UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE CIENCIAS AGRARIAS

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA FORESTAL

TESIS

CARACTERIZACIÓN DE LA ESTRUCTURA Y COMPOSICIÓN FLORÍSTICA DE UN BOSQUE SECO EN EL SECTOR AGUA EL ANISH, SAN GREGORIO, SAN MIGUEL, CAJAMARCA

Para optar el Título Profesional de:

INGENIERO FORESTAL

Presentado por el Bachiller:

IVAN HARVEY AVELINO VILLAVICENCIO

Asesor:

Ing. M.Sc. LUIS DÁVILA ESTELA

CAJAMARCA – PERÚ

2023

UNIVERSIDAD NACIONAL DE CAJAMARCA

"NORTE DE LA UNIVERSIDAD PERUANA" Fundada por Ley N° 14015, del 13 de febrero de 1962

FACULTAD DE CIENCIAS AGRARIAS

Secretaría Académica

ACTA DE SUSTENTACIÓN DE TESIS

En la ciudad de Cajamarca, a los dieciséis días del mes de junio del año dos mil veintitrés, se reunieron en el ambiente 2C - 202 de la Facultad de Ciencias Agrarias, los miembros del Jurado, designados según Resolución de Consejo de Facultad Nº 181-2023-FCA-UNC, de fecha 14 de marzo del 2023, con la finalidad de evaluar la sustentación de la TESIS titulada: "CARACTERIZACIÓN DE LA ESTRUCTURA Y COMPOSICIÓN FLORÍSTICA DE UN BOSQUE SECO EN EL SECTOR AGUA EL ANISH, SAN GREGORIO, SAN MIGUEL, CAJAMARCA", realizada por el Bachiller IVAN HARVEY AVELINO VILLAVICENCIO para optar el Título Profesional de INGENIERO FORESTAL.

A las diez horas y quince minutos, de acuerdo a lo establecido en el Reglamento Interno para la Obtención de Título Profesional de la Facultad de Ciencias Agrarias de la Universidad Nacional de Cajamarca, el Presidente del Jurado dio por iniciado el Acto de Sustentación, luego de concluida la exposición, los miembros del Jurado procedieron a la formulación de preguntas y posterior deliberación. Acto seguido, el Presidente del Jurado anunció la aprobación por unanimidad, con el calificativo de quince (15); por tanto, el Bachiller queda expedito para proceder con los trámites que conlleven a la obtención del Título Profesional de INGENIERO FORESTAL.

A las doce horas y diez minutos del mismo día, el Presidente del Jurado dio por concluido el Acto de Sustentación.

Blgo. M. Cs. Gustavo Iberico Vela

PRESIDENTE

Ing. M. Sc. Watter Ricardo Roncal Briones

SECRETARIO

Ing. Nehemias Honorio Sangay Martos VOCAL Ing. M. Sc. Luis Dávila Estela

ASESOR

DEDICATORIA

A mi esposa Melissa, mi hija Danna Zoé Mishell.

A mis padres: María Elena y Eduar Velarde,

a mis hermanos Juan Carlos y Edwin Orlando.

AGRADECIMIENTOS

A Dios, por bendecirme cada día, en cada paso que doy y haber puesto en mi camino a aquellas personas que han sido mi soporte y compañía durante mi formación profesional.

A mi estimado asesor; Ing. M. Sc. Luis Dávila Estela, por su confianza y pleno apoyo en la elaboración de este trabajo de investigación.

Al Ing. Elvis Allauja Salazar, por su apoyo en la recolección de datos de campo.

A la comunidad campesina de San Gregorio por permitirme ingresar a su territorio comunal para el recojo de información de campo.

ÍNDICE

DEDIC	CAT(ORIA	iii
AGRA	DEC	CIMIENTOS	iv
ÍNDIC	E .		v
ÍNDIC	E DI	E TABLAS	viiii
ÍNDIC	E DI	E FIGURAS	viii
RESU	MEN	·	ix
ABSTI	RAC	Т	X
CAPÍT	ULC) I	1
INTRO	DU	CCIÓN	1
CAPÍT	ULC	Э П	3
REVIS	IÓN	BIBLIOGRÁFICA	3
2.1.	An	tecedentes de la investigación	3
2.2.	Bas	ses teóricas	7
2.2	2.1.	Estructura del bosque seco	7
2.2	2.2.	Composición florística	12
2.2	2.3.	Caracterización del bosque seco	13
2.2	2.4.	Método para el estudio de la vegetación	14
2.2	2.5.	Bosques secos del Neotrópico	14
2.2	2.6.	Bosques secos del Perú	15
2.2	2.6.1.	Bosques secos del departamento de Cajamarca	18
2.3.	Def	finición de términos básicos	19
2.3	3.1.	Bosque seco Ecuatorial	19
2.3	3.2.	Composición florística	19
2.3	3.3.	Estructura del bosque	19
2.3	3.4.	Estructura horizontal	19
2.3	3.5.	Estructura vertical	20
2.3	3.6.	Parcela	20
CAPÍT	ULC) III	21
MARC	со м	IETODOLÓGICO	21
3.1.	Loc	calización de la investigación	21
3.2.	Ma	ıteriales	22

a.	Materiales de campo	22
b.	Materiales de gabinete	22
3.3.	Metodología	22
3.3.	Recopilación de datos	22
CAPÍTI	ULO IV	33
RESUL	TADOS Y DISCUSIÓN	33
4.1.	Estructura del bosque seco Agua El Anish	33
4.1.	1. Estructura horizontal	35
4.1.	2. Estructura vertical	46
4.2.	Análisis de la composición florística	50
CAPÍTI	ULO V	53
CONCI	LUSIONES Y RECOMENDACIONES	53
CAPÍTI	ULO VI	54
	ENCIAS BIBLIOGRÁFICAS	
ANEXC	OS	59

ÍNDICE DE TABLAS

Tabla 1. Riqueza y abundancia de especies	33
Tabla 2. Estratos	46
Tabla 3. Especies reportadas a nivel de estratos	48
Tabla 4. Posición sociológica de las especies reportadas	49
Tabla 5. Composición florística en el área de estudio	51

ÍNDICE DE FIGURAS

Figura 1. Caracterización de comunidades vegetales.	13
Figura 2. Distribución de BTES del Perú.	. 17
Figura 3. Ubicación geográfica del área de investigación	. 21
Figura 4. Croquis de la parcela y subparcelas.	. 23
Figura 5. Delimitación de la parcela en el área de estudio.	. 23
Figura 6. Medición del DAP de un individuo en la parcela establecida	. 24
Figura 7. Medición de altura de un individuo dentro de la parcela establecida	. 24
Figura 8. Obtención de muestras botánicas	. 25
Figura 9. Acondicionamiento de muestras botánicas colectadas en la prensa botánica	a.25
Figura 10. Acondicionamiento de muestras en la prensa botánica para su secado en	una
estufa eléctrica.	. 26
Figura 11. Muestra montada en papel folcote.	. 27
Figura 12. Muestra identificada lista para su ingreso al herbario	. 27
Figura 13. Clases diamétricas de leñosas.	. 35
Figura 14. Clases diamétricas para Loxopterygium huasango.	. 37
Figura 15. Clases diamétricas para Bursera graveolens.	. 37
Figura 16. Clases diamétricas para Cordia lutea	. 38
Figura 17. Clases diamétricas para Neoraimondia arequipensis	. 38
Figura 18. Clases diamétricas para Espostoa lanata.	. 39
Figura 19. Clases diamétricas para Espostoa guentheri.	. 39
Figura 20. Clases diamétricas para Morisonia scabrida.	. 40
Figura 21. Clases diamétricas para Beautempsia avicennifolia.	. 40
Figura 22. Clases diamétricas para Morisonia crotonoides.	. 41
Figura 23. Clases diamétricas de Acacia macracantha.	. 41
Figura 24. Abundancia relativa de las especies reportadas.	. 42
Figura 25. Frecuencia relativa de las especies reportadas.	. 43
Figura 26. Dominancia relativa de las especies reportadas.	. 44
Figura 27. Índice de valor de importancia (IVI) de las especies reportadas	. 45
Figura 28. Distribución por estratos de especies leñosas.	. 47

RESUMEN

La presente investigación se realizó en el bosque estacionalmente seco ecuatorial del sector Agua El Anish, distrito de San Gregorio, provincia de San Miguel, departamento de Cajamarca, ubicado entre 417 y 420 msnm, con el objetivo de determinar la estructura y composición florística del bosque seco. Se estableció un área de muestreo de una ha, la misma que se subdividió en 25 subparcelas de 20 m x 20 m, donde se censó a los arbustos con diámetro mayor o igual a 2.5 cm a 30 cm del suelo y a los árboles con DAP mayor o igual a 2.5 cm. Se colectaron muestras botánicas de los individuos censados y para su identificación fueron trasladadas al Laboratorio de Dendrología de la Escuela Académico Profesional de Ingeniería Forestal de la Universidad Nacional de Cajamarca. La distribución por clases diamétricas registró individuos ≥ a 2.5 cm de DAP, encontrando el mayor número de individuos en la clase 5,5 - 8,4 cm con 150 individuos (30 %) y en el intervalo 26,5 – 29,4 cm se tiene la menor cantidad de individuos con 5 (1 %). Se registraron 500 individuos distribuidos en 11 especies, de los cuales, los de mayor índice de valor de importancia fueron: Loxopterygium huasango con 25,40 %, Neoraimondia arequipensis con 12,77 % y Morisonia scabrida con 9,78 %. La distribución de los individuos fue en 10 clases diamétricas, donde el 59.60 % de ellos se concentra en la clase diamétrica menor, cuya línea de tendencia expresa una "j" invertida. La distribución por estratos de cobertura se presenta con 81 individuos en el estrato superior, 139 individuos en el estrato medio y 280 individuos en el estrato inferior. La composición florística está conformada por 11 especies 6 familias y 10 géneros.

Palabras clave:

Bosque seco ecuatorial, estructura horizontal, estructura vertical, clases diamétricas, índice de valor de importancia, composición florística, San Gregorio.

ABSTRACT

The research was carried out in the equatorial seasonally dry forest of the Agua El Anish sector, San Gregorio district, San Miguel, Department of Cajamarca, located between 417 and 420 meters above sea level, with the objective of determining the structure and floristic composition of the dry forest. A sampling area of one ha was established, which was subdivided into 25 subplots of 20 m x 20 m, where shrubs with a diameter greater than or equal to 2.50 cm at 30 cm from the ground and trees with a DBH greater than or equal to 2.5 cm were censused. Botanical samples were collected from the censused individuals and were transferred to the Dendrology Laboratory of the Academic Professional School of Forestry Engineering of the National University of Cajamarca for herborization and identification. The distribution by diameter classes registered individuals ≥ 2.5 cm DAP, finding the largest number of individuals in the 5.5 - 8.4 cm class with 150 individuals (30%) and in the 26.5 - 29.4 cm interval, there is the least amount of individuals with 5 (1%). 500 individuals distributed in 11 species were registered, of which the ones with the highest importance value index were: Loxopterygium huasango with 25.40 %, Neoraimondia arequipensis with 12.77 % and Morisonia scabrida with 9.78 %. The distribution by coverage strata is presented with 81 individuals in the upper stratum, 139 individuals in the middle stratum, and 280 individuals in the lower stratum. The floristic composition is made up of 11 species, 6 families and 10 genera.

Key words:

Equatorial dry forest, horizontal structure, vertical structure, diameter classes, importance value index, floristic composition, San Gregorio.

CAPÍTULO I

INTRODUCCIÓN

Los bosques tropicales estacionalmente secos (BTES) en el Neotrópico se extienden desde México hasta el Norte de Argentina y Suroeste de Brasil, en diferentes áreas separadas y de tamaño variable (Dryfor *et al.*, 2016, Linares-Palomino *et al.*, 2011). Estos bosques se caracterizan porque se desarrollan en zonas donde la precipitación es menor a 1 600 mm anuales y donde hay una estación fuertemente seca, alrededor de 5 a 6 meses al año, periodo en el que se presenta menos de 100 mm de precipitación. Además, se desarrollan en suelos fértiles; por lo que, es uno de los bosques tropicales más amenazados del mundo (Pennington *et al.*, 2000).

En Perú, los BTES se encuentran en la costa norte, los cuales son denominados bosques tropicales estacionalmente secos ecuatoriales; en los valles interandinos, denominados bosques tropicales estacionalmente secos interandinos y al Este de los Andes, denominados bosques tropicales estacionalmente secos orientales (Linares-Palomino, 2004; Linares-Palomino y Pennington, 2007).

Los bosques tropicales estacionalmente secos ecuatoriales del Norte del Perú que se distribuyen en los departamentos de Tumbes, Piura, Lambayeque, La Libertad y Cajamarca, han sido impactados progresivamente por la ampliación de la frontera agropecuaria (Linares-Palomino, 2004; Aguirre *et al.*, 2006). A la fecha, estos bosques secos aún siguen siendo estudiados debido a la existencia de vacíos de información en cuanto a su estructura y composición florística, información necesaria para establecer estrategias para su monitoreo y conservación, hecho que justifica la presente investigación.

Los estudios para comprender la estructura y composición florística de un bosque son importantes, ya que nos permiten conocer las especies, comunidades, formaciones vegetales y estado del bosque en estudio (Moreno, 2001). En ese sentido, la presente investigación desea documentar la caracterización de un área de bosque seco ecuatorial ubicado en un sector de las vertientes occidentales del Norte del Perú. El objetivo mayor consistió en la caracterización de la estructura y composición florística de un bosque seco en el sector Agua El Anish, San Gregorio, San Miguel, Cajamarca; además se consideraron dos objetivos específicos: 1) Caracterizar la estructura de un área de bosque seco ecuatorial, 2) Analizar la composición florística de un área de bosque seco ecuatorial.

CAPÍTULO II

REVISIÓN BIBLIOGRÁFICA

2.1. Antecedentes de la investigación

Aguirre y Geada (2017) muestrearon el bosque seco de la provincia de Loja, Ecuador; a través de 100 parcelas de 20 m x 20 m, con la finalidad de determinar los tipos de bosque en función de la composición florística y abundancia de las especies. Se determinaron tres tipos de bosque seco, indicados por la presencia de *Terminalia valverdeae*, *Simira ecuadorensis*, *Cordia macrantha* (bosque tipo I); *Handroanthus chrysanthus*, *Citharexylum gentryi*, *Calliandra taxifolia* (bosque tipo II), y *Eriotheca ruizii*, *Ipomoea pauciflora*, *Leucaena trichodes* y *Erythrina velutina* (bosque tipo III).

Ramírez (2019) analizó la estructura vertical y horizontal del bosque seco en el sector Quimís, valle Sancán, Ecuador, a través del establecimiento de seis parcelas de muestreo de 0,1 ha para definir el comportamiento del estrato arbóreo, estimando el índice de Shannon y Simpson. Mediante la curva área especie demostró que el muestreo fue suficiente para representar a esta comunidad vegetal, donde se registraron 236 individuos, 21 especies arbóreas y 14 familias. Las familias de mayor representatividad fueron: Fabaceae, Malvaceae, Euphorbiaceae y Capparaceae; entre las especies de mayor importancia ecológica se registra *Ceiba trichistandra* (A. Gray) Bakh., *Bursera graveolens* (Kunth) Triana & Planch. y *Geoffroea spinosa* Jacq, siendo *C. trichistandra* la especie que se ubica en primer lugar respecto a la frecuencia y dominancia. La distribución diamétrica presentó un patrón de "J" invertida, lo que indica que el bosque investigado se encuentra en proceso de recuperación pues existen mayor número de individuos en las categorías menores que en las categorías mayores, igual conducta se observó con el área basal

Moreira (2021) realizó una investigación en el bosque seco tropical del sector Membrillal del valle Sancán, Ecuador, para determinar la composición y estructura del bosque; para ello estableció 6 parcelas de muestreo de 50 m x 20 m/parcela. Reportó 9 familias, 14 especies, 14 géneros y 221 individuos. Las familias de mayor riqueza en especies fueron: Fabaceae y Capparaceae; mientras que en las especies de mayor importancia ecológica se registraron *Bursera graveolens* (Kunth) Triana & Planch, *Cordia lutea* Lam, *Erythroxylum glaucum* O.E. Schulz. Este sitio tiene una diversidad alta (3,13) entre especies, según el índice de Shannon; mientras que la dominancia de Simpson es alta (0,86). La mayoría de las especies que se encuentran en el latizal alto, bajo y brinzal, están relacionada con la estructura diamétrica y su tendencia en la forma de "J invertida", demostrado así el mayor predominio de especies con individuos jóvenes que se encuentran en estado de regeneración.

Aguirre et al. (2021) realizó una investigación en la parroquia Mangahurco, cantón Zapotillo, Loja; para determinar la composición florística y estructura a través de una parcela de 100 m x 100 m, anidando 25 subparcelas de 20 m x 20 m. Registrando todos los individuos entre arbustos, hierbas y epifitas, mayor o igual a 5 cm de DAP. Se inventario 1117 individuos/ha que pertenecen a 61 especies, 32 son árboles, 7 arbusto, 18 hierbas y 4 epifitas. Este estudio se realizó en la parroquia Mangahurco, cantón Zapotillo, provincia de Loja, con el objetivo de determinar la composición florística y estructura del bosque seco. Se estableció una parcela permanente de 100 m x 100 m, anidando 25 subparcelas de 20 m x 20 m, en cada subparcela, se registraron todos los individuos ≥ 5 cm de D1,30 m, los arbustos, hierbas y epifitas. Se calculó el índice de Shannon, parámetros estructurales, área basal y volumen. Se inventariaron 1117 individuos/ha que pertenecen a 61 especies, 32 son árboles, 7 arbustos, 18 hierbas y 4 epífitas. Las familias más diversas son: Fabaceae, Asteraceae, Bignoniaceae, Malvaceae y Verbenaceae. El

índice de Shannon es de 0,38 para árboles, 0,26 para arbustos y 0,42 para hierbas. Las especies con mayor IVI son: *Handroanthus chrysanthus, Simira ecuadorensis* y *Citharexylum gentryi*. Se diferencian tres estratos, en el estrato superior *Cochlospermum vitifolium, Eriotheca ruizii, Ceiba trichistandra, Terminalia valverdae y Handroanthus hrysanthus*, en el estrato codominante *Simira ecuadorensis, Chloroleucon mangense, Celtis loxensis, Caesalpinaglabrata y Geoffroea spinosa* y en el estrato suprimido *Celtis loxensis*.

