UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE CIENCIAS AGRARIAS

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA FORESTAL

RENDIMIENTO DEL ASERRÍO IN SITU DE Cordia alliodora (R. & P.) Oken EN PLANTACIONES AGROFORESTALES DE LA COOPERATIVA SOL&CAFÉ, 2022

TESIS

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO FORESTAL

PRESENTADO POR EL BACHILLER:

FREDY POTENCIANO SANTOS

ASESOR

M. Sc. Ing. FRANCISCO FERNANDO AGUIRRE DE LOS RÍOS

M. Sc. Ing. VITOLY BECERRA MONTALVO

JAÉN – PERÚ

2024

CONSTANCIA DE INFORME DE ORIGINALIDAD

1.	Investigador:						
	Fredy Potencia	no Santos					
	DNI: 71898843						
	Escuela Profesio	onal/Unidad UNC:					
	Ingeniería Forestal						
2.	Asesor:						
	Ing. M. Sc. Vito	ly Becerra Montalvo					
	Ing. M. Sc. Fran	cisco Fernando Aguirre De Los	Ríos				
	Facultad/Unida	d UNC:					
	Ingeniería Fore	stal					
3.	Grado académi	co o título profesional					
	□Bachiller	★ Título profesional	□Segunda especialidad				
	□Maestro	□Doctor					
4.	Tipo de Investig	gación:					
	▼ Tesis	☐ Trabajo de investigación	$\hfill\Box$ Trabajo de suficiencia profesional				
	☐ Trabajo acad	démico					
5.	Título de Traba	jo de Investigación:					
	RENDIMIENTO	DEL ASERRÍO IN SITU DE <i>Cordia</i>	alliodora (R. & P.) Oken EN PLANTACIONES				
	AGROFORESTA	LES DE LA COOPERATIVA SOL&	CAFÉ, 2022				
6.	Fecha de evalua	ación: 24/09/2024					
7.	Software antipl	agio: 🗷 TURNITIN 🗆 URK	(UND (OURIGINAL) (*)				
8.	Porcentaje de I	Porcentaje de Informe de Similitud: 24 %					
9.	9. Código Documento: oid: 3117: 385001334						
10.	D. Resultado de la Evaluación de Similitud:						
	⋈ APROBADO	☐ PARA LEVANTAMIENTO DE	OBSERVACIONES O DESAPROBADO				
	Fecha Emisión: 24/09/2024						

^{*} En caso se realizó la evaluación hasta setiembre de 2023

MACHOMAL MACHAGON CO.

UNIVERSIDAD NACIONAL DE CAJAMARCA

Fundada por Ley № 14015 del 13 de febrero de 1,962 "Norte de la Universidad Peruana"

FACULTAD DE CIENCIAS AGRARIAS ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA FORESTAL FILIAL JAÉN

Bolívar № 1342 - Plaza de Armas JAÉN - PERÚ

ACTA DE SUSTENTACIÓN DE TESIS

En la ciudad de Jaén, a los quince días del mes de agosto del año dos mil veinticuatro, se reunieron en el Ambiente de la Sala de Docentes de Ingeniería Forestal- Filial Jaén, los miembros del Jurado designados por el Consejo de Facultad de Ciencias Agrarias, según Resolución de Consejo de Facultad Nº166- 2024-FCA-UNC, de fecha 18 de marzo 2024, con el objeto, de evaluar la sustentación del trabajo de Tesis titulado: "RENDIMIENTO DEL ASERRÍO IN SITU DE Cordia alliodora (R. & P.) Oken EN PLANTACIONES AGROFORESTALES DE LA COOPERATIVA SOL & CAFÉ, 2022", ejecutado por el Bachiller en Ciencias Forestales, Don FREDY POTENCIANO SANTOS, para optar el Título Profesional de INGENIERO FORESTAL.

A las **catorce** horas y **cinco** minutos, de acuerdo a lo estipulado en el Reglamento respectivo, el Presidente del Jurado dio por iniciado el evento, invitando al sustentante a exponer su trabajo de Tesis y, luego de concluida la exposición, el jurado procedió a la formulación de preguntas. Concluido el acto de sustentación, el Jurado procedió a deliberar, para asignarle la calificación. Acto seguido, el Presidente del Jurado anunció la **APROBACIÓN** por **UNANIMIDAD** con el calificativo de **dieciséis (16)**; por tanto, el Bachiller queda expedito para el inicio de los trámites, para que se le otorgue el Título Profesional de Ingeniero Forestal.

A las **quince** horas y **cuarenta** minutos del mismo día, el Presidente del Jurado dio por concluido el acto.

Jaén, 15 de agosto de 2024.

Dr. Segundo Primitivo Vaça Marquina

PRESIDENTE

Ing. M. Sc. German Perez Hurtado

SECRETARIO

Ing. M. Cs. Leiwer Flores Flores

VOCAL

Ing. M. Sc. Vitoly Becerra Montalvo

ASESOR

Ing. M. Sc. Francisco Fernando Aguirre De Los Ríos

ASESOR

DEDICATORIA

Para mis padres por su comprensión y ayuda en momentos buenos y malos. Me han enseñado a encarar las adversidades sin perder nunca la dignidad ni desfallecer en el intento. Me han dado todo lo que soy como persona, mis valores, mis principios, mi perseverancia, y todo ello con una gran dosis de amor y sin pedir nunca nada a cambio. A mi madre que, aunque ya no está físicamente conmigo desde el cielo siempre me cuida

A mis hermanos, por todo su apoyo incondicional, espero les sirva de ejemplo de que todo se puede lograr.

Mi familia quienes a lo largo de mi vida han velado por mi bienestar y educación siendo mí apoyo en todo momento.

AGRADECIMIENTO

A Dios por estar presente en todo momento y guiarme por el camino correcto.

A mis Padres por su apoyo incondicional en todo el proceso de formación profesional. A mis Hermanos por su apoyo brindado y motivación para seguir adelante. A los docentes por tener tal privilegio y por su constante orientación y atención en lo necesario.

Gracias a la Universidad Nacional de Cajamarca – Sede Jaén por permitir convertirme en ser un profesional, Gracias a cada maestro que hizo parte de este proceso integral de formación y a todas las personas que de alguna manera u otra manera me han motivado para luchar y conseguir mis objetivos planteados en mi vida. Así mismo a mis asesores M. Sc. Francisco Fernando Aguirre De Los Ríos y M. Sc. Vitoly Becerra Montalvo, por su constante apoyo.

A la Cooperativa de Servicios Múltiples Sol&Café Ltda, que me brindó acceso para realizar el presente trabajo de investigación y a su gerente el ingeniero Gerardo Alarcón Cubas, por brindarme la confianza para el desarrollo del presente trabajo de investigación

ÍNDICE DE CONTENIDO

DEDICATORIA	iv
AGRADECIMIENTO	v
RESUMEN	ix
ABSTRACT	X
CAPÍTULO I. INTRODUCCIÓN	11
CAPÍTULO II. REVISIÓN BIBLIOGRÁFICA	13
2.1. Antecedentes de la investigación	13
2.2. Bases teóricas	16
2.2.1. Descripción de la especie Cordia alliodora (Ruiz & Pavon) Oken	16
2.2.2 Aserrío de la madera	18
2.2.3. Equipos para aserrío de la madera	19
2.2.4. Rendimiento del aserrío de la madera	21
2.3. Definición de términos básicos	23
CAPÍTULO III. MARCO METODOLÓGICO	25
3.1. Localización de la investigación	25
3.2. Tipo y diseño de la investigación	26
CAPÍTULO IV. RESULTADOS Y DISCUSIÓN	31
4.1. Resultados	31
4.2. Discusión	38
CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES	41
5.1. Conclusiones	41
5.2. Recomendaciones	42
CAPÍTULO VI. REFERENCIAS BIBLIOGRÁFICAS	43
CAPÍTHI O VII ANEXO	48

ÍNDICE DE TABLAS

Tabla 1. Propiedades mecánicas de la madera de Cordia alliodora	. 18
Tabla 2. Relación de socios donde se realizó la obtención de trozas	. 25
Tabla 3. Matriz de operacionalización de variables de la investigación	. 26
Tabla 4. Cubicación de trozas de calidad buena	. 31
Tabla 5. Cubicación de trozas de calidad regular	. 32
Tabla 6. Cubicación de trozas con presencia de curvatura	. 33
Tabla 7. Cubicación de trozas con presencia de grietas	. 33
Tabla 8. Resumen de clasificación de las trozas según calidad	. 33
Tabla 9. Madera aserrada obtenida luego del aserrío con sierra cinta	. 35
Tabla 10. Rendimiento de aserrío de madera de <i>Cordia alliodora</i> usando sierra cinta	. 36

ÍNDICE DE FIGURAS

Figura 1.	Zonas de la motosierra	20
Figura 2.	Ubicación de las parcelas donde se realizó la obtención de las trozas	25
Figura 3.	Clasificación de las trozas según su calidad	34
Figura 4.	Clasificación de la madera aserrada obtenida luego del aserrío con sierra cinta	35
Figura 5.	Relación entre el diámetro de la troza y el rendimiento de aserrío	37

RESUMEN

La presente investigación se realizó en la provincia de Jaén, en parcelas agroforestales de socios de la Cooperativa Sol&Café, se tuvo como objetivo determinar el rendimiento del aserrío de madera de Cordia alliodora (R. & P.) Oken de plantaciones agroforestales. La problemática que generó esta investigación es la necesidad de tener información confiable del proceso de aserrío usando tecnología de sierra cinta. La investigación fue de tipo descriptiva correlacional aplicada. la técnica fue la observación y como instrumentos se utilizaron formatos para la recolección de datos. El muestreo fue probabilístico y se transformó un total de 61 trozas, cuyas características de calidad fueron de buenas y regulares en aproximadamente 65 %, existiendo trozas con defectos de curvaturas y grietas. La madera aserrada obtenida fue en un 91 % de tipo comercial y solo un 9 % de recuperación. El rendimiento de aserrío obtenido fue de 67,33 %, el mismo que es superior al rendimiento establecido por el SERFOR. La relación entre diámetro de troza y rendimiento no guarda ninguna correlación, se obtuvo un coeficiente de correlación de Pearson de -0,066, lo que valida que no existe relación entre estas dos variables. Se concluye que el uso de sierra cinta para el aserrío de la madera de Cordia alliodora genera un rendimiento alto, superior al establecido oficialmente, y se obtiene una alta rentabilidad de las plantaciones agroforestales.

Palabras clave: madera rolliza, madera aserrada, aserrío, rendimiento del aserrío.

ABSTRACT

This research was carried out in the province of Jaén, in agroforestry plots belonging to members of the SolyCafé Cooperative, with the objective of determining the yield of sawing Cordia alliodora (R. & P.) Oken wood from agroforestry plantations. The problem that generated this research is the need to have reliable information on the sawmilling process using band saw technology. The research was descriptive and applied correlational. The technique was observation and data collection forms were used as instruments. The sampling was probabilistic and a total of 61 logs were processed, whose quality characteristics were good and regular in approximately 65%, with some logs having defects of curvatures and cracks. The sawn timber obtained was 91 % of commercial quality and only 9 % of recovery. The sawing yield obtained was 67,33 %, which is higher than the yield established by SERFOR. The relationship between log diameter and yield is not correlated; a Pearson correlation coefficient of -0,066 was obtained, which validates that there is no relationship between these two variables. It is concluded that the use of band saws for the sawing of Cordia alliodora wood generates a high yield, higher than that officially established, and obtains a higher profitability of agroforestry plantations.

Keywords: roundwood, sawnwood, sawmilling, sawmilling yield.

CAPÍTULO I

INTRODUCCIÓN

En el Perú una de las industrias más importantes en el sector forestal es la industria del aserrío ya que se encarga de la transformación de la madera en nuestro país, puesto que la madera es el principal insumo de esta industria, es necesario su adecuado aprovechamiento para garantizar el desarrollo y sostenibilidad de dicha industria (Portella, 2021, p. 1). El proceso de aserrío es una de las maneras más simples de transformar la madera rolliza, por lo que es fundamental evaluar su eficiencia, mediante estudios de coeficientes de aprovechamiento, rentabilidad y rendimiento (Paucar, 2016, p. 8).

Así mismo, Osco (2020, p. 1) indica que, la industria del aserrío abarca procesos de transformación primaria de la madera rolliza con la finalidad de obtener madera aserrada en distintas formas y dimensiones, para llevar a cabo este proceso se utiliza maquinaria, equipos, energía, capital económico y humano. Además, indica que el coeficiente de rendimiento utilizado en la actualidad a nivel nacional tiene serias implicancias en el manejo, aprovechamiento y transformación de los recursos maderables. Por otra parte, cabe precisar que es sumamente importante determinar el rendimiento de aserrío, es decir la relación entre el volumen de madera en rollo que entra al aserrío y el volumen producido en productos aserrados, este rendimiento también es llamado Coeficiente de aserrío o Factor de recuperación de madera aserrada (FRM). El coeficiente de aserrío va depender del tipo de madera, esquemas de corte, maquinaria, mano de obra, diámetro y calidad de las trozas, entre estas la conicidad, presencia de médula, nudos y encorvaduras (Vargas, 2020, p. 10).

