UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Civil

"PROPUESTA DE CIMENTACION EN SUELOS ARCILLOSOS EXPANSIVOS PARA VIVIENDAS UNIFAMILIARES EN LA EXPANSION URBANA DEL ANEXO LUCMACUCHO ALTO – SECTOR LUCMACUCHO, REGIÓN DE CAJAMARCA"

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTOR:

BACH. CATALINO, CARRASCO INFANTE

ASESOR:

DR. ING. HERMES ROBERTO, MOSQUEIRA RAMÍREZ

CAJAMARCA – PERÚ 2024

CONSTANCIA DE INFORME DE ORIGINALIDAD

- FACULTAD DE INGENIERÍA -

1.	Investigador: Catalino Carrasco Infante DNI: 47036340 Escuela Profesional: Ingeniería Civil	
2.	Asesor: : Dr. Hermes Roberto Mosqueira Ramire Facultad: Ingeniería	z
3.	Grado académico o título profesional	
	☐Bachiller	□Segunda especialidad
	□Maestro □Doctor	
4.	Tipo de Investigación:	
		☐ Trabajo de suficiencia profesional
	☐ Trabajo académico	
5.6.		ESTA DE CIMENTACION EN SUELOS ARCILLOSOS ARES EN LA EXPANSION URBANA DEL ANEXO O, REGIÓN DE CAJAMARCA"
7.	Software antiplagio: TURNITIN	☐ URKUND (OURIGINAL) (*)
8. 9. 10.	Porcentaje de Informe de Similitud: 16 % Código Documento: oid:3117:387726969 Resultado de la Evaluación de Similitud: 16	
	■ APROBADO □ PARA LEVANTAMI	ENTO DE OBSERVACIONES O DESAPROBADO
	Fecha	Emisión: 04-10-2024
	FIRMA DEL ASESOR	UNIVERSIDAD NACIONAL DE CAJAINARCA FACULTAD DE INGENITATA UNIDAD DE INVESTIGAÇÃO Dra. Yvonne Kathedine Fernández bán UNIDAD DE INVESTIGACIÓN FI
Nomb	res y Apellidos: Hermes Roberto Mosqueira Ramii	

^{*} En caso se realizó la evaluación hasta setiembre de 2023

AGRADECIMIENTO

A DIOS por darme sabiduría, conocimientos y guiarme por el camino correcto para lograr mi sueño de ser Ingeniero Civil.

Al DR. ING. HERMES ROBERTO MOSQUEIRA RAMÍREZ por su apoyo incondicional, brindándome sugerencias y opiniones durante todo el proceso de la investigación.

DEDICATORIA

A mis padres YSIDORO CARRASCO SANCHEZ Y MARIA FABIOLA INFANTE VALDEZ, por creer en mi sueño de ser Ingeniero Civil y brindarme su apoyo incondicional durante mi formación profesional.

A mis hermanos, FELIPE, MANUEL, RONAL, ELODIA, y WILSON que constantemente me han apoyado para lograr mis objetivos y metas.

CONTENIDO

AGRADECIMIENTO	i
DEDICATORIA	ii
CONTENIDO	iii
ÍNDICE DE TABLAS	vi
ÍNDICE DE FIGURA	ix
ABSTRACT	
CAPITULO I. INTRODUCCION	
1.1 PLANTEAMIENTO DEL PROBLEMA	
1.2 FORMULACIÓN DEL PROBLEMA	
1.3 HIPÓTESIS	
1.4 JUSTIFICACIÓN DE LA INVESTIGACIÓN	
1.5 ALCANCES O DELIMITACIÓN DE LA INVESTIGACIÓN	
1.6 LIMITACIONES	
1.7 OBJETIVOS	
1.7.1 Objetivo general:	3
1.7.2 Objetivos específicos:	3
1.8 DESCRIPCIÓN DE CONTENIDOS	3
CAPITULO II. MARCO TEORICO	5
2.1 ANTECEDENTES TEÓRICOS	5
2.1.1 Antecedentes internacionales	5
2.1.2 Antecedentes Nacionales	5
2.1.3 Antecedentes Locales	6
2.2 BASES TEÓRICAS	6
2.2.1 El suelo	6
2.2.2 Tipos de suelos	7
2.2.3 Granulometría del suelo	10
2.2.4 Límite de consistencia del suelo	12
2.2.5 Clasificación de suelos	14
2.2.6 Capacidad portante del suelo	16
2.2.7 Suelos expansivos	

	2.2.8	Cimentaciones	21
	2.2.9	Coeficiente de balasto	24
2	3	DEFINICIÓN DE TÉRMINOS BÁSICOS	25
	2.3.1	Expansión urbana	25
	2.3.2	Viviendas unifamiliares	25
	2.3.3	Cimentación	25
	2.3.4	Suelos arcillosos expansivos	25
	2.3.5	Platea de cimentación	26
	2.3.6	Zapatas	26
	2.3.7	Esfuerzo actuante de la cimentación	26
	2.3.8	Presión admisible del suelo	26
CA	PITUI	O III. MATERIALES Y MÉTODOS	27
3	.1	UBICACIÓN GEOGRÁFICA	27
3	.2	ÉPOCA DE LA INVESTIGACIÓN	27
3	.3	METODOLOGÍA	27
	3.3.1	Diseño, Enfoque, tipo, nivel, y Método de Investigación	27
3	.4	POBLACIÓN DE ESTUDIO	28
3	.5	MUESTRA	28
3	.6	UNIDAD DE ANÁLISIS	29
3	.7	TÉCNICAS E INSTRUMENTOS PARA LA RECOLECCIÓN DE DATOS	29
	3.7.1	Técnicas de recolección de Datos	29
	3.7.2	Equipos y materiales utilizados.	29
	3.7.3	Procesamiento de datos	29
3	.8	PROCEDIMIENTO	30
	3.8.1	Excavación de calicatas	30
	3.8.2	Estudio de mecánica de suelos	30
	3.8.3	Diseño de la cimentación	33
3	.9	PRESENTACIÓN DE RESULTADOS	81
	3.9.1	Estudio de mecánica de suelos	81
	3.9.2	Diseño de la cimentación	83
CA	PITUI	O IV. ANÁLISIS Y DISCUSIÓN DE RESULTADOS	91
$C \lambda$	DITIII	O V CONCLUSIONES Y RECOMENDACIONES	93

6.1	CONCLUSIONES	93
6.2	RECOMENDACIONES	93
REFER	ENCIAS BIBLIOGRÁFICAS	94
APÉND	DICE	97
ANEXO	OS	137

ÍNDICE DE TABLAS

Tabla 1	Tamanos estándar de tamices	10
Tabla 2	Símbolos para identificar un suelo mediante SUCS	15
Tabla 3	Ubicación de las 3 calicatas	28
Tabla 4	Número de puntos de investigación	28
Tabla 5	Espesores de losa aligerada armado en una dirección	35
Tabla 6	Pesos unitarios de los materiales	36
Tabla 7	Peso del aligerado en una dirección de concreto armado	36
Tabla 8	Características del concreto	37
Tabla 9	Características del acero de refuerzo	38
Tabla 10	Valor de las cargas que actúan en la edificación	41
Tabla 11	Factores de zona "Z"	45
Tabla 12	Factor de suelo "S"	46
Tabla 13	Periodos de vibración "T _P " y "T _L "	46
Tabla 14	Categoría de las edificaciones y factor (U)	48
Tabla 15	Coeficientes básicos de acuerdo con el sistema estructural	49
Tabla 16	Categoría y regularidad de las edificaciones	50
Tabla 17	Parámetros para el análisis sísmico estático	51
Tabla 18	Parámetros para el análisis sísmico estático	58
Tabla 19	Límites para la distorsión del entrepiso	60
Tabla 20	Fuerza cortante dinámica y estática	65
Tabla 21	Características del concreto	69
Tabla 22	Características del acero de refuerzo	69
Tabla 23	Descripción del acero de refuerzo en el programa Safe	70
Tabla 24	Propiedades del suelo de cimentación	70
Tabla 25	Contenido de humedad de las 3 muestras de suelo	81

Tabla 26	Peso específico de las 3 muestras de suelo	82
Tabla 27	Análisis granulométrico de las 3 muestras de suelo	82
Tabla 28	Límites de consistencia de las 3 muestras de suelo	82
Tabla 29	Nombre del grupo mediante SUCS de las 3 muestras de suelo	82
Tabla 30	Capacidad portante de las 3 muestras de suelo	83
Tabla 31	Porcentaje de expansión de las 3 muestras de suelo	83
Tabla 32	Espesor de losa aligerada en una dirección	83
Tabla 33	Dimensiones de las vigas principales y secundarias	83
Tabla 34	Dimensiones de las columnas	84
Tabla 35	Dimensiones de las zapatas	84
Tabla 36	Valor de la carga muerta de la vivienda	84
Tabla 37	Carga distribuida de la mampostería	84
Tabla 38	Carga viva de la vivienda	85
Tabla 39	Parámetros para el análisis sísmico.	85
Tabla 40	Masas participativas	86
Tabla 41	Periodo de vibración	86
Tabla 42	Fuerzas laterales en cada piso	86
Tabla 43	Desplazamientos en el eje "X"	87
Tabla 44	Desplazamientos en el eje "Y"	87
Tabla 45	Irregularidad torsional extrema en el "X"	87
Tabla 46	Irregularidad torsional extrema en el "X"	87
Tabla 47	Tipo de sistema estructural de la edificación en las dos direcciones	88
Tabla 48	Periodo de vibración	88
Tabla 49	Fuerzas laterales en cada piso	88
Tabla 50	Espectro de seudo aceleraciones de diseño en la dirección "X"	88
Tabla 51	Espectro de seudo aceleraciones de diseño en la dirección "Y"	89

Tabla 52	Fuerza cortante estática y dinámica	90
Tabla 53	Ensayo de contenido de humedad (C-1)	105
Tabla 54	Ensayo de peso específico (C-1)	105
Tabla 55	Ensayo de análisis granulométrico mediante tamizado por lavado (C-1)	106
Tabla 56	Ensayo de límite de consistencia (C-1)	107
Tabla 57	Ensayo de contenido de humedad (C-2)	108
Tabla 58	Ensayo de peso específico (C-2)	108
Tabla 59	Ensayo de análisis granulométrico mediante tamizado por lavado (C-2)	109
Tabla 60	Ensayo de límite de consistencia (C-2)	110
Tabla 61	Ensayo de contenido de humedad (C-3)	111
Tabla 62	Ensayo de peso específico (C-3)	111
Tabla 63	Ensayo de análisis granulométrico mediante tamizado por lavado (C-3)	112
Tabla 64	Ensayo de límite de consistencia (C-3)	113
Tabla 65	Clasificación de suelo (C-1)	114
Tabla 66	Clasificación de suelo (C-2)	115
Tabla 67	Clasificación de suelo (C-3)	116
Tabla 68	Ensayo de corte directo de la muestra (C-1)	117
Tabla 69	Grafica del esfuerzo cortante (C-1)	118
Tabla 70	Grafica del esfuerzo normal y el esfuerzo cortante (C-1)	118
Tabla 71	Ensayo de corte directo de la muestra (C-2)	119
Tabla 72	Ensayo de corte directo de la muestra (C-3)	121
Tabla 73	Ensayo de expansión libre de la muestra (C-1)	123
Tabla 74	Ensayo de expansión libre de la muestra (C-2)	125
Tabla 75	Ensayo de expansión libre de la muestra (C-3)	127
Tabla 76	Clasificación del grado de expansibilidad	137

ÍNDICE DE FIGURA

Figura 1	Límite de tamaño de suelos separados.	7
Figura 2	Diagrama de la estructura de la caolinita	8
Figura 3	Diagrama de la estructura de la ilita	9
Figura 4	Diagrama de la estructura de la montmorillonita	9
Figura 5	Curva de distribución de tamaño de partículas	11
Figura 6	Carta de plasticidad	14
Figura 7	Clasificación de suelos mediante SUCS	16
Figura 8	Las tres zonas que asume Terzaghi	18
Figura 9	Cargas sobre una cimentación superficial	21
Figura 10	Cargas sobre una cimentación superficial	25
Figura 11	Ubicación geográfica del anexo Lucmacucho Alto	27
Figura 12	Descripción del concreto en el programa Etabs	37
Figura 13	Descripción del concreto en el programa Etabs	38
Figura 14	Dimensiones de los elementos estructurales	38
Figura 15	Definición de la sección de las columnas en el programa Etabs	39
Figura 16	Definición de la sección de la viga principal en el programa Etabs	39
Figura 17	Definición de la sección de la viga secundaria en el programa Etabs	40
Figura 18	Definición de la sección de la losa aligerada en el programa Etabs	40
Figura 19	Modelo de la edificación en el programa Etabs	41
Figura 20	Asignación de cargas a la edificación en Etabs	42
Figura 21	Asignación de diafragmas a cada piso de la edificación	42
Figura 22	Asignación de brazos rígidos	43
Figura 23	Estimación del peso sísmico	43
Figura 24	Asignación de los modos de vibración.	44

Figura 25	Mapa de zonificación sísmica del Perú	45
Figura 26	Asignación de patrones de carga en el eje "X" y "Y"	53
Figura 27	Asignación del coeficiente sísmico en la dirección "X"	54
Figura 28	Asignación del coeficiente sísmico en la dirección "Y"	54
Figura 29	Modelo después de correr el análisis	55
Figura 30	Deriva sismo estático en la dirección "X" y "Y"	55
Figura 31	Desplazamiento máximo en la dirección "X"	56
Figura 32	Desplazamiento máximo en la dirección "Y"	56
Figura 33	Asignación de elementos PIERS	57
Figura 34	Espectro seudo aceleración en la dirección "X"	60
Figura 35	Espectro seudo aceleración en la dirección "Y"	61
Figura 36	Espectro de diseño en la dirección "X"	61
Figura 37	Espectro de diseño en la dirección "Y"	62
Figura 38	Espectro de diseño en la dirección "X"	62
Figura 39	Espectro de diseño en la dirección "Y"	63
Figura 40	Definición de la carga dinámica espectral en la dirección "X"	63
Figura 41	Definición de la carga dinámica espectral en la dirección "Y"	64
Figura 42	Desplazamiento máximo en la dirección "X"	64
Figura 43	Desplazamiento máximo en la dirección "X"	65
Figura 44	Desplazamiento máximo en la dirección "X"	66
Figura 45	Opciones para exportar de Etabs a Safe	67
Figura 46	Cargas exportadas de Etabs a Safe	67
Figura 47	Combinaciones de cargas exportadas de Etabs a Safe	68
Figura 48	Cargas exportadas de Etabs a Safe	68
Figura 49	Descripción del concreto en el programa Safe	69

Figura 50	Definición del peralte de la zapata	71
Figura 51	Definición del espesor de la columna	71
Figura 52	Vista en planta y 3D de las zapatas de la vivienda.	72
Figura 53	Coeficiente de balasto	72
Figura 54	Definición de la capacidad admisible del suelo y coeficiente de balasto	73
Figura 55	Carga admisible en la platea de cimentación	73
Figura 56	Definición del esfuerzo admisible para la viga	74
Figura 57	Vista en planta y 3D de la viga de cimentación	74
Figura 58	Valores de los factores de punzonamiento en todas las zapatas	75
Figura 59	Valores de las presiones efectivas en todas las zapatas	76
Figura 60	Definición del espesor de la losa de cimentación	77
Figura 61	Definición del espesor de la columna	77
Figura 62	Definición de la placa	78
Figura 63	Definición de la viga de nervadura	78
Figura 64	Vista en planta y 3D de la platea de cimentación nervada	79
Figura 65	Definición de la combinación de servicio	79
Figura 66	Valores de las presiones efectivas en la platea de cimentación	80
Figura 67	Valores de los factores de punzonamiento en la platea de cimentación	81
Figura 68	Detalle de la losa aligerada en una dirección	98
Figura 69	Gráfica de la curva del análisis granulométrico (C-1)	106
Figura 70	Grafica del límite líquido (C-1)	107
Figura 71	Gráfica de la curva del análisis granulométrico (C-2)	109
Figura 72	Grafica del límite líquido (C-2)	110
Figura 73	Gráfica de la curva del análisis granulométrico (C-3)	112
Figura 74	Grafica del límite líquido (C-3)	113

Figura 75	Grafica de carta de plasticidad (C-1)	114
Figura 76	Grafica de carta de plasticidad (C-2)	115
Figura 77	Grafica de carta de plasticidad (C-3)	116
Figura 78	Grafica del esfuerzo cortante (C-2)	120
Figura 79	Grafica del esfuerzo normal y el esfuerzo cortante (C-2)	120
Figura 80	Grafica del esfuerzo cortante (C-3)	122
Figura 81	Grafica del esfuerzo normal y el esfuerzo cortante (C-3)	122
Figura 82	Grafica de máxima deformación (C-1)	124
Figura 83	Porcentaje de expansión (C-1)	124
Figura 84	Grafica de máxima deformación (C-2)	126
Figura 85	Porcentaje de expansión (C-2)	126
Figura 86	Grafica de máxima deformación (C-3)	128
Figura 87	Porcentaje de expansión (C-3)	128
Figura 88	Excavación de la calicata (C-1)	129
Figura 89	Excavación de la calicata (C-2)	129
Figura 90	Excavación de la calicata (C-3)	130
Figura 91	Muestras inalteradas de las 03 calicatas	130
Figura 92	Ensayo de contenido de humedad de las 3 muestras	131
Figura 93	Lavado de las muestras en el tamiz N° 200 de las 3 muestras	131
Figura 94	Preparación de la muestra para el ensayo de límite líquido	132
Figura 95	Ensayo de límite líquido de las 3 muestras	132
Figura 96	Equipo para el ensayo de corte directo	133
Figura 97	Preparación de las 3 muestras para el ensayo de corte directo	133
Figura 98	Toma de lecturas – ensayo corte directo	134
Figura 99	Peso de las muestras después del ensayo de corte directo	134

Figura 100	Equipo para el ensayo de expansión libre (consolidómetro)	135
Figura 101	Ensayo de expansión libre de las 3 muestras	135
Figura 102	Secado de las 3 muestras después del ensayo de expansión libre	136
Figura 103	Ilustración de los tipos de plateas de cimentación	137
Figura 104	Zapata corrida o continua bajo muro	138
Figura 105	Zapata aislada en planta y elevación	138
Figura 106	Zapata combinada en elevación	138
Figura 107	Zapata combinada en planta y elevación	139

RESUMEN

En diferentes partes del mundo los suelos arcillosos expansivos han ocasionado daños estructurales y económicos, actualmente la región de Cajamarca presenta una creciente urbanización generando construcciones de viviendas en suelos arcillosos expansivos, pues es el caso que afrontan los habitantes del anexo Lucmacucho Alto, donde optaron por cimentaciones inadecuadas, generando fisuras y grietas en los elementos estructurales de sus viviendas. A raíz de ello, la presente tesis de investigación trata de disminuir los daños que existen en los elementos estructurales proponiendo un tipo de cimentación adecuada, donde el objetivo general fue evaluar la propuesta de cimentación en suelos arcillosos expansivos para viviendas unifamiliares en la expansión urbana del anexo Lucmacucho Alto - sector Lucmacucho, región de Cajamarca; la metodología utilizada se desarrolló en base al enfoque cuantitativo, con diseño no experimental, el tipo de investigación aplicada, la población fue conformada por los suelos arcillosos expansivos del sector en investigación, se evaluaron tres muestras de suelos extraídas del anexo Lucmacucho Alto para determinar las principales propiedades físicas y mecánicas del suelo arcilloso expansivo, los resultados que se obtuvieron de los esfuerzos actuantes máximos después de modelar las cimentaciones de la vivienda en el programa SAFE, para la zapata fue 1.39 kg/cm2 y para la platea de cimentación 1.33 kg/cm2. Finalmente se llegó a la conclusión que la propuesta de cimentación adecuada es la platea de cimentación con espesor de 0.25 m, conformada por vigas de nervadura de 0.30 x 0.35 m; reduciendo el esfuerzo actuante máximo en un 3.80 % con respecto a la presión admisible del suelo que fue de 1.48 kg/cm2, garantizando mayor seguridad, estabilidad, y resistencia estructural.

Palabras clave: Diseño, Cimentación, plateas, arcillas expansivas, viviendas unifamiliares

ABSTRACT

In different parts of the world expansive clay soils have caused structural and economic damage, currently the Cajamarca region presents an increasing urbanization generating housing constructions on expansive clay soils, as is the case faced by the inhabitants of the Lucmacucho Alto annex, where they opted for inadequate foundations, generating fissures and cracks in the structural elements of their homes. As a result, this research thesis tries to reduce the damage that exists in the structural elements by proposing an adequate type of foundation, where the general objective was to evaluate the proposed foundation on expansive clay soils for single-family homes in the urban expansion of the Lucmacucho Alto annex - Lucmacucho sector, Cajamarca region; the methodology used was developed based on the quantitative approach, with non-experimental design, the type of applied research, the population was made up of the expansive clayey soils of the sector under investigation, three soil samples extracted from the Lucmacucho Alto annex were evaluated to determine the main physical and mechanical properties of the expansive clayey soil, the results obtained from the maximum acting stresses after modeling the foundations of the house in the SAFE program, for the footing was 1.39 kg / cm2 and for the foundation slab 1.33 kg / cm2. Finally, it was concluded that the appropriate foundation proposal is the foundation slab with a thickness of 0.25 m, made up of 0.30 x 0.35 m ribbed beams; reducing the maximum acting stress by 3.80% with respect to the admissible soil pressure which was 1.48 kg/cm2, guaranteeing greater safety, stability, and structural resistance.

Keywords: Design, Foundation, stalls, expansive clays, single-family homes

CAPITULO I. INTRODUCCION

1.1 PLANTEAMIENTO DEL PROBLEMA

Los suelos expansivos han causado problemas significativos a nivel económico y estructural en todo el mundo. A fines del año 30 los especialistas en el estudio de suelos y fundaciones reconocieron que los asentamientos de las estructuras se debían al cambio de volumen del suelo. De ahí el interés en los suelos expansivos ha llevado a varias constituciones a realizar estudios específicos, debido a que muchos daños causados en viviendas, sobre todo en viviendas económicas (viviendas unifamiliares) son por la presencia de suelos expansivos. Por lo tanto, es importante realizar un análisis específico antes de determinar el tipo de cimentación en una construcción de una vivienda que presenta arcillas expansivas. (Cercado & Zavaleta, 2018)

En Perú, las arcillas expansivas son común en varias regiones. Según el Instituto de Geología, Minería y Metalurgia (INGEMMET, 2020), aproximadamente el 30% del territorio del país está compuesto por arcilla. Estos suelos tienen una alta plasticidad y capacidad de hinchamiento, lo que puede producir asentamientos diferenciales y daños estructurales en las viviendas.

La expansión urbana ha aumentado en los últimos años en la región de Cajamarca debido al crecimiento demográfico, produciendo gran expansión en los limites urbanos llevando a la construcción de viviendas sobre suelos arcillosos sin realizar estudios de mecánica de suelos para determinar las propiedades del suelo de fundación, lo cual presentan deficiencias en los elementos estructurales. Es el caso del anexo Lucmacucho Alto, existe una creciente demanda de viviendas unifamiliares; la población enfrenta problemas como fisuras en las paredes, desplazamiento de cimientos, y grietas en los pisos. Además, la situación se ve agravada por la falta de información técnica de los propietarios. (Briones & Irigoin, 2015)

Siendo el suelo de fundación uno de los componentes más importantes para determinar el tipo de cimentación y garantizar la estabilidad de la estructura, la investigación busca evaluar el tipo de cimentación adecuada sobre un terreno catalogado como arcilla expansiva para una vivienda unifamiliar de 3 niveles ubicada en el anexo Lucmacucho Alto-sector Lucmacucho, esto fundamentalmente para evitar las fallas y/o la aparición de fisuras y agrietamiento en periodo temprano en la cimentación y/o en los diferentes elementos de la vivienda.