Cabrera y Martens (2022) efectuaron un estudio en un área de bosque seco del sector "La Tomatera" del valle de Portoviejo, Ecuador; en 20 parcelas distribuidas al azar de 20 m x 25 m en una población de 100 ha. Su investigación tuvo como objetivos determinar la diversidad de especies forestales, la estructura horizontal y vertical. Como resultado del inventario forestal se identificaron 9 familias botánicas, 11 géneros y 11 especies leñosas. Asimismo, reporta que en la estructura horizontal y vertical los individuos están concentrados mayormente en las primeras clases diamétricas (1 – 19,9 cm) y altimétricas (0 – 9,99 m), respectivamente; reflejando un bosque en proceso de recuperación. El índice de valor importancia con mayor representación lo presentaron tres especies *Ceiba trichistandra*, *Cochlospermum vitifolium* y *Prosopis juliflora*.

Salvatierra y Zambrano (2022), en una investigación realizada en el Bosque Seco Tropical del Parque Arqueológico Hojas de Jaboncillo el cantón Portoviejo, Ecuador; determinaron y evaluaron la diversidad florística. Para ello, instalaron de manera aleatoria 5 parcelas de muestreo con un área de 1 000 m² (20 m x 50 m). La composición florística del bosque seco evaluado manifestó 195 individuos pertenecientes a 9 especies arbóreas, 13 géneros y 13 familias, se destacan con mayor representatividad de individuos a

Tabebuia crysantha (guayacán), Cordia alliodora, (laurel) y Erythrina velutina (porotillo). La familia más abundante fue Fabaceae.

Delgado-Paredes et al. (2020) determinaron la composición florística del bosque estacionalmente seco ubicado en el Cerro Tres Puntas de Pilasca (Salas-Motupe, Lambayeque, Perú), a través de transectos lineales que abarcaron una muestra de 11.4 ha, donde censaron a los individuos de plantas leñosas con DAP ≥ 5.0 cm. Determinaron que el área basal total fue de 343.86 m² por ha, en la que destacan *Ficus obtusifolia* con 139.23 m² y *Beilschmiedia sulcata* con 120.90 m². Asimismo, el índice de valor de importancia que alcanzó los mayores valores fueron *Ficus obtusifolia* (49.34), *Acacia macracantha* (46.75) y *Eriotheca ruizii* (41.57); en tanto que el Índice de Valor de la Familia fue más alto para Fabaceae, con 111.86, seguida de Moraceae con 46.74 y Lauraceae con 45.33. Por otro lado, se registraron 410 individuos que representan a 17 especies, 17 géneros y 10 familias, donde los taxones más abundantes fueron *Acacia macracantha* (Fabaceae 154 individuos) y *Celtis iguanaea* (Cannabaceae 55 individuos) y las familias mejor representadas correspondieron a Fabaceae, con siete especies y Malvaceae, con dos.

Moscol et al. (2022) determinaron la estructura y diversidad arbórea y su relación con el suelo forestal en un ecosistema de bosque seco ubicado en el sector Garbanzal, distrito san Juan de la Virgen, Tumbes. Mediante un muestreo sistemático donde se establecieron 13 parcelas de 50 m x 50 m, considerándose individuos a partir de 5 cm de diámetro a la altura del pecho, con muestras compuestas de suelo para el análisis físico químicos. La vegetación arbórea estuvo constituida por *Bursera graveolens, Caesalpinia paipai, Colicodendron scabridum, Cynophalla flexuosa, Loxopterygium huasango y Prosopis pallida*. La densidad poblacional fue de 47,7 ind/ha. La distribución diamétrica presentó una tendencia en forma de "J" invertida; con una distribución altimétrica en el

estrato medio e inferior. El 81% del I.V.I. estuvo representado por *Caesalpinia paipai*, *Bursera graveolens* y *Prosopis pallida*.

Fuentes (2019) caracterizó los aspectos florísticos de la vegetación leñosa y estructura de un área de bosque seco de la comunidad campesina de San Gregorio, San Miguel, Cajamarca, mediante el establecimiento de 10 transectos de 2 x 50 m, donde censó a todos los individuos con DAP de 2.5 cm a más. Determinó que el índice de valor de importancia fue de 39.80 % para *Loxopterygium huasango*, 16.73% para *Bursera graveolens* y 13.09% para *Colicodendron scabridum*; por otro lado, la distribución de clases diamétricas tiene la tendencia de una "J" invertida. Asimismo, la composición florística comprendió un total de 136 individuos, registrando 9 especies, distribuidas en 5 familias y 9 géneros.

2.2. Bases teóricas

2.2.1. Estructura del bosque seco

2.2.1.1. Estructura horizontal

La estructura horizontal de un bosque hace referencia al acomodo espacial de los individuos (Monge, 1999); asimismo, esta estructura es establecida por las condiciones del suelo y clima, así como las características y estrategias de las especies, y perturbaciones al bosque (Louman, 2001).

El comportamiento de los árboles individuales y de las especies en la superficie del bosque, es posible entenderlas mediante la estructura horizontal, la cual es posible determinarla mediante su riqueza y distribución florística, distribución diamétrica y área basal; también se puede describir la estructura horizontal en términos de frecuencia, abundancia y dominancia (Hernández, 1999); para ello la sumatoria de lo antes

mencionado permite determinar el peso ecológico de especie (índice de valor de importancia) dentro del área evaluada (Mostacedo y Fredericksen, 2000).

En el mismo sentido, Alvis (2019) menciona que la estructura horizontal permite evaluar el comportamiento de los árboles individuales y de las especies en la superficie del bosque. Esta estructura puede evaluarse a través de índices que expresan la ocurrencia de las especies, lo mismo que su importancia ecológica dentro del ecosistema, es el caso de las abundancias, frecuencias y dominancias, cuya suma relativa genera el Índice de Valor de Importancia – IVI.

IVI= Abundancia relativa + Dominancia relativa + Frecuencia relativa

Según Mostacedo y Fredericksen (2000) y MINAM (2015) los parámetros para medir la
estructura horizontal son:

a. Distribución diamétrica

La determinación de este parámetro se realiza a partir de la medición del diámetro del árbol a 1.30 m sobre el nivel del suelo por medio de una forcípula, cinta diamétrica o cinta métrica, de las especies inventariadas en campo.

Asimismo, este parámetro permite conocer las diferentes clases diamétrica del bosque evaluado. Las clases diamétricas constituye una medida del crecimiento o edad de los árboles. Se pueden determinar clases diamétricas de 10 cm para los bosques de la selva alta y selva baja, y de 5 o 10 cm para los bosques de la costa y sierra. Una especie con una curva de distribución diamétrica en forma de "J" invertida prácticamente tiene asegurada su población futura.

En el mismo sentido, el parámetro de clases diamétricas permite conocer el estado de la población actual y futura de una determinada especie del bosque, como, por ejemplo,

si una especie vegetal presenta una baja población adulta, significa que tiene limitada regeneración natural, lo cual la vuelve muy vulnerable.

b. Índice de valor de importancia

El índice de Valor de Importancia (IVI) es un valor que mide el peso ecológico de cada especie en una comunidad vegetal; es decir, se pueden identificar las especies más importantes presentes en un tipo de bosque en relación a su densidad poblacional, su frecuencia y dominancia.

El IVI resulta de la suma de los valores relativos de tres de los parámetros antes descritos: la abundancia, la dominancia (área basal) y la frecuencia. Cuando se quiera identificar y nominar a un tipo de vegetación con criterio netamente florístico, se puede recurrir al concepto de asociación vegetal, la cual está representada por las especies con mayor peso ecológico (con los mayores valores de IVI), pudiéndose usar una nomenclatura basada en el nombre de los géneros de las 3 o 4 primeras especies. El IVI se determinar mediante la siguiente fórmula:

IVI: Abundancia % + dominancia % + frecuencia %

c. Densidad

Este parámetro permite conocer la abundancia de una especie o una clase de plantas. La densidad absoluta es igual a la sumatoria del número de individuos por especie y la densidad relativa (D) es el número de individuos por especie (N) entre el número total de individuos (A) por cien:

D = N/A * 100

d. Frecuencia

La frecuencia se define como la probabilidad de encontrar la misma especie en las unidades muéstrales. La frecuencia absoluta es igual a la ocurrencia de las especies (OE) en las áreas evaluadas entre el número total de áreas evaluadas (AE). Por otro lado, la frecuencia relativa es igual a la frecuencia absoluta (FA) de la especie entre la sumatoria de las frecuencias absolutas de todas las especies (F) por cien.

Frecuencia Absoluta
$$(FA) = OE/TS$$

Frecuencia Relativa (%) =
$$(FA/F) * 100$$

e. Dominancia

La dominancia absoluta (D) es la sumatoria del área basal expresada en m² de todos los individuos por cada especie, y la dominancia relativa es expresada por la dominancia absoluta de la especie (DA) entre la dominancia absoluta de todas las especies (D) por cien:

Dominancia Relativa (%) =
$$(DA/D) * 100$$

f. Área basal (m²)

El área basal (AB) hace referencia a la superficie de la sección transversal del tallo o tronco del árbol y arbustos, a determinada altura del suelo. Se expresa en m² de material vegetal por unidad de superficie de terreno, la cual puede referirse a la hectárea, y permite conocer la dominancia y tener una idea sobre la calidad de sitio.

Asimismo, el área basal es una medida que sirve para calcular tanto el volumen maderable como el Índice de Valor de Importancia (IVI) del bosque. También constituye un indicador clave para el diseño de tratamientos silviculturales.

Para determinar el área basal, se utiliza la siguiente fórmula:

$$AB = 0,785398 * DAP^2$$

Dónde:

AB: Área basal del tallo

DAP: Diámetro a la altura del pecho

2.2.1.2. Estructura vertical

Clases de altura

Este análisis se puede realizar por medio de la distribución del número de

individuos por clase de altura.

Estrato superior (altura > 2/3 de la altura superior)

Estrato medio (entre 2/3 y 1/3 de la altura superior)

Estrato inferior (altura < 1/3 de la altura superior)

Posición sociológica b.

La Posición Sociológica es un índice que informa sobre la composición florística

de los distintos subestratos de la vegetación y del papel que juegan las diferentes especies

en cada uno de ellos; ante ello se pueden distinguir tres subestratos: superior, medio e

inferior (Acosta et al., 2006).

El valor fitosociológico de cada subestrato, se obtiene dividiendo el número de

individuos en el subestrato, por el número total de individuos de todas las especies (Finol,

1971).

VF = n/N

Dónde:

VF: valor Fitosociológico del sub-estrato

n: número de individuos del sub-estrato

N: número total de individuos de todas las especies

11

Para calcular el valor absoluto de la posición sociológica de una especie, se suman sus

valores fitosociológicos en cada sub-estrato, el cual se obtiene efectuando el producto del

valor fitosociológico del estrato considerado por el Nº de individuos de la especie en ese

mismo estrato.

$$PSA = VF(i)*n(i) + VF(m)*n(m) + VF(s)*n(s)$$

Dónde:

PSA: posición sociológica absoluta

VF: valor fitosociológico del sub-estrato

N: número de individuos de cada especie i: inferior; m: medio; s: superior

La posición sociológica relativa (PSr) de cada especie, se expresa como porcentaje sobre

la sumatoria total de los valores absolutos:

$$PSr = (PSa / \Sigma PSa)*100$$

Dónde:

PSr: posición sociológica relativa

PSa: posición sociológica absoluta

∑PSa: sumatoria de las posiciones sociológicas absolutas

2.2.2. Composición florística

La composición florística en muchos casos está determinada por factores

ambientales, como posición geográfica, clima, suelos y topografía, así como por la

dinámica del bosque y la ecología de sus especies (Louman, 2001). En base a ello,

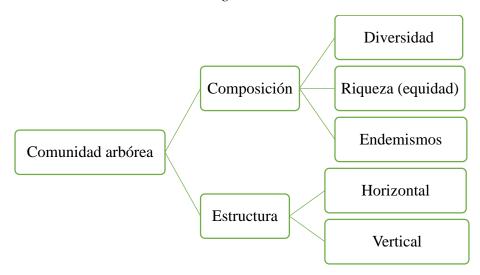
determinar las familias, géneros y especies más abundantes es importante para analizar y

comparar el estado de la vegetación y estado de sucesiones de la vegetación frente a otras

zonas de estudio. En base a lo descrito anteriormente, se pueden mencionar los siguientes

parámetros para vinculados a la composición florística; Familias monoespecíficas,

especies endémicas, especies monoindividuales, especies no reportadas y análisis clúster.


12

Asimismo, el conocimiento sobre los cambios en la composición florística durante el tiempo es indispensable para entender los cambios de la vegetación en el espacio y en el tiempo debido a que la estructura y la composición arbórea cambian gradualmente y a velocidad variable (Granados *et al.*, 2018).

2.2.3. Caracterización del bosque seco

Una comunidad de árboles puede ser caracterizada por su diversidad alfa, composición florística (número de familias, géneros, y especies endémicas y raras) y su estructura tridimensional. Esta última comprende la distribución de las especies en un espacio o área y un componente vertical (alturas de los árboles) y horizontal (diámetros de los árboles), permitiendo determinar la distribución diamétrica y área basal, así como también describir la frecuencia, abundancia y dominancia relativas y absolutas de las especies evaluadas, las cuales se reflejan en el índice de valor de importancia que presenta las especies (Louman *et al.*, 2001).

Figura 1Caracterización de comunidades vegetales.

Fuente: Louman (2001).

2.2.4. Método para el estudio de la vegetación

a. Parcela de una hectárea

Este método es utilizado para cualquier forma de vida (árboles, lianas, etc.) cuyo diámetro a la altura del pecho es mayor o igual a 10 cm o 5 cm, dependiendo del bioma a evaluar, los cuales son identificados, mapeados y medidos. Las dimensiones de la parcela son de 100 m * 100 m, presentándose en forma cuadrada. Estableciéndose en lugares donde el tipo de suelo es el mismo y en lugares relativamente planos (Phillips y Baker, 2002; Dryflor, 2020). Actualmente las parcelas permanentes son consideradas como uno de los pilares principales para manejo e investigación forestal (Vallejo *et al.*, 2005).

La Torre-Cuadros (2003) menciona que, este método provee una muestra estandarizada del análisis sobre la estructura y composición de un bosque. Las ventajas de este método son numerosas, puesto que, provee una buena estimación de la diversidad de árboles (y se basa en la relación producida por la curva especie-área), abundancia de especies y monitoreo de la diversidad de plantas, permitiendo la evaluación a largo plazo sobre datos de crecimiento, mortalidad, regeneración y la dinámica del bosque y relacionar esta observación con el suelo y el clima.

2.2.5. Bosques secos del Neotrópico

Los bosques tropicales estacionalmente secos o comúnmente denominados bosques secos, comprenden bosques deciduos y semideciduos que crecen en áreas tropicales sujetas a una severa estacionalidad climática, donde existe un marcado periodo de sequía que se prolonga hasta cinco o seis meses al año y la precipitación media a lo largo de todo el año es inferior a 1600 mm (Gentry, 1995). Asimismo, la relación precipitación / evapotranspiración, es menor que 1 (Dirzo *et al.*, 2011). Esto determina una de las características más conspicuas de esta formación: la fenología distintiva de las plantas está ligada a la pérdida estacional de las hojas y del bosque en general, con una

época sin hojas durante la estación seca y una fisionomía de bosque siempre verde a lo largo de la estación lluviosa. La densidad del estrato arbóreo, su diversidad y la continuidad del dosel arbóreo se va perdiendo a medida que el periodo seco se va extendiendo hasta dar paso a lo que se conoce como drylands o tierras secas (Maestre *et al.*, 2011).

Los bosques tropicales estacionalmente secos, en términos florísticos son menos ricos que los bosques de latitudes templadas o bosques montanos o bosques amazónicos. Los bosques secos en su mayor parte están representados por especies de las familias zygophyllaceae, canellaceae, julianaceae, capparidaceae, cactaceae, erythroxylaceae y fabaceae, siendo esta última la familia la más dominante, ya que está representada por un gran número de géneros y especies con abundancias muy elevadas a nivel local o diversidad alfa (Mayle, 2004; Linares y Ponce, 2005).

Debido a sus suelos fértiles, los bosques tropicales estacionalmente secos, han sido altamente transformados, siendo utilizados por siglos para agricultura, ganadería extensiva, monocultivos y minería a gran escala (Linares, 2003). Todas estas actividades han dado paso a que, en la actualidad estos bosques estén muy amenazados, definida en muchos casos como el ecosistema más amenazado en el Neotrópico (Servan, 2006). El deterioro de estos ecosistemas tiene efectos negativos en cuanto a la conservación de la diversidad biológica; y sobre los bienes y servicios producidos por estos bosques (AIDER, 2014).

2.2.6. Bosques secos del Perú

Linares-Palomino et al. (2004) a través de un análisis multivariado aplicado a la composición florística de los BTES en el Perú, menciona que, se puede diferenciar tres subunidades:

a. Subunidad de Bosque Estacionalmente Seco Ecuatorial: Abarca aproximadamente una extensión de 3'230,363 ha lo que representa el 58 % de los bosques secos en el Perú, siendo la subunidad de mayor extensión. Estos bosques se distribuyen en la costa norte del Perú, en los departamentos de Tumbes, Piura, Cajamarca y Lambayeque, con algunos remanentes en La Libertad, y forman una sola unidad de bosques con los bosques secos de Ecuador.

Asimismo, dentro de esta subunidad y en base a la estructura y composición florística se puede distinguir dos tipos de vegetación, (1) los Bosques Estacionalmente Secos de llanura (altitudes por debajo de los 600 msnm), donde las especies representativas principalmente son el algarrobo (*Prosopis pallida*) y algunas especies de la familia Cactáceae, asimismo se caracteriza por presentar densidades y riqueza de especies bajas, con alrededor de 6 especies arbóreas con DAP > 10 cm/ha. Por otro lado, (2) los Bosques Estacionalmente Secos de montaña, se encuentran entre los 700 hasta 1800 msnm, y la donde la densidad y riqueza de especies es alta con alrededor de 20 especies arbóreas con DAP > 10 cm por ha; estos bosques se caracterizan por presentar especies como *Ceiba trichistandra*, *Eriotheca ruizii*, *Eriotheca discolor* y *Terminalia valverdeae*.

b. Subunidad de Bosque Estacionalmente Seco Interandino: Esta subunidad está conformada por varios fragmentos de bosque estacionalmente seco ubicado en laderas de los valles de los ríos Huancabamba, Marañón, Apurímac, Mantaro, así como en los valles de Cusco (Quillabamba) y Puno (Sandia), en conjunto estos bosques presentan un área de 3,106 km² y se distribuye en un rango altitudinal que varía desde los 500 hasta 2500 msnm. Estos bosques se encuentran en constante amenaza.

c. Subunidad de Bosque Estacionalmente Seco Oriental: Esta subunidad se encuentra en alrededores de Tarapoto y es el bosque seco más pequeño del Perú con una extensión de 528 km²; su composición florística es difícil relacionarla con otras formaciones de bosques secos en la región, puesto que presenta especies únicas (Reátegui, 2003; Bridgewater et al., 2003).