En los últimos años en el Perú, se ha utilizado algunas tecnologías nuevas en el aprovechamiento forestal que permita mejorar los rendimientos, optimizar la producción y disminuir los costos operativos. Sin embargo, aún hay un alto porcentaje del uso de equipos sencillos en el aprovechamiento y aserrío de la madera, especialmente son los pequeños productores o extractores madereros que hacen uso de tecnologías tradicionales como lo es la extracción y aserrío con motosierra (Rios, 2019, p. 1).

Por otro lado, es importante precisar que las plantaciones agroforestales constituyen una buena alternativa de desarrollo económico a nivel local, regional y nacional, puesto que la madera tiene gran demanda comercial, siendo un recurso que luego de pasar por un proceso de aserrío es muy utilizados por el ser humano. A pesar que existe una buena

producción de madera, es fundamental determinar el rendimiento en aserrío para evitar pérdidas en esta industria (Guevara, 2020, p. 10). La Ley Forestal y de Fauna Silvestre 29763, en el D.S. N° 020- 2015 MINAGRI, en el Art. 2 establece que es de interés nacional promover la instalación de plantaciones forestales y sistemas agroforestales, puesto que contribuye al desarrollo industrial en el sector forestal y la seguridad alimenticia y nutricional, aporta en la regulación hídrica, protección de suelos, provisión de servicios ecosistémicos, recuperación y restauración de ecosistemas (Barturén, 2018, p. 14).

La madera extraída de sistemas agroforestales en Centro y Sudamérica está conformada en 77 % por madera de *Cordia alliodora* (R. &. P.) Oken, especie asociada a cultivos como plátano, cacao y Café (Pineda et al., 2018, p. 26). Esta especie es importante y tiene un rápido crecimiento, además su madera es de buena calidad, es por ello que es una de las especies más utilizadas en sistemas agroforestales. En las provincias de Jaén y San Ignacio se cuenta con un aproximado de 26579 ha y 17748,5 ha de café respectivamente, de las cuales entre el 80 y 82 % del total están sembradas bajo sombra, siendo la *Cordia alliodora* (R. y P.) Oken conocido en la zona con el nombre de "laurel", una de las especies que más destaca en estas plantaciones agroforestales, por ende actualmente es una de las maderas más importantes en esta parte del país, sin embargo, a pesar de la abundancia e importancia de esta especie maderable, existe poco o casi nada de estudios respecto al rendimiento de aserrío de esta especie, habiendo una escasa información al respecto (Fernández, 2018, p. 3).

En base a esta realidad problemática y considerando que actualmente no se cuenta con estudios de rendimiento de aserrío para la especie de *Cordia alliodora* (R. y P.) Oken, se planteó realizar la presente investigación formulándose como pregunta de investigación: ¿Cuánto es el rendimiento de aserrío in situ de *Cordia alliodora* (R. & P.) Oken procedentes de plantaciones agroforestales de la cooperativa Sol&Café, 2021?

Así mimo, el objetivo general planteado fue: Determinar el rendimiento del aserrío in situ de *Cordia alliodora* (R. & P.) Oken en plantaciones agroforestales de la cooperativa Sol&Café, 2021. Los objetivos específicos propuestos fueron: Cubicación y clasificación de las trozas de madera de *Cordia alliodora* (R. & P.) Oken seleccionadas para la evaluación. Aserrío in situ utilizando sierra cinta portátil y cubicación de madera aserrada obtenida. Cuantificar el rendimiento porcentual del aserrío in situ de plantaciones agroforestales de la especie *Cordia alliodora* (R. & P.) Oken.

CAPÍTULO II

REVISIÓN BIBLIOGRÁFICA

2.1. Antecedentes de la Investigación

Como antecedentes internacionales para la presente investigación se tiene:

Castillo (2021) realizó una investigación en Ecuador donde cuantifico el aprovechamiento de la madera de *Cordia alliodora* y *Triplaris cumingiana* en el proceso de fabricación de muebles. Para ello se determinó el rendimiento, además se tomó el tiempo con un cronómetro en las diferentes etapas del proceso de fabricación de los muebles; también se determinó el del desperdicio, y se evaluó la rentabilidad de dos talleres de ebanisterías (ebanistería H&M y ebanistería tallado de Ibarra); los resultados indicaron que los rendimientos para las maderas de *Cordia alliodora* y *Triplaris cumingiana* fueron de 50,59 % y de 51,09 % respectivamente, desperdicio promedio de 32,27 %, por otro lado, el tiempo de fabricación de muebles (diseño, corte, canteado, lijado, armado, acabado) fue de 2701,91 minutos y 2555,39 minutos para *Cordia alliodora* y *Triplaris cumingiana* respectivamente y la rentabilidad por venta de muebles con ambas maderas en estudio generó un margen de utilidad neta de 6,20 % para el taller de ebanistería H&M y de 10,17 % para el taller de ebanistería tallado de Ibarra.

Quispe (2019) del municipio de Palos Blancos, determinó el rendimiento porcentual, en aserrío con motosierra aplicando el sistema de corte "Flitchs", para las especies *Virola flexuosa* (Gabu) y *Centrolobium ochroxylum* (Huasicucho) en las Comunidades Nuevo Porvenir y Villa Esperanza del Municipio de Palos Blancos, Ecuador. Para ello se aplicó el sistema de corte Flitchs con motosierra en un total de 40 muestras, 20 trozas por especie. Los resultados arrojaron un rendimiento de 68,29 % y 47,07 % para Gabu y Huasicucho respectivamente.

Leyva, Rojas y Segurado (2016) en su investigación realizada en Cuba determinaron el rendimiento en aserrío de la especie *Pinus cubensis* Griseb, el trabajo se llevó a cabo en dos aserríos móviles (LT 40 Yammar y Perkín) y un aserrío fijo (Cayo Güin), propiedad de la empresa agroforestal "Baracoa", se utilizó un total de 132 trozas. Los resultados indicaron el rendimiento de aserrío de la especie *Pinus cubensis* Griseb para el caso de los dos aserríos

móviles tuvo un rendimiento promedio de 70 % mientras que el rendimiento en el aserrío fijo fue de 55,5 %.

Sanabria y Serrano (2016) evaluaron el rendimiento en aserrío de las trozas de primer raleo de una plantación *Cordia alliodora* (Ruiz & Pavon) Oken, se evaluó el proceso de aserrío, reaserrío y alistado de un total de 64 trozas de laurel de 4 años, extraídas de una plantación ubicada en el Cantón de Pococí. Los resultados obtenidos indicaron que el rendimiento final comercial en madera alistada (cepillada-machimbrada) fue 24 % y el rendimiento real fue 28 %.

Como antecedentes nacionales para la presente investigación se tiene:

Román y Pizarro (2023) realizaron una investigación con el propósito de evaluar el rendimiento del aserrío de madera de *Cordia alliodora* (Ruiz & Pavon) Oken, utilizando una motosierra en plantaciones agroforestales ubicadas en San Ignacio. La investigación incluyó una población de 273 árboles de esta especie, de los cuales se seleccionó una muestra de 37 árboles que fueron talados y procesados para obtener un total de 105 trozas de madera. Los resultados mostraron que se produjeron 125 cuartones, equivalentes a 0.29 m³, con un rango que varía entre 0,048 m³ y 0,751 m³. En cuanto al coeficiente de rendimiento, el modelo de regresión lineal que mejor se ajustó a los datos fue el Modelo 1, con un coeficiente de determinación (R²) de 0,918. La ecuación lineal obtenida fue: V = 1.02194 * AB * F * H. Los resultados indican un coeficiente de rendimiento del 92,10 % para la madera rolliza y un promedio del 35.51 % para la madera aserrada.

Sulca (2021) realizó una investigación en un aserradero de cinta en la ciudad de Oxapampa-Pasco, con el objetivo de determinar el rendimiento de aserrío y la calidad de las piezas aserradas obtenidas en base a la norma INTEC C99:2014. Se trabajó con las trozas de la cosecha final de una plantación no manejada de 18 años provenientes de Chontabamba de la especie de *Pinus tecunumanii*. Se evaluaron 90 trozas de pino que fueron obtenidas a través de un pre-muestreo de 30 trozas en base a la metodología planteada por INRENA-UNALM (2008), que determina el tamaño de muestra a través de la variación del volumen. Las trozas fueron aserradas en su gran mayoría en piezas de una pulgada de espesor, se obtuvo un factor de conversión promedio de 0,509 con un coeficiente de variabilidad de 11,5 % y una desviación estándar de 0,059. Se determinó que el diámetro promedio de trozas fue de 26,92 cm y las longitudes se distribuyeron principalmente entre los 2,44 m (8') y 3,05 m

(10'). Las decisiones de corte del aserrador influyeron en gran medida en la obtención del rendimiento y la variación de estos, también se encontró que el rendimiento de aserrío aumentó significativamente con el diámetro de las trozas y las calidades. Se determinó tres calidades de la madera aserrada, con un rendimiento de 13,7 % para la calidad uno, 29,4 % para la calidad dos, 7,8 % para la calidad tres. Se elaboró una tabla de rendimiento en base al diámetro promedio y al factor de conversión mediante una ecuación de regresión lineal simple, el cual determinó de forma significativa el grado de asociación entre las variables estudiadas, y fue la que mejor estimó la obtención del volumen aserrado.

Zapana (2018) en su investigación determinó el rendimiento en aserrío de tres especies maderables para la obtención de tablillas y decking. El estudio se realizó en la planta de transformación primaria de la empresa Maderera Canales Tahuamanu S.A.C. Se encuentra ubicado en el distrito de Iñapari, perteneciente a la provincia de Tahuamanu en el departamento de Madre de Dios, cuya investigación fue de tipo aplicada, nivel descriptivo, diseño no experimental, con un método cuantitativo; para lo que se seleccionaron 109 trozas al azar de la especie *Hymenaea oblongifolia* Huber, 121 trozas de *Myroxylon balsamum* (L.) y 129 trozas de *Dipteryx odorata* (Aubl.) Willd. de estos procesos se obtuvieron un rendimiento de: 22 % para *Hymenaea oblongifolia* Huber, 23 %, para *Myroxylon balsamum* (L.) Harms y 33 % *Dipteryx odorata* (Aubl.) Willd. Se utilizó un tipo de análisis de correlación, en este caso una regresión lineal determinándose la ecuación de la recta para madera aserrada (tablillas y decking) en base al volumen rollizo de la troza donde se obtuvo las siguientes Y = 0,0304 + 0,2118 (x); Y = 0,0641 + 0,1948 (x); Y = -0,1246 + 0,3607 (x) respectivamente, donde "Y", es madera aserrada y "x" es volumen rollizo.

Paucar (2016) evaluó el coeficiente de rendimiento de aserrío y la productividad de tablillas, de las especies: *Myroxylon balsamum* y *Aspidosperma macrocarpon*, provenientes de Puerto Ocopa. Para el estudio se utilizaron 92 trozas, de los cuales 45 fueron de *Myroxylon balsamum* (Estoraque) y 47 de *Aspidosperma macrocarpon* (Pumaquiro). El método utilizado fue el descriptivo simple, durante el proceso de aserrío de trozas. Con los resultados obtenidos; se concluye que, el coeficiente de rendimiento de aserrío de tablillas para las especies *Myroxylon balsamum* y *Aspidosperma macrocarpon* fueron de 39,04 % y 42,13 % respectivamente. Los coeficientes determinados fueron menores a los utilizados por la autoridad forestal del país (SERFOR). El coeficiente de rendimiento de aserrío comercial y coeficiente de rendimiento de recuperación para *Myroxylon balsamum* fue de 31,47 % y 7,57

% y *Aspidosperma macrocarpon* fue 32,36 % y 9,77 % respectivamente. La productividad en el corte de tablillas promedio fue de 0,278 m³/h; para *Myroxylon balsamum* fue de 0,252 m³/h y para *Aspidosperma macrocarpon* 0,309 m³/h.

Osco (2020) realizó una investigación en la planta industrial del Aserradero y Servicios La Torre E.I.R.L. en el distrito de Pichanaki, provincia de Chanchamayo, región Junín, donde determinó el rendimiento en aserrío de *Brosimum alicastrum* (congona), para ello aplicó un diseño no experimental de corte transversal, la muestra fue de 31 trozas la cuales fueron seleccionadas al azar. Los resultados obtenidos arrojaron un rendimiento de madera rolliza a madera aserrada de la categoría comercial (C) 61,55 %, un rendimiento de madera rolliza a madera aserrada de recuperación larga angosta (LA) 2,1 % y el rendimiento de madera rolliza a madera aserrada de recuperación corta (CO) 0,17 %, el coeficiente de correlación fue de 0,937, el cual indica que la correlación es positiva.

2.2. Bases Teóricas

2.2.1. Descripción de la especie Cordia alliodora (Ruiz & Pavon) Oken

Los árboles más grandes pueden ser de 25 a 30 m, los troncos, algunas veces alcanzan su DAP. De 50 a 90 cm, el fuste puede ser recto y cilíndrico o con contrafustes basales delgados, la corteza externa es finamente fisurada de color pardo grisáceo o pardo amarillento o moreno oscuro. La interna es laminada de color amarillo claro que cambia muy rápido a pardo oscuro, su textura es gruesa; grosor total de la corteza de 8-15 mm. Copa redonda con ramas ascendentes. Las ramas jóvenes son pardo verdosas o pardo grisáceas con abundantes lenticelas pálidas y protuberancias ligeramente ásperas, son delgadas con pubescencia densa o finamente estrellada y en diversos de las ramas se presentan frecuentemente engrosamientos o abultamientos alargados y huecos habitados por hormigas, que también se encuentran ocupando el espacio correspondiente a la médula que han degradado (Pérez et al., 2014, pp. 16-17).