1.2 FORMULACIÓN DEL PROBLEMA

¿Cuál es la propuesta de cimentación en suelos arcillosos expansivos para viviendas unifamiliares en la expansión urbana del anexo Lucmacucho Alto – sector Lucmacucho, región de Cajamarca?

1.3 HIPÓTESIS

La propuesta de cimentación en suelos arcillosos expansivos para viviendas unifamiliares en la expansión urbana del anexo Lucmacucho Alto – sector Lucmacucho, región de Cajamarca, es la platea de cimentación.

1.4 JUSTIFICACIÓN DE LA INVESTIGACIÓN

La problemática en la gran mayoría de las construcciones de las viviendas son las fallas y agrietamientos en los elementos estructurales por la presencia de suelos expansivos, además es por no presentar un adecuado estudio de suelos. La presente investigación se fundamenta en la importancia de conocer las ventajas técnicas de realizar un estudio de mecánica de suelos, para determinar el tipo de cimentación adecuada sobre suelos arcillosos expansivos con la finalidad de salvaguardar la inversión y seguridad del propietario. Asimismo, la investigación sirve como base para la construcción de viviendas unifamiliares en el área de estudio realizado y para los futuros diseños de viviendas que se encuentren sobre arcillas expansivas.

1.5 ALCANCES O DELIMITACIÓN DE LA INVESTIGACIÓN

La investigación se realizó en el anexo Lucmacucho Alto, área donde se tomaron muestras de suelos arcillosos expansivos de 3 calicatas para evaluar sus características físicas y mecánicas, el porcentaje de expansión del suelo de fundación se realizaron mediante el método directo (Expansión Libre), y los ensayos se realizaron en el laboratorio de la Universidad Nacional de Cajamarca.

1.6 LIMITACIONES

Los resultados que se obtuvieron con esta investigación solo serán aplicados para suelos arcillosos presentes en el área de estudio o para suelos similares que se encuentren en otros proyectos de viviendas, no se realizaron ensayos del método mineralógica y método indirecto.

1.7 OBJETIVOS

1.7.1 Objetivo general:

Elaborar la propuesta de cimentación en suelos arcillosos expansivos para viviendas unifamiliares en la expansión urbana del anexo Lucmacucho Alto – sector Lucmacucho, región de Cajamarca.

1.7.2 Objetivos específicos:

- Determinar las propiedades físicas de los suelos arcillosos expansivos para viviendas unifamiliares en la expansión urbana del anexo Lucmacucho Alto – sector Lucmacucho, región de Cajamarca.
- Determinar la capacidad portante admisible de los suelos arcillosos expansivos para viviendas unifamiliares en la expansión urbana del anexo Lucmacucho Alto – sector Lucmacucho, región de Cajamarca.
- Determinar el porcentaje de expansión de los suelos arcillosos expansivos para viviendas unifamiliares en la expansión urbana del anexo Lucmacucho Alto – sector Lucmacucho, región de Cajamarca.
- Diseñar la platea de cimentación en suelos arcillosos expansivos para viviendas unifamiliares en la expansión urbana del anexo Lucmacucho Alto – sector Lucmacucho, región de Cajamarca.

1.8 DESCRIPCIÓN DE CONTENIDOS

Capítulo I: Introducción

Contiene el planteamiento del problema, formulación del problema, la hipótesis, justificación, alcances, limitaciones, y objetivos de la investigación.

Capítulo II: Marco Teórico

Antecedentes teóricos relacionadas a la investigación, bases teóricas que sirven como base para la investigación, y definición de términos básicos utilizados.

Capítulo III: Materiales y Métodos.

Ubicación geográfica y tiempo en la cual se realizó la investigación, procedimiento, análisis de datos, y presentación de resultados.

Capítulo IV: Análisis y Discusión de Resultados.

Describe, explica y discute los resultados obtenidos en base a los objetivos planteados de la investigación.

Capítulo V: Conclusiones y Recomendaciones

Conclusiones más importantes extraídas de los resultados, y recomendaciones para complementar los conocimientos sobre el problema de la investigación.

Referencias bibliográficas

Apéndice

Anexos

CAPITULO II. MARCO TEORICO

2.1 ANTECEDENTES TEÓRICOS

2.1.1 Antecedentes internacionales

Rodríguez (2018), en Sevilla, en su investigación "Estudio de Cimentación por suelos expansivos barriada Santa Teresa" Determinó el proceso constructivo de la edificación, tanto estructural como de la cimentación teniendo en cuenta el comportamiento del terreno de fundación. Se concluyó que la distorsión de los suelos originada por los asentamientos diferenciales, además la aparición de fisuras en los elementos estructurales es debido a la presencia de suelos expansivos, siendo una de las soluciones las plateas postensadas.

Espinoza (2015), en Ecuador, en su tesis "Caracterización de arcillas expansivas en el sector Salapa" Determinó el comportamiento de los suelos expansivos como base de cimentación. La muestra fue alteradas e inalteradas, y se realizaron a una profundidad de 1.5m. Se concluyó que el fenómeno de expansión de los suelos es mayor si su grado de saturación es bajo, es decir posee humedad natural baja, lo que permitirá que el terreno pueda absorber mayor cantidad de agua, generando cambios de volumen considerables. Además, una de las soluciones para controlar el fenómeno es la platea nervada, ya que los espacios libres dan lugar al hinchamiento del suelo.

Mosquera (2017), en Ecuador, en su tesis "Análisis de una platea de cimentación para una edificación de 5 plantas utilizando el software SAP2000" Evalúa la cimentación de una edificación, basadas en las posibles variaciones en el resultado de la capacidad portante. Se concluyó que mediante el análisis se consideraron diferentes tipos de arcillas. En las cuales se visualizaron diversos resultados obtenidos mediante el software SAP2000, a través del cual se logró obtener esfuerzos, cortantes y deformaciones, los suelos blandos son los que presentan mayores esfuerzos, deformaciones y cortantes por lo cual se recomienda tener mayores consideraciones de diseño de la losa de cimentación.

2.1.2 Antecedentes Nacionales

Cercado & Zabaleta (2018), en Trujillo, en su tesis "Análisis del grado de expansibilidad de suelos arcillosos en las calles del asentamiento humano Señor de los Milagros del Distrito de Chachapoyas - Amazonas" Determinó el grado de expansibilidad de suelos arcillosos. Realizo una investigación descriptiva puesto que realizo un análisis exhaustivo sobre las arcillas expansivas, con un diseño de tipo experimental. Se concluyó que los estudios realizados tienen un gran margen de arcillas expansivas, siendo un gran peligro

para las estructuras que se cimenten en los suelos expansivos. Para contrarrestar los suelos expansivos se debe realizar la cimentación con losas armadas.

Aguilar (2023), en Lima, en su tesis "Propuesta de diseño de cimentación superficial para edificaciones sobre arcillas expansivas ubicadas en la zona lacustre del Lago Titicaca, Puno, 2023" El propósito del estudio fue analizar los parámetros geotécnicos de las arcillas expansivas. El enfoque fue cuantitativo y el diseño no experimental. La muestra fue 3 calicatas. Para una vivienda de 3 niveles se tiene como resultado una losa de cimentación nervada con un ancho de 0.40 m y la separación de los nervios es de 0.75 m, y la altura de 0.50 m en las dos direcciones. Se concluyó que la alternativa adecuada para cimentaciones sobre suelos expansivos es una losa nervada.

Roa & Vidal (2019), en Lima, en su tesis "Evaluación Técnico - Económica de cimentaciones en terreno con baja capacidad portante, caso: edificio Marañón de Huamachuco, la Perla, Callao 2019", tuvo como objetivo determinar la alternativa de cimentación más económica y que cumplan los requisitos estructurales, asimismo el enfoque que desarrolló fue cuantitativo. Se concluyó que el espesor de la platea de cimentación fue de 0.25 m, formadas por vigas de cimentación de 0.30 x 0.60 m, las cuales fueron comprobadas por punzonamiento, igualmente el esfuerzo actuante máximo fue de 0.692 kg/cm2 y para las zapatas fue de 0.98 kg/cm2; siendo la platea de cimentación las más adecuada. Finalmente, la alternativa de platea de cimentación es la más económica que la alternativa de las zapatas aisladas, conectadas, y combinadas con espesor de 0.60 m.

2.1.3 Antecedentes Locales

Vera (2017), en Cajamarca, en su tesis "Evaluación del comportamiento estructural de una vivienda autoconstruida el año 2012, Sector Camino Real II, calle Tres Marías-Provincia de Jaén", El estudio examinó las cargas actuantes que perjudican al diseño de una vivienda autoconstruida. Se concluyó que en el caso de las cimentaciones las presiones generadas por la estructura son mucho más grandes que las que se obtuvieron en la mecánica de suelos, por lo que sus dimensiones son pequeñas, donde para una eventual construcción de los demás niveles, se tendrá que reforzar estructuralmente cada una de estas.

2.2 BASES TEÓRICAS

2.2.1 El suelo

El suelo es una fina capa de material que se encuentra sobre la superficie de la tierra y que se forma a partir de la descomposición y cambios de las rocas, tanto de manera física como química. También se compone de los desechos y restos que provienen de las actividades de los seres vivos que lo habitan. (Crespo, 2004)

El suelo es el material de construcción más utilizado en las prácticas de ingeniería civil. Sirve de cimiento para diversas estructuras, como edificios, carreteras, puentes, marquesinas y torres. También se utiliza para construir terraplenes, muros de tierra reforzados con geotextiles, diques y relieves de suelo adecuados para zonas urbanas. Los suelos son los componentes de los taludes de corte y de terraplenes viales, y son estructuras que desempeñan una variedad de funciones en los proyectos. (Duque & Escobar, 2016)

2.2.2 Tipos de suelos

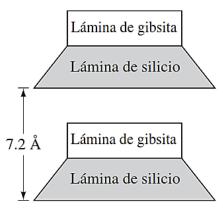
El tamaño de las partículas que componen el suelo generalmente varía ampliamente. Los suelos que dependen de los granos suelen clasificarse como *grava*, *arena*, *limo o arcilla*. Para explicar los suelos por el tamaño de sus granos se tiene a varias organizaciones que han desarrollado límites de *tamaño de suelos separados*. De las cuatro organizaciones que se presenta, al Instituto Tecnológico de Massachusetts (MIT) se muestra solo con fines demostrativos ya que ha desempeñado un papel fundamental en la historia del desarrollo de límites de tamaño de suelos separados. Pero hoy en día se ha adoptado el Sistema Unificado en casi todas partes, además la Sociedad Estadounidense de Pruebas y Materiales (ASTM) adopto al Sistema Unificado de Clasificación de Suelos (SUCS). (Das, 2012)

Figura 1
Límite de tamaño de suelos separados.

Nombre de la organización	Tamaño del grano (mm)				
	Grava	Arena	Limo	Arcilla	
Instituto Tecnológico de Massachusetts (MIT)	> 2	2 a 0.06	0.06 a 0.002	< 0.002	
Departamento de Agricultura de Estados Unidos (USDA)	> 2	2 a 0.05	0.05 a 0.002	< 0.002	
Asociación Americana de Funcionarios del Transporte y Carreteras Estatales (AASHTO)	76.2 a 2	2 a 0.075	0.075 a 0.002	< 0.002	
Sistema unificado de clasificación de suelos (U.S. Army Corps of Engineers; U.S. Burcau of Reclamation; American Society for Testing and Materials)	76.2 a 4.75	4.75 a 0.075	Finos (es decir, limos y arcillas < 0.075		

Fuente: (Das, 2015)

2.2.2.1 Arcilla

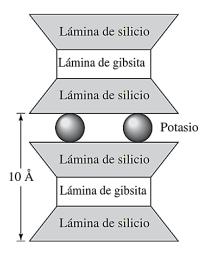

Das (2012) señala que las arcillas en su mayoría son partículas submicroscópicas que tiene una forma de escamas de mica y también pueden ser en forma de minerales arcillosos. las partículas de las arcillas presentan un diámetro menor a 0.002 mm, sin embargo, en algunas ocasiones los diámetros de las partículas se encuentran entre 0.002 mm y 0.005 mm.

Además, las arcillas por naturaleza son cohesivas, es decir cuando las arcillas están húmedas se pueden hacer rollos pequeños, esto se debe a que presentan minerales de arcilla como por ejemplo la caolinita, ilita y montmorillonita.

2.2.2.1.1 *Caolinita*

La caolinita es un mineral que está compuesta por dos capas de láminas de sílice – gibbsita, cada capa tiene un espesor de 7.2 Å y están unidas por enlaces de hidrogeno; este tipo de mineral se presenta en forma de plaquetas, cada una posee una dimensión lateral de 1000 a 20 000 Å y un espesor de 100 a 1000 Å, y tienen un área de superficie por unidad de masa o superficie especifica aproximadamente de 15 m²/g. (Das, 2015)

Figura 2Diagrama de la estructura de la caolinita

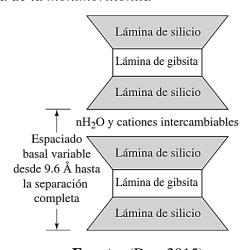


Fuente: (Das, 2015)

2.2.2.1.2 Ilita

La ilita está compuesto por dos capas unidas por iones de potasio, cada capa está conformado por una lámina de gibbsita unida a una lámina de sílice en la parte superior y otra lamina de sílice en la parte inferior. Los granos de este mineral presentan comúnmente dimensiones laterales de 1000 a 5000 Å, espesores de 50 a 500 Å y la superficie especifica es aproximadamente 80 m2/g. (Das, 2015).

Figura 3Diagrama de la estructura de la ilita



Fuente: (Das, 2015)

2.2.2.1.3 Montmorillonita

La montmorillonita está compuesta por dos capas con una separación variable que va desde 9.6 Å hasta una separación completa. Cada capa está conformada por una lámina de gibbsita unidas a dos láminas de sílice, es decir, una lámina de sílice en la parte superior y otra lamina en la parte inferior similar a la estructura de la ilita; en los espacios que existe entre las capas se absorbe una gran cantidad de agua. Los granos de este mineral tienen una dimensión lateral que va desde 1000 a 5000 Å, espesores que va desde 10 a 50 Å y una superficie especifica aproximadamente de 800 m²/g. (Das, 2015)

Figura 4Diagrama de la estructura de la montmorillonita

Fuente: (Das, 2015)

Por lo general las arcillas, ya sea la caolinita, la ilita y las montmorillonitas; son plásticas, se contraen cuando se secan, cohesivas dependiendo del contenido de humedad, y

se comprimen lentamente cuando se aplica una carga en su superficie. Desde el punto de vista de la construcción hay una propiedad interesante, la resistencia que se pierde por el remoldeo se recupera de manera parcial con el pasar del tiempo; a este fenómeno se llama *tixotropía* y tienen propiedades físico - químico. Si el contenido de arcilla en el suelo es del 15 % o más, se puede decir que tiene propiedades arcillosas. (Crespo, 2004)

2.2.3 Granulometría del suelo

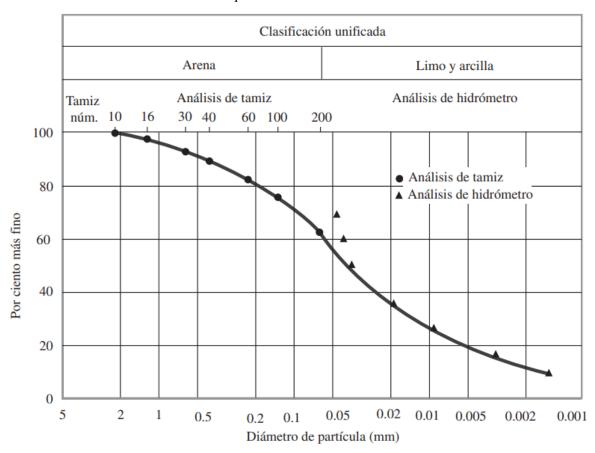
La comprensión de la distribución de tamaños de partículas de un suelo grueso permite evaluar su impacto en la densidad del material al compactarlo. El análisis granulométrico consiste en determinar el porcentaje de diferentes tamaños de partículas presentes en el suelo. Existen varios métodos disponibles para determinar la composición granulométrica de un suelo específico. El método más rápido para categorizar las partículas grandes en diferentes tamaños es a través del proceso de tamizado. Sin embargo, a medida que los granos se hacen más finos, se vuelve más complicado tamizar, por lo que es necesario utilizar métodos de sedimentación. Cuando se conoce la composición granulométrica del material, se puede representar gráficamente para obtener la curva granulométrica. (Crespo, 2004)

2.2.3.1 Análisis granulométrico por tamizado

Das (2015) refiere que el procedimiento de análisis de tamices implica agitar la muestra de suelo utilizando una serie de tamices con aberturas cada vez más pequeñas.

Tabla 1 *Tamaños estándar de tamices*

Numero de Tamiz	Abertura (mm)		
3/4"	19.05		
1/2"	12.70		
3/8"	9.53		
1/4"	6.35		
4	4.75		
10	2.00		
20	0.85		
30	0.59		
40	0.43		
60	0.25		
100	0.15		
200	0.08		


Fuente: Das (2015)

Además, Das (2015) menciona que antes de realizar un análisis granulométrico, es necesario secar el suelo en el horno a 50 °C y posteriormente deshacer todos los agregados en

partículas diminutas. Luego, se mueve el suelo utilizando una serie de tamices que tienen orificios cada vez más pequeños de arriba a abajo (se coloca una bandeja debajo de los tamices). El tamiz de menor tamaño requerido para este tipo de prueba es el tamiz número 200. Luego de zarandear el suelo, se calcula la cantidad de tierra atrapada en cada tamiz. Partir los fragmentos en partículas individuales puede ser complicado al examinar suelos cohesivos. En este caso se mezcla con agua, y posteriormente limpiarla a través de los tamices. Las porciones retenidas en cada tamiz se recolectan de manera individual y se secan en el horno previo a la medición de la cantidad acumulada en cada tamiz.

Después de determinar el porcentaje más fino para cada tamiz, estos cálculos se registran en un gráfico semilogarítmico, donde el porcentaje más fino se representa en el eje "y" (escala aritmética) y el tamaño de la abertura del tamiz se representa en el eje "x" (escala logarítmica). Esta representación es conocida como la curva de distribución de tamaño de partículas. (Das, 2015)

Figura 5Curva de distribución de tamaño de partículas

Fuente: (Das, 2015)

Según Crespo (2004), el Coeficiente de Uniformidad (Cu) y el Coeficiente de Curvatura (Cc) son herramientas importantes que nos ayudan a determinar las propiedades granulométricas de un suelo.

✓ Coeficiente de Uniformidad (Cu)

$$C_u = \frac{D_{60}}{D_{10}} \tag{1}$$

✓ Coeficiente de Curvatura (Cc)

$$C_c = \frac{(D_{30})^2}{D_{10} * D_{60}} \tag{2}$$

Un material correctamente graduado debe satisfacer el requisito de que el coeficiente de uniformidad sea superior a 4 para gravas y superior a 6 para arenas, y que el coeficiente de curvatura esté en el rango de 1 a 3. Cuando el coeficiente de uniformidad es más bajo que los valores mencionados, esto implica que el material no está bien graduado, y puede tener propiedades no adecuadas. (Crespo, 2004)

2.2.3.2 Análisis granulométrico por sedimentación

Según Das (2015) la técnica del análisis granulométrico por sedimentación se realiza mediante el uso de un hidrómetro se fundamenta en el proceso de separación de las partículas del suelo al ser sumergidos en agua. Al dispersar una muestra de suelo en agua, las partículas se separan y se depositan a distintas velocidades, dependiendo de sus características como forma, tamaño y peso. Una forma eficaz de separar fracciones del suelo hasta aproximadamente un tamaño de 0.5µ es a través del análisis de hidrómetro.

2.2.4 Límite de consistencia del suelo

Según Das (2015) los estados de consistencia de suelos de partículas finas, definidos por Albert Mauritz Atterberg, proporcionan una base para interpretar el comportamiento del suelo en función de su contenido de humedad. Por lo tanto, los límites de Atterberg y el índice de plasticidad son herramientas útiles para identificar la plasticidad del suelo.

2.2.4.1 Limite liquido (LL)

Según Crespo (2004) define al límite líquido (LL) como el contenido de humedad, expresado como un porcentaje del peso seco de la muestra, en el que el suelo pasa de estar en estado líquido a estar en estado plástico. Los suelos de naturaleza plástica presentan una baja

resistencia al esfuerzo de corte en su punto de fluidez, además la cohesión es prácticamente nula en dicho estado. El límite liquido se calcula de la siguiente manera:

$$LL = \frac{P_h * P_s}{P_s} * 100 = \frac{P_w}{P_s} * 100 \tag{3}$$

Donde:

LL: Limite liquido (%)

P_h: Peso de la muestra húmeda (gr)

P_s: Peso de la muestra seca (gr)

P_w: Contenido de agua en la muestra (gr)

2.2.4.2 Limite plástico (LP)

Según Crespo (2004) define al límite plástico (LP) como la cantidad de humedad, medida en porcentaje con respecto al peso seco de la muestra secada al horno, en la cual los suelos cohesivos cambian de un estado semisólido a uno plástico. Para determinar la frontera plástica, comúnmente se utiliza el exceso de material mezclado con agua que queda después de realizar la prueba del límite líquido y se le retira humedad mediante agitación hasta obtener una mezcla moldeable con facilidad. Después, se crea una pequeña esfera que debe ser aplastada de inmediato en la mano o en una superficie de vidrio aplicando la presión necesaria para formar trocitos de filamentos. Se calcula de la siguiente manera:

$$LP = \frac{P_h - P_S}{P_S} * 100 = \frac{P_W}{P_S} * 100 \tag{4}$$

Donde:

LP: Limite plástico (%)

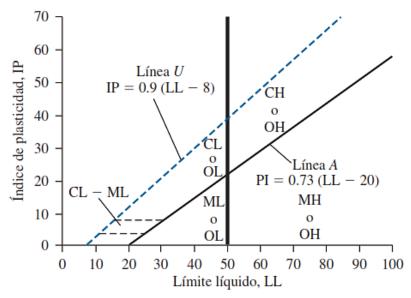
Ph: Peso de los trocitos húmedos (gr)

P_s: Peso de los trocitos secos (gr)

Pw: Contenido de agua en los trocitos de filamentos (gr)

Índice de plasticidad (IP): se define como la diferencia entre el límite liquido (LL) y el límite plástico (LP), además depende principalmente de la cantidad de arcilla presente en el suelo.

$$IP = LL - LP \tag{5}$$


Donde:

LP: Limite plástico

LL: Limite liquido

Para determinar la representación de la plasticidad del suelo se emplea la Carta de Plasticidad, si el límite liquido (LL) es mayor que el 50% son de alta plasticidad en cambio si el límite liquido (LL) es menor que el 50% es de baja a media plasticidad. (Badillo & Rodríguez, 2005)

Figura 6Carta de plasticidad

Fuente: (Das, 2012)

2.2.5 Clasificación de suelos

La clasificación de los suelos permite proporcionar una base sobre la cual se pueda agrupar los suelos de acuerdo con sus propiedades físicas y apariencia, con la finalidad de hacer la comparación de los diferentes tipos de suelos, explicar las propiedades y evaluar el tipo de suelo adecuado para la utilización en una estructura de ingeniería. (Berry & Reid, 1993)

2.2.5.1 Sistema Unificado de Clasificación de Suelos (SUCS)

El sistema de clasificación de suelos (SUCS) fue propuesto por primera vez por A. Casagrande en 1942 y posteriormente revisado y adoptado por el Servicio de Recuperación y el Cuerpo de Ingenieros del Ejército de los Estados Unidos. Hoy en día el sistema SUCS se utiliza en casi todos los trabajos geotécnicos. Además, se denota al suelo por un símbolo conformada por dos letras: el primero refiere al tipo de suelo, y la segunda refiere a la propiedad de plasticidad del suelo. (Das, 2015)

Tabla 2Símbolos para identificar un suelo mediante SUCS

Símbolo	Descripción		
G	Grava		
S	Arena		
M	Limo		
С	Arcilla		
О	Limos orgánicos y arcilla		
Pt	Turba y suelos altamente orgánicos		
Н	Alta plasticidad		
L	Baja plasticidad		
W	Bien graduado		
P	Mal graduado		

Fuente: (Das, 2015)

Según la Crespo (2004), los suelos de partículas finas y los suelos de partículas gruesas se diferencian mediante el paso del material a través de una malla No. 200.