Figura 2Distribución de BTES del Perú.

Fuente: Linares-Palomino (2004)

2.2.6.1. Bosques secos del departamento de Cajamarca

El Centro de Datos para la Conservación (2006) menciona que, en el departamento de Cajamarca existen dos ecorregiones de bosques tropicales estacionalmente secos. Uno de ellos, es la ecorregión "Bosques Secos del Marañón" ubicados en la vertiente oriental y la otra ecorregión son los "Bosques secos de Piura y Tumbes". La ecorregión de Piura y Tumbes se encuentra en la costa norte del Perú, entre el Océano Pacifico y la vertiente occidental de los andes tropicales. Por otro lado, estos bosques albergan una riqueza de especies o diversidad alfa adaptadas a condiciones áridas como ceibo (*Ceiba trichistandra*), papelillo (*Bougainvillea sp.*), overo (*Cordia lutea*), hualtaco (*Loxopterygium huasango*), palo santo (*Bursera graveolens*), guayacán (*Tabebuia billbergii*), ébano (*Ziziphus thyrsiflora*), charán (*Caesalpinea corymbosa*), sapote (*Capparis scabrida*), pasayo (*Eriotheca discolor*), angolo (*Pithecellobium multiflorum*) y almendro (*Geoffroya striata*).

La ecorregión de Piura y Tumbes, según el Centro de Datos para la Conservación (2006) en el departamento de Cajamarca se distribuye en las provincias de Chota, Santa Cruz, San Miguel, San Pablo, Contumazá y Cajamarca, con una extensión de 389,932.55 ha. Estos bosques presentan un 70 % de cobertura vegetal natural. Las provincias más intervenidas en este ecosistema son San Miguel y San Pablo, con un 40 % de intervención del bosque tropical estacionalmente seco. La provincia que presenta menor intervención es Contumazá con el 85 % de cobertura vegetal de bosque seco. Este ecosistema no está protegido actualmente por ningún área de conservación de categoría nacional o local (GRC, 2009). en la actualidad han sido poco estudiados a nivel de diversidad biológica por lo que existe vacíos de información.

2.3. Definición de términos básicos

2.3.1. Bosque seco Ecuatorial

Es un área de bosques tropicales secos, que comprende una franja costera de 100 a 150 km de ancho, que llega desde los 0° 30' hasta los 5° de latitud sur, desde la península de Santa Elena (Ecuador) hasta la cuenca media del río Chicama (departamento de La Libertad), y en el valle del Marañón hasta los 9° de latitud sur. En el departamento de Tumbes, llega hasta el nivel del mar y luego se va alejando hacia las vertientes occidentales de la cuenca del Pacífico, hasta poco más de los 1 500 msnm; y en el valle del Marañón, ocupa el piso inferior hasta los 2 800 msnm. La Ecorregión del Bosque Seco Ecuatorial es un bioma único en el mundo, que se encuentra sólo en el sur de Ecuador y en el norte del Perú, con muchas especies endémicas (Brack y Mendiola, 2000)

2.3.2. Composición florística

La composición florística se entiende como la enumeración de las especies de plantas presentes en un lugar, teniendo en cuenta su densidad, distribución y biomasa; lo cual permite su comprensión y comparación (Cano y Stevenson, 2009). Está determinada tanto por factores ambientales (posición geográfica, clima, suelos y topografía) como por la dinámica del bosque y la ecología de sus especies; principalmente por el número de familias, géneros, y especies endémicas y raras (Louman, 2001).

2.3.3. Estructura del bosque

La evaluación de la estructura de un área boscosa busca entender cómo están distribuidos espacialmente (tanto vertical como horizontal) los individuos de las especies (Lamprecht, 1990).

2.3.4. Estructura horizontal

La estructura horizontal permite evaluar el comportamiento de los árboles individuales y de las especies en la superficie del bosque. Esta estructura puede evaluarse

a través de índices que expresan la ocurrencia de las especies, lo mismo que su importancia ecológica dentro del ecosistema, es el caso de las abundancias, frecuencias y dominancias, cuya suma relativa genera el Índice de Valor de Importancia (I.V.I.) (Lamprecht, 1990).

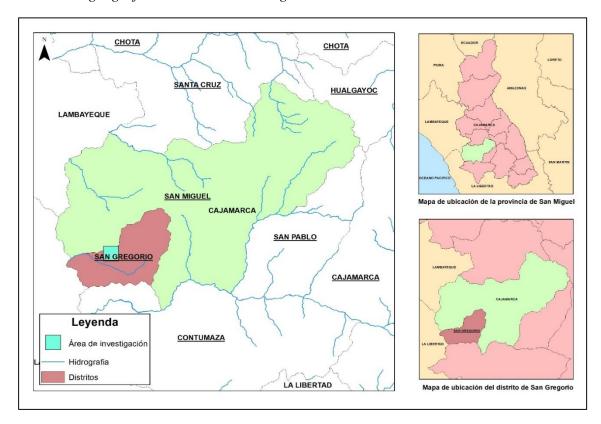
2.3.5. Estructura vertical

La estructura vertical se define como la distribución de los individuos a lo alto del perfil del bosque. Esta estructura responde a las características de las especies que lo componen y a las condiciones microclimáticas presentes en las diferentes alturas del perfil (Acosta *et al.*, 2006).

2.3.6. *Parcela*

Es un área en el bosque donde se marcan, localizan, miden e identifican todas las especies de árboles. Cada cierto, se realizaban nuevas mediciones para registrar posibles cambios como aumento de diámetro y tasa de crecimiento, mortalidad, germinación y entrada de individuos y especies inexistentes. (Balvanera, 2012)

CAPÍTULO III


MARCO METODOLÓGICO

3.1. Localización de la investigación

El área de investigación se encuentra en el sector Agua El Anish de la comunidad campesina de San Gregorio, San Miguel, Cajamarca; y forma parte de los bosques tropicales estacionalmente secos ecuatoriales. Se encuentra distribuida entre 417 – 420 msnm y está situado en un cuadrante con las siguientes coordenadas UTM: 9220000 N, 692000 E; 9220000 N, 702000 E; 9214000 N, 692000 E; 9214000 N, 702000 E; Zona 17 S. Para acceder al área de investigación se parte desde la ciudad de Chepén (La Libertad) por trocha carrozable hasta llegar al centro poblado Casa Blanca (Cajamarca). Posteriormente se continua por el camino que se dirige al centro poblado de Nanchóc (Cajamarca) hasta llegar al sector Agua El Anish.

Figura 3

Ubicación geográfica del área de investigación

3.2. Materiales

a. Materiales de campo

- Wincha de 50 m
- Cinta métrica
- Hipsómetro Suunto
- GPS
- Brújula
- Paja rafia
- Tijera de podar
- Cámara fotográfica
- Bolsas de polietileno

b. Materiales de gabinete

- Estufa eléctrica
- Cartulina folcote N°12
- Papel Kraft
- Adhesivos
- Tijeras
- Papel periódico
- Prensa botánica

3.3. Metodología

3.3.1. Recopilación de datos.

a. Establecimiento y delimitación de parcela

Siguiendo la metodología descrita por Phillips y Baker (2002) y Dryflor (2020), en el sector Agua El Anish de la comunidad campesina de San Gregorio se estableció una parcela de 1 ha (100 m x 100 m) (Figura 4); asimismo, se establecieron 25 subparcelas

de 20 m x 20 m. La zona donde se estableció la parcela está a una altura entre 417 y 420 metros de elevación.

Figura 4Croquis de la parcela y subparcelas.

25	24	23	22	21
16	17	18	19	20
15	14	13	12	11
6	7	8	9	10
5	4	3	2	1

La delimitación de los límites de la parcela y subparcelas fue realizada con ayuda de una wincha de 50 m y paja rafia.

Figura 5Delimitación de la parcela en el área de estudio.

b. Censo de los individuos leñosos y registro de datos.

El censo se realizó partiendo de la subparcela 1 ubicado en el ángulo inferior derecho. Se consideraron solamente a los individuos leñosos mayor o igual a 2.5 cm de diámetro a la altura del pecho (DAP). Los datos registrados fueron los que se obtuvieron de las mediciones realizadas a nivel de diámetro y altura total de cada individuo y registrados en una libreta de campo. Los datos de medición de la altura total de cada individuo censado se obtuvieron mediante un hipsómetro Suunto y complementado con una estimación visual.

Figura 6 *Medición del DAP de un individuo en la parcela establecida.*

Figura 7 *Medición de altura de un individuo dentro de la parcela establecida.*

c. Colecta de muestras botánicas

Para la colecta de muestras botánicas de los individuos censados, se seleccionaron las mejores ramas con presencia de flores y/o frutos que se encontraron en buenas condiciones. Con la tijera de podar y la tijera telescópica se obtuvieron tres muestras, las mismas que sirvieron para la identificación taxonómica. Estas se acondicionaron dentro de hojas de papel periódico y luego en una prensa botánica para su traslado al herbario de Dendrología.

Figura 8 *Obtención de muestras botánicas*

Figura 9Acondicionamiento de muestras botánicas colectadas en la prensa botánica.

3.3.2. Trabajo de gabinete

a. Herborización e identificación

Siguiendo el protocolo de herborización de plantas de Rodríguez y Rojas (2002) las muestras de colocaron en una estufa eléctrica para su secado por un plazo de tres a cinco días hasta que estuvieran exentas de humedad y aptos para el montaje. El montaje consistió, para su mejor conservación de las muestras, en fijar con adhesivos en cartulina blanca folcote número doce de 30 cm por 40 cm y colocadas dentro de pliegues o "camisetas" de papel kraft para su protección.

Enseguida, las muestras fueron identificadas a nivel de especie con ayuda de información bibliográfica especializada y mediante una comparación con muestras identificadas de herbario y la nomenclatura fue actualizada con la base de datos del sitio web World Flora Online (WFO). Finalmente, se elaboraron las etiquetas y se fijaron en el ángulo inferior derecho de cada lámina de la respectiva especie. Los datos anotados en ella fueron familia, especie, ubicación geográfica, altitud, coordenadas, fecha, datos morfológicos relevantes, nombre del colector y número de colecta.

Figura 10

Acondicionamiento de muestras en la prensa botánica para su secado en una estufa eléctrica

Figura 11 *Muestra montada en papel folcote.*

Figura 12 *Muestra identificada lista para su ingreso al herbario.*

3.3.3. Procesamiento y análisis de datos

Como producto de la identificación de especies se elaboró un listado y se agregó la familia correspondiente, a cada individuo registrado, así como sus datos de DAP y altura total en una hoja de Excel 2016 (Anexo II). El procesamiento de datos se realizó en orden a los objetivos específicos.

Variables vinculadas a la estructura horizontal:

i. Distribución por clases diamétricas

Las clases diamétricas de 500 individuos leñosos mayor o igual a 2.5 cm de DAP se distribuyó en 10 clases diamétricas, con un intervalo de 3 y el límite mínimo fue 2.5 cm y el máximo 32.5 cm. Todo esto se determinó teniendo en cuenta la metodología descrita por Posada (2016).

Construcción de los intervalos.

 a. Para obtener el número de intervalos que vamos a utilizar, empleamos la regla de Sturges.

$$1+3.3 \text{ Log } (500) = 9.91$$

b. Calculamos rango de variación.

$$R = 32.5 - 2.5 = 30$$

c. Obtenemos la amplitud de cada intervalo.

$$Ac = 30/9.91 = 3.0$$

d. Para construir los intervalos se inicia con 2.5 que es el extremo inferior que, sumado a 3 obtenemos 5.5 que será el extremo superior y así sucesivamente hasta completar los 10 intervalos que se muestran en seguida:

[2.5-5.4), [5.5-8.4), [8.5-11.4), [11.5-14.4), [14.5-17.4), [17.5-20.4), [20.5-23.4), [23.5-26.4), [26.5-29.4), [29.5-32.5]. Así mismo, se elaboró una gráfica para cada una de las especies y establecer la línea de tendencia y los grados de distribución de los datos.

ii. Determinación del índice de valor de importancia.

El índice de valor de importancia define cuáles de las especies presentes que contribuyen en el carácter y estructura dentro de una comunidad vegetal (Cottam y Curtis, 1956). Este valor se obtiene mediante la sumatoria de la frecuencia relativa, la densidad relativa y la dominancia relativa.

$$IVI = \frac{AR_I + DR_I + FR_I}{3}$$

Dónde:

IVI = Índice de valor de importancia

ARi = Abundancia relativa

DRi= Dominancia relativa

FRi = Frecuencia relativa

Asimismo, se elaboró un cuadro Excel con datos sobre la abundancia, frecuencia y dominancia, para determinar índice de valor de importancia (IVI) por especie.

a. Densidad o abundancia

Este parámetro permite conocer la abundancia de una especie o una clase de plantas. La densidad absoluta es igual a la sumatoria del número de individuos por especie y la densidad relativa (D) es el número de individuos por especie (N) entre el número total de individuos (A) por cien:

$$D = N/A * 100$$

b. Dominancia

Dominancia absoluta Do_a , Se calcula por la suma de las partes normales de los individuos pertenecientes a cada especie. Es decir, la sumatoria de las áreas base individuales (AB) proyectadas sobre el terreno, expresadas en m^2 .

$$Do_a = AB$$

$$AB = \frac{\pi}{4} \sum di^2$$

Dónde: di = Diámetro normal en cm de los individuos de la i-ésima especie.

Dominancia relativa (Do%), se calcula en porcentaje para indicar la participación de las especies en relación con el área basal total. (Melo & Vargas, 2003)

$$Do\% = (ABi/ABt) \times 100$$

Dónde: ABi =Área basal en m² para la i-ésima especie y ABt =Área basal total en m² del muestreo.

c. Frecuencia

La frecuencia absoluta es igual a la ocurrencia de las especies (OE) en las áreas evaluadas entre el número total de áreas evaluadas (AE). Por otro lado, la frecuencia relativa es igual a la frecuencia absoluta (FA) de la especie entre la sumatoria de las frecuencias absolutas de todas las especies (F) por 100.

Frecuencia Relativa (%) =
$$(FA/F) * 100$$

Variables vinculadas a la estructura vertical:

b.1. Altura total

La altura de los árboles por especie, se clasificó en tres estratos: superior (< 2/3 de la altura superior del vuelo), estrato medio (>= 2/3 de la altura superior del vuelo) y

estrato inferior (>=1/3 de la altura superior del vuelo). (IUFRO 1978) citadas por

(Lamprecht, 1990):

b.2. Posición sociológica

La Posición Sociológica es un índice que informa sobre la composición florística

de los distintos subestratos de la vegetación y del papel que juegan las diferentes especies

en cada uno de ellos; ante ello se pueden distinguir tres subestratos: superior, medio e

inferior (Acosta et al., 2006).

El valor fitosociológico de cada subestrato, se obtiene dividiendo el número de

individuos en el subestrato, por el número total de individuos de todas las especies (Finol,

1971).

VF = n/N

Dónde:

VF: valor Fitosociológico del sub-estrato

n: número de individuos del sub-estrato

N: número total de individuos de todas las especies

Para calcular el valor absoluto de la posición sociológica de una especie, se suman

sus valores fitosociológicos en cada sub-estrato, el cual se obtiene efectuando el producto

del valor fitosociológico del estrato considerado por el Nº de individuos de la especie en

ese mismo estrato.

PSA = VF(i)*n(i) + VF(m)*n(m) + VF(s)*n(s)

Dónde:

PSA: posición sociológica absoluta

VF: valor fitosociológico del sub-estrato

N: número de individuos de cada especie i: inferior; m: medio; s: superior

31

La posición sociológica relativa (PSr) de cada especie, se expresa como porcentaje

sobre la sumatoria total de los valores absolutos:

 $PSr = (PSa / \Sigma PSa)*100$

Dónde:

PSr: posición sociológica relativa

PSa: posición sociológica absoluta

∑PSa: sumatoria de las posiciones sociológicas absolutas

Variables vinculadas a la composición florística

Esto se realizó a través de un análisis del número de individuos por especies, se determinó

las familias y géneros más abundantes.

Abundancia de familias, géneros y especies

Con esta información se pudo comparar la vegetación presente en las parcelas de

estudio con otras investigaciones realizadas en el mismo tipo de bosques secos. Esta

información brinda una idea de la relación existente de estos parámetros y el estado

de bosque.

Riqueza de familias y géneros

La riqueza de especies a nivel de familias como géneros es importante para

determinar si los bosques son ricos en especies características de ciertos estratos

altitudinales o estadios.

32

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1. Estructura del bosque seco Agua El Anish

Para el bosque tropical estacionalmente seco se reportaron 500 individuos repartidos en 11 especies y seis familias (Tabla 1).

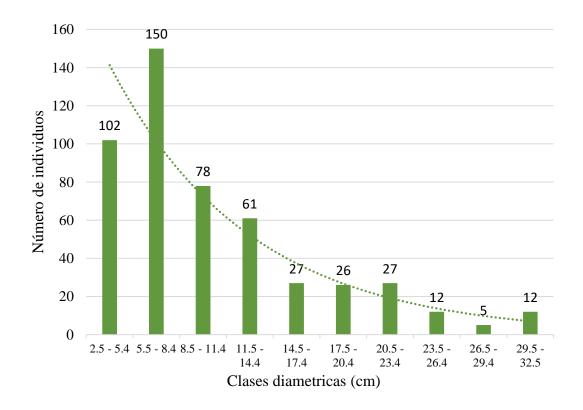
Tabla 1Riqueza y abundancia de especies

Familia	Especies	N° individuos
Anacardiaceae	Loxopterygium huasango Spruce ex Engl.	99
Burseraceae	Bursera graveolens (Kunth) Triana & Planch.	40
Boraginaceae	Cordia lutea Lam.	54
Cactaceae	Neoraimondia arequipensis Backeb.	37
Cactaceae	Espostoa lanata (Kunth) Britton & Rose.	52
Cactaceae	Espostoa guentheri (Kupper) Buxb.	83
Capparaceae	Morisonia scabrida (Kunth) Christenh. & Byng.	46
Capparaceae	Beautempsia avicennifolia (Kunth) Gaudich.	47
Capparaceae	Morisonia crotonoides (Kunth) Christenh. & Byng.	19
Fabaceae	Acacia macracantha (Humb. & Bonpl. ex Willd.)	18
	Seigler & Ebinger.	10
Fabaceae	Parkinsonia praecox (Ruiz & Pav.) Hawkins.	5
	Total	500

Se reporta que, *Loxopterygium huasango* con un total de 99 individuos es la especie más abundante de la parcela de estudio, y *Parkinsonia praecox* es la que registró menos individuos con un total de 5.