Clasificación Taxonómica. Según www.Tropicos.org. Missouri Botanical Garden (2024) el laurel presente la siguiente clasificación taxonómica:

Clase : Equisetopsida C. Agardh

Subclase : Magnoliidae Novák ex Takht.

Superorden: Asteranae Takht.

Orden : Lamiales Bromhead

Familia : Cordiaceae R. Br. ex Dumort.

Género : Cordia L.

Especie 1: Cordia alliodora (R & p) Oken

Según el sistema integrado de clasificación de las angiospermas de Arthur Cronquist (1981), ocupa las siguientes categorías taxonómicas:

Reino : Plantae

División : Magnoliophyta

Clase : Magnolopsida

Subclase : Asteridae

Orden : Lamiales

Familia : Boraginaceae

Género : Cordia

Especie : Cordia alliodora (R & p) Oken

Nombres comunes: Laurel blanco, laurel negro, barejón, chacacaspi (Perú), capa prieto, ajo, diablo fuerte, nogal cafetero (Colombia).

Características anatómicas y tecnológicas de la madera. Las características anatómicas tanto macroscópicas como microscópicas y las propiedades físicas y mecánicas de la madera de *Cordia alliodora* se describen a continuación.

Descripción macroscópica. En ocasiones, la zona de transición entre la albura y el duramen no está bien definida. Carece de olor y sabor característicos, aunque la madera de árboles viejos es aromática, su brillo es alto y el veteado es pronunciado debido a la diferencia de tono entre madera temprana y madera tardía de cada anillo de crecimiento y también a las líneas de vaso (Pérez et al., 2014, p. 22).

Descripción microscópica. Porosidad anular con transición gradual y zonas de crecimiento delimitadas por una banda gruesa de ancho variable de fibras de pared gruesa de la madera tardía y una de parénquima inicial de 2 a 4 células de ancho e irregular en contorno, dirección y continuidad. Esta última banda es difícil de delimitar dado que siempre está asociada a grandes vasos pertenecientes a la madera temprana que presentan parénquima paratraqueal vasicéntrico abundante (Pérez et al., 2014, p. 23).

Propiedades físicas. González y Cruz (2021, p. 1) en su estudio realizado en Nicaragua determinaron que la madera de Laurel tiene un contenido de humedad fue de 43 % y la densidad básica de 0,65 g cm³.

Mecánicas. Según Universidad de Tolima, Ministerio de Ambiente, Vivienda y Desarrollo Territorial de Colombia y Organización Internacional de Maderas Tropicales (s,f.) las propiedades mecánicas de la madera de laurel son las siguientes (Tabla 1).

Tabla 1Propiedades mecánicas de la madera de Cordia alliodora.

Comprensión paralela	Esfuerzo de fibras al límite proporcional (kg/cm²)	175
Comprension paralela	Resistencia máxima (kg/cm²)	222
Comprensión perpendicular al grano al límite proporcional (kg/cm²)		41
	Esfuerzo de fibras al límite proporcional (kg/cm²)	350
Flexión estática	Módulo de ruptura (kg/cm²)	564
	Módulo de elasticidad (t/cm²)	72
Cizallamiento (kg/cm²)	70	

Nota. Elaborada en base a los datos publicados por la Universidad de Tolima, Ministerio de Ambiente, Vivienda y Desarrollo Territorial de Colombia y Organización Internacional de Maderas Tropicales (*s,f*.).

2.2.2. Aserrío de la madera

El aserrío se define como la transformación primaria de la madera, es decir consiste en dar a la madera rolliza (trozas) una escuadría determinada utilizando sierras manuales o mecánicas, en el menor tiempo y con el mínimo gasto de energía. También se define como aserrío al proceso mediante el cual la madera es transformada de trozas a tablones, tablas, vigas, crucetas, durmientes, polines, entre otros, mediante el uso de maquinaria, esquipo, fuente de energía, recursos humanos y económicos. La materia prima empleada en este proceso son árboles cortados y trozados, conocidos como madera rolliza, la finalidad del aserrío es producir madera aserrada destina a diversos usos como construcción, fabricación de muebles, puertas, entre otros. El aserrío de la madera debe realizarse bajo cinco principios fundamentales: obtener calidad de superficies y precisión de cortes, obtener eficiencia en la operación, limitar el desgaste de las herramientas, limitar el consumo de energía, limitar la pérdida de materia prima (Sulca, 2021, pp. 19-20).

La madera rolliza es aserrada en piezas con espesores, anchos y longitudes comerciales, es decir, según los requerimientos de los mercados. Anteriormente en el aserrío convencional no se tomaba en cuenta la calidad de las trozas y el modelo de corte para cada

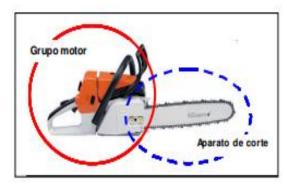
clase diamétrica y para cada especie, generando un bajo rendimiento de aserrío, gran cantidad de subproductos y residuos. Es así, que el aserrío optimizado se caracteriza por tener un sistema de corte bien estudiado con el propósito de aprovechar al máximo la troza (Almeida et al., 2014, p. 2). Por ende, el objetivo principal del aserrío de madera es sacarle el máximo provecho a la troza y obtener el mayor número de piezas comerciales de buena calidad (Bustamante, 2010, p. 45).

Así mismo, Sulca (2021, p. 21) afirma que, de no existir un proceso de aserrío adecuado y uso de tecnologías correctas, puede generar un alto porcentaje de pérdidas de materia prima, es por ello que es fundamental la correcta selección de la maquinaria y sus operadores. Respecto a los problemas que suelen surgir durante el proceso de aserrío, estos se definen como variaciones dimensionales en las piezas aserradas, siendo los principales defectos el sobredimensionado, la variabilidad en el espesor de las tablas y presencia de corteza.

En la industria nacional se puede evidenciar algunos problemas del aserrío, como la poca implementación de tecnologías nuevas, poca materia prima en algunas especies, escaza planificación y escaza información sobre el rendimiento de aserrío para especies de plantaciones forestales y agroforestales (Bustamante, 2010, p. 45).

2.2.3. Equipos para aserrío de la madera

Sierra Cinta. Guevara (2020, pp. 15-16) menciona textualmente "la sierra cinta está conformada por un fleje de acero que se monta entre las dos poleas o volantes perfectamente alineadas verticalmente entre sí, la polea interior o tractora es fija y está unida a través de una trasmisión por poleas a un motor, que le brinda el movimiento y la potencia. La polea superior o tensora cuenta con dos movimientos, uno vertical, para generar la tensión de la sierra de cinta y otro de cabeceo, para contrarrestar el empuje que ejerce la madera sobre la sierra de cinta, que tiende a sacarle de la polea. La sierra tiene dos pequeñas guías para evitar que la sierra pandee, la guía superior se puede subir y bajar, adecuándola a la altura de corte a realizar, mientras que la inferior es fija".


La sierra cinta es una de las herramientas más utilizadas en el aserrío de la madera en rollo, debido a que facilita realizar elevadas alturas de corte con precisión, por los pocos requerimientos de potencia y por escaso desperdicio que producen (Guevara, 2020, p. 16).

Sierra circular o de disco. En este tipo de equipo el elemento cortante es un disco dentado movido por un motor. Esta cierra está condicionada por su diámetro, debido a la anchura que el disco debe tener para asegurar la suficiente resistencia mecánica; para para disminuir las pérdidas o desperdicios, en ocasiones se opta por dos discos de mitad del diámetro superpuestos y que cortan respectivamente la parte inferior y superior de la misma troza (Gobierno Vasco, s.f, p. 1).

Motosierra. La motosierra es una herramienta que se utiliza para cortar vegetación, árboles, leña, entre otros, con poco esfuerzo y de forma rápida, debido a su gran potencia. Esta herramienta reemplaza a otras herramientas como hachas, teniendo mejor comodidad y productividad. Dicha herramienta cuenta con una sierra dentada en forma de cadena, llamada sierra cadena o generalmente cadena, la cual esta accionada por un motor donde se genera una chispa eléctrica que salta desde una bujía causando la explosión de la mezcla de gasolina con aceite dentro de una cámara denominada cilindro, dicha explosión acciona una pieza denominada pistón. El pistón, en conjunto con otras piezas, hace movimientos rectilíneos hacia arriba y abajo dentro del cilindro. Dicho movimiento vertical es transformado en movimiento rotatorio por una pieza llamada eje cigüeñal, que hace girar un piñón y, con ello, genera el movimiento de la sierra cadena. En la motosierra se distinguen dos áreas: el grupo motor y el aparato de corte, con la espada que sostiene y permite el desplazamiento de la cadena (Corporación Nacional Forestal-CONAF, 2011, p. 9).

Figura 1

Zonas de la motosierra

Fuente: CONAF, 2011.

2.2.4. Rendimiento del aserrío de la madera

Gonzales (2018, p. 9) indica que, el término rendimiento hace referencia a la relación entre el volumen de madera rolliza (trozas) y el volumen resultante en productos aserrados. El rendimiento se conoce también como coeficiente de aserrío o factor de recuperación de madera aserrada "FRM" y se considera como un indicador de la tasa de utilización en el proceso de aserrío. El coeficiente de aserrío va depender de los defectos de las trozas, de las características de las sierras, la forma y el diámetro de la troza. Por tal razón, agrega que es difícil establecer un factor objetivo sin haber realizado estudios solventes.

De acuerdo con Guevara (2020, pp. 22-23) el rendimiento de aserrío es afectado o influenciado por los siguientes factores:

Diámetro de las Trozas: Es uno de los factores que más influye en el aserrío, encontrándose que a un mayor diámetro hay un mayor rendimiento de las trozas en el aserrío, por ende, procesar trozas de diámetros pequeños implica bajos niveles de rendimiento y menor ganancia en los aserraderos.

Longitud, conicidad y diagrama de troceado: el rendimiento de las trozas en el proceso de aserrío se ve afectado por la longitud y la conicidad de las trozas, a medida que aumenten ambos parámetros se incrementan la diferencia entre los diámetros en ambos extremos de la troza. Por lo tanto, una de las formas de incrementar el rendimiento volumétrico es mediante la optimización del troceado, produciendo lógicamente madera aserrada de dimensiones requeridas.

Calidad de las trozas: Las dimensiones y el volumen de la madera aserrada bajo las prácticas corrientes de procesamiento tienen una relación directa con las diferentes clases de calidad de troza.

Tipo de sierra: El ancho de corte afecta el rendimiento de la madera aserrada ya que una vía de corte ancha produce más pérdidas de fibras de madera en forma de aserrín y la disminución de la eficiencia de la maquinaria.

Diagrama de corte: La aplicación de diagrama de corte teniendo en cuenta el diámetro, longitud, calidad y conicidad de las trozas; así como el tipo de sierra y otros factores es una variante que favorece el incremento en calidad y cantidad de la producción de madera aserrada.

Calidad de las trozas para el aserrío. La calidad de las trozas es un factor que influye en el aserrío. Se debe tener en cuenta que calidad de las trozas determina la calidad de la madera aserrada, además, es importante tener en cuenta que una mayor cantidad de defectos en la troza genera una reducción en el coeficiente de rendimiento de aserrío. Es por ello que el control de calidad de la materia prima es importante en la industria del aserrío (Guevara, 2020, p. 23).

Medición del rendimiento. Gonzales (2018, p. 9) indica que, la medición del rendimiento empieza con la determinación de la muestra, para lo cual el SERFOR establece que se debe realizar un pre muestreo, para tener una aproximación de la variabilidad del volumen de las trozas de la especie, a partir de un pre muestreo de 30 trozas por especie. Posteriormente la determinación del tamaño de la muestra de trozas a evaluar, se realizará considerando el coeficiente de variabilidad obtenido en el pre muestreo y un error de muestreo no mayor del 15 %. Al tenerse seleccionadas las trozas, se procede con su señalización utilizando pintura, con el fin de evitar confundirlas con otras trozas, y no perder de vista las tablas de la troza en estudio. Se realiza la cubicación de las trozas que van a ser aserradas, esto se puede hacer a través de la fórmula de Smalian o la de Huber ya que estas dos fórmulas calculan el volumen en bruto de una troza, sin depreciar las costaneras (cantos) que se obtienen al aserrarla u otros subproductos que se derivan de la industria. La madera rolliza previamente cubicada pasa al proceso de aserrío, posteriormente se cubica la madera aserrada y finalmente se calcula el rendimiento de aserrío aplicando la fórmula correspondiente.

Importancia del rendimiento del aserrío de la madera. El rendimiento de aserrío es muy importante ya que ayuda a determinar la eficiencia de la industria de transformación primaria, es decir, permite medir el grado de utilización de la materia prima que garantiza la comercialización del producto. Por otro lado, la determinación del rendimiento de la troza es importante para la comercialización de madera rolliza. El mismo autor indica que la evaluación del rendimiento de aserrío también es una forma de medir las deficiencias de las fases específicas del proceso de aserrío, permitiendo realizar mayores ajustes y monitoreos necesarios con el fin de alcanzar una mayor eficiencia en la transformación primaria de la madera. Determinar el rendimiento de aserrío con rapidez y con alta confiabilidad, facilita la toma de decisiones sobre el desempeño industrial, uso correcto de la materia prima, además que permite reducir costos y evitar pérdidas durante el proceso productivo. De la

misma manera, el rendimiento puede servir como parámetro de base para los manejadores de los aserraderos, para que evalúen con relativa transparencia si las operaciones de producción están siendo correctamente ejecutadas en la empresa (Sulca, 2021, p. 22-23).