- **2.2.5.1.1 Suelos de grano grueso.** Porcentaje de suelo que pasa es menor a 50%, se tiene a las gravas y arenas.
 - ✓ **Gravas** (**G**): si la fracción gruesa que se retiene en el tamiz No. 4 es más del 50%, además se dividen en 4 grupos: gravas bien graduado (GW), gravas mal graduadas (GP), gravas limosas (GM), y gravas arcillosas (GS).
 - ✓ **Arenas (S):** si la fracción gruesa que pasa el tamiz No. 4 es más del 50%, además se dividen en 4 grupos: arenas bien graduadas (SW), arenas mal graduadas (SP), arenas limosas (SM), y arenas arcillosas (SC).

Si el porcentaje de la muestra que pasa el tamiz No. 200 es el 12% o menos; se utiliza la Gráfico de Tamaño Acumulativo de Partículas, y se calcula el coeficiente de uniformidad (Cu) y el coeficiente de curvatura (Cc), Si el porcentaje de la muestra que pasa el tamiz No. 200 es más del 12%; se utiliza el grafico de Carta de Plasticidad (Índice de Plasticidad vs Limite liquido).

2.2.5.1.2 Suelos de grano fino. Porcentaje que pasa es mayor a 50%, se tiene a los limos y arcillas.

Suelos con limite liquido menor a 50 (LL < 50): es un suelo de baja o media comprensibilidad, a este se le añade el sufijo L a los prefijos M, C y O; logrando las

siguientes combinaciones: limos inorgánicos de baja comprensibilidad (ML), limos orgánicos de baja comprensibilidad (OL) y arcillas inorgánicas de baja comprensibilidad (CL)

Suelos con Limite Liquido mayor a 50 (LL > 50): suelos de alta comprensibilidad, a este se le añade el sufijo H a los prefijos M, C y O; logrando las siguientes combinaciones: limos orgánicos de alta comprensibilidad (MH), arcillas inorgánicas de alta comprensibilidad (CH) y arcillas orgánicas de alta comprensibilidad (OH)

Figura 7 *Clasificación de suelos mediante SUCS*

Criterios para asignar símbolos de grupo y nombres de grupo usando					Clasificación de Suelos	
Ensayos de Laboratorio			Símbolo	Nombre del		
			del grupo	grupo		
50° fracce es rete			Cu ≥ 4	GW	Grava bien	
	Gravas más del 50% de la fracción gruesa es retenido en la malla No. 4	Gravas limpias (menos del 5% de finos)	1 ≤ Cc ≤ 4		graduada	
			Cu <>	GP	Grava mal	
			1 > Cc > 3		graduada	
		Gravas con finos (más del 12% de finos)	Finos clasific. Como	GM	Grava limosa	
			ML o MH			
Suelos de grano			Finos clasific. Como	GC	Grava arcillosa	
grueso (más del 50% retenido en malla No. 200)			CL o CH			
		Arenas limpias (menos del 5% de finos)	Cu ≥ 6	sw	Arena bien	
	Arenas 50% o		1 ≤ Cc ≤ 3		graduada	
	más de la		Cu <>	SP	Arena mal	
	fracción gruesa		1<>		graduada	
1 1	pasa por la malla	Arenas con finos (más del 12% de finos)	Finos clasific. Como	SM	Arena <mark>l</mark> imosa	
	No. 4		ML o MH			
			Finos clasific. Como	SC	Arena arcillosa	
			CL o CH			
Suelos de grano	Limos y arcillas (limite liquido menor de 50)	Inorgánicos	IP > 7 en o sobre la	CL	Arcilla lean	
			linea "A"	2.0	T:	
		Orgánico	LL secado al horno	ML	Limo arenoso	
			LL secado al nomo <>	OL	Arcilla orgánica	
			LL no secado		Limo orgánico	
fino (50% o más	Limos y arcillas	Inorgánico -	IP ploteado en o	СН	Line organice	
pasa malla No. 200) Lim (limi			sobre linea "A"		Arcilla fat	
			IP ploteado bajo la	MH	Limo elástico	
	(limite liquido de		linea "A"			
	50 o mas)	Orgánico	LL secado al horno	ОН	Arcilla orgánica	
			<>			
			LL no secado		Limo orgánico	
Suelos altamente	Matriz primaria	Orgánico color	Nagra alar argénica	PT	Turbia	
orgánicos	orgánicos Matriz primaria	Orgánica, color	Negro, olor orgánico	PT	Turbia	

Fuente: ASTM 2487 – 00

2.2.6 Capacidad portante del suelo

Según Crespo (2004) la carga admisible es aquella que sobre la cimentación se puede aplicar sin dañar la estructura que soporta, y tiene un límite de seguridad fijado por el denominado factor; además no solo depende del suelo sino también depende de la

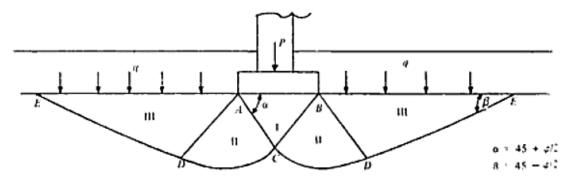
cimentación, características estructurales y del factor de seguridad aplicado en cada caso. De las experiencias y opiniones relacionadas con el comportamiento de la cimentación, se puede observar que las fallas por su capacidad portante se dan como producto de una rotura por corte del terreno por el desplazamiento de la cimentación. Hay tres tipos principales de fallas en los cimientos.

2.2.6.1 Falla por corte general

la falla por corte general se distingue por la existencia de una superficie de deslizamiento constante dentro del suelo, que parte del borde del cimiento y asciende hasta la superficie del suelo.

2.2.6.2 Falla por punzonamiento

Este tipo de falla se distingue por el movimiento vertical de los cimientos debido a la presión del terreno, la rotura del terreno se produce por corte en el contorno del cimiento y no se observa casi ningún movimiento de este junto al cimiento, manteniendo el equilibrio vertical y horizontal.


2.2.6.3 Falla por corte local

tiene la característica de la falla por corte general y de la falla por punzonamiento, el suelo en ambos lados de la cimentación tiene una fuerte tendencia a empujar, y además la compresión vertical bajo el cimiento es fuerte y la superficie de deslizamiento termina en un punto determinado dentro de la misma masa del terreno.

Además, Crespo (2004) menciona que entre varios estudios teóricos la más sencilla es la del Dr. Karl Terzaghi, demostró una buena aproximación para todos los casos en el ámbito de la aplicación práctica. La solución de Terzaghi supone que hay tres regiones de diferentes movimientos debajo y alrededor de la carga. *La zona I*, es la que se ubica directamente debajo de los cimientos, la forma que tiene es de una cuña y puede penetrar el suelo solo cuando la presión de los taludes AC y BC es igual a la presión pasiva del suelo adyacente, al moverse lo hace de manera vertical hacia abajo junto con el cimiento. *La zona* II, también se conoce como zona de cizallamiento radial, es una zona de falla donde las grandes deformaciones que ocurren en esta zona ocasionan un levantamiento de la *zona III*, donde trata de contrarrestar dicho levantamiento con el peso del material que se encuentra en la zona. La resistencia de la *zona III* depende de su tamaño, del peso volumétrico del material y de la resistencia al deslizamiento a lo largo de CDE de dicha zona. La resistencia es una función de la cohesión, del ángulo de fricción interna, y del peso del terreno.

Figura 8

Las tres zonas que asume Terzaghi

Fuente: (Crespo, 2004)

Capacidad de carga ultima

$$q_u = cN_c + qN_q + \frac{1}{2}\gamma BN_\gamma \tag{6}$$

Donde:

c: cohesión del suelo

 γ : peso específico del suelo

 $q: \gamma D_f$

 N_c , N_q , N_γ : factores de capacidad de carga que están en función del ángulo de fricción del suelo (\emptyset)

Según Terzaghi los factores de cargas se calculan mediante la siguiente expresión:

$$N_q = \frac{a^2}{2\cos^2\left(45 + \frac{\emptyset}{2}\right)} \tag{7}$$

$$N_c = (N_q - 1)cot\emptyset (8)$$

$$N_{\gamma} = \frac{\tan\emptyset}{2} \left(\frac{K_{Py}}{\cos^2\emptyset} - 1 \right) \tag{9}$$

Capacidad de carga admisible

Para el cálculo en cimentaciones superficiales se aplica un factor de seguridad al valor de la capacidad de carga última.

$$q_{adm} = \frac{q_u}{FS} \tag{10}$$

Donde:

FS: factor de seguridad

2.2.7 Suelos expansivos

Merchán (2009), menciona que los suelos expansivos son aquellos que ante un cambio de humedad muestran un cambio volumétrico importante, al incrementar su volumen estos suelos generan daños en los elementos estructurales de las edificaciones. El grado de expansión de los suelos arcillosos depende de la cantidad de minerales arcillosos presentes en el material.

Según Firoozi et al. (2017) las arcillas tienden a endurecerse cuando se secan y pierden su dureza al saturarse, la arcilla blanda se relaciona con una baja resistencia a la compresión y un asentamiento excesivo. En consecuencia, la pérdida de resistencia debido al cambio volumétrico ocasiona daños estructurales. El comportamiento de los suelos puede ser un gran desafío para los diseñadores de infraestructura sobre arcillas expansivas.

2.2.7.1 Identificación de suelos expansivos

Firozi et al. (2017) señala que las deficiencias relacionadas con los suelos expansivos no son causadas por la falta de soluciones inadecuadas, sino porque la presencia y la extensión de estos suelos expansivos no se detectaron durante las primeras etapas de planificación de un proyecto.

Εl suelo potencialmente expansivo se puede identificar utilizando tres métodos diferentes. El primer método es la identificación mineralógica, se puede utilizar para evaluar el material; sin embargo, no es suficiente cuando se trabaja con suelos naturales. Varios métodos de identificación mineralógica son importantes para que los laboratorios de investigación descubran las propiedades fundamentales de las arcillas, pero no son prácticos ni económicos para los ingenieros. El Segundo son los métodos indirectos, como la propiedad de índice, el método de potencial de cambio de volumen (PCV) y el método de actividad, son técnicas valiosas para estimar las propiedades de expansión, pero ningún método indirecto debe emplearse de forma aislada, es decir, sin los métodos directos los resultados pueden ser erróneas. El tercer método es la *medición directa*, proporciona datos más útiles para un ingeniero en ejercicio además las pruebas son sencillos de realizar y no requieren equipos de laboratorios costosos (Consolidómetro) y especializados; sin embargo, las pruebas se deben realizar con varias muestras para obtener resultados más reales. (Chen, 2012)

2.2.7.1.1 Métodos directos

Según Chen (2012) los métodos directos son los más adecuados y prácticos para

determinar el potencial de hinchamiento y presión de hinchamiento de una arcilla expansiva

mediante un Consolidómetro unidimensional convencional; la muestra se coloca entre dos

placas porosas y confinada en un anillo de metal, el diámetro del anillo varia de 2 a 4

pulgadas dependiendo del tipo de muestreo, y el espesor de la muestra de suelo varia de 1/2 a

1 pulgada. Las muestras se pueden sumergir desde la parte superior o inferior, el valor de la

expansión vertical se expresa como un porcentaje de la altura inicial y se conoce como el

porcentaje de hinchamiento.

Además, cuando la muestra de suelo alcanza el máximo aumento de volumen, la

muestra se puede volver a cargar con el fin de determinar la presión de expansión; por ello la

presión de expansión es posible calcular de manera sencilla sin recurrir al uso de equipos que

mantengan constante el volumen del suelo.

Presión de Hinchamiento: se define como como la presión vertical que aplica el suelo

cuando su volumen incrementa debido a un mayor grado de saturación. El ensayo se

establece aplicando cargas al suelo que se está saturando en el consolidómetro, de manera

que no se le permita expandirse libremente. Esto significa que la lectura del consolidómetro

permanecerá en cero, y el aumento de carga se detendrá una vez que finalice la expansión

libre del suelo. (Espinoza, 2015)

Hinchamiento Libre: se define como el porcentaje máximo de aumento de presión que

experimenta un suelo sin ninguna restricción externa, en función de su longitud original. El

ensayo se realiza mediante una muestra de suelo inalterada y un edómetro, se coloca el lector

del deformímetro en posición y se sumerge la muestra. A continuación, se mide el

hinchamiento final, que se expresa como un porcentaje en relación con su altura inicial, sin

aplicar ninguna carga. (Espinoza, 2015)

El porcentaje de hinchamiento libre se determina mediante la siguiente expresión:

 $\%E = \frac{\Delta h}{h_0} * 100$ (11)

Donde:

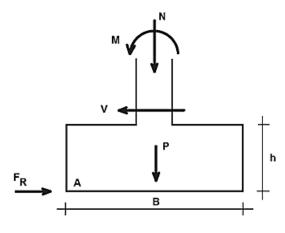
 Δh : Variación de altura de la muestra de suelo

 h_0 : Altura inicial

%E: Porcentaje de expansión

20

2.2.7.2 Daños que ocasionan en una estructura


Los daños que se ocasionan en las edificaciones que han sido cimentadas en suelos expansivos, especialmente en años con largos periodos de verano e invierno, se presentan como: grietas, fisuras, y giros en las paredes y en los elementos estructurales debido a los movimientos desiguales de los cimientos. (NSR, 2010)

Merchán (2009), menciona que los suelos arcillosos expansivos causan daños severos a las edificaciones a causa de la variación volumétrica generada por los cambios de humedad, si el suelo se encuentra confinado lateralmente el potencial expansivo se expresa en un empuje lateral.

2.2.8 Cimentaciones

Según Yepes (2020) lo que la sostiene en el suelo a una estructura es la cimentación. Las cimentaciones transfieren al suelo su propio peso y las cargas que reciben de los elementos estructurales, y por lo general se encuentran enterrados; de tal manera que la estructura que soporta la cimentación sea estable, la presión que trasmite sea menor a la presión admisible, y los asentamientos sean reducidos. Así mismo la cimentación consta de dos partes: los elementos estructurales responsables de transferir las cargas a la cimentación y el área del suelo afectada por la cimentación, y deben ser capaz de soportar cargas y proteger la estructura de influencias horizontales como: el viento y el sismo. El esfuerzo que actúa sobre el suelo está relacionado con las fuerzas que ejercen la estructura sobre la cimentación, a esto hay que adicionar el peso propio de la cimentación u otras fuerzas que actúan sobre la cimentación, y la interacción suelo-estructura depende: de las propiedades del suelo, de la flexibilidad de la estructura, y de la forma y tamaño de los cimientos.

Figura 9Cargas sobre una cimentación superficial

Fuente: (Yepes, 2020)

Además, Yepes (2020) menciona que las cimentaciones están diseñadas para no alcanzar su estado limite ultimo o de utilidad; es decir, el primero provoca daños como: hundimientos, estabilidad general, deslizamientos y giros o roturas de elementos estructurales, y el segundo limita su funcionalidad y estética. La capacidad portante es la presión máxima que puede soportar las cimentaciones sin llegar a su estado limite ultimo y la presión admisible es la presión que no alcanza el estado limite ultimo o de servicio, mostrando un factor de seguridad en relación con la capacidad portante hay otro problema fundamental que se debe tener en cuenta cuando se realizan cimentaciones en suelos expansivos, esto ocasionan levantamientos en los cimientos.

Garza (2004) señala que la cimentación es la parte de una estructura que transfiere cargas al suelo, todas las construcciones de edificaciones requieren resolver problemas de cimentación; existen dos tipos de cimentaciones que se utilizan en la práctica, las cimentaciones superficiales o cimentaciones profundas. Estos tipos de cimentaciones muestran diferencias importantes en cuanto a su funcionalidad, al comportamiento del suelo, a su geometría, y a su procedimiento constructivo.

2.2.8.1 Tipo de cimentaciones

2.2.8.1.1 Cimentaciones superficiales

Yepes (2020) señala que las cimentaciones superficiales o también conocidas como directa comúnmente son los más utilizados en construcciones de edificaciones, debido a su bajo costo y su facilidad de construcción. Los esfuerzos verticales y horizontales, y los momentos; se transmiten completamente al suelo por medio de su base de contacto, produciendo una distribución en el suelo que generalmente se considera plana. Así mismo la capacidad portante del suelo no se debe exceder y la deformación resultante debe ser aceptable para la estructura. Además, la relación entre la profundidad (D) y el ancho (B) es menor que 4 m o bien la profundidad (D) es menor que 3 m.

Zapatas aisladas

Son placas que pueden ser cuadradas, rectangulares, y escalonadas que soportan a las columnas (centradas o excéntrica), su altura puede ser constante o variable; cuando una zapata aislada tiene la sección variable la altura mínima en el extremo es de 15 cm. La cimentación más utilizada son las zapatas aisladas debido a que son más económicos. (Harmsen, 2002)

Zapatas combinadas

Es un tipo de zapata que soporta a dos o más columnas alineadas, y son utilizados cuando la distancia entre columnas es reducida o cuando el suelo tiene una capacidad portante baja, donde se requiere zapatas que tengan grandes áreas; esto causa que estas zapatas se sobrepongan, por esta razón lo más adecuado es que se utilice zapatas combinadas. (Harmsen, 2002)

Zapatas conectadas

Se utilizan cuando es necesario reducir la excentricidad que se produce en los cimientos de columnas exteriores, este tipo de zapatas están conectadas mediante una viga de conexión. La viga de conexión intenta transferir el momento originado por la excentricidad de la zapata exterior a la zapata interior, por esta razón la zapata exterior se dimensiona de manera alargada con el fin de minimizar la excentricidad. Además, la viga de conexión debe de tener la rigidez suficiente para garantizar la transferencia y debe tener la capacidad de soportar las cargas transferidas. (Harmsen, 2002)

Losas de cimentación

Alva (2012) establece que las losas de cimentación o plateas de cimentación, es un tipo de cimentación de base grande y soportan muchas columnas. Una losa de cimentación se utiliza cuando el área de cimentación requerida es más de la mitad del área de cimentación, además se utiliza cuando el suelo tiene una capacidad de carga baja o cuando el suelo es comprensible a causa de que la fuerza unitaria en la losa es menor que la fuerza unitaria en una zapata.

Además, señala que, si nos encontramos con un suelo inestable, las losas de cimentación tienen la ventaja de reducir los asentamientos diferenciales a causa de que se reducen los esfuerzos y las losas pueden distribuir las cargas sobre pequeños puntos débiles. Si el material blando se encuentra relativamente poco profunda, las losas reducirán los asentamientos considerablemente; sin embargo, si el material blando se encuentra profundo, las losas no reducirán los asentamientos considerablemente. Así mismo la losa de cimentación para su diseño estructural asume una presión distribuida uniformemente en la parte inferior de la losa, esto dará una evaluación moderada de los momentos de flexión.

Das (2012) menciona que, actualmente se utilizan varios de tipos de plateas de cimentación, algunos de los más comunes son: losa de lámina uniforme, losa de lámina

uniforme con mayor espesor debajo de las columnas, plateas formadas por losas y vigas, losa de lámina plan con pedestales, y losa con muro de sótano.

Según Yepes (2020) las plateas de cimentación a consecuencia de la interacción que hay entre el suelo y la estructura, se considera rígida si se cumple la condición que se muestra a continuación.

$$h \ge \beta \times l \tag{12}$$

Donde:

h: altura de la platea

1: luz libre entre apoyo

β: coeficiente adimensional, está dado por la siguiente ecuación:

$$\beta = 2 \times \left(\frac{K_b \times l}{E_h}\right)^{1/3} \tag{13}$$

Donde:

 K_h : módulo de balasto

 E_h : modulo de elasticidad del material que forma el elemento

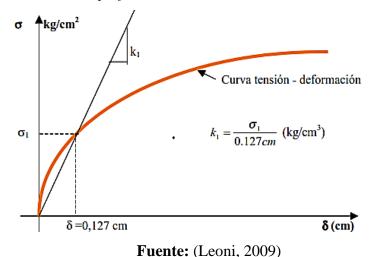
2.2.9 Coeficiente de balasto

Según Leoni (2009) el coeficiente de balasto se identifica con la letra (k) y está relacionada entre la presión transferida al suelo por una placa maciza y la deformación o hundimiento de la placa maciza en el terreno, a través de la relación siguiente:

$$k = \frac{q}{\delta} \tag{14}$$

Donde:

q: presión aplicada por la placa


δ: hundimiento o asentamiento de la placa

El coeficiente de balasto se logra a través de un método de prueba de carga sobre el suelo, se realiza usando una placa de metal sólido, la placa puede ser cuadrada de 30.5 cm de lado o circular con un diámetro de 30.5 cm.

Además, Leoni (2009) establece que el coeficiente de balasto o módulo de reacción se define como la pendiente de la línea que une el origen de coordenadas con el punto de la curva (deformación – tensión). Es decir, la relación entre la presión capaz de provocar un hundimiento de la placa en el suelo de 0.05 pulgadas, lo que corresponde a una deformación de 0.127 cm.

Figura 10

Cargas sobre una cimentación superficial

Leoni (2009) establece que los resultados de los ensayos realizados se denotan con la letra (k_1) , a fin de mostrar que el valor pertenece a una placa rígida de 1 pie².

2.3 DEFINICIÓN DE TÉRMINOS BÁSICOS

2.3.1 Expansión urbana

Es la expansión de las ciudades y sus vecindarios hacia las áreas rurales en las afueras de las áreas urbanas. Los residentes de grandes áreas residenciales tienden a vivir en casas unifamiliares y se desplazan en automóvil. (NORMA E.050, 2018)

2.3.2 Viviendas unifamiliares

Es una propiedad en la que vive una sola familia. En este sentido, debe distinguirse de los complejos de apartamentos y de los complejos de apartamentos diseñados como áreas residenciales o desarrollos urbanos. (NORMA E.050, 2018)

2.3.3 Cimentación

Se define como el conjunto de elementos de una estructura que tiene como función de transferir las cargas de la estructura al suelo, distribuyéndolas de manera que no excedan la presión permitida del suelo. (Huamani & Ichpas, 2019)

2.3.4 Suelos arcillosos expansivos

Suelos que están compuestas por minerales como caolinita, ilita y montmorillonita. Estas arcillas tienen la propiedad de contraerse cuando pierden humedad y expandirse cuando recuperan humedad. (NORMA E.050, 2018)

2.3.5 Platea de cimentación

Se define como una zapata combinada que abarca toda el área situada debajo de la construcción de una estructura, y que sostiene las cargas de los muros y de las columnas (Huamani & Ichpas, 2019)

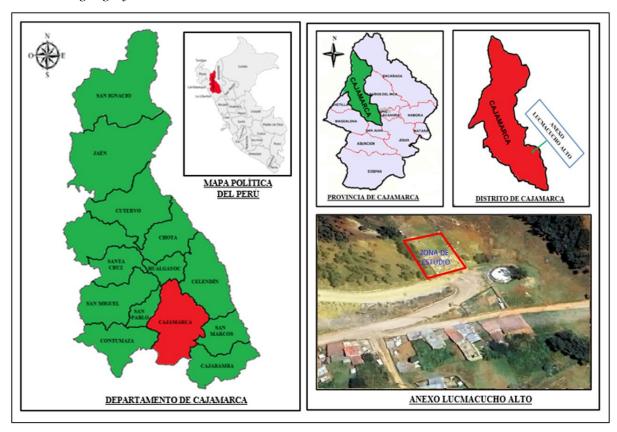
2.3.6 Zapatas

Es un tipo de cimentación superficial que se utilizan en suelos relativamente uniformes y de resistencia a la compresión moderada o alta. (Huamani & Ichpas, 2019)

2.3.7 Esfuerzo actuante de la cimentación

Es el esfuerzo máximo del suelo ejercido sobre el terreno debido al tipo de cimentación de la estructura.