El estudio que más se aproximó al aquí descrito es de El Marrufo San Gregorio Fuentes (2020), donde se registraron especies leñosas con $DAP \ge 1.0$ cm, el número de individuos inventariados fue significativamente menor, aunque hubo bastante similitud en el número de especies, géneros y familias.

En su estudio de la Reserva Ecológica Chaparrí, Linares-Palomino y Ponce-Álvarez (2009) puntualizaron la dificultad de establecer comparaciones directas de inventarios en los bosques estacionalmente secos de la región, debido a la gran variación entre las metodologías de muestreo utilizadas, pisos altitudinales, área total de muestreo, DAP, estado de conservación y de depredación del área en el momento de su realización, e incluso en la priorización de la información recolectada, entre otros factores.


Lo anterior se confirma con los resultados de varios estudios en Perú; por ejemplo, en los bosques de Jaén, Cajamarca (Marcelo-Peña, 2008); La Menta y Timbes en Ayabaca, Piura (Rasal et al., 2011); Reserva de la Biosfera del Noroeste del Perú (Parque Nacional Cerros de Amotape y Zona Reservada de Tumbes) (Leal-Pinedo y Linares-Palomino, 2005); Llanuras Costeras de Piura (La Torre-Cuadros y Linares-Palomino, 2008) y Reserva Ecológica Chaparrí, Lambayeque (Linares-Palomino y PonceÁlvarez, 2009). Sin embargo, no ha sido posible establecer patrones rigurosos de comparación entre toda esta valiosa información y el estudio desarrollado en el sector Agua El Anish.

4.1.1. Estructura horizontal

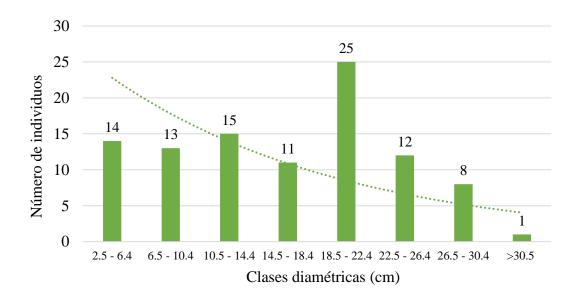
a. Clases diamétricas

La distribución en clases diamétricas de los 500 individuos registrados durante el inventario varió entre 2,5 cm y 32,5 cm; siendo las especies con mayor diámetro a la altura del pecho (DAP) *Loxopterygium huasango* y *Neoraimondia arequipensis*. El promedio del DAP fue de 10,60 cm.

Figura 13 *Clases diamétricas de leñosas.*

En la Figura 13 se observa que la mayoría de individuos se concentran en las tres primeras clases diamétricas. En las clases: 2.5 y 5.4 cm, 5,5 y 8.4 cm y 8.5 a 11.4 cm existen 351 individuos (70,2 %) y en las siguientes clases entre 11.5 y 14.4 cm, 14.5 y 17.4 cm, 17.5 y 20.4 cm, 20.5 y 23.4 cm, 23.5 y 26.4 cm, 26.5 y 29.4 cm, 29.5 y 32.4 cm, existen 149 individuos (29,8 %).

Se observa que en el intervalo 2.5 y 5.4 cm empieza con un bajo valor, luego se eleva al intervalo 5.5 y 8.4 cm para finalmente descender, esto se debe a la variabilidad climática, esto sumado a que existe la presencia de pastoreo de animales que afectan la regeneración natural que es interrumpida por el pisoteo de vacunos. Además, se observa que en la clase 26.5 y 29.4 cm, hay un descenso que puede ser producto por la tala ilegal para leña, carbón y madera, generando una curva exponencial negativa anormal.


Los bosques secos se caracterizan por su bajo crecimiento debido a las características físicas como la precipitación, puesto que, el crecimiento primario y secundario solo se da en épocas de lluvia (Pennington et al., 2000), esto puede reflejarse en la baja cantidad de individuos en las clases diamétricas finales evaluadas (Figura 13). La curva exponencial negativa es característico de los bosques primarios no intervenidos, así como los secundarios maduros (Louman *et al.*, 2001). Además, este patrón indica que está asegurada la población futura del bosque evaluado (Acosta *et al.*, 2001).

Para este estudio se realizó la distribución de clases diamétricas por especie, determinando que tienen diferente comportamiento las especies *Neoraimondia arequipensis* Figura 17, *Espostoa lanata* Figura 18 y *Espostoa guentheri* Figura 19. Estas cactáceas suelen desarrollarse en colonias aumentando significativamente su número de individuos, además se caracterizan por ser de crecimiento lento, las Cactáceas llegan hasta un cierto punto de crecimiento y su CAP es de lento desarrollo por lo que se registran igual número de individuos en sus diferentes clases diamétricas y mayor concentración de individuos en una o más clases diamétricas.

a.1. Clases diamétricas por especie

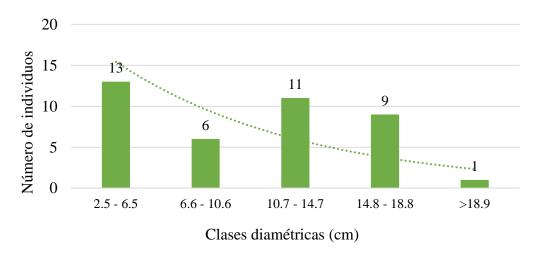

A continuación, se describe brevemente la distribución de las clases diamétricas por especie, obteniendo los siguientes resultados.

Figura 14Clases diamétricas para Loxopterygium huasango.

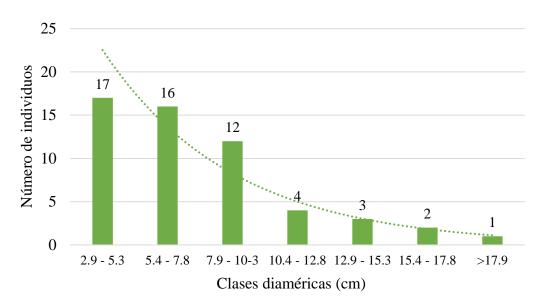

La distribución diamétrica de los 99 individuos de *Loxopterygium huasango* presentó una mayor proporción en la clase intermedia 18.5 y 22.4 cm con un total de 25 individuos.

Figura 15Clases diamétricas para Bursera graveolens.

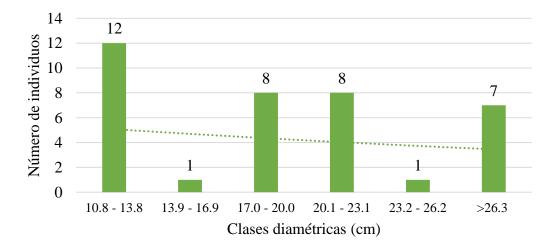

Se han medido 40 ejemplares de *Bursea graveolens*; en la clase diamétrica 2.5 y 6.5 está el mayor número de individuos con 13. Solo 1 individuo tiene una medida mayor a 18.9 cm.

Figura 16Clases diamétricas para Cordia lutea

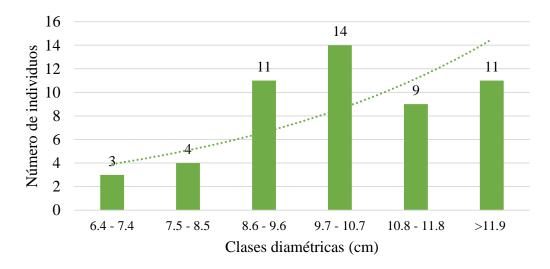

La distribución diamétrica de los 54 individuos de *Cordia Lutea*, presentó una mayor proporción en la clase diamétrica más pequeña (2.9 – 5.3 cm), la proporción de individuos fue disminuyendo paulatinamente en las clases siguientes Figura 16.

Figura 17Clases diamétricas para Neoraimondia arequipensis

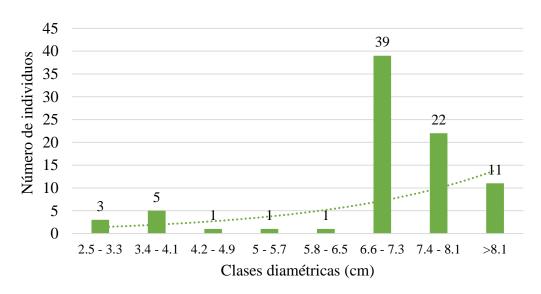

Se observa que en la clase diamétrica 10.8 y 13.8 cm presenta el mayor número de individuos con 12; asimismo en las clases 13.9 a 16.9 cm y 23.2 a 26.2 cm tienen el número más bajo con 1 individuo respectivamente.

Figura 18Clases diamétricas para Espostoa lanata.

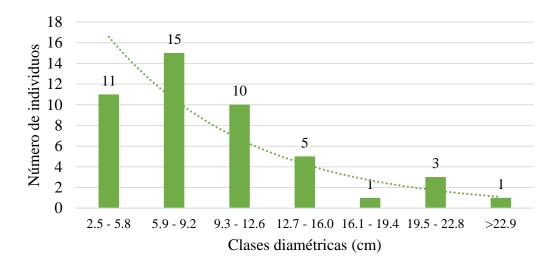

Se han medido 52 ejemplares de *Espostoa lanata*; la mayor parte de estos individuos están en la clase diamétrica 9.7 y 10.7 cm con 14. El menor número de individuos se registra en la clase más baja 6.4 y 7.4 cm con 3.

Figura 19Clases diamétricas para Espostoa guentheri.

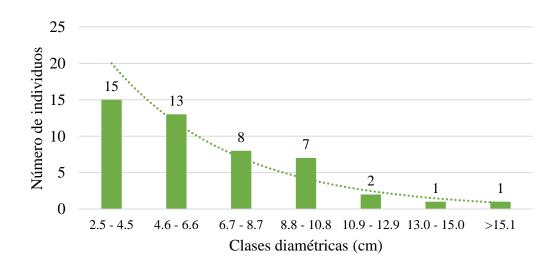

Se midieron 85 ejemplares de *Espostoa guentheri*, registrando una baja presencia de individuos en las primeras 5 clases diamétricas. El mayor número de individuos se registraron en las clases siguientes con 39, 22 y 11 respectivamente (Figura 19).

Figura 20Clases diamétricas para Morisonia scabrida.

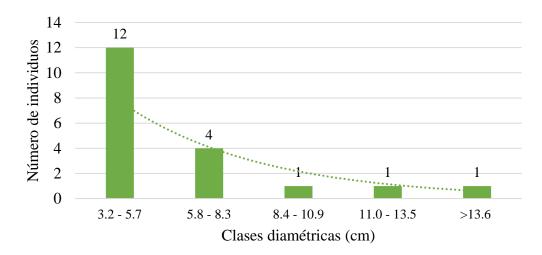
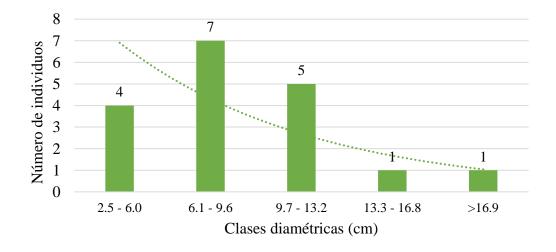

La mayor cantidad de individuos de *Morisonia scabrida* se encuentra en la segunda clase diamétrica 5.9 y 9.2 cm (Figura 20), la mayor parte de estos individuos superaron los 5.8 cm de diámetro.

Figura 21Clases diamétricas para Beautempsia avicennifolia.

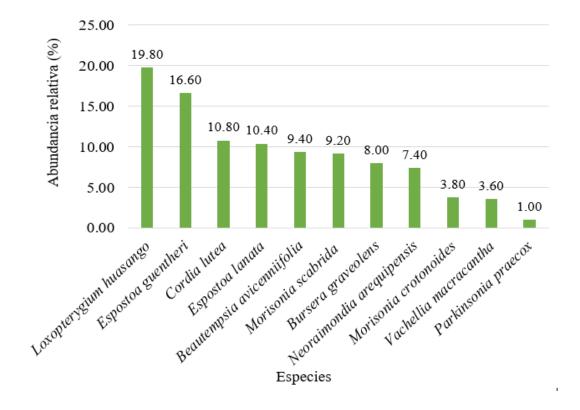
La distribución diamétrica para los 47 individuos de *Beautempsia avicennifolia*, presentó una mayor proporción en la clase diamétrica más baja 2.5 y 4.5 cm, la proporción de individuos fue disminuyendo paulatinamente en las clases siguientes mostrando una tendencia de curva exponencial negativa Figura 21.


Figura 22Clases diamétricas para Morisonia crotonoides.

De los 19 ejemplares de *Morisonia crotonoides* medidos, 12 se encuentran en la clase diamétrica 3.2 y 5.7 cm siendo el más abundante. Solo 7 individuos superan los 5.8 cm de diámetro. Generando una tendencia de J invertida.

Figura 23

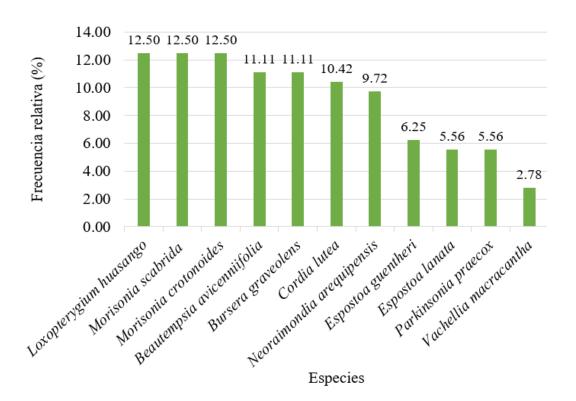
Clases diamétricas de Acacia macracantha.



La mayor cantidad de individuos de *Acacia macracantha* se encuentra en la segunda clase diamétrica 6.1 y 9.6 cm.

b. Abundancia relativa

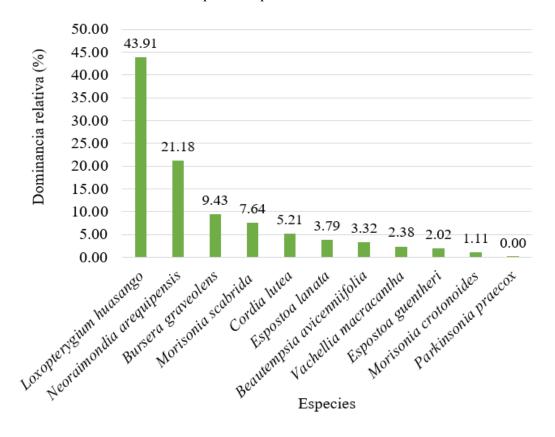
Se reporta la presencia de 11 especies leñosas, cuya abundancia varia de 99 hasta 5 individuos (Tabla 1), de las cuales, las más abundantes, en orden decreciente, son: Loxopterygium huasango con 99 individuos (19,8 %); Espostoa guentheri con 83 (16,6 %), Cordia lutea con 54 (10,8 %); Morisonia scabrida con 46 (9,2 %) y Bursera graveolens con 40 (8 %). Asimismo, las especies menos abundantes fueron Morisonia crotonoides, con 19 individuos (3,8 %), Acacia macracantha con 18 (3,6 %) y Parkinsonia praecox con 5 (1 %).


Figura 24 *Abundancia relativa de las especies reportadas.*

c. Frecuencia relativa

Con respecto a la ocurrencia de cada especie presente en el área de estudio, las especies que se registran con mayor frecuencia en las 25 subparcelas establecidas en orden descendente fueron: *Loxopterygium huasango, Morisonia scabrida y Morisonia crotonoides*, reportada en 18 subparcelas (12,50 %), *Bursera graveolens y Beautempsia avicenniifolia* reportada en 16 subparcelas (11,11 %), *Cordia lutea* reportada en 15 subparcelas (10,42 %) y *Neoraimondia arequipensis* reportada en 14 subparcelas (9,72 %). Asimismo, las especies con menor frecuencia son *Espostoa guentheri* reportada en 9 subparcelas (6,25 %), *Parkinsonia praecox y Espostoa lanata* en 8 subparcelas (5,56 %) y *Acacia macracantha* en 4 subparcelas (2,78 %).

Figura 25Frecuencia relativa de las especies reportadas.

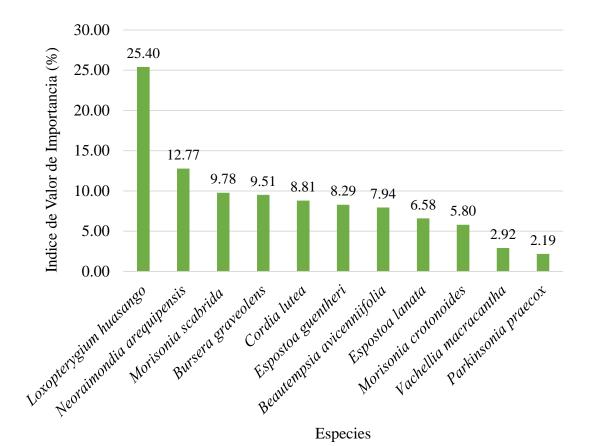


d. Dominancia relativa

Los resultados obtenidos para la dominancia se muestran en la Figura 18, de las cuales se ha obtenido un total de 5,56 m² de área basal, de esta manera las especies con individuos dominantes en orden descendiente fueron: *Loxopterygium huasango* con 2,44 m² (43,91 %), *Neoraimondia arequipensis* con 1,17 m² (21,18 %), *Bursera graveolens* con 0,52 m² (9,43 %) y *Morisonia scabrida* con 0,42 m² (7,64 %). Las especies con menor dominancia fueron *Morisonia crotonoides* con 0,06 m² (1,11 %) y *Parkinsonia praecox*.

Figura 26

Dominancia relativa de las especies reportadas.


e. Determinación del Índice de Valor de Importancia (IVI)

Para obtener el Índice de Valor de Importancia (IVI) de las especies leñosas reportadas, se realizó mediante la suma de la abundancia relativa, frecuencia relativa y dominancia relativa. Con este índice fue posible comparar el peso ecológico de cada especie dentro

del ecosistema (Curtis y Mc Intosh, 1951). Este índice es otra forma de representar cuantitativamente la distribución horizontal de las especies dentro del bosque, por lo que, no todas las especies tienen las mismas probabilidades de ocupar el territorio.