2.3. Definición de términos básicos

Aserrío de la madera

Consiste en la transformación de una troza de forma cilíndrica a un producto con dimensiones específicas de ancho, largo y espesor, con el fin de ser utilizado en un proceso posterior, como lo es la fabricación de muebles, casas, entre otros (Ramírez, 2018, p. 14).

Sierra cinta

Máquina llamada también sierra de banda o sierra sinfín. La sierra cinta consiste en una banda de metal dentada altamente flexible que es cortada y soldada al equipo en el que va ser utilizada, corta diferentes tipos de madera (Ramos y Reyes, 2011, p. 15).

Rendimiento de aserrío

El termino rendimiento de aserrío se refiere a la relación entre el volumen de madera rolliza (trozas) y el volumen resultante en productos aserrados. Este término también es conocido como coeficiente de aserrío o factor de recuperación de madera aserrada "FRM" y constituye un indicador de la tasa de utilización en el proceso de aserrío (Gonzales, 2018, p. 9).

Madera rolliza

Madera en su estado natural con o sin corteza, ya sea entera denominada fuste o seccionada, denominada troza. Esta forma es comúnmente como se extrae la madera del bosque hasta las plantas de transformación primaria (Lombardi et al., 2008, p. 21).

Madera aserrada

Madera escuadrada por caras y cantos producto del aserrío con equipos mecánicos (sierra circular, de cinta u otras) o manuales (sierra hiladora) (Lombardi et al., 2008, p. 21).

Aserrín o viruta

El aserrín es el conjunto de partículas o polvillo producto del aserrío de la madera cuando; también contiene minúsculas partículas de madera producidas durante el proceso y manejo de la misma. Además del aserrín, en el proceso de aserrado se genera la viruta, que es un fragmento de material residual con forma de lámina curvada o espiral (Serret et al., 2016, p. 396).

Aserraderos

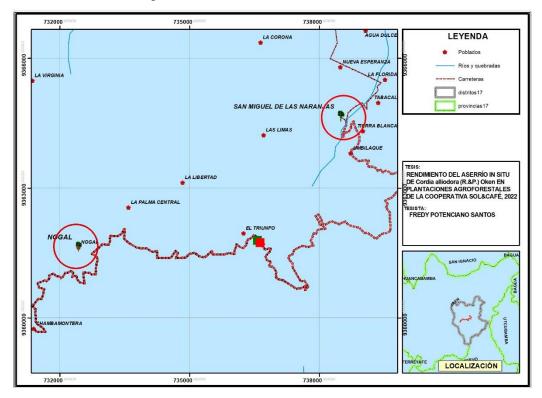
Instalaciones industriales o plantas de transformación donde mediante un proceso de transformación se convierte la madera en rollo (troza) a madera aserrada (INRENA, 2008, P. 21).

Aserradero Portátil

Aserradero ya sea de cinta, disco o de cadena, que puede transportarse, instalarse y operarse directamente en el bosque o plantación, es decir donde se produce la madera rolliza. Estos aserraderos generalmente pequeños, pueden generar madera aserrada de similar calidad a la obtenida en aserraderos permanentes completos (Junta del Acuerdo de Cartagena, 1989, p. 34).

CAPÍTULO III

MARCO METODOLÓGICO


3.1. Localización de la investigación

La investigación se llevó a cabo en parcelas agroforestales de socios de la cooperativa Sol&Café, en la provincia de Jaén. Estas parcelas fueron seleccionadas por el personal técnico de dicha cooperativa, y es en ellas donde se realizó la transformación in situ de la madera rolliza de *Cordia alliodora* (R. & P.) Oken utilizando la sierra cinta portátil.

Tabla 2Relación de socios donde se realizó la obtención de trozas

				Nambus	Coordenadas UTM		
N°	Distrito	Sector	Propietario	Nombre parcela	Altitud (ms.n.m.)	Este	Norte
01	Jaén	El Nogal	José Mercedes Pérez Vásquez	La Lima	2028	738318	9364022
02	Jaén	Las Naranjas	Juan Pablo Villegas Guevara	Las Limas	1280	731194	9357528

Figura 2Ubicación de las parcelas donde se realizó la obtención de las trozas

3.2. Tipo y diseño de la investigación

Es una investigación descriptiva correlacional, aplicada. Se buscó determinar el efecto en el rendimiento del aserrío in situ, el uso de la tecnología de aserrío con sierra cinta portátil, sin comparación de un blanco o testigo, solo con la comparación de fuentes secundarias oficiales.

3.2.1. Matriz de operacionalización de variables

Tabla 3 *Matriz de operacionalización de variables de la investigación*

Variables	Definición Conceptual	Dimensión	Indicadores	Instrumento
V.1 Tecnología de aserrío	Equipos, procesos y accesorios utilizados para el aserrío de la madera rolliza a madera aserrada. (Junta del Acuerdo de Cartagena, 1989)	Tipo de aserrío	Sierra cinta portátil	Formato de registro
V.2. Rendimiento de Aserrío	Rendimiento del producto forestal al estado natural, para el estudio madera		Coeficiente de aserrío (%)	Formato de registro

3.2.2. Unidad de análisis, población y muestra

Población. Lo constituyeron todas las trozas de árboles aprovechables de *Cordia alliodora* (R. & P.) Oken en las parcelas agroforestales de socios de la cooperativa Sol&Café, seleccionadas previamente por el equipo técnico de la cooperativa. El número de trozas de esta especie disponibles para aprovechamiento y aserrío que existen en las parcelas agroforestales en Jaén fueron determinadas por el inventario que se realizó y el censo comercial donde se estableció el número de árboles aprovechables, por lo que se considera como una población finita.

Muestra. Es el número de trozas que fueron procesadas para establecer el rendimiento de aserrío y su número se determinó utilizando la fórmula de muestreo para poblaciones finitas no proporcionales con resultado de una media que se muestra a continuación.

$$n = \frac{N * Z^{2} * CV^{2}}{(N-1) e^{2} + Z^{2} * CV^{2}}$$

En donde:

Z = nivel de confianza al 95 %, se considerará 1,98

CV = coeficiente de variabilidad, que se determinó en 35 %

N = número total de trozas disponibles para aserrar, fueron 87

E = error de estimación, se considerará 5 %

n = tamaño de la muestra expresada en número de trozas.

Luego de reemplazar los datos, se obtuvo una muestra recomendada de 60,10 trozas, por lo que se trabajó con 61 trozas.

Unidad de análisis. Lo constituyeron las trozas que fueron aserradas para determinar el rendimiento de aserrío

3.2.3. Fuentes, técnicas e instrumentos de recolección de datos

Fuentes. La información fue obtenida de fuentes primarias, de los datos generados durante la implementación de la investigación y consiste en información de cubicación de trozas, cubicación de madera aserrada, información secundaria como tiempos de aserrío y consumos energéticos y de personal. Se consultó fuentes secundarias para comparar los resultados con otras investigaciones sobre aserrío y con fuentes oficiales del SERFOR – Perú.

Técnicas. La técnica utilizada en el presente trabajo investigativo fue la observación directa con presencia del investigador. Las mediciones se realizaron durante el procesamiento de las trozas utilizando los instrumentos necesarios con la finalidad de obtener datos confiables.

Instrumentos. Se utilizaron formatos simples para registro de los datos obtenidos durante todo el proceso de investigación. Estos formatos se elaboraron en tablas de Excel y pueden ser impresos o digitales, acorde con la disponibilidad de equipos informáticos portátiles.

Procedimiento. Para la ejecución de la presente investigación se considera los siguientes pasos.

Primero. Se realizó un inventario tipo censo comercial de los árboles seleccionados para el aprovechamiento. Se consideró las recomendaciones de medición de volúmenes, así como la observación de conservación de los mejores árboles como semilleros futuros.

Segundo. Las trozas se seleccionaron por socio de la cooperativa, se consideran las trozas que tengan un diámetro superior a los 25 centímetros. Las trozas se codificaron de acuerdo al aprovechamiento realizado y las indicaciones del personal técnico de la cooperativa. Las trozas fueron cubicadas utilizando la fórmula de Huber.

$$v = s_m * l$$
 $v = \frac{\pi}{4} * d_m^2 * l$ $v = 0.7854 * d_m^2 * l$

Donde:

V = Volumen de la troza

 $S_{\rm m}$ = Área seccional a la mitad de la troza

l =Longitud de la troza

 $d_{\rm m}$ = Diámetro a la mitad de la troza

 π = Constante igual a 3,1416

Tercero. Se realizó el aserrío de las trozas seleccionadas, utilizando una sierra cinta portátil. La metodología de aserrío fue de tipo cilíndrico, realizando primero cortes tangenciales y finalmente radiales, hasta procesar toda la troza. Se codificaron todas las piezas de madera aserrada obtenida por cada troza para su evaluación posterior.

Cuarto. Se cubicó la madera aserrada obtenida de cada troza, luego se realizó los cálculos de rendimiento del aserrío o coeficiente de aserrío. La cubicación de madera aserrada se realizó utilizando la fórmula de Smalian para madera aserrada y unidades inglesas, expresando el resultado en pies tablares; pero, de igual manera se cubicó utilizando

medidas métricas, expresando los resultados en metros cúbicos. Para la cubicación se tomó en cuenta las dimensiones reales.

$$V(pt) = \frac{E'' x A'' x L'}{12}$$

Donde:

V= Volumen en pies tablares

E= Espesor de la madera en pulgadas

A= Ancho de la madera en pulgadas

L= Largo de la madera en pies

Quinto. Se realizó el cálculo del coeficiente de aserrío o rendimiento de aserrío por troza, luego se organizó los resultados en función al tamaño de la troza por diámetros de las mismas. Se obtuvo un promedio del rendimiento de aserrío para la especie utilizando sierra cinta portátil procesada in situ, y se comparó con el rendimiento oficial especificado por el SERFOR.

$$R~(\%~) = \frac{Volumen~de~madera~aserrada~(m^3)}{Volumen~de~madera~en~troza~(m^3)}~x~100$$

3.2.4. Validación y prueba de confiabilidad de los instrumentos

Los instrumentos fueron validados por los asesores que son especialistas en el área. Al ser instrumentos no estructurado, siendo simplemente formatos de recojo de información de campo, no necesita de mayor validación de especialista externos

3.2.5. Técnica del procesamiento y análisis de datos

Para el análisis de los datos recolectados se utilizó una hoja de cálculo en Microsoft Excel, donde se tabularon y sistematizaron los datos para el procesamiento estadístico descriptivo necesario para expresar los resultados obtenidos, donde se elaboraron tablas y figuras necesarias para la presentación del informe final.

3.2.6. Aspectos éticos considerados

En el desarrollo de la presente investigación se tomó en cuenta los principios éticos para la investigación de la UNESCO, los que consideran dignidad humana y derechos humanos, beneficio y efectos nocivos, autonomía y responsabilidad individual, consentimiento, personas carentes de la capacidad de dar su consentimiento, respeto a la vulnerabilidad humana y la integridad personal, privacidad y confidencialidad, igualdad, justicia y equidad, no discriminación y no estimación, respeto a la diversidad cultural y del pluralismo, solidaridad y cooperación, responsabilidad social y salud, aprovechamiento compartido de los beneficios, protección del medio ambiente, la biósfera y la biodiversidad que forman parte de ella.

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1. Resultados

Los resultados obtenidos y ordenados de acuerdo con los objetivos específicos planteados se presentan a continuación.

4.1.1. Cubicación y clasificación de las trozas de madera de Cordia alliodora (R. & P.) Oken

La clasificación de las trozas se realizó tomando en cuenta las recomendaciones mostradas en Guevara (2022), de acuerdo a los siguientes criterios:

- Trozas buenas: corresponden a las trozas que son rectas, de diámetros mayores a 0,30 m, sin curvaturas, grietas o deformaciones de inserción de raíz.
- Trozas regulares: corresponden a las trozas que son rectas, de diámetros entre 0,20 y 0,30 m, sin curvaturas, grietas y deformaciones.
- Trozas con curvaturas: son trozas que presentan curvatura en su largo, mucha conicidad, deformaciones de inserción de raíz, los diámetros son variables.
- Trozas con grietas: son trozas que presentan grietas internas o externas, en números variables, pueden ser rectas, con sin deformación de inserción de raíz, diámetros variables.

