $f_b = (4 - 1) \times 2987/3 = 2987$ lb/pulg².

El esfuerzo de carga es mayor al permisible, por lo que se tendrá que usar pasajuntas de mayor diámetro y/o separaciones más pequeñas.

Utilizando pasajuntas de ϕ 1½" y disminuyendo la separación entre barras a 25 cm. (10"), siguiendo los mismos procedimientos de cálculo, tendremos:

a)1 Considerando la carga de 18000 lb sobre el punto A (a 6 pulg. del borde).

La suma de los nuevos factores de carga es 3.27, entonces la carga soportada por la pasajunta A es Pt = 9000/3.27 = 2752 lb. (Figura 4.4.3 - 5).

a)2 Considerando la carga de 18000 lb sobre el punto B.

En este caso, la suma de los factores de carga es 5.54 y la carga soportada por la pasajunta B es de 9000/5.54 = 1624 lb y las soportadas por las otras pasajuntas se determinan por proporción (Figura 4.4.3 - 6).

Las fuerzas en cada pasajunta debido al efecto combinado de ambas cargas, se muestra en la figura 4.4.3-7, siendo la más cercana al borde del pavimento la fuerza más crítica.

Reemplazando valores:

$$ld = \pi (1.25)^4 / 64 = 0.1198 \text{ pulg}^4$$
.

$$\beta = [1.5 \times 10^6 \times 1.25 / (4 \times 29 \times 10^6 \times 0.1198)]^{0.25} = 0.60607 \text{ pulg.}$$

$$\begin{split} &\sigma_{b} = \left[1.5\times10^{6}\times2752\times(2+(0.60607\times0.236))\right]/\left(4\times(0.60607)^{3}\times29\times10^{6}\times0.1198\right)\\ &\sigma_{b} = 2859\ lb/\ pulg^{2}. \end{split}$$

Debido a que este último valor de esfuerzo de carga obtenido es bastante cercano al permisible ($f_b = 2738 \text{ lb/pulg}^2$), el diseño es aceptable. Entonces se colocarán pasajuntas de ϕ 1½", de 46 cm de longitud, @ 25 cm. (10") en las calles Miguel Iglesias y Chanchamayo, que son las que van a soportar mayor carga vehicular.

Figura 4.4.3 – 5 Fuerzas en las pasajuntas debido a la carga A.

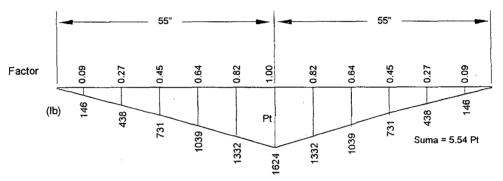


Figura 4.4.3 – 6 Fuerzas en las pasajuntas debido a la carga B.

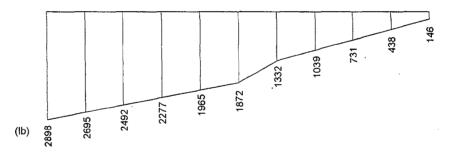


Figura 4.4.3 – 7 Fuerzas en las pasajuntas debido a las dos cargas.

4.4.3.2 JUNTAS LONGITUDINALES

La tabla 2.4.7.4 (1) recomienda una separación máxima entre juntas longitudinales de 4.00 metros.

Barras de Amarre

a. El acero requerido para las barras de amarre se calcula con la ecuación 2.4.7.5-1:

$$A_s = G_c h L' f_a / f_s$$

Ancho de carril = 3.60 m. (142 pulg.)

Peso volumétrico del concreto $G_c = 2400 \text{ Kg/m}^3 (0.0868 \text{ lb/ pulg}^3)$.

Espesor del pavimento h = 20 cm. (8").

Coeficiente promedio de fricción entre la losa y el terreno de soporte $f_a = 1.5$.

Esfuerzo permisible en el acero $f_s = 27000 \text{ lb/pulg}^2$.

Reemplazando valores:

 $A_s = 0.0868 \times 8 \times 142 \times 1.5 / 27000 = 0.00548 \text{ pulg}^2/\text{pulg} = 1.39 \text{ cm}^2/\text{m}.$

Usando ϕ . 1/2" (1.27 cm²), la separación entre barras será:

 $S = 1.27 \times 100 / 1.39 = 91.4 \text{ cm}.$

Luego, se colocará $\phi 1/2"$ @ 100 cm. (40").

b. La longitud t de las barras se determina con la ecuación 2.4.7.5-3.

Esfuerzo de adhesión permisible $\mu = 350 \text{ lb/ pulg}^2$.

 $t = 0.5 \times 27000 \times 0.5/350 = 19.3$ pulg., sumándole las 3" por desalineamiento:

t = 22.3 pulg. (Se usará 24").

 \therefore Se colocará ϕ 1/2" de 61 cm. de longitud (24"), @ 100 cm. (40").

4.4.3.3 JUNTAS TRANSVERSALES DE CONSTRUCCIÓN.

Las juntas transversales de construcción serán consideradas de acuerdo a lo señalado en el punto 2.4.7.4 d)2 del capítulo II, empalmadas a tope. Se utilizarán pasajuntas, al igual que en las juntas transversales de contracción.

4.4.3.4 JUNTAS DE AISLAMIENTO.

Se ha considerado juntas de aislamiento de ½" de espesor con y sin pasajuntas, las mismas que serán distribuidas según lo indicado en el acápite 2.4.7.4, "Juntas de aislamiento", del capítulo II (ver plano G-02 "Distribución de losas").

4.4.3.5 JUNTAS DE EXPANSIÓN.

La temperatura ambiente en que se realizan los trabajos de pavimentación en la ciudad de Cajamarca, es superior a los 4 °C, por lo que en el presente estudio, de acuerdo a lo señalado en el punto 2.4.7.4 d)4, capítulo II, no se ha considerado juntas de expansión por lo que se recomienda tener mucho cuidado en el diseño, construcción y mantenimiento de las juntas de construcción.

4.5 DISEÑO DE MEZCLAS.

DATOS PARA EL DISEÑO:

Peso específico del cemento Portland Tipo I:

3,150 Kg/m³

DESCRIPCION	A. Fino	A. Grueso	Unidades
Peso específico de masa	2570	2650	Kg/m ³
Peso Unit. Suelto Seco	1489	1538	Kg/m ³
Peso Unit. Compactado Seco	1620	1610	Kg/m ³
Contenido de humedad	6.50	1.10	%
Porcentaje de absorción	1.23	0.89	%
Módulo de finura	2.57		adim.

4.5.1 DISEÑO DE MEZCLA PARA CALZADA.

La consolidación será por vibración. No se usará aire incorporado

1. Determinación de la resistencia de diseño.

El valor del módulo de ruptura recomendado, en el diseño del espesor del pavimento para vías principales, es: MR = 45 Kg/cm² (tabla 2.4.7.7-a).

Considerando un módulo de ruptura igual al 16 % de la resistencia a la compresión

del concreto (MR = 0.16 f'c), f'c de diseño es aproximadamente:

 280 Kg/cm^2

2. Tamaño máximo del agregado:

El tamaño máximo del agregado es de 1".

3. Asentamiento:

En la tabla 2.4.8 (a), para losas y pavimentos, el asentamiento es 3"

4. Agua de mezclado:

En la tabla 2.4.8 (b), para un asentamiento de 3" a 4", un tamaño máximo de agregado de 1" y 1.5 % de contenido de aire atrapado, el agua de mezclado es:

193 Kg. por m³ de concreto (It por m³ de concreto).

5. Relación agua - cemento:

Interpolando en la tabla 2.4.8 (f), para f'c = 280 kg/cm^2 , se obtiene una relación agua - cemento de : 0.50

6. Factor cemento (FC), por m³ de concreto:

FC = (agua de mezclado) / (relación agua - cemento) = 193 / 0.50 = 386.00 Kg.

7. Cantidad de agregado grueso por m³ de concreto:

En la tabla 2.4.8 (i), para m.f. = 2.57 y tamaño máx, de agregado de 1", el volumen de

agregado grueso seco compactado es:

 0.696 m^3 .

El peso seco unitario compactado del agregado grueso es 1,610 Kg/m³,

entonces, el peso seco del agregado grueso será: 1120,

1120.56 Kg.

8. Cantidad de agregado fino:

Método de los volúmenes absolutos:

Vol. Abs. de cemento		= 386 / 3150	=	0.122540 m^3 .
Vol. Abs. de agua		= 193 / 1000	=	0.193000 m^3 .
Vol. Abs. de Agreg. grueso		= 1120.56 / 2650	=	0.422853 m^3
Vol. Abs. de aire atrapado		= 1.5 / 100	=	0.015000 m^3 .
		Volumen absoluto parci	al =	0.753393 m ³ .
Vol. Abs. de Agreg. fino	==	1 - 0.753393	=	0.246607 m ³ .
Peso seco de Agreg fino	=	2570 × 0 246607	=	633 78 Kg

9. Peso seco de los materiales para 1 m³ de concreto:

Peso cemento : 386.00 Kg.
Peso agua de mezclado : 193 lts.
Peso agregado grueso : 1120.56 Kg.
Peso agregado fino : 633.78 Kg.

10. Ajuste por contenido de humedad de los agregados:

Agregado grueso:	Cont. humedad (wg $\%$) =	1.10 %
	Absorción (ag %) =	0.89 %
Agregado fino:	Cont. humedad (wf $\%$) =	6.50 %
	Absorción (af %) =	1.23 %

Agregado grueso húmedo:

P. Agreg. grueso seco × [1+ (wg% - ag%)/100] = 1122.91 Kg.

Agregado fino húmedo:

P. Agreg. fino seco × [1+ (wf% - af%)/100] = 667.18 Kg.

Agua en agregado grueso (X):

Peso agreg. grueso seco × (wg% - ag%)/100 = 2.35 Kg.

Agua en agregado fino (Y):

Peso agreg. fino seco × (wf% - af%)/100 = 33.40 Kg.

Agua neta o efectiva:

Agua de diseño = 193 - (X+Y) = 157.25 lts.

NOTA: Los valores anteriores están dados en unidades por m³ de concreto.

AJUSTE DE MEZCLA DE PRUEBA

Método de los volúmenes absolutos:

1º La colada para un volumen de 0.028 m³ (para 3 especímenes) consistirá de :

 Cemento:
 $386 \times 0.028 =$ 10.80800 Kg.

 Agregado grueso húmedo:
 $1122.91 \times 0.028 =$ 31.44157 Kg.

 Agregado fino húmedo:
 $667.18 \times 0.028 =$ 18.68108 Kg.

 Agua añadida:
 $157.25 \times 0.028 + 0.10 =$ 4.50290 lts.

 Peso de la colada =
 65.434 Kg.

2º Rendimiento de la mezcla:

Rendimiento = 65.434 / P. Unit. del concreto = 0.0288254 m^3 .

Peso Unitario del concreto = 2270 Kg/m³

3º Agua de mezcla:

Agua añadida = 4.50290 lts. Agua en A. grueso: 1120.56×0.028 (1.10 - 0.89)/100 = 0.06589 lts. Agua en A. fino: 633.78×0.028 (6.50 - 1.23)/100 = 0.9352076 lts. Agua de mezcla por tanda = 5.50400 lts.

4º Cantidad de agua de mezclado requerida por metro cúbico de concreto, con el mismo asentamiento de la tanda de ensayo:

Agua de mezclado = $5.504 / 0.0233254 = 190.94 \text{ lt/m}^3$

5º La cantidad de agua de mezclado deberá ser incrementada o disminuida en 2 lt/m³ de concreto por cada incremento o disminución en el asentamiento deseado.

En este caso, para obtener el asentamiento de 3" (7.62 cm.), el agua de mezclado se incrementará de la siguiente manera:

Nueva agua de mezclado = $190.94 + (7.62 - 2.30) \times 2 = 201.58$ lts.

6º Nuevo contenido de cemento:

Contenido de cemento = 201.58 / 0.50 = 403.17 Kg.

7º Volumen absoluto de los materiales sin considerar el aire atrapado en la mezcla de ensavo original:

de ensayo original:

Volumen absoluto del cemento:

10.808 / 3150 = 0.003431 m³.

Volumen absoluto de agua: 5.504 / 1000 = 0.005504 m³.

Volumen absoluto de Agreg. grueso: $1120.56 \times 0.028/2650 = 0.011840 \text{ m}^3$. Volumen absoluto de Agreg. fino: $633.78 \times 0.028 / 2570 = 0.006905 \text{ m}^3$. Volumen absoluto total = 0.027680 m^3 . Aire atrapado = $(0.0288254 - 0.027680) / 0.0288254 \times 100 = 3.97 \%$

8º Volumen absoluto de materiales corregidos:

Calculadas las proporciones de los componentes del concreto, excepto del agregado fino, se procede a determinar las cantidades ajustadas por m³.

 $403.17/3150 = 0.12798921 \text{ m}^3$. Volumen absoluto del cemento: $201.58 / 1000 = 0.20158301 \text{ m}^3$ Volumen absoluto de agua: Volumen absoluto del aire: 1.5 / 100 = 0.01500 m^3 . 0.42285 m^3 Volumen absoluto de Agreg. Grueso: 1120.56 / 2650 = Volumen total (excluido agreg. fino) = 0.76742506 m^3 . Volumen absoluto de agregado fino: $1 - 0.76742506 = 0.23257494 \text{ m}^3$ Peso seco del agregado fino: $0.23257494 \times 2570 =$ 597.72 Kg.

9º Pesos ajustados por metro cúbico de concreto, corregidos por humedad:

Cemento: 403.17 Kg.Agregado fino húmedo: $597.72 \times (1 + 6.50/100) = 636.57 \text{ Kg.}$ Agregado grueso húmedo: $1120.56 \times (1 + 1.10/100) = 1132.89 \text{ Kg.}$ Agua efectiva: = 201.58 lts.

10º Proporcionamiento en peso:

403.17		636.57	1132.89		201.58
	:			1	
403.17		403.17	403.17		403.17

1:1.58:2.81 / 0.50 lts.

11º Proporcionamiento en volumen:

Cemento: $403.17 / 42.5 = 9.49 \text{ pie}^3$ Agregado fino: $597.72 \times 35.3 / 1489 = 14.17 \text{ pie}^3$ Agregado grueso: $1120.56 \times 35.3 / 1538 = 25.72 \text{ pie}^3$

1:1.49:2.71 / 21.25 lt/bolsa

4.5.2 DISEÑO DE MEZCLA PARA VEREDAS

La consolidación será por vibración No se usará aire incorporado

1. Resistencia de diseño.

Resistencia del concreto f'c:

2. Tamaño máximo del agregado:

El tamaño máximo del agregado es 1".

3. Asentamiento:

En la tabla 2.4.8 (a) para este tipo de estructuras le corresponde un asentamiento de 3".

140 Kg/cm²

4. Agua de mezclado:

En la tabla 2.4.8 (b), para un asentamiento de 3" a 4", un tamaño máximo de agregado de 1" y 1.5 % de contenido de aire atrapado, el agua de mezclado es:

193 Kg. por m³ de concreto (lt por m³ de concreto).

5. Relación agua - cemento:

Interpolando en la tabla 2.4.8 (f), para f'c = 140 kg/cm^2 , se obtiene una relación agua - cemento de : 0.77

6. Factor cemento (FC), por m³ de concreto:

FC = (agua de mezclado) / (relación a/c)

FC = 193 / 0.77 =

250.65 Kg.

7. Cantidad de agregado grueso por m³ de concreto:

En la tabla 2.4.8 (j), para m.f. = 2.57 y tamaño máx. de agregado de 1", el

volumen de agregado grueso seco compactado es:

 0.696 m^3 .

El peso seco unitario compactado del agregado grueso es 1610 Kg/m³,

entonces, el peso seco del agregado grueso será:

1120.56 Kg.

8. Cantidad de agregado fino:

Método de los volúmenes absolutos:

Vol. Abs. de cemento:	250.65/ 3150 =	0.079571 m^3 .
Vol. Abs. de agua:	193 / 1000 =	0.193000 m^3 .
Vol. Abs. de Agreg. Grueso:	1120.56 / 2650 =	0.422853 m^3 .
Vol. Abs. de aire atrapado:	1.5 / 100 =	0.015000 m^3 .
	Volumen absolute parcial =	0.710424 m ⁵

Volumen Absoluto de Agreg. Fino: $1 - 0.710424 = 0.289576 \text{ m}^3$. Peso seco de agregado fino: $2570 \times 0.289576 = 744.21 \text{ Kg}$.

9. Peso seco de los materiales para 1 m³ de concreto:

Peso cemento: 250.65 Kg.
Peso agua de mezclado: 193 lts.
Peso agregado grueso: 1120.56 Kg.
Peso agregado fino: 744.21 Kg.

10. Ajuste por contenido de humedad de los agregados:

Agregado grueso:	Cont. humedad (wg %) =	1.10 %
	Absorción (ag %) =	0.89 %
Agregado fino:	Cont. humedad (wf $\%$) =	6.50 %
	Absorción (af %) =	1.23 %

Agregado grueso húmedo:	P. Agreg. grueso seco × [1+ (wg% - ag%)/100] =	1122.91 Kg.
Agregado fino húmedo:	P. Agreg. fino seco × [1+(wf% - af%)/100] =	783.43 Kg.
Agua en agregado grueso (X):	Peso agreg. grueso seco × (wg% - ag%)/100 =	2.35 Kg.
Agua en agregado fino (Y):	Peso agreg. fino seco × (wf% - af%)/100 =	39.22 Kg.
Agua neta o efectiva:	Agua de diseño = 193 - (X+Y) =	151.43 lts.

NOTA: Los valores anteriores están dados en unidades por m³ de concreto.

AJUSTE DE MEZCLA DE PRUEBA

Método de los volúmenes absolutos:

1º La colada para un volumen de 0.028 m³ (para 3 especímenes) consistirá de :

 Cemento:
 250.65 x 0.028 =
 7.01818 Kg.

 Agregado grueso húmedo:
 1122.91 x 0.028 =
 31.44157 Kg.

 Agregado fino húmedo:
 783.43 x 0.028 =
 21.93604 Kg.

 Agua añadida:
 151.43x 0.028 + 0.10 =
 4.33995 Kg.

 Peso de la colada =
 64.73575 Kg.

2º Rendimiento de la mezcla:

Rendimiento = 64.73575 / Peso unit. del concreto = 0.0285180 m³.

Peso unitario del concreto = 2270 Kg/m³

3º Agua de mezcla:

Agua añadida: = 4.33995 lts.
Agua en Agreg. grueso: 1120.56 × 0.028 × (1.10 - 0.89)/100 = 0.06589 lts.
Agua en Agreg. fino: 744.21 × 0.028 × (6.50 - 1.23)/100 = 1.09816 lts.

Agua de mezcla por tanda = 5.50400 lts.

4º Cantidad de agua de mezclado requerida por metro cúbico de concreto, con el mismo asentamiento de la tanda de ensayo:

Agua de mezclado = $5.504 / 0.0285180 = 193.00 \text{ lt/m}^3$

5º La cantidad de agua de mezclado deberá ser incrementada o disminuida en 2 lt/m³ de concreto por cada incremento o disminución en el asentamiento deseado.

En este caso, para obtener el asentamiento de 3" (7.62 cm.), el agua de mezclado se incrementará de la siguiente manera:

Nueva agua de mezclado: $193.00 + (7.62 - 2.30) \times 2 = 203.64 \text{ lts.}$

6º Nuevo contenido de cemento:

Aire atrapado:

Contenido de cemento: 203.64/0.77 = 264.47 Kg.

7º Volumen absoluto de los materiales sin considerar el aire atrapado en la mezcla de ensayo original:

 Volumen absoluto del cemento:
 7.01818/3150 = 0.002228 m^3 .

 Volumen absoluto de agua:
 5.504/1000 = 0.005504 m^3 .

 Volumen absoluto de Agreg. grueso:
 $1120.56 \times 0.028/2650 =$ 0.011840 m^3 .

 Volumen absoluto de Agreg. fino
 $744.21 \times 0.028/2570 =$ 0.008108 m^3 .

 Volumen absoluto total =
 0.027680 m^3 .

 $(0.0235180 - 0.027680) / 0.0235180 \times 100 =$

8º Volumen absoluto de materiales corregidos:

Calculadas las proporciones de los componentes del concreto, excepto del agregado fino, se procede a determinar las cantidades ajustadas por m³.

 Volumen absoluto del cemento:
 $264.47 / 3150 = 0.08395846 \text{ m}^3$.

 Volumen absoluto de agua:
 $203.64 / 1000 = 0.20364125 \text{ m}^3$.

 Volumen absoluto del aire:
 $1.5 / 100 = 0.015000 \text{ m}^3$.

 Volumen absoluto de Agreg. grueso:
 $1120.56 / 2650 = 0.422853 \text{ m}^3$.

Volumen total (excluido el agregado fino) = 0.725453 m³.

2.94 %

 $1 - 0.725453 = 0.27454746 \text{ m}^3$. Volumen absoluto de agregado fino: $0.27454746 \times 2570 =$ 705.59 Kg. Peso seco del agregado fino: 9º Pesos ajustados por metro cúbico de concreto, corregidos por humedad: 264.47 Kg. Cemento: $705.59 \times (1 + 6.50/100) =$ 751.45 Kg. Agregado fino húmedo: Agregado grueso húmedo: $1120.56 \times (1 + 1.10/100) =$ 1132.89 Kg. 203.64 lts. Agua efectiva:

10º Proporcionamiento en peso:

264.47	751.45	1132.89	203.64
	:	:	/
264.47	264.47	264.47	264.47

1: 2.84: 4.28 / 0.77 lts.

11º Proporcionamiento en volumen:

Cemento: $264.47/42.5 = 6.22 \text{ pie}^3$ Agregado fino: $705.59 \times 35.3/1489 = 16.73 \text{ pie}^3$ Agregado grueso: $1120.56 \times 35.3/1538 = 25.72 \text{ pie}^3$

1:2.69:4.13 / 32.73 lt/bolsa.

4.5.3 DISEÑO DE MEZCLA PARA MUROS Y LOSA DE FONDO DE CANAL.

La consolidación será por vibración

No se usará aire incorporado

1. Determinación de la resistencia de diseño.

f'c = 175 Kg/cm² \rightarrow f'c de diseño = 1.20 × 175 Kg/cm²: 210 Kg/cm²

2. Tamaño máximo del agregado:

El tamaño máximo del agregado es de 1".

3. Asentamiento:

En la tabla 2.4.8 (a) para este tipo de estructuras le corresponde un asentamiento de 3".

4. Agua de mezclado:

En la tabla 2.4.8 (b), para un asentamiento de 3" a 4", un tamaño máximo de agregado de 1" y 1.5 % de contenido de aire atrapado, el agua de mezclado es:

193 Kg. por m³ de concreto (lt por m³ de concreto).

5. Relación agua - cemento:

En la tabla 2.4.8 (f), para f'c de diseño = 210 kg/cm^2 , la relación agua - cemento es de : 0.60

6. Factor cemento (FC), por m³ de concreto:

FC = (agua de mezclado) / (relación a/c)

FC = 193 / 0.60 = 321.67 Kg.

7. Cantidad de agregado grueso por m³ de concreto:

En la tabla 2.4.8 (j), para m.f. = 2.57 y tamaño máx. de agregado de 1", el

volumen de agregado grueso seco compactado es: 0.696 m³

El peso seco unitario compactado del agregado grueso es 1610 Kg/m3,

entonces, el peso seco del agregado grueso será: 1120.56 Kg.

8. Cantidad de agregado fino:

Método de los volúmenes absolutos:

Vol. Abs. de cemento:	321.67 / 3150 =	0.102116 m^3 .
		2

Vol. Abs. de agua: $193 / 1000 = 0.193000 \text{ m}^3$.

Vol. Abs. de Agreg. Grueso: 1120.56 / 2650 = 0.422853 m³.

Vol. Abs. de aire atrapado: $1.5 / 100 = 0.015000 \text{ m}^3$.

Volumen absoluto parcial = 0.732969 m^3 .

Vol. Abs. de agregado fino = 1 - Vol. Abs. Parcial = 0.267031 m^3 . Peso seco de agregado fino = 2570×0.267031 = 686.27 Kg.

9. Peso seco de los materiales para 1 m³ de concreto:

Peso cemento: 321.67 Kg.
Peso agua de mezclado: 193 lts.
Peso agregado grueso: 1120.56 Kg.
Peso agregado fino: 686.27 Kg.

10. Ajuste por contenido de humedad de los agregados:

Agregado grueso:	Cont. humedad (wg %) =	1.10 %
•	Absorción (ag %) =	0.89 %
Agregado fino:	Cont. humedad (wf %) =	6.50 %
	Absorción (af %) =	1 23 %

Agregado grueso húmedo:

P. Agreg. grueso seco × [1+ (wg% - ag%)/100] = 1122.91 Kg.

Agregado fino húmedo:

P. Agreg. fino seco × [1+(wf% - af%)/100] = 722.44 Kg.

Agua en agregado grueso (X):

Peso agreg. grueso seco × (wg% - ag%)/100 = 2.35 Kg.

Agua en agregado fino (Y):

Peso agreg. fino seco × (wf% - af%)/100 = 36.17 Kg.

Agua neta o efectiva:

Agua de diseño = 205 - (X+Y) = 154.48 lts.

AJUSTE DE MEZCLA DE PRUEBA

Método de los volúmenes absolutos:

1º La colada para un volumen de 0.028 m³ (para 3 especímenes) consistirá de :

 Cemento:
 321.67 × 0.028 =
 9.00667 Kg.

 Agregado grueso húmedo:
 1122.91 × 0.028 =
 31.44157 Kg.

 Agregado fino húmedo:
 722.44× 0.028 =
 20.22819 Kg.

 Agua añadida:
 154.48 × 0.028 + 0.10 =
 4.42545 lts.

 Peso de la colada =
 65.102 Kg.

2º Rendimiento de la mezcla:

Rendimiento = 65.102 / Peso unit. del concreto = 0.0286792 m³. Peso unitario del concreto = 2270 Kg/m³

3º Agua de mezcla:

Agua añadida: = 4.42545 lts. Agua en Agreg. grueso: 1120.56 x 0.028 (1.10 - 0.89) / 100 = 0.06589 lts. Agua en Agreg. fino: 686.27 x 0.028 x (6.50 - 1.23) / 100 = 1.01266 lts. Agua de mezcla por tanda = 5.50400 lts.

4º Cantidad de agua de mezclado requerida por metro cúbico de concreto, con el mismo asentamiento de la tanda de ensayo:

Agua de mezclado: $5.504 / 0.0286792 = 191.92 \text{ lt/m}^3$

5º La cantidad de agua de mezclado deberá ser incrementada o disminuida en 2 lt/m³ de concreto por cada incremento o disminución en el asentamiento deseado. En este caso, para obtener el asentamiento de 3" (7.62 cm.), el agua de mezclado se incrementará de la siguiente manera:

Nueva agua de mezclado:

 $191.92 + (7.62 - 2.30) \times 2 =$

202.56 lts.

6º Nuevo contenido de cemento:

Contenido de cemento:

202.56 / 0.60 =

337.59 Kg.

7º Volumen absoluto de los materiales sin considerar el aire atrapado en la mezcla

Volumen absoluto del cemento:

9.00667 / 3150 =

 0.002859 m^3

Volumen absoluto de agua:

5.504 / 1000 =

 0.005504 m^3 .

Volumen absoluto de Agreg, grueso:

 $1120.56 \times 0.028/2650 =$

0.011840 m³.

Volumen absoluto de Agreg. fino

 $686.27 \times 0.028 / 2570 =$

 $0.007477 \text{ m}^3.$

Volumen absoluto total =

0.027680 m³.

Aire atranado = $(0.0286792 - 0.027680) / 0.0286792 \times 100 =$

3.48 %

8º Volumen absoluto de materiales corregidos:

Calculadas las proporciones de los componentes del concreto, excepto del agregado fino, se procede a determinar las cantidades ajustadas por m³.

Volumen absoluto del cemento:

 $337.59 / 3150 = 0.10717238 \text{ m}^3$.

Volumen absoluto de agua:

202.56 / 1000 =

 0.20256 m^3 .

Volumen absoluto del aire:

1.5 / 100 =

0.01500 m³.

Volumen absoluto de Agreg, grueso:

1120.56 / 2650 =

0.42285 m³.

Volumen absoluto de Agreg. Fino:

 $1 - 0.74758102 = 0.25241898 \text{ m}^3$.

Volumen total (excluido agreg. fino) = 0.74758102 m³.

Peso seco del Agreg. Fino:

 $0.252418978 \times 2570 =$

648.72 Kg.

9º Pesos ajustados por metro cúbico de concreto, corregidos por humedad:

Cemento:

337.59 Kg.

690.88 Kg.

Agregado fino húmedo: Agregado grueso húmedo:

 $648.72 \times (1 + 6.50/100) =$ $1120.56 \times (1 + 1.10/100) =$

Agua efectiva:

1132.89 Kg. 202.56 lts

10º Proporcionamiento en peso:

1: 2.05: 3.36 / 0.60 lts.

11º Proporcionamiento en volumen:

Cemento:

337.59/42.5

7.94 pie³

Agregado fino:

648.72 × 35.3/1489

15.38 pie³

Agregado grueso:

1120.56 × 35.3/1538

 25.72 pie^3

7.94 15.38 25.72 202.56 7.94 7.94 7 94

1: 1.94: 3.24 / 25.50 lt/bolsa

4.5.4 DISEÑO DE MEZCLA PARA TAPA DE CANAL DE DRENAJE, EN VEREDA.

La consolidación será por vibración

No se usará aire incorporado

1. Determinación de la resistencia de diseño.

Resistencia del concreto f' c

210 Kg/cm²

Es conveniente incrementar la resistencia del concreto en un 20 % para satisfacer los requisitos de resistencia mínima.

Luego, f' c de diseño = $1.20 \times 210 =$

252 Kg/cm²

2. Tamaño máximo del agregado:

El tamaño máximo del agregado es de 3/4".

3. Asentamiento:

En la tabla 2.4.8 (a) podemos observar que para losas y pavimentos le corresponde un asentamiento de 3".

4. Agua de mezclado:

En la tabla 2.4.8 (b), para un asentamiento de 3" a 4", un tamaño máximo de agregado de 3/4" y 2 % de contenido de aire atrapado, el agua de mezclado es:

205 Kg por m³ de concreto (ît por m³ de concreto).

5. Relación agua - cemento:

Interpolando en la tabla 2.4.8 (f), para f'c = 252 kg/cm², se obtiene una relación agua - material cementante, de: 0.522

6. Factor cemento (FC), por m³ de concreto:

FC = (agua de mezclado) / (relación a/c)

FC = 205 / 0.522

392.72 Kg.

7. Cantidad de agregado grueso por m³ de concreto:

En la tabla 2.4.8 (j), para m.f. = 2.57 y tamaño máx. de agregado de 3/4", el volumen de agregado grueso seco compactado es: 0.643 m^3 .

El peso seco unitario compactado del agregado grueso es 1610 Kg/m³,

entonces, el peso seco del agregado grueso será:

1035.23 Kg.

8. Cantidad de agregado fino:

Método de los volúmenes absolutos:

Vol. Abs. de cemento:	392.72 / 3150 =	0.124673 m ³ .
Vol. Abs. de agua:	205 / 1000 =	0.205000 m ³ .

Vol. Abs. de agregado grueso: $1035.23 / 2650 = 0.390653 \text{ m}^3$.

Vol. Abs. de aire atrapado: $2.0 / 100 = 0.020000 \text{ m}^3$.

Volumen absoluto parcial = 0.740326 m^3 .

Vol. Abs. de agreg. Fino: $1 - 0.740326 = 0.259674 \text{ m}^3$. Peso seco de agregado fino: $2570 \times 0.259674 = 667.36 \text{ Kg}$.

9. Peso seco de los materiales para 1 m³ de concreto:

Peso cemento		392.72	Kg.
Peso agua de mezclado	=	205	lts.
Peso agregado grueso	=	1035.23	Kg.
Peso agregado fino	. =	667.36	Kg.

10. Ajuste por contenido de humedad de los agregados:

Agregado grueso:	Cont_humedad (wg %)	=	1.10	%
	Absorción (ag %)	=	0.89	%
Agregado fino:	Cont.humedad (wf %)	==	6.50	%
	Absorción (af %)	=	1.23	%
Agregado grueso húmedo:	P. Agreg. grueso seco × [1+ (wg% -	ag%)/100] =	1037.40	Kg.
Agregado fino húmedo:	P. Agreg. fino seco × [1+(wf% -	af%)/100] =	702.53	Kg.
Agua en agregado grueso (X):	Peso agreg, grueso seco × (wg% -	- ag%)/100 =	2.17	Kg.
Agua en agregado fino (Y):	Peso agreg. fino seco × (wf%	- af%)/100 =	35.17	Kg.
Agua neta o efectiva:	Agua de diseño = 2	105 - (X+Y) =	167.66	its.

NOTA: Los valores anteriores están dados en unidades por m³ de concreto.

AJUSTE DE MEZCLA DE PRUEBA

Método de los volúmenes absolutos:

1º La colada para un volumen de 0.028 m³ (para 3 especímenes) consistirá de:

Cemento:	$392.72 \times 0.028 =$	10.99617 Kg.
Agregado grueso húmedo:	$1037.40 \times 0.028 =$	29.04731 Kg.
Agregado fino húmedo:	$702.53 \times 0.028 =$	19.67090 Kg.
Agua añadida:	$167.66 \times 0.028 + 0.10 =$	4.79437 lts.
-	Peso de la colada =	64.509 Kg.

2º Rendimiento de la mezcla:

Rendimiento = 64.509 / Peso unit. del concreto = 0.02842 m³.

Peso unitario del concreto = 2270 Kg/m³

3º Agua de mezcla:

Agua añadida: = 4.79437 lts.
Agua en Agreg. Grueso: 1035.23 x 0.028 x (1.10 - 0.89) / 100 = 0.06087 lts.
Agua en Agreg. Fino: 667.36 x 0.028 x (6.50 - 1.23) / 100 = 0.98475985 lts.
Agua de mezcla por tanda = 5.84000 lts.

4º Cantidad de agua de mezclado requerida por metro cúbico de concreto, con el mismo asentamiento de la tanda de ensayo:

Agua de mezclado = 5.84 / 0.02842 = 205.50 lt/m^3

5º La cantidad de agua de mezclado deberá ser incrementada o disminuida en 2 lt/m³ de concreto por cada incremento o disminución en el asentamiento deseado. En este caso, para obtener el asentamiento de 3" (7.62 cm.), el agua de mezclado se incrementará de la siguiente manera:

Nueva agua de mezclado = $205.50 + (7.62 - 2.30) \times 2 = 216.14 \text{ lts.}$

6º Nuevo contenido de cemento:

Contenido de cemento = 216.14/0.522 = 414.07 Kg.

7º Volumen absoluto de los materiales sin considerar el aire atrapado en la mezcla de ensayo original:

Volumen absoluto del cemento:	10.99617 / 3150 =	$0.003491 \text{ m}^3.$
Volumen absoluto de agua:	5.84 / 1000 =	$0.005840 \text{ m}^3.$
Volumen absoluto de Agreg. grueso:	$1035.23 \times 0.028 / 2650 =$	$0.010938 \text{ m}^3.$
Volumen absoluto de Agreg. Fino:	$667.36 \times 0.028 / 2570 =$	0.007051 m^3 .
	Volumen absoluto total =	$0.02732 \text{ m}^3.$
Aire atrapado = (0.0284)	$(2 - 0.02732) / 0.02842 \times 100 =$	3.86 %

8º Volumen absoluto de materiales corregidos:

Calculadas las proporciones de los componentes del concreto, excepto del agregado fino, se procede a determinar las cantidades ajustadas por m³.

Volumen absoluto del cemento:	414.07 / 3150 =	$0.13145 \text{ m}^3.$
Volumen absoluto de agua:	216.14 / 1000 =	0.21614389 m ³ .
Volumen absoluto del aire:	2.0 / 100 =	0.02000 m^3 .
Volumen absoluto de Agreg, grueso:	1035.23 / 2650 =	0.39065 m^3 .

Volumen total (excluido agreg. fino) = 0.75825 m^3 .

Volumen absoluto de agregado fino: $1 - 0.75825 = 0.24175 \text{ m}^3$. Peso seco del agregado fino: $0.24175 \times 2570 = 621.30 \text{ Kg}$.

9º Pesos ajustados por metro cúbico de concreto, corregidos por humedad:

Cemento: = 414.07 Kg. Agregado fino húmedo: $621.30 \times (1 + 6.50/100) = 661.69 \text{ Kg}$. Agregado grueso húmedo $1035.23 \times (1 + 1.10/100) = 1046.62 \text{ Kg}$. Agua efectiva: = 216.14 lts.

10º Proporcionamiento en peso:

414.07	661.69	1046.62	216.14
	::	/	********
414.07	414.07	414.07	414.07

1: 1.60: 2.53 / 0.52 lts.

11º Proporcionamiento en volumen:

Cemento:	414.07 / 42.5 =	9.74 pie
Agregado fino:	$621.30 \times 35.3 / 1489 =$	14.73 pie ³
Agregado grueso:	$1035.23 \times 35.3 / 1538 =$	23.76 pie ³

9.74 : 14.73 : 23.76 / 216.14 9.74 9.74 9.74 9.74

1:1.51:2.44 / 22.19 lt/bolsa

4.5.5 DISEÑO DE MEZCLA PARA TAPA DE CANAL DE DRENAJE, EN CALZADA.

La consolidación será por vibración

No se usará aire incorporado

1. Determinación de la resistencia de diseño.

Resistencia del concreto $f'c = 350 \text{ Kg/cm}^2$

2. Tamaño máximo del agregado:

El tamaño máximo del agregado es de 1".

3. Asentamiento:

En la tabla 2.4.8 (a) podemos observar que para losas y pavimentos le corresponde un asentamiento de 3".

4. Agua de mezclado:

En la tabla 2.4.8 (b), para un asentamiento de 3" a 4", un tamaño máximo de agregado de 1" y 1.5 % de contenido de aire atrapado, el agua de mezclado es:

193 Kg por m³ de concreto (lt por m³ de concreto).

5. Relación agua - cemento:

Interpolando en la tabla 2.4.8 (f), para f'c = 350 kg/cm², se obtiene una relación agua - cemento, de: 0.4125

6. Factor cemento (FC), por m³ de concreto:

FC = (agua de mezclado) / (relación agua - cemento)

FC = 193 / 0.4125 = 467.88 Kg.

7. Cantidad de agregado grueso por m³ de concreto:

En la tabla 2.4.8 (j), para m.f. = 2.57 y tamaño máx. de agregado de 1", el volumen de agregado grueso seco compactado es: 0.696 m³.

El peso seco unitario compactado del agregado grueso es 1610 Kg/m³,

entonces, el peso seco del agregado grueso será:

1120.56 Kg.

8. Cantidad de agregado fino:

Método de los volúmenes absolutos:

Vol. Abs. de cemento:	467.88 / 3150 =	0.148533 m ³ .
Vol. Abs. de agua:	193 / 1000 =	0.193000 m^3 .
Vol. Abs. de agregado grueso:	1120.56 / 2650 =	0.422853 m^3 .
Vol. Abs. de aire atrapado:	1.5 / 100 =	0.015000 m^3 .
		3

Volumen absoluto parcial = 0.779386 m^3 .

Vol. Abs. de agreg. Fino: $1 - 0.779386 = 0.220614 \text{ m}^3$. Peso seco de agregado fino: $2570 \times 0.220614 = 566.98 \text{ Kg}$.

9. Peso seco de los materiales para 1 m³ de concreto:

Peso cemento = 467.88 Kg.
Peso agua de mezclado = 193 lts.
Peso agregado grueso = 1120.56 Kg.
Peso agregado fino = 566.98 Kg.

10. Ajuste por contenido de humedad de los agregados:

Agregado grueso:	Cont.humedad (wg %)	. =	1.10	%
	Absorción (ag %)	.=	0.89	%
Agregado fino:	Cont.humedad (wf %)	==	6.50	%
	Absorción (af %)	=	1.23	%
Agregado grueso húmedo:	P. Agreg. grueso seco × [1+ (wg%	- ag%)/100] =	1122.91	Kg.
Agregado fino húmedo:	P. Agreg. fino seco × [1+(wf%	5 - af%)/100] =	596.86	Kg.
Agua en agregado grueso (X):	Peso agreg, grueso seco × (wg%	ь - ag%)/100 =	2.35	Kg.
Agua en agregado fino (Y):	Peso agreg. fino seco × (wf	% - af%)/100 =	29.88	Kg.
Agua neta o efectiva:	Agua de diseño =	205 - (X+Y) =	160.77	lts.

NOTA: Los valores anteriores están dados en unidades por m³ de concreto.

AJUSTE DE MEZCLA DE PRUEBA

Método de los volúmenes absolutos:

1º La colada para un volumen de 0.028 m³ (para 3 especimenes) consistirá de:

Cemento:	$467.88 \times 0.028 =$	13.10061 Kg.
Agregado grueso húmedo:	$1122.91 \times 0.028 =$	31.44157 Kg.
Agregado fino húmedo:	$596.86 \times 0.028 =$	16.71203 Kg.
Agua añadida:	$160.77 \times 0.028 + 0.10 =$	4.60148 lts.
	Peso de la colada =	65.856 Kg.

2º Rendimiento de la mezcla:

	Rendimiento = 65.856 / Peso unit. del concreto =	0.02901 m^3 .
	Peso unitario del concreto =	2270 Kg/m ³
3º Agua de mezcla:		
Agua añadida:	=	4.60148 lts.
Agua en Agreg. Grues	o: $1120.56 \times 0.028 \times (1.10 - 0.89) / 100 =$	0.06589 lts.
Agua en Agreg. Fino:	$566.98 \times 0.028 \times (6.50 - 1.23) / 100 =$	0.83663355 lts.
	Agua de mezcla por tanda =	5.50400 lts.

4º Cantidad de agua de mezclado requerida por metro cúbico de concreto, con el mismo asentamiento de la tanda de ensayo:

> 189.72 lt/m³ Agua de mezclado 5.504 / 0.02901 =

5º La cantidad de agua de mezclado deberá ser incrementada o disminuida en 2 lt/m³ de concreto por cada incremento o disminución en el asentamiento deseado. En este caso, para obtener el asentamiento de 3" (7.62 cm.), el agua de mezclado se incrementará de la siguiente manera:

Nueva agua de mezclado = $189.72 + (7.62 - 2.30) \times 2 =$ 200.36 lts. 6º Nuevo contenido de cemento:

Contenido de cemento 200.36 / 0.4125 485.72 Kg.

 $13\ 10061\ /\ 3150 = 0.004150\ m^3$

485.72 / 3150 =

7º Volumen absoluto de los materiales sin considerar el aire atrapado en la mezcla de ensavo original:

Volumen absoluto del cemen	to:	13.10061 / 3150 =	0.004159 m^3 .
Volumen absoluto de agua:		5.504 / 1000 =	0.005504 m^3 .
Volumen absoluto de Agreg.	grueso:	$1120.56 \times 0.028 / 2650 =$	0.011840 m^3 .
Volumen absoluto de Agreg.	Fino:	$566.98 \times 0.028 / 2570 =$	0.005991 m^3 .
		Volumen absoluto total =	0.02749 m^3 .
Aire atrapado	= (0.02901 -	0.02749) / $0.02901 \times 100 =$	5.23 %

8º Volumen absoluto de materiales corregidos:

Volumen absoluto del cemento:

Calculadas las proporciones de los componentes del concreto, excepto del agregado fino, se procede a determinar las cantidades ajustadas por m³.

Volumen absoluto de agua:	200.36 / 1000 =	0.20036 m^3 .
Volumen absoluto del aire:	1.5 / 100 =	0.01500 m^3 .
Volumen absoluto de Agreg. grueso:	1120.56 / 2650 =	0.42285 m^3 .
** *		a ==a = 1 3

Volumen total (excluido agreg. fino) = 0.79241 m³.

 0.20759 m^3 . 1 - 0.79241 =Volumen absoluto de agregado fino: $0.20759 \times 2570 =$ 533.51 Kg. Peso seco del agregado fino:

9º Pesos ajustados por metro cúbico de concreto, corregidos por humedad:

	The state of the s	
Cemento:	=	485.72 Kg.
Agregado fino húmedo:	$533.51 \times (1 + 6.50/100) =$	568.19 Kg.
Agregado grueso húmedo	$1120.56 \times (1 + 1.10/100) =$	1132.89 Kg.
Agua efectiva:	=	200.36 lts.

 0.15420 m^3 .

10º Proporcionamiento en peso:

485.72	568.19	1132.89	200.36
	:		/
485.72	485.72	485.72	485.72
	1:1.17:2	2.33 / 0.41	lts.

11º Proporcionamiento en volumen:

Cemento: $485.72 / 42.5 = 11.43 \text{ pie}^3$ Agregado fino: $533.51 \times 35.3 / 1489 = 12.65 \text{ pie}^3$ Agregado grueso: $1120.56 \times 35.3 / 1538 = 25.72 \text{ pie}^3$

1:1.11:2.25 / 17.53 lt/bolsa.

4.5.6 Expresión de las proporciones con dosificación en obra.

De acuerdo a las proporciones obtenidas:

a. Concreto para pavimento de vías (MR = 45 Kg/cm²).

 $MR = 0.16 \text{ f'c} \rightarrow \text{f'c de diseño} = 280 \text{ Kg/cm}^2$

En peso: 1:1.58:2.81 / 0.50 lts.

En volumen: 1:1.49:2.71 / 21.25 lt/bolsa

Colada en base a una bolsa de cemento:

Volúmenes aparentes:

Cemento = 1 pie^3 Agregado fino = 1.49 pie^3 Agregado grueso = 2.71 pie^3 Agua = 21.25 lts.

Pesos húmedos:

Cemento: = 42.50 Kg.
Agregado fino: (1.49 / 35.3) × 1489 × 1.065 = 66.94 Kg.
Agregado grueso: (2.71 / 35.3) × 1538 × 1.011 = 119.37 Kg.

Agua: = 21.25 Kg.
Peso de la colada = 250.06 Kg.

Entonces:

Factor cemento = Peso Cº fresco por m³ / Peso de la colada = 9.60 bolsas

Peso de los materiales por m³ de concreto (húmedos):

 Cemento:
 $42.5 \times 9.60 =$ 407.91 Kg.

 Agregado fino:
 $66.94 \times 9.60 =$ 642.43 Kg.

 Agregado grueso
 $119.37 \times 9.60 =$ 1145.71 Kg.

 Agua efectiva:
 $21.25 \times 9.60 =$ 203.95 lts.

Pesos secos de los materiales por m³ de concreto:

Cemento: = 407.91 Kg. Agregado fino: 642.43/1.065 = 603.22 Kg.

Agregado mo. 042.43/1.003 = 003.22 kg. Agregado grueso: 1145.71/1.011 = 1133.24 kg.

Agregado grueso: 1143.7171.011 = 1133.24 KgAgua de diseño: $203.95 + [603.22 \times (6.5 - 1.23)/100 +$

 $+ 1133.24 \times (1.10 - 0.89) / 100] = 238.12 \text{ lts.}$

Cantidades de materiales por	m ³ de concreto (en obra):	
Cemento:	· =	9.60 bolsas
Agregado fino:	603.22 / 1489 =	0.41 m^3 .
Agregado grueso:	1133.24 / 1538 =	0.74 m^3 .
Agua de diseño:	***	203.95 lts.
b. Concreto para tapa de ca	anal de drenaje, en vereda.	
$f'c = 210 \text{ Kg/cm}^2 \rightarrow f'c \text{ de}$	diseño = $1.20 \times 210 \text{ Kg/cm}^2 = 252 \text{ Kg/cm}^2$.	
En peso:	1: 1.60: 2.53 / 0.52 lts.	
*	1:1.51:2.44 / 22.19 lt/bolsa	
Colada en base a una bolsa o	•	
Volúmenes aparentes:		
Cemento:	= 1 pie ³	
Agregado fino:	= 1.51 pie ³	
Agregado grueso:	$= 2.44 \text{ pie}^3$	
Agua:	= 22.19 lts.	
Pesos húmedos:		
Cemento:	=	42.50 Kg.
Agregado fino:	$(1.51/35.3) \times 1489 \times 1.065 =$	67.83 Kg.
Agregado grueso:	$(2.44 / 35.3) \times 1538 \times 1.011 =$	107,48 Kg.
Agua:	=	22.19 Kg.
	Peso de la colada =	240.00 Kg.
Entonces:	3	
	Peso C ^o fresco por m ³ / Peso de la colada =	10.00 bolsas
Peso de los materiales por m		
Cemento:	$42.5 \times 10 =$	425.00 Kg.
Agregado fino:	66.04 × 10 =	678.33 Kg.
Agregado grueso: Agua efectiva:	$106.16 \times 10 = 22.19 \times 10 =$	1074.78 Kg. 221.90 lts.
		221.90 its.
Pesos secos de los materiales	s por m ² de concreto:	
Cemento:	Z70 22/1 0/2	425.00 Kg.
Agregado fino: Agregado grueso:	678.33/1.065 = 1074.78/1.01 = -	636.93 Kg. 1063.08 Kg.
Agua de diseño:	221.90 + [636.93 × (6.5 - 1.23)/100 +	1005.06 Kg.
rigua de diserio.	+ 1063.08 × (1.10 - 0.89) / 100] =	257.70 lts.
Cantidad de materiales por i	n de concreto (en obra):	10.004.1
Cemento:	=	10.00 bolsas
Agregado fino:	636.93 / 1489 =	$0.43 \text{ m}^3.$
Agregado grueso:	1063.08 / 1538 =	0.69 m^3 .
Agua de diseño:	· =	221.90 lts.

c. Concreto para tapa de canal de drenaje, en calzada.

f'c de diseño = 350 Kg/cm².

En peso: 1: 1.17: 2.33 / 0.41 fts.

En volumen: 1:1.11:2.25 / 17.53 lt/bolsa.

Colada en base a una be	olsa de cemen	to:	
Volúmenes aparentes:			
Cemento:	=	1 pie ³	
Agregado fino:	=	1.11 pie ³	
Agregado grueso:	==	2.25 pie^3	
Agua:	=	17.53 lts.	
Pesos húmedos:			
Cemento:		=	42.50 Kg.
Agregado fino:	•	$(1.11/35.3) \times 1489 \times 1.065 =$	49.86 Kg.
Agregado grueso:		$(2.25 / 35.3) \times 1538 \times 1.011 =$	99.11 Kg.
Agua:		=	17.53 Kg.
		Peso de la colada =	209.00 Kg.
Entonces:		2	
		fresco por m ³ / Peso de la colada =	11.48 bolsas
Peso de los materiales p	oor m ³ de con	creto (húmedos):	
Cemento:		$42.5 \times 11.48 =$	488.03 Kg.
Agregado fino:		$49.86 \times 11.48 =$	572.60 Kg.
Agregado grueso:		99.11 × 11.48 =	1138.08 Kg.
Agua efectiva:		$17.53 \times 11.48 =$	201.30 lts.
Pesos secos de los mate	eriales por m ³	de concreto:	
Cemento:		=	488.03 Kg.
Agregado fino:		572.60/1.065 =	537.65 Kg.
Agregado grueso:		1138.08/1.01 =	1125.69 Kg.
Agua de diseño:	201.30) + [537.65 × (6.5 - 1.23)/100 +	
		+ 1125.69 × (1.10 - 0.89) / 100] =	232.00 lts.
Cantidad de materiales	por m ³ de co	ncreto (en obra):	
Cemento:		=	11.48 bolsas
Agregado fino:		537.65 / 1489 =	0.36 m^3 .
Agregado grueso:		1125.69 / 1538 =	$0.73 \mathrm{m}^3$.
Agua de diseño:		=	201.30 lts.
d. Concreto para mur	o de Canal.		
$f'c = 175 \text{ Kg/cm}^2 \rightarrow 1$	f 'c de diseño :	$= 1.20 \times 175 \text{ Kg/cm}^2 = 210 \text{ Kg/cm}^2.$	
En peso:	1:2	.05 : 3.36 / 0.60 lts.	
En volur	nen: 1:1	.94 : 3.24 / 25.50 lt/bolsa	
Colada en base a una b	olsa de ceme	nto:	
Volúmenes aparentes:			
Cemento	=.	1 pie ³	
Agregado fino		1.94 pie^3	
Agregado grueso	= .	3.24 pie^3	
Agua	=	25.50 lts.	

$(3.24 / 35.3) \times 1538 \times 1.011 =$	141.16 Kg.
=	25.50 Kg.
Peso de la colada =	296.32 Kg.

 $(1.94/35.3) \times 1489 \times 1.065 =$

Pesos húmedos: Cemento:

Agregado fino:

Agua:

Agregado grueso:

42.50 Kg.

87.15 Kg.

1	Fn	tot	rre	
- 1		11 11		

Entonces:		
Factor cemento =	= Peso C ^o fresco por m ³ / Peso de la colada =	8.10 bolsas
1	m³ de concreto (húmedos):	
Cemento:	$42.5 \times 8.10 =$	344.23 Kg.
Agregado fino:	$87.15 \times 8.10 =$	705.88 Kg.
Agregado grueso:	$141.16 \times 8.10 =$	1143.36 Kg.
Agua efectiva:	$25.50 \times 8.10 =$	206.54 lts.
Pesos secos de los materia	ales por m ³ de concreto:	
Cemento:	=	344.23 Kg.
Agregado fino:	705.88 / 1.065 =	662.79 Kg.
Agregado grueso:	1143.36 / 1.011 =	1130.92 Kg.
Agua de diseño:	206.54 + [662.79 (6.5 - 1.23) / 100 +	
	+ 1130.92 × (1.10 - 0.89) / 100] =	243.84 lts.
Cantidades de materiales	por m ³ de concreto (en obra):	
Cemento:	=	8.10 bolsas
Agregado fino:	662.79 / 1489 =	0.45m^3 .
Agregado grueso:	1130.92 / 1538 =	0.74 m^3 .
Agua de diseño:	=	206.54 lts.
e. Concreto para vereda	s.	
$f'c = 140 \text{ Kg/cm}^2$		
En peso:	1 : 2.84 : 4.28 / 0.77 lts.	
En volumer	n: 1 : 2.69 : 4.13 / 32.73 lt/bolsa.	
Colada en base a una bols	sa de cemento:	
Volúmenes aparentes:	2	
Cemento	= 1 pie ³	
Agregado fino	$= 2.69 \text{ pie}^3$	
Agregado grueso	$= 4.13 \text{ pie}^3$	
Agua	= 32.73 lts.	
Pesos húmedos:		
Cemento:	=	42.50 Kg.
Agregado fino:	$(2.69 / 35.3) \times 1489 \times 1.065 =$	120.84 Kg.
Agregado grueso:	$(4.13 / 35.3) \times 1538 \times 1.011 =$	179.94 Kg.
Agua:	=	32.73 Kg.
_	Peso de la colada =	376.01 Kg.
Entonces:	•	
Factor cemento	= Peso C ^o fresco por m ³ / Peso de la colada =	6.38 bolsas
Peso de los materiales por	r m³ de concreto (húmedos):	
Cemento	$42.5 \times 6.38 =$	271.27 Kg.
Agregado fino	$118.15 \times 6.38 =$	771.31 Kg.
Agregado grueso	$178.20 \times 38 =$	1148.52 Kg.
Agua efectiva	$32.73 \times 6.38 =$	208.91 lts.

Pesos secos de los materiales por m³ de concreto:

Cemento: = 271.27 Kg.