Las especies que mostraron mayor peso ecológico fueron *Loxopterygium huasango* con 25,40 %, *Neoraimondia arequipensis* con 12,77 %, *Morisonia scabrida* con 9,78 %, *Bursera graveolens* con 9,51 %, *Cordia lutea* con 8,81 % y *Beautempsia avicenniifolia* con 7,94 % estas se desarrollaron en un mejor ambiente donde las condiciones edafoclimáticas son propias para su desarrollo. Por otro lado, las especies que mostraron menor peso ecológico fueron *Acacia macracantha* con 2,92 % y *Parkinsonia praecox* con 2,19 %.

Figura 27 *Índice de valor de importancia (IVI) de las especies reportadas.*

Los resultados de la presente investigación en comparación con otras investigaciones en el mismo bosque estacionalmente secos ecuatoriales, reflejan similitud tal como los resultados encontrados por varios autores (Aguirre y Geada (2017) y Fuentes, (2019)). Este último, muestra que la especie con mayor índice de importancia fue *Loxopterygium huasango* con 39.8 % seguido de *Bursera graveolens* con 16.73 % y *Morisonia scabrida* con 13.09 % en un bosque seco de la comunidad campesina de San Gregorio, Cajamarca.

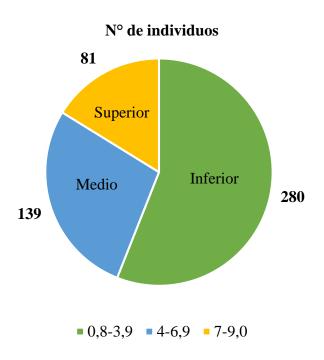
Lamprecht (1990) considera que todas las especies son importantes para mantener la dinámica del ecosistema forestal tanto en estructura como en composición. El IVI es un mejor descriptor que cualquiera de los parámetros utilizados individualmente por lo que describe en función a tres parámetros: abundancia, frecuencia y dominancia; es utilizado fundamentalmente para comparar diferentes comunidades, con base en las especies que obtienen los valores más altos y que se consideran de mayor importancia ecológica dentro de una comunidad en particular (Mostacedo y Fredericksen, 2000).

4.1.2. Estructura vertical

a. Estratos de cobertura.

Para analizar a los individuos registrados se clasificaron en 3 estratos, según la Unión Internacional de Organizaciones de Investigación Forestal IUFRO.

Tabla 2


Estratos

Superior	Altura > 2/3 de la altura superior	7 m – 9 m
Medio	Entre 2/3 y 1/3 de la altura superior	4 m – 6,9 m
Inferior	Altura < 1/3 de la altura superior	0,8 m – 3,9 m

Esta distribución altimétrica muestra que el estrato superior del área de investigación está conformado por leñosas que presentan una altura, que varía, entre 7 m -9 m; asimismo, el estrato medio está conformado por árboles que tienen entre 4 m -6.9 m de altura; y el estrato inferior por árboles que presentan una altura que varía entre 0.8 m -3.9 m (Tabla 2).

En la Figura 28 se puede evidenciar los resultados que se obtuvo del análisis de estructura vertical. Estos resultados reflejan que, de los 500 individuos inventariados en el área de investigación, 81 individuos se encuentran en el estrato superior, 139 individuos en el estrato medio y 280 individuos en el estrato inferior.

Figura 28Distribución por estratos de especies leñosas.

Tabla 3 *Especies reportadas a nivel de estratos*

Egypoolog	Estratos				
Especies	Inferior	Medio	Superior		
Acacia macracantha (Humb. & Bonpl. ex Willd.)					
Seigler & Ebinger.	X	X	-		
Beautempsia avicenniifolia (Kunth) Gaudich.	X	X	-		
Bursera graveolens (Kunth) Triana & Planch.	X	X	-		
Cordia lutea Lam.	X	X	-		
Espostoa guentheri (Kupper) Buxb.	X	X	-		
Espostoa lanata (Kunth) Britton & Rose	X	X	-		
Loxopterygium huasango Spruce ex Engl.	X	X	X		
Morisonia crotonoides (Kunth) Christenh. & Byng.	X	X	-		
Morisonia scabrida (Kunth) Christenh. & Byng.	X	X	-		
Neoraimondia arequipensis Backeb.	X	X	X		
Parkinsonia praecox (Ruiz & Pav.) Hawkins.	X	X	-		

Las especies con mayor cantidad de individuos en el estrato inferior fueron Espostoa guentheri con 82 individuos, Espostoa lanata con 52 individuos, seguido de Beautempsia avicenniifolia y Morisonia scabrida con 32 individuos cada uno. En el estrato medio la mayor cantidad de individuos fueron Cordia lutea con 27 individuos, Bursea graveolens con 24 individuos, seguido por Loxopterygium huasango y Neoraimondia arequipensis con 18 especies cada uno. El estrato superior fue dominado por la especie Loxopterygium huasango con 79 especies.

La presencia de *Loxopterygium huasango* y *Neoraimondia arequipensis* en los tres estratos, seguido de *Bursera graveolens*, *Morisonia scabrida* y *Morisonia crotonoides*, y las otras especies reportadas en los diferentes estratos, indican que las especies se han adaptado a climas secos además del tipo de suelo y topografía, los cuales brindan los requerimientos ecológicos para el adecuado desarrollo de las especies reportadas, tal como (Guardia y Alberola (2005), Aguirre y Geada (2017) y Delgado-Paredes *et al.*, 2020).

Asimismo, Guardia y Alberola (2005) indican que, la presencia de las mismas especies en diferentes estratos, proporcionan una idea de la dinámica de los bosques y permiten conocer a grandes rasgos si la comunidad se encuentra en equilibrio y que cuando los árboles de mayor tamaño perezcan o caigan, más árboles de las mismas especies ocuparán su lugar y no otras, tal como ocurre con las especies reportadas, en consecuencia se puede mencionar que los bosques estacionalmente secos del sector Agua El Anish están en equilibrio.

b. Posición sociológica

Tabla 4Posición sociológica (PS) de las especies reportadas

		Posición		
Nombre científico	Inferior	Medio	Superior	Sociológica %
Loxopterygium huasango Spruce ex Engl.	2	18	79	19,8
Espostoa guentheri (Kupper) Buxb.	83	0	0	16,6
Cordia lutea Lam.	27	27	0	10,8
Espostoa lanata (Kunth) Britton & Rose	52	0	0	10,4
Beautempsia avicenniifolia (Kunth) Gaudich.	32	15	0	9,4
Morisonia scabrida (Kunth) Christenh. & Byng.	32	14	0	9,2

16	24	0	8
17	18	2	7,4
12	7	0	3,8
3	15	0	3,6
4	1	0	1
	17 12 3	17 18 12 7 3 15	17 18 2 12 7 0 3 15 0

Las especies con mayor posición sociológica fue *Loxopterygium huasango* con 19,8 % y *Espostoa guentheri* con 16,6 %. Seguido de *Cordia lutea* con 10,8 %, *Espostoa lanata* con 10,4 %, *Beautempsia avicenniifolia* con 9,4 %. Estas especies aseguran su lugar y conservación tanto en estructura como en la composición del bosque, ya que otras especies no ocuparán su lugar en el área de investigación. Asimismo, las especies con menor posición sociológica fueron *Morisonia crotonoides* con 3,8 %, *Acacia macracantha* con 3,6 % y *Parkinsonia praecox* con 1 %. estas especies no tienen las características propias para su desarrollo óptimo. En diversos estudios han obtenido resultados similares; por ejemplo, Fuentes (2019) cita que la especie *Loxopterygium huasango* es la especie con mayor valor sociológico con 36.03 % en bosque seco de una comunidad campesina de San Gregorio.

4.2. Análisis de la composición florística

El bosque tropical estacionalmente seco del sector Agua El Anish presenta 11 especies distribuidas en 10 géneros y 6 familias (Tabla 5). Las familias más representativas Cactaceae y Capparaceae con 3 especies cada una. Las familias restantes están representadas solo por una especie. Estos resultados concuerdan con los resultados reportados por Fuentes (2019) y Delgado-Paredes *et al.*, (2020), en el mismo sentido el

centro de datos para la conservación (2006) indica que la ecorregión bosques secos de Piura y Tumbes están representado por especies de las familias Fabaceae (*Acacia macracantha*), Capparaceae (*Morisonia scabrida*), Burseraceae (*Bursera graveolens*) y Anacardiaceae (*Loxopterygium huasango*).

Tabla 5Composición florística en el área de estudio

Familia	Especies	Nombre común
Anacardiaceae	Loxopterygium huasango Spruce ex Engl.	"hualtaco"
Burseraceae	Bursera graveolens (Kunth) Triana & Planch.	"palo santo"
Boraginaceae	inaceae Cordia lutea Lam.	
	Neoraimondia arequipensis Backeb.	"gigante"
Cactaceae	Espostoa lanata (Kunth) Britton & Rose	"lana blanca"
	Espostoa guentheri (Kupper) Buxb.	"lana marrón"
	Morisonia scabrida (Kunth) Christenh. & Byng	"zapote"
Capparaceae	Beautempsia avicennifolia (Kunth)	"vichayo"
	Morisonia crotonoides (Kunth) Christenh. & Byng	"caparicordis"
	Acacia macracantha (Humb. & Bonpl. ex Willd.	.)
Fabaceae	Seigler & Ebinger	"faique"
	Parkinsonia praecox (Ruiz & Pav.) Hawkins	"palo verde"

La composición florística del sector Agua El Anish presenta 6 familias. Estos resultados en comparación con otras investigaciones realizadas en los bosques estacionalmente secos ecuatoriales, son bajas. Puesto que, Leal y Linares (2005)

reportaron 34 familias, 58 géneros y 85 especies para bosques secos de la Reserva de Biosfera del Noroeste, Perú (el Parque Nacional Cerros de Amotape y la Zona Reservada de Tumbes). Por su parte Fuentes (2019) reportó 5 familias, 9 géneros y 9 especies de un total de 136 individuos. En bosque seco del sector El Marrufo de una comunidad campesina en San Gregorio.

De acuerdo a Gentry y Ortiz (1993) y Delgado-Paredes et al., (2020), mencionan que, las composiciones florísticas pueden ocurrir a escalas locales en respuesta a las condiciones del suelo, por lo que las especies, en su diversidad y distribución, se limitan a aquellas regiones condicionadas por la humedad. En ese sentido, se puede atribuir que la diferencia entre la composición florística que presenta el área de investigación ubicada lejos de la línea ecuatorial, en comparación con las investigaciones citadas anteriormente que se ubican relativamente cerca de la línea Ecuatorial (mayor humedad), se debe a las características ecológicas de los ambientes donde se desarrollan dichas especies, en respuesta a la demanda de las características edáficas y precipitaciones que presentan cada zona que condiciona la dinámica del bosque Leal-Pinedo & Linares-Palomino (2005), lo que coincide con observaciones realizadas por Gentry & Ortiz (1993) basados en datos de bosques húmedos y lluviosos; sin embargo, resulta significativo la ausencia de Prosopis pallida Humb. & Bonpl. ex Willd. Kunth (algarrobo) especie emblemática del bosque seco, lo que ciertamente no obedece a factores estrictamente edáficos e hídricos sino también a la acción depredadora del hombre y del ganado caprino, en especial en este último caso sobre la regeneración natural. En todo caso, fenómenos naturales como el último evento El Niño de los años 1997 y 2016 alteran significativamente la dinámica poblacional del bosque estacionalmente seco, tal como fue reportado con la vegetación de los algarrobales, con el algarrobo *Prosopis pallida* como especie dominante (Gushiken et al., 2001).

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

Las clases diamétricas registraron individuos ≥ a 2.5 cm de DAP, encontrando el mayor número de individuos en la clase 5,5 - 8,4 con 150 (30 %). Además, se muestra una disminución de la cantidad de individuos a medida que se incrementa el diámetro, mostrando una curva exponencial negativa.

Se determinó que tres especies presentaron el mayor índice de valor de importancia: *Loxopterygium huasango* con 25,40 %, *Neoraimondia arequipensis* con 12,77 %, *Morisonia scabrida* con 9,78 %, y la de menor valor de importancia fue *Parkinsonia praecox* con 2.19 %. La distribución por estratos de cobertura se representa con 81 individuos en el estrato superior, 139 individuos en el estrato medio y 280 individuos en el estrato inferior.

La composición florística comprendió un total de 500 individuos ≥ a 2.5 cm de DAP distribuidos en 11 especies, 10 géneros y 6 familias. Las familias más representativas son: Cactaceae y Capparaceae con 3 especies cada una.

Se recomienda realizar trabajos de investigación con la misma metodología en diferentes altitudes del bosque seco en el sector Agua el Anish y de los flancos occidentales de la cordillera de los Andes del Perú.

Se recomienda realizar mayores estudios de investigación sobre la diversidad, fenología, consumo hídrico del bosque seco, de modo que ayude a obtener información más completa para su caracterización florística.

CAPÍTULO VI

REFERENCIAS BIBLIOGRÁFICAS

- Acosta, V; Araujo, P; Iturre, M. (2006). *Caracteres estructurales de las masas*. Facultad de Ciencias Forestales Universidad Nacional de Santiago del Estero. Argentina. p. 35.
- Aguirre, Z; Linares, R; Kvist, L. (2006). Especies leñosas y formaciones vegetales en los bosques estacionalmente secos de Ecuador y Perú. Arnaldoa. Trujillo La Libertad. p. 13:324-350.
- Asociación para la Investigación y el Desarrollo Integral. (2014). *Proyecto de carbono* forestal en el Perú. Alternativa para mitigar el cambio climático e incrementar los beneficios económicos en la actividad forestal. Lima, PE. p. 470.
- Antón, D. Reynel, C. (2004). Relictos de excepcional diversidad en los Andes Centrales del Perú. Lima, Perú. Universidad Nacional Agraria La Molina. Herbario de la Facultad de Ciencias Forestales. p. 87.
- Bridgewater, S; Pennington, R; Reynel, C; Daza, A; Pennington, T. (2003). A preliminary floristic and phytogeographic analysis of the woody flora of seasonally dry forests in northern Peru. Candollea. 58. p. 129-148.
- Cáceres, B. (2005). Diversidad y composición florística en la microcuenca de Santa Rosa Chanchamayo, Junín. [Tesis Mg. Sc. Gestión Ambiental. Universidad Nacional Agraria La Molina, Lima, Perú.] p. 241.

- Delgado-Paredes, G; Vásquez-Díaz, C; Tesén-Núñez, F; Esquerre-Ibañez, B; Zuñe Da-Silva, F; Rojas-Idrogo, C. (2020). Vegetación arbórea del Cerro Tres Puntas de Pilasca, (Salas-Motupe), Lambayeque, Perú. *Revista de ciencias forestales*.
- Dirzo, R; Young, H; Mooney, H; Ceballos, G. (2011). Seasonally Dry Tropical Forests ecology and conservation. Islan Press, Washington, DC 2009, USA.
- Dryflor. (2020). Protocolo para el establecimiento y monitoreo de parcelas de bosque seco. Primera edición 2020.
- Finol, U. (1971). Nuevos parámetros a considerarse en el análisis estructural de las selvas vírgenes tropicales. *Revista Forestal Venezolana*.
- Foster, R. Hernández, C. Kakudidi, E. Burnham, R. (1995). Un método de transectos variables para la evaluación rápida de comunidades de plantas en los trópicos. Documento inédito. Chicago, *Environmental and Conservation Programs, Field Museum of Natural History and Washington, D. C., Conservation Biology, Conservation International.*
- Fuentes, E. (2019). Diversidad y composición florística de un área de bosque seco de la comunidad campesina de San Gregorio, San Miguel, Cajamarca. [Tesis para optar el título profesional de ingeniero forestal. Cajamarca-Perú.] p. 77.
- Gentry, A. (1995). Patterns of Diversity and Floristic Composition in Neotropical Montane Forest. En: Churchill, S; Balslev, H; Forero, E; Luteyn, J, (eds) "Bidiversity and conservation of Neotropical Montane Forests" Proceedings of the Neotropical Montane Forests Bidiversity and conservation Symposiun, the NYB, 21-26 June 1993. The New York botanical Garden. p. 667.

- Gobierno Regional Cajamarca. (2012). La diversidad biológica en Cajamarca. Cajamarca Perú. p. 205.
- Guardia, F Alberola, G. (2005). Estructura de la vegetación del Parque Nacional Volcán Barú, Alto Respingo. [Tesis para optar el título de Ingeniero de Biología Ambiental, Escuela de Biología, Universidad de Panamá. Panamá.] p. 67.
- La Torre-Cuadros, M. (2003). Composición Florística y Diversidad en el Bosque Relicto

 Los Cedros de Pampa Hermosa (Chanchamayo, Junín) e Implicancias para su

 Conservación. [Tesis para optar el grado de Magister Scientiae en la Especialidad

 de Conservación de Recursos Forestales. Universidad Nacional Agraria La

 Molina. Lima.] p. 130.
- Lamprecht, H. (1990). Silvicultura en los trópicos: los ecosistemas forestales en los bosques tropicales y sus especies arbóreas; posibilidades y métodos para un aprovechamiento sostenido. Carrillo, A. (Trad.). Eschborn. DE. GTZ (Cooperación Técnico Alemana). p. 335.
- Leal, J. Linares, R. (2005). Los bosques secos de la Reserva de Biósfera del Noroeste (Perú): diversidad arbórea y estado de conservación. Caldasia 27(2), 195-211. Disponible en http://www.bdigital.unal.edu.co/37479/1/39298-174810- 1-PB.pdf.
- Linares, R. (2003). Los Bosques Tropicales Estacionalmente secos en el Perú.

 Distribución, composición y relaciones florísticas. [Tesis (Biólogo). Lima, PE.

 Universidad Nacional Agraria La Molina.]
- Linares, R. (2005). Los Bosques Tropicales Estacionalmente Secos: II. Fitogeografía y Composición Florística. Arnaldoa 11(1): p. 103-138.

- Linares, R. y Ponce, S. (2005). Tree community patterns in seasonally dry tropical forests in the Cerros de Amotape Cordillera, Tumbes, Perú. *Forest Ecology and Management* 209:261-272 p.
- Louman, B. (2001). Bases ecológicas. In: Silvicultura de bosques latifoliados húmedos con énfasis en América Central. Editado por: Louman, B; Quirós, D; Nilsson, M. Turrialba, CR. CATIE. p. 57 62.
- Maestre, F. Puche, M. Guerrero C. Escudero, A. (2011). Shrub encroachment does not reduce the activity of some soil enzymes in Mediterranean semiarid grasslands. *Soil Biology and Biochemistry* 43: p. 174-176.
- Marcelo, J. Pennington, R. Reynel, C. Zevallos, P. (2011). Guía ilustrada de la flora leñosa de los bosques estacionalmente secos de Jaén, Perú.
- Mayle, E. (2004). Assessment of the Neotropical dry forest refugia hypothesis in the light of palaeoecological data and vegetation model simulations. *Journal of Quaternary Science* 19:713-720 p.
- Melo, O., & Vargas, R. (2003). Evaluación ecológica y silvicultural de ecosistemas boscosos. Colombia: Ibagué.
- Miles, L; Newton, A; De Fries, R; Ravilious, C; May, I; Blyth; Kapos, V; Gordon, J.
 2006. A global overview of the conservation status of tropical dry forests. *Journal of Biogeography* 491-505 p.
- Monge, A. (1999). Estudio de la dinámica del bosque seco tropical a través de parcelas permanentes de muestreo en el Parque Nacional Palo Verde, Bagaces, Guanacaste, Costa Rica. [Tesis Bach. Cartago, CR: ITCR. Esc. Ingeniería Forestal.] p. 65.