2.3.8 Presión admisible del suelo


Es el valor de la presión de apoyo en el que el riesgo de falla por corte es mínimo. Esta dada por la relación de la capacidad de carga última y el factor de seguridad apropiado. (Chalco & Olivos, 2019)

CAPITULO III. MATERIALES Y MÉTODOS

3.1 UBICACIÓN GEOGRÁFICA

La investigación se realizó en el anexo Lucmacucho Alto, ubicada en el sector Lucmacucho, provincia y departamento de Cajamarca.

Figura 11Ubicación geográfica del anexo Lucmacucho Alto

3.2 ÉPOCA DE LA INVESTIGACIÓN

La investigación se realizó en el año 2023, debido a la variedad de suelo que presenta la zona de estudio, se realizó el estudio de mecánica de suelos con la finalidad de determinar las propiedades físicas y mecánicas del suelo, y proponer una cimentación adecuada para las viviendas unifamiliares.

3.3 METODOLOGÍA

3.3.1 Diseño, Enfoque, tipo, nivel, y Método de Investigación

❖ **Diseño.** La investigación realizada es no experimental, ya que la variable independiente (suelo arcilloso expansivo) no es manipulada en ningún caso para evaluar la propuesta de cimentación adecuada.

- ❖ Enfoque. La investigación realizada es cuantitativa, porque para evaluar la propuesta de cimentación adecuada se tomaron los resultados de una muestra de suelo.
- ❖ **Tipo.** La investigación es de tipo aplicada, se basan en procedimientos y técnicas ya establecidas en otras investigaciones para resolver un determinado problema.
- Nivel. La investigación realizada es correlacional, ya que existe una correlación causa
 efecto entre la variable independiente (Suelo arcilloso expansivo) y la variable dependiente (Tipo de Cimentación).

3.4 POBLACIÓN DE ESTUDIO

La población de estudio está conformada por los suelos arcillosos expansivos del anexo Lucmacucho Alto – sector Lucmacucho, región de Cajamarca.

3.5 MUESTRA

Se consideró tres muestras de suelo arcilloso expansivo, extraídas de cada calicata ubicada en el anexo Lucmacucho Alto – sector Lucmacucho, región de Cajamarca.

Tabla 3 *Ubicación de las 3 calicatas*

N° Calicata	Profundidad	Coordenadas UTM				
N Cancata	(m)	Este (m)	Norte (m)			
C-1	2.0	772201.95	9209173.15			
C-2	2.0	772183.52	9209180.68			
C-3	2.0	772194.44	9209189.41			

El número de calicatas que se realizó en la investigación fue determinado de acuerdo con la Norma E.050, la cual menciona que el número de puntos de investigación no será menor que 3.

Tabla 4 *Número de puntos de investigación*

TABLA N° 6 NÚMERO DE PUNTOS DE INVESTIGACION					
Tipo de edificación Número de puntos de investigación (n)					
A	A 1 cada 225 m ²				
В	1 cada 450 m²				
C 1 cada 800 m ²					
Urbanizaciones para Viviendas 3 por cada Ha. de terreno habilitado Unifamiliares de hasta 3 pisos					

Fuente: Norma E.050

La investigación fue para una vivienda unifamiliar de 3 niveles, es por ello, se realizó 3 calicatas con una profundidad de 2m.

3.6 UNIDAD DE ANÁLISIS

Las unidades de análisis de la presente investigación son los suelos arcillosos expansivos donde se construirán las viviendas unifamiliares.

3.7 TÉCNICAS E INSTRUMENTOS PARA LA RECOLECCIÓN DE DATOS

3.7.1 Técnicas de recolección de Datos

- ❖ Revisión documental. Para el desarrollo de la investigación se revisaron Normas, procedimientos, y reglamentos para los diferentes ensayos de laboratorio para determinar las propiedades del suelo.
- ❖ Observación. La técnica de observación fue directa, ya que, para determinar las propiedades del suelo se realizaron de muestras extraídas de calicatas mediante ensayos de laboratorio.

3.7.2 Equipos y materiales utilizados

3.7.2.1 Materiales

✓ Muestras alteradas y muestras inalteradas de suelos arcillosos expansivos extraídas de la zona en estudio

3.7.2.2 Equipos

- ✓ Balanza con aproximación de 0.1 gr.
- ✓ Estufa con control de temperatura
- ✓ Taras
- ✓ Tamices de 3/4", 1/2", 3/8", 1/4", N°4, N°10, N°20, N°40, N°60, N°100 y N°200.
- ✓ Copa de Casagrande, ranurador, y espátula
- ✓ Equipo de corte directo
- ✓ Extractor de muestras
- ✓ Consolidómetro, piedras porosas, y membrana plástica
- ✓ Fiola (500 ml)
- ✓ Bandejas

3.7.3 Procesamiento de datos

En cuanto al procesamiento de los datos, se realizó a través de formatos de laboratorio, hojas de cálculo, tablas, planos arquitectónicos, y gráficos que nos permiten interpretar los resultados. Esto se realizó utilizando los programas de AutoCAD, Microsoft Excel, y Microsoft Word.

Para el análisis y diseño estructural se utilizaron los softwares ETABS y SAFE, los cuales trabajan aplicando el método de los elementos finitos para el procesamiento de información.

3.8 PROCEDIMIENTO

3.8.1 Excavación de calicatas

La obtención de muestra de suelo se realizó de acuerdo con el método recomendado en la Guía D420 – 18 (Guía estándar para caracterización del sitio para propósitos de diseño y construcción de ingeniería). Cabe mencionar que no se encontró nivel freático durante la excavación de las calicatas.

3.8.2 Estudio de mecánica de suelos

3.8.2.1 Contenido de humedad (ASTM D2216 - 92)

Procedimiento

- \checkmark Se pesó la tara (W_t) , y la muestra húmeda en la tara $(W_h + t)$
- ✓ Se secó la muestra en la estufa por un tiempo de 24 horas a 105 °C
- ✓ Luego de las 24 horas se pesó la muestra seca en la tara $(W_s + t)$
- ✓ Se determino el peso del agua mediante la siguiente expresión:

$$W_W = (W_h + t) - (W_s + t) \tag{15}$$

✓ Se determino el peso de la muestra seca mediante la siguiente expresión:

$$W_W = (W_h + t) - (W_s + t) \tag{16}$$

✓ El contenido de humedad se determinó mediante la siguiente expresión:

$$W(\%) = \frac{W_h}{W_c} * 100 \tag{17}$$

3.8.2.2 Peso específico (ASTM D854)

Procedimiento

- ✓ Se pesó la muestra seca (W_s)
- $\checkmark~$ Se llenó la fiola hasta la marca de 500 ml, y se pesó (W_{fw})
- ✓ Se colocó la muestra en la fiola vacía y se llenó de agua hasta cubrir la muestra, se agitó, posteriormente se conectó la bomba de vacíos en un lapso de 15 minutos.
- ✓ Se retiró la bomba de vacíos, en seguida se agregó agua hasta la marca de 500 ml y se pesó (W_{fws})
- \checkmark Finalmente se determinó el peso especifico (γ_s) mediante la siguiente expresión:

$$\gamma_s = \frac{W_s}{W_s + W_{fw} - W_{fws}} \tag{18}$$

3.8.2.3 Análisis granulométrico mediante tamizado por lavado (ASTM D421)

Procedimiento

- ✓ Se secó la muestra, y se pesó la muestra seca W_s (antes del lavado)
- ✓ Se colocó la muestra en un recipiente, y se cubrió con agua
- ✓ Se tamizó la muestra a través de la malla N°200 mediante chorro de agua
- ✓ Se secó la muestra retenida en la malla N°200, y se pasó la muestra seca por el juego de tamices
- ✓ El porcentaje de los pesos retenidos en cada tamiz (%RP) se determinó mediante la siguiente expresión:

$$\%RP = \frac{RPR}{W_{\rm s}} * 100 \tag{19}$$

✓ El porcentaje de los pesos retenidos acumulados en cada tamiz (%RA) se determinó de la siguiente manera:

$$\% RA1 = \% RP1$$

 $\% RA2 = \% RP1 + \% RP2$ (20)
 $\% RA3 = \% RP1 + \% RP2 + \% RP3, etc.$

✓ Se determinó el porcentaje acumulado que pasan en cada tamiz mediante la siguiente expresión:

$$\% pasa = 100\% - \% RA$$
 (21)

✓ Se realizó la curva granulométrica en escala semilogarítmica, en el eje "x" se registró las aberturas de los tamices en milímetros, y en el eje "y" se registró los porcentajes acumulados que pasan en los tamices.

3.8.2.4 Límite Líquido (ASTM D4318)

Procedimiento

- ✓ En un recipiente se mezcló el suelo que pasa la malla N°40 con agua hasta homogenizar mediante una espátula.
- ✓ Se colocó una porción en la copa de Casagrande, y se niveló hasta tener un espesor de 1 cm mediante una espátula.
- ✓ Se hizo una ranura en el centro de modo que la muestra quedó dividida en 2 partes.
- ✓ Se dejo caer la copa de Casagrande mediate la manivela hasta que se ponga en contacto en la parte inferior de la ranura, registrándose el número de golpes.

- ✓ Con la espátula se retiró la porción de suelo que se puso en contacto en la parte inferior de la ranura, se colocó en una tara para calcular su contenido de humedad.
- ✓ El sobrante se retiró de la copa de Casagrande y se colocó en un recipiente. Se repitió el ensayo 2 veces más.
- ✓ Se dibujo la recta de fluidez en escala semilogarítmica, en el eje "x" se registró el número de golpes aplicado (en escala logarítmica), y en el eje "y" se registró el contenido de humedad (en escala natural).
- ✓ Se determinó el valor correspondiente a los 25 golpes, siendo el correspondiente al Límite Líquido (LL).

3.8.2.5 Límite Plástico (ASTM D4318)

Procedimiento

- ✓ Se agregó suelo seco a la porción de mezcla que se preparó para el límite líquido para que baje su contenido de humedad.
- ✓ Sobre una placa de vidrio se enrollo la muestra con la mano hasta tener cilindros de 3 mm de diámetro, y se determinó el contenido de humedad. Se repitió el ensayo una vez más
- ✓ El límite plástico se determinó mediante el promedio de los dos valores de contenido de humedad.

3.8.2.6 Sistema Unificado de Clasificación de Suelos (SUCS)

Procedimiento

Después de realizar los ensayos de análisis granulométrico mediante tamizado por lavado, Limite Líquido (LL), Límite Plástico (LP), y Índice de Plasticidad (IP). Teniendo estos parámetros se determinó la clasificación del suelo de las 3 muestras extraídas de las calicatas utilizando la carta de plasticidad.

3.8.2.7 Ensayo de corte directo (ASTM D3080)

Procedimiento

- ✓ Se tomó 3 muestras inalteradas en la caja de corte rectangular, la caja rectangular ensamblada se colocó en el equipo de corte directo.
- ✓ Se fijó en ceros los diales.
- ✓ Se aplicó una carga vertical la cual persistirá constante en el transcurso del ensayo.
- ✓ Se aplicó las cargas tangenciales producto de las deformaciones del resorte del anillo horizontal.

- ✓ Se registró las deformaciones tangenciales de la muestra de suelo para cada carga aplicada hasta que se origina la falla en la muestra.
- ✓ Se determinó la gráfica (esfuerzo deformación) en escala natural, y se determinó la gráfica esfuerzo (normal esfuerzo tangencial) en escala natural.
- ✓ Finalmente se determinó el ángulo de fricción interna (Ø), y la cohesión (c).

3.8.2.8 Ensayo expansión libre (ASTM D4546-96)

Procedimiento

- ✓ Se tomó muestras inalteradas de acuerdo con las dimensiones del anillo de 6.19 cm de diámetro y una altura de 2.00 cm, posteriormente se pesó la muestra más el anillo.
- ✓ Se colocó el anillo con la muestra en el Consolidómetro, teniendo en cuenta que el papel de filtro y las piedras porosas se encuentren colocadas correctamente
- ✓ Se agregó agua hasta que rebose sobre la piedra porosa superior para que comience con la expansión. Se dejó la muestra de suelo que se expanda sin proporcionar ninguna carga
- ✓ Se tomó las deformaciones después de varios lapsos de tiempo, las lecturas para 0.1 min, 0.2 min, 0.5 min, 1 min, 2 min, 4 min, 8 min, 15 min, 30 min, 1 hora, 2 horas, 4 horas, 8 horas, 24 horas.
- ✓ Se finalizó el ensayo cuando el deformímetro no varía por un lapso considerable
- ✓ Se tomó muestras de suelo para obtener la humedad final del suelo
- ✓ Se realizó la gráfica (deformación tiempo) de los resultados obtenidos.

3.8.3 Diseño de la cimentación

El diseño estructural de la vivienda unifamiliar se inició con el predimensionamiento de todos los elementos estructurales que conforman la estructura, metrado de cargas, carga muerta, carga viva y carga de sismo, análisis estructural de todos los elementos estructurales de la vivienda unifamiliar con las respectivas combinaciones estipuladas en el Reglamento Nacional de Edificaciones y el Reglamento ACI 318, para obtener las reacciones transmitidas a la cimentación.

3.8.3.1 Predimensionamiento de Elementos Estructurales

3.8.3.1.1 Predimensionamiento de columnas

Las dimensiones de las columnas se obtuvieron teniendo en cuenta para zonas sísmicas, lo cual el área mínima de la columna es de 1000 cm². El área de las columnas esquineras, excéntricas y céntricas se determinó mediante las siguientes fórmulas.

Columnas céntricas

$$A_c = \frac{P_{servicio}}{0.45 * f'c} \tag{22}$$

Donde:

Ac: área de columna

P_{servicio}: carga de servicio

f'c: resistencia nominal a la compresión

Columnas excéntricas y esquineras

$$A_c = \frac{P_{servicio}}{0.35 * f'c} \tag{23}$$

Donde:

Ac: área de columna

P_{servicio}: carga de servicio

f'c: resistencia nominal a la compresión

Siendo:

$$P_{servicio} = P * A * N \tag{24}$$

Donde:

A: área tributaria

N: número de pisos

La edificación es de 3 niveles (N = 3) y es una vivienda unifamiliar. Por lo tanto, pertenece a una edificación de categoría C, siendo el valor de P = 1000 kg/m². Las dimensiones de las columnas que se tomaron son rectangulares con el fin de rigidizar en la estructura en el sentido del eje "x", y se tomó el valor más crítico con el fin de uniformizar la vivienda con un solo tipo de columna.

3.8.3.1.2 Predimensionamiento de vigas

Para las dimensiones de las vigas principales y secundarias se tomó el valor más crítico, teniendo en cuenta el ancho mínimo de 25 cm para estructuras conformadas por pórticos o estructuras sismo resistentes (Norma E.060). El peralte y el ancho se calculó mediante las siguientes expresiones:

$$h = \frac{\ln n}{12} \tag{25}$$

$$b = \frac{2h}{3} \tag{26}$$

Donde:

h: peralte de la viga

ln: luz libre

b: ancho de la viga

3.8.3.1.3 Predimensionamiento de losas

Losa aligerada

Se considero una losa aligerada en una dirección; conformadas por viguetas de 10 cm de ancho, bloques de ladrillo de 30 cm de ancho y losas superior de 5 cm. Para el cálculo se tomó la luz libre más crítica y se calculó mediante la siguiente expresión:

$$e = \frac{\ln}{25} \tag{27}$$

Donde:

e: espesor de la losa

ln: luz libre entre apoyos

Además, Blanco (1995) menciona que, para el dimensionamiento de una losa aligerada armada en una dirección, con sobrecargas normales del orden máximo de 300 a 350 kg/m2; el espesor de la losa aligerada se puede dimensionar teniendo en cuenta los siguientes criterios.

Tabla 5 *Espesores de losa aligerada armado en una dirección*

ESPESOR DE LADRILLO (cm)	ESPESOR DE LOSA (cm)	LUCES (m)	
12	17	L ≤ 4	
15	20	4 ≤ L ≤ 5.5	
20	25	5 ≤ L ≤ 6.5	
25	30	6 ≤ L ≤ 7.5	

Fuente: (Blanco, 1995)

3.8.3.1.4 Predimensionamiento de Zapatas

Para el predimensionamiento de las zapatas se usó la siguiente expresión

$$A_Z \ge \frac{P_{servicio}}{k * q_{adm}} = \frac{P * A * N}{k * q_{adm}}$$
 (28)

Para una vivienda de categoría C, se usa un P = 1000 kg/m2, A = Área tributaria de cada columna, N = 3 pisos más azotea y un k = 0.8 para suelos intermedios.

3.8.3.2 Metrado de cargas

3.8.3.2.1 Carga muerta

La carga muerta está dada por el peso propio de los elementos estructurales como: columnas, vigas, y losas; el cual se calcularon mediante el software ETABS y por el peso de los elementos no estructurales como: piso terminado, albañilería, y tabiquería móvil; el cual fue calculado en base a los pesos unitarios especificados en el Reglamento Nacional de Edificaciones (Norma E.020, 2018). Además, se adicionó el peso del ladrillo de techo.

Tabla 6Pesos unitarios de los materiales

MATERIALES	PESOkN/m³ (Kgf/m³)
Aislamientos de:	
Corcho	2,0 (200)
Fibra de vidrio	3,0 (300)
Fibrocemento	6,0 (600)
Poliuretano y poliestireno	2,0 (200)
Albañilería de:	
Adobe	16,0 (1600)
Unidades de arcilla cocida sólidas	18,0 (1800)
Unidades de arcilla cocida huecas	13,5 (1350)
Concreto Simple de:	
Cascote de ladrillo	18,0 (1800)
Grava	23,0 (2300)
Pómez	16,0 (1600)
Concreto Armado	Añadir 1,0 (100) al peso del concreto simple.

Fuente: (Norma E.020, 2018)

Teniendo como referencia la Norma E.020, el peso de piso terminado es de 100 kg/m2, y el peso de la tabiquería móvil es de 100 kg/m2. El peso del ladrillo del techo es de 88 kg/m2 y se calculó teniendo en cuenta el peso propio de la losa aligerada en una dirección.

Tabla 7Peso del aligerado en una dirección de concreto armado

Losas aligeradas armadas en una sola dirección de Concreto Armado			
Con vigueta 0,10 m de ancho y 0,40 m entre ejes.			
		spesor de losa uperior en metros	Peso propio kPa (kgf/m²)
0,17		0,05	2,8 (280)
0,20		0,05	3,0 (300)
0,25		0,05	3,5 (350)
0,30		0,05	4,2 (420)

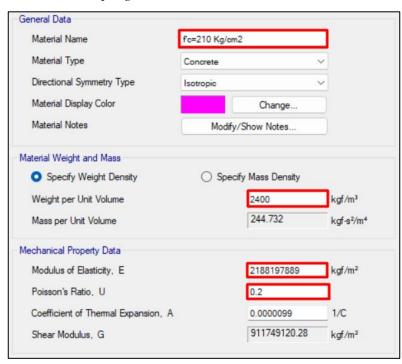
Fuente: (Norma E.020, 2018)

3.8.3.2.2 Carga viva

Según la Norma E.020 (2018) el peso de la carga viva está basado por la carga viva mínima repartida, se calculó de acuerdo con la ocupación o uso y por la carga viva del techo. La edificación en estudio es una vivienda, entonces la carga viva mínima repartida es de 200 kg/m2, y la carga de techo o azotea es de 100 kg/m2.

3.8.3.3 Modelamiento estructural utilizando el software ETABS

3.8.3.3.1 Definición de los materiales


Después de determinar los ejes de la vivienda unifamiliar en el programa Etabs, insertamos las propiedades del concreto y del acero.

✓ Concreto

Tabla 8Características del concreto

Descripción	Valor
Resistencia a la compresión del concreto(f'c)	210 kg/cm2
Peso unitario (γ _c)	2400 kg/m3
Módulo de elasticidad (Ec)	218819.7889 kg/cm2
Módulo de poisson (μ)	0.20

Figura 12Descripción del concreto en el programa Etabs

✓ Acero

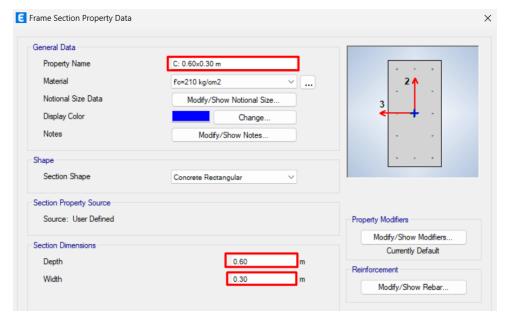
Tabla 9Características del acero de refuerzo

Descripción	Datos
Esfuerzo de fluencia (fy)	4200 kg/cm2
Peso unitario (γ_a)	7850 kg/m3
Módulo de elasticidad (Ec)	2 000 000 kg/cm2
Esfuerzo ultimo (fs)	6300 kg/cm2

Figura 13Descripción del concreto en el programa Etabs

3.8.3.3.2 Definición de las secciones

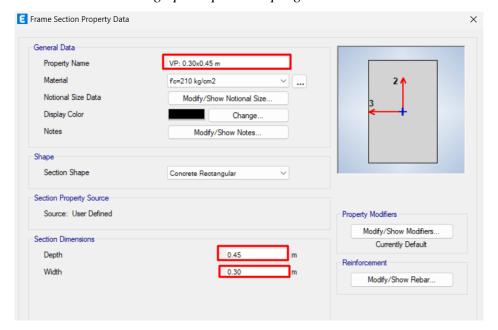
Después de definir los materiales, definimos las secciones de las vigas, columnas y espesor de la losa aligerada en una dirección obtenidos en el predimensionamiento.


Figura 14Dimensiones de los elementos estructurales

Elemento		Sección
Columna		0.30 x 0.60 m
Vigas	Principales	0.30 x 0.45 m
8	Secundarias	0.25 x 0.35 m
Losa aligerada		0.17 m

✓ Columnas

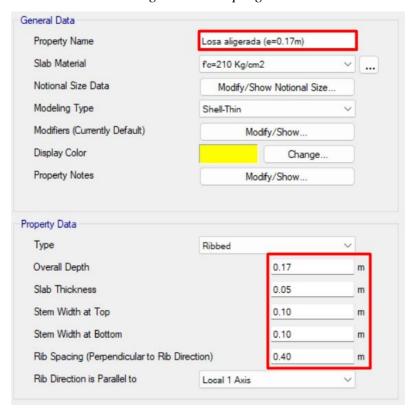
Definimos en el programa Etabs las secciones de las columnas determinadas en el predimensionamiento.

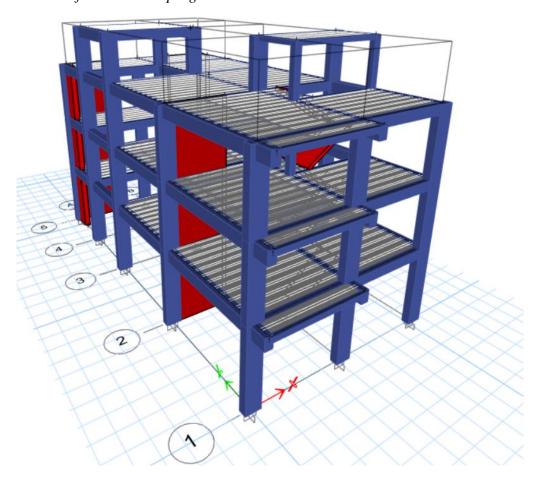

Figura 15Definición de la sección de las columnas en el programa Etabs

√ Vigas

Definimos en el programa Etabs las secciones de las vigas principales y secundarias determinadas en el predimensionamiento.