Agregado fino: 771.31 / 1.065 = 724.23 Kg.

Agregado grueso: 1148.52 / 1.011 = 1136.02 Kg.

Agua de diseño: $208.91 + [724.23 (6.5 - 1.23) / 100 + 1136.02 \times (1.10 - 0.89) / 100] = 249.46 \text{ lts.}$

Cantidad de materiales por m³ de concreto (en obra):

Cemento: = 6.38 bolsas

Agregado fino: $724.23 / 1489 = 0.49 \text{ m}^3$. Agregado grueso: $1136.02 / 1538 = 0.74 \text{ m}^3$.

Agua de diseño: = 208.91 lts.

4.6 HIDROLOGÍA Y DISEÑO DE OBRAS DE ARTE.

4.6.1 ESTUDIO HIDROLÓGICO.

a) Periodo de retomo.

Empleando las tablas 2.5.1 (1) y 2.5.1 (2) se obtuvieron las siguientes estimaciones de tiempos de retorno:

Marahaa	Tr Tipo de vía	Tr Uso de la tierra	Tr de diseño
Nombre	(años)	(años)	(años)
Jr. Angamos	. 5	2	5
Jr Sara Mc Dougall	. 5	2	5
Jr. Huancavelica	5	2	5
Jr. Arróspide de Loyola	5	2	5
Jr. Marañón	5	2	5
Jr. Francia	5	2	5
Psje. Francia	2	2	2
Jr. Las Cucardas	5	2	5
Psje. Los Pensamientos	5	2	5
Jr. Chepén	5	2	5
Jr. Chanchamayo	10	2	10
Jr. Sta. Victoria	5	2	. 5
Jr. Huaraz	2	2	2
Jr. Mariano Melgar	5	2	5
Jr. San Jorge	5	2	5
Psje. Inca Yupanqui	2	2	2
Psje. Pachacútec	2	2	2
Psje. César Vallejo	2	2	2
Psje. Cusco	2	2	2
Psje. Libertad	2	2	2
Psje. Huancavelica	2	2	2
Jr. Niño Jesús	2	2	2
Jr. Virgen María	2	2	2
Jr. San José	2	2	2
Jr. Los Tres Reyes	5	2	5
Jr. Miguel Iglesias	10	2	10
Av. Vía de Evitamiento	10	2	10
Pasaje Francia	2	2	2
Pasaje Los Reyes	2	2	2

b) Tiempo de concentración.

El cálculo del tiempo de concentración se realiza ingresando al ábaco de la figura 2.5.1 (a) con la distancia de flujo en metros, se intercepta a la columna de coeficiente de rugosidad,

284

para flujo superficial, con el valor de n = 0.016, proyectando esta línea hasta la columna de línea pivote. A continuación se intercepta a la columna de pendiente superficial (pendiente de tramo) para, finalmente, proyectarla hasta la columna de tiempo (en minutos), para flujo superficial. El tiempo de concentración mínimo será de 5 min.

c) Coeficiente de escorrentía.

Empleando la tabla 2.5.1 (4) obtenemos los siguientes valores:

Residencia unifamiliar

: C = 0.40

Tipo de superficie:

Pavimentos

: C = 0.80

Techos y azoteas

: C = 0.80

El coeficiente de escorrentía promedio será: C = 0.67

d) Intensidad máxima.

Con los datos de intensidades máximas para la estación Weberbauer, proporcionados por SENHAMI, correspondientes a los periodos de retorno estimados según las tablas 2.5.1 (1) y 2.5.1 (2), es posible graficar curvas de intensidad-frecuencia-duración y determinar sus respectivas ecuaciones, las que servirán para calcular las intensidades máximas para los tiempos de concentración calculados para cada tramo.

e) Áreas tributarias.

Han sido determinadas según lo señalado en el punto 2.5.1, b)2, del capítulo II.

4.6.2 CÁLCULO DE CAUDALES.

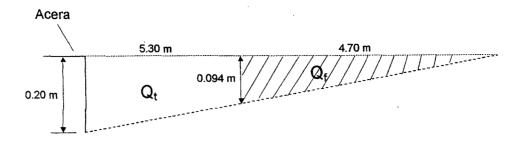
A) Caudal en cada tramo.

Este se calcula con la ecuación 2.5.1 - 3 del método racional.

B) Caudales acumulados en cada tramo.

Se determinan según el criterio expuesto en el punto 2.5.1 e, del capítulo II.

C) Capacidades hidráulicas.


Se calculan según lo señalado en el punto 2.5.1 d, del capítulo II.

Ejemplo: Calcular la capacidad hidráulica del tramo 13-20:

 $S_0 = 2.40 \%$

Altura de vereda: y = 20 cm.

 $S_x = 2\%$; n = 0.016; b = 10.60 m.

T = y z = 0.20 (1/0.02) = 10.00 m.

$$y_c = (T - b/2) / z = (10.00 - 5.30) / 50 = 0.094 m.$$

Empleando la ecuación 2.5.1 – 5:

$$Q_f = (0.00175) (50/0.016) (9.40^{8/3}) (2.40^{1/2}) / 1000 = 0.333 \text{ m}^3/\text{seg}.$$

$$Q_t = (0.00175) (50/0.016) (20^{8/3}) (2.40^{1/2}) / 1000 = 2.497 \text{ m}^3/\text{seg}.$$

Luego, usando la ecuación 2.5.1 – 7, la capacidad hidráulica del tramo 13 – 20 será:

$$Q_{\text{max}} = 2 (2.497 - 0.333) = 4.327 \text{ m}^3/\text{seg.}$$

4.6.3 VELOCIDAD EN CADA TRAMO.

Se calcula con la fórmula: $V_A = Q_A / A_A$

Donde:

V_A: velocidad del agua correspondiente al caudal en un lado de la calle.

Q_A: caudal en un lado de la calle (caudal de aproximación).

 A_A : área de aproximación $(A_A = T_A y_A / 2)$

Ejemplo: Calcular la velocidad en el tramo 13 - 20.

El caudal de aproximación es $Q_A = 0.081 \text{ m}^3/\text{seg} = 81 \text{ lt/seg}$

En la ecuación 2.5.1 - 5, despejando y (y_A: tirante de agua) y reemplazando el valor de caudal de aproximación se tiene que: y_A = 0.055 m.

Y el ancho superficial: $T_A = y_A z = 2.77 \text{ m}$.

Luego:

$$A_A = (2.77) (0.055)/2 = 0.077 \text{ m}^2$$

Finalmente, la velocidad en el tramo 13 – 20 será:

$$V_A = 0.081/0.077 = 1.06$$
 m/seg.

El siguiente cuadro muestra los valores de las intensidades, caudales y velocidades para cada tramo.

CUADRO RESUMEN DE CAUDALES Y CAPACIDADES HIDRÁULICAS PARA LAS DIFERENTES CALLES

Coef. de escorrentía:	0.67																										
11	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
NOMBRE	Dist.	So	Tra	amo	Qap	At	Qi	Qdis	Tc	1	ь	Y	Sx	z	Т	Yc	n	Qt	Qf	Qmáx	Q _A	YA	TA	A _A	V _A	Cheq 1	Cheq 2
TOMBRE	m		L.,		m³/s	Ha	m³/s	m³/s	min.	mm/hr	m	m			m	m		m³/s	m³/s	m³/s	m³/s	m	m	m	m/s	Qdis < Qmáx	Va < Vmá
Jr. Angamos	102	1.00%	1	2		0.7229	0.133	0.133	5.0	99.14	10.60	0.20	0.02	50	10.00	0.094	0.016	1.612	0.215	2.793	0.067	0.061	3.03	0.092	0.73	O.K.I	O.K.I
Jr. Angamos	90	1.00%	2	3	0.040	0.7024	0.130	0.130	5.0	99.14	11.60	0.20	0.02	50	10.00	0.084	0.016	1.612	0.159	2.905	0.065	0.060	3.00	0.090	0.72	O.K.!	O,K.I
Jr. Angamos	122	1.40%	3	4	0.130	0.8935	0.165	0.165	5.0	99.14	11.60	0.20	0.02	50	10.00	0.084	0.016	1.907	0.189	3.437	0.082	0.062	3.08	0.095	0.87	O.K.!	O.K.I
Jr. Angamos	30	1.40%	4	5	0.165	0.1211	0.022	0.165	5.0	99.14	11.10	0.20	0.02	50	10.00	0.089	0.016	1.907	0.220	3.374	0.082	0.062	3.08	0.095	0.87	O.K.I	O.K.I
Jr. Angamos	62	0.80%	5	6	0.049	0.3634	0.067	0.067	5.0	99,14	11.10	0.20	0.02	50	10.00	0.089	0.016	1.442	0.166	2.550	0.034	0.049	2.44	0.060	0.56	0.K.l	O.K.I
Jr. Angamos	20	0.80%	6	7	0.020	0.0387	0.007	0.020	5.0	99.14	12.60	0.20	0.02	50	10.00	0.074	0.016	1.442	0.102	2.680	0.010	0.031	1.55	0.024	0.42	0.K.I	O.K.I
Jr. Sara Mc Dougall	112	2.90%	1	8		0.7000	0.129	0.129	5.0	99.14	9.60	0.20	0.02	50	10.00	0.104	0.016	2.745	0.480	4.530	0.065	0.049	2.45	0.060	1.07	0.K.I	O.K.I
Jr. Sara Mc Dougail	8	2.40%	8	13	0.144	0.0056	0.001	0.144	5.0	99.14	10.60	0.20	0.02	50	10.00	0.094	0.016	2.497	0.333	4.327	0.072	0.053	2.65	0.070	1.03	O.K.I	0.K.I
Jr. Sara Mc Dougall	148	2.40%	13	20	0.158	0.8823	0.163	0.163	5.0	99.14	10.60	0.20	0.02	50	10.00	0.094	0.016	2.497	0.333	4.327	0.081	0.055	2.77	0.077	1.06	0.K.I	0.K.I
Jr. Sara Mc Dougall	58	3.75%	20	27	0.019	0.1918	0.035	0.035	5.0	99.14	8.60	0.20	0.02	50	10.00	0.114	0.016	3.121	0.697	4.848	0.018	0.029	1.44	0.021	0.86	O.K.I	O.K.!
Jr. Sara Mc Dougall	65	3.00%	27	29	0.025	0.2219	0.041	0.041	5.0	99.14	7.60	0.20	0.02	50	10.00	0.124	0.016	2.792	0.780	4.023	0.020	0.032	1.58	0.025	0.82	O.K.I	O.K.I
Jr. Sara Mc Dougail	52	2.00%	29	31	0.029	0.1672	0.031	0.031	5.0	99.14	8.60	0.20	0.02	50	10.00	0.114	0.016	2.279	0.509	3.541	0.015	0.031	1.54	0.024	0.65	O.K.I	O.K.I
Psje. Wiracocha	22	0.70%	31	30	0.031	0.1056	0.019	0.031	5.0	99.14	12.00	0.20	0.02	50	10.00	0.080	0.016	1.348	0.117	2.463	0.015	0.037	1.87	0.035	0.44	O.K.I	O,K.I
Jr. Huancavelica	122	3.50%	2	10	0.093	0.7180	0.132	0.132	5.0	99.14	8.10	0.20	0.02	50	10.00	0.119	0.016	3.015	0.755	4.520	0.068	0.048	2.39	0.057	1,16	O.K.I	O.K.!
Jr. Huancavelica	148	2.18%	10	22	0.108	0.7632	0.141	0.141	5.0	99.14	8.10	0.20	0.02	50	10.00	0.119	0.016	2.380	0.596	3.567	0.070	0.053	2.67	0.071	0.99	O.K.I	O.K.!
Jr. Huancavelica	105	3.63%	22	34	0.090	0.4165	0.077	0.090	5.0	99.14	8.10	0.20	0.02	50	10.00	0.119	0.016	3.071	0.769	4.604	0.045	0.041	2.05	0.042	1.07	O.K.1	0.K.!
Jr. Huancavelica	60	2.00%	34	33	0.115	0.2097	0.039	0.115	5.0	99.14	8.10	0.20	0.02	50	10.00	0.119	0.016	2.279	0.571	3.417	0.057	0.050	2.51	0.063	0.91	O.K.!	O.K.!
Jr. Huancavelica	64	2.00%	33	41	0.218	0.1747	0.032	0.218	5.0	99.14	8.10	0.20	0.02	50	10.00	0.119	0.016	2.279	0.571	3.417	0.109	0.064	3.20	0.102	1.07	O.K.!	0.K.I
Jr. Huancavellca	50	3.50%	41	49	0.378	0.1177	0.022	0.378	5.0	99.14	8.10	0.20	0.02	50	10.00	0.119	0.016	3.015	0.755	4.520	0.189	0.071	3.54	0.125	1.51	O.K.I	O.K.I
Jr. Huancavelica	32	3.00%	49	55	0.414	0.0795	0.015	0.414	5.0	99.14	8.10	0.20	0.02	50	10.00	0.119	0.016	2.792	0.699	4.185	0.207	0.075	3.77	0.142	1.46	O.K.I	O.K.!
Jr. Huancavelica	30	2.50%	55	64	0.446	0.0618	0.011	0.446	5.0	99.14	8.10	0.20	0.02	50	10.00	0.119	0.016	2.548	0.638	3.820	0.223	0.080	4.01	0.161	1.39	O.K.!	O.K.!
Jr. Chepén	146	2.26%	14	18	0.024	0.8383	0.155	0.155	5.0	99.14	10.60	0.20	0.02	50	10.00	0.094	0.016	2.423	0.324	4.199	0.077	0.055	2.75	0.076	1.02	O.K.!	O.K.I
Jr. Chepén	56	2.54%	18	26′	0.186	0.1506	0.028	0.186	5.0	99.14	12.60	0.20	0.02	50	10.00	0.074	0.016	2.569	0.181	4.775	0.093	0.058	2.88	0.083	1.12	O.K.I	O.K.!
Jr. Chepén	64	2.78%	26'	28	0.204	0.2248	0.041	0.204	5.0	99.14	12.60	0.20	0.02	50	10.00	0.074	0.016	2.687	0.190	4.995	0.102	0.059	2.93	0.086	1.19	O.K.!	0.K.!
Jr. Chepén	50	2.92%	28	30	0.217	0.1290	0.024	0.217	5.0	99.14	12.60	0.20	0.02	50	10.00	0.074	0.016	2.754	0.194	5.120	0.108	0.059	2.97	0.088	1.23	O.K.!	O.K.I
Jr. Chepén	54	2.02%	30	38	0.248	0.1308	0.024	0.248	5.0	99.14	11.60	0.20	0.02	50	10.00	0.084	0.016	2.291	0.227	4.128	0.124	0.067	3.35	0.112	1.10	O.K.!	O.K.!
Jr. Chepén	32	3.70%	38	47	0.282	0.0855	0.016	0.282	5.0	99.14	9.40	0.20	0.02	50	10.00	0.106	0.016	3.100	0.570	5.060	0.141	0.063	3.14	0.099	1.43	O.K.!	O.K.I
Jr. Chepén	30	4.75%	47	63	0.297	0.0482	0.009	0.297	5.0	99.14	8.40	0.20	0.02	50	10.00	0.116	0.016	3.513	0.822	5.382	0.148	0.061	3.05	0.093	1.59	O.K.!	O.K.1

11	2	3	,	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
NOMBRE	Dist.	So	Tra	amo	Qap	At	Qi	Qdis	Тс	l	b	Υ	Sx	z	Т	Yc	n	Qt	Qf	Qmáx	QA	YA	TA	A _A	VA	Cheq 1	Cheq 2
HOMBRE	m		<u> </u>		m³/s	Ha	m³/s	m³/s	min.	mm/hr	m	m			m	m		m ³ /s	m³/s	m³/s	m³/s	m	m	m	m/s	Qdis < Qmá	Va < Vmáx
Jr. Arróspide de Loyola	116	3.00%	3	12	0.091	0.9440	0.174	0.174	5.0	99.14	9.40	0.20	0.02	50	10.00	0.106	0.016	2.792	0.514	4.556	0.087	0.054	2.72	0.074	1.17	O.K.1	O.K.!
Jr. Marañón	32	1.00%	12	11	0.174	0.1002	0.018	0.174	5.0	99.14	7.90	0.20	0.02	50	10.00	0.121	0.016	1.612	0.422	2.380	0.087	0.067	3.35	0.112	0.78	O.K.I	O.K.1
Jr. Francia	55	2.20%	11	15	0.239	0.4645	0.086	0.239	5.0	99.14	8.60	0.20	0.02	50	10.00	0.114	0.016	2.391	0.534	3.713	0.120	0.065	3.25	0.106	1.13	O.K.!	O.K.1
Jr. Francia	88	2.65%	15	23	0.250	0.4334	0.080	0.250	5.0	99.14	8.60	0.20	0.02	50	10.00	0.114	0.016	2.624	0.586	4.075	0.125	0.064	3.19	0.102	1.23	O.K.I	O.K.I
			ļ				ļ										ļ	ļ									ļ
Psje. Francia	37	0.70%	15'	15		0.0675	0.011	0.011	5.0	85.95	3.00	0.20	0.02	50	10.00	0.170	0.016	1.348	0.874	1.073	0.005	0.025	1.26	0.016	0.34	O.K.I	O.K.I
Jr. Marañón	75	1,20%	9	10		0.4554	0.084	0.084	5.0	99,14	8.90	0.20	0.02	50	10.00	0.111	0.016	1.766	0.367	2.797	0.042	0.049	2.46	0.061	0.69	0.K.I	0.K.I
Jr. Marañón	52	1.10%	10	11	0.065	0.2079	0.038	0.065	5.0	99.14	8.90	0.20	0.02	50	10.00	0.111	0.016	1,690	0.352	2.678	0.032	0.045	2.27	0.052	0.63	O.K.I	0.K.I
or. Margnon	02	1.1070		' ' '	0.000	0.2075	0.000	0.000	0.0	00.14	0.50	0.20	0.02	00	10.00	0.,,,,	0.0.0	1.000	0.002	2.070	0.002	0.040	2.21	0.002	0.00	O.K.i	0.11.1
Jr. Marañón	29	0.70%	9	8		0.0813	0.015	0.015	5.0	99.14	8.90	0.20	0.02	50	10.00	0.111	0.016	1.348	0.281	2.136	0.008	0.029	1.43	0.020	0.37	O.K.!	O.K.I
				<u> </u>														· .									
Jr. Maraňón	22	1.50%	13'	13		0.0774	0.014	0.014	5.0	99,14	7.60	0.20	0.02	50	10.00	0.124	0.016	1.974	0.552	2.845	0.007	0.024	1.21	0.015	0.48	O.K.I	O.K.!
	ļ		ļ	<u> </u>														ļ	ļ								
Jr. Marañón	40	1.20%	13'	14		0.1305	0.024	0.024	5.0	99.14	7.60	0.20	0.02	50	10.00	0.124	0.016	1.766	0.493	2.544	0.012	0.031	1.54	0.024	0.51	O.K.!	O.K.!
Jr. Las Cucardas	118	1.71%	5	16	0.047	0.9485	0.175	0.175	5.0	99.14	7.60	0.20	0.02	50	10.00	0.124	0.016	2.108	0.589	3.037	0.088	0.061	3.03	0.092	0.95	O.K.I	0.K.I
Jr. Las Cucardas	90	3.35%	16	25	0.053	0.5600	0.103	0.103	5.0	99,14	7.60	0.20	0.02	50	10.00	0.124	0.016	2.950	0.825	4.251	0.052	0.044	2.19	0.048	1.07	O.K.I	O.K.!
Psje. Los Pensamientos	64	2.15%	16	17	0.123	0.1643	0.030	0.123	5.0	99.14	7.60	0.20	0.02	50	10.00	0.124	0.016	2.363	0.661	3.406	0.061	0.051	2.54	0.065	0.95	O.K.!	O.K.!
Jr. Chanchamayo (der)	20	0.40%	19	20		0.0353	0.007	0.007	5.0	109.10	9.20	0.20	0.02	50	10.00	0.000	0.016	1.019	0.000	1.019	0.007	0.031	1.56	0.024	0.30	O.K.I	O.K.I
Jr. Chanchamayo (der)	64	0.40%	20	21	0.051	0.1864	0.038	0.051	5.0	109.10	8.20	0.20	0.02	50	10.00	0.036	0.016	1.019	0.011	1.009	0.051	0.065	3.25	0.106	0.48	O.K.I	O.K.!
Jr. Chanchamayo (der)	44	0.40%	21	22	0.015	0.1183	0.024	0.024	5.0	109.10	7.20	0.20	0.02	50	10.00	0.056	0.016	1.019	0.034	0.985	0.024	0.049	2.45	0.060	0.40	O.K.!	O.K.t
Jr. Chanchamayo (der)	50	0.40%	22	23	0.049	0.0850	0.017	0.049	5.0	109.10	10.20	0.20	0.02	50	10.00	0.000	0.016	1.019	0.000	2.039	0.049	0.064	3.22	0.103	0.48	O.K.I	O.K.!
Jr. Chanchamayo (der)	46	0.37%	23	24	0.031	0.1166	0.024	0.031	5.0	109.10	8.20	0.20	0.02	50	10.00	0.036	0.016	0.980	0.010	0.970	0.031	0.055	2.73	0.075	0.41	O.K.I	O.K.!
Jr. Chanchamayo (der)	120	0.37%	24	25	0.009	0.6748	0.115	0.115	6.6	91.67	8.20	0.20	0.02	50	10.00	0.036	0.016	0.980	0.010	0.970	0.115	0.090	4.48	0.201	0.57	O.K.I	O.K.1
Jr. Chanchamayo (der)	50	0.37%	25	26	0.112	0.0782	0.016	0.112	5.0	109.10	8.20	0.20	0.02	50	10.00	0.036	0.016	0.980	0.010	0.970	0.112	0.089	4.43	0.196	0.57	O.K.!	O.K.!
Jr. Chanchamayo (der)	40	1.00%	19	18	0.000	0.0762	0.015	0.015	5.0	109.10	9.20	0.20	0.02	50	10.00	0.000	0.016	1.612	0.000	1.612	0.015	0.035	1.75	0,031	0.50	O.K.!	O.K.!
	-		40		0.000	0.0400	0.004	0.004	5.0	400.40	0.10	0.00	0.02	-	40.00	0.000	0.016	4 4 4 6	0.000	4.440	0.004	0.024	1.18	0.014	0.27	O.K.!	O.K.I
Jr. Chanchamayo (izq)	20	0.50%	19	20	0.000	0.0188	0.004	0.004	5.0	109.10	9.10	0.20	0.02	50	10.00	0.000	0.016	1.140		1.140	0.004	0.024	2.73	0.014	0.48	O.K.!	0.K.I
Jr. Chanchamayo (izq)	64	0.50%	20	21	0.036	0.1215	0.025	0.036	5.0	109.10	6.80	0.20	0.02	50	10.00	0.064	0.016 0.016	1.140	0.055	1.085 0.861	0.036	0.055	2.75	0.074	0.48	O.K.!	0.K.!
Jr. Chanchamayo (izq)	44	0.31%	21	22	0.001	0.0931	0.019	0.019	5.0	109.10	7.00	0.20	0.02	50	10.00	0.060	0.016	0.897			0.019	0.047	2.61	0.055	0.54	O.K.!	0.K.1
Jr. Chanchamayo (izq)	50	0.67%	22	23	0.037	0.1118	0.023	0.037	5.0	109.10	9.20	0.20	0.02	50	10.00	0.016	0.010	1.319	0.002	1.318	0.057	0.052	2.01	0.008	0.54		<u> </u>

1	2	3	,	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
NOMBRE	Dist,	So	Tra	amo	Qap	At	Qi	Qdis	Тс	i	b	Y	Sx	z	Т	Yc	n	Qŧ	Qf	Qmáx	Q _A	YA	TA	A _A	V _A	Cheq 1	Cheq 2
	m			,	m³/s	Ha	m³/s	m³/s	min.	mm/hr	. m	m			m	m		m³/s	m³/s	m³/s	m³/s	m	m	m	m/s	Qdis < Qmá	Va < Vmáx
Jr. Chanchamayo (izq)	46	0.30%	23	24	0.246	0.0907	0.018	0.246	5.0	109.10	8.20	0.20	0.02	50	10.00	0.042	0.016	0.814	0.014	0.906	0.246	0.352	5.39	0.380	0.65	O.K.!	O.K.!
Jr. Chanchamayo (izq)	120	0.30%	24	25	0.246	0.5280	0.090	0.246	6.6	91.67	8.20	0.20	0.02	50	10.00	0.042	0.016	0.814	0.014	0.948	0.246	0.493	4.96	0.379	0.65	O.K.!	O.K.!
Jr. Chanchamayo (izq)	50	0.30%	25	26	0.353	0.0961	0.020	0.353	5.0	109.10	8.20	0.20	0.02	50	10.00	0.044	0.016	0.792	0.016	1.027	0.353	0.556	5.68	0.522	0.68	O.K.!	O.K.I
Jr. Chanchamayo (izq)	40	0.83%	19	18		0.0793	0.016	0.016	5.0	109.10	9.10	0.20	0.02	50	10.00	0.000	0.016	1.468	0.000	1.468	0.016	0.037	1.84	0.034	0.48	O.K.!	0.K.!
Jr. Sta. Victoria	163	2.50%	21	32	0.061	0.7696	0.142	0.142	5.0	99.14	5.60	0.20	0.02	50	10.00	0.144	0.016	2.548	1.061	2.974	0.071	0.052	2.61	0.068	1.04	O.K.!	0.K.I
Jr. Sta. Victoria	60	2.10%	32	40	0.099	0.2206	0.041	0.099	5.0	99.14	5.60	0.20	0.02	50	10.00	0.144	0.016	2.336	0.973	2.726	0.050	0.047	2.36	0.056	0.89	O.K.!	O.K.!
Jr. San Jorge	10	0.45%	39	40		0.0334	0.006	0.006	5.0	99.14	10.10	0.20	0.02	50	10.00	0.099	0.016	1.081	0.166	1.831	0.003	0.022	1.11	0.012	0.25	O.K.I	0.K.I
Jr. San Jorge	40	0.45%	40	41	0.106	0.1115	0.021	0.106	5.0	99.14	10.10	0.20	0.02	50	10.00	0.099	0.016	1.081	0.166	1.831	0.053	0.064	3.22	0.104	0.51	O.K.I	O.K.1
Jr. Mariano Melgar	48	0.59%	32	33	0.043	0.1095	0.020	0.043	5.0	99.14	6.60	0.20	0.02	50	10.00	0.134	0.016	1.238	0.426	1.625	0.021	0.044	2.18	0.048	0.45	0.K.I	O.K.I
Jr. Mariano Melgar	78	0.54%	35	33		0.3262	0.060	0.060	5.0	99.14	7.60	0.20	0.02	50	10.00	0.124	0.016	1.184	0.331	1.707	0.030	0.050	2.52	0.064	0.47	O.K.!	O.K.I
Jr. Mariano Melgar	26	0.25%	35	36		0.0980	0.018	0.018	5.0	99,14	8.60	0.20	0.02	50	10.00	0.114	0.016	0.806	0.180	1.252	0.009	0.037	1.86	0.034	0.26	O.K.I	O.K.1
Jr. Mariano Melgar	150	0.25%	36	37	0.273	0.9887	0.136	0.273	8.0	73.76	8.60	0.20	0.02	50	10.00	0.036	0.016	0.723	0.008	0.882	0.137	0.364	0.40	0.159	0.86	O.K.!	O.K.!
	ļ											-		_													
Jr. Huaraz	44	0.30%	34"	34′		0.1560	0.025	0.025	5.0	85.95	7.60	0.20	0.02	50	10.00	0.124	0.016	0.883	0.247	1.272	0.012	0.040	2.02	0.041	0.30	O.K.1	O.K.!
Jr. Huaraz	50	0.30%	34′	34	0.080	0.1719	0.027	0.080	5.0	85.95	7.60	0.20	0.02	50	10.00	0.124	0.016	0.883	0.247	1.272	0.040	0.063	3.14	0.099	0.41	O.K.I	O.K.I
Psje. Inca Yupanqui	52	0.70%	27	26'	0.011	0.1136	0.018	0.018	5.0	85.95	6.60	0.20	0.02	50	10.00	0.134	0.016	1.348	0.464	1.770	0.009	0.031	1.53	0.024	0.39	O.K.I	O.K.1
Psie. Pachacútec	36	0.50%	29	28	0.012	0.0503	0.008	0.012	5.0	85.95	6.60	0.20	0.02	50	10,00	0.134	0.016	1,140	0.392	1,496	0.006	0.028	1.41	0.020	0.31	0.K.I	O.K.I
Jr. San Jorge	52	1.20%	39	38		0.1879	0.035	0.035	5.0	99.14	10.10	0.20	0.02	50	10.00	0.099	0.016	1.766	0.271	2.990	0.017	0.035	1.77	0.031	0.56	O.K.!	O.K.1
Psje. César Vallejo	38	0.45%	48	47		0.0903	0.014	0.014	5.0	85.95	3.60	0.20	0.02	50	10.00	0.164	0.016	1.081	0.637	0.889	0.007	0.031	1.53	0.023	0.31	O.K.I	O.K.!
	-	0.5557	45	4-		0.4104	0.000	0.000		05.05	2.60	0.00	0.00	E0	40.00	0.104	0.016	4.400	0.605	0.055	0.042	0.000	1 70	0.022	037		
Psje. César Vallejo	50	0.52%	48	49		0.1464	0.023	0.023	5.0	85.95	3.60	0.20	0.02	50	10.00	0.164	0.016	1.162	0.685	0.955	0.012	0.036	1.78	0.032	0.37	O.K.!	O.K.!
Psje. César Vallejo	50	0.57%	51	50		0.1761	0.028	0.028	5.0	85.95	3.60	0.20	0.02	50	10.00	0.164	0.016	1.217	0.717	1.000	0.014	0.038	1.88	0.035	0.40	O.K.!	O.K.!
Psje. César Vallejo	40	1.24%	50	49	0.008	0.0789	0.013	0.013	5.0	85.95	3.60	0.20	0.02	50	10.00	0.164	0.016	1.795	1.057	1.475	0.006	0.024	1.20	0.014	0.44	O.K.!	O.K.!

1	2	3	,	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
NOMBRE	Dist.	So	Tra	amo	Qap	At	Qi	Qdis	Tc	ı	b	Y	Sx	z	Т	Yc	n	Qt	Qf	Qmáx	Q _A	YA	TA	A _A	V _A	Cheq 1	Cheq 2
TOMERE	m				m³/s	Ha	m³/s	m³/s	min.	mm/hr	m	m			m	m		m³/s	m³/s	m³/s	m³/s	m	m	m	m/s	Qdis < Qmá	va < Vmáx
Jr. San Jorge	69	1.20%	42	41		0.2990	0.055	0.055	5.0	99.14	10.60	0.20	0.02	50	10.00	0.094	0.016	1.766	0.236	3.060	0.028	0.042	2.10	0.044	0.62	O.K.!	O.K.!
Jr. San Jorge	40	0.90%	42	43		0.1730	0.032	0.032	5.0	99.14	10.60	0.20	0.02	50	10.00	0.094	0.016	1.529	0.204	2.650	0.016	0.036	1.81	0.033	0.49	O.K.I	O.K.I
·····									<u> </u>																		
Jr. Los Tres Reyes	14	2.80%	43	44	0.056	0.0183	0.003	0.056	5.0	99.14	7.60	0.20	0.02	50	10.00	0.124	0.016	2.697	0.754	3.886	0.028	0.036	1.81	0.033	0.86	O.K.!	O.K.!
Jr. Los Tres Reyes	53	2.80%	44	52	0.098	0.1862	0.034	0.098	5.0	99.14	7.60	0.20	0.02	50	10.00	0.124	0.016	2.697	0.754	3.886	0.049	0.044	2.22	0.049	0.99	O.K.1	O.K.!
Jr. Los Tres Reyes	40	2.80%	52	59	0.139	0.1068	0.020	0.139	5.0	99.14	7.60	0.20	0.02	50	10.00	0.124	0.016	2.697	0.754	3.886	0.069	0.051	2.53	0.064	1.08	O.K.!	O.K.!
Jr. Los Tres Reyes	11	2.80%	59	60	0.178	0.0142	0.003	0.178	5.0	99.14	7,60	0.20	0.02	50	10.00	0.124	0.016	2.697	0.754	3.886	0.089	0.056	2.78	0.077	1.15	O.K.I	O.K.!
Jr. Los Tres Reyes	51	1.90%	60	65	0.217	0.1500	0.028	0.217	5.0	99.14	7.60	0.20	0.02	50	10.00	0.124	0.016	2.222	0.621	3.201	0.108	0.064	3.22	0.104	1.04	O.K.I	O.K.!
									<u> </u>				<u> </u>														
Psje. Libertad	50	3.30%	51	58		0.1196	0.019	0.019	5.0	85.95	3.60	0.20	0.02	50	10.00	0.164	0.016	2.928	1.725	2.406	0.010	0.023	1.17	0.014	0.70	O.K.!	O.K.!
												ļ						<u></u>	<u> </u>			<u> </u>	<u> </u>				
Psje. Huancavelica	40	2.92%	50	56	0.020	0.0917	0.015	0.020	5.0	85.95	6.30	0.20	0.02	50	10.00	0.137	0.016	2.754	1.004	3.500	0.010	0.024	1.21	0.015	0.67	O.K.!	O.K.I
Psje. Cusco	20	0.44%	57	56		0.0760	0.012	0.012	5.0	85.95	3.60	0.20	0.02	50	10.00	0.164	0.016	1.069	0.630	0.879	0.006	0.029	1.44	0.021	0.29	O.K.I	O.K.!
Psje. Cusco	35	0.44%	56	55	0.032	0.0772	0.012	0.032	5.0	85.95	3.60	0.20	0.02	50	10.00	0.164	0.016	1.069	0.630	0.879	0.016	0.041	2.07	0.043	0.37	O.K.I	O,K.!
Psje. Cusco	30	0.67%	57	58		0.1257	0.020	0.020	5.0	85.95	3.60	0.20	0.02	50	10.00	0.164	0.016	1.319	0.777	1.084	0.010	0.032	1.61	0.026	0.39	O.K.!	O.K.!
Psje. Cusco	30	0.67%	58	59	0.039	0.0580	0.009	0.039	5.0	85.95	3.60	0.20	0.02	50	10.00	0.164	0.016	1.319	0.777	1.084	0.039	0.054	2.68	0,072	0.55	O.K.!	O.K.!
Jr. Niño Jesús	60	0.84%	45	44		0.2595	0.042	0.042	5.0	85.95	7.60	0.20	0.02	50	10.00	0.124	0.016	1.477	0.413	2.129	0.021	0.040	2.02	0.041	0.51	O.K.I	O.K.!
Jr. Niño Jesús	90	0.72%	45	46		0.4359	0.070	0.070	5.0	85.95	7.60	0.20	0.02	50	10.00	0.124	0.016	1.368	0.382	1.971	0.035	0.051	2.53	0.064	0.55	O.K.!	О.К.!
Jr.Virgen Marta	60	1.00%	53	52		0.2551	0.041	0.041	5.0	85.95	7.60	0.20	0.02	50	10.00	0.124	0.016	1.612	0.450	2.323	0.020	0.039	1.94	0.038	0.54	O.K.I	O.K.I
							2010							-		2424					2.504						
Jr.Virgen María	70	0.65%	53	54		0.2642	0.042	0.042	5.0	85.95	7.60	0.20	0.02	50	10.00	0.124	0.016	1.299	0.363	1.873	0.021	0.043	2.13	0.046	0.46	O.K.!	O.K.!
Jr. San José	60	0.83%	61	60		0.2408	0.039	0.039	5.0	85.95	7.60	0.20	0.02	50	10.00	0.124	0.016	1.468	0.410	2.116	0.019	0.039	1.97	0.039	0.50	O.K.I	O.K.)
Jr. San José	50	0.50%	61	62		0.1540	0.025	0.025	5.0	85.95	7.60	0.20	0.02	50	10.00	0.124	0.016	1.140	0.319	1.642	0.012	0.037	1.83	0.034	0.37	O.K.!	O.K.!
) AP 11-1-2	90	4.000′	62	64	0.007	0.4050	0.025	0.027	5.0	109,10	6.50	0.20	0.02	50	10.00	0.135	0.016	1.675	0.587	2.175	0.013	0.033	1.63	0.027	0.50	0.K.!	0.K.1
Jr. Miguel Iglesias	80	1.08%	63	64	0.027	0.1253	0.025		5.0	109.10	6.50	0.20	0.02	50	10.00	0.135	0.016	1.075	0.486	1.801	0.013	0.101	5.07	0.027	0.88	O.K.!	O.K.!
Jr. Miguel Iglesias	50	0.74%	64	64	0.454	0.0930		0.454					0.02			0.135	0.016	1.019	0.466	1.324	0.227	0.101	3.63	0.237	0.52	O.K.!	O.K.!
Jr. Miguel Iglesias	90	0.40%	64'	65	0.136	0.1797	0.034	0.136	5.7	100.50	6.50	0.20	0.02	50	10.00				0.357		0.008	0.073	4.38	0.131	0.52	O.K.!	O.K.!
Jr. Miguel Iglesias	84	0.40%	65	66	0.226	0.1712	0.033	0.226	5.5	102.77	9.00	0.20	0.02	50	10.00	0.110	0.016	1.019	0.207	1.625	0.113	0.088	4.30	0.192	0.09	U.K.I	U.K.!

682

11	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
NOMBRE	Dist.	So	Tra	amo	Qap	At	Qi	Qdis	Тс	I	b	Y	Sx	z	Т	Yc	n	Qt	Qf	Qmáx	Q _A	YA	TA	A _A	V _A	Cheq 1	Cheq 2
TYOUZER	m		<u> </u>		m³/s	Ha	m³/s	m³/s	min.	mm/hr	m	m			m	m	l	m³/s	m³/s	m³/s	m³/s	m	m	m²	m/s	Qdis < Qmáx	Va < Vmáx
Av. Vía de Evitamiento	118	3.18%	7	17	0.020	0.3235	0.066	0.066	5.0	109.10	8.80	0.25	0.02	50	12.50	0.080	0.016	4.884	0.250	4.980	0.066	0.129	0.30	0.039	1.88	O.K.!	O.K.I
Av. Via de Evitamiento	60	2.50%	17	26	0.188	0.1279	0.026	0.188	5.0	109.10	8.80	0.25	0.02	50	12.50	0.080	0.016	4.331	0.221	4.415	0.188	0.251	2.87	0.149	1.26	O.K.!	O,K.1
Av. Vía de Evitamiento	200	1.75%	26	37	0.653	1.0313	0.179	0.653	6.4	93.45	8.80	0.25	0.02	50	12.70	0.088	0.016	3.467	0.239	4.149	0.653	0.522	4.08	0.406	1.61	O.K.!	O.K.!
Av. Vía de Evitamiento	70	2.14%	37	46	0.926	0.1658	0.034	0.926	5.0	109.10	8.80	0.25	0.02	50	12.80	0.092	0.016	3.749	0.297	4.897	0.926	0.555	3.34	0.424	2.18	O.K.I	O.K.!
Av. Via de Evitamiento	60	2.08%	46	54	0.996	0.1027	0.021	0.996	5.0	109.10	10.50	0.25	0.02	50	12.90	0.062	0.016	3.614	0.102	5.291	0.996	0.467	0.70	0.327	3.08	0.K.!	O.K.I
Av. Via de Evitamiento	50	2.50%	54	62	1.038	0.1016	0.021	1.038	5.0	109.10	10.50	0.25	0.02	50	12.90	0.062	0.016	3.962	0.112	5.801	1.038	0.485	0.70	0.339	3.42	O.K.!	O.K.!
Av. Via de Evitamiento	68	2.00%	62	66	1.063	0.1350	0.027	1.063	5.0	109.10	10.50	0.25	0.02	50	13.10	0.070	0.016	3.386	0.139	5.732	1.063	0.415	0.90	0.373	3.18	O.K.I	O.K.!
Psje. Francia	125	2.00%	24	34''		0.7983	0.128	0.128	5.0	85.95	2.00	0.20	0.02	50	10.00	0.180	0.016	2.279	1.721	0.558	0.064	0.052	2.62	0.068	0.93	O.K.!	O.K.!
Psje. Francia	50	2.00%	34"	36	0.128	0.1291	0.021	0.128	5.0	85.95	2.00	0.20	0.02	50	10.00	0.180	0.016	2.279	1.721	0.558	0.064	0.052	2.62	0.068	0.93	O.K.!	O.K.!
Psje. Francia	58	2.00%	36	43		0.1536	0.025	0.025	5.0	85.95	2.00	0.20	0.02	50	10.00	0.180	0.016	2.279	1.721	0.558	0.012	0.028	1.41	0.020	0.62	O.K.!	O.K.!
Psje. Los Reyes	104	2.00%	23	34'		0.3472	0.056	0.056	5.0	85.95	0.20	0.20	0.02	50	10.00	0.198	0.016	2.279	2.219	0.060	0.028	0.038	1.91	0.037	0.76	0.K.!	O.K.!

COL 1 : Nombre de calle.

COL 2: Distancia de flujo.

COL 3 : Pendiente de tramo.

COL 4 : Tramo.

COL 5 : Caudal de aporte.

COL 6 : Area de aporte

COL 7 : Caudal en cada tramo

COL 8 : Caudal de diseño

COL 9 : Tiempo de concentración

COL 10 : Intensidad de Iluvia

COL 11: Ancho de calzada

COL 12: Altura de vereda.

COL 13: Pendiente transversal.

COL 14: Inverso de pendiente transversal

COL 15: Ancho superficial: T = Y x z

COL 16: Tirante crítico: Yc = (T-b/2)/z

COL 17: Coeficiente de rugosidad (Manning).

COL 18 : Caudal teórico:

 $Qt = 0.00175 \text{ Z/n Y}^{8/3} \text{ So}^{1/2}$

COL 19 : Caudal calculado similar al antrerior, para Y = Yc

COL 20 : Capacidad hidráulica de calle: Qmáx = 2(Qt -Qf)

COL 21 : Caudal de aproximación: Q_A = Qdis/2

COL 22 : Tirante de aproximación: $Y_A = (n \times Q_A/(0.00175 \times z \times So^{1/2}))^{3/8}$

COL 23 : Ancho superficial de aproximación: TA = YA X Z

COL 24 : Área de aproximación: A_A = (T_A x Y_A) / 2

COL 25 : Velocidad de aproximación: VA = QA/AA

COL 26 : Chequeo 1: Qdis < Qmáx (capacidad hidráulica)

COL 27 : Chequeo 2: Velocidad de aproximación < 4 m/seg

COL 28: Tramo con cuneta rectangular

COL 29 : Ancho de cuneta

COL 30 : Altura de cuneta

COL 31 : Área de sección de cuneta

COL 32 : Capacidad hidráulica de cuneta;

CHC = A/n R24 S1/2 ; A = bxh

COL 33 : Tirante de agua que sobrepasa altura de cuneta (cuando Qa > CHC)

COL 34: Tirante de agua en cuneta (cuando Qa < CHC)

COL 35 : Caudal en cuneta (Qa < CHC)

Qcun = A/n $R^{2/3}$ S^{1/2}, donde A = b x Ycun

COL 36 : Velocidad en cuneta (cuando Qa < CHC)

COL 37 : Caudal de sección compuesta: Qsc = Qcun + Qcalzada.

TRAMOS CON CUNETA RECTANGULAR EXISTENTE

28	29	30	31	32	33	34	35	36	37
Tramo	b	h	Ac	CHC	Y s/c	Ycun	Qcun	Voun	Qsc
	m	m	m²	m³/seg	m ·	m	m³/seg	m/seg	m³/seg
7-17	0.30	0.20	0.060	0.130		0.129	0.073	1.88	0.073
17-26	0.30	0.20	0.060	0.115	0.051	0.200			0.201
26-37	0.50	0.45	0.225	0.550	0.072	0.450			0.730
37-46	0.60	0.50	0.300	0.899	0.055	0.415			1.012
46-54	0.70	0.50	0.350	1.100	0.019	0.467	1.007	3.08	1.007
54-62	0.70	0.50	0.350	1.206		0.485	1.159	3.42	1.159
62-66	0.90	0.50	0.450	1.523		0.415	1.187	3.18	1.187
23-24	0.30	0.25	0.075	0.053	0.102	0.250			0.285
24-25	0.30	0.40	0.120	0.094	0.093	0.400			0.285
25-26	0.40	0.45	0.180	0.119	0.106	0.450			0.410
36-37	0.40	0.30	0.120	0.091	0.064	0.300			0.141

Como se puede observar en el cuadro anterior, las velocidades en cada tramo son menores a 4 m/seg y los caudales acumulados menores a las capacidades hidráulicas. Esto nos indica que las calles van a soportar los diferentes caudales que discurran por ellas sin mayores problemas, cumpliéndose con la función básica de todo sistema de drenaje. Sin embargo, podemos ver que conforme se van incrementando los caudales, pendiente abajo, los anchos superficiales y sus respectivos tirantes de agua también se incrementan de manera notoria; esto va a ocasionar múltiples dificultades para el normal desenvolvimiento del tráfico de personas y vehículos y por lo tanto no se estaría cumpliendo con la función complementaria que también es importante en el diseño de un sistema de drenaje. Para evitar todo este conjunto de dificultades se ha considerado colocar cunetas de sección triangular a ambos lados de las calles, solamente en tramos donde sean absolutamente necesarias.

Así mismo, también se creyó conveniente diseñar un sistema de drenaje, el cual se detalla en los planos respectivos, que permita la evacuación del agua de lluvia con mayor rapidez. Debido a la configuración de las calles Arróspide de Loyola y Marañón, en su intersección, se consideró un canal que inicie en esta esquina, y recorriendo el Jr. Francia, desagüe en un segundo canal que se ubicará a lo largo del Jr. Chanchamayo, desde Sara Mc Dougall hasta la Vía de Evitamiento. Un tercer canal irá por el Jr. Miguel Iglesias, desde el Jr. Chepén hasta la Vía de Evitamiento. Y finalmente, el canal colector, a lo largo de la Vía de Evitamiento.

4.6.4 DISEÑO DE SUMIDEROS Y CANALES.

TRAMO 3-12 (Jr. Arróspide de Loyola)

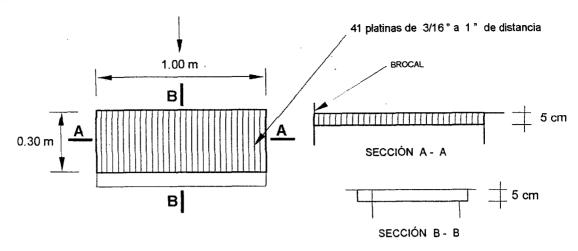
Sumidero de reja:

$$Q_A = 0.087 \text{ m}^3/\text{seg.}$$
; $y_A = 0.054 \text{ m}$; $T_A = 2.72 \text{ m}$; $V_A = 1.17 \text{ m/seg}$; $S_o = 3 \%$; $S_x = 2 \%$ $V_A/(g y_A)^{1/2} = 1.17/(9.81 \times 0.054)^{1/2} = 1.61$

Considerando un ancho de sumidero B = 1.00 metros:

$$V_A/B = 0.054/1.00 = 0.054$$

En la figura 2.5.2 (d),
$$Q_I/Q_A = 0.68$$
, luego $Q_I = 0.68 \times 0.087 = 0.059 \text{ m}^3/\text{seg}$


$$y Q_S = 0.087 - 0.059 = 0.028 \text{ m}^3/\text{seg}.$$

La longitud mínima del sumidero será:

$$L = y_A \times 2.4 \times V_A/(g y_A)^{1/2} = 0.054 \times 2.4 \times 1.61 = 0.21 \text{ m}.$$

Luego, las dimensiones finales serán:

$$B = 1.00 \text{ m} \text{ y } L = 0.30 \text{ m}.$$

REJA TIPO C

Canal sumidero:

$$Q_1 = 0.059 \text{ m}^3/\text{seg}.$$

Pendiente adoptada: $S_0 = 4 \%$; n = 0.016

Ancho = b = longitud del sumidero = 0.30 m.

$$A_h = 0.30 \text{ y } R_h = 0.30 \text{ y} / (0.30 + 2 \text{ y})$$

Reemplazando en la fórmula de Manning (2.5.2-9):

$$y = 0.102 \text{ m}$$
; $A_h = 0.25 \times 0.102 = 0.031 \text{ m}^2 \text{ y V} = 0.059/0.031 = 1.93 \text{ m/seg}$.

Las dimensiones finales serán: b = 0.30 m y h = 0.35 m. (BL = 0.25 m)

Canal de drenaie:

$$Q = 0.059 \text{ m}^3/\text{seg}$$
, $S_0 = 2 \%$; $n = 0.016$; $b = 0.30 \text{ m}$ (adoptado).

$$A_h = 0.30 \text{ y } R_h = 0.30 \text{ y} / (0.30 + 2 \text{ y})$$

Reemplazando en la fórmula de Manning (2.5.2 - 9):

$$y = 0.113 \text{ m.}$$
; $A_h = 0.034 \text{ m}^2 \text{ y V} = 1.74 \text{ m/seg.}$

Considerando un borde libre de 0.49 m, las dimensiones finales serán:

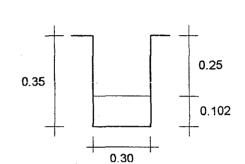
$$b = 0.30 \text{ m} \text{ y } h = 0.60 \text{ m}.$$

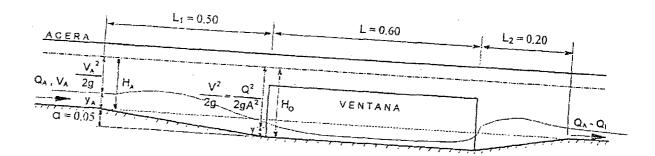
TRAMO 12 – 11 (Jr. Marañón)

Sumidero de ventana con depresión:

$$Q_A = 0.056 \text{ m}^3/\text{seg}$$
; $y_A = 0.057$; $T_A = 2.83 \text{ m}$; $V_A = 0.70 \text{ m/seg}$; $S_o = 1 \%$; $S_x = 2 \%$

Adoptando
$$h = 0.15 \text{ m}$$
; $L = 0.60 \text{ m}$ y $a = 5 \text{ cm}$,


$$B = 8a = 0.40 \text{ m}$$
; $L_1 = 10a = 0.50 \text{ m}$ y $L_2 = 4a = 0.20 \text{ m}$.


En la figura 2.5.2 (a) -3:

Tg
$$\theta_0 = 50 \implies \text{Tg } \theta = \text{B} / (\text{B} / \text{Tg } \theta_0) + \alpha = 40 / [(40/50) + 5] = 6.897$$

La energía específica del flujo de aproximación será:

$$H_A = V_A^2/2g + y_A = [(0.70)^2/(2 \times 9.81)] + 0.057 = 0.081 \text{ m}.$$

La energía específica en la sección de entrada a la ventana (ecuación 2.5.2 – 8) será:

$$H_0 = H_A + a = 0.081 + 0.050 = 0.131 \text{ m}.$$

Y, de acuerdo a la ecuación 2.5.2 – 8

Ho =0.131 = $y + Q^2/2gA^2$ Ecuación de la energía específica.

Donde, según la figura 2.5.2 (a) - 3

Si
$$y \le B/Tg \theta_o$$
, $A = (y^2 Tg \theta)/2$

 $y \le 0.40/50 = 0.008$. Para estos valores de y, la ecuación de la energía no se cumple.

Si
$$y > B / Tg \theta_o$$
, $A = [a B + (y - a)^2 Tg \theta_o]$

En este caso, la ecuación de la energía específica se cumple para y = 0.123 m, y entonces,

$$A = 0.143 \text{ m}^2 \text{ y V} = 0.056/0.1432 = 0.39 \text{ m/seg}.$$

La capacidad del sumidero se determina con la ecuación 2.5.2 – 2

$$K + C = \frac{Q_J}{L y \sqrt{g y}}$$

Para $S_x = 2 \%$ el valor recomendado de K es 0.20.

Empleando las ecuaciones 2.5.2 - 3 y 2.5.2 - 4

$$F^2 = V^2/2g = 2[(H_0/y) - 1] = 2 \times [(0.131/0.123) - 1] = 0.134$$

$$M = L F^2 / a Tg \theta = 0.60 \times 0.134 / (0.050 \times 6.897) = 0.23$$

$$C = 0.45/1.12^{M} = 0.45 / 1.12^{0.23} = 0.438$$

Luego, reemplazando valores:

$$Q_1 = 0.052 \text{ m}^3/\text{seg}$$

El caudal de sobrepaso: $Q_S = Q_A - Q_1 = 0.056 - 0.052 = 0.004 \text{ m}^3/\text{seg.}$

:. Las dimensiones adoptadas serán las definitivas.

TRAMO 10 - 11 (Jr. Marañón)

Sumidero de ventana con depresión:

$$Q_A = 0.040 \text{ m}^3/\text{seg}$$
; $y_A = 0.049$; $T_A = 2.45 \text{ m}$; $V_A = 0.66 \text{ m/seg}$; $S_o = 1.10 \text{ %}$; $S_x = 2 \text{ %}$

Adoptando
$$h = 0.15 \text{ m}$$
; $L = 0.60 \text{ m}$ y $a = 5 \text{ cm}$,

$$B = 8a = 0.40 \text{ m}$$
; $L_1 = 10a = 0.50 \text{ m}$ y $L_2 = 4a = 0.20 \text{ m}$.

En la figura 2.5.2 (a) -3:

$$Tg \theta_o = 50 \implies Tg \theta = B / [(B / Tg \theta_o) + a] = 40 / [(40/50) + 5] = 6.897$$

La energía específica del flujo de aproximación será:

$$H_A = V_A^2/2g + y_A = [(0.66)^2/(2 \times 9.81)] + 0.049 = 0.071 \text{ m}.$$

La energía específica en la sección de entrada a la ventana (ecuación 2.5.2 – 8) será:

$$H_0 = H_A + \alpha = 0.071 + 0.050 = 0.121 \text{ m}.$$

Y de acuerdo a la ecuación 2.5.2 - 8

$$H_0 = 0.121 = y + Q^2/2gA^2$$
..... Ecuación de la energía específica

Donde, según la figura 2.5.2 (a) - 3

Si y
$$\leq$$
 B / Tg θ_o , A = $(y^2 \text{ Tg } \theta) / 2$

 $y \le 0.40/50 = 0.008$. Para estos valores de y, la ecuación de la energía no se cumple.

Si
$$y > B / Tg \theta_o$$
; $A = [a B + (y - a)^2 Tg \theta_o]$.

En este caso, la ecuación de la energía específica se cumple para y = 0.091 m, y entonces,

 $A = 0.051 \text{ m}^2 \text{ y por consiguiente } V = 0.78 \text{ m/seg.}$

La capacidad del sumidero se determina con la expresión 2.5.2 – 2

$$K + C = \frac{Q_1}{L y \sqrt{g y}}$$

Para
$$S_x = 2\%$$
; $K = 0.20$.

Utilizando las expresiones 2.5.2 - 3 y 2.5.2 - 4

$$F^2 = V^2/2g = 2[(H_o/y) - 1] = 0.679$$

$$M = L F^2 / a Tg \theta = 1.18$$

$$C = 0.45 / 1.12^{M} = 0.394$$

Luego, reemplazando valores:

$$Q_1 = 0.030 \text{ m}^3/\text{seg}$$

El caudal de sobrepaso: $Q_S = Q_A - Q_1 = 0.040 - 0.030 = 0.010 \text{ m}^3/\text{seg.}$

 \therefore Las dimensiones adoptadas quedarán como definitivas.