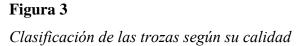
Tabla 4Cubicación de trozas de calidad buena

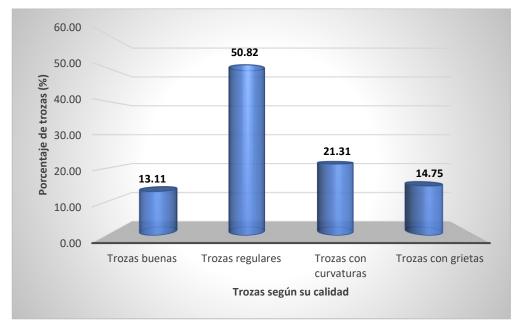
N°	Código	Diámetro mayor (m)	Diámetro menor (m)	Largo (m)	Volumen (m³)	Calidad
1	A19-1	0,34	0,32	2,50	0,214	buena
2	B14-1	0,40	0,35	2,50	0,276	buena
3	B14-2	0,40	0,35	2,50	0,276	buena
4	B27-1	0,38	0,32	2,50	0,241	buena
5	B27-2	0,33	0,30	2,50	0,195	buena
6	B69-4	0,47	0,42	2,20	0,342	buena
7	B69-4	0,43	0,30	2,20	0,230	buena
8	B74	0,37	0,30	2,20	0,194	buena
		Tota	1		1,97	

Tabla 5Cubicación de trozas de calidad regular

N°	Código	Diámetro mayor (m)	Diámetro menor (m)	Largo (m)	Volumen (m³)	Calidad
1	A12-1	0,27	0,26	2,50	0,138	regular
2	A12-2	0,31	0,25	2,50	0,154	regular
3	A12-3	0,27	0,26	2,50	0,138	regular
4	A13-1	0,29	0,26	2,50	0,148	regular
5	A13-2	0,25	0,23	2,50	0,113	regular
6	A13-3	0,24	0,21	2,50	0,099	regular
7	A15-1	0,30	0,29	2,50	0,171	regular
8	A15-2	0,29	0,25	2,50	0,143	regular
9	A15-3	0,29	0,28	2,50	0,159	regular
10	A19-2	0,31	0,30	2,50	0,183	regular
11	A19-3	0,29	0,25	2,50	0,143	regular
12	A19-4	0,25	0,24	2,50	0,118	regular
13	A3-1	0,28	0,25	2,50	0,138	regular
14	A3-3	0,24	0,20	2,50	0,095	regular
15	B24-1	0,29	0,28	2,50	0,159	regular
16	B24-2	0,28	0,27	2,50	0,148	regular
17	B24-3	0,26	0,23	2,50	0,118	regular
18	B24-4	0,24	0,23	2,50	0,108	regular
19	B24-5	0,25	0,23	2,50	0,113	regular
20	B27-3	0,30	0,29	2,50	0,171	regular
21	B54	0,30	0,29	2,20	0,150	regular
22	E27-1	0,29	0,28	2,20	0,140	regular
23	E27-2	0,27	0,24	2,20	0,112	regular
24	E28-2	0,27	0,26	2,20	0,121	regular
25	E-2	0,24	0,23	2,21	0,096	regular
26	E-27	0,28	0,25	2,23	0,123	regular
27	E-23	0,25	0,23	2,21	0,100	regular
28	E28-1	0,29	0,27	2,20	0,135	regular
29	E27-3	0,25	0,23	2,20	0,100	regular
30	A1	0,25	0,24	2,20	0,104	regular
31	A2	0,27	0,26	2,21	0,122	regular
		Tota	1		4,06	

Tabla 6Cubicación de trozas con presencia de curvatura


N°	Código	Diámetro mayor (m)	Diámetro menor (m)	Largo (m)	Volumen (m³)	Calidad
1	A3-2	0,23	0,22	2,50	0,099	curvatura
2	A3-4	0,21	0,16	2,50	0,067	curvatura
3	A6-1	0,22	0,21	2,50	0,091	curvatura
4	A6-2	0,21	0,20	2,50	0,083	curvatura
5	A6-3	0,21	0,18	2,50	0,075	curvatura
6	A6-4	0,21	0,20	2,50	0,083	curvatura
7	B14-5	0,24	0,22	1,50	0,062	curvatura
8	B14-6	0,20	0,18	1,70	0,048	curvatura
9	B14-7	0,17	0,16	2,10	0,045	curvatura
10	B24-6	0,22	0,20	2,50	0,087	curvatura
11	B27-5	0,26	0,22	2,50	0,113	curvatura
12	B27-6	0,22	0,21	2,50	0,091	curvatura
13	B27-7	0,19	0,15	2,50	0,057	curvatura
		Tota	l		0,9997	


Tabla 7Cubicación de trozas con presencia de grietas

N°	Código	Diámetro mayor (m)	Diámetro menor (m)	Largo (m)	Volumen (m³)	Calidad
1	A13-4	0,28	0,20	1,70	0,077	grietas
2	A15-4	0,28	0,23	1,90	0,097	grietas
3	B14-10	0,30	0,25	1,80	0,107	grietas
4	B14-3	0,26	0,25	1,90	0,097	grietas
5	B14-4	0,26	0,23	1,60	0,075	grietas
6	B14-8	0,20	0,19	1,20	0,036	grietas
7	B14-9	0,20	0,19	1,90	0,057	grietas
8	B27-4	0,28	0,26	1,40	0,080	grietas
9	E	0,33	0,32	1,60	0,133	grietas
		Tota	1		1,758	_

Tabla 8Resumen de clasificación de las trozas según calidad

N°	Calidad de troza	N° trozas	Porcentaje trozas (%)	Volumen (m³)
1	Trozas buenas	8,00	13,11	1,968
2	Trozas regulares	31,00	50,82	4,063
3	Trozas con curvaturas	13,00	21,31	1,000
4	Trozas con grietas	9,00	14,75	0,759
	Total	61,00	100,00	7,789

En las tablas 4 a 7, se observa la cubicación de las trozas procesadas agrupadas según calidad, al tratarse de trozas que provienen de plantaciones agroforestales, son de diámetros pequeños, encontrándose que las de mayor diámetro alcanzan valores de 0,40 m, siendo la mayor cantidad de trozas de diámetros comprendidos entre 0,20 y 0,30 m. el largo al cual se ha obtenido las trozas para su transformación son de 8 pies nominales, siendo menor en algunos contados casos, debido a la calidad de la troza.

En la tabla 8 y figura 3, se puede ver la clasificación de las trozas según los criterios de calidad que se mencionan en el presente ítem; de esta forma tenemos que la mitad de las trozas tienen una calidad regular, generado esta calidad generalmente por el diámetro de las mismas, que influyen significativamente en el rendimiento, estas trozas generalmente no presentan mayores defectos y permitieron su transformación de una manera simple. Solo un 13 % de trozas fueron consideradas como buenas, sin defectos, con diámetros mayores a 0,30 m, estas trozas fueron las que arrojaron mayores rendimientos al momento de su transformación, y permitieron obtener madera aserrada de recuperación. Del total de trozas, aproximadamente el 36 % presentan defectos que afectan su rendimiento y condicionan su aserrío, los defectos más recurrentes son las curvaturas de las trozas, las grietas en las testas y las deformaciones de la inserción de raíces.

4.1.2. Aserrío in situ utilizando sierra cinta portátil, y cubicación de madera aserrada obtenida

Las trozas se aserraron utilizando una cinta portátil horizontal de marca Wood Mizer modelo LT-15, el procesamiento se realizó en un ambiente temporal, por estar establecido así en el plan de trabajo. Las trozas se procesaron solo utilizando la sierra cinta principal, tanto de la madera comercial, como la madera de recuperación. No se contempló el uso de máquinas secundarias como canteadora o despuntadora. Los datos de la madera aserrada obtenido por troza se adjuntan en el Anexo 4.


En la siguiente tabla se muestra el volumen aserrado obtenido del procesamiento de las trozas que se mencionan en el ítem anterior.

Tabla 9Madera aserrada obtenida luego del aserrío con sierra cinta

N°	Tipo madera aserrada	N° trozas	Volumen (Pt)	Volumen (m3)	porcentaje (%)
1	Madera comercial	61	2025	4,776	91,11
2	Madera recuperación	20	198	0,466	8,89
	Total		2223	5,243	100,00

Figura 4

Clasificación de la madera aserrada obtenida luego del aserrío con sierra cinta

En la tabla 9 y figura 4, se puede visualizar que la madera aserrada producida luego del aserrío con sierra cinta portátil fue de 5,243 m³, la misma que se clasificó en madera

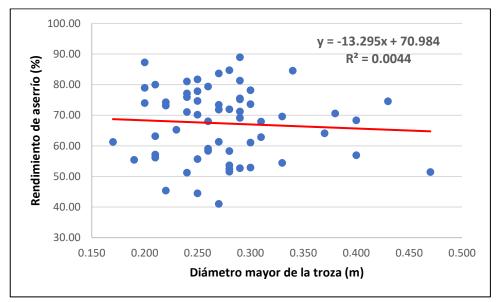
comercial que representó el 91 %, y madera de recuperación que representó el 9 % aproximadamente. El bajo volumen de madera de recuperación, se debe a que las trozas son de diámetros pequeños, inferiores a 0,40 m en general. Al no existir un volumen significativo de madera de recuperación, el rendimiento no puede alcanzar valores altos, muy a pesar que la tecnología de aserrío utilizado tiene especificaciones técnicas que pueden alcanzarlo. También se ve en la tabla, que solo 20 trozas permitieron obtener madera de recuperación, y esto está en función al diámetro de las mismas.

4.1.3. Cálculo del rendimiento porcentual del aserrío

Se calculó el rendimiento de aserrío de la madera de *Cordia alliodora*, tomando en cuenta los valores de la madera rolliza y aserrada que se procesó. Las medidas que se tomaron en cuenta para el cálculo de los volúmenes aserrados son reales, debido a que se trata de una determinación del rendimiento científico; no se consideró las medidas nominales de la madera aserrada.

 Tabla 10

 Rendimiento de aserrío de madera de Cordia alliodora usando sierra cinta


Fanasia	Rendimiento aserrío (%)		
Especie	Variable	Valor	
Cordia alliodora	Promedio	67,33	
	máximo	88,98	
	mínimo	41,05	
	D.S.	11,66	
	C.V.	17,32	

Como puede verse en la tabla 10, el rendimiento del aserrío de madera de *Cordia alliodora* usando sierra cinta portátil es de 67,33 %; también puede verse que la variabilidad de este valor tiene un coeficiente de 17,32 %, este valor indica que los datos tienen una dispersión baja con respecto a la media, para ser un trabajo de campo, el valor encontrado es aceptable para trabajo de campo o industrial, donde, por lo que el valor obtenido puede ser aceptado como válido; así mismo, se han procesado las trozas necesarias para cumplir con un muestreo probabilístico que garantice la validez del resultado.

Así mismo, puede verse que el volumen de residuos no aprovechables como madera aserrada, constituyen un 32,67 %, el cual está constituido principalmente por madera no

aserrada y aserrín o viruta. Este volumen aun es alto, por lo que se debe considerar un reaprovechamiento de estos residuos con otras líneas de producción para obtener un aprovechamiento integral total del recurso madera rolliza y al mismo tiempo disminuir la contaminación por residuos sólidos de la industria del aserrío.

Figura 5Relación entre el diámetro de la troza y el rendimiento de aserrío

Como puede verse en la figura 5, no existe relación entre el diámetro mayor de la troza y el rendimiento de aserrío, en la figura puede visualizarse la regresión lineal que existe en dicha correlación, obteniéndose la siguiente ecuación:

y = -13.295x + 70.984; $R^2 = 0.0044$

donde:

y = rendimiento de aserrío

x = diámetro mayor de la troza

 R^2 = coeficiente de determinación

Como puede visualizarse en la ecuación, la relación que existe es muy baja o nula, ya que el valor de R² es muy bajo para ser considerado.

Así mismo, se calculó el coeficiente de correlación de Pearson, obteniéndose el siguiente valor:

PEARSON = -0.066545453

Como puede verse el valor del coeficiente es demasiado bajo, e inclusive negativo, lo que nos indica que para el caso de las trozas de *Cordia alliodora* proveniente de plantaciones agroforestales, no existe una relación directa, ni indirecta entre el diámetro de la troza y el rendimiento del aserrío. Esto puede deberse al valor muy bajo del diámetro de las trozas de la especie estudiada.

4.2. Discusión

Luego de interpretar y analizar los resultados obtenidos de las diversas mediciones realizadas y anotadas en los instrumentos de recolección de datos, se da por cumplido el objetivo de la investigación que fue determinar el rendimiento de aserrío de la madera de *Cordia alliodora*, usando sierra de cinta. Hay que indicar que la metodología establecida para llevar a cabo la investigación fue la más apropiada porque permitió cumplir con lo planificado; en cuanto al muestreo, la determinación del número de trozas de manera probabilística, y no por conveniencia, permitió garantizar la objetividad y validez de la inferencia de los resultados a la población.

En cuanto al número de trozas, se trabajó con 61 trozas de la especie, con diámetros que van desde los 0,17 m, hasta los 0,47 m, el largo de las trozas fue generalmente de 7 u 8 pies nominales. Este valor de trozas es similar al empleado por Sanabria y Serrano (2016), quienes utilizaron 64 trozas para el estudio de rendimiento de aserrío. Sin embargo, otros investigadores utilizaron un número diferente, así tenemos que Quispe (2019), utilizó solamente 20 trozas para su estudio, de igual modo Paucar (2016), utilizó solo 45 trozas para su investigación, Osco (2020) por su parte solo utilizó 31 trozas para su investigación; del mismo modo, otros autores sin embargo, utilizaron un número mayor de trozas, para establecer el rendimiento de aserrío, así tenemos que Zapana (2018), utilizó un promedio de 120 trozas para su investigación; del mismo modo, Sulca (2021) utilizó 90 trozas para su investigación de rendimiento de aserrío. Como puede verse el número de trozas que se utilizó se encuentra dentro del promedio utilizado por otros investigadores, y al mismo tiempo este número se determinó utilizando la estadística inferencial. En la determinación del número de trozas, también se tomó en cuenta la parte económica para la ejecución de la tesis.