- Moreno, C. (2001). *Métodos para medir la biodiversidad: M&T Manuales y Tesis SEA*. [En línea]. Primera Edición. Zaragoza España. p. 84.
- Mostacedo, B; Fredericksen, T. (2000). Manual de métodos básicos de muestreo y análisis en ecología vegetal. Santa Cruz, BO. BOLFOR. p. 87.
- Pennington, R; Prado, E; Pendry, C. (2000). Neotropica Seasonally dry forests and quaternary vegetation changes J. Biogeog. 27: 261-273 p.
- Posada, G. (2016). Elementos básicos de estadística descriptiva para el análisis de datos.

 Medellín Colombia. P. 158.
- Phillips, O; Miller, J. (2002). Global patterns of plant diversity: Alwyn H. Gentry's forest transect data set. *Monographs in systematic botany from the Missouri Botanical Garden*. St. Louis, Missouri. U.S.A.
- Reátegui, F. (2003). Zonificación Ecológica Económica de la Región San Martín, Estudio temático preliminar-Forestal. Instituto de Investigaciones de la Amazonía Peruana, Tarapoto.
- Serván, A. (2006). Caracterización florística y análisis de diversidad de la vegetación leñosa de bosque seco en el área de distribución de la pava aliblanca (Penelope albipennis Taczanowsky). [Tesis para optar el Título de Ingeniero Forestal. UNALM.] p. 148.
- Vallejo, M; Londoña, A; López, R; Galeano, G; Álvarez, E; Devia, W. (2005). Establecimiento de parcelas permanentes en bosques de Colombia. Serie: *Métodos para estudios ecológicos a largo plazo, Nº 1.* Instituto de investigaciones de Recursos Biológicos Alexander Von Humboldt. Bogotá. p. 310.

ANEXOS

Anexo 1

Datos dasométricos registradas en campo

Parcela 1, coordenadas este 695555, norte 9216524 y altitud 420

N° de individuo	N° de subparcela	Nombre científico	Familia	CAP (cm)	Altura (m)	DAP (m)	Área basal (m2)
1	1	Loxopterygium huasango	Anacardiaceae	52	9	0.165521	0.0215
2	1	Loxopterygium huasango	Anacardiaceae	64	9	0.203718	0.0326
3	1	Loxopterygium huasango	Anacardiaceae	67	8	0.213267	0.0357
4	1	Loxopterygium huasango	Anacardiaceae	88	9	0.280112	0.0616
5	1	Loxopterygium huasango	Anacardiaceae	100	9	0.318309	0.0796
6	1	Loxopterygium huasango	Anacardiaceae	69	7	0.219633	0.0379
7	1	Loxopterygium huasango	Anacardiaceae	78	9	0.248281	0.0484
8	1	Neoraimondia arequipensis	Cactaceae	70	3.5	0.222816	0.0390
9	1	Neoraimondia arequipensis	Cactaceae	80	3.5	0.254647	0.0509
10	1	Neoraimondia arequipensis	Cactaceae	60	2.5	0.190985	0.0286
11	1	Bursera graveolens	Burseraceae	51	3.5	0.162338	0.0207
12	2	Cordia lutea	Boraginaceae	20	2	0.063662	0.0032
13	2	Cordia lutea	Boraginaceae	19	2	0.060479	0.0029
14	2	Cordia lutea	Boraginaceae	17	2	0.054113	0.0023
15	2	Cordia lutea	Boraginaceae	18	2.5	0.057296	0.0026
16	2	Cordia lutea	Boraginaceae	22	3	0.070028	0.0039
17	2	Morisonia scabrida	Capparaceae	37	2	0.117774	0.0109
18	2	Morisonia scabrida	Capparaceae	32	2	0.101859	0.0081
19	2	Beautempsia avicenniifolia	Capparaceae	19	2.3	0.060479	0.0029
20	2	Beautempsia avicenniifolia	Capparaceae	16	2.5	0.050929	0.0020
21	2	Beautempsia avicenniifolia	Capparaceae	11	2.5	0.035014	0.0010
22	2	Beautempsia avicenniifolia	Capparaceae	28	2.5	0.089127	0.0062
23	2	Morisonia crotonoides	Capparaceae	20	2.5	0.063662	0.0032
24	2	Morisonia crotonoides	Capparaceae	24	2.5	0.076394	0.0046
25	2	Morisonia crotonoides	Capparaceae	22	2.5	0.070028	0.0039
26	2	Morisonia crotonoides	Capparaceae	16	2.5	0.050929	0.0020
27	2	Morisonia crotonoides	Capparaceae	15	2.5	0.047746	0.0018
28	2	Beautempsia avicenniifolia	Capparaceae	12	2.5	0.038197	0.0011
29	2	Beautempsia avicenniifolia	Capparaceae	9	2.5	0.028648	0.0006
30	2	Beautempsia avicenniifolia	Capparaceae	22	2	0.070028	0.0039
31	2	Beautempsia avicenniifolia	Capparaceae	13	2	0.04138	0.0013
32	2	Beautempsia avicenniifolia	Capparaceae	11	2	0.035014	0.0010

N° de individuo	N° de subparcela	Nombre científico	Familia	CAP (cm)	Altura (m)	DAP (m)	Área basal (m2)
33	2	Beautempsia avicenniifolia	Capparaceae	14	2	0.044563	0.0016
34	2	Beautempsia avicenniifolia	Capparaceae	12	2	0.038197	0.0011
35	2	Beautempsia avicenniifolia	Capparaceae	10	2	0.031831	0.0008
36	2	Loxopterygium huasango	Anacardiaceae	48	7	0.152788	0.0183
37	2	Loxopterygium huasango	Anacardiaceae	66	7.5	0.210084	0.0347
38	2	Loxopterygium huasango	Anacardiaceae	94	8	0.299211	0.0703
39	2	Loxopterygium huasango	Anacardiaceae	36	5	0.114591	0.0103
40	2	Loxopterygium huasango	Anacardiaceae	38	4.5	0.120957	0.0115
41	2	Loxopterygium huasango	Anacardiaceae	32.5	4.5	0.10345	0.0084
42	2	Beautempsia avicenniifolia	Capparaceae	29	3	0.09231	0.0067
43	2	Beautempsia avicenniifolia	Capparaceae	19	3	0.060479	0.0029
44	2	Beautempsia avicenniifolia	Capparaceae	16.5	2	0.052521	0.0022
45	2	Beautempsia avicenniifolia	Capparaceae	12	1.5	0.038197	0.0011
46	3	Acacia macracantha	Leguminosae	22.5	3	0.07162	0.0040
47	3	Acacia macracantha	Leguminosae	32	3	0.101859	0.0081
48	3	Acacia macracantha	Leguminosae	21	3	0.066845	0.0035
49	3	Acacia macracantha	Leguminosae	18	3	0.057296	0.0026
50	3	Acacia macracantha	Leguminosae	12	2.5	0.038197	0.0011
51	3	Acacia macracantha	Leguminosae	8	2	0.025465	0.0005
52	3	Morisonia scabrida	Capparaceae	10	1.3	0.031831	0.0008
53	3	Morisonia scabrida	Capparaceae	8.5	1	0.027056	0.0006
54	3	Loxopterygium huasango	Anacardiaceae	18	1	0.057296	0.0026
55	3	Loxopterygium huasango	Anacardiaceae	75	0.5	0.238732	0.0448
56	3	Morisonia scabrida	Capparaceae	52	2.5	0.165521	0.0215
57	3	Morisonia scabrida	Capparaceae	27	2.5	0.085943	0.0058
58	3	Beautempsia avicenniifolia	Capparaceae	13	2.3	0.04138	0.0013
59	3	Morisonia scabrida	Capparaceae	36	2.5	0.114591	0.0103
60	3	Morisonia scabrida	Capparaceae	28	3	0.089127	0.0062
61	3	Morisonia scabrida	Capparaceae	38	3	0.120957	0.0115
62	3	Morisonia scabrida	Capparaceae	27	2.5	0.085943	0.0058
63	3	Morisonia scabrida	Capparaceae	14	1.5	0.044563	0.0016
64	3	Morisonia crotonoides	Capparaceae	12.5	2	0.039789	0.0012
65	3	Morisonia crotonoides	Capparaceae	13	2	0.04138	0.0013
66	3	Morisonia crotonoides	Capparaceae	27	3	0.085943	0.0058
67	3	Morisonia crotonoides	Capparaceae	17.5	2	0.055704	0.0024
68	3	Morisonia crotonoides	Capparaceae	13	3	0.04138	0.0013
69	3	Morisonia crotonoides	Capparaceae	13	3	0.04138	0.0013
70	4	Morisonia crotonoides	Capparaceae	10	3	0.031831	0.0008
71	4	Morisonia crotonoides	Capparaceae	10	2	0.031831	0.0008
72	4	Cordia lutea	Boraginaceae	31	4	0.098676	0.0076

N° de individuo	N° de subparcela	Nombre científico	Familia	CAP (cm)	Altura (m)	DAP (m)	Área basal (m2)
N indi	N°	Nor cien	Far	CAF	Altu	DAI	Área (n
73	4	Cordia lutea	Boraginaceae	25.5	2	0.081169	0.0052
74	4	Cordia lutea	Boraginaceae	18	3	0.057296	0.0026
75	4	Morisonia scabrida	Capparaceae	70	2.5	0.222816	0.0390
76	4	Morisonia scabrida	Capparaceae	31	3	0.098676	0.0076
77	4	Morisonia scabrida	Capparaceae	50	2.5	0.159155	0.0199
78	4	Loxopterygium huasango	Anacardiaceae	22	3.5	0.070028	0.0039
79	4	Loxopterygium huasango	Anacardiaceae	32	3.5	0.101859	0.0081
80	4	Cordia lutea	Boraginaceae	21	2.5	0.066845	0.0035
81	4	Cordia lutea	Boraginaceae	13.5	3	0.042972	0.0015
82	4	Cordia lutea	Boraginaceae	11	3	0.035014	0.0010
83	4	Cordia lutea	Boraginaceae	18	3	0.057296	0.0026
84	4	Cordia lutea	Boraginaceae	13	2.5	0.04138	0.0013
85	4	Parkinsonia Praecox	Leguminosae	11	2	0.035014	0.0010
86	4	Cordia lutea	Boraginaceae	14	2.5	0.044563	0.0016
87	4	Cordia lutea	Boraginaceae	23	3	0.073211	0.0042
88	4	Cordia lutea	Boraginaceae	30	3	0.095493	0.0072
89	4	Cordia lutea	Boraginaceae	15	1.8	0.047746	0.0018
90	4	Cordia lutea	Boraginaceae	12	2	0.038197	0.0011
91	4	Beautempsia avicenniifolia	Capparaceae	41	3.5	0.130507	0.0134
92	4	Beautempsia avicenniifolia	Capparaceae	16.5	3.5	0.052521	0.0022
93	4	Beautempsia avicenniifolia	Capparaceae	17	3.5	0.054113	0.0023
94	4	Beautempsia avicenniifolia	Capparaceae	10	3.5	0.031831	0.0008
95	4	Beautempsia avicenniifolia	Capparaceae	18.5	3.5	0.058887	0.0027
96	4	Beautempsia avicenniifolia	Capparaceae	29	3.5	0.09231	0.0067
97	4	Beautempsia avicenniifolia	Capparaceae	29	3.5	0.09231	0.0067
98	4	Beautempsia avicenniifolia	Capparaceae	25	3	0.079577	0.0050
99	4	Beautempsia avicenniifolia	Capparaceae	18	2.5	0.057296	0.0026
100	5	Cordia lutea	Boraginaceae	28	4	0.089127	0.0062
101	5	Cordia lutea	Boraginaceae	29	3.5	0.09231	0.0067
102	5	Cordia lutea	Boraginaceae	25	3.5	0.079577	0.0050
103	5	Beautempsia avicenniifolia	Capparaceae	22	2	0.070028	0.0039
104	5	Beautempsia avicenniifolia	Capparaceae	37	2.5	0.117774	0.0109
105	5	Morisonia scabrida	Capparaceae	30	3	0.095493	0.0072
106	5	Beautempsia avicenniifolia	Capparaceae	29	3	0.09231	0.0067
107	5	Beautempsia avicenniifolia	Capparaceae	20	2.5	0.063662	0.0032
108	5	Beautempsia avicenniifolia	Capparaceae	21	3	0.066845	0.0035
109	5	Beautempsia avicenniifolia	Capparaceae	29	2.5	0.09231	0.0067
110	5	Cordia lutea	Boraginaceae	34	2.5	0.108225	0.0092
111	5	Cordia lutea	Boraginaceae	16	1.5	0.050929	0.0020
112	5	Cordia lutea	Boraginaceae	26	3	0.08276	0.0054

N° de individuo	N° de subparcela	Nombre	Familia	CAP (cm)	Altura (m)	DAP (m)	Área basal (m2)
113	5	Cordia lutea	Boraginaceae	17.5	<u>₹</u> 1.5	0.055704	0.0024
113	5	Cordia lutea	Boraginaceae	17.3	2	0.053704	0.0024
115	5	Espostoa lanata	Cactaceae	38	1.64	0.034113	0.0023
116	5	Espostoa lanata	Cactaceae	38	1.5	0.120957	0.0115
117	5	Espostoa lanata	Cactaceae	38	1.2	0.120957	0.0115
118	5	Espostoa lanata	Cactaceae	38	1.3	0.120957	0.0115
119	5	Espostoa lanata	Cactaceae	38	2	0.120957	0.0115
120	5	Espostoa lanata	Cactaceae	38	1.7	0.120957	0.0115
121	5	Espostoa lanata	Cactaceae	38	1.3	0.120957	0.0115
122	5	Espostoa lanata	Cactaceae	38	1.6	0.120957	0.0115
123	6	Cordia lutea	Boraginaceae	11	2.5	0.035014	0.0010
124	6	Beautempsia avicenniifolia	Capparaceae	8	2	0.025465	0.0005
125	6	Beautempsia avicenniifolia	Capparaceae	9	2	0.028648	0.0006
126	6	Beautempsia avicenniifolia	Capparaceae	8	2	0.025465	0.0005
127	6	Cordia lutea	Boraginaceae	11.5	1.5	0.036606	0.0011
128	6	Morisonia scabrida	Capparaceae	22	2	0.070028	0.0039
129	4	Morisonia scabrida	Capparaceae	10	1.5	0.031831	0.0008
130	6	Cordia lutea	Boraginaceae	22	2	0.070028	0.0039
131	6	Morisonia scabrida	Capparaceae	23	2	0.073211	0.0042
132	6	Morisonia scabrida	Capparaceae	31	2	0.098676	0.0076
133	6	Beautempsia avicenniifolia	Capparaceae	27	2	0.085943	0.0058
134	6	Morisonia scabrida	Capparaceae	25	2.5	0.079577	0.0050
135	6	Morisonia scabrida	Capparaceae	17	3	0.054113	0.0023
136	6	Beautempsia avicenniifolia	Capparaceae	23	2	0.073211	0.0042
137	6	Morisonia scabrida	Capparaceae	27	3	0.085943	0.0058
138	6	Morisonia scabrida	Capparaceae	19	2.5	0.060479	0.0029
139	7	Cordia lutea	Boraginaceae	13	2	0.04138	0.0013
140	7	Cordia lutea	Boraginaceae	59	5	0.187802	0.0277
141	7	Cordia lutea	Boraginaceae	51	6.5	0.162338	0.0207
142	7	Cordia lutea	Boraginaceae	48	6	0.152788	0.0183
143	7	Loxopterygium huasango	Anacardiaceae	47	6	0.149605	0.0176
144	7	Beautempsia avicenniifolia	Capparaceae	30	4	0.095493	0.0072
145	7	Loxopterygium huasango	Anacardiaceae	31	6	0.098676	0.0076
146	7	Loxopterygium huasango	Anacardiaceae	61	8	0.194169	0.0296
147	7	Loxopterygium huasango	Anacardiaceae	66	7	0.210084	0.0347
148	7	Loxopterygium huasango	Anacardiaceae	61	8	0.194169	0.0296
149	7	Beautempsia avicenniifolia	Capparaceae	16	2	0.050929	0.0020
150	7	Cordia lutea	Boraginaceae	9	1.6	0.028648	0.0006
151	7	Morisonia scabrida	Capparaceae	12	0.5	0.038197	0.0011
152	7	Cordia lutea	Boraginaceae	28	3	0.089127	0.0062