Canal de drenaje:

$$Q = 0.030 \text{ m}^3/\text{seg}$$
; $S_0 = 1.10 \%$; $n = 0.016$; $b = 0.30 \text{ m}$ (adoptado).

$$A_h = 0.30 \text{ y } R_h = 0.30 \text{ y} / (0.30 + 2 \text{ y})$$

Reemplazando en la fórmula de Manning (2.5.2 – 9):

$$y = 0.101 \text{ m.}$$
; $A_h = 0.030 \text{ m}^2 \text{ y } V = 1.01 \text{ m/seg.}$

Finalmente, con borde libre de 0.50 m,

$$b = 0.30 \text{ m}$$
; $h = 0.60 \text{ m}$.

TRAMO 15 - 23 (Jr. Francia)

Sumidero de ventana con depresión:

$$Q_A = 0.048 \text{ m}^3/\text{seg}$$
; $V_A = 0.045$; $V_A = 0.97 \text{ m/seg}$; $V_A = 0$

Adoptando h = 0.15 m; L = 0.70 m y a = 5 cm,

$$B = 8a = 0.40 \text{ m}$$
; $L_1 = 10a = 0.50 \text{ m}$ y $L_2 = 4a = 0.20 \text{ m}$.

En la figura 2.5.2 (a) -3:

$$Tg \theta_o = 50 \Rightarrow Tg \theta = B/[(B/Tg \theta_o) + a] = 40/[(40/50) + 5] = 6.897$$

La energía específica del flujo de aproximación será:

$$H_A = V_A^2/2g + y_A = 0.092 \text{ m}.$$

La energía específica en la sección de entrada a la ventana (ecuación 2.5.2 – 8) será:

$$H_0 = H_A + a = 0.167 \text{ m}.$$

Y de acuerdo a la ecuación 2.5.2 - 8

$$H_0 = 0.167 = y + Q^2/2gA^2$$
..... Ecuación de la energía específica

Donde, según la figura 2.5.2 (a) -3

Si
$$y \le B/Tg \theta_{o}$$
, $A = (y^2 Tg \theta)/2$

 $y \le 0.40/50 = 0.008$. Para estos valores de y la ecuación de la energía no se cumple.

Si
$$y > B / Tg \theta_0$$
, $A = [a B + (y - a)^2 Tg \theta_0]$

En este caso, la ecuación de la energía específica se cumple para y = 0.104 m, y entonces,

$$A = 0.044 \text{ m}^2$$
, y por consiguiente $V = 1.11 \text{ m/seg}$.

La capacidad del sumidero se determina con la expresión 2.5.2 – 2

$$K + C = \frac{Q_1}{L y \sqrt{g y}}$$

Para
$$S_x = 2 \%$$
, $K = 0.20$

Y, empleando las expresiones 2.5.2-3 y 2.5.2-4:

$$F^2 = V^2/2g = 2[(H_0/y) - 1] = 1.217$$

$$M = L F^2 / a Tg \theta = 1.65$$

$$C = 0.45 / 1.12^{M} = 0.373$$

Luego, reemplazando valores:

$$Q_1 = 0.042 \text{ m}^3/\text{seg}$$

y el caudal de sobrepaso: $Q_S = Q_A - Q_1 = 0.048 - 0.042 = 0.006 \text{ m}^3/\text{seg}$.

: Las dimensiones adoptadas quedarán como definitivas.

0.29

0.062

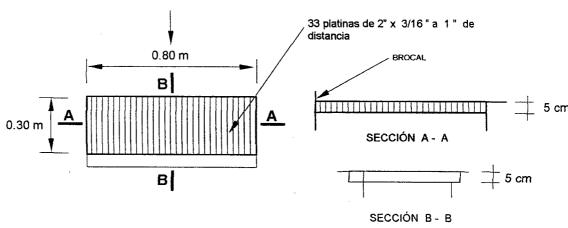
Sumidero de reja: (al lado derecho)

$$V_A/(g y_A)^{1/2} = 0.94/(9.81 \times 0.043)^{1/2} = 1.45$$

Considerando un ancho de sumidero de B = 0.80 m,

$$y_A / B = 0.054$$

En la figura 2.5.2 (d),
$$Q_1/Q_A = 0.67 \implies Q_1 = 0.67 \times 0.043 = 0.029 \text{ m}^3/\text{seg}$$


$$Q_S = 0.043 - 0.029 = 0.014 \text{ m}^3/\text{seg}$$
.

La longitud mínima del sumidero será:

$$L = y_A \times 2.4 \times V_A / (g y_A)^{1/2} = 0.045 \times 2.4 \times 1.46 = 0.16 \text{ m}$$

Luego, las dimensiones finales serán:

$$B = 0.80 \text{ m} \text{ y } L = 0.30 \text{ m}.$$

0.35

REJA TIPO C

Canal sumidero:

$$Q_1 = 0.029 \text{ m}^3/\text{seg}.$$

Pendiente adoptada: $S_0 = 4 \%$; n = 0.016

Ancho = b = longitud del sumidero = 0.30 m.

$$A_h = 0.30 \text{ y } R_h = 0.30 \text{ y} / (0.30 + 2 \text{ y})$$

Reemplazando en la fórmula de Manning (2.5.2 - 9):

$$y = 0.062 \text{ m}.$$

Luego, el área hidráulica será: $A_h = 0.019 \text{ m}^2$

y por lo tanto, V = 0.029/0.019 = 1.55 m/seg.

Considerando un borde libre de 0.29 m, las dimensiones finales serán:

$$b = 0.30 \text{ m. y h} = 0.35 \text{ m.}$$

Canal de drenaje: (a la derecha)

$$Q = 0.029 \text{ m}^3/\text{seg}$$
; $S_0 = 2.65 \%$; $n = 0.016$; $b = 0.30 \text{ m (adoptado)}$.

$$A_h = 0.30 \text{ y } P_h = 0.30 \text{ y} / (0.30 + 2 \text{ y})$$

0.30

Reemplazando en la fórmula de Manning (2.5.2 - 9):

$$y = 0.072 \text{ m.}$$
; $A_h = 0.021 \text{ m}^2 \text{ y V} = 1.35 \text{ m/seg.}$

Con borde libre de 0.53 m, las dimensiones finales serán:

b = 0.30 m y h = 0.60 m.

CANAL DE DRENAJE 1: Ubicado en los jirones Marañón y Francia.

TRAMO: 12 - 11 (Jr. Marañón)

 $Q = 0.170 \text{ m}^3/\text{seg}$; $S_o = 1 \%$; n = 0.016; b = 0.50 m (adoptado).

 $A_h = 0.50 \text{ y y } R_h = 0.50 \text{ y / } (0.50 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (2.5.2 - 9):

y = 0.226 m.; $A_h = 0.113 \text{ m}^2 \text{ y V} = 0.170/0.113 = 1.51 \text{ m/seg.}$

Considerando un borde libre de 0.47 m, las dimensiones finales serán:

b = 0.50 m; h = 0.70 m.

TRAMO: 11 - 15 (Jr. Francia)

 $Q = 0.252 \text{ m}^3/\text{seg}$; $S_0 = 2.20 \%$; n = 0.016; b = 0.50 m (adoptado).

 $A_h = 0.50 \text{ y } P_h = 0.50 \text{ y} / (0.50 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (2.5.2 - 9):

y = 0.226 m.; $A_h = 0.113 \text{ m}^2 \text{ y V} = 2.24 \text{ m/seg.}$

Las dimensiones finales serán:

b = 0.50 m y h = 0.70 m (BL = 0.47 m).

TRAMO: 15 - 23 (Jr. Francia)

 $Q = 0.295 \text{ m}^3/\text{seg}$; $S_0 = 2.65 \%$; n = 0.016; b = 0.50 m (adoptado).

 $A_h = 0.50 \text{ y } R_h = 0.50 \text{ y } / (0.50 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (2.5.2 – 9):

y = 0.236 m.; $A_h = 0.118 \text{ m}^2 \text{ y V} = 2.50 \text{ m/seg.}$

Finalmente:

b = 0.50 m y h = 0.70 m (BL = 0.46 m).

En todos los tramos, la altura h medida desde el fondo del canal hasta la parte inferior de la tapa.

TRAMO 13 – 20 (Jr. Sara MacDougal)

Sumidero de reja:

 $Q_A = 0.081 \text{ m}^3/\text{seg}$; $y_A = 0.055 \text{ m}$; $T_A = 2.77 \text{ m}$; $V_A = 1.06 \text{ m/seg}$; $S_o = 2.4 \%$; $S_x = 2 \%$

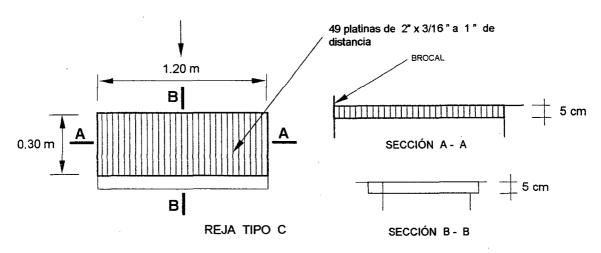
 $V_A/(g y_A)^{1/2} = 1.06/(9.81 \times 0.055)^{1/2} = 1.44$

Considerando un ancho de sumidero de B = 1.20 m.

 $y_A/B = 0.046$

0.24

0.107


En la figura 2.5.2 (d),
$$Q_l/Q_A = 0.77 \implies Q_l = 0.77 \times 0.081 = 0.063 \text{ m}^3/\text{seg}$$

y $Q_S = 0.081 - 0.063 = 0.019 \text{ m}^3/\text{seg}$.

La longitud mínima del sumidero será:

$$L = y_A \times 2.4 \times V_A / (g y_A)^{1/2} = 0.055 \times 2.4 \times 1.44 = 0.19 \text{ m}.$$

Las dimensiones finales:

B = 1.20 m y L = 0.30 m.

0.35

Canal sumidero:

$$Q_1 = 0.063 \text{ m}^3/\text{seg}.$$

Pendiente adoptada: $S_0 = 4\%$; n = 0.016

Ancho = b = longitud del sumidero = 0.30 m.

$$A_h = 0.30 \text{ y } P_h = 0.30 \text{ y } / (0.30 + 2 \text{ y})$$

Reemplazando en la fórmula de Manning (2.5.2 – 9):

$$y = 0.107 \text{ m}.$$

Luego, el área hidráulica será: $A_h = 0.032 \text{ m}^2 \text{ y por lo tanto}$,

$$V = 0.063/0.032 = 1.97$$
 m/seg.

Las dimensiones finales serán:

$$b = 0.30 \text{ m}$$
 y $h = 0.35 \text{ m}$. (BL = 0.24 m).

Canal de drenaje:

$$Q = 0.063 \text{ m}^3/\text{seg}$$
; $S_o = 2.18 \%$; $n = 0.016$; $b = 0.30 \text{ m}$ (adoptado).

Reemplazando en la fórmula de Manning (2.5.2 - 9):

$$y = 0.128 \text{ m}.$$

Luego, el área hidráulica será: $A_h = 0.038 \text{ m}^2 \text{ y por lo tanto}$,

$$V = 1.63 \text{ m/seg}$$
.

Finalmente, b = 0.30 m y h = 0.45 m (BL = 0.32 m).

TRAMO 10 - 22 (Jr. Huancavelica)

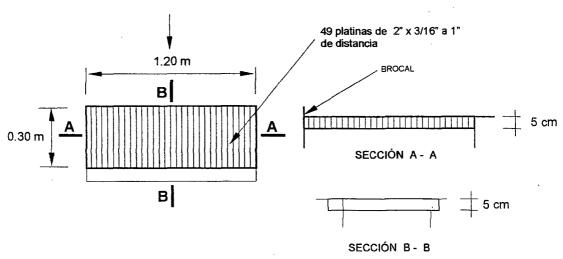
Sumidero de reja:

$$Q_A = 0.088 \text{ m}^3/\text{seg}$$
; $y_A = 0.058 \text{ m}$; $T_A = 2.91 \text{ m}$; $V_A = 1.04 \text{ m/seg}$; $S_o = 2.18 \%$; $S_x = 2 \%$

$$V_A/(g y_A)^{1/2} = 1.38$$

Adoptando un ancho de sumidero de B = 1.20 m:

$$y_A / B = 0.048$$


En la figura 2.5.2 (d),
$$Q_I/Q_A = 0.74 \implies Q_I = 0.74 \times 0.088 = 0.065 \text{ m}^3/\text{seg}$$

$$y Q_S = 0.088 - 0.065 = 0.023 \text{ m}^3/\text{seg}$$

La longitud mínima del sumidero será:

$$L = y_A \times 2.4 \times V_A/(g y_A)^{1/2} = 0.058 \times 2.4 \times 1.38 = 0.19 \text{ m}.$$

Las dimensiones finales serán: B = 1.20 m. y L = 0.30 m.

REJA TIPO C

Canal sumidero:

$$Q_1 = 0.065 \text{ m}^3/\text{seg}.$$

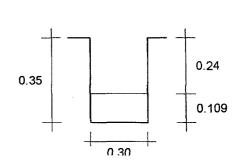
Pendiente adoptada: $S_o = 4 \%$; n = 0.016

Ancho = b = longitud del sumidero = 0.30 m.

$$A_h = 0.30 \text{ y } P_h = 0.30 \text{ y } / (0.30 + 2 \text{ y})$$

Reemplazando en la fórmula de Manning (2.5.2 - 9):

$$y = 0.109 \text{ m.}$$
; $A_h = 0.033 \text{ m}^2 \text{ y V} = 0.065/0.033 = 1.98 \text{ m/seg.}$


Las dimensiones finales serán:

$$b = 0.30 \text{ m} \text{ y h} = 0.35 \text{ m} \text{ (BL} = 0.24 \text{ m)}.$$

Canal de drenaje:

$$Q = 0.065 \text{ m}^3/\text{seg}$$
; $S_0 = 2.18 \%$; $n = 0.016$; $b = 0.30 \text{ m}$ (adoptado).

$$A_h = 0.30 \text{ y } R_h = 0.30 \text{ y} / (0.30 + 2 \text{ y})$$

Reemplazando en la fórmula de Manning (2.5.2 - 9):

$$y = 0.136 \text{ m.}$$
; $A_h = 0.041 \text{ m}^2 \text{ y V} = 1.59 \text{ m/seg.}$

Finalmente, b = 0.30 m y h = 0.45 m (BL = 0.31 m).

TRAMO 16 – 25 (Jr. Las Cucardas)

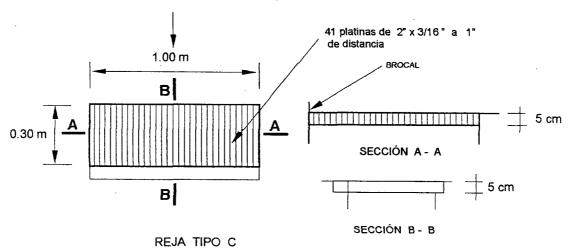
Sumidero de reja:

$$Q_A = 0.052 \text{ m}^3/\text{seg}$$
; $y_A = 0.044 \text{ m}$; $T_A = 2.19 \text{ m}$; $V_A = 1.07 \text{ m/seg}$.; $S_0 = 3.35 \%$; $S_x = 2 \%$

$$V_A/(g y_A)^{1/2} = 1.07/(9.81 \times 0.044)^{1/2} = 1.63$$

Considerando un ancho de sumidero de B = 1.00 m.:

$$y_A/B = 0.044$$


En la figura 2.5.2 (d),
$$Q_1/Q_A = 0.77 \implies Q_1 = 0.77 \times 0.052 = 0.040 \text{ m}^3/\text{seg}$$

y
$$Q_S = 0.052 - 0.040 = 0.012 \text{ m}^3/\text{seg}.$$

La longitud mínima del sumidero será:

$$L = y_A \times 2.4 \times (V_A/g y_A)^{1/2} = 0.044 \times 2.4 \times 1.63 = 0.17 \text{ m}.$$

Las dimensiones finales serán: B = 1.00 m y L = 0.30 m.

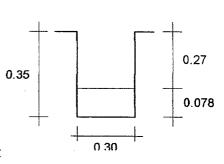
Canal sumidero:

$$Q_1 = 0.040 \text{ m}^3/\text{seg}.$$

Pendiente adoptada: $S_0 = 4 \%$; n = 0.016

Ancho = b = longitud del sumidero = 0.30 m.

$$A_h = 0.30 \text{ y } R_h = 0.30 \text{ y } / (0.30 + 2 \text{ y})$$


Reemplazando en la fórmula de Manning (2.5.2 - 9):

$$y = 0.078 \text{ m}.$$

Luego, el área hidráulica será: $A_h = 0.023 \text{ m}^2$

y por lo tanto, V = 0.031/0.020 = 1.73 m/seg.

Finalmente, b = 0.30 m y h = 0.35 m. (BL = 0.27 m.).

Canal de drenaje:

 $Q = 0.040 \text{ m}^3/\text{seg}$; $S_0 = 3.35 \%$; n = 0.016; b = 0.30 m (adoptado).

$$A_h = 0.30 \text{ y } P_h = 0.30 \text{ y } / (0.30 + 2 \text{ y})$$

Reemplazando en la fórmula de Manning (2.5.2 - 9):

$$y = 0.082 \text{ m.}$$
; $A_h = 0.025 \text{ m}^2 \text{ y V} = 1.62 \text{ m/seg.}$

Luego, b = 0.30 m y h = 0.45 m (BL = 0.37 m).

TRAMO 20 - 21 (Jr. Chanchamayo)

Sumidero de ventana con depresión:

 $Q_A = 0.075 \text{ m}^3/\text{seg.}$; $y_A = 0.075$; $T_A = 3.76 \text{ m.}$; $V_A = 0.53 \text{ m/seg}$; $S_o = 0.40 \%$; $S_x = 2 \%$

Adoptando h = 15 cm.; L = 0.75 m. y a = 7.5 cm, entonces:

$$B = 8a = 0.60 \text{ m}$$
; $L_1 = 10a = 0.75 \text{ m}$ y $L_2 = 4a = 0.30 \text{ m}$.

En la figura 2.5.2 (a) -3:

$$Tg \theta_0 = 50 \implies Tg \theta = B/(B/Tg \theta_0) + a = 60/[(60/50) + 7.5] = 6.897$$

La energía específica del flujo de aproximación será:

$$H_A = V_A^2/2g + y_A = 0.090 \text{ m}.$$

La energía específica en la sección de entrada a la ventana (ecuación 2.5.2 – 8) será:

$$H_o = H_A + a = 0.140 \text{ m}.$$

Y de acuerdo a la ecuación 2.5.2 - 8

 $H_0 = 0.140 = y + Q^2/2gA^2$ Ecuación de la energía específica

Donde, según la figura 2.5.2 (a) - 3

Si
$$y \le B/Tg \theta_o$$
; $A = (y^2 Tg \theta)/2$

 $y \le 0.60/50 = 0.012$. Para estos valores de y, la ecuación de la energía no se cumple.

Si
$$y > B / Tg \theta_o$$
; $A = [a B + (y - a)^2 Tg \theta_o]$

En este caso, la ecuación de la energía específica se cumple para y = 0.130 m, y entonces,

$$A = 0.170 \text{ m}^2 \text{ y por consiguiente } V = 0.17 \text{ m/seg.}$$

La capacidad del sumidero se determina con la expresión 2.5.2 – 2

$$K + C = \frac{Q_1}{L y \sqrt{g y}}$$

Para $S_x = 2\%$; K = 0.20.

Mediante las expresiones 2.5.2-3 y 2.5.2-4:

$$F^2 = V^2/2g = 2[(H_o/y) - 1] = 0.149$$

$$M = L F^2 / \alpha Tg \theta = 0.32$$

$$C = 0.45 / 1.12^{M} = 0.434$$

Reemplazando valores: $Q_1 = 0.070 \text{ m}^3/\text{seg}$

y el caudal de sobrepaso: $Q_S = Q_A - Q_1 = 0.075 - 0.070 = 0.006 \text{ m}^3/\text{seg.}$

: Las dimensiones adoptadas serán las definitivas.

TRAMO 21 - 22 (Jr. Chanchamayo)

Sumidero de ventana con depresión:

$$Q_A = 0.030 \text{ m}^3/\text{seg}$$
; $V_A = 0.053$; $V_A = 2.65 \text{ m}$; $V_A = 0.42 \text{ m/seg}$; $V_A = 2.65 \text{ m}$; $V_A = 2.65 \text{ m}$; $V_A = 0.42 \text{ m/seg}$; $V_A = 2.65 \text{ m}$; $V_A = 2.65$

Adoptando
$$h = 0.15 \text{ m}$$
; $L = 0.40 \text{ m}$ y $a = 5 \text{ cm}$,

$$B = 8a = 0.40 \text{ m}$$
; $L_1 = 10a = 0.50 \text{ m}$ y $L_2 = 4a = 0.20 \text{ m}$.

En la figura 2.5.2 (a) -3:

$$Tg \theta_o = 50 \Rightarrow Tg \theta = B / [(B / Tg \theta_o) + a] = 40 / [(40/50) + 5] = 6.897$$

La energía específica del flujo de aproximación será:

$$H_A = V_A^2/2g + y_A = 0.062 \text{ m}.$$

La energía específica en la sección de entrada a la ventana (ecuación 2.5.2 – 8) será:

$$H_0 = H_A + a = 0.112 \text{ m}.$$

Y de acuerdo a la ecuación 2.5.2 – 8:

$$H_0 = 0.112 = y + Q^2/2gA^2$$
......Ecuación de la energía específica

Donde, según la figura 2.5.2 (a) -3,

Si
$$y \le B / Tg \theta_{o}$$
, $A = (y^2 Tg \theta) / 2$

 $y \le 0.40/50 = 0.008$. Para estos valores de y la ecuación de la energía no se cumple.

Si
$$y > B / Tg \theta_0$$
; $A = [a B + (y - a)^2 Tg \theta_0]$.

En este caso, la ecuación de la energía específica se cumple para y = 0.106 m, y entonces,

$$A = 0.088 \text{ m}^2$$
, y por consiguiente $V = 0.73 \text{ m/seg}$.

La capacidad del sumidero se determina con la expresión 2.5.2 – 2

$$K + C = \frac{Q_I}{L y \sqrt{g y}}$$

Para
$$S_x = 2 \%$$
, $K = 0.20$

Y, empleando las expresiones 2.5.2-3 y 2.5.2-4:

$$F^2 = V^2/2g = 2[(H_0/y) - 1] = 0.113$$

$$M = L F^2 / a Tg \theta = 0.13$$

$$C = 0.45 / 1.12^{M} = 0.443$$

Luego, reemplazando valores: Q₁ = 0.028 m³/seg

y el caudal de sobrepaso: $Q_S = Q_A - Q_1 = 0.030 - 0.028 = 0.002 \text{ m}^3/\text{seg.}$

: Las dimensiones adoptadas quedarán como definitivas.

TRAMO 22 - 23 (Jr. Chanchamayo)

Sumidero de ventana con depresión:

$$Q_A = 0.065 \text{ m}^3/\text{seg}$$
; $V_A = 0.071$; $V_A = 0.51 \text{ m/seg}$; $V_A = 0.65 \text{ m}$; $V_A = 0.51 \text{ m/seg}$; $V_A = 0.65 \text{ m}$; $V_A = 0.65$

Adoptando
$$h = 0.15 \text{ m}$$
; $L = 0.70 \text{ m}$ y $a = 5 \text{ cm}$,

$$B = 8a = 0.40 \text{ m}$$
; $L_1 = 10a = 0.50 \text{ m}$ y $L_2 = 4a = 0.20 \text{ m}$.

En la figura 2.5.2 (a) -3:

$$Tg \theta_0 = 50 \Rightarrow Tg \theta = B/[(B/Tg \theta_0) + a] = 40/[(40/50) + 5] = 6.897$$

La energía específica del flujo de aproximación será:

$$H_A = V_A^2/2g + y_A = 0.085 \text{ m}.$$

La energía específica en la sección de entrada a la ventana (ecuación 2.5.2 – 8) será:

$$H_0 = H_A + a = 0.135 \text{ m}.$$

Y de acuerdo a la ecuación 2.5.2 - 8:

$$H_0 = 0.135 = y + Q^2/2gA^2$$
......Ecuación de la energía específica

Donde, según la figura 2.5.2 (a) -3,

Si
$$y \le B/Tg \theta_{\alpha} A = (y^2 Tg \theta)/2$$

 $y \le 0.40/50 = 0.008$. Para estos valores de y la ecuación de la energía no se cumple.

Si
$$y > B / Tg \theta_0$$
; $A = [a B + (y - a)^2 Tg \theta_0]$.

En este caso, la ecuación de la energía específica se cumple para y = 0.126 m, y entonces,

$$A = 0.154 \text{ m}^2$$
, y por consiguiente $V = 0.37 \text{ m/seg}$.

La capacidad del sumidero se determina con la expresión 2.5.2 - 2

$$K + C = \frac{Q_1}{L y \sqrt{g y}}$$

Para
$$S_x = 2\%$$
, $K = 0.20$

Y, empleando las expresiones 2.5.2-3 y 2.5.2-4:

$$F^2 = V^2/2g = 2[(H_o/y) - 1] = 0.136$$

$$M = L F^2 / a Tg \theta = 0.28$$

$$C = 0.45 / 1.12^{M} = 0.436$$

Luego, reemplazando valores: $Q_1 = 0.062 \text{ m}^3/\text{seg}$

y el caudal de sobrepaso: $Q_S = Q_A - Q_1 = 0.065 - 0.0062 = 0.003 \text{ m}^3/\text{seg.}$

:. Las dimensiones adoptadas quedarán como definitivas.

TRAMO 23 – 24 (Jr. Chanchamayo)

Sumidero de ventana con depresión:

$$Q_A = 0.046 \text{ m}^3/\text{seg}$$
; $y_A = 0.064$; $T_A = 3.18 \text{ m}$; $V_A = 0.46 \text{ m/seg}$; $S_o = 0.37 \%$; $S_x = 2 \%$

Adoptando h = 0.15 m; L = 0.50 m y a = 5 cm

B = 8q = 0.40 m; $L_1 = 10q = 0.50 \text{ m}$ y $L_2 = 4q = 0.20 \text{ m}$.

En la figura 2.5.2 (a) -3:

$$Tg \theta_0 = 50 \implies Tg \theta = B / [(B / Tg \theta_0) + a] = 40 / [(40/50) + 5] = 6.897$$

La energía específica del flujo de aproximación será:

$$H_A = V_A^2 / 2g + y_A = 0.074 \text{ m}.$$

La energía específica en la sección de entrada a la ventana (ecuación 2.5.2 – 8) será:

$$H_0 = H_A + a = 0.124 \text{ m}.$$

Y de acuerdo a la ecuación 2.5.2 – 8:

 $H_0 = 0.124 = y + Q^2/2gA^2$Ecuación de la energía específica

Donde, según la figura 2.5.2 (a) -3,

Si
$$y \le B/Tg \theta_{\alpha} A = (y^2 Tg \theta)/2$$

 $y \le 0.40/50 = 0.008$. Para estos valores de y la ecuación de la energía no se cumple.

Si
$$y > B / Tg \theta_0$$
; $A = [a B + (y - a)^2 Tg \theta_0]$.

En este caso, la ecuación de la energía específica se cumple para y = 0.117 m, y entonces,

$$A = 0.122 \text{ m}^2$$
, y por consiguiente $V = 0.38 \text{ m/seg}$.

La capacidad del sumidero se determina con la expresión 2.5.2 – 2

$$K + C = \frac{Q_1}{L y \sqrt{g y}}$$

Para
$$S_x = 2 \%$$
, $K = 0.20$

Y, empleando las expresiones 2.5.2 - 3 y 2.5.2 - 4:

$$F^2 = V^2/2g = 2[(H_0/v) - 1] = 0.125$$

$$M = L F^2 / a Tg \theta = 0.18$$

$$C = 0.45 / 1.12^{M} = 0.441$$

Luego, reemplazando valores:

$$Q_1 = 0.040 \text{ m}^3/\text{seg}$$

y el caudal de sobrepaso: $Q_S = Q_A - Q_1 = 0.046 - 0.040 = 0.006 \text{ m}^3/\text{seg.}$

:. Las dimensiones adoptadas quedarán como definitivas.

TRAMO 24 - 25 (Jr. Chanchamayo)

Sumidero de ventana con depresión:

$$Q_A = 0.121 \text{ m}^3/\text{seg.}$$
; $y_A = 0.091$; $T_A = 4.57 \text{ m.}$; $V_A = 0.58 \text{ m/seg.}$; $S_o = 0.37 \%$; $S_x = 2 \%$

Adoptando
$$h = 17.5 \text{ cm.}$$
; $L = 0.90 \text{ m. y } \alpha = 7.5 \text{ cm}$,

$$B = 8a = 0.60 \text{ m.}$$
; $L_1 = 10a = 0.75 \text{ m}$ y $L_2 = 4a = 0.30 \text{ m}$.

En la figura 2.5.2 (a) -3:

$$Tg \theta_0 = 50 \implies Tg \theta = B/[(B/Tg \theta_0) + a] = 60/[(60/50) + 7.5] = 6.897$$

La energía específica del flujo de aproximación será:

$$H_A = V_A^2/2g + y_A = 0.109 \text{ m}.$$

La energía específica en la sección de entrada a la ventana (Ecuación 2.5.2 – 8) será:

$$H_0 = H_A + a = 0.209 \text{ m}.$$

Y de acuerdo a la ecuación 2.5.2 - 8:

$$H_0 = 0.209 = y + Q^2/2gA^2$$
.....Ecuación de la energía específica

Donde, según la figura 2.5.2 (a) - 3

Si
$$y \le B/Tg \theta_o$$
; $A = (y^2 Tg \theta)/2$

 $y \le 0.60/50 = 0.012$. Para estos valores de y la ecuación de la energía no se cumple.

Si
$$y > B / Tg \theta_o$$
; $A = [a B + (y - a)^2 Tg \theta_o]$

En este caso, la ecuación de la energía específica se cumple para y = 0.156 m, y entonces,

$$A = 0.118 \text{ m}^2 \text{ y por consiguiente } V = 1.02 \text{ m/seg.}$$

La capacidad del sumidero se determina con la expresión 2.5.2 – 2

$$K + C = \frac{Q_1}{L y \sqrt{g y}}$$

Para
$$S_x = 2 \%$$
, $K = 0.20$.

Empleando las expresiones 2.5.2 - 3 y 2.5.2 - 4

$$F^2 = V^2/2g = 2[(H_0/y) - 1] = 0.674$$

$$M = L F^2 / a Tg \theta = 0.88$$

$$C = 0.45 / 1.12^{M} = 0.407$$

Reemplazando valores:

$$Q_1 = 0.105 \text{ m}^3/\text{seg}$$

Y, el caudal de sobrepaso: $Q_S = Q_A - Q_1 = 0.121 - 0.105 = 0.016 \text{ m}^3/\text{seg}$

: Las dimensiones adoptadas serán las definitivas.

TRAMO 25 - 26 (Jr. Chanchamayo)

Sumidero de ventana con depresión:

$$Q_A = 0.055 \text{ m}^3/\text{seg.}$$
; $y_A = 0.068$; $T_A = 2.41 \text{ m.}$; $V_A = 0.48 \text{ m/seg}$; $S_o = 0.37 \%$; $S_x = 2 \%$

Adoptando
$$h = 17.5 \text{ cm.}$$
; $L = 0.60 \text{ m. y } \alpha = 7.5 \text{ cm}$,

$$B = 8a = 0.60 \text{ m.}$$
; $L_1 = 10a = 0.75 \text{ m}$ y $L_2 = 4a = 0.30 \text{ m.}$

En la figura 2.5.2 (a) -3:

$$Tg \theta_0 = 50 \implies Tg \theta = B / [(B / Tg \theta_0) + a] = 60 / [(60/50) + 7.5] = 6.897$$

CAPÍTULO IV: METODOLOGÍA Y PROCEDIMIENTO

La energía específica del flujo de aproximación será:

$$H_A = V_A^2/2g + y_A = 0.080 \text{ m}.$$

La energía específica en la sección de entrada a la ventana (Ecuación 2.5.2 – 8) será:

$$H_0 = H_A + a = 0.130 \text{ m}.$$

Y de acuerdo a la ecuación 2.5.2 – 8:

$$H_0 = 0.130 = y + Q^2/2gA^2$$
..... Ecuación de la energía específica

Donde, según la figura 2.5.2 (a) - 3

Si
$$y \le B/Tg \theta_0$$
; $A = (y^2 Tg \theta)/2$

 $y \le 0.60/50 = 0.012$. Para estos valores de y la ecuación de la energía no se cumple.

Si
$$y > B / Tg \theta_o$$
; $A = [a B + (y - a)^2 Tg \theta_o]$

En este caso, la ecuación de la energía específica se cumple para y = 0.122 m, y entonces,

$$A = 0.140 \text{ m}^2 \text{ y por consiguiente } V = 0.40 \text{ m/seg.}$$

La capacidad del sumidero se determina con la expresión 2.5.2 – 2

$$K + C = \frac{Q_1}{L y \sqrt{g y}}$$

Para
$$S_x = 2 \%$$
, $K = 0.20$.

Empleando las expresiones 2.5.2-3 y 2.5.2-4

$$F^2 = V^2/2g = 2[(H_o/y) - 1] = 0.127$$

$$M = L F^2 / a Tg \theta = 0.22$$

$$C = 0.45 / 1.12^{M} = 0.439$$

Reemplazando valores: $Q_1 = 0.051 \text{ m}^3/\text{seg}$

Y, el caudal de sobrepaso: $Q_S = Q_A - Q_1 = 0.055 - 0.051 = 0.004 \text{ m}^3/\text{seg}$

: Las dimensiones adoptadas serán las definitivas.

CANAL DE DRENAJE 2:

Ubicado en el Jr. Chanchamayo, recibirá los caudales interceptados por los sumideros ubicados al final de los tramos: 13-20, 20-21, 10-22, 15-23, 16-25 y 24-25 y el caudal que corresponde al canal de drenaje 1, para evacuarlos hacia el colector (canal de drenaje N° 4).

TRAMO: 20 - 21 (Jr. Chanchamayo)

$$Q = 0.202 \text{ m}^3/\text{seg}$$
; $S_0 = 0.40 \%$; $n = 0.016$; $b = 0.70 \text{ m}$ (adoptado).

$$A_h = 0.70 \text{ y } R_h = 0.70 \text{ y} / (0.70 + 2 \text{ y})$$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

$$y = 0.26 \text{ m}.$$

Luego, el área hidráulica será: $A_h = 0.182 \text{ m}^2 \text{ y V} = 1.11 \text{ m/seg.}$

Finalmente, b = 0.70 m y h = 0.70 m (BL = 0.44 m).

TRAMO: 21 – 22 (Jr. Chanchamayo)

 $Q = 0.230 \text{ m}^3/\text{seg}$; $S_0 = 0.40 \%$; n = 0.016; b = 0.70 m (adoptado).

 $A_h = 0.70 \text{ y } R_h = 0.90 \text{ y} / (0.70 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.29 m.; $A_h = 0.200 \text{ m}^2 \text{ y V} = 1.15 \text{ m/seg.}$

Finalmente, b = 0.70 m y h = 0.70 m (BL = 0.41 m.).

TRAMO: 22 – 23 (Jr. Chanchamayo)

 $Q = 0.423 \text{ m}^3/\text{seg}$; $S_0 = 0.40 \%$; n = 0.016; b = 0.90 m (adoptado).

 $A_h = 0.90 \text{ y } R_h = 0.90 \text{ y} / (0.90 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.35 m.; $A_h = 0.316 \text{ m}^2 \text{ y V} = 1.34 \text{ m/seg.}$

Finalmente, b = 0.90 m y h = 0.70 m (BL = 0.35 m.).

TRAMO: 23 – 24 (Jr. Chanchamayo)

 $Q = 0.787 \text{ m}^3/\text{seg}$; $S_0 = 0.37 \%$; n = 0.016; b = 1.10 m (adoptado).

 $A_h = 1.10 \text{ y } \text{ R}_h = 1.10 \text{ y} / (1.10 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.47 m.; $A_h = 0.517 \text{ m}^2 \text{ y V} = 1.52 \text{ m/seg.}$

Finalmente, b = 1.10 m y h = 0.80 m (BL = 0.33 m).

TRAMO: 24-25 (Jr. Chanchamayo)

 $Q = 0.892 \text{ m}^3/\text{seg}$; $S_0 = 0.37 \%$; n = 0.016; b = 1.10 m (adoptado).

 $A_h = 1.10 \text{ y } P_h = 1.10 \text{ y } / (1.10 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.52 m.; $A_h = 0.567 \text{ m}^2 \text{ y V} = 1.57 \text{ m/seg.}$

Finalmente, b = 1.10 m y h = 0.80 m (BL = 0.28 m).

TRAMO: 25 – 26 (Jr. Chanchamayo)

 $Q = 1.023 \text{ m}^3/\text{seg}$; $S_0 = 0.37 \%$; n = 0.016; b = 1.10 m (adoptado).

 $A_h = 1.10 \text{ y } P_h = 1.10 \text{ y} / (1.10 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.57 m.; $A_h = 0.628 \text{ m}^2 \text{ y V} = 1.63 \text{ m/seg.}$

Finalmente, b = 1.10 m. y h = 0.80 m (BL = 0.23 m).

En todos los tramos, la altura h medida desde el fondo del canal hasta la parte inferior de la tapa.

TRAMO 47 - 63 (Jr. Chepén)

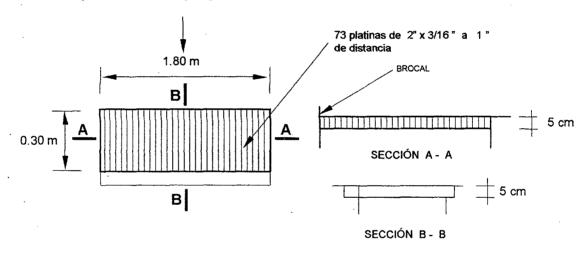
Sumidero de reja:

$$Q_A = 0.148 \text{ m}^3/\text{seg.}$$
; $y_A = 0.061 \text{ m}$; $T_A = 3.05 \text{ m}$; $V_A = 1.59 \text{ m/seg}$; $S_o = 4.75 \%$; $S_x = 2 \%$
 $V_A / (g V_A)^{1/2} = 2.06$

Considerando un ancho de sumidero B = 1.80 m:

$$y_A / B = 0.034$$

En la figura 2.5.2 (d),
$$Q_1/Q_A = 0.88$$
, luego $Q_1 = 0.88 \times 0.148 = 0.131 \text{ m}^3/\text{seg}$


 $y Q_S = 0.148 - 0.131 = 0.017 \text{ m}^3/\text{seg}.$

La longitud mínima del sumidero será:

 $L = y_A \times 2.4 \times V_A / (g y_A)^{1/2} = 0.061 \times 2.4 \times 2.06 = 0.30 \text{ m}.$

Las dimensiones finales serán:

B = 1.80 m y L = 0.30 m (reja tipo c).

REJA TIPO C

Canal sumidero:

$$Q_1 = 0.131 \text{ m}^3/\text{seg}.$$

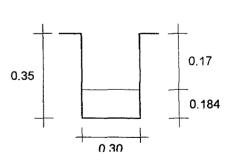
Pendiente adoptada: $S_0 = 4 \%$; n = 0.016

Ancho = b = longitud del sumidero = 0.30 m.

$$A_h = 0.30 \text{ y } P_h = 0.30 \text{ y } / (0.30 + 2 \text{ y})$$

Reemplazando en la fórmula de Manning (2.5.2 – 9):

$$y = 0.184 \text{ m.}$$
; $A_h = 0.055 \text{ m}^2 \text{ y V} = 2.37 \text{ m/seg.}$


Finalmente, b = 0.30 m y h = 0.35 m (BL = 0.17 m).

Canal de drenaie:

$$Q = 0.131 \text{ m}^3/\text{seg}$$
; $S_0 = 4.75 \%$; $n = 0.016$; $b = 0.40 \text{ m}$ (adoptado).

$$A_h = 0.40 \text{ y } R_h = 0.40 \text{ y} / (0.40 + 2 \text{ y})$$

Reemplazando en la fórmula de Manning (2.5.2 - 9):

$$y = 0.13 \text{ m.}$$
; $A_h = 0.052 \text{ m}^2 \text{ y V} = 2.51 \text{ m/seg.}$

Luego: b = 0.40 m y h = 0.40 m (BL = 0.27 m).

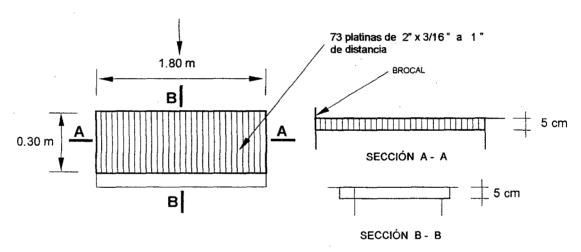
TRAMO 55 – 64 (Jr. Huancavelica)

Sumidero de reja:

$$Q_A = 0.217 \text{ m}^3/\text{seg}$$
; $y_A = 0.079 \text{ m}$; $T_A = 3.97 \text{ m}$; $V_A = 1.38 \text{ m/seg}$; $S_0 = 2.50 \%$; $S_x = 2 \%$ $V_A/(g y_A)^{1/2} = 1.57$

Adoptando un ancho de sumidero de B = 1.80 m.:

$$y_A / B = 0.044$$


En la figura 2.5.2 (d),
$$Q_1/Q_A = 0.78 \implies Q_1 = 0.78 \times 0.217 = 0.169 \text{ m}^3/\text{seg}$$

$$y Q_S = 0.217 - 0.169 = 0.048 \text{ m}^3/\text{seg}.$$

La longitud mínima del sumidero será:

$$L = y_A \times 2.4 \times V_A/(g y_A)^{1/2} = 0.079 \times 2.4 \times 1.57 = 0.30 \text{ m}.$$

Las dimensiones finales serán: B = 1.80 m y L = 0.30 m (Tipo c).

REJA TIPO C

Canal sumidero:

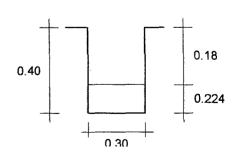
$$Q_1 = 0.169 \text{ m}^3/\text{seg}.$$

Pendiente adoptada: $S_0 = 4\%$; n = 0.016

Ancho = b = longitud del sumidero = 0.30 m.

$$A_h = 0.30 \text{ y } P_h = 0.30 \text{ y} / (0.30 + 2 \text{ y})$$

Reemplazando en la fórmula de Manning (2.5.2 – 9):


$$y = 0.22 \text{ m.}$$
; $A_h = 0.067 \text{ m}^2 \text{ y V} = 2.51 \text{ m/seg.}$

Las dimensiones finales serán:

$$b = 0.30 \text{ m. y h} = 0.40 \text{ m (BL} = 0.18 \text{ m)}.$$

Canal de drenaje:

$$Q = 0.169 \text{ m}^3/\text{seg}$$
; $S_0 = 2.50 \text{ %}$; $n = 0.016$; $b = 0.50 \text{ m}$ (adoptado).

$$A_h = 0.50 \text{ y } P_h = 0.50 \text{ y } / (0.50 + 2 \text{ y})$$

Reemplazando en la fórmula de Manning (2.5.2 - 9):

$$y = 0.16 \text{ m.}$$
; $A_h = 0.081 \text{ m}^2 \text{ y V} = 2.10 \text{ m/seg.}$

Luego, las dimensiones serán: b = 0.50 m y h = 0.45 m (BL = 0.29 m).

TRAMO 60 - 65 (Jr. Los Tres Reyes)

Sumidero de reja:

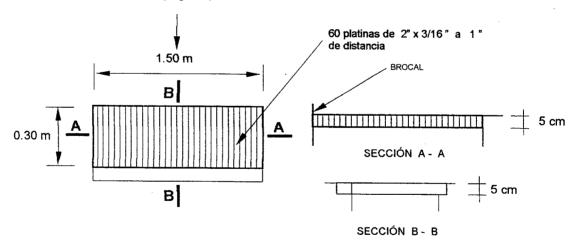
$$Q_A = 0.108 \text{ m}^3/\text{seg}$$
; $y_A = 0.064$; $T_A = 3.22 \text{ m}$; $V_A = 1.04 \text{ m/seg}$; $S_o = 1.90 \%$; $S_x = 2 \%$

$$V_A/g y_A)^{1/2} = 1.31$$

Asumiendo un ancho de sumidero de B = 1.50 m.

$$y_A / B = 0.043$$

En la figura 2.5.2 (d),
$$Q_1/Q_A = 0.78 \implies Q_1 = 0.78 \times 0.108 = 0.084 \text{ m}^3/\text{seg}$$


y
$$Q_S = 0.108 - 0.084 = 0.024 \text{ m}^3/\text{seg.}$$

La longitud mínima del sumidero será:

$$L = y_A \times 2.4 \times V_A/(g y_A)^{1/2} = 0.064 \times 2.4 \times 1.31 = 0.20 \text{ m}.$$

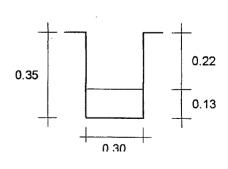
Luego, las dimensiones finales serán:

$$B = 1.50 \text{ m y } L = 0.30 \text{ m (Tipo C)}.$$

REJA TIPO C

Canal sumidero:

$$Q_1 = 0.084 \text{ m}^3/\text{seg.}$$


Pendiente adoptada: $S_o = 4 \%$; n = 0.016

Ancho = b = longitud del sumidero = 0.30 m.

$$A_h = 0.30 \text{ y } R_h = 0.30 \text{ y} / (0.30 \pm 2 \text{ y})$$

Reemplazando en la fórmula de Manning (2.5.2 - 9):

$$y = 0.13 \text{ m.}$$
; $A_h = 0.040 \text{ m}^2 \text{ y V} = 2.13 \text{ m/seg.}$

Considerando un borde libre de 0.22 m, las dimensiones finales serán:

b = 0.30 m y h = 0.35 m.

Canal de drenaje:

 $Q = 0.084 \text{ m}^3/\text{seg}$; $S_0 = 1.90 \%$; n = 0.016; b = 0.40 m (adoptado).

$$A_h = 0.40 \text{ y } P_h = 0.40 \text{ y} / (0.40 + 2 \text{ y})$$

Reemplazando en la fórmula de Manning (2.5.2 - 9):

$$y = 0.13 \text{ m.}$$
; $A_h = 0.053 \text{ m}^2 \text{ y V} = 1.59 \text{ m/seg.}$

Las dimensiones serán: b = 0.40 m y h = 0.40 m (BL = 0.27 m).

TRAMO 63 – 64 (Jr. Miguel Iglesias)

Sumidero de ventana con depresión:

$$Q_A = 0.061 \text{ m}^3/\text{seg.}$$
; $y_A = 0.058$; $T_A = 2.89 \text{ m.}$; $V_A = 0.73 \text{ m/seg}$; $S_0 = 1.08 \%$; $S_x = 2 \%$

Adoptando
$$h = 17.5 \text{ cm.}$$
; $L = 0.70 \text{ m. y } a = 7.5 \text{ cm}$,

$$B = 8a = 0.60 \text{ m.}$$
; $L_1 = 10a = 0.75 \text{ m}$ y $L_2 = 4a = 0.30 \text{ m.}$

En la figura 2.5.2 (a) -3:

$$Tg \theta_0 = 50 \implies Tg \theta = B / [(B / Tg \theta_0) + a] = 60 / [(60/50) + 7.5] = 6.897$$

La energía específica del flujo de aproximación será:

$$H_A = V_A^2/2g + y_A = 0.085 \text{ m}.$$

La energía específica en la sección de entrada a la ventana (Ecuación 2.5.2 – 8) será:

$$H_0 = H_A + a = 0.160 \text{ m}.$$

Y de acuerdo a la ecuación 2.5.2 - 8:

$$H_o = 0.160 = y + Q^2/2gA^2$$
..... Ecuación de la energía específica

Donde, según la figura 2.5.2 (a) - 3

Si
$$y \le B/Tg \theta_o$$
; $A = (y^2 Tg \theta)/2$

 $y \le 0.60/50 = 0.012$. Para estos valores de y, la ecuación de la energía no se cumple.

Si
$$y > B / Tg \theta_o$$
; $A = [a B + (y - a)^2 Tg \theta_o]$

En este caso, la ecuación de la energía específica se cumple para y = 0.117 m, y entonces,

$$A = 0.067 \text{ m}^2 \text{ y por consiguiente } V = 0.92 \text{ m/seg.}$$

La capacidad del sumidero se determina con la expresión 2.5.2 - 2

$$K + C = \frac{Q_1}{L y \sqrt{g y}}$$

Para
$$S_x = 2 \%$$
, $K = 0.20$.

Empleando las expresiones 2.5.2-3 y 2.5.2-4

$$F^2 = V^2/2g = 2[(H_o/y) - 1] = 0.736$$

$$M = L F^2 / a Tg \theta = 1.00$$

$$C = 0.45 / 1.12^{M} = 0.402$$

Reemplazando valores: $Q_1 = 0.053 \text{ m}^3/\text{seg}$

Y, el caudal de sobrepaso: $Q_S = Q_A - Q_J = 0.061 - 0.053 = 0.008 \text{ m}^3/\text{seg}$

: Las dimensiones adoptadas serán las definitivas.

TRAMO 64 – 64' (Jr. Miguel Iglesias)

Sumidero de ventana con depresión:

$$Q_A = 0.117 \text{ m}^3/\text{seg.}$$
; $y_A = 0.079$; $T_A = 3.95 \text{ m.}$; $V_A = 0.75 \text{ m/seg}$; $S_o = 0.74 \%$; $S_x = 2 \%$

Adoptando
$$h = 17.5 \text{ cm.}$$
; $L = 0.90 \text{ m. y } a = 10 \text{ cm}$,

$$B = 8a = 0.80 \text{ m.}$$
; $L_1 = 10a = 1.00 \text{ m}$ y $L_2 = 4a = 0.40 \text{ m}$.

En la figura 2.5.2 (a) -3:

$$Tg \theta_o = 50 \implies Tg \theta = B/[(B/Tg \theta_o) + a] = 60/[(60/50) + 7.5] = 6.897$$

La energía específica del flujo de aproximación será:

$$H_A = V_A^2/2g + y_A = 0.108 \text{ m}.$$

La energía específica en la sección de entrada a la ventana (Ecuación 2.5.2 – 8) será:

$$H_0 = H_A + a = 0.208 \text{ m}.$$

Y de acuerdo a la ecuación 2.5.2 - 8:

$$H_0 = 0.208 = y + Q^2/2gA^2$$
......Ecuación de la energía específica

Donde, según la figura 2.5.2 (a) - 3

Si y
$$\leq$$
 B/Tg θ_0 ; A = (y² Tg θ)/2

 $y \le 0.80/50 = 0.016$. Para estos valores de y. la ecuación de la energía no se cumple.

Si
$$y > B / Tg \theta_o$$
; $A = [a B + (y - a)^2 Tg \theta_o]$

En este caso, la ecuación de la energía específica se cumple para y = 0.154 m, y entonces,

$$A = 0.114 \text{ m}^2 \text{ y por consiguiente } V = 1.02 \text{ m/seg.}$$

La capacidad del sumidero se determina con la expresión 2.5.2 - 2

$$K + C = \frac{Q_1}{L y \sqrt{g y}}$$

Para
$$S_x = 2 \%$$
, $K = 0.20$.

Empleando las expresiones 2.5.2 - 3 y 2.5.2 - 4

$$F^2 = V^2/2g = 2[(H_0/y) - 1] = 0.688$$

$$M = L F^2 / a Tg \theta = 0.90$$

$$C = 0.45 / 1.12^{M} = 0.406$$

Reemplazando valores: $Q_1 = 0.104 \text{ m}^3/\text{seg}$

Y, el caudal de sobrepaso: $Q_S = Q_A - Q_1 = 0.117 - 0.104 = 0.013 \text{ m}^3/\text{seg}$

: Las dimensiones adoptadas serán las definitivas.

TRAMO 64' - 65 (Jr. Miguel Iglesias)

Sumidero de ventana con depresión:

$$Q_A = 0.072 \text{ m}^3/\text{seg.}$$
; $V_A = 0.074$; $V_A = 0.69 \text{ m.}$; $V_A = 0.52 \text{ m/seg}$; $V_A = 0.40 \text{ %}$; $V_A = 2.69 \text{ m.}$

Adoptando h = 15 cm.; $L = 0.70 \text{ m. y } \alpha = 5 \text{ cm}$,

$$B = 8a = 0.40 \text{ m}$$
; $L_1 = 10a = 0.50 \text{ m}$ y $L_2 = 4a = 0.20 \text{ m}$.

En la figura 2.5.2 (a) -3:

Tg
$$\theta_0 = 50 \implies$$
 Tg $\theta = B / [(B / Tg \theta_0) + a] = 40 / [(40/50) + 5] = 6.897$

La energía específica del flujo de aproximación será:

$$H_A = V_A^2/2g + y_A = 0.088 \text{ m}.$$

La energía específica en la sección de entrada a la ventana (Ecuación 2.5.2 – 8) será:

$$H_0 = H_A + a = 0.138 \text{ m}.$$

Y de acuerdo a la ecuación 2.5.2 – 8:

$$H_0 = 0.138 = y + Q^2/2gA^2$$
..... Ecuación de la energía específica

Donde, según la figura 2.5.2 (a) - 3

Si
$$y \le B / Tg \theta_o$$
; $A = (y^2 Tg \theta) / 2$

y $\leq 0.40/50 = 0.008$. Para estos valores de y la ecuación de la energía no se cumple.

Si
$$y > B / Tg \theta_o$$
; $A = [a B + (y - a)^2 Tg \theta_o]$

En este caso, la ecuación de la energía específica se cumple para y = 0.128 m, y entonces,

$$A = 0.162 \text{ m}^2 \text{ y por consiguiente } V = 0.44 \text{ m/seg.}$$

La capacidad del sumidero se determina con la expresión 2.5.2 - 2

$$K + C = \frac{Q_1}{L y \sqrt{g y}}$$

Para
$$S_x = 2 \%$$
, $K = 0.20$.

Empleando las expresiones 2.5.2-3 y 2.5.2-4

$$F^2 = V^2/2g = 2[(H_0/y) - 1] = 0.155$$

$$M = L F^2 / a Tg \theta = 0.31$$

$$C = 0.45 / 1.12^{M} = 0.434$$

Reemplazando valores: $Q_1 = 0.064 \text{ m}^3/\text{seg}$

Y, el caudal de sobrepaso: $Q_S = Q_A - Q_1 = 0.072 - 0.064 = 0.008 \text{ m}^3/\text{seg}$

.: Las dimensiones adoptadas serán las definitivas.

TRAMO 65 – 66 (Jr. Miguel Iglesias)

Sumidero de ventana con depresión:

$$Q_A = 0.078 \text{ m}^3/\text{seg.}$$
; $y_A = 0.076$; $T_A = 3.82 \text{ m.}$; $V_A = 0.54 \text{ m/seg}$; $S_o = 0.40 \%$; $S_x = 2 \%$

Adoptando h = 17.5 cm.; $L = 0.80 \text{ m. y } \alpha = 7.5 \text{ cm}$,

$$B = 8a = 0.60 \text{ m}$$
; $L_1 = 10a = 0.75 \text{ m}$ y $L_2 = 4a = 0.30 \text{ m}$.