Figura 16Definición de la sección de la viga principal en el programa Etabs


Figura 17Definición de la sección de la viga secundaria en el programa Etabs


✓ Losa aligerada

Definimos en el programa Etabs el espesor de la losa aligerada en una dirección determinadas en el predimensionamiento.

Figura 18Definición de la sección de la losa aligerada en el programa Etabs

Figura 19 *Modelo de la edificación en el programa Etabs*

3.8.3.3.3 Asignación de cargas

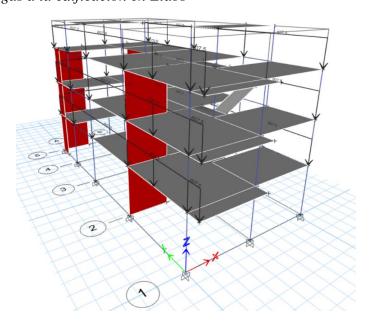
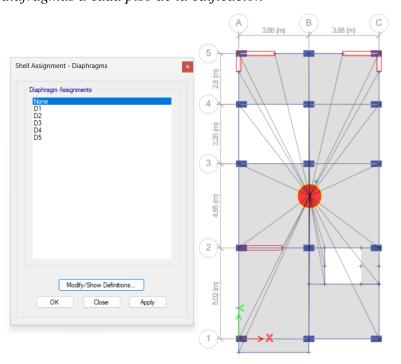
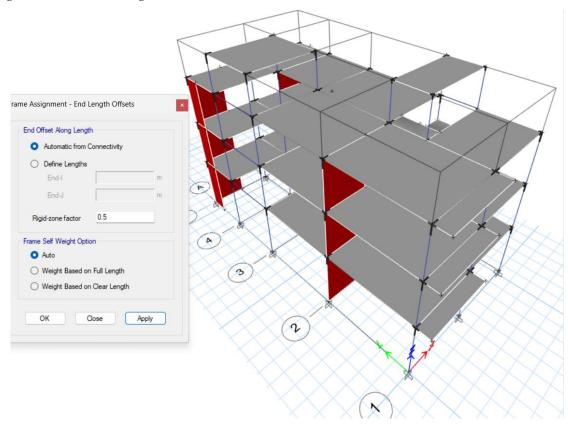

Después de definir las propiedades de los materiales, y definir las secciones de los elementos estructurales; asignamos la carga muerta y viva a la edificación en el programa Etabs.

Tabla 10Valor de las cargas que actúan en la edificación

Descripción		Carga
Entrepiso	Carga Muerta (CM)	288 kg/m2
Littlepiso	Carga Viva (CV)	200 kg/m2
Azotea	Carga Muerta (CM)	188 kg/m2
HZotea	Carga Viva (CV)	100 kg/m2

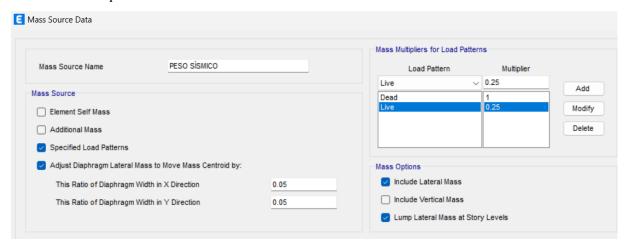
Además, asignamos la carga distribuida de la mampostería. El peso en el segundo y tercer nivel es de 634.50 kg/ml en el eje "x", y 607.50 kg/ml en el eje "y", por último, en el primer nivel es de 769.50 kg/ml en el eje "x", y 742.50 kg/ml en el eje "y".


Figura 20Asignación de cargas a la edificación en Etabs


3.8.3.3.4 Asignación de diafragmas y brazos rígidos

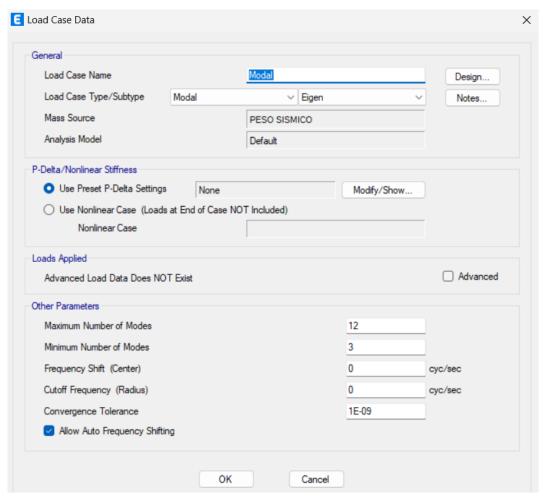
Para determinar el período de vibración de la edificación, primero se tiene que asignar los diafragmas en el programa Etabs. Asignamos un diafragma a cada piso de forma rígida. Seguidamente asignamos los brazos rígidos, lo cual nos permite calcular los esfuerzos en las vigas y columnas.

Figura 21Asignación de diafragmas a cada piso de la edificación


Figura 22Asignación de brazos rígidos

3.8.3.3.5 Estimación del peso (P)

La edificación de la investigación fue una vivienda, lo cual pertenece a la categoría C. Según la Norma E.030 para edificaciones de categoría C, se toma el 25% de la carga viva. Además, menciona que la excentricidad accidental en cada piso es del 5%.


Figura 23 *Estimación del peso sísmico*

3.8.3.3.6 Modos de vibración

Según la Norma E.030 considera que los modos de vibración por lo menos se debe considerar tres modos por piso. La vivienda es de 3 niveles más azotea, por lo tanto, se tiene 12 modos de vibración.

Figura 24Asignación de los modos de vibración.

Finalmente, ya realizado el modelado de la vivienda unifamiliar de 3 niveles, se procedió a realizar el análisis sísmico, lo cual está dado por el análisis sísmico estático y análisis sísmico dinámico

3.8.3.3.7 Análisis sísmico

El análisis sísmico se realizó tomando como referencia el Reglamento Nacional de Edificaciones (Norma E.030, 2018) con el fin de evitar pérdidas de los seres humanos, garantizar la continuidad de los servicios básicos, y minimizar los daños a las edificaciones.

✓ Zonificación

Figura 25

Mapa de zonificación sísmica del Perú

Fuente: (Norma E.030, 2018)

Cada zona del territorio peruano está asignada por un factor Z, en base a la zona de sismicidad como se muestra en la siguiente tabla.

Tabla 11Factores de zona "Z"

Tabla N° 1 FACTORES DE ZONA "Z"				
ZONA Z				
4	0,45			
3	0,35			
2	0,25			
1	0,10			

Fuente: (Norma E.030, 2018)

La edificación de la investigación está ubicada en la ciudad de Cajamarca. Por lo tanto, pertenece a la Zona 3, y el valor del factor Z que le corresponde es de 0,35.

✓ Condiciones Geotécnicas

Según la Norma E.030 (2018) los perfiles de suelos están dada por cinco tipos.

- ❖ Perfil Tipo S₀: Roca Dura
- ❖ Perfil Tipo S₁: Roca o Suelos Muy Rígidos
- ❖ Perfil Tipo S₂: Suelos Intermedios
- ❖ Perfil Tipo S₃: Suelos Blandos
- ❖ Perfil Tipo S₄: Condiciones Excepcionales

La edificación de la investigación pertenece al Perfil Tipo S_2 , el cual esta dado por suelos intermedios.

\checkmark Parámetros de Sitio (S, T_P, T_L)

Teniendo el factor de Zona y el tipo de perfil del suelo de la edificación, determinamos el Factor de Suelo (S), y los periodos de vibración $T_P(s)$ y $T_L(s)$.

Tabla 12Factor de suelo "S"

Tabla N° 3 FACTOR DE SUELO "S"							
SUELO S ₀ S ₁ S ₂ S ₃							
Z ₄ 0,80 1,00 1,05 1,10							
Z ₃ 0,80 1,00 1,15 1,20							
Z ₂	0,80	1,00		1,20	1,40		
Z ₁	0,80	1,00		1,60	2,00		

Fuente: Norma E.030 (2018)

Tabla 13Periodos de vibración " T_P " y " T_L "

Tabla N° 4 PERÍODOS "T _p " Y "T _L "						
	Perfil de suelo					
	S ₀ S ₁ S ₂ S ₃					
$T_{P}(s)$	0,3	0,4		0,6		1,0
$T_{L}(s)$	3,0	2,5		2,0		1,6

Fuente: Norma E.030 (2018)

El tipo de perfil del suelo de la investigación es (S2): Suelos Intermedios. Por lo tanto, el valor del factor suelo (S) es de 1,15. Además el valor de los periodos $T_P(s)$ y $T_L(s)$ es de 0,6 y 2,0 respectivamente.

✓ Factor de Amplificación Sísmica (C)

La Norma E 030 "Diseño Sismorresistente" (2018) expresa como la aceleración de la estructura en relación con la aceleración del suelo y varía de acuerdo con el periodo de vibración. El factor de amplificación sísmica (C) se calcula de acuerdo con las siguientes consideraciones:

$$T < T_P \qquad C = 2.5 \tag{29}$$

$$T_P < T < T_L \qquad C = 2.5 \left(\frac{T_P}{T}\right) \tag{30}$$

$$T > T_L \qquad C = 2.5 \left(\frac{T_P * T_L}{T^2}\right) \tag{31}$$

Los Periodos Fundamentales de Vibración (T) de la vivienda que se obtuvo del análisis modal en el programa ETABS para el análisis en la dirección "X" y en la dirección "Y", son las siguientes:

$$T_{\rm x} = 0.221 \, {\rm seg}$$

$$T_{v} = 0.291 \text{ seg}$$

Teniendo el valor de los periodos fundamentales de vibración $(T_x y T_y)$, y los periodos $T_P(s) y T_L(s)$; calculamos el Coeficiente de Amplificación Sísmica (C) de acuerdo con las consideraciones estipuladas en la Norma E.030 (2018).

Donde:

$$T_P(s) = 0.6$$

El periodo de vibración de la edificación en la dirección "X" y en la dirección "Y" es menor que el periodo $T_P(s)$. Por lo tanto, el Coeficiente de Amplificación sísmica (C) es de 2.5 en las dos direcciones de acuerdo con la Norma E.030 (2018).

✓ Factor de Uso o Importancia (U)

El Factor de Uso o Importancia (U) se halla en base a la clasificación de acuerdo con las categorías de las edificaciones. (Norma E.030, 2018).

La investigación que se realizó es para una vivienda. Por lo tanto, pertenece a la categoría C (Edificaciones Comunes) y el valor del Factor de Uso o Importancia (U) que le corresponde es 1.

Tabla 14Categoría de las edificaciones y factor (U)

Tabla N° 5						
CATEGORÍA DE LAS EDIFICACIONES Y FACTOR "U"						
CATEGORÍA	DESCRIPCIÓN	FACTOR U				
	A1: Establecimientos de salud del Sector Salud (públicos y privados) del segundo y tercer nivel, según lo normado por el Ministerio de Salud.	Ver nota 1				
A Edificaciones Esenciales	 A2: Edificaciones esenciales cuya función no debería interrumpirse inmediatamente después de que ocurra un sismo severo tales como: Establecimientos de salud no comprendidos en la categoría A1. Puertos, aeropuertos, locales municipales, centrales de comunicaciones. Estaciones de bomberos, cuarteles de las fuerzas armadas y policía. Instalaciones de generación y transformación de electricidad, reservorios y plantas de tratamiento de agua. Todas aquellas edificaciones que puedan servir de refugio después de un desastre, tales como instituciones educativas, institutos superiores tecnológicos y universidades. Se incluyen edificaciones cuyo colapso puede representar un riesgo adicional, tales como grandes hornos, fábricas y depósitos de materiales inflamables o tóxicos. Edificios que almacenen archivos e información esencial del Estado 	1,5				
B Edificaciones Importantes	Edificaciones donde se reúnen gran cantidad de personas tales como cines, teatros, estadios, coliseos, centros comerciales, terminales de pasajeros, establecimientos penitenciarios, o que guardan patrimonios valiosos como museos y bibliotecas. También se considerarán depósitos de granos y otros almacenes importantes para el abastecimiento.	1,3				
C Edificaciones Comunes	restaurantes, depósitos e instalaciones industriales cuya falla no					
D Edificaciones Temporales	Construcciones provisionales para depósitos, casetas y otras similares.	Ver nota 2				

Fuente: Norma E.030 (2018)

✓ Coeficiente Básico de Reducción de las Fuerzas Sísmicas (R₀)

Según la Norma E.030 (2018) menciona que los sistemas estructurales se clasifican de acuerdo con el material utilizado en la construcción de la edificación y el sistema estructural sísmico en cada línea de análisis.

Tabla 15Coeficientes básicos de acuerdo con el sistema estructural

Tabla N° 7 SISTEMAS ESTRUCTURALES				
	Coeficiente			
Sistema Estructural	Básico de			
	Reducción R_o (*)			
Acero:				
Pórticos Especiales Resistentes a Momentos (SMF)	8			
Pórticos Intermedios Resistentes a Momentos (IMF)	7			
Pórticos Ordinarios Resistentes a Momentos (OMF)	6			
Pórticos Especiales Concéntricamente Arriostrados	8			
(SCBF)	6			
Pórticos Ordinarios Concéntricamente Arriostrados	8			
(OCBF)				
Pórticos Excéntricamente Arriostrados (EBF)				
Concreto Armado:				
Pórticos	8			
Dual	7			
De muros estructurales	6			
Muros de ductilidad limitada	4			
Albañilería Armada o Confinada.	3			
Madera (Por esfuerzos admisibles)	7			

Fuente: (Norma E.030, 2018)

El sistema estructural de la investigación es de concreto armado, conformado por pórticos y placas en las dos direcciones. En la dirección "X" el sistema estructural es dual y en la dirección "Y" el sistema estructural es pórticos.

✓ Factor de irregularidad

La edificación de la investigación es regular en las dos direcciones. Es decir, el sistema estructural en altura es continua y en planta es simétrica. Por lo tanto, no presenta irregularidades, siendo el factor de irregularidad en altura (I_a) y en planta (I_p) igual a 1,0 en las dos direcciones.

✓ Restricciones de Irregularidad

De acuerdo con la categoría de la edificación y la zona de la investigación en estudio, no se permiten irregularidades.

Tabla 16Categoría y regularidad de las edificaciones

Tabla N° 10 CATEGORÍA Y REGULARIDAD DE LAS EDIFICACIONES					
Categoría de la Edificación	Zona	Restricciones			
A1 y A2	4, 3 y 2	No se permiten irregularidades			
	1	No se permiten irregularidades extremas			
В	4, 3 y 2	No se permiten irregularidades extremas			
	1	Sin restricciones			
	4 y 3	No se permiten irregularidades extremas			
С	2	No se permiten irregularidades extremas excepto en edificios de hasta 2 pisos u 8 m de altura total			
	1	Sin restricciones			

Fuente: (Norma E.030, 2018)

✓ Coeficiente de Reducción de las Fuerzas Sísmicas (R)

Según la Norma E 030 "Diseño Sismorresistente" (2018) Se determina como el producto del Coeficiente Básico de Reducción de las Fuerzas Sísmicas (R_0), y de los factores de Irregularidad en altura (I_a) y en planta (I_p). La ecuación se detalla a continuación:

$$R = R_0 * I_a * I_p \tag{32}$$

Reemplazando los valores en la ecuación (31) se tiene:

$$Rox = 7 * 1 * 1 = 7$$

 $Roy = 8 * 1 * 1 = 8$

Por lo tanto, el Coeficiente de Reducción de las Fuerzas Sísmicas (R) de la edificación de la investigación en la dirección X" es 7 y en la dirección "Y" es 8.

Finalmente teniendo todas las consideraciones para el análisis sísmico mencionadas en la Norma E.030 (2018), realizamos el análisis sísmico estático y análisis sísmico dinámico para la edificación.

• Análisis Sísmico Estático

Consideraciones

Los valores que se obtuvieron considerando la norma E.030 (2018) para el análisis sísmico estático se muestra en la Tabla 17.

Tabla 17Parámetros para el análisis sísmico estático

Valor
0.35
1.15
1.00
7.00
8.00
2.5

Fuerza Cortante en la Base (V)

Según la norma E 030 "Diseño Sismorresistente" (2018) la Fuerza Cortante total en la base de la edificación se calcula mediante la siguiente ecuación:

$$V = \left(\frac{Z * U * C * S}{R}\right) * P \tag{33}$$

Donde:

V: Fuerza Cortante Basal

Z: Factor de Zona

U: Factor de Uso o Importancia

C: Factor de Amplificación Sísmica

S: Factor de Suelo

R: Coeficiente de Reducción de las Fuerzas Sísmicas

P: Peso de la Estructura

La relación del factor de Amplificación Sísmica (C) y el coeficiente de Reducción de las Fuerzas Sísmicas (R) debe ser mayor o igual que 0.125, es decir $(C/R) \ge 0.125$.

El Factor de Amplificación Sísmica (Cx y Cy) de la edificación es a igual a 2.5, y el Coeficiente de Reducción de las Fuerzas Sísmicas; (Rx) es 7 y (Ry) es 8; siendo el valor de la relación igual a 0.357 y 0.313 respectivamente. por lo tanto, el valor de la relación de (C/R) es mayor que 0.125.

El peso de la edificación es igual a 439.32 Tn. Finalmente, se calculó la Fuerza Cortante Basal (V) en la dirección "X" y en la dirección "Y". La Fuerza Cortante Basal en la dirección "X" es de 63.15 Tn y en la dirección "Y" es 55.26 Tn.

Distribución de la fuerza sísmica en altura

Según la Norma E.030 (2018) las fuerzas sísmicas horizontales en cualquier piso se determinan mediante la expresión:

$$F_i = \alpha_i * V \tag{34}$$

$$\alpha_i = \frac{P_i(h_i)^k}{\sum_{j=1}^n P_j(h_j)^k}$$
 (35)

Donde:

n: número de niveles de la edificación

k: exponente que tiene relación con el Periodo de Vibración de la edificación (T)

Además, menciona que el valor del exponente "k" se determina teniendo en cuenta las siguientes consideraciones: si el periodo de vibración (T) es menor o igual que 0.5 segundos, el valor de "k" es de 1.0, y si el valor del periodo de vibración (T) es mayor que 0.5 segundos, el valor de "k" es igual a $(0.75 + 0.5T) \le 2.0$.

El Periodo de Vibración de la vivienda en las dos direcciones es menor que 0.5, por lo tanto, el valor de "k" es de 1.

Periodo de vibración (T)

Según la Norma E.030 (2018) el periodo de vibración para cada dirección se calcula mediante la siguiente expresión:

$$T = \frac{h_n}{C_T} \tag{36}$$

Donde:

 $C_T = 35$; para pórticos de concreto armado sin muros de corte, y para pórticos dúctiles de acero con uniones resistentes a momentos sin arriostramiento.

 $C_T = 45$; para pórticos de concreto armado con muros en las cajas de ascensores y escaleras, y para pórticos de acero arriostrados.

 $C_T = 60$; Edificación de albañilería y para todas las edificaciones de concreto armado duales, de muros estructurales, y muros de ductilidad limitada.

Excentricidad Accidental

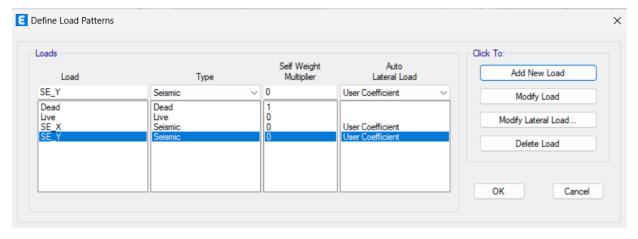
Según la Norma E.030 (2018) para el análisis en cada dirección, la excentricidad accidental en cada piso es el 5% de la dimensión de la estructura perpendicular a la dirección de análisis. Además, en el centro de masas se aplica un Momento Torsor accidental que está dada por la siguiente expresión:

$$M_{ti} = \pm F_i * e_i \tag{37}$$

Donde:

 M_{ti} : Momento Torsor Accidental de cada piso

 F_i : Fuerza en cada piso


e_i: Excentricidad Accidental

Fuerzas sísmicas verticales

Las fuerzas sísmicas verticales se consideran como una parte del peso, es decir es igual a 2/3(ZUS). (Norma E030, 2018)

Finalmente teniendo todos los parámetros calculados y estipulados por la Norma E.030 (2018) ingresamos los resultados al programa Etabs. Definimos los patrones de carga Sismo Estático en la dirección "X" (SE_X) y en la dirección "Y" (SE_Y).

Figura 26
Asignación de patrones de carga en el eje "X" y "Y"

Realizamos el análisis Sismo Estático en las dos direcciones mediante coeficientes, el valor a ingresar al programa Etabs está dada por (ZUCS/R), siendo de 0.14375 para la dirección "X" y 0.12578 para la dirección "Y". Además, ingresamos el valor de "k" que es de 1 para las dos direcciones.

Figura 27
Asignación del coeficiente sísmico en la dirección "X"

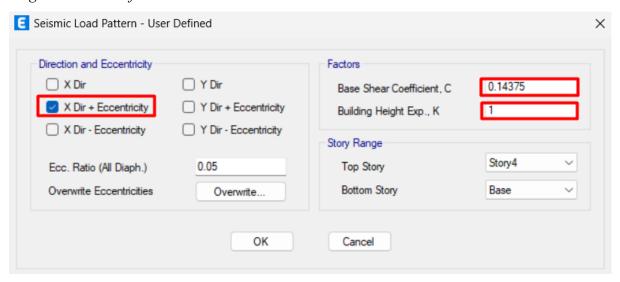
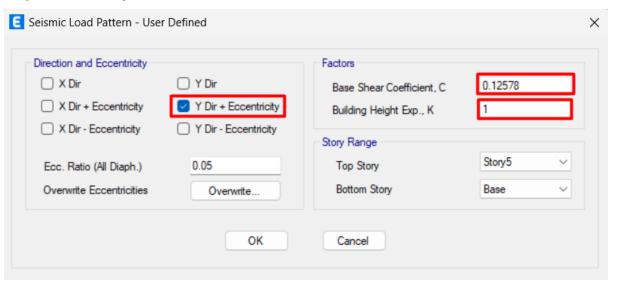
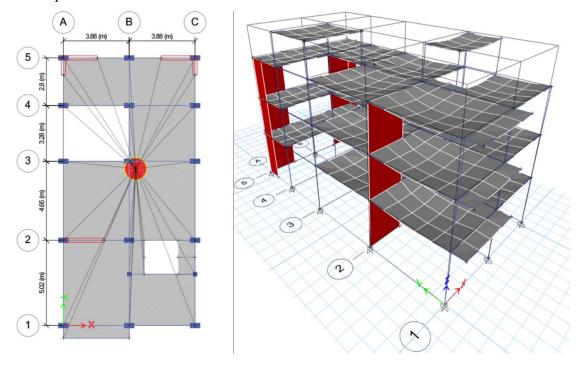




Figura 28
Asignación del coeficiente sísmico en la dirección "Y"

Una vez ingresado el coeficiente para el análisis sísmico estático en la dirección "X" y en la dirección "Y" en el programa Etabs, corremos el análisis (F5). Verificamos los desplazamientos, las irregularidades de la edificación, y ver el análisis estructural si está conformado por pórticos o sistema dual.

Figura 29 *Modelo después de correr el análisis*

Seguidamente evaluamos los desplazamientos laterales, el control se realiza mediante un análisis inelástico para ello pasamos las derivas elásticas a inelásticas, la norma E.030 (2018) menciona que para una estructura regular los desplazamientos se calculan multiplicando 0.75R los resultados del análisis elástico.