N° de individuo	N° de subparcela	Nombre científico	Familia	CAP (cm)	Altura (m)	DAP (m)	Área basal (m2)
Î	qns	S. S.	Ĕ	$\mathbf{C}\mathbf{A}$	Alt	D/	Áre
153	7	Cordia lutea	Boraginaceae	16	3	0.050929	0.0020
154	7	Cordia lutea	Boraginaceae	29	3	0.09231	0.0067
155	8	Loxopterygium huasango	Anacardiaceae	70	7	0.222816	0.0390
156	8	Loxopterygium huasango	Anacardiaceae	78	7	0.248281	0.0484
157	8	Loxopterygium huasango	Anacardiaceae	71	7	0.225999	0.0401
158	8	Morisonia scabrida	Capparaceae	19	2	0.060479	0.0029
159	8	Loxopterygium huasango	Anacardiaceae	41	3.6	0.130507	0.0134
160	8	Loxopterygium huasango	Anacardiaceae	40	4.02	0.127324	0.0127
161	8	Loxopterygium huasango	Anacardiaceae	45	7	0.143239	0.0161
162	8	Loxopterygium huasango	Anacardiaceae	40	7	0.127324	0.0127
163	8	Espostoa guentheri	Cactaceae	23	1	0.073211	0.0042
164	8	Loxopterygium huasango	Anacardiaceae	48	4	0.152788	0.0183
165	8	Loxopterygium huasango	Anacardiaceae	88	5	0.280112	0.0616
166	8	Loxopterygium huasango	Anacardiaceae	77	5.5	0.245098	0.0472
167	8	Loxopterygium huasango	Anacardiaceae	86	7	0.273746	0.0589
168	8	Espostoa lanata	Cactaceae	29	2	0.09231	0.0067
169	8	Espostoa lanata	Cactaceae	29	1.5	0.09231	0.0067
170	8	Espostoa lanata	Cactaceae	29	0.30	0.09231	0.0067
171	8	Espostoa lanata	Cactaceae	29	0.50	0.09231	0.0067
172	8	Espostoa lanata	Cactaceae	29	0.25	0.09231	0.0067
173	8	Espostoa lanata	Cactaceae	29	0.80	0.09231	0.0067
174	8	Espostoa lanata	Cactaceae	29	0.75	0.09231	0.0067
175	8	Espostoa lanata	Cactaceae	29	0.5	0.09231	0.0067
176	8	Espostoa lanata	Cactaceae	102	2	0.324675	0.0828
177	8	Neoraimondia arequipensis	Cactaceae	102	3.02	0.324675	0.0828
178	8	Neoraimondia arequipensis	Cactaceae	102	3.5	0.324675	0.0828
179	8	Neoraimondia arequipensis	Cactaceae	102	1.7	0.324675	0.0828
180	8	Neoraimondia arequipensis	Cactaceae	102	1.5	0.324675	0.0828
181	8	Neoraimondia arequipensis	Cactaceae	102	2	0.324675	0.0828
182	8	Neoraimondia arequipensis	Cactaceae	102	2.3	0.324675	0.0828
183	8	Neoraimondia arequipensis	Cactaceae	102	2	0.324675	0.0828
184	9	Loxopterygium huasango	Anacardiaceae	39	8	0.124141	0.0121
185	9	Loxopterygium huasango	Anacardiaceae	80	7	0.254647	0.0509
186	9	Loxopterygium huasango	Anacardiaceae	65	7.5	0.206901	0.0336
187	9	Loxopterygium huasango	Anacardiaceae	59	6.5	0.187802	0.0277
188	9	Beautempsia avicenniifolia	Capparaceae	17	1.5	0.054113	0.0023
189	9	Beautempsia avicenniifolia	Capparaceae	19	1.5	0.060479	0.0029
190	9	Loxopterygium huasango	Anacardiaceae	69	7	0.219633	0.0379
191	9	Loxopterygium huasango	Anacardiaceae	68	8.5	0.21645	0.0368
192	9	Loxopterygium huasango	Anacardiaceae	90	8	0.286478	0.0645

N° de individuo	N° de subparcela	Nombre científico	Familia	CAP (cm)	Altura (m)	DAP (m)	Área basal (m2)
193	9	Bursera graveolens	Burseraceae	25	3	0.079577	0.0050
194	9	Espostoa lanata	Cactaceae	25	1.7	0.079577	0.0050
195	9	Espostoa lanata	Cactaceae	25	1.6	0.079577	0.0050
196	9	Espostoa lanata	Cactaceae	25	1.4	0.079577	0.0050
197	9	Espostoa lanata	Cactaceae	25	1.7	0.079577	0.0050
198	9	Espostoa lanata	Cactaceae	38	1.5	0.120957	0.0115
199	9	Espostoa lanata	Cactaceae	38	0.70	0.120957	0.0115
200	9	Bursera graveolens	Burseraceae	51.5	4	0.163929	0.0211
201	9	Bursera graveolens	Burseraceae	36	3.5	0.114591	0.0103
202	9	Bursera graveolens	Burseraceae	36	4	0.114591	0.0103
203	9	Bursera graveolens	Burseraceae	14	3	0.044563	0.0016
204	9	Neoraimondia arequipensis	Cactaceae	70	5	0.222816	0.0390
205	9	Neoraimondia arequipensis	Cactaceae	70	4	0.222816	0.0390
206	9	Neoraimondia arequipensis	Cactaceae	70	4.5	0.222816	0.0390
207	9	Neoraimondia arequipensis	Cactaceae	70	2.2	0.222816	0.0390
208	10	Bursera graveolens	Burseraceae	26	1.2	0.08276	0.0054
209	10	Neoraimondia arequipensis	Cactaceae	36	6	0.114591	0.0103
210	10	Neoraimondia arequipensis	Cactaceae	35	4	0.111408	0.0097
211	10	Neoraimondia arequipensis	Cactaceae	34	3	0.108225	0.0092
212	10	Bursera graveolens	Burseraceae	9	0.30	0.028648	0.0006
213	10	Loxopterygium huasango	Anacardiaceae	56	6.08	0.178253	0.0250
214	10	Loxopterygium huasango	Anacardiaceae	35	7.2	0.111408	0.0097
215	10	Loxopterygium huasango	Anacardiaceae	62	7.5	0.197352	0.0306
216	10	Loxopterygium huasango	Anacardiaceae	67	7	0.213267	0.0357
217	10	Loxopterygium huasango	Anacardiaceae	70	6	0.222816	0.0390
218	10	Espostoa guentheri	Cactaceae	22	0.50	0.070028	0.0039
219	10	Espostoa guentheri	Cactaceae	22	0.50	0.070028	0.0039
220	10	Espostoa guentheri	Cactaceae	22	0.50	0.070028	0.0039
221	10	Espostoa guentheri	Cactaceae	22	0.80	0.070028	0.0039
222	10	Espostoa guentheri	Cactaceae	22	1	0.070028	0.0039
223	10	Espostoa guentheri	Cactaceae	22	1	0.070028	0.0039
224	10	Espostoa guentheri	Cactaceae	22	1	0.070028	0.0039
225	10	Espostoa guentheri	Cactaceae	22	0.30	0.070028	0.0039
226	10	Espostoa guentheri	Cactaceae	22	0.50	0.070028	0.0039
227	10	Espostoa guentheri	Cactaceae	22	1.7	0.070028	0.0039
228	10	Espostoa guentheri	Cactaceae	22	0.50	0.070028	0.0039
229	10	Espostoa guentheri	Cactaceae	22	0.50	0.070028	0.0039
230	10	Espostoa guentheri	Cactaceae	22	0.40	0.070028	0.0039
231	10	Espostoa guentheri	Cactaceae	22	0.70	0.070028	0.0039
232	10	Espostoa guentheri	Cactaceae	22	0.20	0.070028	0.0039

N° de individuo	N° de subparcela	Nombre	Familia	CAP (cm)	Altura (m)	DAP (m)	Área basal (m2)
233	10	Espostoa guentheri	Cactaceae	22	0.30	0.070028	0.0039
234	10	Espostoa guentheri	Cactaceae	22	1	0.070028	0.0039
235	10	Espostoa guentheri	Cactaceae	22	2	0.070028	0.0039
236	10	Espostoa guentheri	Cactaceae	22	1.8	0.070028	0.0039
237	10	Espostoa guentheri	Cactaceae	22	1.3	0.070028	0.0039
238	10	Espostoa guentheri	Cactaceae	22	1	0.070028	0.0039
239	10	Espostoa guentheri	Cactaceae	22	0.30	0.070028	0.0039
240	10	Espostoa guentheri	Cactaceae	22	0.30	0.070028	0.0039
241	10	Espostoa guentheri	Cactaceae	22	0.30	0.070028	0.0039
242	10	Espostoa guentheri	Cactaceae	22	0.80	0.070028	0.0039
243	10	Espostoa guentheri	Cactaceae	22	1.4	0.070028	0.0039
244	10	Espostoa guentheri	Cactaceae	22	1	0.070028	0.0039
245	10	Espostoa guentheri	Cactaceae	22	2	0.070028	0.0039
246	10	Espostoa guentheri	Cactaceae	22	0.80	0.070028	0.0039
247	10	Espostoa guentheri	Cactaceae	22	0.80	0.070028	0.0039
248	10	Espostoa guentheri	Cactaceae	22	0.80	0.070028	0.0039
249	10	Espostoa guentheri	Cactaceae	22	0.80	0.070028	0.0039
250	11	Cordia lutea	Boraginaceae	30	2.5	0.095493	0.0072
251	11	Espostoa lanata	Cactaceae	20	1	0.063662	0.0032
252	11	Espostoa lanata	Cactaceae	20	0.70	0.063662	0.0032
253	11	Espostoa lanata	Cactaceae	20	0.40	0.063662	0.0032
254	11	Beautempsia avicenniifolia	Capparaceae	38	1.5	0.120957	0.0115
255	11	Cordia lutea	Boraginaceae	14	2	0.044563	0.0016
256	11	Cordia lutea	Boraginaceae	10	1.5	0.031831	0.0008
257	11	Bursera graveolens	Burseraceae	14	0.8	0.044563	0.0016
258	11	Bursera graveolens	Burseraceae	43	3.5	0.136873	0.0147
259	11	Bursera graveolens	Burseraceae	8	0.11	0.025465	0.0005
260	11	Espostoa lanata	Cactaceae	33	1.6	0.105042	0.0087
261	11	Espostoa lanata	Cactaceae	33	1	0.105042	0.0087
262	11	Espostoa lanata	Cactaceae	33	0.8	0.105042	0.0087
263	11	Espostoa lanata	Cactaceae	33	1.10	0.105042	0.0087
264	11	Espostoa lanata	Cactaceae	33	0.5	0.105042	0.0087
265	12	Bursera graveolens	Burseraceae	59	4	0.187802	0.0277
266	12	Parkinsonia Praecox	Leguminosae	20	2.5	0.063662	0.0032
267	12	Morisonia scabrida	Capparaceae	34	3	0.108225	0.0092
268	12	Morisonia scabrida	Capparaceae	21	2.5	0.066845	0.0035
269	12	Espostoa lanata	Cactaceae	36	1.3	0.114591	0.0103
270	12	Espostoa lanata	Cactaceae	36	0.5	0.114591	0.0103
271	12	Beautempsia avicenniifolia	Capparaceae	48	5	0.152788	0.0183
272	12	Beautempsia avicenniifolia	Capparaceae	13	5	0.04138	0.0013

N° de individuo	N° de subparcela	Nombre	Familia	CAP (cm)	Altura (m)	DAP (m)	Área basal (m2)
273	12	Bursera graveolens	Burseraceae	21	1	0.066845	0.0035
274	12	Bursera graveolens	Burseraceae	38	3.5	0.120957	0.0115
275	12	Bursera graveolens	Burseraceae	26	2	0.08276	0.0054
276	12	Bursera graveolens	Burseraceae	82	4	0.261013	0.0535
277	12	Parkinsonia Praecox	Leguminosae	12.5	4	0.039789	0.0012
278	12	Cordia lutea	Boraginaceae	11	1.5	0.035014	0.0010
279	12	Espostoa lanata	Cactaceae	32	1	0.101859	0.0081
280	12	Espostoa lanata	Cactaceae	32	2.3	0.101859	0.0081
281	12	Espostoa lanata	Cactaceae	32	1.7	0.101859	0.0081
282	12	Espostoa lanata	Cactaceae	32	1.3	0.101859	0.0081
283	12	Espostoa lanata	Cactaceae	32	1.35	0.101859	0.0081
284	12	Espostoa lanata	Cactaceae	27	2.3	0.085943	0.0058
285	12	Espostoa lanata	Cactaceae	27	1.8	0.085943	0.0058
286	12	Espostoa lanata	Cactaceae	27	1.7	0.085943	0.0058
287	13	Bursera graveolens	Burseraceae	46	5	0.146422	0.0168
288	13	Bursera graveolens	Burseraceae	37.5	2	0.119366	0.0112
289	13	Espostoa lanata	Cactaceae	33	1	0.105042	0.0087
290	13	Cordia lutea	Boraginaceae	44	4	0.140056	0.0154
291	13	Neoraimondia arequipensis	Cactaceae	70	3.5	0.222816	0.0390
292	13	Neoraimondia arequipensis	Cactaceae	70	3	0.222816	0.0390
293	13	Neoraimondia arequipensis	Cactaceae	70	4	0.222816	0.0390
294	13	Loxopterygium huasango	Anacardiaceae	53	7	0.168704	0.0224
295	13	Loxopterygium huasango	Anacardiaceae	72	6.5	0.229183	0.0413
296	13	Loxopterygium huasango	Anacardiaceae	36	7	0.114591	0.0103
297	13	Loxopterygium huasango	Anacardiaceae	52	6.5	0.165521	0.0215
298	13	Bursera graveolens	Burseraceae	52	4	0.165521	0.0215
299	13	Espostoa guentheri	Cactaceae	24	1	0.076394	0.0046
300	13	Espostoa guentheri	Cactaceae	24	0.5	0.076394	0.0046
301	13	Espostoa guentheri	Cactaceae	24	0.8	0.076394	0.0046
302	13	Espostoa guentheri	Cactaceae	24	0.8	0.076394	0.0046
303	13	Espostoa guentheri	Cactaceae	24	0.8	0.076394	0.0046
304	13	Espostoa guentheri	Cactaceae	24	0.9	0.076394	0.0046
305	13	Espostoa guentheri	Cactaceae	24	0.5	0.076394	0.0046
306	13	Espostoa guentheri	Cactaceae	24	0.55	0.076394	0.0046
307	13	Espostoa guentheri	Cactaceae	24	1	0.076394	0.0046
308	13	Espostoa guentheri	Cactaceae	24	0.3	0.076394	0.0046
309	13	Espostoa guentheri	Cactaceae	24	0.6	0.076394	0.0046
310	13	Espostoa guentheri	Cactaceae	24	0.8	0.076394	0.0046
311	13	Espostoa guentheri	Cactaceae	24	0.60	0.076394	0.0046
312	13	Espostoa guentheri	Cactaceae	24	1.10	0.076394	0.0046

N° de individuo	N° de subparcela	Nombre	Familia	CAP (cm)	Altura (m)	DAP (m)	Área basal (m2)
313	13	Espostoa guentheri	Cactaceae	24	0.80	0.076394	0.0046
314	13	Espostoa guentheri	Cactaceae	24	0.4	0.076394	0.0046
315	14	Espostoa guentheri	Cactaceae	24	0.35	0.076394	0.0046
316	14	Espostoa guentheri	Cactaceae	24	0.8	0.076394	0.0046
317	14	Espostoa guentheri	Cactaceae	24	0.7	0.076394	0.0046
318	14	Espostoa guentheri	Cactaceae	24	0.5	0.076394	0.0046
319	14	Espostoa guentheri	Cactaceae	24	0.5	0.076394	0.0046
320	14	Espostoa guentheri	Cactaceae	24	0.5	0.076394	0.0046
321	14	Loxopterygium huasango	Anacardiaceae	12	6	0.038197	0.0011
322	14	Loxopterygium huasango	Anacardiaceae	12	6.5	0.038197	0.0011
323	14	Loxopterygium huasango	Anacardiaceae	11	6	0.035014	0.0010
324	14	Espostoa guentheri	Cactaceae	8	2	0.025465	0.0005
325	14	Bursera graveolens	Burseraceae	9	2.5	0.028648	0.0006
326	14	Bursera graveolens	Burseraceae	12	4.2	0.038197	0.0011
327	14	Bursera graveolens	Burseraceae	54	3	0.171887	0.0232
328	15	Espostoa lanata	Cactaceae	37	0.8	0.117774	0.0109
329	15	Espostoa lanata	Cactaceae	37	0.3	0.117774	0.0109
330	15	Cordia lutea	Boraginaceae	20	2	0.063662	0.0032
331	15	Neoraimondia arequipensis	Cactaceae	12	6	0.038197	0.0011
332	15	Loxopterygium huasango	Anacardiaceae	12	5	0.038197	0.0011
333	15	Loxopterygium huasango	Anacardiaceae	11	5	0.035014	0.0010
334	15	Morisonia scabrida	Capparaceae	8	1.8	0.025465	0.0005
335	15	Espostoa guentheri	Cactaceae	9	1.08	0.028648	0.0006
336	15	Espostoa guentheri	Cactaceae	10	1.5	0.031831	0.0008
337	15	Loxopterygium huasango	Anacardiaceae	8	7	0.025465	0.0005
338	15	Loxopterygium huasango	Anacardiaceae	8	6.5	0.025465	0.0005
339	15	Loxopterygium huasango	Anacardiaceae	8	7	0.025465	0.0005
340	15	Loxopterygium huasango	Anacardiaceae	8	6	0.025465	0.0005
341	15	Neoraimondia arequipensis	Cactaceae	36	5	0.114591	0.0103
342	15	Neoraimondia arequipensis	Cactaceae	36	4	0.114591	0.0103
343	15	Neoraimondia arequipensis	Cactaceae	36	2	0.114591	0.0103
344	15	Neoraimondia arequipensis	Cactaceae	36	2.3	0.114591	0.0103
345	15	Neoraimondia arequipensis	Cactaceae	35	1.75	0.111408	0.0097
346	16	Neoraimondia arequipensis	Cactaceae	36	1.5	0.114591	0.0103
347	16	Bursera graveolens	Burseraceae	34.5	5	0.109817	0.0095
348	16	Beautempsia avicenniifolia	Capparaceae	23	2.5	0.073211	0.0042
349	16	Cordia lutea	Boraginaceae	22	5	0.070028	0.0039
350	16	Beautempsia avicenniifolia	Capparaceae	25	2.5	0.079577	0.0050
351	16	Bursera graveolens	Burseraceae	13	2.5	0.04138	0.0013
352	16	Beautempsia avicenniifolia	Capparaceae	20	2	0.063662	0.0032