En la figura 2.5.2 (a) -3:

$$Tg \theta_0 = 50 \implies Tg \theta = B/[(B/Tg \theta_0) + a] = 60/[(60/50) + 7.5] = 6.897$$

La energía específica del flujo de aproximación será:

$$H_A = V_A^2/2g + y_A = 0.091 \text{ m}.$$

La energía específica en la sección de entrada a la ventana (Ecuación 2.5.2 – 8) será:

$$H_0 = H_A + a = 0.166 \text{ m}$$

Y de acuerdo a la ecuación 2.5.2 – 8:

$$H_0 = 0.166 = y + Q^2/2gA^2$$
..... Ecuación de la energía específica

Donde, según la figura 2.5.2 (a) - 3

Si
$$y \le B/Tg \theta_o$$
; $A = (y^2 Tg \theta)/2$

 $y \le 0.60/50 = 0.012$. Para estos valores de y la ecuación de la energía no se cumple.

Si
$$y > B / Tg \theta_o$$
, $A = [a B + (y - a)^2 Tg \theta_o]$

En este caso, la ecuación de la energía específica se cumple para y = 0.127 m, y entonces,

$$A = 0.089 \text{ m}^2 \text{ y por consiguiente } V = 0.88 \text{ m/seg.}$$

La capacidad del sumidero se determina con la expresión 2.5.2 - 2

$$K + C = \frac{Q_1}{L y \sqrt{g y}}$$

Para $S_x = 2 \%$, K = 0.20.

Empleando las expresiones 2.5.2 - 3 y 2.5.2 - 4

$$F^2 = V^2/2g = 2 [(H_o/y) - 1] = 0.625$$

$$M = L F^2 / a Tg \theta = 0.97$$

$$C = 0.45 / 1.12^{M} = 0.403$$

Reemplazando valores: $Q_1 = 0.068 \text{ m}^3/\text{seg}$

Y, el caudal de sobrepaso: $Q_S = Q_A - Q_1 = 0.078 - 0.068 = 0.010 \text{ m}^3/\text{seg}$

: Las dimensiones adoptadas serán las definitivas.

CANAL DE DRENAJE 3:

Ubicado en el Jr. Miguel Iglesias, recibirá los caudales interceptados por los sumideros que se encuentran al final de los tramos: 47 - 63, 55 - 64 y 60 - 65 y los evacuará hacia el canal colector.

TRAMO: 63 - 64 (Jr. Miguel Iglesias)

 $Q = 0.261 \text{ m}^3/\text{seg.}$; $S_0 = 1.08 \%$; n = 0.016; b = 0.60 m (adoptado).

 $A_h = 0.60 \text{ y y } R_h = 0.60 \text{ y / } (0.60 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.25 m.; $A_h = 0.151 \text{ m}^2 \text{ y V} = 1.73 \text{ m/seg.}$

Por lo tanto, b = 0.60 m; h = 0.70 m (BL = 0.45 m).

TRAMO: 64 - 64' (Jr. Miguel Iglesias)

 $Q = 0.599 \text{ m}^3/\text{seg}$; $S_0 = 0.74 \%$; n = 0.016; b = 0.80 m (adoptado).

 $A_h = 0.80 \text{ y } P_h = 0.80 \text{ y } / (0.80 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.41 m.; $A_h = 0.324 \text{ m}^2 \text{ y V} = 1.85 \text{ m/seg.}$

Las dimensiones serán: b = 0.80 m y h = 0.85 m (BL = 0.44 m).

TRAMO: 64' - 65 (Jr. Miguel Iglesias)

 $Q = 0.599 \text{ m}^3/\text{seg}$; $S_0 = 0.40 \%$; n = 0.016; b = 0.80 m (adoptado).

 $A_h = 0.80 \text{ y } P_h = 0.80 \text{ y } / (0.80 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.51 m.; $A_h = 0.410 \text{ m}^2 \text{ y V} = 1.46 \text{ m/seg.}$

Finalmente, b = 0.80 m; h = 0.85 m (BL = 0.34 m).

TRAMO: 65 - 66 (Jr. Miguel Iglesias)

 $Q = 0.805 \text{ m}^3/\text{seg.}$; $S_0 = 0.40 \%$; n = 0.016; b = 1.00 m (adoptado).

 $A_h = y y R_h = y/(1+2y)$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.51 m.; $A_h = 0.510 \text{ m}^2 \text{ y V} = 1.58 \text{ m/seg.}$

Entonces, b = 1.00 m; h = 0.90 m (BL = 0.39 m).

En todos los tramos, la altura h medida desde el fondo del canal hasta la parte inferior de la tapa.

CANAL DE DRENAJE 4 (colector):

Ubicado en la Av. Vía de Evitamiento, recibirá los aportes de caudal de los canales 2 y 3, así mismo, de las calles adyacentes a esta avenida y los evacuará hacia el río Mashcón.

TRAMO: 7-17 (Av. Vía de Evitamiento)

 $Q = 0.110 \text{ m}^3/\text{seg.}$; $S_0 = 3.18 \%$; n = 0.016; b = 0.60 m. (adoptado).

 $A_h = 0.60 \text{ y y } R_h = 0.60 \text{ y} / (0.60 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.095 m.; $A_h = 0.057 \text{ m}^2 \text{ y V} = 1.93 \text{ m/seg.}$

Finalmente, b = 0.60 m y h = 0.50 m (BL = 0.41 m.).

TRAMO: 17 - 26 (Av. Vía de Evitamiento)

 $Q = 0.232 \text{ m}^3/\text{seg}$; $S_0 = 2.50 \%$; n = 0.016; b = 0.60 m (adoptado).

 $A_h = 0.60 \text{ y y } R_h = 0.60 \text{ y } / (0.60 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.249 m.; $A_h = 0.149 \text{ m}^2 \text{ y V} = 2.61 \text{ m/seg.}$

Luego, b = 0.60 m y h = 0.60 m (BL = 0.35 m.).

TRAMO: 26 - 37 (Av. Vía de Evitamiento)

 $Q = 1.225 \text{ m}^3/\text{seg.}$; $S_0 = 1.75 \%$; n = 0.016; b = 1.00 m (adoptado).

 $A_h = y y R_h = y/(1+2y)$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.403 m.; $A_h = 0.403 \text{ m}^2 \text{ y V} = 3.04 \text{ m/seg.}$

Las dimensiones serán: b = 1.00 m y h = 0.70 m (BL = 0.30 m.).

TRAMO: 37 - 46 (Av. Vía de Evitamiento)

 $Q = 1.506 \text{ m}^3/\text{seg.}$; $S_0 = 2.14 \%$; n = 0.016; b = 1.10 m (adoptado).

 $A_h = 1.10 \text{ y } P_h = 1.10 \text{ y } / (1.10 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.398 m.; $A_h = 0.438 \text{ m}^2 \text{ y V} = 3.44 \text{ m/seg.}$

Las dimensiones serán, b = 1.10 m y h = 0.70 m (BL = 0.30 m).

TRAMO: 46 - 54 (Av. Vía de Evitamiento)

 $Q = 1.607 \text{ m}^3/\text{seg.}$; $S_0 = 2.08 \%$; n = 0.016; b = 1.10 m (adoptado).

 $A_h = 1.10 \text{ y } P_h = 1.10 \text{ y} / (1.10 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.421 m.; $A_h = 0.463 \text{ m}^2 \text{ y V} = 3.47 \text{ m/seg.}$

Entonces, b = 1.10 m y. h = 0.70 m (BL = 0.28 m.).

TRAMO: 54 – 62 (Av. Vía de Evitamiento)

 $Q = 1.653 \text{ m}^3/\text{seg.}$; $S_0 = 2.50 \%$; n = 0.016; b = 1.10 m (adoptado).

 $A_h = 1.10 \text{ y } P_h = 1.10 \text{ y} / (1.10 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.402 m.; $A_h = 0.443 \text{ m}^2 \text{ y V} = 3.74 \text{ m/seg.}$

Por lo que, b = 1.10 m y h = 0.70 m (BL = 0.30 m.).

TRAMO: 62 - 66 (Av. Vía de Evitamiento)

 $Q = 1.491 \text{ m}^3/\text{seg.}$; $S_0 = 2.00 \%$; n = 0.016; b = 1.10 m (adoptado).

 $A_h = 1.10 \text{ y y } R_h = 1.10 \text{ y} / (1.10 + 2 \text{ y})$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.442 m.; $A_h = 0.486 \text{ m}^2 \text{ y V} = 3.46 \text{ m/seg.}$

Las dimensiones serán: b = 1.10 m y h = 0.75 m (BL = 0.31 m.).

El canal de drenaje N° 3, que va por el Jr. Miguel Iglesias, descarga en el canal colector (canal de drenaje N° 4), que discurre por la Av. Vía de Evitamiento en el punto 66 (ver plano DS-02), que es el punto más bajo y precisamente hasta donde abarca el presente estudio; sin embargo, es necesario diseñar la sección de este canal desde allí hacia el río Mashcón, solamente como propuesta, debido a que no es posible precisar cuánto de aporte de caudal seguiría recibiendo en su recorrido final. Esto sería materia de análisis de un estudio complementario de drenaje que abarque la zona contigua a la del proyecto y, tomando en consideración los resultados obtenidos en el presente trabajo, se adopten los criterios más convenientes.

El caudal final (punto 66) es: $Q = 2.911 \text{ m}^3/\text{seg.}$

 $S_o = 2\%$; n = 0.016; b = 1.30 m. (adoptado).

 $A_h = 1.30 \text{ y} \text{ y} R_h = 1.30 \text{ y} / (1.3 + 2 \text{ y});$

Reemplazando en la fórmula de Manning (expresión 2.5.2 – 9):

y = 0.56 m.

El área hidráulica será: $A_h = 0.732 \text{ m}^2 \text{ y}$

V = 3.98 m/seg.

Finalmente, las dimensiones propuestas de la sección del canal, serán:

b = 1.30 m y h = 0.90 m (BL = 0.34 m).

El siguiente cuadro es el resumen de cálculos para el sistema de drenaje.

CUADRO RESUMEN DE CÁLCULOS PARA EL SISTEMA DE DRENAJE

Coef. escorrentía:	0.67						_																		
1	2	3		4	5	6	7	8	9	10	11	12	13	14	15		17	18.00	1	20	21	22	23	24	25
Av. / Jr. / Psje.	Dist.	So	Tra	amo	Qap	Qdis	Q _A	YA	TA	V _A	SUMIDERO	Qi	Qs	Ya'	Ta'	Canal d	e drenaje	BL	Ycan	Ah	Q	V	Qd	F	Régimen
	m		<u> </u>		m³/s	m³/s	m³/s	m	m	m/s	BxL (m) 6 hxL (m)	m³/s	m³/s	m	m	b (m)	h (m)	m	m	m"	m³/s	m/s	m³/s	ļ	de flujo
Jr. Angamos	102	1.00%	1	2		0.133	0.067	0.061	3.03	0.73	:	ļ			ļ	ļ	ļ <u>.</u>		ļ		ļ.,				
Jr. Angamos	90	1.00%	2	3	0.040	0.130	0.065	0.060	3.00	0.72			ļ	ļ	ļ	ļ				ļ	ļ				
Jr. Angamos	122	1.40%	3	4	0.130	0.165	0.082	0.062	3.08	0.87			ļ		ļ						ļ	ļ <u></u>			
Jr. Angamos	30	1.40%	4	5	0.165	0.165	0.082	0.062	3.08	0.87					ļ	·									
Jr. Angamos	62	0.80%	5	6	0.049	0.067	0.034	0.049	2.44	0.56															Ĺ
Jr. Angamos	20	0.80%	6	7	0.020	0.020	0.010	0.031	1.55	0.42		 													
Jr. Sara Mc Dougail	112	2.90%	1	8		0.129	0.065	0.049	2.45	1.07															
Jr. Sara Mc Dougali	8	2.40%	8	13	0.144	0.144	0.072	0.053	2.65	1.03			<u> </u>												L
Jr. Sara Mc Dougali	148	2.40%	13	20	0.158	0.163	0.081	0.055	2.77	1.06	sum reja 1.20 x 0.30	0.063	0.019	0.03	1.60	0.30	0.45	0.32	0.13	0.038	0.063	1.63	0.063	1.45	supercrítico
Jr. Sara Mc Dougall	58	3.75%	20	27	0.017	0.035	0.018	0.029	1.44	0.86															I
Jr. Sara Mc Dougall	65	3.00%	27	29	0.025	0.041	0,020	0.032	1.58	0.82															
Jr. Sara Mc Dougail	52	2.00%	29	31	0.029	0.031	0.015	0.031	1.54	0.65															
Psje. Wiracocha	22	0.70%	31	30	0.031	0.031	0.015	0.037	1.87	0.44															
Jr. Huancavelica	122	3.50%	2	10	0.093	0.132	0.066	0.048	2.39	1.16															
Jr. Huancavelica	148	2.18%	10	22	0.177	0.177	0.088	0.058	2.91	1.04	sum reja 1.20 x 0.30	0.065	0.023	0.04	1.76	0.30	0.45	0.31	0.14	0.041	0.065	1.59	0.065	1.37	supercrítico
Jr. Huancavelica	105	3.63%	22	34	0.019	0.077	0.038	0.039	1.93	1.03															
Jr. Huancavelica	60	2.00%	34	33	0.102	0.102	0.051	0.048	2.40	0.88															
Jr. Huancavelica	64	2.00%	33	41	0.205	0.205	0.102	0.062	3.12	1.05															
Jr. Huancavelica	50	3.50%	41	49	0.365	0.365	0.183	0.070	3.49	1.50															
Jr. Huancavelica	32	3.00%	49	55	0.401	0.401	0.201	0.075	3.73	1.45															
Jr. Huancavelica	30	2.50%	55	64	0.433	0.433	0.217	0.079	3.97	1.38	sum reja 1.80 x 0.30	0.169	0.048	0.04	2.25	0.50	0.45	0.29	0.16	0.081	0.169	2.10	0.169	1.67	supercritico
Jr. Chepén	146	2.26%	14	18	0.024	0.155	0.077	0.055	2.75	1.02															
Jr. Chepén	56	2.54%	18	26′	0.186	0.186	0.093	0.058	2.88	1.12															
Jr. Chepén	64	2.78%	26′	28	0.204	0.204	0.102	0.059	2.93	1.19															
Jr. Chepén	50	2.92%	28	30	0.217	0.217	0.108	0.059	2.97	1.23							<u> </u>								
Jr. Chepén	54	2.02%	30	38	0.248	0.248	0.124	0.067	3.35	1.10															
Jr. Chepén	32	3.70%	38	47	0.282	0.282	0.141	0.063	3.14	1.43															
Jr. Chepén	30	4.75%	47	63	0.297	0.297	0.148	0.061	3.05	1.59	sum reja 1.80 x 0.30	0.131	0.018	0.028	1.38	0.40	0.40	0.27	0.13	0.052	0.131	2.51	0.131	2.22	supercrítico

11	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Av. / Jr. / Psje.	Dist.	So	Tra	amo	Qap	Qdis	Q _A	YA	TA	VA	SUMIDERO	Q	Qs	Ya'	Ta'	Canal de	e drenaje	BL	Ycan	Ah	Q	V	Qd	F	Régimen
Av. 7 or. 7 t sje.	m				m³/s	m³/s	m³/s	m	m	m/s	BxL (m) ó hxL (m)	m³/s	m³/s	m	m	b (m)	h (m)	m	m	m²	m³/s	m/s	m³/s		de flujo
Jr. Arróspide de Loyola	116	3.00%	3	12	0.091	0.174	0.087	0.054	2.72	1.17	sum reja 1.00 x 0.30	0.059	0.028	0.04	1.78	0.30	0.60	0.49	0.11	0.034	0.059	1.74	0.059	1.65	supercrítico
Jr. Marañón	32	1.00%	12	11	0.056	0.056	0.056	0.057	2.83	0.70	sum vent h = 0.15; L= 0.60	0.052	0.004	0.02	1.05	0.50	0.70	0.47	0.23	0.113	0.170	1.51	0.170	1.01	supercrítico
Jr. Francia	55	2.20%	11	15	0.013	0.086	0.043	0.044	2 .21	0.87			0.004	0.02	0.91	0.50	0.70	0.47	0.23	0.113	0.252	2.24	0.252	1.50	supercrítico
Jr. Francia	88	2.65%	15	23	0.097	0.097	0.048	0.045	2.23	0.97	sum vent h = 0.15; L= 0.70	0.042	0.006	0.02	1.03	0.50	0.70	0.46	0.24	0.118	0.295	2.50	0.295	1.64	supercrítico
	88	2.65%	15	23	0.043	0.043	0.043	0.043	2.14	0.94	sum reja 0.80 x 0.30	0.029	0.014	0.03	1.41	0.30	0.60	0.53	0.07	0.021	0.029	1.35	0.029	1.61	supercritico
Psje. Francia	37	0.70%	15′	15		0.011	0.005	0.025	1,26	0.34															
Jr. Marañón	75	1.20%	9	10		0.084	0.042	0.049	2.46	0.69															
Jr. Marañón	52	1.10%	10	11	0.040	0.040	0.040	0.049	2,45	0.66	sum vent h = 0.15; L= 0.60	0.030	0.009	0.03	1.42	0.30	0.60	0.50	0.10	0.030	0.030	1.01	0.030	1.01	supercrítico
Jr. Marañón	29	0.70%	9	8		0.015	0.008	0.029	1.43	0.37															
JI. Walanon	29	0.7076	3	-		0.013	0.000	0.029	1.45	0.57															
Jr. Marañón	22	1.50%	13'	13		0.014	0.007	0.024	1.21	0.48		 													
or, waranon		1.5070	13	13		0.014	0.007	0.024	1,21	0.40															
Jr. Marañón	40	1.20%	13'	14		0.024	0.012	0.031	1.54	0.51															
Jr. Las Cucardas	118	1.71%	5	16	0.047	0.175	0.088	0.061	3.03	1.00															
Jr. Las Cucardas	90	3.35%	16	25	0.053	0.103	0.052	0.044	2.19	1.07	sum reja 1.00 x 0.30	0.040	0.012	0.03	1.26	0.30	0.45	0.37	0.08	0.025	0.040	1.62	0.040	1.80	supercrítico
Psje. Los Pensamientos	64	2.15%	16	17	0.123	0.123	0.061	0.051	2.54	0.95															
Jr. Chanchamayo (der)	20	0.40%	19	20		0.007	0.007	0.031	1.56	0.30															
Jr. Chanchamayo (der)	64	0.40%	20	21	0.075	0.075	0.075	0.075	3.76	0.53	sum vent h = 0.175; L= 0.75	0.070	0,006	0.03	1.41	0.70	0.70	0.44	0.26	0.182	0.202	1.11	0.202	0.70	subcritico
Jr. Chanchamayo (der)	44	0.40%	21	22	0.030	0.030	0.030	0.053	2.65	0.42	sum vent h = 0.15; L= 0.40	0.028	0.002	0.02	0.91	0.90	0.70	0.47	0.23	0.205	0.230	1.12	0.230	0.75	subcrítico
Jr. Chanchamayo (der)	50	0.40%	22	23	0.065	0.065	0.065	0.071	3.56	0.51	sum vent h = 0.175; L= 0.70	0.062	0.003	0.02	1.06	0.90	0.70	0.35	0.35	0.316	0.423	1.34	0.423	0.72	subcrítico
Jr. Chanchamayo (der)	46	0.37%	23	24	0.046	0.046	0.046	0.064	3,18	0.46	sum vent h = 0.15; L= 0.50	0.040	0.006	0.03	1.49	1.10	0.80	0.33	0.47	0.517	0.787	1.52	0.787	0.71	subcrítico
Jr. Chanchamayo (der)	120	0.37%	24	25	0.121	0.121	0.121	0.091	4.57	0.58	sum vent h = 0.20 ; L= 0.90	0.105	0.016	0.04	2.13	1.10	0.80	0.28	0.52	0.567	0.892	1.57	0.892	0.70	subcritico
Jr. Chanchamayo (der)	50	0.37%	25	26	0.055	0.055	0,055	0.068	3.41	0.48	sum vent h = 0.15 ; L= 0.60	0.051	0.004	0.03	1.30	1.10	0.80	0.23	0.57	0.628	1.023	1.63	1.023	0.69	subcrítico
Jr. Chanchamayo (der)	40	1.00%	19	18		0.015	0.015	0.035	1.75	0.50															
Jr. Chanchamayo (izq)	20	0.50%	19	20		0.004	0.004	0.024	1.18	0.27															
Jr. Chanchamayo (izq)	64	0.50%	20	21		0.025	0.025	0.048	2.38	0.44															
Jr. Chanchamayo (izq)	44	0.31%	21	22		0.019	0.019	0.047	2.35	0.34															
Jr. Chanchamayo (izq)	50	0.67%	22	23		0.023	0.023	0.044	2.18	0.48				-	.]		T								

319

11	2	3	т	4	5	6	7	. 8	9	10	11	12	13	14	15		17	18	19	20	21	22	23	24	25
Av. / Jr. / Psje.	Dist.	So	Tra	amo	Qap	Qdis	Q _A	YA	TA	V _A	SUMIDERO	Qı	Qs	Ya'	Ta'	Canal de	e drenaje	BL	Ycan	Ah	Q	V	Qd	F	Régimen
	m		ļ		m³/s	m³/s	m³/s	m	m	m/s	BxL (m) ó hxL (m)	m³/s	m³/s	m	m	b (m)	h (m)	m	m	m²	m³/s	m/s	m³/s		de flujo
Jr. Chanchamayo (izq)	46	0.30%				0.023	0.023	0.051	2.53	0.71		<u> </u>													
Jr. Chanchamayo (izq)	120	0.30%	24	25	0.023	0.023	0.023	0.051	2.53	0.78															
Jr. Chanchamayo (izq)	50	0.30%	25	26	0.023	0.023	0.023	0.051	2.53	0.92														<u> </u>	
				<u> </u>																					
Jr. Chanchamayo (izq)	40	0.83%	19	18		0.016	0.016	0.037	1.84	0.48	···			·											
				ļ		<u> </u>																			
Jr. Sta, Victoria	163	2.50%	21	32	0.025	0.142	0.071	0.052	2.61	1.04															
Jr. Sta. Victoria	60	2.10%	32	40	0.099	0.099	0.050	0.047	2.36	0.89															
Jr. San Jorge	10	0.45%	39	40		0.006	0.003	0.022	1.11	0.25															
Jr. San Jorge	40	0.45%	40	41	0.106	0.106	0.053	0.064	3.22	0.51															
				1																					
Jr. Mariano Melgar	48	0.59%	32	33	0.043	0.043	0.021	0.044	2.18	0.45															
Jr. Mariano Melgar	78	0.54%	35	33		0.060	0.030	0.050	2.52	0.47															
Jr. Mariano Melgar	26	0.25%	35	36		0.018	0.009	0.037	1.86	0.26															
Jr. Mariano Melgar	150	0.25%	36	37	0.146	0.146	0.073	0.300	0.40	1.21															
Jr. Huaraz	44	0.30%	34"	34'		0.025	0.012	0.040	2.02	0.30												*			,
Jr. Huaraz	50	0.30%	34′	34	0.080	080.0	0.040	0.063	3.14	0.41															
Psje. Inca Yupanqui	52	0.70%	27	26'	0.011	0.018	0.009	0.031	1.53	0.39															
Psje. Pachacútec	36	0.50%	29	28	0.012	0.012	0.006	0.028	1.41	0.31															
Jr. San Jorge	52	1.20%	39	38		0.035	0.017	0.035	1.77	0.56															
Psje. César Vallejo	38	0.45%	48	47		0.014	0.007	0.031	1.53	0.31															
		T																							
Psje. César Vallejo	50	0.52%	48	49		0.023	0.012	0.036	1.78	0.37															
	1																								
Psje. César Vallejo	50	0.57%	51	50		0.028	0.014	0.038	1.88	0.40															
Psje. César Vallejo	40	1.24%		49	0.008	0.013	0.006	0.024	1.20	0.44															

1	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Av. / Jr. / Psje.	Dist.	So	Tra	amo	Qap	Qdis	Q _A	YA	TA	V _A	SUMIDERO	Qį	Qs	Ya'	Ta'	Canal d	e drenaje	BL	Ycan	Ah	Q	V	Qd	F	Régimen
AV. 7 St. 71 Sje.	m				m³/s	m³/s	m³/s	m	m	m/s	BxL (m) ó hxL(m)	m³/s	m³/s	m	m	b (m)	b	m	m	m ²	m³/s	m/s	m³/s		de flujo
Jr. San Jorge	69	1.20%	42	41		0.055	0.028	0.042	2.10	0.62															
Jr. San Jorge	40	0.90%	42	43		0.032	0.016	0.036	1.81	0.49															
									1																
Jr. Los Tres Reyes	14	2.80%	43	44	0.056	0.056	0.028	0.036	1.81	0.86															
Jr. Los Tres Reyes	53	2.80%	44	52	0.098	0.098	0.049	0.044	2.22	0.99															
Jr. Los Tres Reyes	40	2.80%	52	59	0.139	0.139	0.069	0.051	2.53	1.08															
Jr. Los Tres Reyes	11	2.80%	59	60	0.178	0.178	0.089	0.056	2.78	1.15															
Jr. Los Tres Reyes	51	1.90%	60	65	0.217	0.217	0.108	0.064	3.22	1.04	sum reja 1.50 x 0.30	0.084	0.024	0.04	1.83	0.40	0.40	0.27	0.13	0.053	0.084	1.59	0.084	1.40	supercrítico
Psje. Libertad	50	3.30%	51	58		0.019	0.010	0.023	1.17	0.70															
Psje. Huancavelica	40	2.92%	50	56	0.020	0.020	0.010	0.024	1.21	0.67															
Psje. Cusco	20	0.44%	57	56		0.012	0.006	0.029	1.44	0.29		T	1												
Psje. Cusco	35	0.44%	56	55	0.032	0.032	0.016	0.041	2.07	0.37		1					·								
Psje. Cusco	30	0.67%	57	58		0.020	0.010	0.032	1.61	0.39															
Psje. Cusco	30	0.67%	58	59	0.039	0.039	0.039	0.054	2.68	0.55															
Jr. Niño Jesús	60	0.84%	45	44		0.042	0.021	0.040	2.02	0.51				ļ ———	1					 	 				
				 								 													
Jr. Niño Jesús	90	0.72%	45	46		0.070	0.035	0.051	2.53	0.55		 			l										
	1			-																					
Jr.Virgen María	60	1.00%	53	52		0.041	0.020	0.039	1.94	0.54															
	1	1.00.0		1-								-									1				
Jr.Virgen María	70	0.65%	53	54		0.042	0.021	0.043	2.13	0.46															
or, viigos mana	+	0.0070		-		0.012	0.027	0.070	2											ļ. 					<u></u>
Jr. San José	60	0.83%	61	60		0.039	0.019	0.039	1.97	0.50		 													
01. Odi) 0030	+	0.007/0	-	-		0.003	0.010	0.000	1.57	0.00															
la Can Inné	50	0.50%	61	62		0.025	0.012	0.037	1.83	0.37															
Jr. San José	- 50	0.50%	01	02		0.023	0.012	0.037	1.03	0.51															
In Administration	90	1.08%	63	64	0.061	0.061	0.061	0.058	2.89	0.72	sum vent h = 0.175; L = 0.70	0.053	0.008	0.027	1.36	0.60	0.70	0.41	0.29	0.173	0.314	1.81	0.314	1.08	supercrítico
Jr. Miguel Iglesias	80		├ ┈─	 			0.061	0.058			sum vent h = 0.175; L = 0.70		0.008	0.027	1.74	0.80	0.70	0.41		0.173	 		0.756	0.90	subcrítico
Jr. Miguel Iglesias	50	0.74%		641	0.117	0.117		0.079			sum vent h = 0.175; L = 0.70	0.104	0.013	0.032	1.62	0.80	0.90	0.32		0.524			0.819	0.62	subcrítico
Jr. Miguel Iglesias	90	0.40%	-	65	0.072	0.072	0.072		3.69	 		f											1.056	0.68	subcritico
Jr. Miguel Iglesias	84	0.40%	65	66	0.078	0.078	0.078	0.076	3.82	U.54	sum vent h = 0.175; L = 0.80	0.068	0.010	0.036	1.79	1.00	0.90	0.27	0.63	0.027	1.056	1.08	1.000	U.08	SUDCHICO

1	2	3		4	5	6	7	8	9	10	11	12	13_	14	15	16	17	18	19	20	21	22	23	24	25
Av. / Jr. / Psje.	Dist.	So	Tra	amo	Qap	Qdis	Q _A	YA	TA	V _A	SUMIDERO	Qı	Qs	Ya'	Ta'	Canal de	drenaje	BL	Ycan	Ah	Q	٧	Qd	F	Régimen
Av. 7 St. 7 I-Sje.	m				m³/s	m³/s	m³/s	m	m	m/s	BxL (m) ó hxL(m)	m³/s	m³/s	m	m	b (m)	h (m)	m	m	m²	m³/s	m/s	m³/s		de flujo
Av. Vía de Evitamiento	118	3.18%	7	17	0.130	0.130	0.130	0.129	0.30	2.16	·	0.130				0.60	0.45	0.34	0.11	0.064	0.130	2.04	0.130	2.00	supercrítico
Av. Via de Evitamiento	60	2.50%	17	26	0.060	0.060	0,060	0.200	0.30	0.72		0.060				0.60	0.45	0.30	0.15	0.089	0.190	2.12	0.190	1.76	supercrítico
Av. Via de Evitamiento	200	1.75%	26	37	0.258	0.258	0.258	0.450	0.50	0.84		0.258				1.00	0.80	0.34	0.46	0.461	1.470	3.19	1.470	1.50	supercrítico
Av. Vía de Evitamiento	70	2.14%	37	46	0.179	0.179	0.179	0.500	0.60	0.47		0.179				1.00	0.80	0.33	0.47	0.466	1.650	3.54	1.650	1.66	supercrítico
Av. Via de Evitamiento	60	2.08%	46	54	0.091	0.091	0.091	0.500	0.70	0.21		0.091				1.00	0.80	0.31	0.49	0.490	1.740	3.55	1.740	1.62	supercrítico
Av. Via de Evitamiento	50	2.50%	54	62	0.063	0.063	0.063	0.500	0.70	0.15		0.063				1.00	0.80	0.33	0.47	0.470	1.803	3.84	1.803	1.79	supercrítico
Av. Via de Evitamiento	68	2.00%	62	66	0.052	0.052	0.052	0.492	0.90	0.12		0.052			·	1.00	0.80	0.28	0.52	0.522	1.855	3.56	1.855	1.57	supercrítico
												COLEC	TOR			1.30	0.90	0.34	0.56	0.732	2.911	3.98	2.911	1.69	supercrítico
Psje. Los Reyes	125	2.00%	24	34"		0.128	0.064	0.052	2.617	0.93															
Psje. Los Reyes	50	2.00%	34′′	36	0.128	0.128	0.064	0.052	2.617	0.93															
Psje. Los Reyes	58	2.00%	36	43		0.025	0.012	0.028	1.410	0.62															
Psje. Francia	104	2.00%	23	34		0.056	0.028	0.038	1.915	0.76											l				

COL 1 : Nombre de vía

COL 2 : Distancia de flujo

COL 3 : Pendiente de tramo

COL 4 : Tramo

COL 5 : Caudal de aporte

COL 6 : Caudal de diseño

COL 7 : Caudal de aproximación

COL 8 : Tirante de aproximación

COL 9 : Ancho superficial de aproximación

COL 10 : Velocidad de aproximación

COL 11 : Sumidero (de ventana o de reja)

COL 12 : Caudal interceptado por sumidero

COL 13 : Caudal que sobrepasa al sumidero

COL 14 : Tirante (caudal de sobrepaso)

COL 15 : Ancho superficial (caudal de sobrepaso)

COL 16 : Ancho de canal de drenaje

COL 17 : Altura de canal de drenaje

COL 18 : Borde libre

COL 19: Valor de tirante de agua obtenido por aproximaciones sucesivas hasta que Q (col 21) sea igual a Qd (col 23) COL 20 : Área hidráulica de canal.

COL 21 : Valor de caudal obtenido con Ycan (col 19)

COL 22 : Velocidad de flujo en canal de drenaje

COL 23 : Caudal para diseñar canal de drenaje

COL 24 : Número de Froude: $F = V / (g y)^{1/2}$

COL 25 : Régimen de flujo:

Si F < 1, régimen subcrítico

Si F = 1, régimen crítico

Si F > 1, régimen supercrítico

4.6.5 DISEÑO ESTRUCTURAL

Losa superior canal de drenaje: Tramos: 10-11, 13-20, 15-23 (der.) y 16-25.

Luz libre : l' = 0.30 m.; f c' = 210 Kg/cm²; fy = 4200 Kg/cm².

Carga más pesada transmitida por las ruedas: 8 tn.

- a) Espesor de la losa: e = 30/12 = 2.5 cm, adoptamos e = 0.15 m.
- b) Luz de cálculo: Si el espesor de muro es 0.15 m, l = 0.30 + 0.15 = 0.45 m.
- c) Metrado de cargas: Peso propio = $0.15 \times 1.00 \times 1.00 \times 2400 = 360 \text{ Kg/m}$.
- d) Momento de diseño:

$$M_D = w l^2 / 8 = 360 (0.45)^2 / 8 = 9.1 \text{ Kg-m}.$$

$$M_L = Pl / 4E$$

$$E = 1.219 + 0.06 l \le 2.13 \text{ m}.$$

$$E = 1.219 + 0.06 \times 0.45 = 1.246 \text{ m}.$$

$$M_L = 8000 \times 0.45 / (4 \times 1.246) = 722.3 \text{ Kg-m}.$$

$$M_I = I \times M_L = 0.30 \times 722.3 = 216.7$$
 Kg-m.

$$M_u = 1.3 [M_D + 1.67 (M_L + M_I)]$$

$$M_u = 1.3 [9.1 + 1.67 (722.3 + 216.7)] = 2050.4 \text{ Kg-m}.$$

$$M_u' = 205040 / \phi = 205040 / 0.90 = 227822.2$$
 Kg-cm.

$$M_{ur} = k b d^2 = 54.35 \times 100 \times (12)^2 = 782640 \text{ Kg-cm}.$$

$$M_{u'} < M_{ur} \dots o.K!$$
 (losa simplemente armada)

e) Acero principal:

$$A_s = M_u' / [fy (d - a/2)]$$
; $a = As fs / (0.85 fc' b)$

$$A_s = 227822.2 / [4200 (12 - 1.5 / 2)] = 4.82 cm^2$$
.

$$\Rightarrow$$
 a = (4.82 × 4200) / 0.85 × 210 × 100 = 1.13 cm.

$$A_s = 202870 / [4200 (12 - 1.13 / 2)] = 4.74 cm^2$$
.

$$\Rightarrow$$
 a = (4.74 × 4200) / 0.85 × 210 × 100 = 1.12 cm.

$$A_s = 202870 / [4200 (12 - 1.12 / 2)] = 4.74 cm^2$$
.

Acero mínimo: $A_{s min} = 0.0018 \text{ b d} = 0.0018 \times 100 \times 12 = 2.16 \text{ cm}^2$.

$$A_s > A_{s \text{ min}}$$
 \Rightarrow $A_s = 4.74 \text{ cm}^2$.

Con ϕ 3/8" (0.71 cm²): el espaciamiento s = 100 × 0.71 / 4.74 = 15 cm.

Se colocará ϕ 3/8" @ 15 cm.

f) Acero de reparto:

$$A_{s \text{ rep}} = 0.55/(l)^{1/2} A_{s} \le 0.5 A_{s}$$

$$A_{s rep} = 0.55/(0.45)^{1/2} A_s = 0.82 A_s > 0.5 A_s \implies A_{s rep} = 0.5 \times 4.74 = 2.37 \text{ cm}^2$$
.

Con
$$\phi$$
 1/4" (0.32 cm²): s = 100 × 0.32 / 2.37 = 13.5 cm.

Se colocará ϕ 1/4" @ 15 cm.

Losa superior canal de drenaie: Tramos: 3-12, 7-17, 47-63 y 60-65.

Luz libre :
$$l' = 0.40 \text{ m}$$
; f c' = 210 Kg/cm²; fy = 4200 Kg/cm².

Carga más pesada transmitida por las ruedas: 8 tn.

- a) Espesor de la losa: e = 40/12 = 3.3 cm, adoptamos e = 0.15 m.
- b) Luz de cálculo: Si el espesor de muro es 0.15 m, l = 0.40 + 0.15 = 0.55 m.
- c) Metrado de cargas: Peso propio = $0.15 \times 1.00 \times 1.00 \times 2400 = 360 \text{ Kg/m}$.
- d) Momento de diseño:

$$M_D = w l^2 / 8 = 360 (0.55)^2 / 8 = 13.6 \text{ Kg-m}.$$

$$M_L = Pl / 4E$$

$$E = 1.219 + 0.06 \times 0.55 = 1.252 \text{ m}.$$

$$M_L = 8000 \times 0.55 / (4 \times 1.252) = 878.6 \text{ Kg-m}.$$

$$M_I = I \times M_L = 0.30 \times 878.6 = 263.6$$
 Kg-m.

$$M_u = 1.3 [13.6 + 1.67 (878.6 + 263.6)] = 2497.4 \text{ Kg-m}.$$

$$M_u' = 2497.4/\phi = 2497.4/0.90 = 277490$$
 Kg-cm.

$$M_{ur} = k b d^2 = 782640 \text{ Kg-cm}.$$

$$M_u' \le M_{ur} \dots o_K!$$
 (losa simplemente armada)

e) Acero principal:

$$A_s = M_u' / [fy (d - a/2)]$$
; $a = As fs / (0.85 fc' b)$

Efectuando: $A_s = 5.84 \text{ cm}^2$.

Acero mínimo: $A_{s min} = 0.0018 \text{ b d} = 2.16 \text{ cm}^2$.

$$A_s > A_{s \text{ min}}$$
 \Rightarrow $A_s = 5.84 \text{ cm}^2$.

Con ϕ 1/2" (1.27 cm²): el espaciamiento s = 100 × 1.27 / 5.84 = 21.7 cm.

Se colocará ϕ 1/2 " @ 20 cm.

f) Acero de reparto:

$$A_{s \text{ rep}} = 0.55/(0.55)^{1/2} \ A_s = 0.74 \ A_s > 0.5 \ A_s.$$

$$\Rightarrow A_{s rep} = 0.5 \times 5.84 = 2.92 \text{ cm}^2$$
.

Con
$$\phi$$
 3/8" (0.71 cm²): s = 100 × 0.71 / 2.92 = 24.3 cm.

Se colocará ϕ 3/8" @ 25 cm.

Losa superior canal de drenaje:

Luz libre : l' = 0.50 m.; f c' = 210 Kg/cm²; fy = 4200 Kg/cm².

Carga más pesada transmitida por las ruedas: 8 tn.

- a) Espesor de la losa: e = 50/12 = 4.2 cm, adoptamos e = 0.15 m.
- b) Luz de cálculo: Si el espesor de muro es 0.15 m, l = 0.50 + 0.15 = 0.65 m.
- c) Metrado de cargas: Peso propio = $0.15 \times 1.00 \times 1.00 \times 2400 = 360 \text{ Kg/m}$.
- d) Momento de diseño:

$$M_D = w l^2 / 8 = 360 (0.65)^2 / 8 = 19.0 \text{ Kg-m}.$$

$$M_L = Pl / 4E$$

$$E = 1.219 + 0.06 \times 0.65 = 1.258 \text{ m}.$$

$$M_L = 8000 \times 0.65 / (4 \times 1.258) = 1033.4 \text{ Kg-m}.$$

$$M_I = I \times M_L = 0.30 \times 1033.4 = 310 \text{ Kg-m}.$$

$$M_u = 1.3 [19 + 1.67 (1033.4 + 310)] = 2941.2 \text{ Kg-m}.$$

$$M_u' = 2941.2/\phi = 2941.2/0.90 = 326800$$
 Kg-cm.

$$M_{ur} = k b d^2 = 782640 \text{ Kg-cm}.$$

$$M_u' < M_{ur} \dots o_K!$$
 (losa simplemente armada)

e) Acero principal:

$$A_s = M_u' / [fy (d - a/2)]$$
; $a = As fs / (0.85 fc' b)$

Efectuando: $A_s = 6.96 \text{ cm}^2$

Acero mínimo: $A_{s min} = 0.0018 \text{ b d} = 2.16 \text{ cm}^2$

$$A_s > A_{s \text{ min}}$$
 \Rightarrow $A_s = 6.96 \text{ cm}^2$.

Con ϕ 1/2 " (1.27 cm²): el espaciamiento s = 100 × 1.27 / 6.96 = 18.2 cm.

Se colocará ϕ 1/2 " @ 20 cm.

f) Acero de reparto:

$$A_{s \text{ rep}} = 0.55/(0.65)^{1/2} A_{s} = 0.68 A_{s} > 0.5 A_{s}. \implies A_{s \text{ rep}} = 0.5 \times 6.96 = 3.48 \text{ cm}^{2}.$$

Con
$$\phi$$
 3/8" (0.71 cm²): s = 100 × 0.71 / 3.48 = 20.4 cm.

Se colocará ϕ 3/8" @ 20 cm.

Losa superior canal de drenaje:

Luz libre : l' = 0.60 m.'; f c' = 210 Kg/cm²; fy = 4200 Kg/cm².

Carga más pesada transmitida por las ruedas: 8 tn.

- a) Espesor de la losa: e = 60/12 = 5.0 cm, adoptamos e = 0.15 m.
- b) Luz de cálculo: Si el espesor de muro es 0.15 m, l = 0.60 + 0.15 = 0.75 m.

- c) Metrado de cargas: Peso propio = $0.15 \times 1.00 \times 1.00 \times 2400 = 360 \text{ Kg/m}$.
- d) Momento de diseño:

$$M_D = w l^2 / 8 = 360 (0.75)^2 / 8 = 25.3 \text{ Kg-m}.$$

$$M_L = Pl / 4E$$

$$E = 1.219 + 0.06 \times 0.75 = 1.264 \text{ m}.$$

$$M_L = 8000 \times 0.75 / (4 \times 1.264) = 1186.7 \text{ Kg-m}.$$

$$M_I = I \times M_L = 0.30 \times 1186.7 = 356 \text{ Kg-m}.$$

$$M_u = 1.3 [25.3 + 1.67 (1186.7 + 356)] = 3382 \text{ Kg-m}.$$

$$M_u' = 3382/\phi = 3382/0.90 = 375780$$
 Kg-cm.

$$M_{ur} = k b d^2 = 782640 \text{ Kg-cm}.$$

$$M_u$$
' $< M_{ur} \dots o.\kappa!$ (losa simplemente armada)

e) Acero principal:

$$A_s = M_u' / [fy (d - a/2)]$$
; $a = As fs / (0.85 fc' b)$

Efectuando: $A_s = 8.10 \text{ cm}^2$

Acero mínimo: $A_{s min} = 0.0018 \text{ b d} = 2.16 \text{ cm}^2$.

$$A_s > A_{s min}$$
 \Rightarrow $A_s = 8.10 cm^2$.

Con ϕ 1/2 " (1.27 cm²): el espaciamiento s = 100 × 1.27 / 8.10 = 15.7 cm.

Se colocará ϕ 1/2 " @ 15 cm.

f) Acero de reparto:

$$A_{s \text{ rep}} = 0.55/(0.75)^{1/2} A_{s} = 0.64 A_{s} > 0.5 A_{s} \implies A_{s \text{ rep}} = 0.5 \times 8.10 = 4.05 \text{ cm}^{2}$$
.

Con
$$\phi$$
 3/8" (0.71 cm²): s = 100 × 0.71 / 4.05 = 17.5 cm.

Se colocará ϕ 3/8" @ 17.5 cm.

Losa superior canal de drenaje:

Luz libre : l' = 0.70 m.; f c' = 210 Kg/cm²; fy = 4200 Kg/cm².

Carga más pesada transmitida por las ruedas: 8 tn.

- a) Espesor de la losa: e = 70/12 = 5.8 cm, adoptamos e = 0.15 m.
- b) Luz de cálculo: El espesor de muro es 0.15 m, l = 0.70 + 0.15 = 0.85 m.
- c) Metrado de cargas: Peso propio = $0.15 \times 1.00 \times 1.00 \times 2400 = 360 \text{ Kg/m}$.
- d) Momento de diseño:

$$M_D = w l^2 / 8 = 360 (0.85)^2 / 8 = 32.5 \text{ Kg-m}.$$

$$M_L = Pl / 4E$$

$$E = 1.219 + 0.06 \times 0.85 = 1.270 \text{ m}.$$

$$M_L = 8000 \times 0.85 / (4 \times 1.270) = 1338.6 \text{ Kg-m}.$$

$$M_I = I \times M_L = 0.30 \times 1338.6 = 401.6 \text{ Kg-m}.$$

$$M_u = 1.3 [32.5 + 1.67 (1338.6 + 401.6)] = 3820.2 \text{ Kg-m}.$$

$$M_u' = 3820.2/\phi = 3820.2/0.90 = 424470$$
 Kg-cm.

$$M_{ur} = k b d^2 = 782640 \text{ Kg-cm}.$$

$$M_u' < M_{ur} \dots o_K!$$
 (losa simplemente armada)

e) Acero principal:

$$A_s = M_u' / [fy (d - a/2)]$$
; $a = As fs / (0.85 fc', b)$

Efectuando:
$$A_s = 9.26 \text{ cm}^2$$

Acero mínimo: $A_{s min} = 0.0018 \text{ b d} = 2.16 \text{ cm}^2$.

$$A_s > A_{s \text{ min}}$$
 \Rightarrow $A_s = 9.26 \text{ cm}^2$.

Con ϕ 5/8" (1.98 cm²): el espaciamiento s = 100 × 1.98 / 9.26 = 21.4 cm.

Se colocará ϕ 5/8 " @ 20 cm.

f) Acero de reparto:

$$A_{s rep} = 0.55/(0.85)^{1/2} A_{s} = 0.60 A_{s} > 0.5 A_{s} \implies A_{s rep} = 0.5 \times 9.26 = 4.63 cm^{2}$$
.

Con
$$\phi$$
 1/2" (1.27 cm²): s = 100 × 1.27 / 4.63 = 27.4 cm.

Se colocará ϕ 1/2" @ 25 cm.

Losa superior canal de drenaje:

Luz libre :
$$l' = 0.80 \text{ m.}$$
; f c' = 210 Kg/cm²; fy = 4200 Kg/cm².

Carga más pesada transmitida por las ruedas: 8 tn.

- a) Espesor de la losa: e = 80/12 = 6.7 cm, adoptamos e = 0.15 m.
- b) Luz de cálculo: El espesor de muro es 0.15 m, l = 0.80 + 0.15 = 0.95 m.
- c) Metrado de cargas: Peso propio = $0.15 \times 1.00 \times 1.00 \times 2400 = 360$ Kg/m.
- d) Momento de diseño:

$$M_D = w l^2 / 8 = 360 (0.95)^2 / 8 = 40.6 \text{ Kg-m}.$$

$$M_L = Pl / 4E$$

$$E = 1.219 + 0.06 \times 0.95 = 1.276 \text{ m}.$$

$$M_L = 8000 \times 0.95 / (4 \times 1.276) = 1489 \text{ Kg-m}.$$

$$M_I = I \times M_L = 0.30 \times 1489 = 446.7$$
 Kg-m.

$$M_u = 1.3 [40.6 + 1.67 (1489 + 446.7)] = 4255.2 \text{ Kg-m}.$$

$$M_u$$
' = 4255.2/ ϕ = 4255.2/0.90 = 472800 Kg-cm.

$$M_{ur} = k b d^2 = 782640 \text{ Kg-cm}.$$

 $M_{u'} < M_{ur} \dots o_K!$ (losa simplemente armada)

e) Acero principal:

$$A_s = M_u' / [fy (d - a/2)]$$
; $a = As fs / (0.85 fc' b)$

Efectuando: $A_s = 10.45 \text{ cm}^2$

Acero mínimo: $A_{s min} = 0.0018 \text{ b d} = 2.16 \text{ cm}^2$.

$$A_s > A_{s \text{ min}}$$
 \Rightarrow $A_s = 10.45 \text{ cm}^2$.

Con ϕ 5/8" (1.98 cm²): el espaciamiento s = 100 × 1.98 / 10.45 = 18.9 cm.

Se colocará ϕ 5/8 " @ 20 cm.

f) Acero de reparto:

$$A_{s \text{ rep}} = 0.55/(0.95)^{1/2} A_{s} = 0.56 A_{s} > 0.5 A_{s} \implies A_{s \text{ rep}} = 0.5 \times 10.45 = 5.23 \text{ cm}^{2}$$
.

Con ϕ 1/2" (1.27 cm²): s = 100 × 1.27 / 5.23 = 24.3 cm.

Se colocará ϕ 1/2" @ 25 cm.

Losa superior canal de drenaje:

Luz libre : l' = 0.90 m.; f c' = 210 Kg/cm²; fy = 4200 Kg/cm².

Carga más pesada transmitida por las ruedas: 8 tn.

- a) Espesor de la losa: e = 90/12 = 7.5 cm, adoptamos e = 0.15 m.
- b) Luz de cálculo: El espesor de muro es 0.15 m, l = 0.90 + 0.15 = 1.05 m.
- c) Metrado de cargas: Peso propio = $0.15 \times 1.00 \times 1.00 \times 2400 = 360 \text{ Kg/m}$.
- d) Momento de diseño:

$$M_D = w l^2 / 8 = 360 (1.05)^2 / 8 = 49.6 \text{ Kg-m}.$$

$$M_L = Pl / 4E$$

$$E = 1.219 + 0.06 \times 1.05 = 1.282 \text{ m}.$$

$$M_L = 8000 \times 1.05 / (4 \times 1.282) = 1638 \text{ Kg-m}.$$

$$M_{I} = I \times M_{L} = 0.30 \times 1638 = 491.4 \ \text{Kg-m}.$$

$$M_u = 1.3 [49.6 + 1.67 (1638 + 491.4)] = 4687.4 \text{ Kg-m}.$$

$$M_{u}' = 4687.4/\phi = 4687.4/0.90 = 520820$$
 Kg-cm.

$$M_{ur} = k b d^2 = 782640 \text{ Kg-cm}.$$

$$M_u$$
' $< M_{ur} \dots o.\kappa!$ (losa simplemente armada)

e) Acero principal:

$$A_s = M_u' / [fy (d - a/2)]$$
; $a = As fs / (0.85 fc' b)$

Efectuando: $A_s = 11.67 \text{ cm}^2$

Acero mínimo: $A_{s min} = 0.0018 \text{ b d} = 2.16 \text{ cm}^2$.

$$A_s > A_{s \text{ min}} \implies A_s = 11.67 \text{ cm}^2$$
.

Con ϕ 5/8" (1.98 cm²): el espaciamiento s = 100 × 1.98 / 11.67 = 17 cm.

Se colocará φ 5/8 " @ 15 cm.

f) Acero de reparto:

$$A_{s \text{ rep}} = 0.55/(1.05)^{1/2} A_s = 0.54 A_s > 0.5 A_s \implies A_{s \text{ rep}} = 0.5 \times 11.67 = 5.84 \text{ cm}^2.$$

 $Con \ \phi \ 1/2" \ (1.27 \text{ cm}^2): \ s = 100 \times 1.27 / 5.84 = 21.8 \text{ cm}.$

Se colocará ϕ 1/2" @ 20 cm.

Losa superior canal de drenaje:

Luz libre : l' = 1.00 m.; f c' = 210 Kg/cm²; fy = 4200 Kg/cm².

Carga más pesada transmitida por las ruedas: 8 tn.

- a) Espesor de la losa: e = 100/12 = 8.3 cm, adoptamos e = 0.15 m.
- b) Luz de cálculo: El espesor de muro es 0.15 m, l = 1.00 + 0.15 = 1.15 m.
- c) Metrado de cargas: Peso propio = $0.15 \times 1.00 \times 1.00 \times 2400 = 360 \text{ Kg/m}$.
- d) Momento de diseño:

$$M_D = w l^2 / 8 = 360 (1.15)^2 / 8 = 59.5 \text{ Kg-m}.$$

$$M_L = Pl / 4E$$

$$E = 1.219 + 0.06 \times 1.15 = 1.288m$$
.

$$M_L = 8000 \times 1.15 / (4 \times 1.288) = 1785.7 \text{ Kg-m}.$$

$$M_I = I \times M_L = 0.30 \times 1785.7 = 535.7 \text{ Kg-m}.$$

$$M_u = 1.3 [59.5 + 1.67 (1785.7 + 535.7)] = 5117 \text{ Kg-m}.$$

$$M_u$$
' = 5117/ ϕ = 5117/0.90 = 568560 Kg-cm.

$$M_{ur} = k b d^2 = 782640 \text{ Kg-cm}.$$

$$M_u$$
' $< M_{ur} \dots o.\kappa!$ (losa simplemente armada)

e) Acero principal:

$$A_s = M_u' / [fy (d - a/2)]$$
; $a = As fs / (0.85 fc' b)$

Efectuando: $A_s = 12.92 \text{ cm}^2$

Acero mínimo: $A_{s min} = 0.0018 \text{ b d} = 2.16 \text{ cm}^2$.

$$A_s > A_{s \text{ min}}$$
 \Rightarrow $A_s = 12.92 \text{ cm}^2$.

Con ϕ 5/8" (1.98 cm²): el espaciamiento s = 100 × 1.98 / 12.92 = 15.3 cm.

Se colocará ϕ 5/8 " @ 15 cm.

f) Acero de reparto:

$$A_{s \text{ rep}} = 0.55/(1.15)^{1/2} A_{s} = 0.51 A_{s} > 0.5 A_{s} \implies A_{s \text{ rep}} = 0.5 \times 12.92 = 6.46 \text{ cm}^{2}.$$

$$Con \phi 1/2" (1.27 \text{ cm}^{2}): s = 100 \times 1.27 / 6.46 = 19.6 \text{ cm}.$$
Se colocará $\phi 1/2"$ @ 20 cm.

Losa superior canal de drenaje:

Luz libre : l' = 1.10 m.; f c' = 210 Kg/cm²; fy = 4200 Kg/cm².

Carga más pesada transmitida por las ruedas: 8 tn.

- a) Espesor de la losa: e = 110/12 = 9.2 cm, adoptamos e = 0.15 m.
- b) Luz de cálculo: El espesor de muro es 0.15 m, l = 1.10 + 0.15 = 1.25 m.
- c) Metrado de cargas: Peso propio = $0.15 \times 1.00 \times 1.00 \times 2400 = 360 \text{ Kg/m}$.
- d) Momento de diseño:

$$M_D = w l^2 / 8 = 360 (1.25)^2 / 8 = 70.3 \text{ Kg-m}.$$

$$M_L = Pl / 4E$$

$$E = 1.219 + 0.06 \times 1.25 = 1.294 \text{ m}$$

$$M_L = 8000 \times 1.25 / (4 \times 1.294) = 1932$$
 Kg-m.

$$M_I = I \times M_L = 0.30 \times 1932 = 579.6$$
 Kg-m.

$$M_u = 1.3 [70.3 + 1.67 (1932 + 579.6)] = 5544 \text{ Kg-m}.$$

$$M_u' = 5544/\phi = 5544/0.90 = 616000$$
 Kg-cm.

$$M_{ur} = k b d^2 = 782640 \text{ Kg-cm}.$$

$$M_u$$
' $< M_{ur} \dots o_K!$ (losa simplemente armada)

e) Acero principal:

$$A_s = M_u' / [fy (d - a/2)]$$
; $a = As fs / (0.85 fc'b)$

Efectuando:
$$A_s = 14.20 \text{ cm}^2$$

Acero mínimo: $A_{s min} = 0.0018 \text{ b d} = 2.16 \text{ cm}^2$.

$$A_s > A_{s \text{ min}}$$
 \Rightarrow $A_s = 14.20 \text{ cm}^2$.