En cuanto a la cubicación y clasificación de las trozas por su calidad, se obtuvo que solo el 13 % de las trozas, presentan características óptimas para su aserrío, siendo más abundante las trozas con condiciones promedio para el aserrío; esto se debe sobre todo a que

la madera que se evaluó es aún muy joven, y el árbol aún no se ha desarrollado completamente; del mismo modo, el diámetro pequeño de las trozas, trae consigo muchas más dificultades y defectos para su procesamiento en aserrío.

Casi las 2/3 partes de las trozas presentan defectos que afectan al proceso de aserrío, generando entre otros problemas, una caída del rendimiento y una madera aserrada de menor calidad. Sanabria y Serrano (2016), establecieron que la madera proveniente de plantaciones forestales, que aún son jóvenes o muy jóvenes tienen inconvenientes al momento del aserrío, pues el investigador solo obtuvo un rendimiento del 28 %.

En cuanto a la madera aserrada, se obtuvo un alto valor de madera comercial, y un porcentaje demasiado bajo de madera de recuperación, esto se debe principalmente al diámetro pequeño de las trozas y también a los defectos de curvaturas y grietas que presentaban algunas trozas. Valores muy similares obtuvo Paucar (2016), quien en su investigación obtuvo una recuperación de solo el 7,57 % para una especie y 9,77 % para otra, el investigador, también atribuye a los diámetros pequeños de las especies estudiadas, el bajo porcentaje de recuperación. La legislación nacional regentada por el SERFOR, establece que el valor de recuperación puede tener un valor máximo de 25 % del volumen total de la madera aserrada; por lo tanto, en el caso de la madera de Laurel, se estaría desperdiciando buen porcentaje de este valor.

En cuanto al rendimiento de aserrío, se obtuvo un valor de 67,33 %, el mismo que es superior al que establece el SERFOR, el mismo que tiene un valor de 52 %. Este valor relativamente alto, se debe a la tecnología de aserrío utilizado, ya que al aserrar con sierra cinta, el espesor de corte es de solo 2 mm, esto genera un volumen bajo de aserrín o viruta, produciéndose menor porcentaje de desperdicios o residuos. El valor del rendimiento de aserrío se encuentra alineado con los valores obtenidos por otros investigadores como Quispe (2019), quien obtuvo un rendimiento de 68,29 % para una de las especies investigadas. Por su lado Leyva, Rojas y Segurado (2016), obtuvo un rendimiento de hasta 70 % al usar un aserrío móvil o portátil. De igual manera Osco (2020), obtuvo un rendimiento comercial de 61,55 % al aserrar madera usando sierra cinta. Sin embargo, la mayoría de investigadores obtuvieron un rendimiento menor al obtenido en este estudio; así tenemos que investigadores como Castillo (2021), quien obtuvo un rendimiento de 50,59 %; Sanabria y Serrano (2016), obtuvo solo 28 % de rendimiento de aserrío de la misma especie. Lo mismo

obtuvo Sulca (2021), quien alcanzó un rendimiento de 50,9 %. Zapana (2018), obtuvo rendimientos de aserrío entre 22 % y 33 %.

También se analizó la relación que pudiera existir entre el diámetro de las trozas y el rendimiento del aserrío; muy a pesar que la teoría establece que a mayor diámetro de la troza, el rendimiento del aserrío también aumenta; sin embargo, al aplicar el análisis de relación, se obtuvo un coeficiente de determinación de 0,0044, lo que indica que no existe ningún tipo de relación entre estas dos variables; lo mismo sucede con el coeficiente de correlación de Pearson, que generó un valor de -0,066; esto indica que no existe una correlación marcada entre estas dos variables.

Los resultados que se obtuvieron durante la investigación, pueden ser inferidos a la transformación de aserrío de trozas de *Cordia alliodora*, tomando en cuenta que se ha respetado y seguido la metodología propuesta, la misma que está amparada a normas técnicas, y recomendaciones de las instituciones forestales. Los resultados han sido procesados estadísticamente y elaborado en tablas y figuras que permitieron interpretar mejor los resultados, así como la estadística de correlación que permitió entender mejor la relación establecida entre las condiciones de la troza y el rendimiento de aserrío. Al mismo tiempo se ha comparado los resultados obtenidos con la de otros investigadores que se mencionan en los párrafos anteriores, corroborando que los resultados obtenidos se encuentran alineados con el de estos investigadores.

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

Se realizó la cubicación y clasificación de las trozas de madera de *Cordia alliodora*, encontrándose que, del total de 61 trozas, el 13,11 % de trozas son consideradas de buena calidad, 50,82 % tiene condiciones de calidad regular y el 36,06 % de las trozas presentan defectos de forma y estructura.

Luego del aserrío de la madera rolliza de *Cordia alliodora* usando sierra cinta, se obtuvo el 91,11 % de la madera aserrada comercial y solo el 8,89 % de la madera aserrada es de recuperación.

Se cuantificó el rendimiento del aserrío de la madera de *Cordia alliodora*, usando sierra cinta portátil, se encontró que el rendimiento promedio fue de 67,33 %, con un coeficiente de variabilidad de 17,32 %.

Se correlacionó el diámetro de la troza con el rendimiento del aserrío, determinándose que no existe relación entre estas dos variables, ya que se obtuvo un coeficiente de determinación de 0,0044 y un coeficiente de relación de Pearson de -0,066.

5.2. Recomendaciones

Se recomienda tomar en cuenta los resultados de la investigación para promover la transformación de la madera de *Cordia alliodora* con sierra cinta portátil, ya que se obtiene un rendimiento de aserrío superior al promedio establecido por el SERFOR.

Se recomienda aplicar un sistema silvicultural en las plantaciones agroforestales, para promover la producción de árboles con fustes rectos y con menores defectos, ya que estos afectan el rendimiento del aserrío y por lo tanto la rentabilidad de las plantaciones.

Se recomienda continuar con la investigación de transformación de la madera de *Cordia alliodora*, para establecer la calidad de la madera aserrada que se obtiene, así como otros procesos de transformación de la madera como preservación, secado de la madera.

CAPÍTULO VI

REFERENCIAS BIBLIOGRÁFICAS

- Almeida, M., Sacone, B., & Sousa, R. (2014). Análise de aproveitamento no desdobro demadeira serrada Pinus spp. *Faculdade de Ciências Sociais e Agrária de*.
- Barturén Vega, L. M. (2018). Sobrevivencia de Cordia alliodora, Pinus tecunumanii, Eucalyptus saligna, Cedrela odorata del proyecto «Microcuenca San Miguel de las Naranjas» Jaén. Universidad Nacional de Jaén, Facultad de Ingeniería Forestal y Ambiental. Jaén, Perú: Repositorio Institucional UNJ. http://repositorio.unj.edu.pe/bitstream/UNJ/115/1/Bartur%C3%A9n_VLM.pdf
- Bustamante, N. (2010). *Guía de Prácticas del Curso Aserrado de la Madera*. Universidad Nacional Agraría La Molina, Facultad de Ciencias Forestales, Departamento de Industrias Forestales, Sección de Aserrío y Trabajabilidad de la Madera, Lima.
- Castillo Sosa, K. V. (2021). Cuantificación del aprovechamiento de la madera de Cordia alliodora y Triplaris cumingiana en la fabricación de muebles en la parroquia Simón Plata Torres, Ecuador. Escuela Superior Politécnica de Chimborazo, Facultad de Recursos Naturales . Riobamba, Ecuador: DSpace ESPOCH. http://dspace.espoch.edu.ec/handle/123456789/15875
- Corporación Nacional Forestal (CONAF). (2011). *La Motosierra*. Gobierno de Chile. Chile: Gerencia de Manejo del Fuego, Departamento de Desarrollo y Normalización . https://www.conaf.cl/wp-content/files_mf/1363719048LAMOTOSIERRAmanual.pdf
- Fernandez Zarate, F. H. (2018). Propiedades oganolépticas, físicas y mecánicas de la madera de Cordia alliodora (R. y P.) Oken de parcelas agroforestales en Jaén, Cajamarca. Universidad Nacional de Jaén, Facultad de Ingeniería Forestal y Ambiental. Jaén, Perú: Repositorio Institucional UNJ. https://repositorio.unj.edu.pe/bitstream/UNJ/113/1/Fernandez_ZFH.pdf
- Gobierno Vasco. (s.f.). Manual técnico de formación para la carterización de madera de uso estructural. Tknika: https://normadera.tknika.eus/es/content/cr%C3%A9ditos.html

- Gonzales Loli, K. F. (2018). *Influencia de la calidad de trozas de Ceiba samauma (Huimba negra) en la conversión a madera aserrada en Pucallpa Ucayali*. Universidad Nacional de Ucayali, Facultad de Ciencias Forestales y Ambientales. Pucallpa, Perú: Repositorio Institucional UNU. http://repositorio.unu.edu.pe/bitstream/handle/UNU/3865/000003520T.pdf?sequen ce=1&isAllowed=y
- González-Luna, H. M., & Cruz-Castillo, J. B. (2021). Anatomía y propiedades físicas de dos especies forestales comerciales Cedro (Cedrela odorata L.) y Laurel (Cordia alliodora (Ruiz & Pav.) Oken) en Nicaragua. *La Calera*, 21(37). http://portal.amelica.org/ameli/jatsRepo/306/3062313002/html/
- Guevara Ramirez, J. S. (2020). *Rendimiento y calidad de madera de Eucalyptus saligna al aserrío con sierra cinta, Jaén, 2018*. Universidad Nacional de Cajamarca, Facultad de Ciencias Agrarias. Jaén, Perú: Repositorio Institucional UNC. http://190.116.36.86/bitstream/handle/20.500.14074/4401/T016_44239001_T.pdf?s equence=1&isAllowed=y
- INRENA. (2008). *Metodología para determinar el coeficiente de rendimiento de madera rolliza (troza) a madera aserrada*. Llima: INRENA. https://www.serfor.gob.pe/pdf/normatividad/2008/resojefa/RJ_159-2008-INRENA.pdf
- Junta del Acuerdo de Cartagena. (1989). Manual del Grupo Andino para aserrío y afilado de sierras cinta y sierras circulares (Vol. I). Lima: PRID Madera.
- Leyva Miguel, I., Rojas Romero, A., & Segurado Gil, Y. (2017). Determinación del rendimiento y calidad dimensional de la madera aserrada en aserríos en la provincia de Guantánamo. *Revista Cubana de Ciencias Forestales: CFORES*, *5*(3), 340-351. https://dialnet.unirioja.es/servlet/articulo?codigo=6222088
- Lombardi Indacochea, I., Barrena Arroyo, V., & Meléndez Cárdenas, M. (2008).

 Metodología para determinar el coeficiente de rendimiento de madera rolliza (troza)
 a madera aserrada. Lima: INRENA.
- Osco Mallqui, S. (2020). Rendimiento en aserrío de Brosimum alicastrum en el aserradero y servicios "La Torre" E.I.R.L., Pichanaky Junín. Universidad Nacional del Centro

- del Perú, Facultad de Ciencias Forestales y del Ambiente. Hunacayo, Perú: Repositorio Institucional UNCP. https://repositorio.uncp.edu.pe/bitstream/handle/20.500.12894/6990/T010_4725528 7_T.pdf?sequence=1
- Paucar Montero, T. (2016). Coeficiente de aserrío y productividad de tablillas para pisos de las especies Myroxylon balsamum Harms (Fabaceae) y Aspidosperma macrocarpon (Apocynaceae), Mazamari Zatipo. Universidad Nacional del Centro del Perú, Facultad de Ciencias Forestales y del Ambiente. Huancayo, Perú: Repositorio Institucional UNCP. https://repositorio.uncp.edu.pe/bitstream/handle/20.500.12894/3477/Paucar%20Montero.pdf?sequence=1
- Pineda-Herrera, E., Manzano-Méndez, F., Valdez-Hernández, J. I., & Beltrán-Rodríguez, L. A. (2018). Crecimiento diamétrico de Cordia alliodora (Ruiz & Pav.) Oken en un sistema agroforestal de Oaxaca, México. *Revista Forestal Mesoamericana Kurú,* 15(37), 25-33. https://www.scielo.sa.cr/pdf/kuru/v15n37/2215-2504-kuru-15-37-25.pdf
- Portella Flores, C. J. (2021). Rendimiento en aserrío de Couratari guianensis y Tabebuia serratifolia en la empresa forestal Otorongo S.A.C, Madre de Dios. Universidad Nacional Agraria La Molina, Facultad de Ciencias Forestales. Lima, Peú: Repositorio Institucional UNALM. http://repositorio.lamolina.edu.pe/bitstream/handle/20.500.12996/4950/portella-flores-camelia-jadira.pdf?sequence=1&isAllowed=y
- Quispe Mamani, W. B. (2019). Rendimiento en aserrío con motosierra, aplicando el sistema de corte "Flitchs", para dos especies forestales de la amazonia: Gabu (Virola flexuosa) yHuasicucho (Centrolobium ochroxylum) en las comunidades Nuevo Porvenir y Villa Esperanza d. *Revista de la Carrera de Ingeniería Agronómica*, 5(2), 1574-1585. http://apthapi.agro.umsa.bo/index.php/ATP/article/view/2/2
- Ramirez Correa, D. I. (2019). Rendimiento de aserrío de copaiba (Copaifera reticulata Ducke) Y Lupuna (Ceiba pentandra (L.) Gaertn) En Tahuamanu Madre de Dios.