Creamos las derivas inelásticas en el programa Etabs tanto para el análisis sismo estático en la dirección "X" (DERIVA_SEX) y para la dirección "Y" (DERIVA_SEY).

Figura 30

Deriva sismo estático en la dirección "X" y "Y"

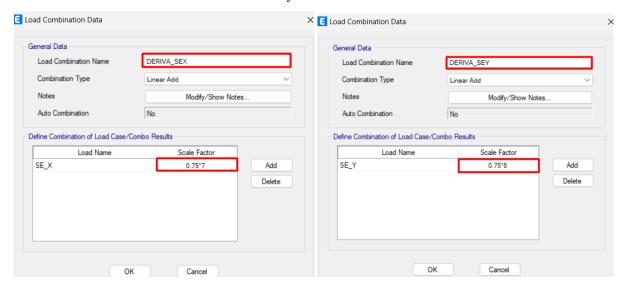
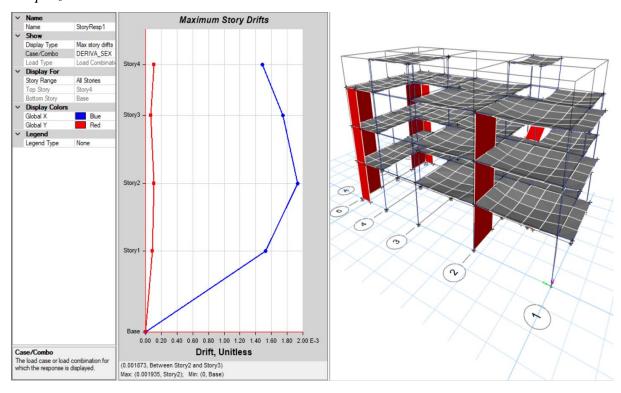
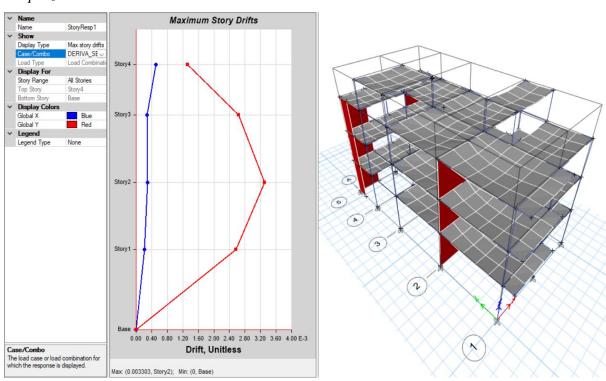
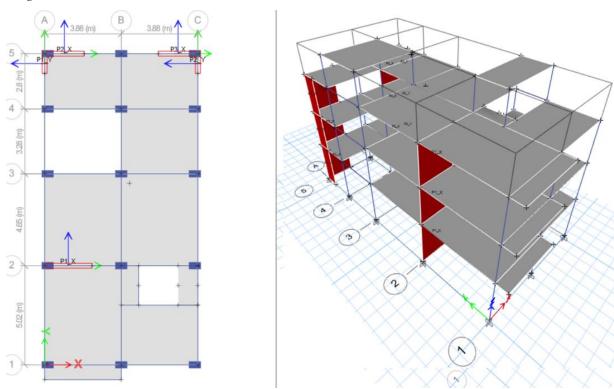




Figura 31

Desplazamiento máximo en la dirección "X"


Figura 32Desplazamiento máximo en la dirección "Y"

El valor del desplazamiento lateral máximo en la dirección "X" es de 0.0019 y en la dirección "Y" es de 0.0033, por lo tanto, cumple con la condición estipulada por la Norma E.030 (2018), es decir los valores que se obtuvieron en la dirección "X" y en la dirección "Y" es menor que 0.007.

Para comprobar si el sistema estructural en el eje "X" es dual y en la dirección "Y" es pórticos, creamos elementos denominados PIERS en las placas para determinar la fuerza cortante de la placa en la base. Se determinó que el porcentaje de la fuerza cortante de la placa en la dirección "X" supera el 20% de la cortante de la edificación en la base y en la dirección "X" no supera el 20% de la cortante de la edificación en la base. Por lo tanto, se concluye que en la dirección "X" es dual y en la dirección "Y" es pórticos

Figura 33 *Asignación de elementos PIERS*

Además, se verifico si la edificación presenta irregularidades torsionales tanto en la dirección "X" y en la dirección "Y". De acuerdo con los resultados que se obtuvieron en el programa Etabs no presenta irregularidad torsional extrema en las dos direcciones de análisis, siendo los valores menores que 1.5 el cual estipula la Norma E.030 (2018).

• Análisis Dinámico

Los valores que se obtuvieron considerando la Norma E.030 (2018) para el análisis sísmico dinámico se muestra en Tabla 18.

Tabla 18Parámetros para el análisis sísmico estático

Descripción	Valor
Factor de Zona (Z)	0.35
Factor de Suelo (S)	1.15
Factor de Uso (U)	1.00
Coeficiente de Reducción de las Fuerzas	
Sísmicas (Rx)	7.00
Coeficiente de Reducción de las Fuerzas	8.00
Sísmicas (Ry)	8.00
Factor de Amplificación Sísmica (Cx y Cy)	2.5

Modos de Vibración

Los modos de vibración según la Norma E.030 (2018) que se consideran son 3 modos en cada piso de la edificación.

Aceleración Espectral (Sa)

la aceleración espectral para las direcciones horizontales se utiliza un espectro inelástico, lo cual está definida por la siguiente expresión. (Norma E 030, 2018)

$$S_a = \left(\frac{Z * U * C * S}{R}\right)g\tag{38}$$

Donde:

Sa: Aceleración Espectral

Z: Factor de Zona

U: Factor de Uso o Importancia

C: Factor de Amplificación Sísmica

S: Factor de Suelo

R: Coeficiente de Reducción de las Fuerzas Sísmicas

g: Aceleración de la gravedad

Además, refiere para el análisis vertical de la estructura se usa un espectro con valores iguales a 2/3 del espectro en la dirección horizontal.

Criterios de Combinación

La Norma E 030 "Diseño Sismorresistente" (2018) refiere que la respuesta máxima elástica por el efecto de los diferentes modos de vibración se determina de la siguiente manera:

$$r = \sqrt{\sum \sum r_i \rho_{ij} r_j} \tag{39}$$

Donde:

r: respuestas modales, desplazamientos o fuerzas

 ρ_{ij} : coeficientes de correlación

Además, menciona que los coeficientes de correlación (ρ_{ij}), se determina mediante la siguiente ecuación:

$$\rho_{ij} = \frac{8\beta^2 (1+\lambda)\lambda^{3/2}}{(1-\lambda^2)^2 + 4\beta^2 \lambda (1+\lambda)^2}; \ \lambda = \frac{\omega_j}{\omega_i}$$
 (40)

Donde:

 β : fracción de amortiguamiento crítico, se asume 0.05 (valor constante para todos los modos) β_{ij} : frecuencias angulares de los modos i, j

Fuerza Cortante Mínima

Para edificaciones regulares, la fuerza cortante en el primer entrepiso tiene que ser mayor que el 80%, y para edificaciones irregulares debe ser mayor que el 90%. Si no se cumple con las condiciones mínimas se tiene que aumentar el cortante, es decir se tienen que escalar proporcionalmente los resultados obtenidos, sin variar los desplazamientos. (Norma E.030, 2018)

Excentricidad accidental

La Norma E.030 (2018) considera una excentricidad accidental perpendicular al sismo de 0.05 veces la dimensión de la edificación.

Análisis Dinámico Tiempo – Historia

El análisis dinámico Tiempo – Historia es un procedimiento complementario, para el análisis debe utilizarse un modelo matemático de la estructura, lo cual determine la respuesta de un grupo de aceleraciones del terreno de acuerdo con la incorporación directa de las

ecuaciones de equilibrio. Los registros de aceleración para el análisis de la estructura se usarán tres grupos de registros de aceleraciones del terreno como mínimo. El modelo matemático representa de manera correcta la distribución de masas en la estructura, se considera un amortiguamiento igual al 5% del amortiguamiento crítico. Las distorsiones de entrepiso máximo deben ser menor a 1.25 veces de los valores que se detallan a continuación: (Norma E 030, 2018)

Tabla 19 *Límites para la distorsión del entrepiso*

Tabla N° 11 LÍMITES PARA LA DISTORSIÓN DEL ENTREPISO		
Material Predominante (Δ_i/h_{ei})		
Concreto Armado	0,007	
Acero	0,010	
Albañilería	0,005	
Madera	0,010	
Edificios de concreto armado con muros de ductilidad limitada	0,005	

Fuente: Norma E.030 (2018)

Para el análisis dinámico en la dirección "X" y en la dirección "Y", en primera instancia se generó el espectro de seudo aceleraciones teniendo en cuenta los parámetros determinados mediante la Norma E.030 (2018).

Figura 34

Espectro seudo aceleración en la dirección "X"

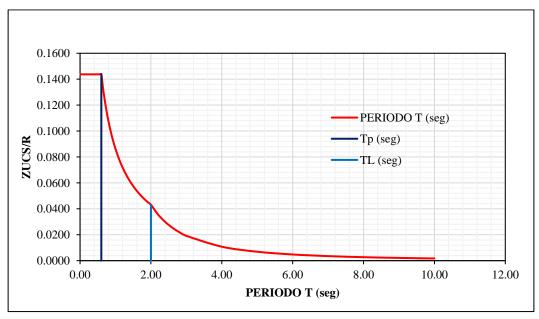
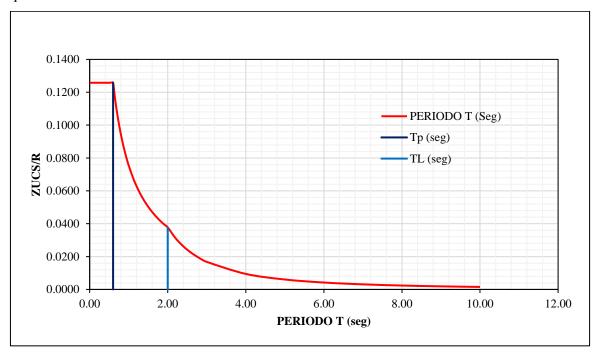



Figura 35
Espectro seudo aceleración en la dirección "Y"

Seguidamente cargamos los datos generados para definir el espectro respuesta tanto para la dirección "X" y para la dirección "Y" al programa Etabs.

Figura 36Espectro de diseño en la dirección "X"

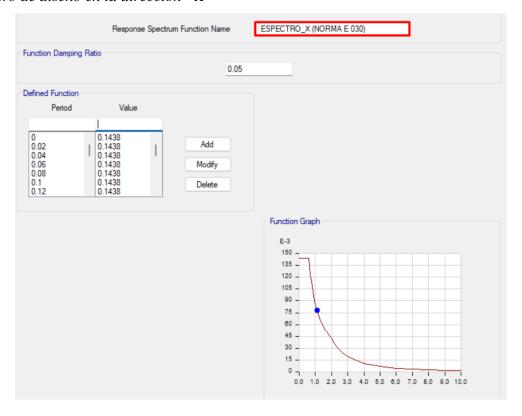


Figura 37
Espectro de diseño en la dirección "Y"

Luego de cargar el espectro de seudo aceleraciones al programa Etabs se procedió a definir las cargas sismo dinámico espectral en la dirección "X" (SD_X) y en la dirección "Y" (SD_Y).

Figura 38

Espectro de diseño en la dirección "X"

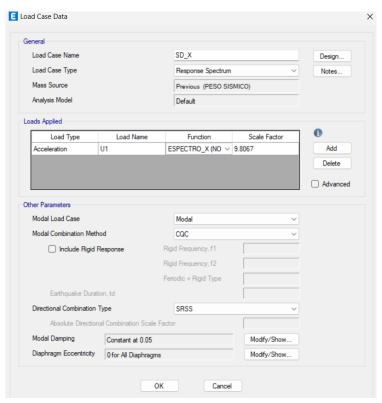
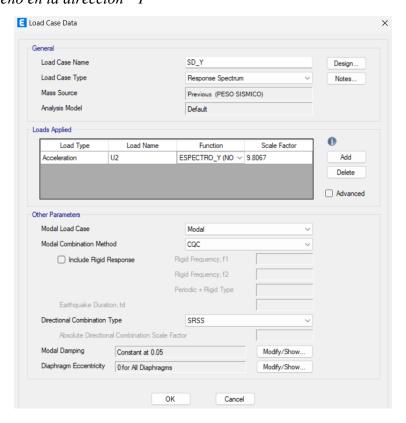
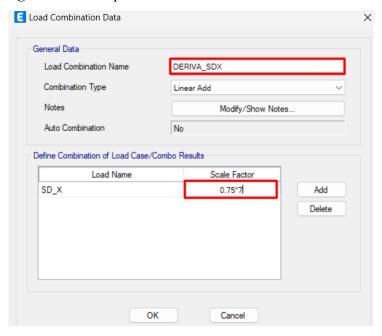
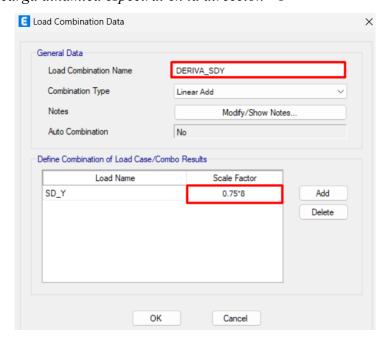
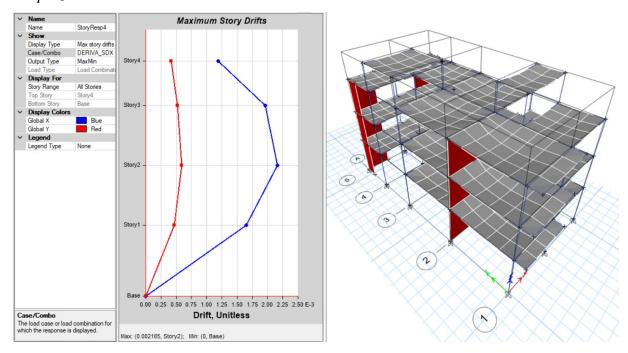



Figura 39
Espectro de diseño en la dirección "Y"

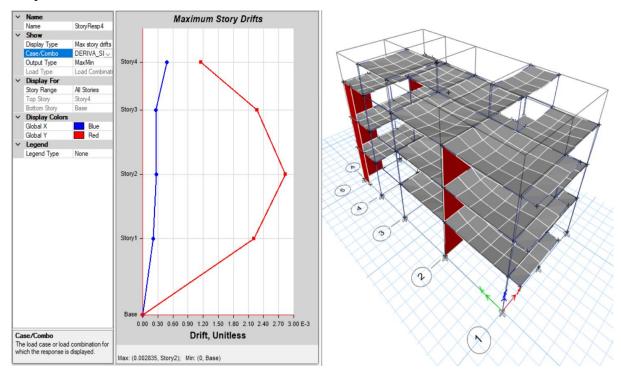
Creamos las derivas inelásticas multiplicando por 0.75 para edificaciones regulares de acuerdo con la Norma E.030 (2018) en el programa Etabs para el análisis sismo dinámico espectral en la dirección "X" (DERIVA_SEDX) y para la dirección "Y" (DERIVA_SDY).

Figura 40Definición de la carga dinámica espectral en la dirección "X"


Figura 41

Definición de la carga dinámica espectral en la dirección "Y"



Verificamos el desplazamiento máximo mediante las derivas sismo dinámico en la dirección "X" y en la dirección "Y".

Figura 42Desplazamiento máximo en la dirección "X"

Figura 43Desplazamiento máximo en la dirección "X"

El desplazamiento máximo de calculadas mediante las derivas inelásticas en la dirección "X" es de 0.0022 y en la dirección "Y" es 0.0028, por lo tanto, son menores que 0.007.

Determinamos la fuerza cortante mínima, de acuerdo con la Norma E.030 (2018) la fuerza cortante determinada mediante el análisis estático no debe ser menor que el 80% de la fuerza cortante dinámica determinada en la base de la edificación para estructuras regulares.

Tabla 20Fuerza cortante dinámica y estática

	Dirección	Fuerza Cortante Estática (kgf)	Fuerza Cortante Dinámica (kgf)	Verificación
_	X	63152.36	52046.54	Cumple
	Y	55258.31	45301.97	Cumple

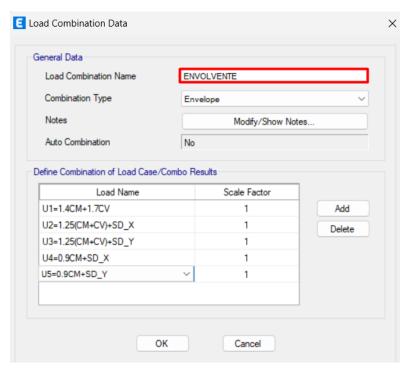
Finalmente realizamos las combinaciones en el programa Etabs teniendo en cuenta las consideraciones que estipula la Norma E.060, lo cual se detalla a continuación.

$$U = 1.4CM + 1.7CV \tag{41}$$

$$U = 1.4(CM + CV) \pm CS \tag{42}$$

$$U = 0.9CM \pm CS \tag{43}$$

Donde:

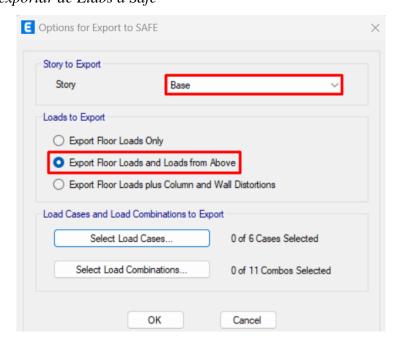

CM: Carga Muerta

CV: Carga Viva

CS: Carga de Sismo en la dirección "X" (SD_X) y en la dirección "Y" (SD_Y)

Para unir todas las combinaciones se creó una envolvente en el programa Etabs, lo cual nos sirve para determinar el diseño por flexión de los elementos estructurales de la edificación.

Figura 44Desplazamiento máximo en la dirección "X"


3.8.3.4 Modelamiento de cimentación utilizando el software SAFE

Para modelar el tipo de cimentación de la vivienda unifamiliar de 3 niveles se exportó del programa Etabs todas las cargas de gravedad, las cargas sísmicas (estática y dinámica). Además, se exportó todas las combinaciones generadas en el programa Etabs.

3.8.3.4.1 Exportación de cargas del Etabs al Safe

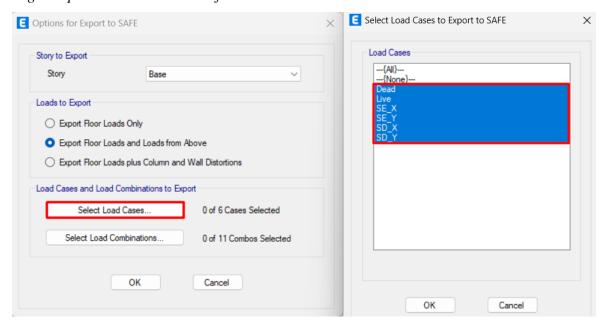

Primero se define la opción de base, es decir, esa opción hace referencia que las cargas que se va a exportar son todas las cargas que llegan de todos los niveles a la base.

Figura 45 *Opciones para exportar de Etabs a Safe*

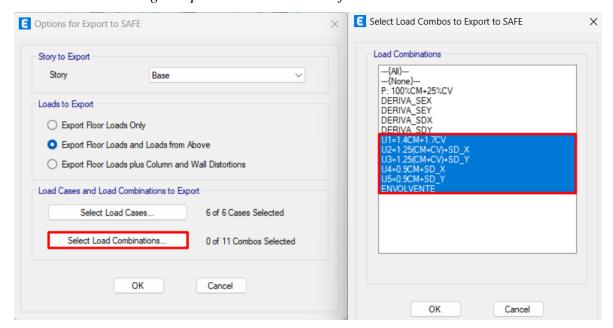

En seguida seleccionamos los casos de cargas que se van a exportar, lo cual hace referencia a la Carga Muerta, Carga Viva, y las Cargas de Sismo Estático (SE) y la Carga de Sismo Dinámico (SD) en las dos direcciones.

Figura 46Cargas exportadas de Etabs a Safe

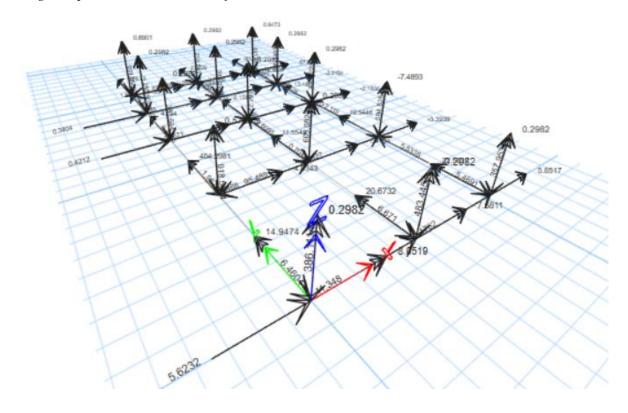
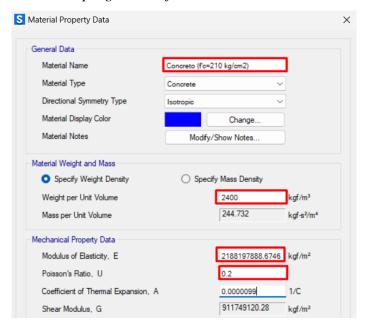

Además, seleccionamos la opción de combinación de cargas, en esta opción exportamos todas las combinaciones generadas en el programa Etabs teniendo como referencia a la Norma E.060.

Figura 47 *Combinaciones de cargas exportadas de Etabs a Safe*

Finalmente, en el programa Safe se verifica las cargas que actúan en la base exportadas del programa Etabs. Las cargas exportadas nos sirven para determinar la propuesta de la cimentación de la vivienda unifamiliar de 3 niveles.

Figura 48Cargas exportadas de Etabs a Safe

3.8.3.4.2 Definición de los materiales en el programa Safe

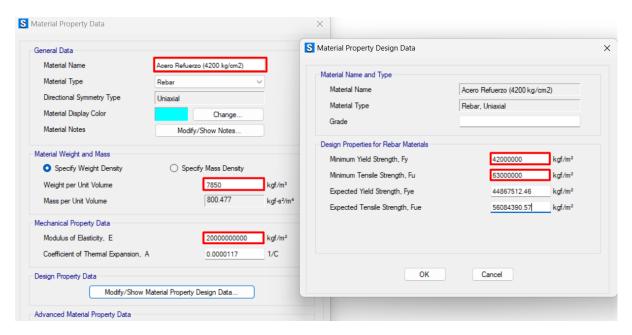

Después de realizar la exportación de cargas y definir los parámetros de suelo para la cimentación se procede a definir las propiedades de los materiales en el programa Safe.

✓ Concreto

Tabla 21Características del concreto

Descripción	Valor
Resistencia a la compresión del concreto(f'c)	210 kg/cm2
Peso unitario (γ_c)	2400 kg/m3
Módulo de elasticidad (Ec)	218819.7889 kg/cm2
Módulo de poisson (μ)	0.20

Figura 49Descripción del concreto en el programa Safe



✓ Acero

Tabla 22Características del acero de refuerzo

Descripción	Datos
Esfuerzo de fluencia (fy)	4200 kg/cm2
Peso unitario (γ _a)	7850 kg/m3
Módulo de elasticidad (Ec)	2 000 000 kg/cm2
Esfuerzo ultimo (fs)	6300 kg/cm2

Tabla 23Descripción del acero de refuerzo en el programa Safe

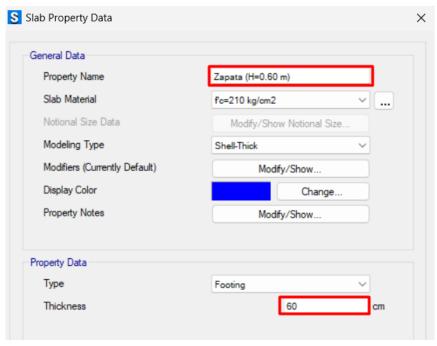
3.8.3.4.3 Definición de la resistencia del suelo

Se tomó las propiedades del suelo más crítico para determinar la propuesta de cimentación, siendo la muestra de la calicata C-2.