Con ϕ 3/4 " (2.85 cm²): el espaciamiento s = 100 × 2.85 /14.20 = 20.1 cm.

Se colocará ϕ 3/4" @ 20 cm.

f) Acero de reparto:

$$A_{s \text{ rep}} = 0.55/(1.25)^{1/2} A_{s} = 0.49 A_{s} < 0.5 A_{s} \implies A_{s \text{ rep}} = 0.49 \times 14.20 = 6.96 \text{ cm}^{2}.$$

Con
$$\phi$$
 1/2" (1.27 cm²): s = 100 × 1.27 / 6.96 = 18.2 cm.

Se colocará ϕ 1/2" @ 20 cm.

Losa superior canal de drenaje:

Luz libre: l = 1.30 m; fc'= 210 Kg/cm²; fy = 4200 Kg/cm²

Carga más pesada transmitida por las ruedas: 8 tn.

- g) Espesor de la losa: e = 130/12 = 10.8 cm, adoptamos e = 0.15 m.
- h) Luz de cálculo: El espesor de muro es 0.15 m, l = 1.30 + 0.15 = 1.45 m.
- i) Metrado de cargas: Peso propio = $0.15 \times 1.00 \times 1.00 \times 2400 = 360 \text{ Kg/m}$.
- j) Momento de diseño:

$$M_D = w l^2 / 8 = 360 (1.45)^2 / 8 = 94.6 \text{ Kg-m}.$$

$$M_L = Pl/4E$$

$$E = 1.219 + 0.06 \times 1.45 = 1.306 \text{ m}.$$

$$M_L = 8000 \times 1.45 / (4 \times 1.306) = 2220 \text{ Kg-m}.$$

$$M_I = I \times M_L = 0.30 \times 2221 = 666 \text{ Kg-m}.$$

$$M_u = 1.3 [94.6 + 1.67 (2220 + 666)] = 6388 \text{ Kg-m}.$$

$$M_u' = 6388/\phi = 6388/0.90 = 709800$$
 Kg-cm.

$$M_{ur} = k b d^2 = 782640 \text{ Kg-cm}.$$

$$M_{u'} < M_{ur...o.K}!$$
 (Losa simplemente armada)

k) Acero principal:

$$A_s = M_{u'} / [fy (d - a/2)]$$
; $a = As fs / (0.85 fc'b)$

Efectuando:
$$A_s = 16.88 \text{ cm}^2$$

Acero mínimo: $A_{s min} = 0.0018 \text{ b d} = 2.16 \text{ cm}^2$.

$$A_s > A_{s \text{ min}}$$
 \Rightarrow $A_s = 16.87 \text{ cm}^2$.

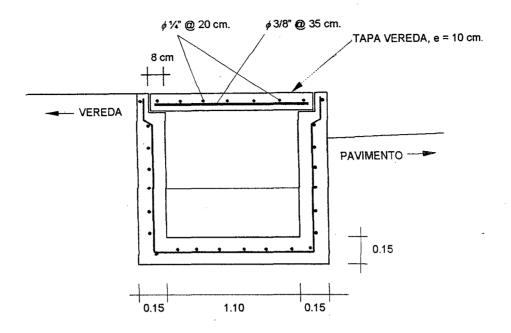
Con ϕ 3/4" (2.85 cm²): el espaciamiento s = 100 × 2.85 /16.87 = 16.89 cm.

Se colocará ϕ 3/4" @ 17 cm.

l) Acero de reparto:

$$A_{s rep} = 0.55(1.45)^{1/2} A_s = 0.46 A_s < 0.5 A_s \implies A_{s rep} = 0.46 \times 16.87 = 7.76 \text{ cm}^2$$

Con
$$\phi$$
 5/8" (1.98 cm²): s = 100 × 1.98 / 7.76 = 25.5 cm.


Se colocará φ 5/8" @ 25 cm.

Diseño estructural de tapa vereda:

Luz libre: l' = 1.10 m.; f'c = 210 Kg/cm²; fy = 4200 Kg/cm².

- a) Espesor de la losa: e = 110/12 = 9.2 cm, adoptamos e = 0.10 m.
- b) Luz de cálculo: l = 1.10 + 0.08 = 1.18 m ó l = 1.10 + 0.10 = 1.20 m.

Se toma la menor: l = 1.18 m.

c) Metrado de cargas:

Carga muerta:

Peso propio :
$$0.10 \times 1.00 \times 1.00 \times 2,400 = 240$$
 Kg/m.

= 100 Kg/m.

$$w_D = 340$$
 Kg/m.

$$w_1 = 400 \text{ Kg/m}$$

$$U = 1.5 w_D + 1.8 w_L = 1.5 \times 340 + 1.8 \times 400 = 1,230 \text{ Kg/m}.$$

d) Momento de diseño:

$$M_u = U l^2 / 8 = 1230 (1.18)^2 / 8 = 214.1 \text{ Kg-m}.$$

$$M_u$$
' = 214.1 / ϕ = 214.1 / 0.90 = 23790 Kg-cm.

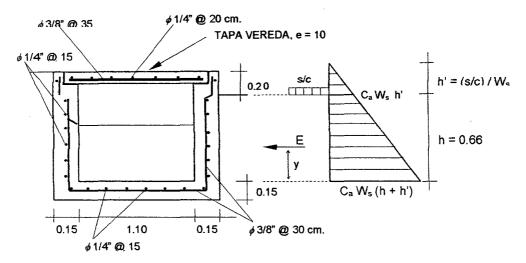
$$M_{ur} = k b d^2 = 54.35 \times 100 \times (7)^2 = 266315 \text{ Kg-cm}.$$

$$M_u' < M_{ur} \dots o.\kappa!$$
 (Losa simplemente armada)

e) Acero principal:

$$A_s = M_u' / [fy (d - a/2)]$$
; $a = As fs / (0.85 fc'b)$

Efectuando: $A_s = 0.82 \text{ cm}^2$


Acero mínimo: $A_{s min} = 0.0018 \times 100 \times 10 = 1.8 \text{ cm}^2$.

$$A_s < A_{s \text{ min}} \implies A_s = A_{s \text{ min}} = 1.8 \text{ cm}^2$$
.

Se colocará ϕ 3/8" @ 35 cm.

f) Acero por contracción y temperatura: $A_{s ct} = 1.8 \text{ cm}^2 <> \phi 1/4"$ @ 20 cm. Se considerará la misma proporción de acero para los casos en que l' < 1.10 m, puesto que en ellos, como es lógico, A_s también será menor a $A_{s min}$.

Diseño estructural de muro de canal. f c' = 175 Kg/cm²

a) Cálculo del empuje activo: Ea

Sobrecarga:
$$s/c = 1,000 \text{ Kg/m}^2$$

$$E_a = [C_a W_s h (h + 2 h')] / 2$$

$$h' = 1,000 \text{ Kg/m}^2 / 2,000 \text{ Kg/m}^3 = 0.50 \text{ m}.$$

$$C_a = (1 - \text{sen}\phi) / (1 + \text{sen}\phi) = 0.271$$

Ángulo de fricción: $\phi = 35^{\circ}$ (material gravoso)

$$\Rightarrow$$
 E_a = [0.271 × 2,000 × 0.66 (0.66 + 2 × 0.50)] / 2 = 296.9 Kg.

$$y = h (h + 3 h') / 3 (h + 2h') = 66 (66 + 3 \times 50) / 3 (66 + 2 \times 50) = 28.6 cm.$$

b) Momento actuante:

$$M = 296.9 \times 28.6 = 8491.3$$
 Kg-cm.

Factor de carga = 2

$$M_u = 8,491.3 \times 2 = 16,982.6$$
 Kg-cm.

$$M_u' = 16,982.6/0.90 = 18,869.6$$
 Kg-cm.

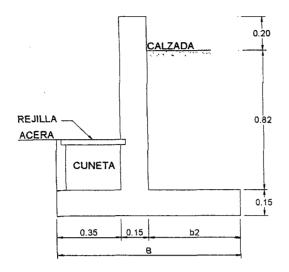
$$M_{ur} = k b d^2 = 45.29 \times 100 (7.5)^2 = 254,756 \text{ Kg-cm}.$$

$$M_u' \le M_{ur...o.K!}$$
 (Simplemente armado)

c) Acero principal:

$$A_s = M_u' / [fy (d - a/2)]$$
; $a = As fs / (0.85 f'c b)$

Efectuando: $A_s = 0.38 \text{ cm}^2$


Acero mínimo: $A_{s min} = 0.0018 \times 100 \times 12 = 2.16 \text{ cm}^2$.

$$A_s < A_{s min} \implies A_s = A_{s min} = 2.16 cm^2$$
.

Se colocará ϕ 3/8" @ 30 cm.

d) Acero por contracción y temperatura: $A_{s ct} = 2.16 \text{ cm}^2 <> \phi 1/4$ " @ 15 cm.

Diseño estructural de sardinel (Jr. Miguel Iglesias)

Datos:

 $f'c = 210 \text{ Kg/cm}^2$

 $f_y = 4,200 \text{ Kg/cm}^2$

Coeficiente de Fricción: Concreto - Terreno $(\mu = 0.55)^1$

Material Gravoso: 2,000 Kg/m³; $\Phi = 35^{\circ}$

Concreto: 2,400 Kg/m³

 $S/C = 1,000 \text{ Kg/m}^2$

a) Predimensionamiento del muro:

Coeficiente de Empuje Activo del Suelo:

 $Ca = (1-sen\Phi)/(1+sen\Phi)$

 $Ca = (1-sen35^{\circ})/(1+sen35^{\circ}) = 0.27$

 $Ca \times W_s = 0.27 \times 2,000 = 540 \text{ kg/m}^3$

De la siguiente tabla², se obtiene:

Relación b/ (H + h') para diferentes tipos de relleno.

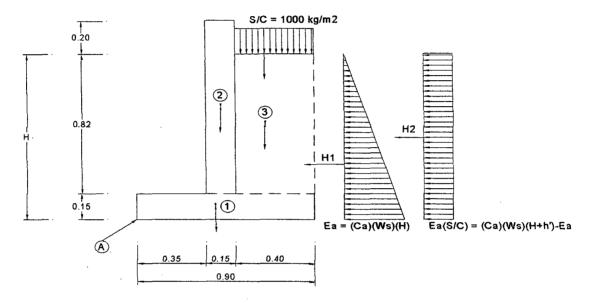
B/ (H + h')	Ca x W _s (Kg/m ³)
0.30	204
0.35	269
0.40	343
0.45	423
0.50	512
0.55	605
0.60	715
0.65	830

¹ Teodoro Hamsen. Diseño de estructuras de concreto armado. Pontificia Universidad Católica del Perú, Fondo Editorial, septiembre, 2005..

² Teodoro Hamsen. Diseño de estructuras de concreto armado. Pontificia Universidad Católica del Perú, Fondo Editorial, septiembre, 2005.

Interpolando:

$$B/(H + h') = 0.52$$


$$h' = (S/C)/W_s = 1,000/2,000 = 0.50 \text{ m}.$$

$$H + h' = 0.15 + 0.82 + 0.50 = 1.47 \text{ m}.$$

$$B = 0.52 \times 1.47 = 0.76 \text{ m} \approx 0.90 \text{ m}$$

Entonces, b2 = 0.40 m.

Geometría de cargas en la estructura.

b) Verificación de estabilidad del muro:

Analizamos desde el Punto A:

Acciones horizontales:

ÉFECTO	FUERZA (Kg.)	BRAZO DE PALANCA	MOMENTO (Kg-m)
Empuje Activo	H1=(540 x 0.97) x 0.5 H1=261.9	0.97/3 = 0.323	84.59
Sobrecarga	H2 = ((540 x 1.47) - (540 x 0.97)) x 0.97 H2 = 261.9	0.97/2 = 0.485	127.02
ΣF _H	523.8	∑M _A	211.61

Acciones verticales:

ELEMENTO	FUERZA (Kg.)	BRAZO DE PALANCA	MOMENTO (Kg-m)
1	2,400 x 0.90 x 0.15 = 324	0.90/2 = 0.45	145.8
2	2,400 x 0.15 x 1.02 = 367.2	0.35 + 0.15/2 = 0.425	156.06
3	2,000 x 0.40 x 0.82 = 656	0.50 + 0.40/2 = 0.70	459.2
S/C	1,000 x 0.40 x 0.50 = 200	0.50 + 0.40/2 = 0.70	140
ΣFv	= 1,547.2	∑M _R	901.06

b.1) Estabilidad al Volteo:

Factor de Seguridad al Volteo:

F.S. = $\sum M_R / \sum M_A = 901.06/211.61 = 4.26 > 2$ (Cumple, el muro es estable para el Volteo).

b.2) Estabilidad al Deslizamiento:

Factor de Seguridad al Deslizamiento:

F.S. = $(\mu \sum F_V) / \sum F_H = (0.55 \times 1547.2) / 523.8 = 1.62 > 1.5$ (Cumple, el muro no se desliza).

b.3) Presión en el Suelo:

Punto de paso de la resultante:

$$e = 0.90/2 - 0.446 = 0.004 < B/6 = 0.90/6 = 0.15 m$$

$$q = 1,547.2/100/90 \pm 1,547.2 \times 0.4 \times 45/(1/12 \times 100 \times 90^3) = 0.18 < 2 \land 0.17 < 2$$

* Verificamos el muro, sin considerar el efecto favorable de la sobrecarga.

En este caso:

$$\sum F_V = 1,547.2 - 200 = 147.2 \text{ kg}.$$

$$\sum M_R = 901.06 - 140 = 761.06 \text{ kg-m}$$

Factor de Seguridad al Volteo:

F.S. = $\sum M_R / \sum M_A = 761.06 / 211.61 = 3.6 > 2$ (Cumple, el muro es estable para el volteo).

Factor de Seguridad al Deslizamiento:

F.S. =
$$(\mu \sum F_V) / \sum F_H = (0.55 \times 1347.2) / 523.8 = 1.41$$

El factor de seguridad al deslizamiento es algo menor que 1.5. Sin embargo, dada la condición de carga considerada y el hecho que la deficiencia del factor de seguridad no es excesiva, se considerará que el dimensionamiento es conveniente.

c) Diseño de la armadura:

Altura de la pantalla: 0.82 m.

Carga debida al Empuje Activo del Suelo:

$$0.50 \times (2,000 \times 0.27 \times 0.82) \times 0.82 = 181.55$$
 kg.

Carga debido a la S/C del terreno:

$$((540 \times 1.47) - (540 \times 0.97)) \times 0.82 = 221.4 \text{ kg}.$$

El momento actuante será:

$$M_u = 1.7 (181.55 \times 0.82/3 + 221.4 \times 0.82/2) = 238.68 \text{ Kg-m} = 23,868 \text{ Kg-cm}.$$

El Recubrimiento del refuerzo es: 5 cm.

El Peralte Efectivo será: 15 - 5 = 10 cm.

Procedimiento: 3

$$R_u = M_u / (b \times d^2) = 15.91$$

$$R_u = 23,868 / (15 \times 10^2) = 15.91$$

$$\rho = 44 \%$$

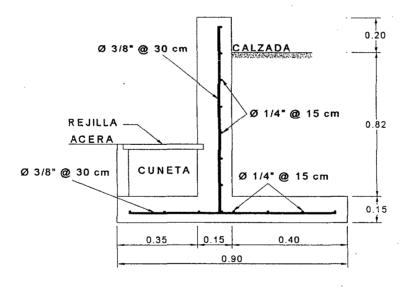
$$a/d = 0.105$$

$$a = 0.105 \times 10 = 1.05$$
 cm.

$$As = Mu/(\Phi \times fy \times (d - a/2)) = 23868 / (0.90 \times 4200 \times (10 - 1.05/2))$$

$$As = 0.67 \text{ cm}^2$$

Acero Mínimo:


$$A_{smin} = 0.0018 \times 100 \times 12 = 2.16 \text{ cm}^2$$

$$As \le A_{smin}$$

Se colocará Ø 3/8" @ 30 cm.

Acero por contracción o temperatura:

$$A_{sct} = 2.16 \text{ cm}^2 \Leftrightarrow \emptyset \text{ 1/4"} @ 15 \text{ cm}.$$

³ Teodoro Harmsen. Diseño de Estructuras de Concreto armado. Pontificia Universidad Católica del Perú, Fondo Editorial, marzo, 1997. Pág. 81.

4.7 SEÑALIZACIÓN.

Las señales y marcas que se utilizarán, serán:

a) <u>Señales Reguladoras</u>

Se colocarán señales reguladoras de velocidad en las calles Angamos, Chanchamayo y Miguel Iglesias en los ingresos a la zona comprendida en el presente estudio.

La señal "PARE" será colocada al lado derecho de las vías, antes de los cruceros peatonales.

La señal "PROHIBIDO ESTACIONARSE" se colocará en vías de doble sentido.

La señal "FIN DE DOBLE VIA" se colocará en el cruce de los jirones Huancavelica, Sara Mc Dougall y Chepén con el Jr. Chanchamayo.

Las señales de sentido de circulación irán en los cruces de calles y serán colocadas en las paredes de las viviendas.

b) Señales Preventivas

Se utilizará la señal "CRUCE DE PEATONES" en las calles Angamos, Chanchamayo y Miguel Iglesias y la señal "NIÑOS" en la calle Huancavelica, en el ingreso a la plazuela Carlos Malpica.

c) Marcas en la calzada.

Líneas longitudinales discontinuas. Se colocarán en vías de dos carriles, en las de un solo sentido de color blanco y en las de doble sentido, de color amarillo.

<u>Líneas de "PARE"</u>. Se colocarán antes de los cruceros peatonales. La distancia entre ésta y el borde más cercano del crucero peatonal será mínimo de 1 m.

<u>Señal "PARE"</u>. Se colocarán en los cruces de calles secundarias con calles principales y deberá coincidir con las líneas de "PARE" en cuanto a ubicación.

<u>Cruceros peatonales</u>. Se colocarán en las esquinas, para facilitar el tránsito peatonal

Las señales y marcas que se usarán estarán de acuerdo a las especificaciones descritas en la sección 2.6, cap. II.

CAPÍTILO V: PRESENTACIÓN DE RESULTADOS

5.1 ESTUDIO TOPOGRÁFICO.

ÁREA LEVANTADA (APROX.)	20.00 Ha.
LONGITUD DEL EJE	4,098.50 m.
TIPO DE TOPOGRAFÍA	Llana
EQUIDISTANCIA ENTRE CURVAS DE NIVEL	0.25 m.
COTA MÁXIMA	2,742.00 m.s.n.m.
COTA MÍNIMA	2,724.00 m.s.n.m.

5.2 GEOMETRÍA VIAL.

	ANCHO	ANCHO			ANCHO	ANCHO	ANCHO	
CALLE	VÍA	CALZADA	Nº	вомвео	VEREDA	BERMA	SEP. CENTRAL	N°
	(mts.)	(mts.)	CARRILES	%	(mts.)	(mts.)	(mts.)	CUNETAS
Jr. Las Cucardas	10.00	6.00	2	2	1.20	0.30	_	2
Psje. Los Pensamientos	10.00	6.00	2	2	1.20	0.30	-	1
Jr. Arróspide de Loyola	VAR	7.20	2	2	1.20	VAR	_	2
Jr. Marañón	VAR	7.20	2	2	1.80	VAR	_	1
Jr. Francia	11.10	6.00	2	2	1.80	0.76	_	_
Jr. Huancavelica	10.50	- 6.00	2	2	1.20	VAR	_	2
Jr. Sara Mc Dougall	VAR	7.20	2	2	1.20	VAR	-	2
Jr. Chepén	VAR	7.20	2	2	1.20	VAR	_	2
Jr. Chanchamayo	VAR	6.00	4	2	VAR	VAR	1.20	-
Jr. Sta Victoria	8.00	4.80	2	2	1.20	-	· –	2
Jr. Huaraz	8.90	. 5.40	2	2	1.20	0.55	_	<u>-</u>
Jr. Mariano Melgar	VAR	5.40	2	2	1.20	VAR	_	-
Jr. San Jorge	VAR	7.20	2	2	1.20	VAR	_	1
Psje. César Vallejo	6.00	3.60	1	2	1,20	-	_	-
Psje. Cusco	6.00	3.60	1	2	1.20	-	_	-
Jr. Miguel Iglesias	VAR	6.20	2	2	1.80	VAR	_	
Psje. Huancavelica	7.48	5.08	2	2	1.20	1.20	_	
Psje. Libertad	6.00	3.60	. 1	2	1.20	_	_	-
Jr. Los Tres Reyes	9.58	6.00	2	2	1.20	-	_	2
Jr. Niño Jesús	10.27	6.00	2	2	1.20	0.94	_	-
Jr. Virgen María	10.40	6.00	2	2	1.20	1.00	_	_
Jr. San José	9.75	6.00	2	2	1.20	0.68		

En el Jr. Chanchamayo, el ancho de la vereda es variable debido a que el canal de drenaje Nº 2, que forma parte de ella, va incrementando la dimensión de su base conforme avanza en su recorrido. Ver plano DS-03.

Se han considerado cunetas, solo en tramos donde se hace necesario disminuir el ancho superficial de inundación. Ver planos G-01 y G-02.

5.3 ESTUDIO DE SUELOS Y MATERIALES PARA LA PAVIMENTACIÓN.

El cuadro que va a continuación contiene los resultados del Análisis de suelos.

Resumen de Parámetros Físicos y Mecánicos obtenidos del Análisis de Suelos.

				GRANUL	OMETRÍA			PROPIEI	DADES FÍSI	ÇAS		CLAS	SIFICACIÓN	COMP	ACTACIÓN	
CALICATA	ESTRATO	Profundidad		% QUI	PASA		LÍMITE	S DE CONSIS	TENCIA							CBR
		(mts.)	Nº 4	Nº 10	Nº 40	Nº 200	L.L. %	L.P. %	I.P. %	w %	G	SUCS	AASHTO	Ds.	w Opt. (%)	%
	E -1	0.00 a 0.45	RELLENO													
C-1 .	E -2	0.45 a 0.95	52.48	51.74	50.36	40.47	43.35	21.19	22.16	14.48	2.52	CL	A - 7 - 6 (4)			
	E -3	0.95 a 1.50	87.43	85.24	80.35	68.00	41.80	20.35	21.45	14.03	2.47	CL	A - 7 - 8 (13)			
	E- 1	0.00 a 0.30	RELLENO				~									
C- 2	E- 2	0.30 a 0.80	82.34	80.62	77.78	69.50	51.55	24.75	26.80	10.07	2.42	СН	A - 7 - 8 (18)			
	E -3	0.80 a 1.50	97.64	95.34	91.80	76.52	57.80	28.42	29.38	16.39	2.76	СН	A-7-8 (24)			
C-3	E-1	0.00 a 0.40	RELLENO													
0.3	E- 2	0.40 a 1.50	95.78	95.08	92.22	79.94	41.35	20.21	21.14	15.07	2.53	CL	A-7-8 (17)			
C-4	E -1	0.00 a 0.50	RELLENO											7.		
0.7	E -2	0.50 a 1.50	80.52	77.91	71.50	61.85	45.80	21.98	23.82	13.46	2.52	CL	A - 7 - 8 (13)			
C -5	E-1	0.00 a 0.45	RELLENO													
G -5	E -2	0.45 a 1.50	95.24	94.38	92.12	83.34	50.50	29.24	21.26	15.81	2.50	ОН	A-7-8 (25)			
	E-1	0.00 a 0.30	RELLENO													
C- 6	E -2	0.30 a 0.80	100.00	99.56	97.84	88.22	48.00	24.18	23.82	17.23	2.49	СН	A - 7 - 6 (23)			
	E- 3	0.80 a 1.50	39.31	38.46	37.26	34.30	55.65	25.85	29.80	13.06	2.45	GC	A-2-7(4)			
	E- 1	0.00 a 0.40	RELLENO													
C-7	E- 2	0.40 a 0.85	92.06	91.86	89.70	83.50	49.50	26.55	22.95	13.54	2.49	СН	A-7-8 (24)			
0-7	E -3	0.85 a 1.30	91.90	90.48	87.32	78.74	54.00	29.74	24.26	9.51	2.41	ОН	A-7-6 (29)			
	E-4	1.30 a 1.65	100.00	100.00	98.20	85.08	53.55	30.42	23.13	15.14	2.51	СН	A - 7 - 5 (23)			
	E- 1	0.00 a 0.30	RELLENO													
C -8	E- 2	0.30 a 0.65	92.80	91.60	89.70	85.22	60.65	31.08	29.57	21.37	2.40	ОН	A - 7 - 5 (29)			
C -0	E-3	0.65 a 1.20	39.71	39.29	38.17	33.25	49.70	23.74	25.96	18.42	2.51	GC	A - 2 - 7 (2)			
	E- 4	1.20 a 1.50	39.87	36.69	33.44	26.31	41.05	20.23	20.82	13.87	2.54	GC	A - 2 - 7 (5)			
	E-1	0.00 a 0.25	RELLENO													
C- 9	E -2	0.25 a 0.85	99.62	98.84	95.80	89.02	55.25	25.70	29.55	24.30	2.47	CH	A - 7 - 6 (29)			
0. 8	E -3	0.85 a 1.25	99.54	98.70	95.64	89.34	63.15	32.32	30.83	19.60	2.41	MH	A - 7 - 5 (33)			
	E-4	1.25 a 1.80	50.42	47.97	44.05	39.05	45.80	22.00	23.80	13.57	2.62	CL	A-7-8(4)			
	E- 1	0.00 a 0.30	RELLENO													
C -10	E-2	0.30 a 0.80	98.84	97.18	89.78	73.02	38.50	19.23	19.27	12.09	2.52	CL	A - 6 (13)			
C-10	E-3	0.80 a 1.20	26.55	25.27	23.59	18.81	41.65	20.41	21.24	14.43	2.58	GC	A - 2 - 7 (0)			
	E-4	1.20 a 1.50	98.84	98.06	96.26	86.38	40.65	19.59	21.06	17.73	2.57	CL	A - 7 - 6 (12)			
	E- 1	0.00 a 0.30	RELLENO													
C -11	E2	0.30 a 0.85	99.38	99.04	97.42	88.32	58.10	28.37	29.73	18.54	2.44	ОН	A-7-6(30)	1.80	17.80	4.25
6-11	E- 3	0.85 a 1.25	99.06	98.88	95.84	77.30	41.80	20.42	21.38	14.51	2.53	CL	A - 7 - 8 (16)			
	E-4	1.25 a 1.60	76.42	75.40	71.86	58.34	45.00	21.66	23.34	18.95	2.50	CL	A - 7 - 6 (11)			

L.L. = Limite líquido

ASTM (Sociedad Americana para el Ensayo de Materiales)

L.P. = Limite Plástico

I.P. = Indice de Plasticidad

w = Contenido de Humedad

G = Peso Específico (gr/cm3)

Ds = Densidad Seca máx. (gr/cm3) (Ensayo de Compactación)

w Opt. = Contenido de humedad óptimo

SUCS (Sistema de Clasificación Unificada de Suelos)

AASHTO (Asociación Americana de Agencias Oficiales de carretera y Transporte)

5.4 OBRAS DE CONCRETO.

CALZADA Y BERMAS.

Area pavimentada = 31,825.72 m2

 $= 31.825.72 \text{ m}^2$

Losa de concreto:

Calles Chanchamayo y Miguel Iglesias: 20 cm. de espesor

Calles restantes: 17.5 cm. de espesor.

Concreto (210 kg/cm²)

 $5,760.87 \text{ m}^3$

Sub base granular y capa anticontaminante de 15 y 10 centímetros de espesor, respectivamente.

VEREDAS.

Losa de 10 cm. de espesor.

Sub base granular de 10 cm. de espesor

Concreto (fc' = 140 kg/cm^2)

 $= 1.424.06 \text{ m}^3$

OBRAS DE ARTE.

Canal de drenaje.

Concreto muros y losa de fondo (fc' = 175 kg/cm²)

566.69 m³

Concreto losa superior (210 kg/cm²)

 $\sim 215.73 \text{ m}^3$

Canal sumidero.

Concreto muros y losa de fondo (fc' = 175 kg/cm²)

3.97 m³

Cuneta sección triangular.

Losa de Concreto (fc' = 140 kg/cm²); 10 cm. de espesor.

= 134.23 m³

Ancho de cuneta:

Jr. Sta Victoria

= 40 cm.

Jr. Sara Mc Dougal

= 45 cm.

Calles restantes que llevan cuneta

50 cm.

Cuneta sección rectangular s/diseño (Jr. M. Iglesias).

Concreto muros y losa de fondo (fc' = 175 kg/cm²)

 14.65 m^3

Sardinel (Jr. M. Iglesias).

Concreto (fc' = 175 kg/cm^2)

 22.04 m^3

Separador central (Jr. Chanchamavo).

Concreto (fc' = 175 kg/cm^2)

= 152.94 m³

SEÑALIZACIÓN.

Concreto para anclajes y/o dados (fc' = 175 kg/cm²)

 1.84 m^3

CAPÍTULO VI: CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES.

- La zona en estudio presenta una topografía llana. Los suelos en su mayoría son arcillosos del tipo A-7-6, siendo más desfavorable el suelo cuya clasificación (AASHTO) resultó ser A-7-6 (30), con CBR de diseño = 4.25 %.
- El tipo de pavimento elegido ha sido el de concreto, por ser de mayor duración y menor costo de mantenimiento y por adecuarse mejor al tipo de clima y suelo de la zona. Para las calles Chanchamayo y Miguel Iglesias, por donde circulan vehículos con considerable carga, como se pudo apreciar durante el control de volumen y tipo de tráfico, efectuado al inicio del estudio, se consideró un espesor de losa de 20 cm. (fc' = 210 Kg/cm²), una base granular de 15 cm. y una capa anticontaminante de 10 cm. Para el resto de calles, una losa de concreto de 17.5 cm., base granular de 15 cm y capa anticontaminante de 10 cm. de espesor.
- Durante el estudio del drenaje se comprobó que la capacidad hidráulica de las calles es suficiente para soportar el caudal producto de las intensidades determinadas para los periodos de retorno seleccionados. Sin embargo, se consideró el diseño de canales de drenaje a lo largo de las calles Francia, Chanchamayo y Miguel Iglesias, los mismos que recolectarán las aguas que ingresen por sumideros ubicados en las intersecciones de calles, como se puede apreciar en los planos respectivos. También se consideró en el diseño, un canal colector a lo largo de la Av. Vía de Evitamiento, el cual recepcionará el caudal de los canales ya mencionados y los evacuará al río Mashcón, pudiendo variar éste en sus dimensiones, según su recorrido y acopio de caudales, posterior a la zona en estudio.
- Se ha considerado el uso de cunetas en tramos donde sea necesario disminuir el ancho de inundación y así garantizar aún más el cumplimiento de la función complementaria del sistema de drenaje.
- Para la construcción de las losas, la proporción en volumen de la mezcla será:
 - 1: 1.70: 2.80/25.00 lt/bolsa ($f^2c = 210 \text{ Kg/cm}^2$) para la calzada.
 - 1:1.90:3.00/26.00 lt/bolsa. (f'c = 140 Kg/cm²) para las veredas.
- La señalización se realizará de acuerdo a lo dispuesto en el "Manual de Dispositivos de Control del Tránsito Automotor para Calles y Carreteras", publicado en el Diario Oficial El Peruano, documento técnico oficial que establece las normas para el diseño y utilización de los dispositivos de control del tránsito.

6.2. RECOMENDACIONES.

- Se deberá tener un estricto control de calidad en el proceso constructivo del pavimento para garantizar su funcionalidad y duración.
- La Municipalidad Provincial será la encargada del mantenimiento del pavimento, una vez construido y de efectuar campañas de concientización dirigidas a la comunidad en general, para evitar el arrojo de basura en la vía pública, ya que con esto, además de afectar la salud pública, se estaría obstruyendo los sumideros proyectados, dificultando el normal funcionamiento del sistema de drenaje.
- Una vez construido el pavimento se debe efectuar la correspondiente señalización.
- El proyecto tendrá sus objetivos cumplidos siempre que en su ejecución se respete los diseños y especificaciones indicados en el presente estudio.
 - Recomendaciones para un correcto diseño de juntas:
- Evitar losas de forma irregular.
- La separación máxima entre juntas transversales deberá ser de 24 veces el espesor ó 5.0 metros la que sea menor.
- Mantener losas tan cuadradas como sea posible, ya que losas angostas y largas tienden a agrietarse con mayor facilidad.
- Todas las juntas de contracción transversales deberán ser continuas a través de la guarnición y tener una profundidad igual a 1/3 del espesor del pavimento.
- Ajustes menores en la ubicación de las juntas, desplazando o inclinando algunas juntas para que coincidan con los buzones o alcantarillas, mejoran el comportamiento del pavimento.
- Cuando el área pavimentada cuenta con estructuras de drenaje, colocar si es posible, las juntas de manera que coincidan con las estructuras.
- Debe proyectarse una junta de aislamiento en los contactos con muros u otras estructuras.
- Las calzadas que se interceptan asimétricamente deben ser aisladas con juntas de aislamiento.
- En los cruces de calles, siguiendo el alineamiento de los bordes, se proyectarán dos pares de juntas que, en principio, en una dirección serán transversales y en la otra, longitudinales. Seleccionar uno de los pares para funcionar como juntas transversales, las mismas que llevarán pasadores. El par restante formará juntas longitudinales que no llevarán barras de amarre para no trabar el movimiento de las losas. Dentro de la faja delimitada por las juntas longitudinales así formadas, se distribuyen juntas

transversales de contracción respetando la distancia máxima de separación entre éstas. En el caso de la figura 6.2, se ha acortado la distancia entre juntas transversales para que coincidan con la junta longitudinal del eje de la calle transversal; esto no es en absoluto imprescindible y sólo ofrece mejor estética.

- Al trazar las juntas debe evitarse las placas de dimensiones pequeñas con ángulos agudos, porque así se forman secciones con momento de inercia disminuido. En la figura 6.2 se ha quebrado los extremos de las juntas longitudinales para evitar los ángulos agudos. La longitud mínima del segmento quebrado es 0.30 metros. En todos los casos el segmento quebrado no lleva pasadores.
- Evitar que una junta termine en la intersección con otra para evitar la aparición de grietas reflejas.
- En la figura 6.2, las juntas tipo (1) trabajan distinto a las del tipo (2) y no cumplirían su función si no se hubiese dispuesto la junta de bordes libres (3).
- Las juntas deben prolongarse para incluir a los sardineles; de no ser así aparecerán grietas en éstos, al tener restringido su desplazamiento longitudinal.
- Las juntas de construcción se deben programar haciéndolas coincidir con las de proyecto. En caso de juntas accidentales, se debe colocar en ellas barras de unión calculadas en forma similar.

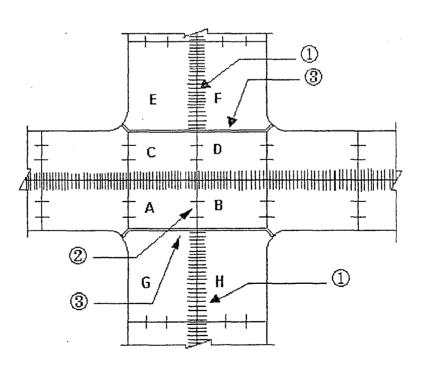


Figura 6.2

BIBLIOGRAFÍA:

- García Gálvez, Félix Ernesto, 1980, Técnicas de Levantamiento Topográfico, Cajamarca, Perú.
- 2. Davis, Raymond E., Foote, Francis, S. y Kelly, Joe W., *Tratado de Topografía*, versión española de José María Mantero, 3ª Edición, 1971.
- 3. Narváez D., E. y Llontop B., L., 1983, Manual de Topografía General, Lima, Perú.
- Valle Rodas, Raúl, 1976, Carreteras, Calles y Aeropistas, segunda reimpresión (junio, 1982), Buenos Aires, Argentina.
- 5. Bowles, Joseph E., 1980, Manual de Laboratorio de Suelos en Ingeniería Civil, Bogotá, Colombia.
- 6. Wicke, Peter W., 1975, Manual de Mecánica de Suelos, UNC, Cajamarca, Perú.
- 7. Céspedes Abanto, José M., Pavimentos Flexibles y Rígidos, UNC, Cajamarca, Perú.
- 8. Centro de Tecnología Cemento y Concreto de Cemex, 1997, *Diseño de Espesores de Pavimentos de Concreto*, Ciudad de México, México.
- 9. Packard, Robert G., *Diseño de Espesores de Pavimentos de Concreto para Calles y Carreteras*, publicado en idioma inglés por el Departamento de Pavimentos y Transportes de la Portland Cement Association, 1984, traducido por el Instituto para el Desarrollo de los Pavimentos en el Perú, IDPP, 1997, Lima, Perú.
- 10. Llorach Vargas, Javier, 1992, Diseño Estructural de Pavimentos Asfálticos y de Concreto, Chiclayo, Perú.
- 11. CAPECO, Reglamento Nacional de Construcciones, Lima, Perú.
- 12. French, Richard H., 1988, *Hidráulica de Canales Abiertos*, México, traducido de la primera edición en inglés de *Open Channel Hydraulics*, 1985, USA.
- 13. Bolinaga I., Juan José, 1979, Drenaje Urbano, Caracas, Venezuela.
- 14. Huamán Vidaurre, Francisco, Drenaje Pluvial Urbano, UNC, Cajamarca, Perú.
- 15. Harmsen, Teodoro E., 4ª Edición, 2005, *Diseño de Estructuras de Concreto Armado*, Fondo Editorial de la Pontificia Universidad Católica, Lima, Perú.
- 16. Lezama Leiva, José, Apuntes de Tecnologia del Concreto, UNC, Cajamarca, Perú.
- 17. Ministerio de Transportes, Comunicaciones, Vivienda y Construcción, 2000, *Manual de Dispositivos de Control de Tránsito Automotor para Calles y Carreteras*, Lima, Perú.
- 18. CAPECO, 2002, Análisis de Costos Unitarios, Lima, Perú.

ANEXOS

ANÁLISIS DE COSTOS UNITARIOS.
PRESUPUESTO DE OBRA.
FÓRMULA POLINÓMICA.
PROGRAMACIÓN DE OBRA.
ESPECIFICACIONES TÉCNICAS.

Tesis : "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

01.01	TRAZO Y REPL	ANTEO CON EQUIPO						
Rendimiento	m2/DIA	1,400.0000	EQ.	1,400.0000		Costo unitario directo por : m2	0.60	
Código	INSUMO			Unided	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra							
0101010004	OFICIAL			hh	1.0000	0:0057	11.68	0.07
0101010005	PEON			hh	5:0000	0.0286	10.51	0.30
	Materiales							0,37
02041200010004		MADERA CON CABEZA DE 2 1/2"		kg		0.0050	3.95	0.02
02130300010002	YESO BOLSA 1	S kg		bai		0.0050	6.20	0.03
0231040001	ESTACAS DE M	ADERA IXIX2		pza		0.1000	0.75	0.08
0240020001	PINTURA ESMA	ALTE		gali		0.0003	35.00	0.01
								0.14
	Equipos							
03010000010002	NIVEL DE INGE	NIERO		hm	1.0000	0.0057	5.25	0.03
0301000011	TEODOUTO			hm	1.0000	0.0057	7.50	0.04
0301010006	DESGASTE DE	HERRAMIENTAS		% mo		3:0000	0.37	0.01
03011600020001	MIRA TOPOGR	ARCA		bm	2.0000	0.0114	1.00	0.01
								0.09
01.02	MOVILIZACIO	N Y DESMOVILIZACION DE EQUIPOS Y N	MAQUINARI	AS				
Rendimiento	glb/DIA		EQ.			Costo unitario directo por : glb	7,000.00	
Código	INSUMO			Unidađ	Coadrilla	Cantidad	Precio S/.	Parcial S/.
200000000	Materiales							
0292030002	MOVIMIENTO	Y DESMOVIMIENTO DE EQUIPO	•	est		1.0000	7,000.00	7,000.00
1.03	CARTEL DE OB	RA 3.60x7.20						7,000.00
Rendimiento	und/DIA		EQ.			Costo unitario directo por : und	500.00	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/,
	Materiales						ωy.	
02901500080003	CARTEL DE OB	ra segun diseño		und		1.6000	500.00	500.00
							•	500.00
02.01	CORTE A NIVE	L DE SUB-RASANTE CON MAQUINARIA						
Rendimiento	m3/DIA	320.0000	EQ.	320.0000	Costo unil	tario directo por : m3	4.54	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra							
0101010003	OPERARIO			hh.	1.0000	0.0250	13.64	0.34
0101010005	PEON			hh	3.0000	0.0750	10.51	0.79
								1.13
,	Equipos							
0301010006		HERRAMIENTAS		%тю		3.0000	1.13	0.03
Ernesto H. Muñoz	Sánchez/Omar.M. J	aime Rebaza				ANEXOS: COSTOS	UNITARIOS	

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

Fecha: Ei	NERO, 2013								
03011800020004	TRACTOR DE C	DRUGAS DE 140-160 HP			here	1.0000	0.0250	135.00	3.38
									3.41
02.02	EXCAVACION	CANAL, VEREDAS SUM	EDEROS(MANUAL)						
Rendimiento	m3/DIA	3.0009		EQ.	3.0000		Costo unitario directo por : m3	28.87	
Código	INSUMO				Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
040404000	Mano de Obra	1							
0101010005	PEON				hh.	1.0000	2.6667	10.51	28.03
	Equipos								28.03
0301010006		HERRAMIENTAS			%mo		3:0000	28.03	0.84
									0.84
02.03	NIVELACION Y	COMPACTACION DE S	UERASANTE						
Rendimiento	m2/DIA	1,200.0000		EQ	1,200.0000		Costo unitario directo por : m2	2.86	
Código	INSUMO		. •		Unidad	Coadrilla	Cantidad	Precio 5/.	Parcial S/.
	Mano de Obra	•							
0101010005	PEON				tah	3.0000	0:0200	10.51	0.21
	Equipos								0.21
0301010006		HERRAMIENTAS			%то		3.0000	0.21	0.01
03011000060001	RODILLO LISO		PULSADO101-135 HP 1	0-	hm	1.0000	0.0067	100.00	0.67
03012000010005	121				tian		0.0067		
03012200050005		ERNA (2000 GLNS.)			hm	1.0000	0.0067	168.08 125.00	1.13 0.84
		,,					3,000	220.00	2.65
02.04	ELIMINACION	DE MATERIAL EXCEDE	NTE						
Rendimiento	m3/DIA	320.0000		EQ.	320.0000		Costo unitario directo por : m3	11.03	
Código	INSUMO				Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010000	Mano de Obra	2					<u> </u>		_
0101010003 0101010005	OPERARIO PEON				hh 	1.0900	0:0250	13.64	0.34
0101010003	FEUN				hh.	2.0000	0.0500	10.51	0.53 0.87
	Equipos								U.07
0301010006		HERRAMIENTAS			%mo		3.0000	0.87	0.03
0301160004	CARGADOR FE	RONTAL 966-C			here	1.0000	0.0250	185.30	4.63
03012900010005	VOLQUETE DE	E.8M3			han	2:0000	0.0500	110.00	5.50
									10.16

ANEXOS: COSTOS UNITARIOS

ANÁLISIS DE COSTOS UNITARIOS

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

		NSTRUCCION DE BUZONES	500	*****		Costo unitario	24 OF	
Rendimiento	m/DIA	10,0000	EQ.	10.0000		directo por : m	24.05 Precio	
Códig o	INSUMO			Unidad	Cuedrilla	Cantidad	s/.	Parcial S
	Mano de Obra							
0101010003	OPERARIO			.hh	0.5000	0.4000	13.64	5.46
0101010005	PEON			hh	1.0000	0.8000	10.51	8.41
	Materiales							13.87
02070200010002	ARENA GRUES	Α		m3		0:0396	70.00	2.77
0213010001		RTLAND TIPO ((42.5 kg)		bol		0.3704	18.86	6,99
								9.76
•	Equipos							
0301010006	DESGASTE DE	HERRAMIENTAS		%mo		3.0000	13.87	0.42
								0.42
03.01	CONFORMACI	ON DE CAPA ANTICONTAMINANTE E=G.10M						
Rendimiento	m3/DIA	1,800.0000	EQ.	1,300.0000		Costo unitario directo por : m3	1.99	
							O	
Código	INSUMO			Unidad	Coadrilla	Cantidad	Precio S/.	Parcial
	Mano de Obra	•						
0101010003	OPERARIO	•		hh	1:0000	0.0044	13.64	0.06
0101010005	PEON			hh	4.0000	0.0178	10.51	0.19
	Equipos	*						0.25
0301010006		HERRAMIENTAS		%mo		3.0000	0.25	0.01
03011000060001		VIBRATORIO AUTOPROPULSADO101-135 HP 1	۵-	hm	1.0000	0:0044	100.00	0.44
	12T	EWIDA KIT UD						
03012000010005	MOTONIVELA	DORA 125 FIP ERNA (2000 GLNS.)		hm	1.0000	0.0044 0.0044	168.08 125.00	0.74 0.55
0301220003000	CHINON COST	MAY 2000 GLISSY		z w s p	7.0000	0.0044	125.00	1,74
03.02	CONFORMAC	ION DE BASE E=15CM						
Rendimiento	m3/DIA	800,0000	EQ.	200,0000		Costo unitario	16.51	
						directo-por : m3		
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio	Parcial
	Mano de Obr	2					s/.	
0101010003	OPERARIO			titi.	1_0000	0.0100	13.64	0.14
0101010005	PEON			hh	4.0000	0.0400	10.51	0.42
								0.56
	Materiales							
02070300010001	HORMIGON E	E RIO		m3		0.2000	60.00	120
								12.0
	Equipos							
0301010006		HERRAMIENTAS		%ino		3.0000	0.56	0.02
03011000060001	MUDILLU USO	VIBRATORIO AUTOPROPULSADO101-135 HP	LC)-	hm	1.0000	0.0100	100.00	1.00

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARFTA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

03012000010005	MOTONIVELA	DORA 125 HP	- •	hen	1.0000	0.0190	168.08	1.68
03012200050005	CAMION CIST	ERNA (2000 GUNS.)		'hm	1.0000	0,0100	125.00	1.25
03.03	FNCOFRADO Y	Y DESENCOFRADO DE VEREDAS						3.95
Rendimiento	m2/DIA	40.0000	EQ.	40,0000		Costo unitario directo por : m2	12.17	
Código	INSUMO			Unidad	Coadrilla	Cantidad	Precio S/.	Parcial S
	Mano de Obra	a						
0101010003	OPERARIO			hts.	1.0000	0.2000	13.64	2.73
0101010005	PEON			hh	1.0000	0.2000	10.51	2.10
								4.83
	Materiales							
02040100010003	ALAMBRE NEC	GRO NACIONAL Nº 16		kg		9.2500	3.80	0.95
02041200010005	CLAVOS PARA	AMADERA CON CABEZA DE 3"		kg		0.1500	3.50	0.53
0231090002	MADERA EUC	ALIPTO		p2		2.6000	2.20	5.72
								7.20
	Equipos							
0301010006	DESGASTE DE	HERRAMIENTAS		%mo		3:0000	4.83	0.14
		·						0.14
03.04	CONCRETO f	c = 210 kg/cm2 (cimentación)				Costo unitario		
Rendimiento	m3/DIA	18.0000	EQ.	18.0000		directo por : m3	348.63	
Código	INSUMO			Unidad	Cuadrilia	Cantidad	Precio	Parcial S
Código		1		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
Código . 0101010003	INSUMO Mano de Obr	a		Unidad Hih	Cuadrilla 2.0000	Cantidad 0.8889		Parcial S
	Mano de Obr	o					s/.	
0101010003 0101010004	Mano de Obr	u		Hh	2.0000	0.8889	S/. 13.64	12.12
0101010003	Mano de Obr OPERARIO OFICIAL	3		hih	2.0000 1.0000	0.8889 ·0.4444	S/. 13.64 11.68	12.12 5.19
0101010003 0101010004	Mano de Obr OPERARIO OFICIAL	o		hih	2.0000 1.0000	0.8889 ·0.4444	S/. 13.64 11.68	12.12 5.19 56.05
0101010003 0101010004	Mano de Obr OPERARIO OFICIAL PEON			hih	2.0000 1.0000	0.8889 ·0.4444	S/. 13.64 11.68	12.12 5.19 56.05
0101010003 0101010004 0101010005	Mano de Obri OPERARIO OFICIAL PEON Materiales	HCADA 1/2*		.hist state type.	2.0000 1.0000	0.8889 0.4444 5.3333	13.64 11.68 10.51	12.12 5.19 56.05 73.36
0101010003 0101010004 0101010005 02070100010002 02070200010002	Mano de Obri OPERARIO OFICIAL PEON Materiales PIEDRA CHAN	HCADA 1/2*		.lift itus tite tri3	2.0000 1.0000	0.8889 0.4444 5.3333 0.8500	13.64 11.68 10.51	12.12 5.19 56.05 73.36 42.54
0101010003 0101010004 0101010005 02070100010002 02070200010002 0207070002	Mano de Obri OPERARIO OFICIAL PEON Materiales PIEDRA CHAN ARENA GRUES	HCADA 1/2*		thin this this this this this this this this	2.0000 1.0000	0.8889 0.4444 5.3333 0.8500 0.4200	5/. 13.64 11.68 10.51 50.05 70.00	12.12 5.19 56.05 73.36 42.54 29.40 2.76
0101010003 0101010004 0101010005 02070100010002 02070200010002 0207070002	Mano de Obri OPERARIO OFICIAL PEON Materiales PIEDRA CHAN ARENA GRUES	HCADA 1/2* SA		thin this him m3 m3 m3	2.0000 1.0000	0.8889 0.4444 5.3333 0.8500 0.4200 0.1840	5/. 13.64 11.68 10.51 50.05 70.00 15.00	12.12 5.19 56.05 73.36 42.54 29.40 2.76 183.70
0101010003 0101010004 0101010005 02070100010002 02070200010002 02070700002	Mano de Obri OPERARIO OFICIAL PEON Materiales PIEDRA CHAN ARENA GRUES	HCADA 1/2* SA		thin this him m3 m3 m3	2.0000 1.0000	0.8889 0.4444 5.3333 0.8500 0.4200 0.1840	5/. 13.64 11.68 10.51 50.05 70.00 15.00	12.12 5.19 56.05 73.36 42.54 29.40 2.76 183.70
0101010003 0101010004 0101010005 02070100010002 02070200010002 0207070002 0213010001	Mano de Obri OPERARIO OFICIAL PEON Materiales PIEDRA CHAN ARENA GRUES AGUA CEMENTO PO	HCADA 1/2* SA		thin this him m3 m3 m3	2.0000 1.0000	0.8889 0.4444 5.3333 0.8500 0.4200 0.1840	5/. 13.64 11.68 10.51 50.05 70.00 15.00	12.12 5.19 56.05 73.36 42.54 29.40 2.76 183.70
0101010003 0101010004 0101010005	Mano de Obri OPERARIO OFICIAL PEON Materiales PIEDRA CHAN ARENA GRUES AGUA CEMENTO PO Equipos DESGASTE DE	ICADA 1/2* SA PRTLAND TIPO I (42.5 kg)		.hith this hith m3 m3 m3 bol	2.0000 1.0000	0.8889 0.4444 5.3333 0.8500 0.4200 0.1840 9.7400	5/. 13.64 11.68 10.51 50.05 70.00 15.00 18.86	5.19 56.05 73.36 42.54 29.40 2.76 183.70 258.40

Tesis : "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAIAMARCA PROV.: CAIAMARCA DPTO.: CAIAMARCA

Código			ÆQ.	250.0000		directo por : kg	1.64	
	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra	•						
0101010003	OPERARIO			ħħ	1.0000	0.0320	13.64	0.44
0101010004	OFICIAL			hb	1_0000	0.0320	11.68	0.37
	Materiales							0.81
02040300010043	ACERO CORRU	GADO DE 1/2" fy = 4200 kg/cm2		var		0.1166	6.80	0.79
	Equipos						•	0.79
0301010006	DESGASTE DE	HERRAMIENTAS		% mo		5.0000	0.81	0.04
03.05.02	ACERO LISO 1	' (JUNT. TRANSV. AISLAM Y CONSTRUC)						0.04
Rendimiento	kg/DIA	250.0000	EQ.	250.0000		Costo unitario directo por : kg	2.72	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio	Parcial S/.
	Mano de Obra						s/.	
0101010003	OPERARIO			hh	1.0000	0.0320	13.64	0.44
0101010004	OFICIAL			hh	1.0000	0.0320	11.68	0.37
	Materiales							0.81
02040600010017		VARILLAS DE 1" fy=42000		var		0.0296	63.70	1.89
	Equipos						ē	1.89
0301010006		HERRAMIENTAS		%mo		3,0000	0.81	0.02
•								0.02
03.05.03	ACERO USO 1	1/4" (JUNT.TRANSV. AISLAM. Y CONST.)						•
Rendimiento	kg/DIA	250.0000	EQ.	250.0000		Costo unitario directo por : kg	3.10	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio	Parcial S/.
	Mano de Obra						s/.	
0101010003	OPERARIO			h h	1.0000	0.0320	13.64	0.44
0101010004	OFICIAL			hh	1.0000	0.0320	11.68	0.37
	Materiales							0.81
02040600010018		VARILLAS DE 1 1/4" fy=42000		var		0.0186	122.30	יר ר
				vex	٠	0.0160	122.30	2.27 2.27
A	Equipos							/
0301010006	DESGASTE DE H	HERRAMIENTAS		%me		3.0000	0.81	0.02

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

Rendimiento	m/DIA	300.0000	EQ.	300.0000		Costo unitario directo por : m	4.73	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio	Parcial S/
	Mano de Obra						s/.	
0101010003	OPERARIO			tih	0.5000	0.0133	13.64	0.18
0101010005	PEON			hh	6:0000	0.1600	10.51	1.68
	Materiales							1.86
0201040003	KEROSENE			gai		0.0033	13.00	0.04
02010500010001	ASFALTO RC-25	i o .		हर्न		0.0225	16.00	0.36
0201050006	leña			und		0.1330	2.00	0.27
02070200010002	ARENA GRUESA	1		m3		0.0020	70.00	0.14
	P1							0.81
0301010006	Equipos DESGASTE DE H	ERRAMIENTAS		%mo		3.0000	1.00	2.00
03011400060004		NEUMATICA 175 PCM		hrn	1.0000	0.0267	1.86 75.00	0.06 2.00
					23000	0.0207	73.00	2.06
03.05.05		AS DE AISLAMIENTO (E=12.5 MM)				C		
Rendimiento	m/DIA	216.0000	EQ.	216.0000		Costo unitario directo por : m	12.91	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio.	Parcial S
	Mano de Obra							
0101010003	OPERARIO			hh	0.5000	0.0185	13.64	0.25
0101010005	PEON			, h h	6.0000	0.2222	10.51	2.34
	Materiales						•	2.59
0201040003	KEROSENE			gai		0.0200	13.00	0.26
02010500010001	ASFALTO RC-25	0		gal		0.1350	16.00	2.16
0201050006	leña			und		0.0800	2.00	0.16
02070200010002	ARENA GRUESA	1		ന3		0.0100	70.00	0.70
0231010003	MADERA TRATA	ADA		p2		1.1000	3.80	4.18
	Equipos							7.46
0301010006	DESGASTE DE H	IERRAMIENTAS		%mo		3.0000	2.59	0.08
03011400060004	COMPRESORA	NEUMATICA 175 PCM		hres	1.0000	0.0370	75.00	2.78
								2.86
04.01	ENCOFRADO Y	DESENCOFRADO DE VEREDAS						
Rendimiento	m2/DIA	16.0000	EQ.	16.0000		Costo unitario directo por : m2	21.60	
Código	INSUMO			Unidad	Candrilla	Cantidad	Precio S/.	Parcial S
	Mano de Obra						•	
0101010003	OPERARIO			'hħ	1.0000	0.5000	13.64	6.82
0101010004	OFICIAL			hh.	1.0000	0.5000	11.68	5.84
								12.66
	Materiales							