 Universidad Nacional de Cajamarca, Facultad de Ciencias Agrarias. Jaén, Perú:

 Repositorio Institucional UNC.

- https://repositorio.unc.edu.pe/bitstream/handle/20.500.14074/3184/T016_76451049 _T.pdf?sequence=1&isAllowed=y
- Ramos Constante, J. A. (2011). *Diseño y construcción de un aserradero de sierra cinta*. Escuela Politécnica Nacional, Facultad de Ingeniería Mecánica, Quito, Ecuador.
- Rios Panduro, H. (2019). Costos de aserrpio y transporte de madera aserrada de Calycophyllum spruceanum (Benth) Hook f. ex Schumann en el bosque de Padre Marquez-Loreto. Universidad Nacional Agraria de la Selva, Facultad de Recursos Naturales Renovables. Tingo María, Perú: Repositorio Institucional UNAS. https://repositorio.unas.edu.pe/bitstream/handle/UNAS/1625/TS_HRP_2019.pdf?se quence=1&isAllowed=y
- Sanabria-Cascante, J. C., & Serrano-Montero, R. (2016). Rendimiento en aserrío y posibilidades de uso industrial de las trozas de primer raleo de una plantación de laurel (Cordia alliodora Ruiz & Pavon Oken). *Revista Tecnología En Marcha*, *12*(2), 97–42. https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/2743
- Serret-Guasch, N., Giralt-Ortega, G., & Quintero-Ríos, M. (2016). Caracterización de aserrín de diferentes maderas. *Tecnología Química*, *36*(3), 395 405. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-61852016000300012
- Sulca Gamboa, K. A. (2021). Estudio de calidad y rendimiento de la madera rolliza a aserrada para Pino tecunumani (Pinus tecunumanii Eguiluz & Perry) de la zona de Oxapampa Perú. Universidad Nacional Agraría La Molina, Facultad de Ciencias Forestales. Lima: Repositorio Institucional UNALM. http://repositorio.lamolina.edu.pe/bitstream/handle/20.500.12996/4831/sulcagamboa-kevin-alfredo.pdf?sequence=1&isAllowed=y
- Universidad del Tolima, Ministerio de Ambiente, Vivienda y Desarrollo Territorial,
 Organización Internacional de Maderas Tropicales. (s.f.). Laurel (Cordia alliodora
 (Ruiz y Pavon) Oken.).
 http://maderas.ut.edu.co/transformacion/pagina_tra_especie.php?especie=LAUREL
 #mecanicas
- Zapana Pilco, C. (2018). Rendimiento en aserrío de tres especies maderables para la obtención de tablillas y decking en Tahuamanu Madre de Dios. Universidad

Nacional del Centro del Perú, Facultad de Ciencias Forestales y del Ambiente. Huancayo, Perú: Repositorio Institucional UNCP. https://repositorio.uncp.edu.pe/bitstream/handle/20.500.12894/5425/T010_4808702 8_T.pdf?sequence=1&isAllowed=y

CAPÍTULO VII

ANEXO

Anexo 1. Matriz de consistencia

PROBLEMA	OBJETIVOS	HIPÓTESIS	VARIABLES	METODOLOGÍA
	General:			
	Determinar el rendimiento del aserrío in situ de <i>Cordia alliodora</i> (R. & P.) Oken en plantaciones agroforestales de la cooperativa Sol&Café, 2021			Investigación descriptiva
General:	Específico 01:	General:		correlacional, sin la comparación de un
Cuánto es el rendimiento de aserrío in situ de <i>Cordia alliodora</i> (R. & P.) Oken procedentes de plantaciones agroforestales de la cooperativa Sol&Café, 2021?	Cubicación y clasificación de las trozas de madera de Cordia alliodora (R. & P.) Oken seleccionadas para la evaluación Específico 02: Aserrío in situ utilizando cierra cinta portátil, y cubicación de madera	El rendimiento de aserró in situ de <i>Cordia alliodora</i> (R. & P.) Oken de plantaciones agroforestales de la cooperativa Sol&Café es superior al rendimiento oficial según el SERFOR de 52%	Independiente Tecnología de aserrío Dependiente Rendimiento de aserrío	blanco o testigo, aplicada. Las fuentes de la información son primarias, la técnica es la observación directa con presencia del investigador y los instrumentos son formatos de recolección de información de
	aserrada obtenida			campo.
	Específico 03:			
	Cuantificar el rendimiento porcentual del aserrío in situ de plantaciones agroforestales de la especie <i>Cordia alliodora</i> (R. & P.) Oken			

Anexo 2. Relación de árboles que constituyeron la población de Cordia alliodora

N°	Sector	Nombre de productor	Parcela	Código	Este	Norte	Altitud	DAP (m)	HC (m)	Volumen comercial (m3)	Estado sanitario
1	Las Naranjas	Juan Pablo Villegas Guevara	Las Limas	A03	738340	9364064	1283	0,29	13	0,54	Bueno
2	Las Naranjas	Juan Pablo Villegas Guevara	Las Limas	A06	738328	9364063	1281	0,29	10	0,43	Bueno
3	Las Naranjas	Juan Pablo Villegas Guevara	Las Limas	A12	738318	9364062	1281	0,35	9	0,57	Bueno
4	Las Naranjas	Juan Pablo Villegas Guevara	Las Limas	A13	738315	9364061	1281	0,32	12	0,64	Bueno
5	Las Naranjas	Juan Pablo Villegas Guevara	Las Limas	A15	738312	9364059	1281	0,37	10	0,79	Bueno
6	Las Naranjas	Juan Pablo Villegas Guevara	Las Limas	A19	738302	9364058	1281	0,36	12	0,81	Bueno
7	Las Naranjas	Juan Pablo Villegas Guevara	Las Limas	B4	738326	9364014	1264	0,31	5	0,24	Malo
8	Las Naranjas	Juan Pablo Villegas Guevara	Las Limas	B14	738319	9363996	1276	0,43	15	1,39	Bueno
9	Las Naranjas	Juan Pablo Villegas Guevara	Las Limas	B15	738325	9363991	1276	0,28	7	0,27	Bueno
10	Las Naranjas	Juan Pablo Villegas Guevara	Las Limas	B24	738308	9363935	1286	0,36	14	0,91	Bueno
11	Las Naranjas	Juan Pablo Villegas Guevara	Las Limas	B27	738304	9363936	1286	0,40	14	1,17	Bueno
12	El Nogal	Jose Mercedes Perez Vasquez	La Lima	E27	731198	9357508	2023	0,25	10	0,36	Bueno
13	El Nogal	Jose Mercedes Perez Vasquez	La Lima	E28	731202	9357508	2023	0,27	11	0,49	Bueno
14	El Nogal	Jose Mercedes Perez Vasquez	La Lima	E29	731195	9357510	2023	0,27	10	0,43	Bueno
15	El Nogal	Jose Mercedes Perez Vasquez	La Lima	E78	731169	9357572	2036	0,26	9	0,37	Bueno
16	El Nogal	Jose Mercedes Perez Vasquez	La Lima	E85	731164	9357584	2036	0,24	9	0,29	Bueno
17	El Nogal	Jose Mercedes Perez Vasquez	La Lima	E88	731166	9357597	2037	0,16	8,5	0,13	Bueno
18	El Nogal	Jose Mercedes Perez Vasquez	La Lima	E94	731161	9357580	2036	0,28	9	0,43	Bueno
19	El Nogal	Jose Mercedes Perez Vasquez	La Lima	C21	731333	9357299	1997	0,11	3	0,02	Bueno
20	El Nogal	Jose Mercedes Perez Vasquez	La Lima	G70	731159	9357591	2039	0,25	7	0,27	Bueno

Anexo 3. Volumen de madera rolliza de las trozas procesadas de Cordia alliodora

N°	Código	Diámetro mayor (m)	Diámetro menor (m)	Largo (m)	Volumen (m³)	Calidad
1	A12-1	0,27	0,26	2,50	0,138	Regular
2	A12-2	0,31	0,25	2,50	0,154	Regular
3	A12-3	0,27	0,26	2,50	0,138	Regular
4	A13-1	0,29	0,26	2,50	0,148	Regular
5	A13-2	0,25	0,23	2,50	0,113	Regular
6	A13-3	0,24	0,21	2,50	0,099	regular
7	A13-4	0,28	0,20	1,70	0,077	grietas
8	A15-1	0,30	0,29	2,50	0,171	regular
9	A15-2	0,29	0,25	2,50	0,143	regular
10	A15-3	0,29	0,28	2,50	0,159	regular
11	A15-4	0,28	0,23	1,90	0,097	grietas
12	A19-1	0,34	0,32	2,50	0,214	buena
13	A19-2	0,31	0,30	2,50	0,183	regular
14	A19-3	0,29	0,25	2,50	0,143	regular
15	A19-4	0,25	0,24	2,50	0,118	regular
16	A3-1	0,28	0,25	2,50	0,138	regular
17	A3-2	0,23	0,22	2,50	0,099	curvatura
18	A3-3	0,24	0,20	2,50	0,095	regular
19	A3-4	0,21	0,16	2,50	0,067	curvatura
20	A6-1	0,22	0,21	2,50	0,091	curvatura
21	A6-2	0,21	0,20	2,50	0,083	curvatura
22	A6-3	0,21	0,18	2,50	0,075	curvatura
23	A6-4	0,21	0,20	2,50	0,083	curvatura
24	B14-1	0,40	0,35	2,50	0,276	buena
25	B14-10	0,30	0,25	1,80	0,107	grietas
26	B14-2	0,40	0,35	2,50	0,276	buena
27	B14-3	0,26	0,25	1,90	0,097	grietas
28	B14-4	0,26	0,23	1,60	0,075	grietas
29	B14-5	0,24	0,22	1,50	0,062	curvatura
30	B14-6	0,20	0,18	1,70	0,048	curvatura
31	B14-7	0,17	0,16	2,10	0,045	curvatura
32	B14-8	0,20	0,19	1,20	0,036	grietas
33	B14-9	0,20	0,19	1,90	0,057	grietas
34	B24-1	0,29	0,28	2,50	0,159	regular
35	B24-2	0,28	0,27	2,50	0,148	regular
36	B24-3	0,26	0,23	2,50	0,118	regular
37	B24-4	0,24	0,23	2,50	0,108	regular
38	B24-5	0,25	0,23	2,50	0,113	regular
39	B24-6	0,22	0,20	2,50	0,087	curvatura
40	B27-1	0,38	0,32	2,50	0,241	buena

41	B27-2	0,33	0,30	2,50	0,195	buena
42	B27-3	0,30	0,29	2,50	0,171	regular
43	B27-4	0,28	0,26	1,40	0,080	grietas
44	B27-5	0,26	0,22	2,50	0,113	curvatura
45	B27-6	0,22	0,21	2,50	0,091	curvatura
46	B27-7	0,19	0,15	2,50	0,057	curvatura
47	B69-4	0,47	0,42	2,20	0,342	buena
48	B54	0,30	0,29	2,20	0,150	regular
49	B69-4	0,43	0,30	2,20	0,230	buena
50	B74	0,37	0,30	2,20	0,194	buena
51	E27-1	0,29	0,28	2,20	0,140	regular
52	E27-2	0,27	0,24	2,20	0,112	regular
53	E28-2	0,27	0,26	2,20	0,121	regular
54	E-2	0,24	0,23	2,21	0,096	regular
55	E-27	0,28	0,25	2,23	0,123	regular
56	E-23	0,25	0,23	2,21	0,100	regular
57	Е	0,33	0,32	1,60	0,133	grietas
58	E28-1	0,29	0,27	2,20	0,135	regular
59	E27-3	0,25	0,23	2,20	0,100	regular
60	A1	0,25	0,24	2,20	0,104	regular
61	A2	0,27	0,26	2,21	0,122	regular

,

Anexo 4. Volumen de madera aserrada obtenida por troza procesada de Cordia alliodora

N° Código			Dimensiones	V.1	Volumen	
N°	(Troza)	Ancho (")	Espesor ('')	Volumen (Pt)	(m^3)	
1	B27-6	6,50	6,50	Largo (') 8,00	28,17	0,0664
2	B27-7	5,00	4,00	8,00	13,33	0,0314
3	B24-5	8,00	4,00	8,00	21,33	0,0503
4	B27-5	7,00	6,00	8,00	28,00	0,0660
5	B24-4	7,00	7,00	8,00	32,67	0,0770
6	B24-6	5,00	5,00	8,00	16,67	0,0393
7	B27-4	8,50	5,50	4,50	17,53	0,0413
8	B24-3	8,00	6,50	8,00	34,67	0,0818
	B24-3	6,50	0,50	8,00	2,17	0,0051
	B24-3	3,00	0,75	8,00	1,50	0,0035
	B24-3	4,00	0,50	8,00	1,33	0,0031
9	B24-1	11,00	8,00	7,50	55,00	0,1297
10	B27-3	10,00	8,00	8,00	53,33	0,1258
11	B24-2	8,00	10,00	8,00	53,33	0,1258
12	B27-2	11,50	7,50	8,00	57,50	0,1356
13	B27-1	12,00	9,00	8,00	72,00	0,1698
14	B14-6	6,00	5,50	5,50	15,13	0,0357
15	B14-5	6,50	5,00	5,00	13,54	0,0319
16	B14-7	5,00	4,00	7,00	11,67	0,0275
17	B14-8	6,00	6,00	4,00	12,00	0,0283
18	B14-4	5,50	7,50	5,50	18,91	0,0446
19	B14-9	7,00	6,00	6,00	21,00	0,0495
20	B14-3	8,00	7,00	6,00	28,00	0,0660
21	B14-10	8,00	6,00	6,00	24,00	0,0566
22	B14-2	12,00	10,00	8,00	80,00	0,1887
23	B14-1	10,00	10,00	8,00	66,67	0,1572
24	A3-3	7,00	7,00	8,00	32,67	0,0770
25	A3-4	6,00	4,00	8,00	16,00	0,0377
26	A3-2	7,50	5,50	8,00	27,50	0,0649
27	A12-2	9,50	7,00	8,00	44,33	0,1046
28	A12-1	9,00	7,00	8,00	42,00	0,0991
29	A12-3	6,00	6,00	8,00	24,00	0,0566
30	A15-2	9,00	9,00	8,00	54,00	0,1274
31	A15-3	8,50	8,50	8,00	48,17	0,1136
32	A15-4	8,00	6,00	6,00	24,00	0,0566
33	A19-1	11,00	9,00	8,00	66,00	0,1557
	A19-1	6,00	0,75	8,00	3,00	0,0071
	A19-1	10,00	0,50	8,00	3,33	0,0079
	A19-1	6,00	0,50	8,00	2,00	0,0047