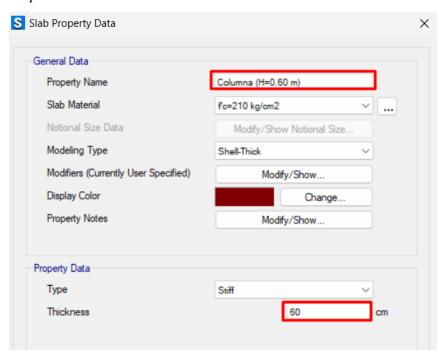
Tabla 24Propiedades del suelo de cimentación

Descripción	Valor
Tipo de suelo mediante SUCS	СН
Tipo de suelo (Norma E 030)	S2
Capacidad portante admisible (q_{adm})	1.48 kg/cm2
Peso específico (γ)	1.89 Tn/m3

3.8.3.4.4 Tipos de cimentación

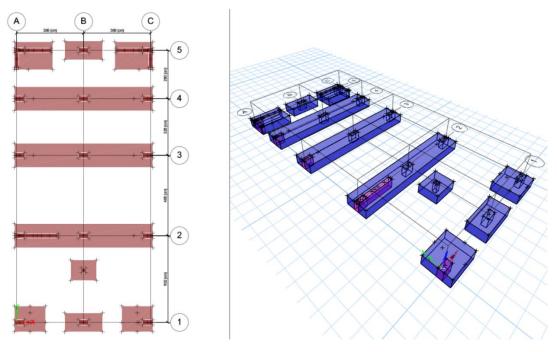

✓ Zapatas

Para la investigación se propuso una zapata con un peralte de 0.50 m, luego de realizar la verificación por punzonamiento resultó que era necesario aumentar el peralte a 0.60 m.


Definición de los elementos rígidos

Definimos el peralte de la zapata (e=0.60m) y el peralte de la columna en el programa Safe.

Figura 50Definición del peralte de la zapata

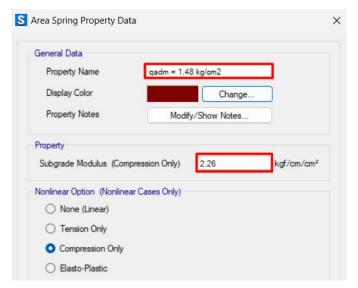

Figura 51Definición del espesor de la columna

Modelado de las zapatas en el programa Safe

Después de definir el peralte de las zapatas y las columnas se prosiguió a modelar en el programa Safe.

Figura 52Vista en planta y 3D de las zapatas de la vivienda.

Para definir el valor del coeficiente de balasto o coeficiente de Winkler se usó la siguiente tabla, teniendo en cuenta la capacidad admisible del suelo de fundación.


Figura 53 *Coeficiente de balasto*

Esf Adm	Winkler	Esf Adm	Winkler	Esf Adm	Winkler
(Kg/Cm2)	(Kg/Cm3)	(Kg/Cm2)	(Kg/Cm3)	(Kg/Cm2)	(Kg/Cm3)
0.25	0.65	1.55	3.19	2.85	5.7
0.3	0.78	1.6	3.28	2.9	5.8
0.35	0.91	1.65	3.37	2.95	5.9
0.4	1.04	1.7	3.46	3	6
0.45	1.17	1.75	3.55	3.05	6.1
0.5	1.3	1.8	3.64	3.1	6.2
0.55	1.39	1.85	3.73	3.15	6.3
0.6	1.48	1.9	3.82	3.2	6.4
0.65	1.57	1.95	3.91	3.25	6.5
0.7	1.66	2	4	3.3	6.6
0.75	1.75	2.05	4.1	3.35	6.7
0.8	1.84	2.1	4.2	3.4	6.8
0.85	1.93	2.15	4.3	3.45	6.9
0.9	2.02	2.2	4.4	3.5	7
0.95	2.11	2.25	4.5	3.55	7.1
1	2.2	2.3	4.6	3.6	7.2
1.05	2.29	2.35	4.7	3.65	7.3
1.1	2.38	2.4	4.8	3.7	7.4
1.15	2.47	2.45	4.9	3.75	7.5
1.2	2.56	2.5	5	3.8	7.6
1.25	2.65	2.55	5.1	3.85	7.7
1.3	2.74	2.6	5.2	3.9	7.8
1.35	2.83	2.65	5.3	3.95	7.9
1.4	2.92	2.7	5.4	4	8
1.45	3.01	2.75	5.5		
1.5	3.1	2.8	5.6		

Fuente: Nelson Morrison (1993)

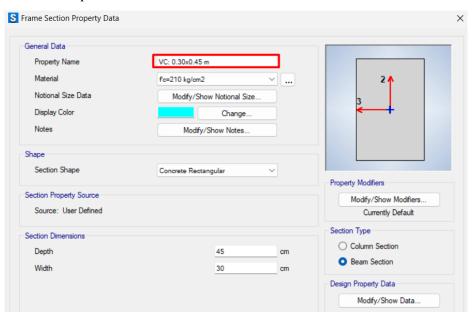

La capacidad admisible del suelo de fundación de la investigación es 1.48 kg/cm2. El coeficiente de balasto se determinó interpolando los valores, resultando el coeficiente de balasto de 2.26 kg/cm3.

Figura 54Definición de la capacidad admisible del suelo y coeficiente de balasto

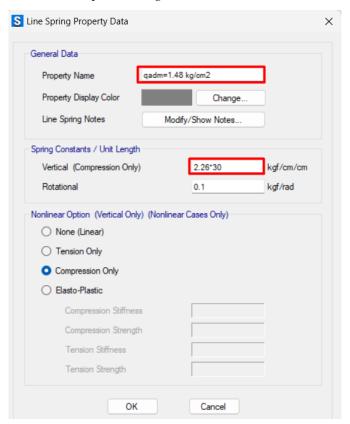
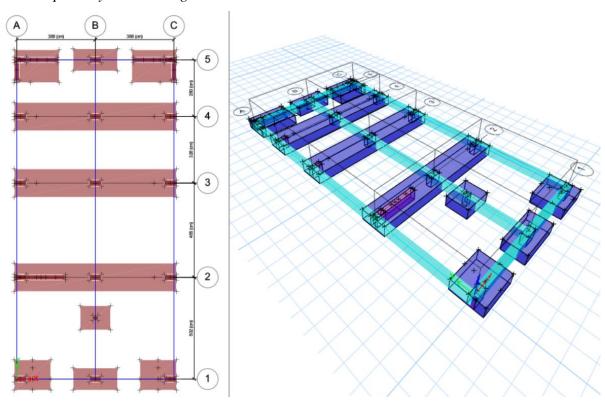
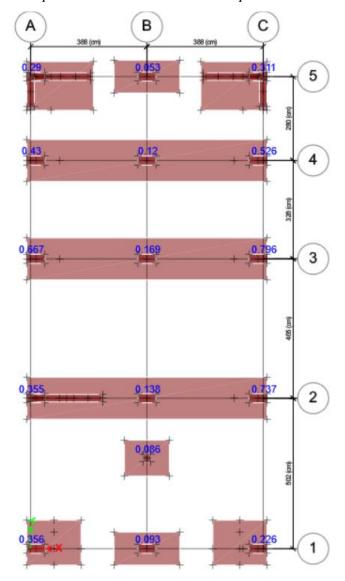

Para definir la viga de cimentación se tomó las dimensiones de la viga principal de la vivienda, siendo el valor de la viga de cimentación de 0.30 x 0.45 m.

Figura 55Carga admisible en la platea de cimentación



También se asignó el esfuerzo admisible, y el coeficiente de balasto para la viga de cimentación. El coeficiente de balasto es el producto del coeficiente de balasto 2.26 kg/cm3 por el ancho de la viga de cimentación que es 30 cm.

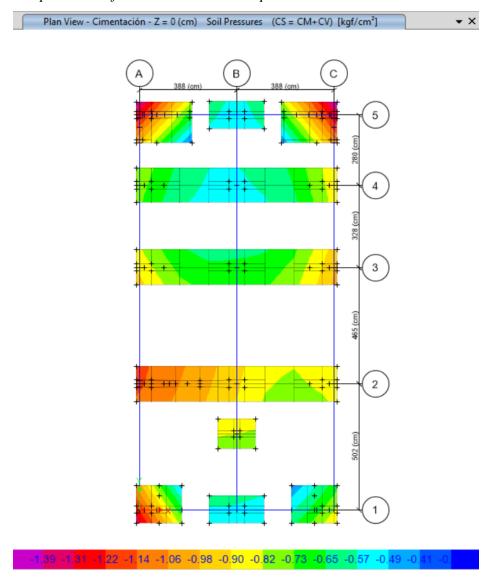
Figura 56Definición del esfuerzo admisible para la viga


Figura 57Vista en planta y 3D de la viga de cimentación

Verificación por punzonamiento

El programa Safe nos brinda la relación del valor de la cortante ultima (Vu) producida por las zapatas, y la cortante de diseño (\emptyset Vc), lo cual este valor tiene que ser menor que 1; es decir $\left(\frac{Vu}{\emptyset Vc} \le 1\right)$.

Figura 58Valores de los factores de punzonamiento en todas las zapatas



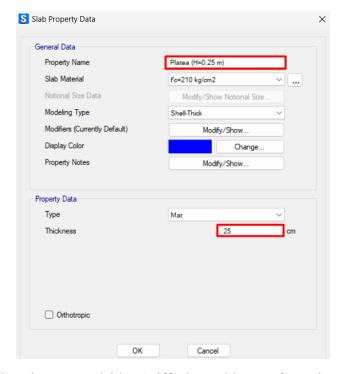
Se observa que cumple con la verificación por punzonamiento, es decir, los valores obtenidos son menores que 1. Por lo tanto, la sección de las zapatas es aceptable para la vivienda unifamiliar.

Verificación de presiones

Para la verificación de presiones, se tiene que cumplir que el esfuerzo actuante de la zapata tiene que ser menor o igual que al esfuerzo admisible del suelo ($\sigma_{actuante} \leq \sigma_{adm}$).

Figura 59Valores de las presiones efectivas en todas las zapatas

Se observa que el esfuerzo máximo producida por las zapatas es de 1.39 kg/cm2, siendo menor que 1.48 kg/cm2, por lo tanto, la sección propuesta es correcta.


✓ Platea de cimentación

Se propuso una platea de cimentación nervada de espesor de 0.25 m y la viga de nervadura de sección de 0.30x0.35 m, cuando la arcilla se hincha, se expande en los espacios que hay entre las vigas y así se reduce la presión de hinchamiento.

Definición de los elementos rígidos

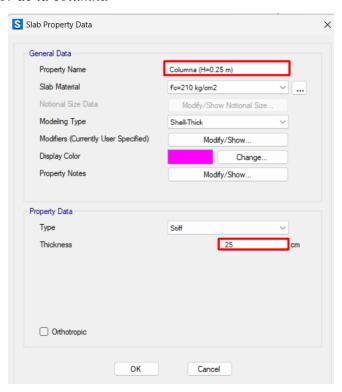

Definimos el espesor de la platea de cimentación (e = 0.25 m) en el programa Safe, como el espesor de la platea de cimentación es de espesor de gran dimensión se considera una losa gruesa.

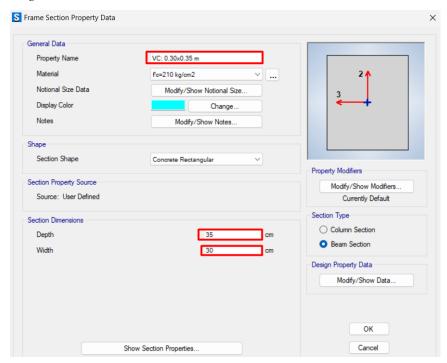
Figura 60Definición del espesor de la losa de cimentación



Además, definimos los elementos rígidos (stiff), lo cual hace referencia a los elementos que se empotran en la platea de cimentación con el mismo espesor. Tenemos las columnas y las placas.

Figura 61Definición del espesor de la columna

Figura 62Definición de la placa



Asignamos la carga admisible del suelo siguiendo el mismo procedimiento que se realizó para las zapatas.

Definición de la sección de la viga de nervadura

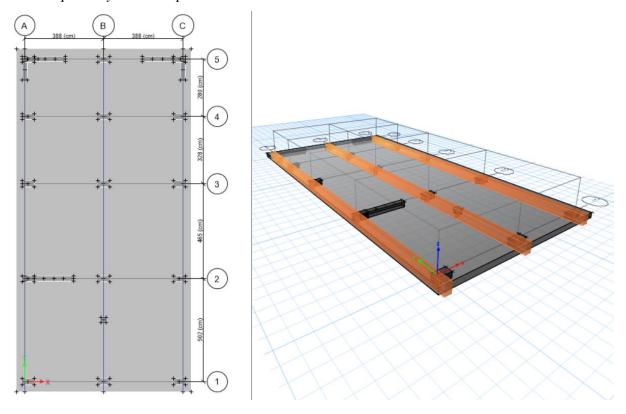
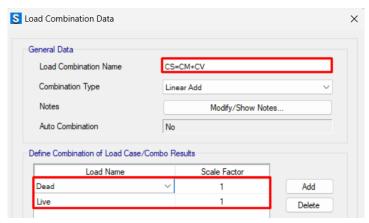

Definimos las dimensiones de la viga de nervadura en el programa Safe, las dimensiones de la viga de nervadura es 0.30x0.35m, la cual evitará la falla por punzonamiento.

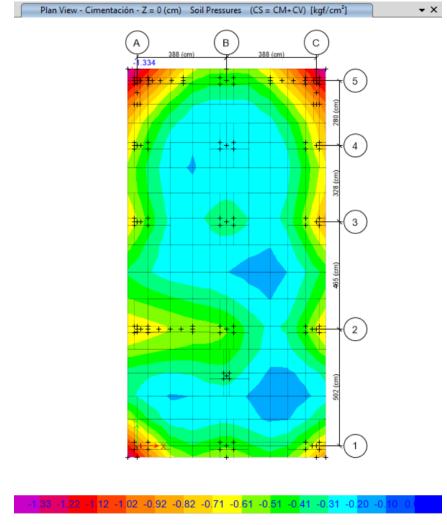
Figura 63Definición de la viga de nervadura

También asignamos el esfuerzo admisible, y el coeficiente de balasto para la viga de nervadura siguiendo el mismo procedimiento que se realizó para las zapatas.


Figura 64Vista en planta y 3D de la platea de cimentación nervada

Definición de las combinaciones de diseño

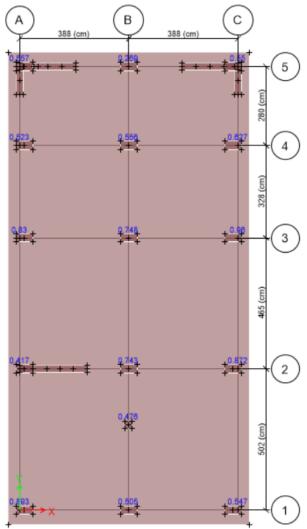
Se define la combinación de servicio con el fin de verificar que el esfuerzo actuante $(\sigma_{actuante})$ debe ser menor o igual al esfuerzo admisible del suelo de fundación (σ_{adm}) .


Figura 65Definición de la combinación de servicio

Verificación de presiones

Se inicia el análisis en el programa Safe con el fin de determinar si la sección de la platea de cimentación propuesta es la adecuada. Para ello se verificó las presiones, es decir, el esfuerzo actuante de la platea de cimentación tiene que ser menor o igual que al esfuerzo admisible del suelo ($\sigma_{actuante} \leq \sigma_{adm}$).

Figura 66Valores de las presiones efectivas en la platea de cimentación



Se observa que el esfuerzo máximo producida por la platea de cimentación es de 1.33 kg/cm2, lo cual es menor que 1.48 kg/cm2, por lo tanto, la sección propuesta es correcta.

Verificación por corte y punzonamiento

Finalmente se realiza la verificación por corte y punzonamiento se debe cumplir la condición ($Vu \le \emptyset Vc$). El programa Safe nos brinda la relación del valor de la cortante ultima (Vu) producida por la platea de cimentación, y la cortante de diseño (\emptyset Vc), lo cual este valor tiene que ser menor que 1; es decir $\left(\frac{Vu}{\emptyset Vc} \le 1\right)$.

Figura 67Valores de los factores de punzonamiento en la platea de cimentación

Se observa que cumple con la verificación por punzonamiento, los valores obtenidos son menor que 1. Por lo tanto, la sección de la platea de cimentación es aceptable para la vivienda de 3 niveles.

3.9 PRESENTACIÓN DE RESULTADOS

3.9.1 Estudio de mecánica de suelos

3.9.1.1 Contenido de humedad (ASTM D2216)

Tabla 25Contenido de humedad de las 3 muestras de suelo

N° calicata	W (%)
C-1	16.89
C-2	17.26
C-3	16.24

3.9.1.2 Peso específico (ASTM D854)

Tabla 26Peso específico de las 3 muestras de suelo

N° calicata	γs (gr/cm3)
C-1	1.96
C-2	1.89
C-3	1.91

3.9.1.3 Análisis granulométrico mediante tamizado por lavado (ASTM D421)

Tabla 27 *Análisis granulométrico de las 3 muestras de suelo*

Descripción	Porcentaje (%)		
Descripcion	C-1	C-2	C-3
Grava	0.32	0.34	5.20
Arena	5.52	4.76	7.30
Finos	94.16	94.90	87.5

3.9.1.4 Límites de Consistencia (ASTM D4318)

Tabla 28 *Límites de consistencia de las 3 muestras de suelo*

Descripción _		Calicatas	
Descripcion	C-1	C-2	C-3
Límite Liquido (LL)	45	61	51
Límite Plástico (LP)	25	25	26
Índice plástico (IP)	20	37	25

3.9.1.5 Clasificación del suelo mediante SUCS (D2487)

Tabla 29Nombre del grupo mediante SUCS de las 3 muestras de suelo

Calicatas	Nombre del grupo
C-1	CL (Arcilla de baja plasticidad)
C-2	CH (Arcilla de alta plasticidad)
C-3	CH (Arcilla de alta plasticidad)

3.9.1.6 Ensayo de Corte Directo (D2487)

Tabla 30Capacidad portante de las 3 muestras de suelo

Calicatas	Cohesión (c)	Ángulo de fricción (Ø)	Capacidad portante (kg/cm2)	Capacidad admisible (kg/cm2)
C-1	0.64	12.91	4.56	1.52
C-2	0.68	11.25	4.45	1.48
C-3	0.58	14.16	4.46	1.49

3.9.1.7 Ensayo expansión libre

Tabla 31Porcentaje de expansión de las 3 muestras de suelo

N° calicatas	Porcentaje de
N cancatas	expansión (%)
C-1	8.74
C-2	8.95
C-3	8.68

3.9.2 Diseño de la cimentación

3.9.2.1 Predimensionamiento de Elementos Estructurales

✓ Losa aligerada

Tabla 32 *Espesor de losa aligerada en una dirección*

Descripción	Valor
e (cm)	17

✓ Vigas

Tabla 33Dimensiones de las vigas principales y secundarias

Tipo de viga	Peralte (cm)	Ancho (cm)
VP	45.00	30.00
VS	35.00	25.00

✓ Columnas

Tabla 34 *Dimensiones de las columnas*

Columnas	Tipo de columna	a (cm)	b (cm)
C-1	Esquinera	60.00	30.00
C-2	Excéntrica	60.00	30.00
C-5	Céntrica	60.00	30.00

✓ Zapatas

Tabla 35 *Dimensiones de las zapatas*

Columnas	Tipo de columna	a (cm)	b (cm)	e (cm)		
Z-1	Esquinera	1.80	1.10	0.50		
Z-2	Excéntrica	2.20	1.10	0.50		
Z-5	Céntrica	2.70	1.50	0.50		

3.9.2.2 Metrado de cargas

✓ Carga muerta

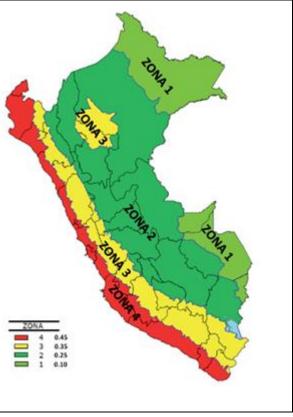
Tabla 36Valor de la carga muerta de la vivienda

Descripción	Valor
Peso Ladrillo	88.00 kg/m2
Piso Terminado	100.00 kg/m2
Tabiquería móvil	100.00 kg/m2
WD	288.00 kg/m2

Tabla 37Carga distribuida de la mampostería

Descripción	Eje "X"	Eje "Y"		
Espesor de ladrillo	0.15 m	0.15 m		
Altura efectiva	2.2 m	2.4 m		
Peso específico de albañilería	1800 kg/m3	1800 kg/m3		
WD	634.50 kg/m2	607.50 kg/m2		

✓ Carga viva


Tabla 38 *Carga viva de la vivienda*

Descripción	Valor
sobre carga (S/C)	200
Techo y Azotea	100
WL	300

3.9.2.3 Análisis sísmico

Tabla 39Parámetros para el análisis sísmico.