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

Fecha: EN	ERO, 2013						
02041200010004	CLAVOS PARA MADERA CON CABEZA DE 2 1/2"		kg		0.1290	3.95	0.51
0231090002	MADERA EUCALIPTO		p2		3.2280	2.20	7.10
	Equipos						8.56
0301010006	DESGASTE DE HERRAMIENTAS		%mo		3.0000	12.66	0.38
04.02	ACERO CORRUGADO 1/4"						0.38
Rendimiento	kg/DIA 250.0000	EQ.	250.0000		Costo unitario directo por : kg	45.45	
Código	INSUMO		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra					-7.	
0101010003	OPERARIO		hh:	1.0000	0.0320	13.64	0.44
0101010004	OFICIAL		hh	1.0000	0.0320	11.68	0.37
•	Materiales			٠			0.81
02040100010003	ALAMBRE NEGRO NACIONAL Nº 16		kg		0.0600	3.80	0.23
02040300030005	ACERO CORRUGADO 1/4" fy=4200kg/cm2		ton		1.7100	25.95	44.37
	Cattings						44.60
0301010006	Equipos DESGASTE DE HERRAMIENTAS		%mo		E 0000	0.01	2.04
			/airito		5.0000	0.81	0.04 0.04
04.03	ACERO CORRUGADO 3/8°						0.04
Rendimiento	kg/DtA 250.0000	EQ.	250.0000		Costo unitario	4.05	
					directo por : kg	403	
Código	INSUMO		Unidad	Csadrilla	directo por : kg Cantidad	Precio	Parcial S/.
Código	INSUMO Mano de Obra	÷	Unidad	Csadrilla	· -		Parcial S/.
Código 0101010003			Unidad	Cendrilla 1.0000	· -	Precio	Parcial S/.
-	Mano de Obra	-			Cantidad	Precio S/.	
0101010003	Mano de Obra OPERARIO OFICIAL		hb	1.0000	Cantidad	Precio S/. 13.64	0.44
0101010003	Mano de Obra OPERARIO		hh hh	1.0000	0.0320 0.0320	Precio \$/. 13.64 11.68	0.44 0.37 0.81
0101010003	Mano de Obra OPERARIO OFICIAL Materiales	÷m.	hb	1.0000	Cantidad	Precio S/. 13.64 11.68	0.44 0.37 0.81
0101010003 0101010004 	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEGRO NACIONAL Nº 16	9 m₁	hh hh	1.0000	Cantidad 0.0320 0.0320 0.0600	Precio \$/. 13.64 11.68	0.44 0.37 0.81 0.23 2.97
0101010003 0101010004 	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEGRO NACIONAL Nº 16	⊋an.	hh hh	1.0000	Cantidad 0.0320 0.0320 0.0600	Precio S/. 13.64 11.68	0.44 0.37 0.81
0101010003 0101010004 	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEGRO NACIONAL N° 16 ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60 DE 3/8° X 9	• m.	hh hh	1.0000	Cantidad 0.0320 0.0320 0.0600	Precio S/. 13.64 11.68	0.44 0.37 0.81 0.23 2.97
0101010003 0101010004 02040100010003 02040300010001	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEGRO NACIONAL N° 16 ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60 DE 3/8° X 9	· · · · · · · · · · · · · · · · · · ·	hh hh kg var	1.0000	0.0320 0.0320 0.0600 0.2050	Precio \$/. 13.64 11.68 3.80 14.50	0.44 0.37 0.81 0.23 2.97 3.20
0101010003 0101010004 02040100010003 02040300010001	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEGRO NACIONAL N° 16 ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60 DE 3/8° X 9	· ·	hh hh kg var	1.0000	0.0320 0.0320 0.0600 0.2050	Precio \$/. 13.64 11.68 3.80 14.50	0.44 0.37 0.81 0.23 2.97 3.20
0101010003 0101010004 02040100010003 02040300010001	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEGRO NACIONAL Nº 16 ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60 DE 3/8° X 9 Equipos DESGASTE DE HERRAMIENTAS		hh hh kg var	1.0000	0.0320 0.0320 0.0600 0.2050	Precio \$/. 13.64 11.68 3.80 14.50	0.44 0.37 0.81 0.23 2.97 3.20
0101010003 0101010004 02040100010003 02040300010001 0301010006	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEGRO NACIONAL N° 16 ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60 DE 3/8° X 9 Equipos DESGASTE DE HERRAMIENTAS CONCRETO DE BASE (f'c=175 kg/cm2, E=15CM)		hh hh kg var %mo	1.0000	0.0320 0.0320 0.0600 0.2050	9recio 5/. 13.64 11.68 3.80 14.50	0.44 0.37 0.81 0.23 2.97 3.20
0101010003 0101010004 02040100010003 02040300010001 0301010006 04.04 Rendimiento Código	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEGRO NACIONAL N° 16 ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60 DE 3/8° X 9 Equipos DESGASTE DE HERRAMIENTAS CONCRETO DE BASE (f'c=175 kg/cm2, E=15CM) m3/DIA 22.0000 INSUMO Mano de Obra		hh hh: kg var %mo	1.0000	0.0320 0.0320 0.0600 0.2050 5.0000	9recio 5/. 13.64 11.68 3.80 14.50 0.81 301.93 Precio	0.44 0.37 0.81 0.23 2.97 3.20 0.04 0.04
0101010003 0101010004 02040100010003 02040300010001 0301010006 04.04 Rendimiento Código 0101010003	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEGRO NACIONAL N° 16 ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60 DE 3/8° X 9 Equipos DESGASTE DE HERRAMIENTAS CONCRETO DE BASE (f'c=175 kg/cm2, E=15CM) m3/DIA 22.0000 INSUMO Mano de Obra OPERARIO		hh hh: kg var %mo	1.0000	0.0320 0.0320 0.0600 0.2050 5.0000	9recio 5/. 13.64 11.68 3.80 14.50 0.81 301.93 Precio	0.44 0.37 0.81 0.23 2.97 3.20 0.04 0.04
0101010003 0101010004 02040100010003 02040300010001 0301010006 04.04 Rendimiento Código	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEGRO NACIONAL N° 16 ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60 DE 3/8° X 9 Equipos DESGASTE DE HERRAMIENTAS CONCRETO DE BASE (f'c=175 kg/cm2, E=15CM) m3/DIA 22.0000 INSUMO Mano de Obra		hh hh kg var %mo 22.0000 Unidad	1.0000 1.0000	Castidad 0.0320 0.0320 0.0600 0.2050 5.0000 Costo unitario directo por : m3 Cantidad	97ecio \$/. 13.64 11.68 3.80 14.50 0.81 301.93 Precio \$\frac{1}{2}\$.	0.44 0.37 0.81 0.23 2.97 3.20 0.04 0.04

53.94

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

	Materiales							
02070100010002	PIEDRA CHANG	CADA 1/2"		m3		0.7600	50.05	38.04
02070200010002	ARENA GRUES	A		m3		0.5100	70.00	35.70
0207070002	AGUA			m3		0.1840	15.00	2.76
0213010001	CEMENTO POF	TLAND TIPO I (42.5 kg)		boli		8.6600	18.86	163.33
								239.83
	Equipos							
0301010006	DESGASTE DE I	HERRAMIENTAS		%ma		3.0000	53.94	1.62
03012900030004	MEZCLADORA	DE CONCRETO 9-11 P3		hm	1.0000	0.3636	18.00	6.54
	******							8.16
04.05		RDINEL (Pc=175 kg/cm2 , E=15 CM)				Cooks wells also		
Rendimiento	m3/DIA	22.0000	EQ.	22.0000		Costo unitario directo por : m3	301.93	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio	Parcial S/.
	Mano de Obra	•					5/.	
0101010003	OPERARIO			hh	3.0000	1.0909	13.64	14.88
0101010004	OFICIAL			hh	2.0000	0.7273	11.68	8.49
0101010005	PEON			hh	18:0000	2:9091	10.51	30.57
								53,94
	Materiales							
02070100010002	PIEDRA CHANG	CADA 1/2"		m3		0.7600	50.05	38.04
02070200010002	ARENA GRUES	A		m3		0.5100	70.00	35.70
0207070002	AGUA			m3		0.1840	15.00	2.76
0213010001	CEMENTO POF	ITLAND TIPO I (425 kg)		bol		8.6600	18.86	163.33
								239.83
0004040000	Equipos							
0301010006		HERRAMIENTAS		%ma		.3:0000	53.94	1.62
03012900030004	MEZCLADURA	DE CONCRETO 9-11 P3		हेतरा	1.0000	0.3636	18.00	6.54
								8.16
04.06	SELLADO DE S	UNTAS						
Rendimiento	m/DIA	250.0000	EQ.	250.0000		Costo unitario directo por : m	6.93	
Código	INSUMO			**	A 5 MF		Precio	
				Unidad	Cuadržia	Cantidad	s/.	Parcial S/.
0101010003	Mano de Obra							
0101010003	OPERARIO PEON			hh	0.5000	0.0160	13.64	0.22
0101010003	PEON			hh.	6.0000	0.1920	10.51	2.02
	Materiales							2.24
0201040003	KEROSENE							
0201040003	ASFALTO RC-25	50°		gal		0.0141	13.00	0.18
0201050006	leña			gal.		0.0895	16.00	1.43
02070200010002	ARENA GRUES			end ma		0.0565	2.00	0.11
				∙m3		0.0072	70.00	0.50
	Equipos							2.22
0301010006		HERRAMIENTAS		%mo		3 0000	2 24	0.07
				/G: 0 PC		3.0000	2.24	0.07

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ".

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

Fecha: EN	IERO, 2013		The state of the s		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			
03011400060004	COMPRESORA	NEUMATICA 175 PCM		free:	1.0000	0.0320	75.00	2.40
03011400000004	CONFRESONA	HEGISIMINES END LOSS		111068:	1.0500	0.0320	75.00	2.40
05.01.01	CONFORMACI	ON DE BASE E=15CM						
Rendimiento	m3/DIA	200.0000	EQ.	200.0000		Costo unitario directo por : m3	11.26	
Código	INSUMO			Unidad	Cuedrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra	•						
0101010003	OPERARIO			hh:	1.0000	0.6400	13.64	0.55
0101010004	OFICIAL			hh	1.0000	0.0400	11.68	0.47
0101010005	PEON	•		hh	:8.0000	0.3200	10.51	3.36
	Materiales							4.38
02070300010003	AFIRMADO	•				0.4000		
02070300010003	AFIRWIALO			m3		0.1200	51.91	6.23 6.23
	Equipos							0.23
0301010006	DESGASTE DE I	HERRAMIENTAS		%mo		3.0000	4.38	0.13
03010300060007	PLANCHA COM	IPACTADORA		hm	1.0000	0.0400	13.00	0.52
								0.65
05.01.02	CONCRETO F'c	= 140 kg/c m2						
Rendimiento	m3/DIA	25.0000	EQ.	25.0000		Costo unitario directo por : m3	262.79	
Código	INSUMO			Unidad	Condrilla	Cantidad	Precio	Parcial S/.
	Mano de Obra	1					s/.	, a.c.a., 5, ,
0101010003	OPERARIO	·		hh	2.0000	0.6400	13.64	8.73
0101010004	OFICIAL	•		hh	1.0000	0.3200	11.68	3.74
0101010005	PEON			hin	8.0000	2.5600	10.51	26.91
							10.51	39.38
	Materiales							55.50
02070100010002	PIEDRA CHANC	CADA 1/2"		m3		0.7600	50.05	38.04
02070200010002	ARENA GRUES	A.		m3		0.4700	70.00	32.90
0207070002	AGUA			m3		0.1840	15.00	2.76
0213010001	CEMENTO POR	TLAND TIPO I (425 kg)		bol		7.5700	18.86	142.77
								216.47
	Equipos							
0301010006	DESGASTE DE I	HERRAMIENTAS		%ma		3:0000	39.38	1.18
03012900030004	MEZCLADORA	DE CONCRETO 9-11 P3		hm	1.0000	0.3200	18.00	5.76
								6.94
05.01.03	SELLADO DE I	UNTAS						
Rendimiento	m/DIA	250.0000	20.	250.0000		Costo unitario directo por : m	6.93	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio s/	Parcial S/.
	Mano de Obra						s/.	
0101010003	OPERARIO			hh	0:5000	0:0160	13.64	0.22
0101010005	PEON			hh	6.0000	0.1920	10.51	2.02
								2.24

Tesis : "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

	Materiales							
0201040003	KEROSENE			gai		0.0141	13.00	0.18
02010500010001	ASFALTO RC-25	50		gai		0.0895	16.00	1.43
0201050006	leña			und		0.0565	2.00	0.11
02070200010002	ARENA GRUESA	A		m3		0.0072	70.00	0.50
								2.22
	Equipos							
0301010006	DESGASTE DE H	HERRAMIENTAS		%то		3.0000	2.24	0.07
3011400060004	COMPRESORA	NEUMATICA 175 PCM		hm	1.0000	0.0320	75.00	2.40
								2.47
05.02.01				ELACION Y CI RASANTE	OMPACTACK	ON DE		
Rendimiento	m2/DIA	150,0000	EQ.	150.0000		Costo unitario directo por : m2	14.20	
Código	INSUMO			Unidad	Coadrilla	Cantidad	Precio S/.	Parcial S
	Mano de Obra	ŀ					-7.	
0101010003	OPERARIO			hh	1.0000	0.0533	13.64	0.73
0101010004	OFICIAL			ħħ	2.0000	0.1067	11.68	1.25
0101010005	PEON	•		hh	8:0000	0.4267	10.51	4.48
		•						6.46
	Materiales							
02070300010003	AFIRMADO	•		m3		0.1300	51.91	6.75
								6.75
	Equipos							
301010006	DESGASTE DE	HERRAMIENTAS		%то		3.0000	6.46	0.19
301100007	COMPACTADO	RA VIBRATORIA TIPO PLANCHA 4 HP		विस्तर-	1.0000	0.0533	15.00	0.80
								0.99
05.02.02	CONFORMACI	ON DE BASE (E= 10CM)						
Rendimiento	m2/DIA	200.0000	EQ.	200.0000		Costo unitario directo por : m2	11.26	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial:
_		•						
_	Mano de Obra	I					-,	
0101010003	Mano de Obra	· ·		ħ h	1.0000	G.0400	13.64	0.55
		·		h h hh	1.0000			
0101010004	OPERARIO	·				0.0400	13.64	0.47
0101010004	OPERARIO ·			hh	1.0000	0.0400 0.0400	13.64 11.68	0.47 3.36
0101010003 0101010004 0101010005	OPERARIO ·			hh	1.0000	0.0400 0.0400	13.64 11.68	0.55 0.47 3.36 4.38
0101010004	OPERARIO OFICIAL PEON			hh	1.0000	0.0400 0.0400	13.64 11.68	0.47 3.36 4.38
0101010004 0101010005	OPERARIO OFICIAL PEON Materiales AFIRIMADO			hħ hh	1.0000	0.0400 0.0400 0.3200	13.64 11.68 10.51	0.47 3.36 4.38 6.23
0101010004 0101010005 02070300010003	OPERARIO OFICIAL PEON Materiales AFIRMADO Equipos			hh hh m3	1.0000	0.0400 0.0400 0.3200 0.1200	13.64 11.68 10.51 51.91	0.47 3.36 4.38 6.23
0101010004 0101010005	OPERARIO OFICIAL PEON Materiales AFIRMADO Equipos	HERRAMIENTAS		hħ hh	1.0000	0.0400 0.0400 0.3200	13.64 11.68 10.51	0.47 3.36

ANEXOS: COSTOS UNITARIOS

ANÁLISIS DE COSTOS UNITARIOS

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

Fecha: ENERO, 2013

Emesto H. Muñoz Sánchez/Omar M. Jaime Rebaza

				W				
05.02.03	ENCOFRADO Y	DESENCOFRADO DE CUNETAS						
Rendimiento	m2/DIA	8.0000	EQ.	8.0000		Costo unitario directo por : m2	36.23	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra							
0101010003	OPERARIO			tih	1.0000	1:0000	13.64	13.64
0101010004	OFICIAL			hh	1.0000	1.0000	11.68	11.68
								25.32
00040400040000	Materiales	20 84 600 84 84 6						
02040100010003		RO NACIONAL Nº 16		kg		0.2000	3.80	0.76
02041200010004		MADERA CON CABEZA DE 2 1/2"		:kg		0.1500	3.95	0.59
0231090002	MADERA EUCA	LLPIO		p2		4.0000	2.20	8.80
	Equipos					·		10.15
0301010006		HERRAMIENTAS		%mo		3.0000	25.32	0.76
								0.76
05.02.04		SAS Fc= 175 kg/cm2, E= 10 C				Costo unitario		
Rendimiento	m3/DIA	22,0000	EQ.	22.0000		directo por : m3	301.93	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio	Parcial S/.
- -		Mano de Obra					s/.	· in cia / 5y ,
0101010003	OPERARIO	Americ de Cara		hh.	3.0000	1.0909	13.64	14.88
0101010004	OFICIAL			hih	2.0000	0.7273	11.68	8.49
0101010005	PEON			hh	8.0000	2.9091	10.51	30.57
								53.94
		Materiales						
02070100010002	PIEDRA CHANC	CADA 1/2"		.m3		0.7600	50.05	38.04
02070200010002	ARENA GRUES	A		ភា3		0.5100	70.00	35.70
0207070002	AGUA			m3		0.1840	15.00	2.76
0213010001	CEMENTO POR	RTLAND TIPO I (42.5 kg)	•	bot		8.6600	18.86	163.33
								239.83
0301010006	Equipos DESCACTE DE I	HERRAMIENTAS		~				
03012900030004		DE CONCRETO 9-11 P3		%mo	* ****	3.0000	53.94	1.62
03012300030004	WILECOADONA	DE COMENE (O 2-11 L2		han	1.0000	0.3636	18.00	6. <u>5</u> ,4 8.16
05.02.05	CONCRETO MI	UROS 0.10 X 0.30 fc=175 kg/cm2						
Rendimiento	m3/DIA	22,0000	EQ.	22.0000		Costo unitario directo por : m3	301.93	
Código	INSUMO			Unidad	Cuadrilla	د دولامیس	Precio	Dan - 1 - 1 - 1
	Mano de Obra			o majari	Bestument	Cantidad	s/.	Parcial S/
	Mano de Odia							
0101010003	OPERARIO			h h	2 COOR	2 (30)	12 64	1400
0101010003	OPERARIO OFICIAL			hh hh	3.0000	1.0909	13.64	14.88
0101010003 0101010004 0101010005	OPERARIO OFICIAL PEON			film film Thin	3.0000 2.0000 8.0000	1.0909 0.7273 2.9091	13.64 11.68 10.51	14.88 8.49 30.57

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAIAMARCA PROV.: CAIAMARCA DPTO.: CAIAMARCA

Materiales
0.00000000000000000000000000000000000
0207070002 AGUA m3 0.1840 15.00 2.76 0213010001 CEMENTO PORTLAND TIPO 1 (42.5 kg) bcd 8.6600 18.86 163.33 239,83 Equipos 0301010006 DESGASTE DE HERRAMIENTAS %rino 3.0000 53.94 1.62 03012900300004 MEZULADORA DE CONCRETO 9-11 P3 hrm 1.0000 0.3636 18.00 6.54 05.02.06 SELIADO DE JUNTAS Costo urritario directo por : m 6.93 Limitario directo por : m 6.93 Precio S/. Precio
Deliano Cemento Portland Tipo I (425 kg) bol 8.6600 18.36 163.33 163.3
Part Part
Part Part
0301010006 DESGASTE DE HERRAMIENTAS % rino 3.0000 53.94 1.62 03012900030004 MEZCLADORA DE CONCRETO 9-11 P3 hm 1.0000 0.3636 18.00 6.54 05.02.06 SELLADO DE JUNTAS Costo unitario direçto por : m 6.93 Costo unitario direçto por : m 6.93 Parcial s/. Código INSUMO Unidad Cuadrilla Cantidad Precio S/. Parcial s/. 0101010003 OPERARIO inh 0.5000 0.0160 13.64 0.22 0101010005 PEON inh 6.0000 0.1920 10.51 2.02 0201040003 KEROSENE gal 0.0141 13.00 0.18 0201050001001 ASFALTO RC-250 gal 0.0855 16.00 1.43 0201050006 Ieña und 0.0565 2.0 0.11 0207020010002 ARENA GRUESA m3 0.0072 70.00 0.50 0301010006 DESGASTE DE HERRAMIENTAS % mio 1.0000 0.0320 75.00 2.40
Name Name
Solution Seliano De Iuntas Solution
SELLADO DE JUNTAS Rendimiento m/DIA 250.0000 EQ. 250.0000 Costo unitario directo por : m 6.93 Código INSUMO Unidad Cuadrilla Cantidad Precio S/. Parcial S/. 0101010003 OPERARIO Inh 0.5000 0.0160 13.64 0.22 0101010005 PEON Inh 6.0000 0.1920 10.51 2.02 0201040003 KEROSENE gai 0.0141 13.00 0.18 02010500010001 ASFALTO RC-25 gai 0.0895 16.00 1.43 02010500006 Ieña und 0.0565 2.00 0.11 0207020010002 ARENA GRUESA m3 0.0072 70.00 0.50 5 Equipos Nome 3.0000 2.24 0.07 0301140006 DESGASTE DE HERRAMIENTAS %mo 3.0000 0.0320 75.00 2.40
Rendimiento m/DIA 250.0000 E0. 250.0000 Costo unitario directo por : m 6.93 Código INSUMO Unidad Caadrilla Cantidad Precio S/. Parcial s/. 0101010003 OPERARIO Inh 0.5000 0.0160 13.64 0.22 0101010005 PEON Inh 6.0000 0.1920 10.51 2.02 0201040003 KEROSENE Inh 6.0000 0.0141 13.00 0.18 02010500010001 ASFALTO RC-250 Inh unid Inh 0.0085 16.00 1.43 02010500010001 ASFALTO RC-250 Inh unid Inh 0.0085 16.00 1.43 02070200010002 ARENA GRUESA Inh unid Inh 0.0072 70.00 0.50 030110006 DESGASTE DE HERRAMIENTAS %mo Inh 1.0000 0.0320 75.00 2.24 0.07
Código INSUMO Unidad Cuadrilla Cantidad Precio S/L Parcial S/L 0101010003 OPERARIO hh 0.5000 0.0160 13.64 0.22 0101010005 PEON hh 0.05000 0.1920 10.51 2.02 0201040003 KEROSENE gali 0.0141 13.00 0.18 02010500010001 ASFALTO RC-250 gali 0.0895 16.00 1.43 0201050006 leña und 0.0565 2.00 0.11 02070200010002 ARENA GRUESA m3 0.0072 70.00 0.50 0301010006 DESGASTE DE HERRAMIENTAS %mo 3.0000 2.24 0.07 03011400060004 COMPRESORA NEUMATICA 175 PCM hm 1.0000 0.0320 75.00 2.40
Mano de Obra Mano
Mano de Obra Mano
0101010003 OPERARIO hth 0.5000 6.0160 13.64 0.22 0101010005 PEON hth 6.0000 0.1920 10.51 2.02 Aspectable 0201040003 KEROSENE gal 0.0141 13.00 0.18 02010500010001 ASFALTO RC-250 gal 0.0895 16.00 1.43 0201050006 leña und 0.0565 2.00 0.11 02070200010002 ARENA GRUESA m3 0.0072 70.00 0.50 Equipos 0301010006 DESGASTE DE HERRAMIENTAS %mo 3.0000 2.24 0.07 03011400060004 COMPRESORA NEUMATICA 175 PCM htm 1.0000 0.0320 75.00 2.40
0101010005 PEON PEON filh 6.0000 0.1920 10.51 2.02 2.24 Materiales 5 0.00141 13.00 0.18 0201040003 KEROSENE gali 0.0141 13.00 1.43 02010500010001 ASFALTO RC-250 gali 0.0895 16.00 1.43 0201050006 leña vind 0.0072 70.00 0.50 02070200010002 ARENA GRUESA m3 0.0072 70.00 0.50 Equipos 0301010006 DESGASTE DE HERRAMIENTAS %mo 1.0000 0.0320 75.00 2.40 03011400060004 COMPRESORA NEUMATICA 175 PCM htm 1.0000 0.0320 75.00 2.40
Materiales Mat
0201040003 KEROSENE gai: 0.0141 13.00 0.18 02010500010001 ASFALTO RC-250 gai: 0.0895 16.00 1.43 0201050006 leña 'und 0.0565 2.00 0.11 02070200010002 ARENA GRUESA m3 0.0072 70.00 0.50 Equipos Equipos 3.0000 2.24 0.07 03011400060004 COMPRESORA NEUMATICA 175 PCM hm 1.0000 0.0320 75.00 2.40
02010500010001 ASFALTO RC-250 gall 0.0895 16.00 1.43 0201050006 leña 'und 0.0565 2.00 0.11 02070200010002 ARENA GRUESA m3 0.0072 70.00 0.50 Equipos 0301010006 DESGASTE DE HERRAMIENTAS %m0 3.0000 2.24 0.07 03011400060004 COMPRESORA NEUMATICA 175 PCM
0201050006 leña rund 0.0565 2.00 0.11 02070200010002 ARENA GRUESA m3 0.0072 70.00 0.50 Equipos 0301010006 DESGASTE DE HERRAMIENTAS %m0 1.0060 0.0320 75.00 2.40
02070200010002 ARENA GRUESA m3 0.0072 70.00 0.50 2.22 2.22 Equipos 0301010006 DESGASTE DE HERRAMIENTAS %m0 3.0000 2.24 0.07 03011400060004 COMPRESORA NEUMATICA 175 PCM hm 1.0000 0.0320 75.00 2.40
2,22 2,22
Equipos 0301010006 DESGASTE DE HERRAMIENTAS %mo 3.0000 2.24 0.07 03011400060004 COMPRESORA NEUMATICA 175 PCM hm 1.0000 0.0320 75.00 2.40
0301010006 DESGASTE DE HERRAMIENTAS %mo 3.0000 2.24 0.07 03011400060004 COMPRESORA NEUMATICA 175 PCM htm 1.0000 0.0320 75.00 2.40
03011400060004 COMPRESORA NEUMATICA 175 PCM http 1.0080 0.0320 75.00 2.40
2.50
2.47
05.02.07 TARRAJEO CUNETAS
Costo unitario
directo por : m2
Código INSUMO Unidad Cuadrilla Cantidad Precio Parcial S/.
Mano de Obra
0101010003 OPERARIO hh 1.0000 0.5333 13.64 7.27
0101010005 PEON hh 0.5000 0.2667 10.51 2.80
10.07
Materiales
02070200010001 ARENA FINA FINA FINA FINA FINA FINA FINA FI
0213010001 CEMENTO PORTLAND TRPO # (42.5 kg) bol 0.2321 18.86 4.38
Equipos 5.05
0301010006 DESGASTE DE HERRAMIENTAS %mo 3.0000 10.07 0.30
0,30

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

05.03.01	ACERO CORRU	GADO 1/2°				٠		
Rendimiento	kg/DIA	250.0000	EQ.	250.0000		Costo unitario directo por : kg	1.87	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra							
0101010003	OPERARIO			hh	1.0000	0.0320	13.64	0.44
0101010004	OFICIAL			hb	1.0000	0.0320	11.68	0.37
	Materiales							0.81
02040100010003	ALAMBRE NEGI	RO NACIONAL Nº 16		kg		0.0600	3.80	0.23
02040300010043	ACERO CORRUG	GADO DE 1/2* fy = 4200 kg/cm2		var		0.1166	6.80	0.79
								1.02
	Equipos	•						
0301010006	DESGASTE DE H	IERRAMIENTAS		%mo		5.0000	0.81	0.04
05.03.02	PLATINA 1 1/2"	' X 3/6"						0.04
Rendimiento	m/DIA	40.0000	EQ.	40.0000		Costo unitario directo por : m	10.89	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0404040003	Mano de Obra							
0101010003	OPERARIO PEON			ihh	1.0000	0.2000	13.64	2.73
0101010003	FLON			hh	0.5000	0.1000	10.51	1.05 3.78
	Materiales						•	5.76
0255080015	SOLDADURA CI	FELOCORD		kg		0.2000	11.00	2.20
0271050139	PLATINAS DE FI	ERRO 3/16" X 1 1/2" X 6m		pza		0.1667	28.80	4.80
	Equipos							7,00
0301010006	DESGASTE DE H	ERRAMIENTAS		%mo		3.0000	3.78	2.54
				761110		3.0000	5.76	0.11 0.11
05.03.03	PLATINA 2 " X 3	¥16°					•	
Rendimiento	m/DIA	40.0000	EQ.	40.0000		Costo unitario directo por : m	9.46	
Código	INSUMO	T.		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra						J/ .	
0101010003	OPERARIO			hh	1.0000	0.2000	13.64	2.73
0101010005	PEON			hh.	0.5000	0.1000	10.51	1.05
								3.78
0355000045	Materiales							
0255080015	SOLDADURA CE			kg		0.2500	11.00	2.75
0271050140	PLATINAS DE FI	ERRO 3/16" X 2" X 6m	ż	pza		0.1667	16.94	2.82
	Equipos							5.57
0301010006	DESGASTE DE H	ERRAMIENTAS		%то		3.0000	3.78	0.11
								0.11
Emesto H. Muñoz S	Sánchez/Omar M. Ja	ime Rebaza				ANEXOS: COSTOS	UNITARIOS	

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

06.01.01		ON DE BASE E= 15 CM				Costo unitario		
Rendimiento	m2/DIA	200.0000	EQ.	200.0000		directo por : m2	11.26	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra						٠,.	
0101010003	OPERARIO			hh	1.0000	0:0400	13.64	0.55
0101010004	OFICIAL			hh	1.0000	0.0400	11.68	0.47
0101010005	PEON			hh	8.0000	0.3200	10.51	3.36
								4.38
	Materiales							
02070300010003	AFIRMADO			m3		0.1200	51.91	6.23
	Equipos							6.23
0301010006	DESGASTE DE I	HERRAMIENTAS		%mo		3.0000	4.38	0.13
03010300060007	PLANCHA COM	PACTADORA		hm	1.0000	0.0400	13.00	0.52
					,			0.65
06.01.02	ENCOFRADO Y	DESENCOFRADO						
Rendimiento	m2/DtA	8.0000	EQ.	8.0000		Costo unitario directo por : m2	36.23	
						anceto por . m.z		
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra					3/.	
0101010003	OPERARIO			hin	1.0000	1.0000	13.64	13.64
0101010004	OFICIAL			hh	1.0000	1.0000	11.68	11.68
								25.32
		Materiales						
02040100010003	_	RO NACIONAL Nº 16		kg		0.2000	3.80	0.76
02041200010004	MADERA EUCA	MADERA CON CABEZA DE 2 1/2"		kg		0.1500	3.95	0.59
0231030002	WADENA EUCA	LIPIC		p2		4.0000	2.20	8.80
		Equipos						10.15
0301010006	DESGASTE DE H	• •		%mo		3.0000	25.32	0.76
				,,,,,,		3.0000	20.02	0.76
06.01.03	ACERO CORRU	SADO 1/4"						
Rendimiento	kg/DIA	250.0000	EQ.	250,0000		Costo unitario	12.71	
						directo por : kg		
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio	Parcial S/.
	Mano de Obra						S/.	
0101010003	OPERARIO			'lih	1.0000	0.0320	13.64	0.44
0101010004	OFICIAL			hin	1.0000	0.0320	11.68	0.37
								0.81
	Materiales							
02040100010003	ALAMBRE NEGR	RO NACIONAL Nº 16		kg		0.0600	3.80	0.23
02040300010043	ACERO CORRUG	ADO DE 1/2" fy = 4200 kg/cm2		var		1.7100	6.80	11.63
						•		11.86

Tesis : "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

	Equipos							
0301010006	DESGASTE DE	HERRAMIENTAS		%mo		5.0000	0.81	0.04
06.01.04	- ACERO CORRU	IGADO 2/8*						0.04
Rendimiento	kg/DIA	250.0000	EQ.	250,0000		Costo unitario directo por : kg	4.05	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio	Parcial S/
	Mano de Obra	1					s/.	
0101010003	OPERARIO			hh	1.0000	0.0320	13.64	0.44
0101010004	OFICIAL			th	1.0000	0:0320	11.68	0.37
								0.81
	Materiales							
02040100010003	ALAMBRE NEG	GRO NACIONAL Nº 16		kg		0.0600	3.80	0.23
02040300010001	ACERO CORRU	IGADO fy = 4200 kg/cm2 GRADO	60 DE 3/8" X 9 m	var		0.2050	14.50	2.97
	Equipos							3.20
0301010006		HERRAMIENTAS		%то		5.0000	0.81	0.04
				7		3.000	0.01	0.04
06.01.05	CONCRETO LO	SAS FONDO Pc= 175 kg/cm2, E=	15 CM					0.0-4
Rendimiento	m3/DIA	22.9000	EQ.	22,0000		Costo unitario directo por : m3	301.93	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
	Mano de Obra	1						
0101010003	OPERARIO			hh	3.0000	1.0909	13.64	14.88
0101010004	OFICIAL	•		hh	2.0000	0.7273	11.68	8.49
0101010005	PEON			hh	8.0000	2.9091	10.51	30.57
	Materiales	•						53.94
02070100010002	PIEDRA CHANG	CADA 1/2"		m3		0.7600	50.05	38.04
02070200010002	ARENA GRUES	•		m3		0.5100	70.00	35.70
0207070002	AGUA			m3		0.1840	15.00	2.76
0213010001	CEMENTO POF	RTLAND TIPO I (42.5 kg)		bot		8.6600	18.86	163.33
								239.83
	Equipos							
0301010006	DESGASTE DE	HERRAMIENTAS		%mo		3.0000	53.94	1.62
03012900030004	MEZCLADORA	DE CONCRETO 9-11 P3		fum	1.0000	0.3636	18.00	6.54
								8.16
06.01.06	CONCRETO M	UROS Pc=175 kg/cm2, E= 15 CM						
Rendimiento	m3/DIA	22.0000	EQ.	22.9000		Costo unitario directo por : m3	301.93	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
	Mano de Obra	•						
0101010003	OPERARIO			hh	3.0000	1.0909	13.64	14.88
0101010004	OFICIAL			hh	2.0000	0.7273	11.68	8.49
	PEON							

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAIAMARCA PROV.: CAIAMARCA DPTO.: CAIAMARCA

recna: EN	ENO, 2013						
	Materiales						
02070100010002	PIEDRA CHANCADA 1/2"		.m3		0.7600	50.05	38.04
02070200010002	ARENA GRUESA		ൺ3		0.5100	70.00	35.70
0207070002	AGUA		m3		0.1840	15.00	2.76
0213010001	CEMENTO PORTLAND TIPO I (42.5 kg)		bol		8.6600	18.86	163.33
							239.83
	Equipos						
0301010006	DESGASTE DE HERRAMIENTAS		%пю		3.0000	53.94	1.62
3012900030004	MEZCLADORA DE CONCRETO 9-11 P3		hree	1.0000	0.3636	18.00	6.54
06.01.07	SELLADO DE JUNTAS						8.16
Rendimiento	m/DIA 250.0000	EQ.	250.0000		Costo unitario directo por : m	6.93	
Código	INSUMO		Unidad	Cuadrilla	Cantidad	Precio	Parcial S/.
	Mano de Obra					s/.	
0101010003	OPERARIO		hh	0.5000	0.0160	13.64	0.22
0101010005	PEON		hh.	6.0000	0.1920	10.51	2.02
							2.24
	Materiales			•			
201040003	KEROSENE		gali		0.0141	13.00	0.18
2010500010001	ASFALTO RC-250		gali		0.0895	16.00	1.43
0201050006	leña		und		0:0565	2.00	0.11
02070200010002	ARENA GRUESA		m3		0:0072	70.00	0.50
							2.22
	Equipos						
0301010006	DESGASTE DE HERRAMIENTAS		%mo		3:0000	2.24	0.07
03011400060004	COMPRESORA NEUMATICA 175 PCM		hm	1.0000	0.0320	75.00	2.40
06.01.08	TARRAJEO						2.47
Rendimiento	m2/DIA 15.6000	ΈQ.	15,0000		Costo unitario	15.42	
					directo por : m2	Precio	
Código	INSUMO		Unidad	Cuadrilla	Cantidad	\$/.	Parcial S/.
	Mano de Obra						
0101010003	OPERARIO		hh	1.0000	0.5333	13.64	7.27
0101010005	PEON		hih	0.5000	0.2667	10.51	2.80 10.07
	Materiales						10.07
02070200010001	ARENA FINA	^	m3		0.0096	70.00	0.67
0213010001	CEMENTO PORTLAND TIPO II (42.5 kg)		bol		0.2321	18.86	4.38
	•						5.05
	Equipos						
0301010006	DESGASTE DE HERRAMIENTAS		% 1710		3.0000	10.07	0.30
							0.30

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

							_	
06.02.01	ENCOFRADO Y	DESENCOFRADO						
Rendimiento	m2/DIA	8.0000	EQ.	8.0000		Costo unitario directo por : m2	36.23	
							One size	
Código	INSUMO			Unidad	Cuadrilla	Cantided	Precio S/.	Parcial S/.
	Mano de Obra							
0101010003	OPERARIO			hh	1.0000	1.0000	13.64	13.64
0101010004	OFICIAL			hh	1:0000	1.0000	11.68	11.68
	Materiales							25.32
02040100010003		RO NACIONAL Nº 16		kg		0.2000	3.80	0.76
02041200010004		MADERA CON CABEZA DE 2 1/2"		kg		0.1500	3.95	0.59
0231090002	MADERA EUCA	LIPTO		p2		4.0000	2.20	8.80
								10.15
	Equipos							
0301010006	DESGASTE DE H	HERRAMIENTAS		%mo		3.0000	25.32	0.76
								0.76
06.02.02	ACERO CORRU	GADO DE 1/4"						
Rendimiento	kg/DIA	250.0000	€Q.	250,0000		Costo unitario directo por : kg	45.45	
								
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra						٠,٠	
0101010003	OPERARIO			hh	1.0000	0.0320	13.64	0.44
0101010004	OFICIAL			hh	1.0000	0.0320	11.68	0.37
		•						0.81
	Materiales							
02040100010003		RO NACIONAL Nº 16		kg		0.0600	3.80	0.23
02040300030005	ACERO CORRU	SADO 1/4" fy=4200kg/cm2		ton		1.7100	25.95	44.37 44.60
	Equipos							77.00
0301010006	DESGASTE DE 1	TERRAMIENTAS		%то		5.0000	0.81	0.04
								0.04
06.02.03	ACERO CORRU					Costo unitario		
Rendimiento	kg/DIA	250,0000	EQ.	250,0000		directo por : kg	4.05	
			•				(ha ain	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra							
0101010003	OPERARIO			hh	1.0000	0:0320	13.64	0.44
0101010004	OFICIAL			hh	1.0000	0.0320	11.68	0.37
	Materiales							0.81
02040100010003		RO NACIONAL Nº 16		kg		0.0600	3.80	0.23
02040300010001		GADO fy = 4200 kg/cm2 GRADO 60 D	E 3/8" X 9 m	var		0.2050	14.50	2.97
				•		, -		3.20

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

Equipos DESGASTE DE HERRAMIENTAS %mo 5.00000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 5.00000 5.0000 5.00000 5.00000 5.00000 5.00000 5.000000 5.00000 5.00000	0.81 1.87 Precio 5/. 13.64 11.68 3.80 6.80	0.04 0.04 Parcial S/. 0.44 0.37 0.81 0.23 0.79 1.02
0301010006 DESGASTE DE HERRAMIENTAS %mo 5.0000 06.02.04 ACERO CORRUGADO 1/2* Rendimiento kg/DIA 250.0000 EC 250.0000 EC 250.0000 Costo unitario directo por : kg Código INSUMO Unidad Casadrilla Cantidad Mano de Obra 0101010003 OPERARIO	1.87 Precia 5/. 13.64 11.68	0.04 Percial S/. 0.44 0.37 0.81 0.23 0.79 1.02
Rendimiento kg/DIA 250.0000 EQ. 250.0000 Costo unitario directo por : kg Código INSUMO Unided Coadrilla Cantidad Mano de Obra 0101010003 OPERARIO inh 1.0000 0.0320 0101010004 OFICIAL inh 1.0000 0.0320 Materiales 02040100010003 ALAMBRE NEGRO NACIONAL N° 16 kg 0.0600 02040300010043 ACERO CORRUGADO DE 1/2" fy = 4200 kg/cm2 var 0.1166 Equipos 0301010006 DESGASTE DE HERRAMIENTAS %mixo 5.0000	Precio 5/. 13.64 11.68 3.80 6.80	0.44 0.37 0.81 0.23 0.79 1.02
Rendimiento kg/DIA 250.0000 EQ. 250.0000 Costo unitario directo por : kg Código INSUMO Unided Coadrilla Cantidad Mano de Obra 0101010003 OPERARIO inh 1.0000 0.0320 0101010004 OFICIAL inh 1.0000 0.0320 Materiales 02040100010003 ALAMBRE NEGRO NACIONAL N° 16 kg 0.0600 02040300010043 ACERO CORRUGADO DE 1/2" fy = 4200 kg/cm2 var 0.1166 Equipos 0301010006 DESGASTE DE HERRAMIENTAS %mixo 5.0000	Precio 5/. 13.64 11.68 3.80 6.80	0.44 0.37 0.81 0.23 0.79 1.02
Código INSUMO Unidad Caadrilla Cantidad Mano de Obra	5/. 13.64 11.68 3.80 6.80	0.44 0.37 0.81 0.23 0.79 1.02
Mano de Obra	13.64 11.68 3.80 6.80	0.44 0.37 0.81 0.23 0.79 1.02
0101010003 OPERARIO hh 1,0000 0.0320 0101010004 OFICIAL hh 1,0000 0.0320 Materiales 02040100010003 ALAMBRE NEGRO NACIONAL N* 16 kg 0.0600 02040300010043 ACERO CORRUGADO DE 1/2" fy = 4200 kg/cm2 var 0.1166 Equipos 0301010006 DESGASTE DE HERRAMIENTAS %IRIO 5.0000	11.68 3.80 6.80	0.37 0.81 0.23 0.79 1.02
0101010004 OFICIAL hh 1.0000 0.0320 Materiales 02040100010003 ALAMBRE NEGRO NACIONAL N° 16 kg 0.0600 02040300010043 ACERO CORRUGADO DE 1/2" fy = 4200 kg/cm2 var 0.1166 Equipos 0301010006 DESGASTE DE HERRAMIENTAS %mo 5.0000	11.68 3.80 6.80	0.37 0.81 0.23 0.79 1.02
Materiales	3.80 6.80	0.23 0.79 1.02
02040100010003 ALAMBRE NEGRO NACIONAL N° 16 kg 0.0600 02040300010043 ACERO CORRUGADO DE 1/2" fy = 4200 kg/cm2 var 0.1166 Equipos 0301010006 DESGASTE DE HERRAMIENTAS %IRIO 5.0000	6.80	0.79 1.02
02040300010043 ACERO CORRUGADO DE 1/2" fy = 4200 kg/cm2 var 0.1166 Equipos 0301010006 DESGASTE DE HERRAMIENTAS %fillo 5.0000	6.80	0.79 1.02
Equipos 0301010006 DESGASTE DE HERRAMIENTAS %INO 5.0000		1.02
0301010006 DESGASTE DE HERRAMIENTAS %TRIO 5.0000	0.81	
0301010006 DESGASTE DE HERRAMIENTAS %TRIO 5.0000	0.81	0.04
3,000	0.81	0.04
OC OR OF CONCENTY OF TAKEN AND THE ARMS		0.04
06.02.05 CONCRETO Pc=210 kg/cm2, E=10 CM		
Rendimiento m3/DIA 18.0000 EQ 18.0000 Costo unitario directo por : m3	348.63	
Código INSUMO Unidad Cuadrilla Cantidad	Precio	Parcial S/
Mano de Obra	s/.	
0101010003 OPERARIO 5hh 2:0000 0.8889	13.64	12.12
0101010004 OFICIAL hh 1.0000 0.4444	11.68	5.19
0101010005 PEON hh 12.0008 5.3333	10.51	56.05
Marie 1.4		73.36
Materiales		
02070100010002 PIEDRA CHANCADA 1/2" m3 0.8500	50.05	42.54
02070200010002 ARENA GRUESA m3 0.4200 0207070002 AGUA m3 0.1840	70.00	29.40
Oliona Charles and the first the fir	15.00	2.76
0213010001 CEMENTO PORTLAND TIPO (425 kg) 501 9.7400	18.86	183.70 258.40
Equipos		2041-70
0301010006 DESGASTE DE HERRAMIENTAS %ITIO 3.0000	73.35	2.20
03012900010002 VIBRADOR DE CONCRETO 4 HP 1.35" hm 1:0000 0.4444	15.00	6.67
03012900030004 MEZCLADORA DE CONCRETO 9-11 P3 hm 1.0000 0.4444	18.00	8.00
		16.87
06.03.01 CONFORMACION DE BASE E= 10 CM		
Rendimiento m2/DIA 200.0000 EQ. 200.0000 Costo unitario directo por : m2.	11.26	•
Código INSUMO Unidad Cuadrilla Cantidad	Precio	Parcial S/
Mano de Obra	s/.	
	13.64	0.55
0101010004 OFICIAL hb 1.0000 0.0400	11.68	0.33
0101010005 PEON hh 8.0000 0.3200	10.51	3.36
		4.38
Ernesto H. Muñoz Sánchez/Ornar M. Jaime:Retiaza ANEXOS: COSTOS U	INITARIOS	

Tesis : "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

rection 2.1								
	Materiales			_				
02070300010003	AFIRMADO			m3		0.1200	51.91	6.23 6.23
	Equipos							
0301010006	DESGASTE DE HE	RRAMIENTAS		%mo		3.0000	4.38	0.13
03010300060007	PLANCHA COMP	ACTADORA		hon	1.0000	0:0400	13.00	0.52 0.65
06.03.02	ENCOFRADO Y D	ESCENCOFRADO						0.03
Rendimiento	m2/DIA	3.0000	EQ.	8.0000		Costo unitario directo por : m2	36.23	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra						371	
0101010003	OPERARIO			hh	1.0000	1.0000	13.64	13.64
0101010004	OFICIAL			hh	1.0000	1.0000	11.68	11.68
								25.32
	Materiales							
02040100010003		NACIONAL Nº 16		kg		0.2000	3.80	0.76
02041200010004		ADERA CON CABEZA DE 2 1/2"		kg		0.1500	3.95	0.59
0231090002	MADERA EUCALI	PTO		p2		4:0000	2.20	8.80
	Equipos							10,15
0301010006	DESGASTE DE HE	RRAMIENTAS		%по		3.0000	25.32	,0.76
								0.76
06.03.03	ACERO CORRUG	ADO 1/4*						
Rendimiento	kg/DIA	250.0000	EQ.	250,9000		Costo unitario directo por : kg	12.71	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra							
0101010003	OPERARIO			hh	1.0000	0.0320	13.64	0.44
0101010004	OFICIAL			hh .	1.0000	0.0320	11.68	0.37
	Materiales							0.81
02040100010003	ALAMBRE NEGRO	D NACIONAL Nº 16		kg		0.0600	3.80	0.23
02040300010043	ACERO CORRUGA	ADO DE 1/2" fy = 4200 kg/cm2		var		1.7100	6.80	11.63
	P1							11.86
0301010006	Equipos DESGASTE DE HE	PDAR4ICATTAC		·		5		
0301010000	DESCRIPT DE ME	ULMIAN ELAFAD		76 mo		5.0000	0.81	0.04 0.04
06.03.04	ACERO CORRUGA	ADO 3/8"			•			
Rendimiento	kg/DIA	250.0000	EQ.	250,0000		Costo unitario directo por : kg	4.05	
Código	INSUMO .			Unidad	Cuadrilla	Cantidad	Precio	Parcial S/.
-	Mano de Obra						s/.	- u. car 3/.
0101010003	OPERARIO			ħħ	1.0000	0.0320	13.64	0.44
					2,5000	0.0320	13.04	V.44
0101010004	OFICIAL			hh	1.0000	0.0320	11.68	0.37

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

	Materiales						
2040100010003	ALAMBRE NEGRO:NACIONAL Nº 16		ikg		0:0600	3.80	0.23
		210#¥0	_		0.2050	14.50	
02040300010001	ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60 DE	: 3/8° X 9 m	Vär		0.2050	14.50	2.97 3.20
	Equipos						
0301010006	DESGASTE DE HERRAMIENTAS		%mo		5.0000	0.81	0.04
06.03.05	ACERO CORRUGADO 5/8" FY=4200KG/CM2						0.04
Rendimiento	kg/DIA 250.0000	EQ.	250,0000		Costo unitario directo por : kg	4.05	
Cód igo	INSUMO	0	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial Sy
	Mano de Obra					•	
0101010003	OPERARIO		tih	1.0000	0.0320	13.64	0.44
0101010004	OFICIAL		hh	1.0000	0.0320	11.68	0.37 0.81
	Materiales						
2040100010003	ALAMBRE NEGRO NACIONAL Nº 16		kg		0.0600	3.80	0.23
02040300010001	ACERO CORRUGADO fy = 4200 kg/cm2-GRADO 60 D	3/8"X9m	ASL		0.2050	14.50	2.97
	Equipos						3.20
0301010006	DESGASTE DE HERRAMIENTAS		%mo		5.0000	0.81	0.04
							0.04
06.03.06	CONCRETO LOSA FONDO fc=175 kg/cm2 E=15cm				Costo unitario		
Rendimiento	m3/DIA 22.0000	EQ.	22.0000		directo por : m3	301.93	
Código	INSUMO		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
	Mano de Obra					٠,,	
0101010003	OPERARIO		hh	3.0000	1.0909	13.64	14.88
0101010004	OFICIAL		'hh	2.0000	0.7273	11.68	8.49
0101010005	PEON		hh	8.0000	2.9091	10.51	30.57
	Materiales						53.94
02070100010002	PIEDRA CHANCADA 1/2"		m3		0.7600	50.05	38.04
2070200010002	ARENA GRUESA		m3		0.5100	70.00	35.70
207070002	AGUA		m3		0.1840	15.00	2.76
0213010001	CEMENTO PORTLAND TIPO I (42.5 kg)		boi		8.6600	18.86	163.33
	Equipos					•	239.83
301010006	DESGASTE DE HERRAMIENTAS		%mo		3.0000	53.94	1.62
3012900030004	MEZCLADORA DE CONCRETO 9-11 P3		रेका	1.0000	0.3636	18.00	6.54

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

06.03.07		UROS f'c=175 kg/cm2, E=15CM				Costo unitario		
Rendimiento	m3/DIA	22,0000	EQ.	22.0000		directo por : m3	301.93	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra	•					-,.	
0101010003	OPERARIO			"hh	3.0000	1.0909	13.64	14.88
0101010004	OFICIAL			th	2:0000	0.7273	11.68	8.49
0101010005	PEON			hh	8.0000	2.9091	10.51	30.57
								53.94
	Materiales							
02070100010002	PIEDRA-CHAN	CADA 1/2"		គា3		0.7600	50.05	38.04
02070200010002	ARENA GRUES	5A		m3		0.5100	70.00	35.70
0207070002	AGUA	•		m3	•	0.1840	15.00	2.76
0213010001	CEMENTO PO	RTLAND TIPO I (42.5 kg)		bal		8.6600	18.86	163.33
								239.83
	Equipos							
0301010006		HERRAMIENTAS	. (%по		3.0000	53.94	1.62
03012900030004	MEZCLADOKA	NDE CONCRETO 9-11 P3		hun	1.0000	0.3636	18.00	6.54
06 07 68	CELLADO DE	HINNER						8.16
06.03.08	SELLADO DE					Costo unitario		
Rendimiento	m/DIA	250.0000	EQ.	250.0000		directo por : m	6.93	
Código	INSUMO			Unided	Cuadrilla	Cantidad	Precio S/.	Parcial S/
		Mano de Obra					3/.	
0101010003	OPERARIO			hh.	0.5000	0.0160	13.64	0.22
0101010005	PEON			hh	6:0000	0.1920	10.51	2.02
								2.24
400404000	Materiales							
0201040003	KEROSENE			gal		0.0141	13.00	0.18
02010500010001	ASFALTO RC-2	250		gai .		0.0895	16.00	1.43
0201050006 02070200010002	leña ARENA GRUES	ca ·		und		0.0565	2.00	0.11
02070200010002	ANCINA GROL			m3		0.0072	70.00	0.50 2.22
	Equipos							
0301010006	DESGASTE DE	HERRAMIENTAS		%mo		3.0000	2.24	0.07
03011400060004	COMPRESORA	NEUMATICA 175 PCM		hm	1.0500	0.0320	75.00	2.40
05.03.00	74004770							2.47
06.03.09	TARRAJEO					Costo unitario		
Rendimiento	m2/DIA	15.0000	EQ.	15.0000		directo por : m2	15.42	
Código	INSUMO			Unidad	Czadrilia	Cantidad	Precio	Parcial S/
	Mano de Obr	3					s/.	
0101010003	OPERARIO			hh	1.0000	0.5333	13.64	7.27
							13.04	1.41
0101010005	PEON			hh	0.5000	0.2667	10.51	2.80