	A19-1	7,00	0,50	8,00	2,33	0,0055
34	A19-2	10,50	6,00	8,00	42,00	0,0991
	A19-2	4,00	0,50	8,00	1,33	0,0031
	A19-2	6,00	0,50	8,00	2,00	0,0047
	A19-2	7,00	0,50	8,00	2,33	0,0055
	A19-2	3,00	0,50	8,00	1,00	0,0024
35	A19-3	8,00	6,00	8,00	32,00	0,0755
36	A19-4	8,00	7,00	8,00	37,33	0,0881
37	A15-1	8,00	9,00	8,00	48,00	0,1132
	A15-1	3,00	0,50	8,00	1,00	0,0024
	A15-1	5,00	1,00	8,00	3,33	0,0079
	A15-1	5,00	0,50	8,00	1,67	0,0039
	A15-1	8,00	0,50	8,00	2,67	0,0063
38	A13-1	8,00	7,00	8,00	37,33	0,0881
	A13-1	5,00	1,00	7,00	2,92	0,0069
	A13-1	3,00	0,50	8,00	1,00	0,0024
	A13-1	3,00	0,50	5,00	0,63	0,0015
	A13-1	4,00	1,00	5,00	1,67	0,0039
39	A13-2	7,00	8,00	8,00	37,33	0,0881
40	A13-3	8,00	6,00	8,00	32,00	0,0755
41	A13-4	7,00	6,00	5,00	17,50	0,0413
42	A6-2	7,00	6,00	8,00	28,00	0,0660
43	A6-3	6,00	5,00	8,00	20,00	0,0472
44	A6-4	6,00	5,00	8,00	20,00	0,0472
45	A3-1	8,00	7,00	8,00	37,33	0,0881
	A3-1	3,00	0,50	8,00	1,00	0,0024
	A3-1	3,00	0,50	6,00	0,75	0,0018
	A3-1	3,00	0,50	8,00	1,00	0,0024
	A3-1	3,00	1,00	8,00	2,00	0,0047
46	A6-1	7,00	7,00	7,00	28,58	0,0674
47	B69-4	8,00	8,00	7,00	37,33	0,0881
	B69-4	8,00	3,00	7,00	14,00	0,0330
	B69-4	8,00	1,00	7,00	4,67	0,0110
	B69-4	8,00	1,00	7,00	4,67	0,0110
	B69-4	8,00	1,00	7,00	4,67	0,0110
	B69-4	8,00	1,00	7,00	4,67	0,0110
	B69-4	8,00	1,00	7,00	4,67	0,0110
48	B54	7,30	6,80	7,08	29,29	0,0691
	B54	7,30	1,00	5,00	3,04	0,0072
	B54	7,30	1,00	4,00	2,43	0,0057
	B54	7,30	1,00	1,90	1,16	0,0027
	B54	7,30	1,00	5,00	3,04	0,0072
49	B69-4	15,00	8,00	7,00	70,00	0,1651
	B69-4	5,50	1,00	4,33	1,98	0,0047

		1	T	1	ı	,
	B69-4	3,10	1,00	3,15	0,81	0,0019
50	B74	7,10	7,80	9,00	41,54	0,0980
	B74	7,10	1,00	1,90	1,12	0,0027
	B74	7,10	1,00	5,90	3,49	0,0082
	B74	7,10	1,00	5,10	3,02	0,0071
	B74	7,20	1,00	5,90	3,54	0,0083
51	E27-1	7,21	7,50	8,66	39,02	0,0920
	E27-1	7,21	1,00	6,29	3,78	0,0089
	E27-1	7,21	1,00	3,54	2,13	0,0050
52	E27-2	7,21	7,08	8,00	34,03	0,0803
	E27-2	7,21	1,57	1,00	0,94	0,0022
53	E28-2	7,21	7,87	6,00	28,37	0,0669
	E28-2	7,21	3,54	1,00	2,13	0,0050
	E28-2	7,21	1,77	1,00	1,06	0,0025
54	E-2	7,36	7,00	6,00	25,76	0,0608
	E-2	7,36	1,00	5,00	3,07	0,0072
	E-2	7,36	1,00	4,12	2,53	0,0060
55	E-27	7,43	7,00	6,32	27,39	0,0646
56	E-23	7,36	6,90	5,00	21,16	0,0499
	E-23	7,36	1,00	4,00	2,45	0,0058
57	Е	5,28	3,00	9,12	12,04	0,0284
0,	E	2,28	1,50	5,00	1,43	0,0034
	Е	5,37	2,00	8,00	7,16	0,0169
	Е	5,28	2,00	8,00	7,04	0,0166
	Е	3,36	1,50	7,12	2,99	0,0071
58	E28-1	7,22	6,50	7,68	2,19	0,0052
	E28-1	5,68	1,00	4,63	30,04	0,0708
	E28-1	7,22	1,00	6,30	3,79	0,0089
	E28-1	7,22	1,00	3,54	2,13	0,0050
	E28-1	7,22	1,00	5,51	3,32	0,0078
	E28-1	5,25	1,00	3,94	1,72	0,0041
59	E27-3	7,22	5,91	5,91	21,02	0,0496
	E27-3	7,22	1,00	7,09	4,27	0,0101
	E27-3	7,19	1,00	4,72	2,83	0,0067
	E27-3	7,22	1,00	5,91	3,56	0,0084
	E27-3	7,22	1,00	4,72	2,84	0,0067
60	A1	7,00	5,00	7,22	21,06	0,0497
	A1 A1	2,36 6,69	1,00 1,00	7,22 7,22	1,42 4,03	0,0033 0,0095
	A1	2,53	1,00	7,22	1,52	0,0036
	A1	4,72	1,00	7,22	2,84	0,0036
61	A2	7,25	6,80	7,40	30,40	0,0717
	A2	7,25	1,00	5,51	3,33	0,0079
	A2 A2	7,25 7,25	1,00	6,30 4,72	3,81 2,85	0,0090
	A2	7,25	1,00	4,72	2,85	0,0067 0,0067

Anexo 5. Rendimiento obtenido por troza usando sierra cinta para el aserrío de *Cordia alliodora*

N°	Código troza	diámetro mayor (m)	Volumen rollizo (m³)	Volumen aserrado (m³)	rendimiento aserrío (%)	Volumen residuos (m³)
1	A12-1	0,270	0,138	0,099	71,84	0,039
2	A12-2	0,310	0,154	0,105	67,92	0,049
3	A12-3	0,270	0,138	0,057	41,05	0,081
4	A13-1	0,290	0,148	0,103	69,16	0,046
5	A13-2	0,250	0,113	0,088	77,85	0,025
6	A13-3	0,240	0,099	0,075	75,93	0,024
7	A13-4	0,280	0,077	0,041	53,67	0,036
8	A15-1	0,300	0,171	0,134	78,21	0,037
9	A15-2	0,290	0,143	0,127	88,98	0,016
10	A15-3	0,290	0,159	0,114	71,23	0,046
11	A15-4	0,280	0,097	0,057	58,33	0,040
12	A19-1	0,340	0,214	0,181	84,56	0,033
13	A19-2	0,310	0,183	0,115	62,84	0,068
14	A19-3	0,290	0,143	0,075	52,73	0,068
15	A19-4	0,250	0,118	0,088	74,71	0,030
16	A3-1	0,280	0,138	0,099	71,98	0,039
17	A3-2	0,230	0,099	0,065	65,25	0,035
18	A3-3	0,240	0,095	0,077	81,07	0,018
19	A3-4	0,210	0,067	0,038	56,15	0,029
20	A6-1	0,220	0,091	0,067	74,27	0,023
21	A6-2	0,210	0,083	0,066	80,03	0,016
22	A6-3	0,210	0,075	0,047	63,18	0,027
23	A6-4	0,210	0,083	0,047	57,16	0,035
24	B14-1	0,400	0,276	0,157	56,94	0,119
25	B14-10	0,300	0,107	0,057	52,94	0,050
26	B14-2	0,400	0,276	0,189	68,33	0,087
27	B14-3	0,260	0,097	0,066	68,06	0,031
28	B14-4	0,260	0,075	0,045	59,11	0,031
29	B14-5	0,240	0,062	0,032	51,25	0,030
30	B14-6	0,200	0,048	0,036	74,01	0,013
31	B14-7	0,170	0,045	0,028	61,28	0,017
32	B14-8	0,200	0,036	0,028	78,97	0,008
33	B14-9	0,200	0,057	0,050	87,29	0,007
34	B24-1	0,290	0,159	0,130	81,33	0,030
35	B24-2	0,280	0,148	0,126	84,71	0,023
36	B24-3	0,260	0,118	0,094	79,38	0,024
37	B24-4	0,240	0,108	0,077	71,05	0,031
38	B24-5	0,250	0,113	0,050	44,49	0,063
39	B24-6	0,220	0,087	0.039	45,40	0,047

40	B27-1	0,380	0,241	0,170	70,60	0,071
41	B27-2	0,330	0,195	0,136	69,61	0,059
42	B27-3	0,300	0,171	0,126	73,61	0,045
43	B27-4	0,280	0,080	0,041	51,58	0,039
44	B27-5	0,260	0,113	0,066	58,39	0,047
45	B27-6	0,220	0,091	0,066	73,19	0,024
46	B27-7	0,190	0,057	0,031	55,42	0,025
47	B69-4	0,470	0,342	0,176	51,47	0,166
48	B54	0,300	0,150	0,092	61,11	0,058
49	B69-4	0,430	0,230	0.172	74,59	0,059
50	B74	0,370	0,194	0,124	64,11	0,070
51	E27-1	0,290	0,140	0,106	75,50	0,034
52	E27-2	0,270	0,112	0,082	73,42	0,030
53	E28-2	0,270	0,121	0,074	61,35	0,047
54	E-2	0,240	0,096	0,074	77,14	0,022
55	E-27	0,280	0,123	0,065	52,53	0,058
56	E-23	0,250	0,100	0,056	55,70	0,044
57	E	0,330	0,133	0,072	54,47	0,060
58	E28-1	0,290	0,135	0,102	75,19	0,034
59	E27-3	0,250	0,100	0,081	81,77	0,018
60	A1	0,250	0,104	0,073	70,19	0,031
61	A2	0,270	0,122	0,102	83,67	0,020

Anexo 6. Certificado de identificación de la especie

LEIWER FLORES FLORES ESPECIALISTA EN DENDROLOGÍA C.I.P. N° 56894 Cel. 918217105 Email: Iflores@unc.edu.pe

LEIWER FLORES FLORES, CON REGISTRO C.I.P. Nº 56894 - ESPECIALISTA EN DENDROLOGÍA.

CERTIFICA:

La identificación de la muestra de una planta con fines de investigación de tesis, proveniente de plantaciones agroforestales de la Cooperativa Sol&Café en el distrito y provincia de Jaén, solicitada por el **Bach. Fredy Potenciano Santos**, egresado de la Escuela de Ingeniería Forestal de la Universidad Nacional de Cajamarca. La muestra fue estudiada, identificada y ordenada para grupos taxonómicos de Gimnospermae y Angiospermae, de acuerdo al Sistema de Clasificación APG IV (2016), como se presenta en la tabla a continuación:

Categorías -Clados	Sistema APG IV - 2016			
División	Angiospermae L.			
Clase	Equiseptosida C. Agardh			
Subclase	Magnoliidae Novák ex Takht.			
Superorden	Asteranae Takht.			
Orden	Lamiales Bromhead			
Familia	Cordiaceae R. Br. ex Dumort.			
Género	Cordia L.			
Especie	Cordia alliodora (Ruiz & Pav.) Oken			

Jaén, 11 octubre del 2023.

Ing. M. Cs. Leiwer Flores Flores Especialista en Dendrología

C.I.P. N° 56894

Anexo 7. Panel fotográfico de la investigación

Foto 1, 2. Obtención de trozas de Cordia alliodora de parcelas agroforestales y traslado al aserradero

Foto 3. Aserradero portátil para aserrío de trozas, mantenimiento rutinario

Foto 4. Aserrío de trozas de Cordia alliodora en aserradero portátil

Foto 5. Cubicación de madera aserrada de Cordia alliodora

Foto 6. Apilado y secado de madera aserrada.