N° de individuo	N° de subparcela	Nombre	Familia	CAP (cm)	Altura (m)	DAP (m)	Área basal (m2)
353	16	Loxopterygium huasango	Anacardiaceae	94	6	0.299211	0.0703
354	16	Loxopterygium huasango	Anacardiaceae	55	8	0.17507	0.0241
355	16	Loxopterygium huasango	Anacardiaceae	82	5	0.261013	0.0535
356	16	Loxopterygium huasango	Anacardiaceae	25	7	0.079577	0.0050
357	16	Loxopterygium huasango	Anacardiaceae	83	7	0.264197	0.0548
358	16	Loxopterygium huasango	Anacardiaceae	45.5	7.2	0.144831	0.0165
359	16	Loxopterygium huasango	Anacardiaceae	53	6.5	0.168704	0.0224
360	16	Loxopterygium huasango	Anacardiaceae	70	7	0.222816	0.0390
361	16	Morisonia scabrida	Capparaceae	76	4.5	0.241915	0.0460
362	16	Loxopterygium huasango	Anacardiaceae	60	7	0.190985	0.0286
363	16	Loxopterygium huasango	Anacardiaceae	58	7	0.184619	0.0268
364	16	Loxopterygium huasango	Anacardiaceae	63	6	0.200535	0.0316
365	17	Morisonia scabrida	Capparaceae	37	3	0.117774	0.0109
366	17	Morisonia scabrida	Capparaceae	28	2.5	0.089127	0.0062
367	17	Bursera graveolens	Burseraceae	36.5	3.5	0.116183	0.0106
368	17	Neoraimondia arequipensis	Cactaceae	37	5	0.117774	0.0109
369	17	Neoraimondia arequipensis	Cactaceae	35	1.6	0.111408	0.0097
370	17	Loxopterygium huasango	Anacardiaceae	31	5	0.098676	0.0076
371	17	Loxopterygium huasango	Anacardiaceae	35	5	0.111408	0.0097
372	17	Loxopterygium huasango	Anacardiaceae	33	5	0.105042	0.0087
373	17	Cordia lutea	Boraginaceae	29	3.5	0.09231	0.0067
374	17	Bursera graveolens	Burseraceae	25	2.5	0.079577	0.0050
375	17	Bursera graveolens	Burseraceae	36.5	4	0.116183	0.0106
376	17	Bursera graveolens	Burseraceae	52	6	0.165521	0.0215
377	17	Loxopterygium huasango	Anacardiaceae	12	7.5	0.038197	0.0011
378	17	Loxopterygium huasango	Anacardiaceae	15	7	0.047746	0.0018
379	17	Neoraimondia arequipensis	Cactaceae	55	5.5	0.17507	0.0241
380	17	Neoraimondia arequipensis	Cactaceae	55	3	0.17507	0.0241
381	17	Neoraimondia arequipensis	Cactaceae	55	1.7	0.17507	0.0241
382	17	Bursera graveolens	Burseraceae	10	1.5	0.031831	0.0008
383	17	Bursera graveolens	Burseraceae	19	1.7	0.060479	0.0029
384	17	Bursera graveolens	Burseraceae	12	1.2	0.038197	0.0011
385	18	Morisonia scabrida	Capparaceae	38	4	0.120957	0.0115
386	18	Espostoa guentheri	Cactaceae	21	0.7	0.066845	0.0035
387	18	Loxopterygium huasango	Anacardiaceae	74	8.5	0.235549	0.0436
388	18	Loxopterygium huasango	Anacardiaceae	44	8	0.140056	0.0154
389	18	Loxopterygium huasango	Anacardiaceae	72	8	0.229183	0.0413
390	18	Loxopterygium huasango	Anacardiaceae	60	8	0.190985	0.0286
391	18	Loxopterygium huasango	Anacardiaceae	37	6	0.117774	0.0109
392	18	Loxopterygium huasango	Anacardiaceae	30	7	0.095493	0.0072

N° de individuo	N° de subparcela	Nombre	Familia	CAP (cm)	Altura (m)	P (m)	Área basal (m2)
N indi	N	No ₀	Fa	CAI	Altu	DAP	Áres (1
393	18	Loxopterygium huasango	Anacardiaceae	82.5	7	0.262605	0.0542
394	18	Morisonia crotonoides	Capparaceae	51	2.5	0.162338	0.0207
395	18	Loxopterygium huasango	Anacardiaceae	37	4	0.117774	0.0109
396	18	Bursera graveolens	Burseraceae	16	0.8	0.050929	0.0020
397	18	Bursera graveolens	Burseraceae	12	0.5	0.038197	0.0011
398	18	Espostoa guentheri	Cactaceae	26	0.6	0.08276	0.0054
399	18	Espostoa guentheri	Cactaceae	26	0.6	0.08276	0.0054
400	18	Espostoa guentheri	Cactaceae	26	0.7	0.08276	0.0054
401	18	Espostoa guentheri	Cactaceae	26	0.8	0.08276	0.0054
402	18	Espostoa guentheri	Cactaceae	26	0.55	0.08276	0.0054
403	18	Espostoa guentheri	Cactaceae	26	0.6	0.08276	0.0054
404	18	Espostoa guentheri	Cactaceae	26	0.4	0.08276	0.0054
405	19	Espostoa guentheri	Cactaceae	26	0.6	0.08276	0.0054
406	19	Espostoa guentheri	Cactaceae	26	0.48	0.08276	0.0054
407	19	Espostoa guentheri	Cactaceae	26	0.47	0.08276	0.0054
408	19	Espostoa guentheri	Cactaceae	26	0.76	0.08276	0.0054
409	19	Loxopterygium huasango	Anacardiaceae	44	6	0.140056	0.0154
410	19	Loxopterygium huasango	Anacardiaceae	58	6	0.184619	0.0268
411	19	Loxopterygium huasango	Anacardiaceae	87	5.5	0.276929	0.0602
412	19	Espostoa guentheri	Cactaceae	12	2	0.038197	0.0011
413	19	Espostoa guentheri	Cactaceae	16	2.5	0.050929	0.0020
414	19	Espostoa guentheri	Cactaceae	12	2.5	0.038197	0.0011
415	19	Espostoa guentheri	Cactaceae	13	1.6	0.04138	0.0013
416	19	Espostoa guentheri	Cactaceae	13	1.75	0.04138	0.0013
417	19	Espostoa guentheri	Cactaceae	13	1.8	0.04138	0.0013
418	19	Espostoa guentheri	Cactaceae	12	1	0.038197	0.0011
419	19	Espostoa guentheri	Cactaceae	14	0.6	0.044563	0.0016
420	20	Acacia macracantha	Leguminosae	20	2.5	0.063662	0.0032
421	20	Espostoa lanata	Cactaceae	36	1	0.114591	0.0103
422	20	Espostoa lanata	Cactaceae	36	0.5	0.114591	0.0103
423	20	Acacia macracantha	Leguminosae	67	5	0.213267	0.0357
424	20	Bursera graveolens	Burseraceae	59	6	0.187802	0.0277
425	20	Acacia macracantha	Leguminosae	38	3	0.120957	0.0115
426	20	Morisonia scabrida	Capparaceae	40	2	0.127324	0.0127
427	20	Morisonia scabrida	Capparaceae	11	0.5	0.035014	0.0010
428	20	Morisonia scabrida	Capparaceae	28	2	0.089127	0.0062
429	20	Morisonia scabrida	Capparaceae	16	1.9	0.050929	0.0020
430	20	Acacia macracantha	Leguminosae	26	4	0.08276	0.0054
431	20	Acacia macracantha	Leguminosae	30.5	4	0.097084	0.0074
432	20	Acacia macracantha	Leguminosae	24	4	0.076394	0.0046

N° de individuo	N° de subparcela	Nombre científico	Familia	CAP (cm)	Altura (m)	DAP (m)	Área basal (m2)
N ind	qns	S. e.	포	$\mathbf{C}\mathbf{A}$	Altı	\mathbf{D}_A	Áre (
433	20	Acacia macracantha	Leguminosae	27	3.5	0.085943	0.0058
434	21	Acacia macracantha	Leguminosae	33	3	0.105042	0.0087
435	21	Acacia macracantha	Leguminosae	35	3	0.111408	0.0097
436	21	Morisonia scabrida	Capparaceae	42	3	0.13369	0.0140
437	21	Bursera graveolens	Burseraceae	50	3.1	0.159155	0.0199
438	21	Parkinsonia Praecox	Leguminosae	20	1.8	0.063662	0.0032
439	21	Parkinsonia Praecox	Leguminosae	14	1.5	0.044563	0.0016
440	21	Morisonia scabrida	Capparaceae	13	1.6	0.04138	0.0013
441	21	Cordia lutea	Boraginaceae	12	4	0.038197	0.0011
442	21	Cordia lutea	Boraginaceae	43	4	0.136873	0.0147
443	21	Morisonia scabrida	Capparaceae	23	2	0.073211	0.0042
444	21	Loxopterygium huasango	Anacardiaceae	21	6.5	0.066845	0.0035
445	21	Loxopterygium huasango	Anacardiaceae	58	7	0.184619	0.0268
446	21	Cordia lutea	Boraginaceae	23	3	0.073211	0.0042
447	21	Loxopterygium huasango	Anacardiaceae	13	8	0.04138	0.0013
448	21	Acacia macracantha	Leguminosae	15	3	0.047746	0.0018
449	21	Morisonia crotonoides	Capparaceae	12	2	0.038197	0.0011
450	22	Loxopterygium huasango	Anacardiaceae	13	8	0.04138	0.0013
451	22	Loxopterygium huasango	Anacardiaceae	64	8	0.203718	0.0326
452	22	Loxopterygium huasango	Anacardiaceae	50	8	0.159155	0.0199
453	22	Loxopterygium huasango	Anacardiaceae	66	6	0.210084	0.0347
454	22	Loxopterygium huasango	Anacardiaceae	27	6	0.085943	0.0058
455	22	Morisonia crotonoides	Capparaceae	21	3	0.066845	0.0035
456	22	Morisonia scabrida	Capparaceae	65	4	0.206901	0.0336
457	22	Morisonia scabrida	Capparaceae	71	4	0.225999	0.0401
458	22	Neoraimondia arequipensis	Cactaceae	60	4	0.190985	0.0286
459	22	Neoraimondia arequipensis	Cactaceae	60	2	0.190985	0.0286
460	22	Neoraimondia arequipensis	Cactaceae	60	1.2	0.190985	0.0286
461	22	Neoraimondia arequipensis	Cactaceae	60	1.2	0.190985	0.0286
462	22	Bursera graveolens	Burseraceae	35	3	0.111408	0.0097
463	22	Cordia lutea	Boraginaceae	36	4	0.114591	0.0103
464	22	Cordia lutea	Boraginaceae	35	4	0.111408	0.0097
465	22	Cordia lutea	Boraginaceae	36	4	0.114591	0.0103
466	23	Neoraimondia arequipensis	Cactaceae	50	1.5	0.159155	0.0199
467	23	Cordia lutea	Boraginaceae	29	2.5	0.09231	0.0067
468	23	Espostoa guentheri	Cactaceae	23	1	0.073211	0.0042
469	23	Espostoa guentheri	Cactaceae	23	1.7	0.073211	0.0042
470	23	Espostoa guentheri	Cactaceae	23	1.8	0.073211	0.0042
471	23	Espostoa guentheri	Cactaceae	23	1.5	0.073211	0.0042
472	23	Espostoa guentheri	Cactaceae	23	1	0.073211	0.0042

N° de individuo	N° de subparcela	Nombre	Familia	CAP (cm)	Altura (m)	DAP (m)	Área basal (m2)
473	23	Bursera graveolens	Burseraceae	18	2	0.057296	0.0026
474	23	Bursera graveolens	Burseraceae	24	4	0.076394	0.0046
475	23	Espostoa lanata	Cactaceae	36	1.6	0.114591	0.0103
476	23	Espostoa lanata	Cactaceae	36	2.3	0.114591	0.0103
477	23	Espostoa lanata	Cactaceae	36	1.5	0.114591	0.0103
478	23	Morisonia scabrida	Capparaceae	29	2.5	0.09231	0.0067
479	23	Loxopterygium huasango	Anacardiaceae	23	8	0.073211	0.0042
480	24	Loxopterygium huasango	Anacardiaceae	25	8	0.079577	0.0050
481	24	Loxopterygium huasango	Anacardiaceae	28	8	0.089127	0.0062
482	24	Loxopterygium huasango	Anacardiaceae	26	8	0.08276	0.0054
483	24	Morisonia scabrida	Capparaceae	21	2	0.066845	0.0035
484	24	Morisonia scabrida	Capparaceae	47	4.5	0.149605	0.0176
485	24	Acacia macracantha	Leguminosae	26	4	0.08276	0.0054
486	24	Loxopterygium huasango	Anacardiaceae	93	8	0.296028	0.0688
487	24	Loxopterygium huasango	Anacardiaceae	62	8	0.197352	0.0306
488	24	Acacia macracantha	Leguminosae	48	3.5	0.152788	0.0183
489	24	Cordia lutea	Boraginaceae	24	2.5	0.076394	0.0046
490	25	Bursera graveolens	Burseraceae	47	6	0.149605	0.0176
491	25	Bursera graveolens	Burseraceae	36	4	0.114591	0.0103
492	25	Morisonia crotonoides	Capparaceae	13.5	3.5	0.042972	0.0015
493	25	Espostoa lanata	Cactaceae	33	1.7	0.105042	0.0087
494	25	Espostoa lanata	Cactaceae	33	1.6	0.105042	0.0087
495	25	Espostoa lanata	Cactaceae	33	1.2	0.105042	0.0087
496	25	Cordia lutea	Boraginaceae	21	2.5	0.066845	0.0035
497	25	Morisonia scabrida	Capparaceae	13	1.5	0.04138	0.0013
498	25	Morisonia crotonoides	Capparaceae	18	2.1	0.057296	0.0026
499	25	Morisonia scabrida	Capparaceae	50	0.5	0.159155	0.0199
500	25	Morisonia crotonoides	Capparaceae	20	4.5	0.063662	0.0032

Anexo 2Distribución por clases diamétricas

Intervalos de clases diamétricas	Número de individuos	Porcentaje (%)
2.5 - 5.4	102	20.4
5.5 - 8.4	150	30
8.5 - 11.4	99	19.8
11.5 - 14.4	41	8.2
14.5 - 17.4	30	6
17.5 - 20.4	22	4.4
20.5 - 23.4	27	5.4
23.5 - 26.4	12	2.4
26.5 - 29.4	5	1
29.5 - 32.5	12	2.4
Total	500	100

Anexo 3

Clases diamétricas por especie.

Loxopterygium huasango Spruce ex Engl.

Intervalos de clases diamétricas	Número de individuos	Porcentaje %
2.5 - 6.4	14	14.1
6.5 - 10.4	13	13.1
10.5 - 14.4	15	15.2
14.5 - 18.4	11	11.1
18.5 - 22.4	25	25.3
22.5 - 26.4	12	12.1
26.5 - 30.4	8	8.1
>30.5	1	1
Total	99	100

Bursera graveolens (Kunth) Triana & Planch.

Intervalos de clases diamétricas	Número de individuos	Porcentaje %
2.5 - 6.5	13	32.5
6.6 - 10.6	6	15
10.7 - 14.7	11	27.5
14.8 - 18.8	9	22.5
>18.9	1	2.5
Total	40	100

Cordia lutea Lam.

Intervalos de clases diamétricas	Número de individuos	Porcentaje %
2.9 - 5.3	17	30.9
5.4 - 7.8	16	29.1
7.9 - 10-3	12	21.8
10.4 - 12.8	4	7.3
12.9 - 15.3	3	5.5
15.4 - 17.8	2	3.6
>17.9	1	1.8
Total	55	100

Neoraimondia arequipensis Backeb.

Intervalos de clases diamétricas	Número de individuos	Porcentaje %
10.8 - 13.8	12	32.4
13.9 - 16.9	1	2.7
17.0 - 20.0	8	21.6
20.1 - 23.1	8	21.6
23.2 - 26.2	1	2.7
>26.3	7	18.9
Total	37	100

Espostoa lanata (Kunth) Britton & Rose

Intervalos de clases diamétricas	Número de individuos	Porcentaje %
6.4 - 7.4	3	5.8
7.5 - 8.5	4	7.7
8.6 - 9.6	11	21.2
9.7 - 10.7	14	26.9
10.8 - 11.8	9	17.3
>11.9	11	21.2
Total	52	100

Espostoa guentheri (Kupper) Buxb.

Intervalos de clases diamétricas	Número de individuos	Porcentaje %
2.5 - 3.3	3	3.6
3.4 - 4.1	5	6.0
4.2 - 4.9	1	1.2
5 - 5.7	1	1.2
5.8 - 6.5	1	1.2
6.6 - 7.3	39	47.0
7.4 - 8.1	22	26.5
>8.1	11	13.3
Total	83	100

Morisonia scabrida (Kunth) Christenh. & Byng

Intervalos de clases diamétricas	Número de individuos	Porcentaje %
2.5 - 5.8	11	23.9
5.9 - 9.2	15	32.6
9.3 - 12.6	10	21.7
12.7 - 16.0	5	10.9
16.1 - 19.4	1	2.2
19.5 - 22.8	3	6.5
>22.9	1	2.2
Total	46	100

Beautempsia avicennifolia (Kunth) Gaudich.

Intervalos de clases diamétricas	Número de individuos	Porcentaje %
2.5 - 4.5	15	31.9
4.6 - 6.6	13	27.7
6.7 - 8.7	8	17.0
8.8 - 10.8	7	14.9
10.9 - 12.9	2	4.3
13.0 - 15.0	1	2.1
>15.1	1	2.1
Total	47	100

Morisonia crotonoides (Kunth) Christenh. & Byng

Intervalos de clases diamétricas	Número de individuos	Porcentaje %
3.2 - 5.7	12	63.2
5.8 - 8.3	4	21.1
8.4 - 10.9	1	5.3
11.0 - 13.5	1	5.3
>13.6	1	5.3
Total	19	100

Acacia macracantha (Humb. & Bonpl. ex Willd.) Seigler & Ebinger

Intervalos de clases diamétricas	Número de individuos	Porcentaje %
2.5 - 6.0	4	22.2
6.1 - 9.6	7	38.9
9.7 - 13.2	5	27.8
13.3 - 16.8	1	5.6
>16.9	1	5.6
Total	18	100

Anexo 4

Índice de Valor de Importancia (IVI)

	Nº	Abundancia	Dominancia	Frecuencia	IVI	
Especies	Individuos	Ab %	Do %	Fr %	300%	100%
Loxopterygium huasango	99.00	19.80	43.91	12.50	76.21	25.40
Neoraimondia arequipensis	37.00	7.40	21.18	9.72	38.31	12.77
Morisonia scabrida	46.00	9.20	7.64	12.50	29.34	9.78
Bursera graveolens	40.00	8.00	9.43	11.11	28.54	9.51
Cordia lutea	54.00	10.80	5.21	10.42	26.42	8.81
Espostoa guentheri	83.00	16.60	2.02	6.25	24.87	8.29
Beautempsia avicenniifolia	47.00	9.40	3.32	11.11	23.83	7.94
Espostoa lanata	52.00	10.40	3.79	5.56	19.75	6.58
Morisonia crotonoides	19.00	3.80	1.11	12.50	17.41	5.80
Vachellia macracantha	18.00	3.60	2.38	2.78	8.76	2.92
Parkinsonia praecox	5.00	1.00	0.00	5.56	6.56	2.19
Total	500.00	100.00	100.00	100.00	300.00	100.00

Anexo 5Formato para recolección de información en campo

Departa	mento:				Localida	d:	
Provinc	ia:				Altitud:		
Distrito	•						
N° de	N° de	Especie	CAP	Altura	Nombre	Coordenada	Observaciones
parcela	subparcela		(cm)		común	(norte, este	
						y altitud)	