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

Fecha: EN	ERO, 2013				*****		
	Materiales						÷
02070200010001	ARENA FINA		m3		0.0096	70.00	0.67
0213010001	CEMENTO PORTLAND TIPO 1/(42:5 kg)		bol		0.2321	18.86	4.38
							5.05
	Equipos		* .				
0301010006	DESGASTE DE HERRAMIENTAS		%mo		3,0000	10.07	0.30
				· ·			0.30
06.04.01	ENCOFRADO Y DESENCOFRADO				Costo unitario		
Rendimiento	m2/DIA 8.0000	EQ.	3.0000		directo por : m2	36.23	
Código	INSUMO		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra					٠,,	
0101010003	OPERARIO		hh	1.0000	1.0000	13.64	13.64
0101010004	OFICIAL		hh	1.0000	1.0000	11.68	11.68
							25.32
	Materiales						
02040100010003	ALAMBRE NEGRO NACIONAL Nº 16		kg		0.2000	3.80	0.76
02041200010004	CLAVOS PARA MADERA CON CABEZA DE 2 1/2"		kg		0.1500	3.95	0.59
0231090002	MADERA EUCALIPTO		p2		4.0000	2.20	8.80
							10.15
	Equipos						
0301010006	DESGASTE DE HERRAMIENTAS		%mo		3:0000	25.32	0.76
06.04.02	ACERO CORRUGADO 1/4"						0.76
Rendimiento	kg/DIA 250.0000	EQ.	250,0000		Costo unitario	45.45	
	_				directo por : kg		•
Código	INSUMO		Unidad	Cuadrilla	Cantidad	Precio	Parcial S/.
	Mano de Obra					s/.	, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0101010003	OPERARIO		hh	1.0000	0.0320	13.64	0.44
0101010004	OFICIAL		hh	1.0000	0.0320	11.68	0.37
							0.81
22240400040004	Materiales						
02040100010003	ALAMBRE NEGRO NACIONAL Nº 16		kg		0.0600	3.80	0.23
02040300030005	ACERO CORRUGADO 1/4" fy=4200kg/cm2		ton		1.7100	25.95	44.37 44.60
	Equipos						44.00
0301010006	DESGASTE DE HERRAMIENTAS		% mo		5.0000	0.81	0.04
							0.04
06.04.03	ACERO CORRUGADO 3/8"						
Rendimiento	kg/DIA 250.0000	EQ.	250.0000		Gosto unitario directo por : kg	4.05	
Código	INSUMO		Unidad	Cuadrilla	Cantidad	Precio	Parcial S/.
	Mano de Obra			EM 1 FIEE	-uningu	s/. ·	ratual 3/,
	OPERARIO		hh	1.0000	0.0320	12 64	0.44
0101010003				فالناسان	リ レコンリ	13.64	0.44
0101010003 0101010004	OFICIAL			1_0000			
0101010004			hh	1.0000	0.0320	11.68	0.37 0.81

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

06 04 04	ACEBO CODDI	ICADO 1 <i>17</i> 4						0.04
06.04.04 Rendimiento	ACERO CORRI	250.0000	EO.	250.0000		Costo unitario	1.87	
n/ II	in service of					directo por : kg	Precio	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	s/.	Parcial S
3101010002	Mano de Obra	1		L.V.	1 0000	D 0220	42.64	
0101010003	OPERARIO OFICIAL			hh hh	1.0000	0.0320 0.0320	13.64	0.44
2101010004	Official			1111	1.0000	0.0520	11.68	0.37 0.81
	Materiales							
2040100010003	ALAMBRE NEG	FRO NACIONAL Nº 16		kg		0.0600	3.80	0.23
02040300010043	ACERO CORRU	JGADO :DE 1/2" fy = 4200 kg/cm2		ASL		0.1166	6.80	0.79
	Equipos							1.02
301010006	DESGASTE DE	HERRAMIENTAS		%mo		5.0000	0.81	0.04
								0.04
0 6.04.05 Rendimi e nto	ACERO CORRI	250,0000	EQ.	250,0000		Costo unitario	2 77	
iciaiiiieii.o	AGUIA	230,000	EVE	230,0000		directo por : kg	3.73	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio	Parcial S
	Mano de Obra	1					s/.	
0101010003	OPERARIO			hh:	1.0000	0.0320	13.64	0.44
0101010003 0101010004	OPERARIO OFICIAL			hh hh	1.0000 1.0000	0.0320 0.0320	13.64 11.68	0.44 0.37
0101010004	OFICIAL Materiales							0.37
0101010004	OFICIAL Materiales ALAMBRE NEG	GRO NACIONAL Nº 16		hh kg		0.0320	11.68 3.80	0.37 0.81 0.23
0101010004	OFICIAL Materiales ALAMBRE NEG	gro nacional n° 16 Igado fy = 4200 kg/cm2 grado 60 de 5,	/8° X 9 m	hh.		0.0320	11.68	0.37 0.81 0.23 2.65
0101010004	OFICIAL Materiales ALAMBRE NEG	i.	/8° X 9 m	hh kg		0.0320	11.68 3.80	0.37 0.81 0.23
0101010004 02040100010003 02040300010006	Materiales ALAMBRE NEG ACERO CORRE Equipos	i.	/8" X 9 m	hh kg		0.0320	11.68 3.80	0.37 0.81 0.23 2.65
0101010004 02040100010003 02040300010006	Materiales ALAMBRE NEG ACERO CORRE Equipos	IGADO fy = 4200 kg/cm2 GRADO 60 DE 5,	/8° x 9 m	hh kg var		0.0320 0.0600 0.0767	3.80 34.50	0.37 0.81 0.23 2.65 2.88 0.04
0101010004 02040100010003 02040300010006	Materiales ALAMBRE NEG ACERO CORRE Equipos	IGADO fy = 4200 kg/cm2 GRADO 60 DE 5, HERRAMIENTAS	/8" X 9 m	hh kg var		0.0320 0.0600 0.0767 5.0000	3.80 34.50	0.37 0.81 0.23 2.65 2.88
0101010004 02040100010003 02040300010006 0301010006	Materiales ALAMBRE NEC ACERO CORRE Equipos DESGASTE DE	IGADO fy = 4200 kg/cm2 GRADO 60 DE 5, HERRAMIENTAS		hh kg var		0.0320 0.0600 0.0767	3.80 34.50	0.37 0.81 0.23 2.65 2.88 0.04
0101010004 02040100010003 02040300010006 0301010006 06.04.06 Rendimiento	Materiales ALAMBRE NEC ACERO CORRE Equipos DESGASTE DE ACERO CORRE kg/DIA	IGADO fy = 4200 kg/cm2 GRADO 60 DE 5, HERRAMIENTAS JGADO 3/4"		hh kg var %mo		0.0320 0.0600 0.0767 5.0000	3.80 34.50 0.81	0.37 0.81 0.23 2.65 2.88 0.04
0101010004 02040100010003 02040300010006 0301010006 06.04.06 Rendimiento	Materiales ALAMBRE NEC ACERO CORRE Equipos DESGASTE DE	IGADO fy = 4200 kg/cm2 GRADO 60 DE 5, HERRAMIENTAS JGADO 3/4"		hh kg var %mo		0.0320 0.0600 0.0767 5.0000	3.80 34.50 0.81	0.37 0.81 0.23 2.65 2.88 0.04
0101010004 02040100010003 02040300010006 0301010006 Rendimiento	Materiales ALAMBRE NEG ACERO CORRE Equipos DESGASTE DE ACERO CORRE kg/DIA INSUMO Mano de Obra	IGADO fy = 4200 kg/cm2 GRADO 60 DE 5, HERRAMIENTAS JGADO 3/4° 250,0000		hh kg var %mo 250,0000	1.0000	0.0320 0.0600 0.0767 5.0000 Costo unitario directo por : kg	3.80 34.50 0.81 3.41	0.37 0.81 0.23 2.65 2.88 0.04
	Materiales ALAMBRE NEC ACERO CORRE Equipos DESGASTE DE ACERO CORRE kg/DIA	IGADO fy = 4200 kg/cm2 GRADO 60 DE 5, HERRAMIENTAS JGADO 3/4° 250,0000		hh kg var %mo 250,0000	1.0000	0.0320 0.0600 0.0767 5.0000 Costo unitario directo por : kg	3.80 34.50 0.81 3.41	0.37 0.81 0.23 2.65 2.88 0.04

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

	Materiales							
2040100010003		O NACIONAL Nº 16		kg		0.0600	3.80	0.23
2040300010007		ADO fy = 4200 kg/cm2 GRADO 60 DE 3	/4" X 9.m	var ,		0.0600	38.80	2.33
.24 (430012340)				,		•		2.56
	Equipos							
301010006	DESGASTE DE HE	ERRAMIENTAS	•	%mo		5.0000	0.81	0.04
6.04.07	CONCRETO Pc=2	210 kg/cm2 , E= 15 CR4						0.04
lendimiento	m3/DIA	18.0000	EQ.	18.0000		Costo unitario directo por : m3	348.63	
ódigo	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
	Mano de Obra							
101010003	OPERARIO			hb	2:0000	0.8889	13.64	12.12
101010004	OFICIAL			hh	1.0000	0.4444	11.68	5.19
101010005	PEON			hħ	12.0000	5.3333	10.51	56.05
								73.36
2070100010002	Materiales	1D4 1 /08		a		0.0500	50.05	40.54
2070100010002	PIEDRA CHANCA			m3 		0.8500	50.05	42.54
2070200010002	ARENA GRUESA AGUA			m3		0.4200	70.00	29.40
0213010001		LAND TIPO II (42.5 kg)		m3 bal		0.1840 9.7400	15.00 18.86	2.76 183.70
7213010001	CLIVICIA O FOR	CHAD HALO HAZZ KB)		·bGi		3.7400	10.00	258.40
	Equipos							
301010006	DESGASTE DE H	erramientas		%mo		3.0000	73.36	2.20
03012900010002	VIBRADOR DE C	ONCRETO 4 HP 1.35"		វិបា	1.0000	0.4444	15.00	6.67
3012900030004	MEZCLADORA D	E CONCRETO 9-11 P3		hm	1.0000	0.4444	18.00	8.00
06.05.01	CONFORMACIO	N DE BASE E= 10 CM						16.87
Rendimiento	m2/DIA	200.0000	EQ.	200,0000		Costo unitario directo por : m2	11.26	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
	Mano de Obra							
0101010003	OPERARIO			hh	1.0000	0.0400	13.64	0.55
0101010004	OFICIAL	•		hh	1.0000	0.0400	11.68	0.47
0101010005	PEON			hh.	8.0000	0.3200	10.51	3.36 4.38
	Materiales							
02070300010003	AFIRMADO			m3		0.1200	51.91	6.23
								6.23
	•							
2201010005	Equipos	T Popula busin part bus						
0301010006 03010300060007	Equipos DESGASTE DE H PLANCHA COMI			%mo fim:	1.0000	3:0000 0:0400	4.38 13.00	0.13

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

06.05.02		DESENCOFRADO				Costo unitario		
Rendimiento	m2/DIA	8.0000	EQ.	8.0000		directo por : m2	36.61	
Código	INSUMO			Unidad	Caadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra						٠,٠	
0101010003	OPERARIO			hh	1.0000	1.0000	13.64	13.64
0101010004	OFICIAL			bh	1.0000	1.0000	11.68	11.68
	Materiales							25.32
02040100010003		RO NACIONAL Nº 16		kg		0.3000	3.80	1.14
02041200010004		MADERA CON CABEZA DE 2 1/2"		kg		0.1500	3.95	0.59
0231090002	MADERA EUCA	LIPTO		p2		4.0000	2.20	8.80
		,						10.53
	Equipos							
0301010006	DESGASTE DE I	HERRAMIENTAS		%mo		3.0000	25.32	0.76 0.76
06.05.03	ACERO CORRU	GADO 1/4°						4,70
Rendimiento	kg/DIA	250,0000	EQ.	250.9000		Costo unitario directo por : kg	45.45	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra	•					٥,,	
0101010003	OPERARIO			ħħ	1:0000	9.0320	13.64	0.44
0101010004	OFICIAL			hh	1.0000	0.0320	11.68	0.37
	Materiales							0.81
02040100010003		RO NACIONAL 'N° 16		kg		0:0600	3.80	0.23
02040300030005		GADO 1/4" fy=4200kg/cm2		ton		1.7100	25,95	44.37
		, ,						44.60
	Equipos							
0301010006	DESGASTE DE	HERRAMIENTAS		%mo		5.0000	0.81	0.04 0.04
06.05.04	ACERO CORRU	GADO 3/8"						0.04
Rendimiento	kg/DIA	250,0000	EQ.	250.0000		Costo unitario directo por : kg	4.05	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra							
0101010003	OPERARIO			hh	1.0000	0.0320	13.64	0.44
0101010004	OFICIAL			hh	1.0000	0.0320	11.68	0.37
								0.81
	Materiales			_				
02040100010003		RO NACIONAL Nº 16	2 fa#¥ 0 —	kg		0.0600	3.80	0.23
02040300010001	ACERO CORRO	GADO fy = 4200 kg/cm2 GRADO 60 DE :	30 YAU	var		0.2050	14.50	2.97
	Equipos							3.20
0301010006		HERRAMIENTAS		%mo		5.0000	0.81	0.04
								0.04

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

06.05.05		SAS fc= 175 kg/cm2, E= 15 CM				Costo unitario		•
Rendimiento	m3/DIA	22.9000	EQ.	22.0000		directo por : m3	301.93	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra	1					-7-	
0101010003	OPERARIO			hh	3.0000	1.0909	13.64	14.88
0101010004	OFICIAL			hh	2.0000	0.7273	11.68	8.49
0101010005	PEON			hh	8.0000	2.9091	10.51	30.57
								53.94
	Materiales							
02070100010002	PIEDRA CHAN	CADA 1/2"		m3		0.7600	50.05	38,04
02070200010002	ARENA GRUES	SA.		m3		0.5100	70.00	35.70
0207070002	AGU A	•		m3		0.1840	15.00	2.76
0213010001	CEMENTO PO	RTLAND TIPO II (42.5 kg)		bol		8.6600	18.86	163.33
	Equipos							239,83
0301010006	DESGASTE DE	HERRAMIENTAS		%то		3.0000	53.94	1.62
03012900030004	MEZCLADORA	DE CONCRETO 9-11 P3		řim.	1.0000	0.3636	18.00	6.54
								8.16
06.05.06	CONCRETO M	UROS Fc=175 kg/cm2, E= 15 CM						
Rendimiento	m3/DIA	22.0000	EQ.	22.0000	•	Costo unitario directo por : m3	301.93	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra	1					٠,٠	
0101010003	OPERARIO	•		hh	3.0000	1.0909	13.64	14.88
0101010004	OFICIAL			hh	2.0000	0.7273	11.68	8.49
0101010005	PEON			hh	8.0000	2.9091	10.51	30.57
	Materiales							53.94
02070100010002	PIEDRA CHAN	CADA 1/7"		m3		0.7600	50.05	38.04
02070200010002	ARENA GRUES			m3		0.5100	70.00	38.04 35.70
0207070002	AGUA			m3		0.1840	15.00	2.76
0213010001	CEMENTO PO	RTLAND TIPO ((42.5 kg)		bol		8.6600	18.86	163.33
								239.83
	Equipos							
0301010006		HERRAMIENTAS		%mo		3.0000	53.94	1.62
03012900030004	MEZCLADORA	DE CONCRETO 9-11 P3		hen:	1.0000	0.3636	18.00	6.54
06.05.07	TARRAJEO							8.16
Rendimiento	m2/DIA	15.0000	EQ.	15.0000		Costo unitario directo por : m2	15,42	
Código	INSUMO			Unided	Coadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra	a .					•	
0101010003	OPERARIO			hh	1.0060	0.5333	13.64	7.27
0101010005	PEON			hh	0.5000	0.2667	10.51	2.80
								10.07

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

	Materiales							
02070200010001	ARENA FINA			:m3		0.0096	70.00	0.67
0213010001	CEMENTO PORT	LAND TIPO I (42.5 kg)		'bai		0.2321	18.86	4.38
								5.05
	Equipos							
0301010006	DESGASTE DE HE	RRAMIENTAS		%mo		3.9000	10.07	0.30
07.01	ACERO CORRUG	ADO 1/2"						0.30
Rendimiento	kg/ĎÍA	250.0000	EQ.	250.0000		Costo unitario directo por : kg	1.87	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
·	Mano de Obra						٠,,	
0101010003	OPERARIO			hh:	1.0000	0.0320	13.64	0.44
0101010004	OFICIAL			hh	1.0000	0.0320	11.68	0.37
	Materiales							0.81
02040100010003		O NACIONAL Nº 16		Give:		0.0600	3.80	0.22
02040300010043		ADO DE 1/2" fy = 4200 kg/cm2		kg var		0.1166	6.80	0.23 0.79
				7.3		0.1100	0.00	1.02
	Equipos							
0301010006	DESGASTE DE HE	RRAMIENTAS		%то		5.0000	0.81	0.04
								0.04
07.02	PLATINA 1" X 3/	16"						
Rendimiento	m/DIA	45.0000	EQ.	45.0000		Costo unitario directo por : m	7.42	•
Código	INSUMO	•		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
	Mano de Obra							
0101010003	OPERARIO			hh	1.0000	0.1778	13.64	2.43
0404040000	PEON			A. #	0.5000	0.0889	10.54	0.93
0101010005				hh	0.3000		10.51	
0101010002				nn	0.3000		10.51	3.36
	Materiales				6.3000			
02041600010002	PLATINA DE FIER			var	0.3000	0.1167	16.94	1.98
					0.3000			1.98 1.98
02041600010002	PLATINA DE FIER			var	0.3000	0.1167	16.94	1.98
02041600010002 0255080016	PLATINA DE FIER SOLDADURA DE	CELLOCORD		var	0.3000	0.1167	16.94	1.98 1.98
02041600010002 0255080016 0301010006	PLATINA DE FIER SOLDADURA DE Equipos DESGASTE DE HE	CELLOCORD ERRAMIENTAS		var kg	0.3000	0.1167 0.1800	16.94 11.00	1.98 1.98 3.96
02041600010002 0255080016 0301010006	PLATINA DE FIER SOLDADURA DE Equipos DESGASTE DE HE	CELLOCORD ERRAMIENTAS		var kg	0.3000	0.1167 0.1800 3.0000	16.94 11.00	1.98 1.98 3.96
02041600010002 0255080016 0301010006	PLATINA DE FIER SOLDADURA DE Equipos DESGASTE DE HE	CELLOCORD ERRAMIENTAS	EQ.	var kg %mo	0.3000	0.1167 0.1800	16.94 11.00	1.98 1.98 3.96
02041600010002 0255080016 0301010006	PLATINA DE FIER SOLDADURA DE Equipos DESGASTE DE HE	CELLOCORD ERRAMIENTAS	EQ.	var kg %mc	Coadrilla	0.1167 0.1800 3.0000 Costo unitario	16.94 11.00 3.36 8.93	1.98 1.98 3.96
02041600010002 0255080016 0301010006 07.03 Rendimiento	PLATINA DE FIER SOLDADURA DE Equipos DESGASTE DE HE PLATINA 2" X 3/ m/DIA	CELLOCORD ERRAMIENTAS	EQ.	var kg %mo: 40.0000		0.1167 0.1800 3.0000 Costo unitario directo por : m	16.94 11.00 3.36	1.98 1.98 3.96 0.10
02041600010002 0255080016 0301010006 07.03 Rendimiento	PLATINA DE FIER SOLDADURA DE Equipos DESGASTE DE HE PLATINA 2" X 3/ m/DIA INSUMO	CELLOCORD ERRAMIENTAS	EQ.	var kg %mo: 40.0000		0.1167 0.1800 3.0000 Costo unitario directo por : m	16.94 11.00 3.36 8.93	1.98 1.98 3.96 0.10

ANEXOS: COSTOS UNITARIOS

ANÁLISIS DE COSTOS UNITARIOS

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

Fecha: ENERO, 2013

Emesto H. Muñoz Sánchez/Omar M. Jaime Rebaza

recila. EN	ENO, 2013						
	Materiales						
255080016	SOLDADURA DE CELLOCORD		'kg		0.2500	11.00	2.75
271050140	PLATINAS DE FIERRO 3/16" X 2" X 6m		pza		0.1667	16.94	2.82
.,			P10				5.57
	Equipos						
301010006	DESGASTE DE HERRAMIENTAS		%mo		3.0000	3.26	0.10
7.04	PERFIL "L" 2" X 3/16"						0.10
Rendimiento	m/DIA 35,0000	EQ.	35.0000		Costo unitario directo por : m	18.04	
ódigo	INSUMO		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra					٠,٠	
101010003	OPERARIO		hh	1.0000	0.2286	13.64	3.12
101010005	PEON		hh.	0.5000	0.1143	10.51	1.20
							4.32
20402000	Materiales		_		0.1.557	cr. 00	40.04
204020009 255080016	ANGULO DE 2"X2"X3/16"X6m SOLDADURA DE CELLOCORD		Þ		0.1667	65.00	10.84
203060010	SOLDADOTAL DE CELEDOORD		kg		0.2500	11.00	2.75 13.59
	Equipos						
301010006	DESGASTE DE HERRAMIENTAS		% mo		3.0000	4.32	0.13
7.05	RIEL 4" X 4"						0.13
endimiento	m/DIA 20.0000	EQ.	20.0000		Costo unitario	122.79	
271411111111111111111111111111111111111	11,514	LQ	20000		directo por : m	124.73	
ódigo	INSUMO		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra					٠,٠	
101010003	OPERARIO		hh	1.0000	0.4000	13.64	5.46
101010005	PEON		ħħ	0.5000	0.2000	10.51	2.10
	Materiales						7.56
272010087	RIEL DE 4"X4"		.m.	•	1.0000	115.00	115.00
2, 2020-0,			414		1.0000	115.50	115.00
	Equipos						
301010006	DESGASTE DE HERRAMIENTAS		%mo		3.0000	7.56	0.23
08.01	NIVELACION Y COMPACTACION SUB-RASANTE						0.23
Rendimiento	m2/DIA 150.0000	EQ.	150,0000		Costo unitario directo por : m2	14.20	
Código	INSUMO		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra					٠,٠	
101010003	OPERARIO		hh	1.0000	0.0533	13.64	0.73
101010004	OFICIAL		hh	2.0000	0.1067	11.68	1.25
101010005	PEON		ħħ	8'0000	0.4267	10.51	4.48
	Materiales						6.46
2070300010003	AFRMADO						
			m3		0.1300	51.91	6.75

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

	Equipos							
0301010006	DESGASTE DE I	HERRAMIENTAS		%mo		3.0000	6.46	0.19
0301100007	COMPACTADO	RA VIBRATORIA TIPO PLANCHA 4 HP		hm	1.0000	0.0533	15.00	0.80
08.02	CONFORMACIO	ON DE BASE (E= 10CM)						0.99
Rendimiento	m2/DIA	200.0000	EQ.	200.0000		Costo unitario directo por : m2	11.26	
Código	INSUMO			Unidad	Caadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra	1					37.	
0101010003	OPERARIO			hh	1.0000	0:0400	13.64	0.55
0101010004	OFICIAL			hh	1.0000	0.0400	11.68	0.47
0101010005	PEON			hh	8.0000	0.3200	10.51	3.36
								4.38
	Materiales							
02070300010003	AFIRMADO			m3		0.1200	51.91	6.23
	Equipos							6.23
0301010006	DESGASTE DE	HERRAMIENTAS		%mo		3,0000	4.38	0.13
03010300060007	PLANCHA CON	APACTADORA		hen	1.0000	0.0408	13.00	0.52
							ž	0.65
08.03	ENCOFRADO Y	DESENCOFRADO DE VEREDAS						
Rendimiento	m2/DIA	55.0000	EQ.	55.0000		Costo unitario directo por : m2	11.65	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/	Parcial S/.
Código	INSUMO Mano de Obra	ı		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Código 0101010003				Unidad inn	Coadrilla	Cantidad '0.1455		Parcial S/.
	Mano de Obra	· · · .					s/.	
0101010003	Mano de Obra OPERARIO OFICIAL	· · · .		λ'n	1.0000	0.1455	s/. 13.64	1.98
0101010003 0101010004	Mano de Obra OPERARIO OFICIAL Materiales			hin his	1.0000	0.1455 0.1455	s/. 13.64 11.68	1,98 1.70 3.68
0101010003 0101010004 02040100010004	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEG	FRO NACIONAL Nº 8		nin his kg	1.0000	0.1455 0.1455 0.0080	s/. 13.64 11.68	1.98 1.70 3.68 0.03
0101010003 0101010004 02040100010004 02041200010005	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEG CLAVOS PARA	FRO NACIONAL Nº 8 MADERA CON CABEZA DE 3"		nin hib kg kg	1.0000	0.1455 0.1455 0.0080 0.0080	3.64 11.68 3.80 3.50	1.98 1.70 3.68 0.03
0101010003 0101010004 02040100010004	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEG CLAVOS PARA	FRO NACIONAL Nº 8		nin his kg	1.0000	0.1455 0.1455 0.0080	s/. 13.64 11.68	1.98 1.70 3.68 0.03 0.03 7.80
0101010003 0101010004 02040100010004 02041200010005	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEG CLAVOS PARA MADERA TORN	FRO NACIONAL Nº 8 MADERA CON CABEZA DE 3"		nin hib kg kg	1.0000	0.1455 0.1455 0.0080 0.0080	3.64 11.68 3.80 3.50	1.98 1.70 3.68 0.03
0101010003 0101010004 02040100010004 02041200010005	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEG CLAVOS PARA MADERA TORM	FRO NACIONAL Nº 8 MADERA CON CABEZA DE 3"		nn hb kg kg p2	1.0000	0.1455 0.1455 0.0080 0.0080 1.9500	3.80 3.50 4.00	1.98 1.70 3.68 0.03 0.03 7.80 7.86
0101010003 0101010004 02040100010004 02041200010005 0231010004	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEG CLAVOS PARA MADERA TORM	ero nacional nº 8 Madera con Cabeza de 3º Hillo para encofrados		nin hib kg kg	1.0000	0.1455 0.1455 0.0080 0.0080	3.64 11.68 3.80 3.50	1.98 1.70 3.68 0.03 0.03 7.80 7.86
0101010003 0101010004 02040100010004 02041200010005 0231010004	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEG CLAVOS PARA MADERA TORM Equipos DESGASTE DE I	ero nacional nº 8 Madera con Cabeza de 3º Hillo para encofrados		nn hb kg kg p2	1.0000	0.1455 0.1455 0.0080 0.0080 1.9500	3.80 3.50 4.00	1.98 1.70 3.68 0.03 0.03 7.80 7.86
0101010003 0101010004 02040100010004 02041200010005 0231010004	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEG CLAVOS PARA MADERA TORM Equipos DESGASTE DE I	FRO NACIONAL Nº 8 MADERA CON CABEZA DE 3" NILLO PARA ENCOFRADOS HERRAMIENTAS	EQ.	nn hb kg kg p2	1.0000	0.1455 0.1455 0.0080 0.0080 1.9500	3.80 3.50 4.00	1.98 1.70 3.68 0.03 0.03 7.80 7.86
0101010003 0101010004 02040100010004 02041200010005 0231010004 0301010006	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEG CLAVOS PARA MADERA TORM Equipos DESGASTE DE I	ero nacional nº 8 Madera con Cabeza de 3º NILLO PARA ENCOFRADOS HERRAMIENTAS = 140 kg/cm2	EQ.	nn hb kg kg p2	1.0000	0.1455 0.1455 0.0080 0.0080 1.9500 3.0000	5/. 13.64 11.68 3.80 3.50 4.00 3.68	1.98 1.70 3.68 0.03 0.03 7.80 7.86
0101010003 0101010004 02040100010004 02041200010005 0231010004 0301010006 08.04 Rendimiento	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEG CLAVOS PARA MADERA TORM Equipos DESGASTE DE I CONCRETO f'c m3/DIA	FRO NACIONAL Nº 8 MADERA CON CABEZA DE 3º NILLO PARA ENCOFRADOS HERRAMIENTAS = 140 kg/cm2 25.0000	ξQ.	nn hh kg kg p2 %mo	1.0000 1.0000	0.1455 0.1455 0.0080 0.0080 1.9500 3.0000 Costo unitario directo por : m3	3.80 3.50 4.00 3.68	1.98 1.70 3.68 0.03 0.03 7.80 7.86 0.11
0101010003 0101010004 02040100010004 02041200010005 0231010004 0301010006 08.04 Rendimiento	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEG CLAVOS PARA MADERA TORM Equipos DESGASTE DE I CONCRETO f'c m3/DIA INSUMO	FRO NACIONAL Nº 8 MADERA CON CABEZA DE 3º NILLO PARA ENCOFRADOS HERRAMIENTAS = 140 kg/cm2 25.0000	EQ.	nn hh kg kg p2 %mo	1.0000 1.0000	0.1455 0.1455 0.0080 0.0080 1.9500 3.0000 Costo unitario directo por : m3	5/. 13.64 11.68 3.80 3.50 4.00 3.68	1.98 1.70 3.68 0.03 0.03 7.80 7.86 0.11
0101010003 0101010004 02040100010004 02041200010005 0231010004 0301010006 08.04 Rendimiento Código	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEG CLAVOS PARA MADERA TORN Equipos DESGASTE DE I CONCRETO f'c m3/DIA INSUMO Mano de Obra	FRO NACIONAL Nº 8 MADERA CON CABEZA DE 3º NILLO PARA ENCOFRADOS HERRAMIENTAS = 140 kg/cm2 25.0000	EQ.	kg kg p2 %mo	1.0000 1.0000 Cuadrilla	0.1455 0.1455 0.0030 0.0080 1.9500 3.0000 Costo unitario directo por : m3	3.80 3.50 4.00 3.68	1.98 1.70 3.68 0.03 0.03 7.80 7.86 0.11 0.11
0101010003 0101010004 02040100010004 02041200010005 0231010004 0301010006 08.04 Rendimiento Código 0101010003	Mano de Obra OPERARIO OFICIAL Materiales ALAMBRE NEG CLAVOS PARA MADERA TORM Equipos DESGASTE DE I CONCRETO f'c m3/DIA INSUMO Mano de Obra OPERARIO	FRO NACIONAL Nº 8 MADERA CON CABEZA DE 3º NILLO PARA ENCOFRADOS HERRAMIENTAS = 140 kg/cm2 25.0000	ξQ.	inn hh kg kg kg p2 %mo 25.0000 Unidad	1.0000 1.0000 Cuadrilla 2.0000	0.1455 0.0030 0.0080 0.0080 1.9500 Costo unitario directo por : m3 Cantidad	3.80 3.50 4.00 3.68 262.79 Precio s/.	1.98 1.70 3.68 0.03 0.03 7.80 7.86 0.11 0.11 Parcial S/.

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

			•						
	Materiales								
02070100010002	PIEDRA CHANC	:ADA 1/2"			:m3		0.7600	50.05	38.04
02070200010002	ARENA GRUESA	A.			m3		0.4700	70.00	32.90
0207070002	AGUA		•		m3		0.1840	15.00	2.76
0213010001	CEMENTO POR	TLAND TIPO II (42:5 kg)			bot		7.5700	18.86	142.77
									216.47
•	Equipos								
0301010006	DESGASTE DE F	HERRAMIENTAS			%mo		3.0000	39.38	1.18
03012900030004	MEZCLADORA	DE CONCRETO 9-11 P3			hm	1.0000	0.3200	18.00	5.76
									6.94
08.05	SELLADO DE J	TUNTAS							
Rendimiento	m/DtA	250.0000		EQ.	250.0000		Costo unitario directo por : m	6.93	
							ancew por . m		
Código	OMUZNI				Unidad	Cuadrilla	Cantidad	Precio	Parcial S/.
	Mano de Obra	•						s/.	•
0101010003	OPERARIO				ihih	0.5000	0.0160	13.64	0.22
0101010005	PEON				hb	6/0000	6.1920	10.51	2.02
									2.24
	Materiales		• ,						
0201040003	KEROSENE				gat		0.0141	13.00	0.18
02010500010001	ASFALTO RC-25	50		•	gai	_	0.0895	16.00	1.43
0201050006	leña				und		0.0565	2.00	0.11
02070200010002	ARENA GRUES	A			m3		0.0072	70.00	0.50
									2.22
	Equipos		:						
0301010006	DESGASTE DE F	HERRAMIENTAS			%mo		3.0000	2.24	0.07
03011400060004	COMPRESORA	NEUMATICA 175 PCM			hm	1.0000	0.0320	75.00	2.40
									2.47
09.01	EXCAVACION	MANUAL		٠					
Rendimiento	m3/DIA	3.0000		EQ.	3.0000		Costo unitario directo por : m3	28.87	
•									
Código	INSUMO				Unidad	Cuadrilla	Cantidad	Precio	Parcial S/.
	Mano de Obra							s/.	
0101010005	PEON				hh	1.0000	2.6667	10.51	28.03
									28.03
	Equipos								
0301010006	DESGASTE DE I	HERRAMIENTAS			%mo		3.0000	28.03	0.84
									0.84

Tesis: "FAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

	1000 1001 V	continue or a cross						
09.02 Rendimiento	m2/DIA	COMPACTACION 150:0000	EQ.	150.0000		Costo unitario	14.20	
Rendimiento	mz/uiA	130.0000	EQ	130.000		directo por : m2		
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra						•	
0101010003	OPERARIO			hh	1.0000	0.0533	13.64	0.73
0101010004	OFICIAL			hh	2.0000	0.1067	11.68	1.25
0101010005	PEON			hh	8.0000	0.4267	, 10.51	4.48
								6.46
	Materiales							
02070300010003	AFIRMADO			m3		0.1300	51.91	6.75
								6.75
	Equipos							
0301010006	DESGASTE DE I	HERRAMIENTAS		%mo		3.0000	6.46	0.19
0301100007	COMPACTADO	RA VIBRATORIA TIPO PLANCHA 4 HP		hm.	1.0000	0.0533	15.00	0.80
								0.99
09.03	CONFORMACI	ON DE BASE (E= 10CM)				Conta contact		
Rendimiento	m2/DIA	200.0000	EQ.	200.0003		Costo unitario directo por : m2	11.26	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio	Parcial S/.
	Mano de Obra						s/.	•
0101010003	OPERARIO			hh	1.0000	0.0400	13.64	0.55
0101010004	OFICIAL	•		hh	1.0000	0.0400	11.68	0.47
0101010005	PEON			hh	8.0000	0.3200	10.51	3.36
								4.38
	Materiales							
02070300010003	AFIRMADO			m3		0.1200	51.91	6.23
	Equipos							6.23
0301010006		HERRAMIENTAS		%mo		3.0000	4.38	0.13
03010300060007	PLANCHA COM	1PACTADO RA		han	1.0000	0.0400	13.00	0.52
								0.65
09.04	ENCOFRADO Y	DESENCOFRADO						
Rendimiento	m2/DIA	16.0000	EQ.	16.0000		Costo unitario	21.79	
						directo por : m2		
Código	INSUMO			Unidad	Coadrilla	Cantidad	Precio	Parcial S/.
•	Mano de Obra			· · · · · · · · · · · · · · · · · · ·			s/.	r urcan sy i
0101010003	OPERARIO			hh	1.0000	0:5000	13.64	6 00
0101010004	OFICIAL			thh	1.0000	0.5000	11.68	6.82 5.84
	21 Turn 194				_5000	4.550	11.00	12.66
	Materiales							24.40
02040100010003		RO NACIONAL Nº 16		kg		0.3000	3.80	1.14
02041200010004		MADERA CON CABEZA DE 2 1/2"		kg		0.1290	3.95	0.51
0231090002	MADERA EUCA	·		p2		3.2280	2.20	7.10
				-		-		8.75

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

	Equipos			•				
0301010006	DESGASTE DE	HERRAMIENTAS		%mo		3:0000	12.66	0.38
								0.38
09.05	CONCRETO E	DE BASE Fc=175 kg/cm2, E= 15 CM						
Rendimiento	m3/DIA	22.0000	EQL	22.0000		Costo unitario directo por : m3	301.93	
Código	INSUMO			Unidad	Coadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obr	à						
0101010003	OPERARIO			hh	3.0000	1.0909	13.64	14.88
0101010004	OFICIAL			bh	2:0000	0.7273	11.68	8.49
0101010005	PEON			itatu	8.0000	2.9091	10.51	30.57
								53.94
	Materiales							
02070100010002	PIEDRA CHAN	ICADA 1/2*		m3		0.7600	50.05	38.04
02070200010002	ARENA GRUE	SA		m3		0.5100	70.00	35.70
0207070001	AGUA PUESTA	A EN OBRA		m3		0.1840	15.00	2.76
0213010001	CEMENTO PO	RTLAND TIPO II (42.5 kg)		bol		8.6600	18.86	163,33
								239.83
	Equipos							
0301010006	DESGASTE DE	HERRAMIENTAS		%mo		3.0000	53.94	1.62
03012900030004	MEZCLADORA	A DE CONCRETO 9-11 P3		hm	1_0000	0.3636	18.00	6.54
09.06	CONCRETO S	ARDINEL fc=175 kg/cm2 E=15cm						8.16
Rendimiento	m3/DIA	22.0000	EQ.	22.0000		Costo unitario	301.93	
C£4!	INCURSO			**74-3		directo por : m3	Precio	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	s/.	Parcial S/.
	Mano de Obi	73						
0101010003	OPERARIO			ስከ	3.0000	1.0909	13.64	14.88
0101010004	OFICIAL PEON			hh ==	2.0000	0.7273	11.68	8.49
0101010005	PEON			hih	8.0000	2.9091	10.51	30.57
	Materiales							53.94
02070100010002	PIEDRA CHAN	€CADA 1/2"		m3		0.7600	50.05	38.04
02070200010002	ARENA GRUE			m3		0.5100	70.00	35.70
0207070002	AGUA			m3		0.1840	15.00	2.76
0213010001		PRTLANDTIPO I (42.5 kg)		boi		8.6600	18.86	163.33
		. 		-				239.83
	Equipos							
				~·		3.0000	53.94	1.63
0301010006	DESGASTE DE	HERRAMIENTAS		% mo		3.0000	JJ.7 4	1.62
0301010006 03012900030004		HERRAMIENTAS A DE CONCRETO 9-11 P3		hm	1.0000	0.3636	18.00	6.54

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGAŘITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

09.07	REACOMODO	DE MATERIAL EXCAVADO						
Rendimiento	m3/DIA	2.5000	EQ.	2.5000		Costo unitario directo por : m3	39.13	
Código	INSUMO			Unidad	Cuadrilla	Cantided	Precio S/.	Parcial S/.
	Mano de Obra						٠,٠	
0101010003	OPERARIO			hh	0.1000	0.3200	13.64	4.36
0101010005	PEON			hb	1.0000	3.2000	10.51	33.63
								37.99
	Equipos							
0301010006	DESGASTE DE I	HERRAMIENTAS		%mo		3.0000	37.99	1.14
							•	1.14
10.01.01	SEÑALIZACION	HORIZONTAL						
Rendimiento	m2/DIA	100,000	€Q.	100.0000		Costo unitario directo por : m2	8.11	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio	Dannini C/
Codigo				Unusu	Contract	Cantrad	s/.	Parcial S/.
040404000	Mano de Obra			2.0				
0101010005	PEON			Tilt	3.0000	0.2400	10.51	2.52 2.52
	Materiales							2.32
02310500010007	TRIPLAY 4x8:	x 4 mm		pin		0.0008	25.00	0.02
0240040002	PINTURA TRAF	ico		gal	•	0.0800	60.00	4.80
02400800130006	THINNER ACRE	ມໝ		gat		0.0100	14.00	0.14
02900800050004	TIZA DE OFICIA	łA		cja		0.0020	10.00	0.02
02901300090005	WAIPE			kg		0.0010	25.42	0.03
0292010001	CORDEL			m		1.0000	0.40	0.40
								5.41
	Equipos							
0301010006	DESGASTE DE	HERRAMIENTAS		%mo	•	3.0000	2.52	80.0
0301050003	ESCOBAS			นกด้		0.0100	10.00	0.10
	_							0.18
10.02.01	SEÑALES REGI	AMENTARIAS 0.60 X 0.90 M.	•			Costo unitario		
Rendimiento	und/DIA	25.9000	EQ.	25.0000		directo par : und	261.60	
Código	INSUMO			Unidad	Condrilla	Cantidad	Precio	Parcial S/.
200.50	Mano de Obra						s/.	
0101010005	PEON PEON			hh	10.0000	3.2000	10.51	33.63
0101010003	72011			1144	20.0000	3.2000	10.51	33.63
	Materiales							
0218010002	PERNOS 2"X1/	4"CON ARANDELA PLANA		und		4.0000	3.15	12.60
02340600010005	PLANCHA FIE	RR:NEGRO 1.0X2.40X1/27"		riiq		0.2000	55.00	11.00
02380100020004	LUA DE FIERRO	O#100		plg		0.2000	1.80	0.36
0240020001	PINTURA ESM	ALTE		gal		0.0400	35.00	1.40
02400800130006	THINNER ACR	ILICO		gal		0.0500	14.00	0.70
02490100010014	TUBERIA DE FI	ERRO NEGRO DE 2"		m	,	2,5000	38.20	95.50
	Sánchez/Omar M.	Jaime Rebaza				ANEXOS: COSTOS	UNITARIOS	;
LINGSO II. MONOL		- Walle 4.4				20.00.000100	. 3	

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

Fecha:	ENERO, 2013							
0255080015	SOLDADURA C	ELLOCORD		kg		0.2000	11.00	2.20
0267110010	LAMINA REFLE	CTIVA ALTA INTENSIDAD		jgo		4.6400	20.00	92.80
0271050141	PLATINA DE1"	(1/8"		m		0.8000	7.00	5.60
								222.16
	Equipos							
0301010006	DESGASTE DE I	HERRAMIENTAS		%mo		3.0000	33.63	1.01
0301120005	MAQUINA SO	LDADORA		item	1.0000	0.3200	15.00	4.80
								5.81
10.02.02	SEÑALES PREV	ENTIVAS 0.60 X 0.60 M						
Rendimiento	und/DIA	30.0000	:EQ.	30.0000		Costo unitario directo por : und	215.96	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra	."						
0101010005	PEON			hh	10.0000	2.6667	10.51	28.03
		·						28.03
	Materiales							
0218010003	PERNOS 1"X1/	4°CON ARANDELA PLANA		und		4.0000	2.20	8.80
0234060001000	5 PLANCHA FIEI	RR NEGRO 1.0X2.40XL/27"		pln		0.1250	55.00	6.88
0238010002000	14 LUA DE FIERRO	#100		pig		0.2000	1.80	0.36
0240020001	PINTURA ESIM			gal		0.0300	35.00	1.05
0240080013000				gali		0.0500	14.00	0.70
0249010001001		IERRO NEGRO DE 2"		ก		2.5000	38.20	95.50
0255080015	SOLDADURA			kg		0.2000	11.00	2.20
0267110010	•	ECTIVA ALTA INTENSIDAD)go		3.1000	20.00	62.00
0271050141	PLATINA DE1"	X1/8"		តា		0.8000	7.00	5.60
								183,09
0004040000	Equipos			76-m-a		3.0000	28.03	0.84
0301010006		HERRAMIENTAS		%mo hm	1.0000	0.2667	15.00	4.00
0301120005	MAQUINA SC	JEDARONA		115618	1.0000	0.2007	15.00	4.84
10.02.03	FXCAVACION	PARA CIMIENTOS H< 0.60 M.						
			60.	3.0000		Costo unitario	28.87	
Rendimiento	m3/DIA	3.0000	EQ	. 5.0000		directo por ; m3	20,07	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
	Mano de Obr	ma e						
0101010005	PEON			hh	1.0000	2.6667	10.51	28.03
M.								28.03
	Equipos				d.			
0301010006	DESGASTE DE	HERRAMIENTAS		%mo		3.0000	28.03	0.84
								0.84

Tesis: "PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS Y CALLES DEL BARRIO SAN JOSÉ"

Ubicación: DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

			_					
10.02.04 Rendimiento	m3/DIA	:175 kg/cm2 PARA ANCLAJES Y/O DADO 22.0000		22.0000		Costo unitario directo por : m3	301.93	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra						•	
0101010003	OPERARIO			'hh	3.0000	1:0909	13.64	14.88
0101010004	OFICIAL			ħħ	2.0000	0.7273	11.68	8.49
0101010005	PEON			hh	8.0000	2.9091	10.51	30.57
								53.94
	Materiales							
02070100010002	PIEDRA CHANC	ADA 1/2"		m3		0.7600	50.05	38.04
02070200010002	ARENA GRUES	A		m3 ·		0.5100	70.00	35.70
0207070002	AGUA			m3		0.1840	15.00	2.76
0213010001	CEMENTO POF	TLAND TIPO II (42.5 kg)		bol	•	8.6600	18.86	163.33
								239.83
	Equipos							
0301010006	DESGASTE DE	HERRAMIENTAS		%mo		3.0000	53.94	1:62
03012900030004	MEZCLADORA	DE CONCRETO 9-11 P3		hm	1.0000	0.3636	18.00	6.54
								8.16
10.02.05	FLECHAS EN P	AREDES 0.30 X 0.90 M						
Rendimiento	und/DIA	40,0000	EQ.	40.0900		Costo unitario directo por : und	32.28	
Código	INSUMO			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra	•			•			
0101010005	PEON			hin	10.0000	2.0000	10.51	21.02
								21.02
	Materiales						i	
02041200020003		CEMENTO DE 1"		pza		5.0000	0.50	2.50
02340600010005		RR NEGRO 1.0X2.40X1/27"		pln		0.1000	55.00	5.50
02380100020004	LUA DE FIERRO			plg		0.1000	1.80	0,18
0240020001	PINTURA ESM			gal		0.0500	35.00	1.75
02400800130006	THINNER ACR	irko		gaf ·		0.0500	14.00	0.70
								10.63
	Equipos					4	22.25	
0301010006	DESGASTE DE	HERRAMIENTAS		%то		3.0000	21.02	0.63
								0.63

PRESUPUESTO DE OBRA

PROYECTO:

"PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ LAS MARGARIAS Y CALLES DEL BARRIO SAN JOSÉ"

UBICACIÓN:

DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

FECHA ENERO, 2013

T E CT TT	ENERO, 2013				
CÓDIGO	PARTIDA	Und	Metrado	Precio S/.	Parcial S/.
01.00	OBRAS PRELIMINARES				163,579.62
01.01	TRAZO Y REPLANTEO CON EQUIPO	m2	260,132.70	0.60	156,079.62
01.02	MOVILIZACION Y DESMOVILIZACION DE EQUIPOS Y MAQUINARIAS	gjb	1.00	7,000.00	7,000.00
01.03	CARTEL DE OBRA 3.60x7.20	ಟಾರ	1.00	500.00	500.00
02.00	MOVIMIENTO DÉ TIERRAS				389,140.83
02.01	CORTE A NIVEL DE SUB-RASANTE CON MAQUINARIA	m3	17,060.97	4.54	77,456.80
02.02	EXCAVACION CANAL, VEREDAS SUMIDEROS (MANUAL)	m3	928.44	28.87	26,804.06
02.03	NIVELACION Y COMPACTACION DE SUBRASANTE	m2	33,551.03	2.86	95,955.95
02.04	ELIMINACION DE MATERIAL EXCEDENTE	m3	16,931.96	11.03	186,759.52
02.05	CORTE Y RECONSTRUCCION DE BUZONES	m	90.00	24.05	2,164.50
03.00	CALZADAS Y BERMAS				2,810,387.40
03.01	CONFORMACION DE CAPA ANTICONTAMINANTE E=0.10M	m3	31,825.72	1.99	63,333.18
03.02	CONFORMACION DE BASE E=15CM	m3	31,825.72	16.51	525,442.64
03.03	ENCOFRADO Y DESENCOFRADO DE VEREDAS	m2	4,237.92	12.17	51,575.49
03.04	CONCRETO f c = 210 kg/cm2 (cimentación)	m3	5,760.87	348.63	2,008,412.11
03.05	JUNTAS				161,623.98
03.05.01	ACERO CORRUGADO 1/2"	kg	2,557.38	1.64	4,194.10
03.05.02	ACERO LISO 1" (JUNT. TRANSV. AISLAM Y CONSTRUC)	kg	22,988.71	2.72	62,529.29
03.05.03	ACERO LISO 1 1/4" (JUNIT.TRANSV. AISLAML Y CONST.)	kg	3,404.55	3.10	10,554.11
03.05.04	SELLADO DE JUNTAS (LONG. TRANSV. Y CONSTRUC. E= 6MM)	m	12,386.40	4.73	58,587.67
03.05.05	SELLADO JUNTAS DE AISLAMIENTO (E=12.5 MM)	m	1,995.26	12.91	25,758.81
04.00	SARDINELES				31,322.25
04.01	ENCOFRADO Y DESENCOFRADO DE VEREDAS	m2	215.53	21.60	4,655.45
04.02	ACERO CORRUGADO 1/4"	kg	385.46	45.45	17,519.16
04.03	ACERO CORRUGADO 3/8*	kg	307.89	4.05	1,246.95
04.04	CONCRETO DE BASE (fc=175 kg/cm2, E=15CM)	m3	7.64	301.93	2,306.75
04.05	CONCRETO SARDINEL (Fc=175 kg/cm2, E=15 CM)	m3	14.40	301.93	4,347.79
04.06	SELLADO DE JUNTAS	133	179.82	6.93	1,246.15
05.00	CUNETAS				112,138.92
05.01 05.01.01	CUNETAS SECCION TRIANGULAR				45,213.73
05.01.02	CONFORMACION DE BASE E=15CM	m3	70.63	11.26	795.29
05.01.02	CONCRETO f c = 140 kg/cm2	m3	134.23	262.79	35,274.30
05.02	SELLADO DE JUNTAS CUNETAS SECCION RECTANGUI AR	स्य	1,319.50	6.93	9,144.14
05.02.01		_			14,970.99
05.02.02	NIVELACION Y COMPACTACION DE SUBRASANTE CONFORMACION DE BASE (E= 10CM)	m2	136.25	14.20	1,934.75
05.02.03	ENCOFRADO Y DESENCOFRADO DE CUNETAS	m2	136.25	11.26	1,534.18
05.02.04	CONCRETO LOSAS Fc= 175 kg/cm2, E= 10 CM	m2	98.06	36.23	3,552.71
05.02.05	CONCRETO MUROS 0.10 x 0.30 fc=175 kg/cm2	.m3	5.99	301.93	1,808.56
05.02.06	SELLADO DE JUNTAS	m3	8.66	301.93	2,614.71
05.02.07	TARRAJEO CUNETAS	m 3	30.55	6.93	211.71
05.03	REIILA	m2	214.94	15.42	3,314.37
05.03.01	ACERO CORRUGADO 1/2"	1	201 20		51,954.20
05.03.02	PLATINA 1 1/2" X 3/6"	kg	291.20	1.87	544.54
05.03.03	PLATINA 2 " X 3/16"	m	2,665.50	10.89	29,027.30
06.00	CANAL DE DRENAJE	m	2,366.00	9.46	22,382.36
06.01	CANAL EN VEREDAS: MUROS Y LOSA DE FONDO				793,330.43
06.01.01	CONFORMACION DE BASE E= 10 CM	3	955.72	44.00	293,397.20
06.01.02	ENCOFRADO Y DESENCOFRADO	m2	856.73	11.26	9,646.78
06.01.03	ACERO CORRUGADO 1/4"	m2	2,514.43	36.23	91,097.80
06.01.04	ACERO CORRUGADO 3/8*	kg L	4,182.15	12.71	53,155.13
06.01.05	CONCRETO LOSAS FONDO fc= 175 kg/cm2, E= 15 CM	kg m2	4,035.42	4.05	16,343.45
06.01.06	CONCRETO MUROS FC=175 kg/cm2, E= 15 CM	m3	129.97	301.93	39,241.84
06.01.07	SELIADO DE JUNTAS	m3	173.20	301.93	52,294.28
06.01.08	TARRAIEO	m.	610.70	6.93	4,232.15
		m2	1,775.99	15.42	27,385.77

PRESUPUESTO DE OBRA

PROYECTO:

"PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ LAS MARGARIAS Y CALLES DEL BARRIO SAN JOSÉ"

UBICACIÓN:

DISTRITO: CAJAMARCA PROV.: CAJAMARCA DPTO.: CAJAMARCA

FECHA : ENERO, 2013

FECHA	- ENEKO, 2013				
CÓDIGO	PARTIDA	Und	Metrado	Precio S/.	Parcial SI.
06,02	CANAL EN VEREDA: LOSA SUPERIOR				134,504.42
06.02.01	ENCOFRADO Y DESENCOFRADO	m2	772.25	36.23	27,978.62
06.02.02	ACERO CORRUGADO DE 1/4"	kg	1,582.31	45.45	71,915.99
06.02.03	ACERO CORRUGADO 3/8"	kg	1,276.34	4.05	5,169.18
06.02.04	ACERO CORRUGADO 1/2"	kg	.53.44	1.87	99.93
06.02.05	CONCRETO fc=210 kg/cm2, E=10 CM	:m3	84.16	348.63	29,340.70
06.03	PUENTE LOSA CANAL: MUROS Y LOSA DE FONDO				237,326.68
06.03.01	CONFORMACION DE BASE E= 10 CM	m2	879.81	11.26	9,906.66
06.03.02	ENCOFRADO Y DESCENCOFRADO	m2	1,775.82	36.23	64,337.96
06.03.03	ACERO CORRUGADO 1/4"	kg	3,365:63	12.71	42,777,16
06.03.04	ACERO CORRUGADO 3/8*	kg	3,571.72	4.05	14,465.47
06.03.05	ACERO CORRUGADO 5/8" FY=4200KG/CM2	kg	19.20	4.05	77.76
06.03.06	CONCRETO LOSA FONDO fc=175 kg/cm2 E=15cm	m3	131,97	301.93	39,845.70
06.03.07	CONCRETO MUROS Fc=175 kg/cm2, E=15CM	m3	131.55	301.93	39,718.89
06.03.08	SELLADO DE JUNTAS	ធា	350.75	6.93	2,430.70
06.03.09	TARRAJEO	m2	1,541.27	15.42	23,766.38
06.04	PUENTE LOSA CANAL: LOSA SUPERIOR	PP-100-	1,0 / 1.2.	10.12	122,981.79
06.04.01	ENCOFRADO Y DESENCOFRADO	m2	877,11	36.23	31,777.70
06.04.02	ACERO CORRUGADO 1/4*		34.66	45.45	
06.04.03	ACERO CORRUGADO 3/8"	.kg leg	555.12	4.05	1,575.30 2,248.24
06.04.04	ACERO CORRUGADO 1/2"	_	5,442.99	1.87	
06.04.05	ACERO CORRUGADO 5/8*	kg			10,178.39
06,04.06	ACERO CORRUGADO 3/4*	ikg iro	3,871,00	3.73	14,438.83
06.04.07	CONCRETO fc=210 kg/cm2 , E= 15 CM	ikg	4,948.41	3.41	16,874.08
06.05	CANAL SUMIDERO	m3	131.57	348.63	45,869.25
06.05.01	•	_	0.40		5,140.34
	CONFORMACION DE BASE E= 10 CM	m2	9.46	11.26	106.52
06.05.02	ENCOFRADO Y DESENCOFRADO	m2	34,74	36.61	1,271.83
06.05.03	ACERO CORRUGADO 1/4"	kg	46.85	45.45	2,129.33
06.05.04	ACERO CORRUGADO 3/8"	kg	53.78	4.05	. 217.81
06.05.05	CONCRETO LOSAS Pc= 175 kg/cm2, E= 15 CM	m3	1.75	301.93	528.38
06.05.06	CONCRETO MUROS (c=175 kg/cm2, E= 15 CM	m3	2.22	301.93	670.28
06.05.07	TARRAJEO	m2	14.02	15.42	216.19
07.00	REJILLA(SUMIDERO)				23,613.16
07.01	ACERO CORRUGADO 1/2"	kg	23.89	1.87	44.67
07.02	PLATINA 1" X 3/16"	m	15.50	7.42	115.01
07.03	PLATINA 2" X 3/16"	m	236.95	8.93	2,115.96
07.04	PERFIL "L" 2" X 3/16"	m	28.40	18.04	512.34
07.05	RIEL 4" X 4"	m	169.60	122.79	20,825.18
00.80	VEREDAS			·	652,580.72
08.01	NIVELACION Y COMPACTACION SUB-RASANTE	m2	9,501.30	14.20	134,918.46
08.02	CONFORMACION DE BASE (E= 10CM)	m2°	9,501.30	11.26	106,984.64
08.03	ENCOFRADO Y DESENCOFRADO DE VEREDAS	m2*	1,363.80	11.65	15,888.27
08.04	CONCRETO f c = 140 kg/cm2	·m3	1,424/06	262.79	374,228.73
08.05	SELLADO DE JUNTAS	m	2,966.90	6.93	20,560.62
09.00	SEPARADOR CENTRAL				104,989.01
09.01	EXCAVACION MANUAL	m3	190.54	28.87	5,500.89
09.02	NIVELACION Y COMPACTACION	m2	246.64	14.20	3,502.29
09.03	CONFORMACION DE BASE (E= 10CM)	m2	246.64	11.26	2,777.17
09.04	ENCOFRADO Y DESENCOFRADO	m2	1,695.00	21.79	36,934.05
09.05	CONCRETO DE BASE (c=175 kg/cm2, E= 15 CM	m3	33.45	301.93	10,099.56
09.06	CONCRETO SARDINEL fc=175 kg/cm2 E=15cm	m3	118.49	301.93	35,775.69
09.07	REACOMODO DE MATERIAL EXCAVADO	m3	266.02	39.13	10,409.36
10	SEÑALIZACION		200,02	SO. 10	18,606.53
10.01	SEÑALIZACION HORIZONTAL				6,064.66
10.01.01	SEÑALIIZACION HORIZONFAL	m2	747_80	8.11	
10.01.01	SEIVALIIZACION HONGZOIVEAL	m2	/4/.80	8.11	6,064.66

PRESUPUESTO DE OBRA

PROYECTO:

"PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ LAS MARGARIAS Y CALLES DEL BARRIO SAN JOSÉ"

UBICACIÓN:

DISTRITO: CAIAMARCA PROV.: CAIAMARCA DPTO.: CAIAMARCA

FECHA

ENERO, 2013

CÓDIGO	PARTIDA	Und.	Metrado	Precio S/.	Parcial S/.
10.02	SEÑALIZACIÓN VERTICAL				12,541.87
10.02.01	SEÑALES REGLAMENTARIAS 0.60 X 0.90 M.	und	31.00	261.60	8,109.60
10.02.02	SEÑALES PREVENTIVAS 0.60 X 0.60 M	und	5.00	215.96	1,079.80
10.02.03	EXCAVACION PARA CIMIENTOS H< 0.60 M.	m3	1.84	28.87	53.12
10.02.04	CONCRETO f'c=175 kg/cm2 PARA ANCLAJES Y/O	m3	1.84	301.93	555.55
10.02.05	FLECHAS EN PAREDES 0.30 X 0.90 M	und	85.00	32.28	2,743.80
	COSTO DIRECTO				5,099,698.87
	GASTOS GENERALES (12%)				611,963.86
	UTILIDAD (10%)				509,969.89
	SUBTOTAL				6,221,632.62
	IMPUESTO (IGV 18%)				1,119,893.87
	TOTAL PRESUPUESTO				7'341,526.49

SON: SIETE MILLONES TRESCIENTOS CUARENTIUN MIL QUINIENTOS VEINTISEIS Y 49/100 NUEVOS SOLES.

FÓRMULA POLINÓMICA

TESIS:

"PAVIMENTACION DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARIAS Y CALLES DEL BARRIO SAN JOSÉ".

FECHA:

ENERO, 2013.

MONOMIO	FACTOR	(%)	SÍMBOLO	INDICE	DESCRIPCIÓN
1	0.196	100.00	M	47	MANO DE OBRA INC. LEYES SOCIALES
2	0.055	100.00	A	03	ACERO DE CONSTRUCCION CORRUGADO
3	0.087	100.00	н	38	HORMIGON
4	0.112	100.00	A	05	AGREGADO GRUESO
5	0.257	100.00	С	21	CEMENTO PORTLAND TIPO I
6	0.113	100.00	М	48	MAQUINARIA Y EQUIPO NACIONAL
7	0.180	100.00	I	39	INDICE GENERAL DE PRECIOS AL CONSUMIDOR

$$K = 0.196(Mr / Mo) + 0.055(Ar / Ao) + 0.087(Hr / Ho) + 0.112(Ar / Ao) + 0.257(Cr / Co) + 0.113(Mr / Mo) + 0.180(Ir / Io)$$

CALCULO DEL Nº DE DIAS

TESIS : "PAVIMENTACIÓN DE LAS URBANIZACIONES: SARITA, ALAN PERÚ, LAS MARGARITAS; Y CALLES DEL BARRIO SAN JOSÉ"

UBICACIÓN : DISTRITO : CAJAMARCA, PROV.: CAJAMARCA, DPTO.: CAJAMARCA

FECHA : ENERO DEL 2003

FECHA	: ENERO DEL 2003					
CODIGO	PARTIDA	UND	METRADO	REND.	CUADRILLA	TIEMPO (DIAS)
01.00.00	OBRAS PRELIMINARES					
01.01.00	TRAZO Y REPLANTEO CON EQUIPO	M2	260,132.70	1,400.00	6.00	31.00
01.02.00	MOVILIZACION Y DESMOV. DE EQUIPO	GLB	1.00	0.50	1.00	2.00
01.03.00	CARTEL DE OBRA 3.60 X 7.20 S/DISEÑO	UND	1.00	0.50	1.00	2.00
02.00.00	MOVIMIENTO DE TIERRAS					
02.01.00	CORTE A NIVEL DE SUBRASANTE CON MAQUINARIA	МЗ	17,060.97	320.00	2.00	27.00
02.02.00	EXC. CANAL, VEREDAS Y SUMIDEROS (MANUAL)	M3	928.44	3.00	10.00	31.00
02.03.00	NIVELACION Y COMPACTACION DE SUBRASANTE	M2	33,551.03	1,200.00	1.00	28.00
02.04.00	ELIMINACION DE MATERIAL EXCEDENTE	M3	16,931.96	320.00	2.00	26.00
02.05.00	CORTE Y RECONSTRUCCION DE BUZONES	UN	90.00	10.00	1.00	9.00
03.00.00	CALZADA Y BERMAS					
03.01.00	CONFORM. CAPA ANTICONTAMINANTE, E=0.10 M	M2	. 31,825.72	1,800.00	1.00	18.00
03.02.00	CONFORMACION DE BASE E=15 CM	M2	31,825.72	800,008	2.00	20.00
03.03.00	ENCOF. Y DESENCOFRADO DE BERMAS Y CALZADA	M2	4,237.92	40.00	5.00	21.00
03.04.00	CONCRETO F'C=210 KG/CM2	МЗ	5,760.87	18.00	14.00	23.00
03.05.00	JUNTAS					
03.05.01	ACERO CORRUGADO 1/2" (J. LONGITUDINALES)	KG	2,557.38	250.00	0.50	20.00
03.05.02	ACERO LISO 1" (JUNT.TRANSV. AISLAM, Y CONST.)	KG	22,988.71	250.00	10.00	9.00
03.05.03	ACERO LISO 1 1/4" (JUNT TRANSV. AISLAM, Y CONST.)	KG	3,404.55	250.00	2.00	7.00
03.05.04	SELLADO JUNTAS LONG.TRANSV. Y CONST.(E=6 MM)	ML	12,386.40	300.00	6.00	7.00
03.05.05	SELLADO DE JUNTAS DE AISLAMIENTO (E=12.5 MM)	ML	1,995.26	216.00	2.00	5.00
04.00.00	SARDINEL					
04.01.00	ENCOFRADO Y DESENCOFRADO DE SARDINEL	M2	215.53	16.00	1.00	13.00
04.02.00	ACERO CORRUGADO 1/4"	KG	385.46	250.00	1.00	
04.03.00	ACERO CORRUGADO 3/8"	KG	307.89	250.00	1.00	1
04.04.00	CONCRETO DE BASE F'C=175 KG/CM2, E=15 CM)	МЗ	7.64	22.00	1.00	1
04.05.00	CONCRETO SARDINEL F'C=175 KG/CM2, E=15 CM)	M3	14.40	22.00	1.00	ł.
04.06.00	JUNTAS	ML	179.82	250,00	1.00	1.00
05.00.00	CUNETAS					
05.01.00	CUNETAS SECCION TRIANGULAR					
05.01.01	CONFORMACION DE BASE	M3	70.63	200.00	1	1
05.01.02	CONCRETO F'C=140 KG/CM2, E=10 CM	M3	134.23	25.00	1.00	
05.01.03	JUNTAS	ML	1,319.50	250.00	2.00	3.00
05.02.00	CUNETAS SECCION RECTANGULAR		100.05			
05.02.01	NIVELACION Y COMPACTACION SUBRASANTE	M2	136.25	150.00	1	1
05.02.02 05.02.03	CONFORMACION DE BASE E=10 CM ENCOFRADO Y DESENCOFRADO DE CUNETAS	M2 M2	136.25 98.06	200.00 8.00		1
05.02.04	CONCRETO LOSA F'C=175 KG/CM2, E=10 CM)	M3	5.99	22.00		
05.02.05	CONCRETO MUROS 0.10x0.30 F'C=175 KG/CM2	M3	8.66	22.00		
05.02.06	JUNTAS	ML	30.55	250.00	l	l.
05.02.07	TARRAJEO CUNETAS	M2	214.94	15.00	;	1
05.03.00	 REJILLA					
05,03,01	ACERO CORRUGADO 1/2*	KG	291.20	250.00	1.00	1.00
05.03.02	PLATINA 1 1/2" X 3/16"	ML	2,665.50	40.00	1	ł
05.03.03	PLATINA 2" X 3/16"	ML	2,366.00	40.00	10.00	6.00
06.00.00	CANAL DE DRENAJE					
06.01.00	CANAL EN VEREDA: MUROS Y LOSA DE FONDO					
06.01.01	CONFORMACION DE BASE E=10 CM	M2	856.73	200.00	1.00	4.00
06.01.02	ENCOFRADO Y DESENCOFRADO	M2	2,514.43	8.00	ł.	
06.01.03	ACERO CORRUGADO 1/4"	KG	4,182.15	250.00	1	
06.01.04	ACERO CORRUGADO 3/8"	KG	4,035.42	250.00	1	1
06.01.05	CONCRETO LOSA FONDO F'C=175 KG/CM2, E=15 CM)	МЗ	129.97	22.00	2.00	3.00
06.01.06	CONCRETO MUROS F'C=175 KG/CM2, E=15 CM)	М3	173.20	22.00		
06.01.07	JUNTAS	ML	610.70	250.00	1	
06.01.08	TARRAJEO	M2	1,775.99	15.00	20.00	6.00

CODIGO	PARTIDA	UND	METRADO	REND.	CUADRILLA	TIEMPO (DIAS)
06.02.00	CANAL EN VEREDA: LOSA SUPERIOR					
06.02.01	ENCOFRADO Y DESENCOFRADO	M2	772.25	8.00	10.00	10.00
06.02.02	ACERO CORRUGADO 1/4"	KG	1,582.31	250.00	2.00	3.00
06.02.03	ACERO CORRUGADO 3/8*	KG	1,276.34	250.00	2.00	3.00
06.02.04	ACERO CORRUGADO 1/2*	KG	53.44	250.00	1.00	1.00
06.02.05	CONCRETO F'C=210 KG/CM2, E=10 CM	МЗ	84.16	18.00	1.00	5.00
06.03.00	PUENTE LOSA CANAL: MUROS Y LOSA DE FONDO					
06.03.01	CONFORMACION DE BASE E=10 CM	M2	879.81	200.00	1.00	4.00
06.03.02	ENCOFRADO Y DESENCOFRADO	M2	1,775.82	8.00	l i	11.00
06.03.03	ACERO CORRUGADO 1/4"	KG	3,365.63	250.00	4.00	3.00
06.03.04	ACERO CORRUGADO 3/8°	KG	3,571.72	250.00	4.00	4.00
06.03.05	ACERO CORRUGADO 5/8°	KG	19.20	250.00	1.00	1.00
06.03.06 06.03.07	CONCRETO LOSA FONDO F'C=175 KG/CM2, E=15 CM)	M3 M3	131.97	22.00 22.00	1.00 1.00	6.00
06.03.08	CONCRETO MUROS FC=175 KG/CM2, E=15 CM) JUNTAS	ML	131.55 350.75	250.00	1.00	6.00
06.03.09	TARRAJEO	M2	1,541.27	15.00	20.00	1.00 5.00
		NIZ	1,541.27	10.00	20.00	3.00
06.04.00 06.04.01	PUENTE LOSA CANAL: LOSA SUPERIOR ENCOFRADO Y DESENCOFRADO	110	077.44	0.00	40.00	****
06.04.01	ACERO CORRUGADO 1/4°	M2	877.11	8.00	10.00	11.00
06.04.02	ACERO CORRUGADO 3/8*	KG KG	34.66 555.12	250.00 250.00	1.00 2.00	1.00
06.04.04	ACERO CORRUGADO 1/2*	KG	5,442.99	250.00	4.00	1.00 5.00
06.04.05	ACERO CORRUGADO 5/8"	KG	3,871.00	250.00	3.00	5.00
06.04.06	ACERO CORRUGADO 3/4"	KG	4,948.41	250.00	4.00	5.00
06.04.07	CONCRETO F'C=210 KG/CM2, E=15 CM	МЗ	131.57	18.00	2.00	4.00
06.05.00		,		70.00	2.00	7.00
06.05.01	CANAL SUMIDERO CONFORMACION DE BASE E=10 CM	112	9.46	200.00	4.00	4.00
06.05.02	ENCOFRADO Y DESENCOFRADO	M2 M2	34.74	8.00	1.00 1.00	1.00 4.00
06.05.03	ACERO CORRUGADO 1/4*	KG	46.85	250.00	1.00	1.00
06.05.04	ACERO CORRUGADO 3/8*	KG	53.78	250.00	1.00	1.00
06.05.05	CONCRETO LOSA FONDO FC=175 KG/CM2, E=15 CM)	МЗ	1.75	22.00	1.00	1.00
06.05.06	CONCRETO MUROS FC=175 KG/CM2, E=15 CM)	МЗ	2.22	22.00	1.00	ı
06.05.07	TARRAJEO	M2	14.02	15.00	1.00	1
07.00.00	REJILLA (SUMIDERO)					
07.01.00	ACERO CORRUGADO 1/2°	КG	23.89	250.00	1.00	1.00
07.02.00	PLATINA 1" X 3/16"	ML	15.50	45.00	1	
07.03.00	PLATINA 2" X 3/16"	ML	236.95	40.00	2.00	3.00
07.04.00	PERFIL "L" 2" X 3/16"	ML	28.40	35.00	1.00	1.00
07.05.00	RIEL 4" X 4"	ML	169.60	20.00	4.00	2.00
00.00.80	VEREDAS					
08.01.00	NIV.Y COMPACTACION SUBRASANTE	M2	9,501.30	150.00	5.00	13.00
08.02.00	CONFORMACION DE BASE E=10 CM	M2	9,501.30	200.00	1	10.00
08.03.00	ENCOFRADO Y DESENCOFRADO DE VEREDAS	M2	1,363.80	55.00	1	12.00
08.04.00	CONCRETO F'C=140 KG/CM2	M3	1,424.06	25.00		6.00
08.05.00	JUNTAS	ML	2,966.90	250.00	2.00	6.00
09.00.00	SEPARADOR CENTRAL	į				
09.01.00	EXCAVACION MANUAL	М3	190.54	3.00	ì	1
09.02.00	NIVELACION Y COMPACTACION	M2	246.64	150.00	1	i .
09.03.00	CONFORMACION DE BASE E=10 CM	M2	246.64	200.00		
09.04.00	ENCOFRADO Y DESENCOFRADO	M2	1,695.00	16.00	i	11.00
09.05.00	CONCRETO DE BASE FC=175 KG/CM2, E=15 CM)	M3 M3	33.45	22.00	1	1
09.06.00 09.07.00	CONCRETO SARDINEL F'C=175 KG/CM2, E=15 CM) REACOMODO DE MATERIAL EXCAVADO	M3	118.49 266.02	22.00 2.50		
		l wo	200.02	2.50	20.00	5.00
10.00.00	SEÑALIZACION					
10.01.00	SEÑALIZACION HORIZONTAL					
10.01.01	SEÑALIZACION HORIZONTAL	M2	747.80	100.00	1.00	7.00
10.02.00	SEÑALIZACION VERTICAL ·					
10.02.01	SEÑALES REGLAMENTARIAS 0.60 X 0.90 M.	UN	31.00	25.00	1	1
10.02.02	SEÑALES PREVENTIVAS 0.60 X 0.60 M.	UN	5.00	30.00		
10.02.03	EXCAVACION PARA CIMIENTOS H<0.60 M.	M3	1.84	3.00		
10.02.04	CONCRETO 175 KG/CM2 PARA ANCLAJES Y/O DADOS	МЗ	1.84	22.00	1	1
10.02.05	FLECHAS EN PARED 0.30 X 0.90 M.	UN	85.00	40.00	1.00	2.00

"PAVIMENTACIÓN DE LAS URBANIZACIONES: SARITA, ALAN PERU, LAS MARGARITAS; Y CALLES DEL BARRIO SAN JOSÉ"

PROGRAMACION DE OBRA (METODO DE GANTT)

PARTIDA	DESCRIPCION	UNIDAD	METRADO	1° MES	2° MES	3° MES	4° MES
01.00.00	OBRAS PRELIMINARES						
01.01.00	TRAZO Y REPLANTEO CON EQUIPO	M2	260,132.70				
01.02.00	MOVILIZACION Y DESMOV. DE EQUIPO	GLB	1.00 🛥				
01.03.00	CARTEL DE OBRA 3.60 X 7.20 S/DISEÑO	UND	1.00				
02.00.00	MOVIMIENTO DE TIERRAS						
02.01.00	CORTE A NIVEL DE SUBRASANTE CON MAQUINARIA	M3	17,060.97		46		
02.02.00	EXC. CANAL, VEREDAS Y SUMIDEROS (MANUAL)	M3	928.44				
02.03.00	NIVELACION Y COMPACTACION DE SUBRASANTE	M2	33,551.03				
02.04.00	ELIMINACION DE MATERIAL EXCEDENTE	M3	16,931.96				
02.05.00	CORTE Y RECONSTRUCCION DE BUZONES	UN	90.00				
03.00.00	CALZADA Y BERMAS						
03.01.00	CONFORM. CAPA ANTICONTAMINANTE, E=0.10 M	M2	31,825.72	1000			
03.02.00	CONFORMACION DE BASE E=15 CM	M2	31,825.72				
03.03.00	ENCOF. Y DESENCOFRADO DE BERMAS Y CALZADA	M2	4,237.92				
03.04.00	CONCRETO F'C=210 KG/CM2	M3	5,760.87				
03.05.00	JUNTAS						
03.05.01	ACERO CORRUGADO 1/2" (J. LONGITUDINALES)	KG	2,557.38		-		
03.05.02	ACERO LISO 1" (JUNT.TRANSV. AISLAM, Y CONST.)	KG	22,988.71				
03.05.03	ACERO LISO 1 1/4" (JUNT.TRANSV. AISLAM. Y CONST.)	KG	3,404.55				
03.05.04	SELLADO JUNTAS LONG.TRANSV. Y CONST.(E=6 MM)	ML	12,386.40				
03.05.05	SELLADO DE JUNTAS DE AISLAMIENTO (E=12.5 MM)	ML	1,995.26				
04.00.00	SARDINEL			_			
04.01.00	ENCOFRADO Y DESENCOFRADO DE SARDINEL	M2	215.53				
04.02.00	ACERO CORRUGADO 1/4"	KG	385.46		-		
04.03.00	ACERO CORRUGADO 3/8"	KG	307.89				
04.04.00	CONCRETO DE BASE F'C=175 KG/CM2, E=15 CM)	M3	7.64		12		
04.05.00	CONCRETO SARDINEL F'C=175 KG/CM2, E=15 CM)	M3	14.40		1		
04.06.00	JUNTAS	ML	179.82			a	

"PAVIMENTACIÓN DE LAS URBANIZACIONES: SARITA, ALAN PERU, LAS MARGARITAS; Y CALLES DEL BARRIO SAN JOSÉ"

PROGRAMACION DE OBRA (METODO DE GANTT)

PARTIDA	DESCRIPCION	UNIDAD	METRADO	1° N	1ES		2° I	MES			3° !	MES			4° !	MES	
05.00.00	CUNETAS																
									ļ			L			ļ		<u> </u>
05.01.00	CUNETAS SECCION TRIANGULAR					-		<u> </u>	<u> </u>				L		ļ		ļ
05.01.01	CONFORMACION DE BASE	M3	70.63						<u> </u>	ļ							
05.01.02	CONCRETO F'C=140 KG/CM2, E=10 CM	M3	134.23										14890				
05.01.03	JUNTAS	ML.	1,319.50						ļ			ļ					
05.02.00	CUNETAS SECCION RECTANGULAR							<u> </u>									
05.02.01	NIVELACION Y COMPACTACION SUBRASANTE	M2	136.25			-	1		_								
05.02.02	CONFORMACION DE BASE E=10 CM	M2	136.25			 	•			ļ		-					
05.02.03	ENCOFRADO Y DESENCOFRADO DE CUNETAS	M2	98.06	-		 		208	 			 					
05.02.04	CONCRETO LOSA F'C=175 KG/CM2, E=10 CM)	M3	5.99			 			<u> </u>			<u> </u>					
05.02.05	CONCRETO MUROS 0.10x0.30 F'C=175 KG/CM2	M3	8.66					H	<u> </u>			<u> </u>					
05.02.06	JUNTAS	ML	30.55			 				<u> </u>					 	×	
05.02.07	TARRAJEO CUNETAS	M2	214.94										STORE .				
05.03.00	REJILLA																
05.03.01	ACERO CORRUGADO 1/2"	KG	291.20														-
05.03.02	PLATINA 1 1/2" X 3/16"	ML	2,665.50													-	
05.03.03	PLATINA 2" X 3/16"	ML	2,366.00												ļ	-	
06.00.00	CANAL DE DRENAJE							-									
00.00.00	CANAL DE DACINAVE					1		ļ	 -		<u> </u>				ļ		
06.01.00	CANAL EN VEREDA: MUROS Y LOSA DE FONDO																
06.01.01	CONFORMACION DE BASE E=10 CM	M2	856.73		2780												
06.01.02	ENCOFRADO Y DESENCOFRADO	M2	2,514.43		TE LINCK		e e	9									
06.01.03	ACERO CORRUGADO 1/4"	KG	4,182.15		1821												
06.01.04	ACERO CORRUGADO 3/8"	KG	4,035.42														
06.01.05	CONCRETO LOSA FONDO F'C=175 KG/CM2, E=15 CM)	M3	129.97														
06.01.06	CONCRETO MUROS F'C=175 KG/CM2, E=15 CM)	M3	173.20				PER										
06.01.07	JUNTAS	ML	610.70											•			
06.01.08	TARRAJEO	M2	1,775.99								-						

"PAVIMENTACIÓN DE LAS URBANIZACIONES: SARITA, ALAN PERU, LAS MARGARITAS; Y CALLES DEL BARRIO SAN JOSÉ"

PROGRAMACION DE OBRA (METODO DE GANTT)

PARTIDA	DESCRIPCION	UNIDAD	METRADO	1° MES	2° MES	3° MES	4° MES
06.02.00	CANAL EN VEREDA: LOSA SUPERIOR						
06.02.01	ENCOFRADO Y DESENCOFRADO	M2	772.25				
06.02.02	ACERO CORRUGADO 1/4"	KG	1,582.31		acost .		
06.02.03	ACERO CORRUGADO 3/8"	KG	1,276.34				
06.02.04	ACERO CORRUGADO 1/2"	KG	53.44		No. 1		
06.02.05	CONCRETO F'C=210 KG/CM2, E=10 CM	M3	84.16				
06.03.00	PUENTE LOSA CANAL: MUROS Y LOSA DE FONDO						
06.03.01	CONFORMACION DE BASE E=10 CM	M2	879.81				
06.03.02	ENCOFRADO Y DESENCOFRADO	M2	1,775.82				
06.03.03	ACERO CORRUGADO 1/4"	KG	3,365.63				
06.03.04	ACERO CORRUGADO 3/8"	KG	3,571.72				
06.03.05	ACERO CORRUGADO 5/8"	KG	19.20				
06.03.06	CONCRETO LOSA FONDO F'C=175 KG/CM2, E=15 CM)	M3	131.97		2000000		
06.03.07	CONCRETO MUROS F'C=175 KG/CM2, E=15 CM)	M3	131.55				
06.03.08	JUNTAS	ML	350.75				•
06.03.09	TARRAJEO	M2	1,541.27			9,575	
06.04.00	PUENTE LOSA CANAL: LOSA SUPERIOR						
06.04.01	ENCOFRADO Y DESENCOFRADO	M2	877.11				
06.04.02	ACERO CORRUGADO 1/4"	KG	34.66		-		
06.04.03	ACERO CORRUGADO 3/8"	KG	555.12				
06.04.04	ACERO CORRUGADO 1/2"	KG	5,442.99				
06.04.05	ACERO CORRUGADO 5/8"	KG	3,871.00		in in the second		
06.04.06	ACERO CORRUGADO 3/4"	KG	4,948.41				
06.04.07	CONCRETO F'C=210 KG/CM2, E=15 CM	M3	131.57				
06.05.00	CANAL SUMIDERO						
06.05.01	CONFORMACION DE BASE E=10 CM	M2	9.46				
06.05.02	ENCOFRADO Y DESENCOFRADO	M2	34.74				
06.05.03	ACERO CORRUGADO 1/4"	KG	46.85				
08.05.04	ACERO CORRUGADO 3/8"	KG	53,78				
06.05.05	CONCRETO LOSA FONDO F'C=175 KG/CM2, E=15 CM)	M3	1.75				
06.05.06	CONCRETO MUROS F'C=175 KG/CM2, E=15 CM)	M3	2.22				
06.05.07	TARRAJEO	M2	14.02				

"PAVIMENTACIÓN DE LAS URBANIZACIONES: SARITA, ALAN PERU, LAS MARGARITAS; Y CALLES DEL BARRIO SAN JOSÉ" PROGRAMACION DE OBRA (METODO DE GANTT)

PARTIDA	DESCRIPCION	UNIDAD	METRADO	1° ME	S	2° I	MES		3° 1	MES		4° M	1ES	
07.00.00	REJILLA (SUMIDERO)													
07.01.00	ACERO CORRUGADO 1/2"	KG	23.89											
07.02.00	PLATINA 1" X 3/16"	ML	15.50											-
07.03.00	PLATINA 2" X 3/16"	ML	236.95										1	
07.04.00	PERFIL "L" 2" X 3/16"	ML	28.40											
07.05.00	RIEL 4" X 4"	ML	169.60											
08.00.00	VEREDAS					 				-				\vdash
08.01.00	NIV.Y COMPACTACION SUBRASANTE	M2	9,501.30											
08.02.00	CONFORMACION DE BASE E=10 CM	M2	9,501.30											Γ
08.03.00	ENCOFRADO Y DESENCOFRADO DE VEREDAS	M2	1,363.80			Diameter.		 						Г
08.04.00	CONCRETO F'C=140 KG/CM2	M3	1,424.06											
08.05.00	JUNTAS	ML	2,966.90					 		-				
09.00.00	SEPARADOR CENTRAL							 						-
09.01.00	EXCAVACION MANUAL	M3	190.54					 ECOM						Г
09.02.00	NIVELACION Y COMPACTACION	M2	246.64					 20						
09.03.00	CONFORMACION DE BASE E=10 CM	M2	246.64						***					Γ
09,04.00	ENCOFRADO Y DESENCOFRADO	M2	1,695.00					 						Γ
09.05.00	CONCRETO DE BASE F'C=175 KG/CM2, E=15 CM)	M3	33.45						22					
09.06.00	CONCRETO SARDINEL F'C=175 KG/CM2, E=15 CM)	M3	118.49											Г
09.07.00	REACOMODO DE MATERIAL EXCAVADO	M3	266.02					 						
10.00.00	SENALIZACION													
10.01.00	SEÑALIZACION HORIZONTAL							 				 		-
10.01.01	SEÑALIZACION HORIZONTAL	M2	747.80											
10.02.00	SEÑALIZACION VERTICAL													
10.02.01	SEÑALES REGLAMENTARIAS 0.60 X 0.90 M.	UN	31.00								ļ,			_
10.02.02	SEÑALES PREVENTIVAS 0.60 X 0.60 M.	UN	5.00					 						_
10.02.03	EXCAVACION PARA CIMIENTOS H<0.60 M.	M3	1.84					 						
10.02.04	CONCRETO 175 KG/CM2 PARA ANCLAJES Y/O DADOS	M3	1.84					 				 		_
10.02.05	FLECHAS EN PARED 0.30 X 0.90 M.	UN	85.00		- 1		ļ.							1

2. ESPECIFICACIONES TÉCNICAS

2.1 OBRAS PRELIMINARES

Las obras preliminares son aquellas tomadas en cuenta antes de iniciar la ejecución física de los trabajos. De acuerdo a la magnitud y tiempo de duración de la obra, se tendrá en cuenta la construcción de un campamento, almacén, cartel de obra y en cuenta la construcción de un campamento, almacén, cartel de obra y de requerir el caso, una caseta de guardianía, o un local provisional de accesibilidad.

2.2 TRAZO Y REPLANTEO

Se traza el eje de la vía, de acuerdo a lo indicado en los planos, estacando cada 20 metros, el eje en tangente, al igual que los extremos con su respectivo bombeo o peralte.

Para determinar las cotas o niveles de las diferentes estacas, se hace uso del punto de referencia (BM) señalado en los planos. En caso existiera diferencia entre los datos de campo y los planos, se hará modificaciones técnicas con la aprobación de la Supervisión.

2.3 MOVIMIENTO DE TIERRAS

2.3.1 Corte

El corte del terreno se efectuará hasta la cota indicada del nivel de subrasante. El material proveniente del corte deberá ser retirado de obra y conforme a las indicaciones del ingeniero inspector se desechará todo el material suelto o inestable que no se compacte fácilmente; además se eliminarán raíces, hierbas, material orgánico y elementos extraños que conformen huecos o desniveles considerables.

Para el caso de la calzada el corte se hará utilizando maquinaria.

2.3.2 Eliminación de Material Excedente

Se refiere a los sobrantes de las diferentes etapas de la construcción.

Se evitará amontonar los excedentes para no ocasionar interrupciones del tránsito vehicular y peatonal, así como molestias con el polvo provocado por la remoción, el carguío y el transporte.

Para el caso de la calzada, la eliminación del material excedente se empleará cargador frontal y volquetes, apoyado con mano de obra para la limpieza y pequeñas cantidades de desmonte.

2.3.3 Preparación de la subrasante

Esta partida consiste en la preparación de la sub rasante para todo el ancho de la vía, en zonas donde el material del terreno no sea apto (turba o suelo altamente orgánico), éste será reemplazado con otro de mejor calidad, preferentemente granular.

La subrasante deberá ser regada con camión cisterna y compactada; la compactación se hará mediante un rodillo con salientes (suelo fino) o con un rodillo liso vibratorio (suelo gravoso) según sea el material de la subrasante.

No se colocará ninguna capa sobre la subrasante, sin antes ésta haber sido compactada y evaluada por el supervisor.

Parámetros de control de subrasante.

- Se tolerará, como máximo 2 cm. por encima o debajo del nivel de subrasante indicado en los planos.
- La flecha de bombeo podrá tolerarse hasta en un 20% en exceso, más no por defecto.
- La comprobación de la compactación se hará cada 250 m² ó cada 50 ml. de pista, esta se hará alternadamente en los bordes y en el eje de la vía empleando el método que el inspector crea convenientemente.
- Si la subrasante es arcillosa, el grado de compactación tolerable será de 90% de la máxima densidad seca de laboratorio en puntos aislados.

2.4. Colocación y preparación del material para la sub base.

El residente, está obligado a emplear en obra un material adecuado y de calidad igual a la exigida por las especificaciones. La selección y aprobación final del material de cantera para la sub base, deberá ser determinada por la inspección.

El material proveniente de la cantera, chancado de rocas, o de una combinación de agregado zarandeado y chancado, deberá cumplir con la siguiente granulometría:

Tabla A.2.4: Requerimientos de granulometría.

MALLA		Porcentaje en p	peso que pasa	
TIPO AASHO T-11 y T-27	А	В	С	D
2"	100	100	_	-
1"	-	75 – 95	100	100
3/8"	30 – 65	40 – 75	50 – 85	60 – 100
Nº 4	25 – 55	30 – 60	35 – 65	50 – 85
Nº 10	15 – 4 0	20 – 45	25 – 50	40 - 70
Nº 40	8 – 20	15 – 30	15 – 30	25 – 45
N° 200	2 - 8	5 – 20	5 - 15	10 - 25

Fuente: ASTM.

En el caso de mezclarse dos o más materiales, para lograr la granulometría requerida, los porcentajes serán repartidos en volumen.

Una vez seleccionado el material por su tamaño máximo, son acarreados a la obra por medio de volquetes donde se acamellonan, es decir se hace un acordonamiento de sección constante para medir un volumen y en caso de que haya faltante, se deben realizar los recargues necesarios.

Para acamellonar los materiales se utiliza motoniveladora. Todo material de sub base debe estar libre de basura o materia orgánica.

El material para la sub base será el proveniente de las canteras Venecia y/o Las Vegas, muy cercanas a la zona del proyecto y ubicadas en el río Mashcón.

2.5. Nivelación, riego y compactación de la sub base.

Para efectuar la compactación, el material será humedecido con una cantidad de agua cercana a la óptima; esta humedad de campo, en general, es menor que la de laboratorio porque las máquinas que se utilizan son de gran peso, aunque se debe compensar el agua que se evapora mientras se hacen los tratamientos.

El agua no se riega de una sola vez, sino que se distribuye en varias pasadas del camión cisterna.

El material acamellonado se abre parcialmente hacia la corona de la obra y pasa el tanque cisterna haciendo un primer riego, luego la motoniveladora abre una nueva cantidad de material y lo coloca sobre el ya humedecido; vuelve a pasar el camión cisterna y así sucesivamente, hasta que se proporciona toda el agua necesaria; en seguida se homogeneiza la humedad en todo el material con la motoniveladora, que hace cambios sucesivos del material hacia un lado y otro, sobre la corona de la obra.

Después que se consigue uniformizar la humedad en todo el material, se lo distribuye a través de la corona, para formar la capa con espesor suelto necesario.

La compactación de la sub base se realiza con rodillo liso vibratorio.

La compactación se iniciará en los bordes y se terminará en el centro, hasta obtener una capa densa uniforme cuya compactación no debe ser menor al 95 %, como mínimo, de la máxima densidad obtenida en el laboratorio.

Cualquier irregularidad o depresión que se presente después de la compactación, debe ser corregida añadiendo o retirando el material en esos lugares hasta que la superfície sea llana y uniforme.

Después del proceso de compactación la superficie será refinada mediante pasadas sucesivas de la motoniveladora y del rodillo liso vibratorio, hasta que la superficie sea uniforme y resistente.

La sub base compactada tendrá un espesor de 15 cm. y descansará sobre una capa anticontaminante de 10 cm.

2.6 ESPECIFICACIONES TÉCNICAS PARA TRABAJOS DE CONCRETO.

2.6.1 Materiales

2.6.1.1 Cemento.

Para la elaboración del concreto se empleará el cemento Portland tipo I y cumplirá con las especificaciones de la norma ASTM C-150, considerándose oficialmente por pie cúbico de volumen un peso de 42.5 kg.

El cemento en bolsas deberá ser almacenado en sitios secos y aislados del suelo, en acopios de no más de 7 metros de altura, aceptándose tan solo aquellas bolsas con coberturas sanas y que no presenten roturas ni endurecimientos en su superficie.

Si el cemento se suministra a granel, deberá almacenarse en sitios aislados de la humedad. La capacidad mínima de almacenamiento deberá ser la suficiente para el consumo de un día o una jornada de producción normal.

Todo cemento que tenga más de dos meses de almacenamiento deberá ser examinado por el supervisor, para verificar si aún puede ser utilizado.

2.6.1.2 Agua.

En general, el agua adecuada para la fabricación del concreto, es el agua apta para el consumo humano.

2.6.1.3 Agregados.

Los agregados que se emplearán en la construcción del pavimento serán los provenientes de la cantera Venecia (río Mashcón), cuyas características cumplen con los requerimientos señalados en el capítulo II. También puede ser utilizado el material de la cantera Las Vegas, ubicada también en el río Mashcón y de características similares.

Los agregados se sujetarán al tratamiento necesario para cumplir con los requisitos de calidad que se indican en cada caso. El contratista deberá prever las características en el almacén y los tratamientos necesarios para su posterior utilización. El manejo y almacenamiento subsecuente de los agregados deberá hacerse de tal forma que se eviten segregaciones o contaminaciones con substancias u otros materiales perjudiciales. Se debe mantener una condición de humedad uniforme antes de ser utilizados en la mezcla.

a) Agregado fino

Éste puede consistir en arena natural o manufacturada o una combinación de ambas. Estará compuesto de partículas limpias, duras, compactas y resistentes; de

perfil angular y libre de partículas escamosas o blandas, materia orgánica u otras sustancias dañinas.

El módulo de finura del agregado deberá ser 2.30 mínimo y 3.10 máximo y se mantendrá dentro de más o menos el 20 % del valor asumido para la selección de las proporciones del concreto.

Tabla A.2.6.1.3 (a): Granulometria de la arena.

MALLA	% QUE PASA
3/8 "	100
Nº 4	95 - 100
Nº 8	80 - 100
№ 16	50 - 85
Nº 30	25 - 60
Nº 50	10 - 30
Nº 100	2-10
N° 200	4 máximo

FUENTE: Pavimentos de Concreto cemex CONCRETOS

La arena no tendrá un retenido mayor de 45 % entre dos mallas consecutivas.

b) Agregado grueso.

El agregado grueso puede estar constituido de grava natural o triturada; fragmentos cuyo perfil sea preferentemente angular o semi angular; limpios, duros, compactos, resistentes, de textura generalmente rugosa y libre de material escamoso o de partículas blandas.

La resistencia a la compresión no debe ser menor a 600 kg/cm². La prueba de desgaste "Los Angeles" deberá ser 40 % como máximo.

Algunas de estas limitaciones pueden ser obviadas por la inspección, si a su juicio la trabajabilidad del concreto y los procedimientos de compactación son tales que el concreto puede ser colocado sin que se formen cangrejeras o vacíos.

Tabla A.2.6.1.3 (b): Granulometria de la grava.

MALLA	% QUE PASA
2"	100
1 ½"	95 - 100
3/4"	35 - 70
3/8"	10 - 30.
Nº 4	0 - 5.

FUENTE: Pavimentos de Concreto. cemex CONCRETOS

2.6.1.4 Concreto.

Los requisitos de resistencia se basan en el valor de fc' a los 28 días. Los resultados de los ensayos de resistencia a la flexión o a la tracción por compresión diametral, no deberán ser utilizados como criterios para la aceptación del concreto.

El peso del concreto normal estará entre 2200 y 2500 Kg/m³, considerándose un valor promedio de 2400 Kg/m³ para los cálculos estructurales y la selección de las proporciones de la mezcla.

El concreto será una mezcla de cemento, agregado y agua, en proporciones adecuadas, capaz de ser colocado sin segregaciones, con condiciones de resistencia y durabilidad favorables, además de presentar un alto grado de trabajabilidad. El concreto trabajable es el que puede ser colocado sin que se produzcan demasiados vacíos en su interior y en la superficie y no debe presentar una apariencia pastosa.

Para la construcción de la calzada se utilizará un concreto de f'c = 210 kg/cm², con una dosificación en volumen de 1 : 1.46 : 2.68 / 21.25 lt/bolsa.

En la construcción de veredas se empleará un concreto de f'c = 140 Kg/cm², con una dosificación en volumen de:

En muros y losa de fondo de canales de drenaje se utilizará concreto de f'c = 175 kg/cm², con una dosificación en volumen de:

En la construcción de la losa superior de canal de drenaje, en vereda, se utilizará un concreto de f'c = 210 kg/cm², con una dosificación en volumen de:

Y, en la losa superior de canal de drenaje, en calzada, se empleará un concreto de f'c = 350 kg/cm², con una dosificación en volumen de:

2.6.2 Proceso Constructivo.

2.6.2.1 Encofrado:

Tiene como función confinar el concreto no endurecido a fin de lograr una estructura con el perfil, niveles, alineamientos y dimensiones especificados.

Se empleará paneles con marcos de madera cepillada de 3/4" o paneles metálicos. Si se utiliza madera, ésta deberá estar libre de agujeros, nudos, hendiduras, rajaduras, alabeos, y en general, cualquier defecto que pueda atentar contra la apariencia de la estructura y su resistencia. Los alambres que se emplearían para amarrar los encofrados

no deberán atravesar las caras que quedan expuestas en la obra terminada. Es recomendable emplear pernos para unir los encofrados.

Los encofrados deberán ser construidos de acuerdo a las líneas de las estructuras y apuntalados sólidamente para que conserven su rigidez. Las juntas de unión serán calafateadas para impedir la fuga de la lechada de cemento, debiendo cubrirse con cintas de material adhesivo para evitar la formación de rebabas.

Los encofrados serán convenientemente humedecidos antes de depositar el concreto y sus superficies interiores debidamente lubricadas para evitar la adherencia del concreto.

La inspección deberá aprobar el diseño y el proceso constructivo de los encofrados y su ejecución permitirá obtener las dimensiones finales de los elementos estructurales con diferencias menores que las tolerancias máximas permisibles.

2.6.2.2 Colocación del Concreto.

Se realiza el mezclado de los materiales, para lo cual se llevarán a cabo las correcciones necesarias, principalmente la corrección por humedad. El concreto se vacía sobre la sub base y se esparce a todo lo ancho a paleo manual. Deberá limpiarse y humedecerse previamente la superficie que recibe al concreto para evitar que se absorba el agua de la mezcla.

Barras de Amarre:

Se colocarán barras de amarre para evitar el corrimiento o desplazamiento de las franjas de losas. Las barras serán corrugadas, de acero estructural con un límite de fluencia (f_y) de 4200 Kg/cm², debiendo quedar ahogadas en las losas a la mitad del espesor y en la posición indicada en el proyecto. Las barras de amarre se colocarán en las juntas longitudinales; el diámetro, longitud y separación serán los indicados en el punto 4.4.5.2 (Diseño de Juntas Longitudinales) del capítulo IV.

Pasajuntas:

En los jirones Chanchamayo y Miguel Iglesias se colocarán barras pasajunta en las juntas de contracción transversal; estas se colocarán perfectamente alineadas al sentido longitudinal del pavimento y a la mitad del espesor. La función de estas barras es la de garantizar una efectiva transferencia de fuerzas cortantes en losas adyacentes, permitiendo el libre movimiento de las franjas de losas en el sentido longitudinal. Las barras serán lisas, de acero estructural, Fy = 4200 kg/cm², debiendo estar engrasadas en toda su longitud para evitar que se adhieran al concreto.

Previamente la inspección deberá verificar:

- Que las cotas y dimensiones de los elementos estructurales correspondan a las de los planos.
- Que los encofrados estén terminados, adecuadamente arriostrados, humedecidos y aceitados.
- Que se cuente en obra con los equipos y materiales necesarios para la protección y curado.
- Que los equipos que se van a emplear se encuentren en perfectas condiciones.

En el procedimiento de colocación del concreto deberá evitarse variaciones en su consistencia, segregación y evaporación del agua de mezclado.

El programa de trabajo y el equipo de colocación deberán ser aprobados por la inspección.

2.6.2.3 Control de Calidad.

Para el control de calidad es necesario que en forma continua se realice la prueba de revenimiento, con la cual se puede tener una idea del concreto que se usa, pues si se están obteniendo asentamientos aceptables y en un momento dado cambian, ya sea que aumenten o disminuyan, esto nos indicará que no se están efectuando las dosificaciones como es debido.

Un motivo por el cual cambie el asentamiento, es que la humedad de los agregados varíe con el tiempo; se recomienda tenerlos saturados y superficialmente húmedos en forma constante para reducir este defecto.

Se elaborarán especímenes para verificar el módulo de rotura y la resistencia a la compresión simple. Por cada 10 m³ se elaborará un par de cilindros con los cuales se podrá controlar la resistencia a los 28 días.

2.6.2.4 Vibrado y Perfilado.

Colocado el concreto, se deberá acomodar en las orillas cercanas a la cimbra utilizando un vibrador manual de inmersión, posteriormente se pasa la regla o un vibrador de superficie que le dan el vibrado final a la masa del concreto. Finalmente, utilizando una flotadora de aluminio o magnesio, o en su lugar paletas de madera, en sentido transversal, se dará el perfilado definitivo al pavimento.

El vibrado no debe prolongarse demasiado tiempo en un solo punto, siendo recomendable tiempos de vibrado de 8 a 15 segundos cada 30 centímetros. Para la compactación se tendrá en cuenta lo siguiente:

- Si la consolidación se efectúa con equipos de compactación mecánicos, se elegirán asentamientos que varían de 1 a 3 centímetros.

 Para espesores de menos de 20 centímetros es recomendable el empleo de vibradores de superficie.

2.6.2.5 Texturizado longitudinal y transversal.

El texturizado podrá realizarse, con buenos resultados, siempre que durante el endurecimiento del concreto, la superficie de las losas va a estar protegida contra fenómenos climáticos, de herramientas y/o del paso de equipo o seres vivos.

El acabado superficial longitudinal del concreto recién colado podrá realizarse después del perfilado definitivo, mediante el arrastre de tela de yute húmeda en sentido longitudinal del pavimento. Este proceso se puede realizar, para este tipo de pavimentos, de manera muy sencilla y en forma prácticamente manual; se fija perfectamente la tela de yute a un tubo o solera que mida un poco más que el ancho de pavimentación, se humedece y se arrastra en sentido longitudinal con el apoyo de dos personas, uno a cada lado del pavimento.

Posteriormente se realiza el texturizado transversal mediante una rastra de alambre en forma de peine, con una separación entre dientes entre los 3.0 mm y los 6.0 mm a todo lo ancho de la superficie pavimentada. Esta operación se realizará cuando el concreto esté tan plástico como para permitir el texturizado pero lo suficientemente seco para evitar que el concreto fluya hacia los surcos, que pudieran cerrarse perdiendo su funcionalidad.

2.6.2.6 Protección y Desencofrado.

El concreto colocado deberá ser protegido de la lluvia, agua en movimiento, viento, sol, secado prematuro, sobrecargas y en general, de toda acción mecánica ó química que pueda dañarlo.

El retiro temprano de los encofrados tiene la doble finalidad de iniciar sin demora el proceso de curado y efectuar cualquier reparación a la superficie del concreto mientras éste está poco endurecido.

La inspección autorizará la remoción de los encofrados únicamente cuando la resistencia del concreto alcance un valor doble al necesario para soportar las tensiones que aparecen en el elemento estructural en el momento de desencofrar.

En ningún caso se hará actuar totalmente las cargas de diseño en tanto no haya transcurrido por lo menos 28 días contados a partir de la fecha de vaciado del concreto.

Las juntas de contracción, las de dilatación o expansión y las articulaciones, deberán ser libradas en todos los elementos de los encofrados que puedan oponerse a su funcionamiento.

2.6.2.7 Reparaciones superficiales y curado.

El proceso de reparación y la ejecución de esta operación, no deben afectar la resistencia ni durabilidad del concreto; se realizará con personal especializado y bajo la supervisión permanente de la inspección.

La superficie reparada, una vez endurecida, deberá estar libre de grietas por contracción.

Se ha demostrado experimentalmente que tanto la resistencia del concreto, como su impermeabilidad, mejoran con la edad de éste, siempre y cuando las condiciones sean favorables para que la hidratación del concreto continúe a una forma mucho más lenta cuando la temperatura se acerca a la congelación o está por debajo de ésta. Así, pues, como puede notarse, el concreto debe ser protegido de tal manera que la humedad no se pierda durante el comienzo del endurecimiento del mismo y debe mantenerse a una temperatura que ayude a la hidratación del concreto.

Existen varios procedimientos que pueden ser empleados para mantener húmedo el concreto, tales como el rociado, la inundación, riegos impermeabilizantes, etc.

Cuando un concreto se mantiene húmedo por rociado, debe procurarse que no se seque la superficie entre las distintas aplicaciones de agua ya que los ciclos alternos de humedad y secado del concreto fresco originan agrietamientos irregulares, un fino rociado de agua con períodos de secado entre ellas.

El método de inundar la superficie se emplea muy a menudo en los pavimentos de concreto hidráulico por tener la superficie plana, este método consiste en rodear el perímetro de la superficie con pequeños camellones de arena y agregarle agua a la superficie circundada.

La apertura al tránsito vehicular será una vez que el concreto haya alcanzado una resistencia a la tensión por flexión o Módulo de Rotura del 75 %, como mínimo, de la especificada en el proyecto, siendo el momento ideal después de los 28 días en que se efectuó el vaciado.

Tabla A.2.6.2.7: Resistencia de concreto recomendada.

TIPO DE PROYECTO	MR
	Kg/cm²
Autopistas y Carreteras	48.00
Zonas Industriales y Urbanos Principales	45.00
Urbanos Secundarios	42.00
FUENTE: Pavimentos de Concreto, cemex CO	NCRETOS.

2.7 FORMACIÓN DE JUNTAS.

2.7.1 Juntas Transversal de Contracción.

Las juntas de contracción tendrán un espesor de 6 mm y una profundidad de 1/3 del espesor de la losa.

2.7.2 Junta Transversal de Construcción.

El método más común de construir una junta transversal de construcción es terminando los trabajos de pavimentación en una cimbra cabecera. Sin embargo como la colocación de esta cimbra requerirá de mano de obra, esto puede provocar que en esa zona la superficie del pavimento quede un poco más áspera, así que se recomienda un cuidado especial a los trabajos de terminado en esta zona para asegurarnos de tener una superficie suave.

Las pasajuntas se colocan a través de la cimbra en unos agujeros previamente perforados en ella y se recomienda dar una consolidación adicional al concreto para asegurar un satisfactorio encajonamiento. Antes de reanudar los trabajos de pavimentación se deberá quitar la cimbra cabecera.

La junta transversal de construcción que caiga en donde originalmente se planeó construir una junta de contracción o de aislamiento, se deberá sellar de acuerdo a las especificaciones de la junta originalmente planeada, con la excepción de que las juntas transversales de construcción no requieren de un corte inicial. La junta de construcción de emergencia (endientada y amarrada) tendrá un ancho de 1 pulg.

2.7.3 Junta Longitudinal.

Las juntas longitudinales de construcción, empleadas en el medio de los carriles o franjas de construcción, son generalmente juntas endientadas.

Una junta endientada se forma en el borde de la losa ya sea por una protuberancia con una pavimentadora de cimbra deslizante o uniéndole a la cimbra una cuña o diente de metal o madera de la forma, dimensiones y profundidad adecuada.

Las formas más comunes del endientado en la junta son en forma de un medio círculo y en forma trapezoidal, con las dimensiones mostradas figura 2.4.7.4-7.

Las juntas longitudinales de contracción se hacen formando una ranura en el concreto fresco de una manera muy similar al caso de las juntas transversales de contracción. Si se efectúan cortando con disco en el concreto endurecido, la profundidad del corte o de la ranura deberá ser de un tercio del espesor y el tiempo o el momento para hacer el corte inicial no es tan crítico como en el caso de las juntas transversales de contracción ya que el movimiento de contracción longitudinal no es tan grande como el transversal.

El corte de las juntas longitudinales deberá realizarse antes de 48 horas y de que cualquier equipo pesado o vehículo circule sobre el pavimento. Sin embargo, bajo ciertas condiciones, como una fuerte caída en la temperatura ambiente durante la primera o segunda noche, donde se pueden presentar agrietamientos longitudinales, es una buena práctica el realizar el corte tan pronto como se pueda hacer.

2.7.4 Juntas de Aislamiento.

Se utilizan principalmente para aislar el pavimento de una estructura, otra área pavimentada o cualquier objeto inamovible. El uso adecuado de estas juntas disminuye los esfuerzos a compresión que se presentan entre el pavimento y una estructura o entre dos secciones de pavimento. Las juntas de aislamiento incluyen las juntas a toda la profundidad y a todo lo ancho sobre los apoyos o estribos del puente, intersecciones en T ó asimétricas, entre pavimentos existentes y pavimentos nuevos, así como también para juntas alrededor de estructuras en el interior del pavimento como pozos de visita, alcantarillas y estructuras de alumbrado público.

Las juntas de aislamiento en intersecciones T, intersecciones asimétricas y en rampas, no tendrán pasajuntas para permitir el movimiento horizontal sin dañar el pavimento colindante.

Las juntas de aislamiento usadas en pozos de visita, alcantarillas, estructuras de alumbrado y edificios, tampoco llevarán pasajuntas, debido a que estas son colocadas alrededor de otros objetos y no requieren transferencia de carga.

El ancho de las juntas de aislamiento será de ½" (12 mm).

2.8 SELLADO DE JUNTAS.

El objetivo del sellado de juntas es minimizar la infiltración del agua superficial de materiales incompresibles al interior de la junta y, desde luego, al interior del pavimento y de su estructura.

El problema que puede presentarse con la infiltración de agua al interior del pavimento es el efecto conocido como "bombeo"; el cual, como se mencionó anteriormente, es la expulsión de material por agua a través de las juntas. Mientras el agua es expulsada, se lleva partículas de grava, arena, arcilla, etc., resultando una progresiva pérdida de apoyo en el pavimento.

2.8.1 Limpieza previa.

Previo a la ejecución del sellado, la abertura de la junta deberá ser limpiada a

fondo de compuestos de curado, residuos, natas o cualquier otro material ajeno. La limpieza de las caras de la junta afecta directamente la adherencia del sellador al concreto. Una limpieza pobre decrementa su adherencia a la interfase con la junta, lo que reduce la efectividad del sellador. Por lo que la correcta limpieza es esencial para obtener una superficie de junta que no perjudicará el lazo o adhesión con el sellador.

La limpieza se puede hacer con agua a presión, apoyándose con una rastra, hasta dejar perfectamente libre de material la totalidad de la junta, luego se realiza el secado de la junta con aire a presión.

2.8.2 Tipos de selladores.

Existen muchos materiales aceptados para el sellado de juntas en los pavimentos de concreto. La clasificación más simple los divide como líquidos (o moldeados en el campo) y los pre moldeados (por compresión).

2.8.3 Sellos líquidos.

Los sellantes líquidos pueden ser colocados en frío, con un solo componente; son autonivelables, toman la forma del depósito y dependen en gran parte de la adhesión de las caras de la junta para un sellado satisfactorio.

2.8.4 Sellos a compresión (premoldeados).

Este tipo de sellantes son moldeados durante su fabricación y dependen en gran parte de la recuperación de la compresión para un sellado satisfactorio.

2.9 VEREDAS.

Estarán conformadas por una base de material granular de 10 cm de espesor y una losa de concreto de 10 cm de espesor y f'c = 140 Kg/cm². Todas las veredas tendrán una inclinación del 1 %, hacia la calzada. Llevarán bruñas de canto y transversales; las juntas transversales deberán coincidir con las del pavimento. Los materiales a usar serán del río Mashcón.

2.10 ESPECIFICACIONES TÉCNICAS PARA OBRAS DE DRENAJE.

La resistencia del concreto para muros y losas de fondo de los canales de drenaje será de 175 Kg/cm² y para las losas superiores de 210 Kg/cm².

Se considerarán tapas de limpieza, generalmente cada 10 metros en todos los canales, excepto en aquellos cuyas dimensiones sean relativamente pequeñas, donde la separación entre dichas tapas será menor.