Factor de Zona (Z)	Zona	0.35	
ractor de Zona (Z)	3	0.55	
Factor de Suelo (S)	Suelo	1.15	
Factor de Suelo (S)	S2	1.13	
Periodos	Тр	0.6	4
rendos	TL	2.0	
Footor do Uso (U)	Vivienda	1	
Factor de Uso (U)	Categoría C	1	
Esaton de Imagularidad	Ia	1	
Factor de Irregularidad	Ip	1	A
Coeficiente Básico de			The same of the sa
Reducción de la Fuerzas	Dual	7	
Sísmicas (Rox)			
Coeficiente Básico de			
Reducción de la Fuerzas	Pórticos	8	1.2
Sísmicas (Roy)			
Coeficiente de Reducción de las	Rx =Ro*Ip*Ia	7	
Fuerzas Sísmicas (Rx)	rex =reo ip iu	,	
Coeficiente de Reducción de las	Ry =Ro*Ip*Ia	8	
Fuerzas Sísmicas (Ry)	, ,		05-550.65-50
Periodo de Vibración (Tx)	Programa Etabs	0.221	ZONA
Periodo de Vibración (Ty)	Programa Etabs	0.291	3 0.35
Factor de Amplificación	T < Tp	2.50	2 0.25
Sísmica (Cx)	- ` · · · · · · · ·	2.50	
Factor de Amplificación	T < Tp	2.50	
Sísmica (Cy)	_ · · · r		

Tabla 40 *Masas participativas*

		- · ·						<u> </u>						
Case	Mode	Period	UX	UY	$\mathbf{U}\mathbf{Z}$	Sum	Sum	Sum	RX	RY	RZ	Sum	Sum	Sum
Casc	Mouc	sec	UA	01	OL	UX	UY	\mathbf{UZ}	11/1	IX I	IXZ	RX	RY	RZ
Modal	1	0.291	0.0008	0.8428	0	0.0008	0.8428	0	0.2210	0.0003	0.0014	0.2210	0.0003	0.0014
Modal	2	0.221	0.5933	0.0020	0	0.5941	0.8448	0	0.0006	0.1646	0.2496	0.2216	0.1649	0.2511
Modal	3	0.179	0.2394	0.0002	0	0.8336	0.8449	0	0.0002	0.0712	0.5874	0.2218	0.2360	0.8385
Modal	4	0.116	0.0002	0.0001	0	0.8338	0.8451	0	0.0002	0.0140	0.0003	0.2220	0.2500	0.8388
Modal	5	0.081	0.0001	0.1074	0	0.8339	0.9525	0	0.6145	0.0002	0.0005	0.8364	0.2503	0.8392
Modal	6	0.064	0.0016	0.0012	0	0.8355	0.9537	0	0.0074	0.0160	0.0018	0.8439	0.2662	0.8410
Modal	7	0.061	0.0014	0.0114	0	0.8370	0.9651	0	0.0285	0.0071	0.0083	0.8723	0.2733	0.8493
Modal	8	0.058	0.0671	0.0009	0	0.9041	0.9660	0	0.0007	0.3176	0.0149	0.8731	0.5909	0.8642
Modal	9	0.056	0.0004	0.0027	0	0.9044	0.9686	0	0.0136	0.0017	0.0004	0.8867	0.5926	0.8646
Modal	10	0.052	0.0077	0.0013	0	0.9122	0.9700	0	0.0003	0.0328	0.0131	0.8870	0.6254	0.8777
Modal	11	0.044	0.0119	0.0000	0	0.9240	0.9700	0	0.0000	0.0466	0.0384	0.8870	0.6720	0.9162
Modal	12	0.043	0.0000	0.0054	0	0.9240	0.9754	0	0.0274	0.0000	0.0000	0.9144	0.6720	0.9162
Modal	13	0.029	0.0000	0.0056	0	0.9767	1.0000	0	0.0175	0.0001	0.0000	0.9998	0.9226	0.9791
Modal	14	0.026	0.0107	0.0000	0	0.9875	1.0000	0	0.0001	0.0364	0.0070	0.9999	0.9590	0.9861
Modal	15	0.025	0.0000	0.0000	0	0.9875	1.0000	0	0.0000	0.0000	0.0000	1.0000	0.9590	0.9861

✓ Análisis sísmico estático

Análisis sísmico estático en la dirección "X" (SE_X)

Tabla 41 *Periodo de vibración*

descripción	Valor
T	0.221
ZUCS/R	0.14375

Fuerza cortante

Tabla 42Fuerzas laterales en cada piso

Piso	P (Tn)	hi (m)	(hi) ^k	Pi*(hi)k	αί	Fi	Mti
P4	18.108	10.60	10.600	191.947	0.072	4.556	3.588
P3	138.384	8.60	8.600	1190.100	0.447	28.247	22.244
P2	138.384	5.90	5.900	816.464	0.307	19.379	15.261
P1	144.445	3.20	3.200	462.224	0.174	10.971	8.640
Total	439.321			2660.736			

Vx = 63.15 Tn

Verificación de los desplazamientos en el eje "X"

Tabla 43

Desplazamientos en el eje "X"

Story	Output Case	Case Type	Direction	Drift	Label	X	Y	Z	Verificación
		V 1				m	m	m	(< 0.007)
Story4	DERIVA_SEX	Combination	X	0.001483	5	3.88	12.95	10.60	Cumple
Story3	DERIVA_SEX	Combination	X	0.001744	16	0.00	-0.75	8.60	Cumple
Story2	DERIVA_SEX	Combination	X	0.001935	16	0.00	-0.75	5.90	Cumple
Story1	DERIVA_SEX	Combination	X	0.001525	15	7.76	0.00	3.20	Cumple

Verificación de los desplazamientos en el eje "Y"

Tabla 44Desplazamientos en el eje "Y"

Story	Output Case	Coso Typo	Direction	Drift	Label	X	Y	Z	Verificación
Story	Output Case	Case Type	Direction	Dilli	Label	m	m	m	(< 0.007)
Story4	DERIVA_SEY	Combination	Y	0.001325	18	7.76	3.02	10.60	Cumple
Story3	DERIVA_SEY	Combination	Y	0.002635	42	7.76	14.75	8.60	Cumple
Story2	DERIVA_SEY	Combination	Y	0.003303	42	7.76	14.75	5.90	Cumple
Story1	DERIVA_SEY	Combination	Y	0.00257	41	5.76	15.75	3.20	Cumple

Verificación de Irregularidad torsional extrema en el eje "X"

Tabla 45 *Irregularidad torsional extrema en el "X"*

Story	Output Case	Case Type	Item	Max Drift	Avg Drift	Ratio	Label	Verificación (< 1.5)
Story4	DERIVA_SEX	Combination	Diaph D4 X	0.001483	0.00136	1.09	5	Cumple
Story3	DERIVA_SEX	Combination	Diaph D3 X	0.001744	0.001671	1.04	16	Cumple
Story2	DERIVA_SEX	Combination	Diaph D2 X	0.001935	0.001776	1.09	16	Cumple
Story1	DERIVA_SEX	Combination	Diaph D1 X	0.001525	0.001367	1.12	15	Cumple

Verificación de Irregularidad torsional extrema en el eje "y"

Tabla 46 *Irregularidad torsional extrema en el "X"*

Story	Output Case	Case Type	Item	Max Drift	Avg Drift	Ratio	Label	Verificación (< 1.5)
Story4	DERIVA_SEY	Combination	Diaph D4 Y	0.001325	0.001056	1.26	18	Cumple
Story3	DERIVA_SEY	Combination	Diaph D3 Y	0.002635	0.002545	1.04	42	Cumple
Story2	DERIVA_SEY	Combination	Diaph D2 Y	0.003303	0.003211	1.03	42	Cumple
Storv1	DERIVA SEY	Combination	Diaph D1 Y	0.00257	0.002409	1.07	41	Cumple

Verificación del tipo de sistema estructural de la vivienda unifamiliar

Tabla 47 *Tipo de sistema estructural de la edificación en las dos direcciones*

Output Case	Location	Placas	Edificación	Porcentaje	Elemento estructural
SE_X	Bottom	32.34	63.15	51.21%	Dual
SE_Y	Bottom	0.66	55.26	1.19%	Pórticos

Análisis sísmico estático en la dirección "Y" (SE_Y)

Tabla 48 *Periodo de vibración*

descripción	Valor
T	0.291
ZUCS/R	0.12578

Tabla 49 *Fuerzas laterales en cada piso*

Piso	P (Tn)	hi (m)	(hi) ^k	Pi*(hi)k	αί	Fi	Mti
P4	18.108	10.60	10.600	191.947	0.072	4.556	3.588
P3	138.384	8.60	8.600	1190.100	0.447	28.247	22.244
P2	138.384	5.90	5.900	816.464	0.307	19.379	15.261
P1	144.445	3.20	3.200	462.224	0.174	10.971	8.640
Total	439.321			2660.736			

$$Vy = 55.26 \text{ Tn}$$

✓ Análisis sísmico dinámico

Análisis sísmico dinámico en la dirección "X" (SD_X) y en la dirección "Y" (SD_Y)

Tabla 50Espectro de seudo aceleraciones de diseño en la dirección "X"

T	C	ZUCS/R
0.00	2.50	0.1438
0.02	2.50	0.1438
0.04	2.50	0.1438
0.06	2.50	0.1438
0.08	2.50	0.1438
0.10	2.50	0.1438
0.12	2.50	0.1438
0.14	2.50	0.1438
0.16	2.50	0.1438
0.18	2.50	0.1438

0.20	2.50	0.1438
0.25	2.50	0.1438
0.30	2.50	0.1438
0.35	2.50	0.1438
0.40	2.50	0.1438
0.45	2.50	0.1438
0.50	2.50	0.1438
0.55	2.50	0.1438
0.60	2.50	0.1438
0.65	2.31	0.1327
0.70	2.14	0.1232
0.75	2.00	0.1150
0.80	1.88	0.1078
0.85	1.76	0.1015
0.90	1.67	0.0958
0.95	1.58	0.0908
1.00	1.50	0.0863
1.10	1.36	0.0784
1.20	1.25	0.0719
1.30	1.15	0.0663
1.40	1.07	0.0616
1.50	1.00	0.0575
1.60	0.94	0.0539
1.70	0.88	0.0507
1.80	0.83	0.0479
1.90	0.79	0.0454
2.00	0.75	0.0431
2.20	0.62	0.0356
2.40	0.52	0.0299
2.60	0.44	0.0255
2.80	0.38	0.0220
3.00	0.33	0.0192
4.00	0.19	0.0108
5.00	0.12	0.0069
6.00	0.08	0.0048
7.00	0.06	0.0035
8.00	0.05	0.0027
9.00	0.04	0.0021
10.00	0.03	0.0017

Tabla 51

Espectro de seudo aceleraciones de diseño en la dirección "Y"

T	C	ZUCS/R
0.00	2.50	0.1258
0.02	2.50	0.1258
0.04	2.50	0.1258
0.06	2.50	0.1258
0.08	2.50	0.1258
0.10	2.50	0.1258
0.12	2.50	0.1258
0.14	2.50	0.1258
0.16	2.50	0.1258
0.18	2.50	0.1258

0.20	2.50	0.1258
0.25	2.50	0.1258
0.20	2.50	0.1258
0.35	2.50	0.1258
0.40	2.50	0.1258
0.45	2.50	0.1258
0.50	2.50	0.1258
0.55	2.50	0.1258
0.60	2.50	0.1258
0.65	2.31	0.1250
0.70	2.14	0.1101
0.75	2.00	0.1076
0.80	1.88	0.0943
0.85	1.76	0.0888
0.90	1.67	0.0839
0.95	1.58	0.0794
1.00	1.50	0.0755
1.10	1.36	0.0686
1.20	1.25	0.0629
1.30	1.15	0.0581
1.40	1.07	0.0539
1.50	1.00	0.0503
1.60	0.94	0.0472
1.70	0.88	0.0444
1.80	0.83	0.0419
1.90	0.79	0.0397
2.00	0.75	0.0377
2.20	0.62	0.0312
2.40	0.52	0.0262
2.60	0.44	0.0223
2.80	0.38	0.0193
3.00	0.33	0.0168
4.00	0.19	0.0094
5.00	0.12	0.0060
6.00	0.08	0.0042
7.00	0.06	0.0031
8.00	0.05	0.0024
9.00	0.04	0.0019
10.00	0.03	0.0015

Verificación de la fuerza cortante del análisis sismo estático con respecto a la fuerza cortante del análisis sismo dinámico

Tabla 52Fuerza cortante estática y dinámica

Dirección	Fuerza Cortante Estática (Tn)	Fuerza Cortante Dinámica (Tn)	Porcentaje	Verificación
X	63152.36	52046.54	82.41%	Cumple
Y	55258.31	45301.97	81.98%	Cumple

CAPITULO IV. ANÁLISIS Y DISCUSIÓN DE RESULTADOS

En la Tabla 25, Tabla 26, Tabla 27, y la Tabla 28, se presentan los resultados del contenido de humedad, peso específico, análisis granulométricos mediante tamizado por lavado, y límites de consistencia respectivamente: el contenido de humedad varia desde 16.24% hasta 17.24%, el peso específico varía entre 1.89 gr/cm3 y 1.96 gr/cm3, el porcentaje de finos varía desde 87.50% hasta 94.90%, el límite líquido se encuentra en el intervalo del 45% al 61%, y el índice de plasticidad varía entre 20% y 37%.

En la Tabla 29, se presenta los tipos de suelos mediante el Sistema Unificado de Clasificación de Suelos (SUCS) para las 3 muestras de suelo extraídas de las calicatas, resultando arcilla de baja plasticidad (CL), y arcilla de alta plasticidad (CH).

En la Tabla 30, se presentan los resultados referentes a la cohesión, y ángulo de fricción interna mediante el ensayo de corte: la cohesión varía entre 0.58 kg/cm2 y 0.68 kg/cm2, y el ángulo de fricción varía entre 11.25° y 14.16°. A partir de estos resultados se determinaron la capacidad admisible del suelo considerando el factor de seguridad, encontrando que la capacidad portante admisible varía desde 1.48 kg/cm2 hasta 1.52 kg/cm2.

En la Tabla 31, se presentan los resultados del porcentaje de expansión mediante el método directo (ensayo de expansión libre) variando desde 8.68% hasta 8.95%. La cual es un valor para tener en cuenta al momento de diseñar la cimentación.

En la Tabla 32, Tabla 33, Tabla 34, y la Tabla 35, se presentan los resultados del predimensionamiento de los elementos estructurales de la vivienda unifamiliar de 3 niveles teniendo en consideración los parámetros que estipula el Reglamento Nacional de Edificaciones, y fueron corroborados mediante el análisis sísmico estático y análisis sísmico dinámico.

En la Tabla 36, Tabla 37, Tabla 38, se presentan los resultados del metrado de cargas como: la carga por gravedad es de 288.00 kg/cm2, y la carga distribuida en el eje "X" es de 634.50 kg/cm2 y en el eje "Y" es de 607.50 kg/cm2; la carga viva es de 300 kg/cm2. Todos estos valores fueron determinados de acuerdo con el tipo de edificación

En la Tabla 43, y en la Tabla 44, se presentan los resultados del desplazamiento en cada nivel mediante el análisis sísmico estático en los dos ejes: siendo el desplazamiento máximo mediante el análisis sísmico estático en el eje "X" fue de 0.0019 y en el eje "Y" fue de 0.0033. Además, en la Tabla 45, y en la Tabla 46, se presentan los resultados de las irregularidades en las dos direcciones; para que estos valores sean menores a los valores que

estipula la Norma E.030 se colocaron placas en las dos direcciones, y se uniformizaron las columnas tomando en consideración al valor más crítico.

En la Tabla 47, y en la Tabla 53, se presentan los resultados la cortante basal de las placas en la base con respecto al cortante basal de la vivienda; en el eje "X" supera el 50% y en el eje "Y" no supera el 50%. Por lo tanto, se determinaron que en el eje "X" el elemento estructural es dual y en el eje "Y" es pórticos, comparados de acuerdo con la Norma E.030. Además, en la Tabla 52 se tiene que, la fuerza cortante estática con respecto a la fuerza cortante dinámica en los dos ejes superó el 80%. A partir de estos resultados se determinaron las dimensiones adecuadas de los elementos estructurales de la vivienda unifamiliar de 3 niveles.

CAPITULO V. CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES

- ❖ La propuesta de cimentación adecuada es la platea de cimentación nervada reduciendo el esfuerzo actuante máximo en un 3.80 % con respecto a la presión admisible del suelo, garantizando mayor seguridad, estabilidad, y resistencia estructural.
- ❖ La arcilla expansiva tiene un grado de expansibilidad alto, ya que el índice de plasticidad (IP) se encuentra en el rango de 10% y 55% según Holtz y Gibss. El límite líquido se encuentra en el intervalo del 45% al 61%, y el índice de plasticidad varía entre 20% y 37%. Asimismo, el tipo de suelos es arcilla de baja plasticidad (CL) y alta plasticidad (CH), y no se encontraron napa freática en la zona de estudio de la investigación
- ❖ La capacidad admisible del suelo calculada mediante la teoría de Terzaghi está en el rango de 1.48 kg/cm2 y 1.52 kg/cm2, para proponer el tipo de cimentación se tomó el valor más crítico, siendo el valor de la muestra de suelo (CH) que fue de 1.48 kg/cm2.
- ❖ El porcentaje de expansión mediante el método directo (ensayo de expansión libre) varía desde 8.68% hasta 8.95%, para el diseño de la cimentación de la vivienda unifamiliar de 3 niveles se tomó el valor más crítico de 8.95% correspondiente al suelo (CH).
- ❖ El espesor de la platea de cimentación fue de 0.25 m, conformadas por vigas de cimentación de dimensiones de 0.30 m x 0.35 m; donde las vigas de cimentación o vigas de nervadura reducen la presión de expansión y fueron verificadas por punzonamiento. Las dimensiones fueron obtenidas considerando una vivienda unifamiliar de 3 niveles, garantizando que el esfuerzo actuante máximo no exceda la capacidad admisible del suelo arcilloso expansivo.

6.2 RECOMENDACIONES

Realizar investigaciones utilizando ensayos mineralógicos como: difracción de rayos X, y análisis químico para saber el tipo de mineral que presenta las arcillas expansivas, y tener valores más precisos al momento de evaluar una propuesta de cimentación.

REFERENCIAS BIBLIOGRÁFICAS

- Aguilar, W. (2023). Propuesta de diseño de cimentación superficial para edificaciones sobre arcillas expansivas ubicadas en la zona lacustre del Lago Titicaca, Puno, 2023. Tesis de pregrado. Universidad Cesar Vallejo. Lima, Perú.
- Alva Hurtado, J. E. (2012). Diseño de cimentaciones. Instituto de la Construcción y Gerencia.
- ASTM 2487-00. Práctica Estándar para Clasificación de Suelos para Propósitos de Ingeniería (Sistema Unificado de Clasificación de Suelos)
- ASTM 2487-11. Práctica Estándar para Clasificación de Suelos para Propósitos de Ingeniería (Sistema Unificado de Clasificación de Suelos)
- Braja M. Das (2012). Fundamentos de Ingeniería de Cimentaciones, 7ma ed. Cengage Learning. México.
- Braja M. Das (2015). Fundamentos de Ingeniería Geotécnica, 4ta ed. Cengage Learning. México.
- Briones, M. y Irigoin, N. (2015). Zonificación mediante el Sistema Unificado de Clasificación de Suelos (SUCS) y la capacidad portante del suelo, para viviendas unifamiliares en la expansión urbana del anexo Lucmacucho alto sector Lucmacucho, distrito de Cajamarca. Tesis de Pregrado. Universidad Privada del Norte. Cajamarca, Perú.
- Cercado, L. y Zabaleta, J. (2018). Análisis del grado de expansibilidad de suelos arcillosos en las calles del asentamiento humano Señor de los Milagros del Distrito de Chachapoyas Amazonas. Tesis de Pregrado. Universidad Privada Antenor Orrego. Trujillo, Perú.
- Chalco, P. & Olivos, C. (2019). Estudio Geotécnico para el diseño de cimentaciones superficiales en suelos arenosos en el proyecto Oasis, Distrito de Paracas Pisco Ica Perú. Tesis de pregrado. Universidad de San Martin de Porres. Lima Perú.
- Chen, F. H. (2012). Foundations on expansive soils (Vol. 12). Elsevier.
- Crespo, C. (2004). Mecánica de suelos y cimentaciones (5ta Edición ed.). Monterrey, México: Limusa.
- Duque, G. y Escobar, C. (2016). Geomecánica. Universidad Nacional de Colombia.

- Espinoza, A. (2015). Caracterización de arcillas expansivas en el sector Salapa. Tesis de Pregrado. Universidad Técnica Particular de Loja, Ecuador.
- Firoozi, A. A., Guney Olgun, C., Firoozi, A. A., & Baghini, M. S. (2017). Fundamentals of soil stabilization. International Journal of Geo-Engineering, 8, 1-16.
- Garza Vásquez, L. (2004). Diseñó y construcción de cimentaciones.
- Harmsen, T. (2002). Diseño de Estructuras de Concreto Armado (3° ed.). Pontificia Universidad Católica del Perú. INTEMAC. Lima, Perú.
- Holtz, W. G., & Gibbs, H. J. (1956). Engineering properties of expansive clays. Transactions of the American Society of Civil Engineers, 121(1), 641-663.
- Huamani, R. y Ichpas, R. (2019). Diseño de cimentaciones para viviendas por tipos de suelos en la zona urbana del distrito de Secclla Angaraes. Tesis de Pregrado. Universidad Privada Nacional de Huancavelica. Huancavelica, Perú.
- Lambe, T. W. (1960). The Character and Identification of Expansive Soils: A Report Completed for the Technical Studies Program of the Federal Housing Administration. Federal Housing Administration.
- Leoni, A. J. (2009). Apunte de coeficiente de balasto. UNIVERSIDAD NACIONAL DE LA PLATA.
- Ministerio de Vivienda, Construcción y Saneamiento. (2018). Norma Técnica Peruana E.070 Albañilería. Lima: Macro.
- Ministerio de Vivienda, Construcción y Saneamiento. (2018). Norma Técnica Peruana E.060 Concreto Armado. Lima: Macro.
- Ministerio de Vivienda, Construcción y Saneamiento. (2018). Norma Técnica Peruana E.050 Suelos. Lima: Macro.
- Ministerio de Vivienda, Construcción y Saneamiento. (2018). Norma Técnica Peruana E.030 Diseño Sismorresistente. Lima: Macro.
- Ministerio de Vivienda, Construcción y Saneamiento. (2018). Norma Técnica Peruana E.020 Cargas. Lima: Macro.
- Mosquera, S. (2017). Análisis de una platea de cimentación para una edificación de 5 plantas utilizando el software SAP2000. Tesis de pregrado. Universidad de Guayaquil. Guayaquil Ecuador.

- NSR, N. S. R. (2010). Reglamento Colombiano de Construcción Sismo Resistente. NSR-10. Bogotá.
- Roa, R. y Vidal, O. (2019). Evaluación técnica económico de cimentaciones en terreno con baja capacidad portante, caso: edificio Marañón de Huamachuco, la Perla, Callao. Tesis de Pregrado. Universidad Ricardo Palma. Lima, Perú.
- Rodríguez, W. (2018). Ingeniería Geotécnica Suelos y Cimentaciones. Universidad Pedro Ruiz Gallo. Lambayeque, Perú.
- Vera, R. (2017). Evaluación del comportamiento estructural de una vivienda autoconstruida el año 2012, Sector Camino Real II, calle Tres Marías-Provincia de Jaén. Tesis de pregrado. Universidad Nacional de Cajamarca. Cajamarca-Perú.
- Villarreal Castro, G (2013). Ingeniería Sismo-Resistente (1° ed.) Lima-Perú.
- Yepes Piqueras, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Editorial Universitat Politècnica de València.

APÉNDICE

APAENDICE A:

CÁLCULO DEL PESO DEL LADRILLO DE TECHO

* Cantidad de ladrillo

$$C_{ladrillo} = \frac{1}{(A + V) * L}$$

Donde:

C_{ladrillo}: Cantidad de ladrillo (m2)

A: ancho de ladrillo (m) V: ancho de la vigueta (m)

$$C_{ladrillo} = \frac{1}{(0.30 + 0.10) * 0.30} = 8.33$$

$$C_{ladrillo} = 8.33 \text{ ladrillos}$$

❖ Volumen del concreto

Donde:

Espesor de losa (e): 17 cm

$$V_{concreto} = (1.00 \, \text{m} * 1.00 \, \text{m} * 0.17 \, \text{m}) - (0.30 \, \text{m} * 0.30 \, \text{m} * 0.12 \, \text{m} * 8.33)$$

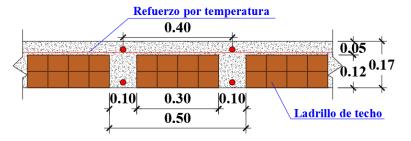
$$V_{concreto} = 0.08 \text{m}3$$

* Peso del concreto

$$P_{concreto} = (0.08) * (2400)$$

$$P_{concreto} = 192.00 \text{ kg/m}2$$

* Peso del ladrillo


Losas aligeradas armadas en una sol dirección de Concreto Armado	a		
Con vigueta 0,10 m de ancho y 0,40 r entre ejes.	n		
Espesor del aligerado (m)		spesor de losa uperior en metros	Peso propio kPa (kgf/m²)
0,17		0,05	2,8 (280)
0,20		0,05	3,0 (300)
0,25		0,05	3,5 (350)
0,30		0,05	4,2 (420)

De acuerdo con la Norma E.020 el peso propio de la losa aligerada en una dirección para un espesor de losa de 17cm es de 280 kg/m2, por lo tanto, el peso del ladrillo por metro cuadrado es:

$$P_{ladrillo} = \left(280 \frac{\text{kg}}{\text{m2}}\right) - \left(192.00 \frac{\text{kg}}{\text{m2}}\right)$$

$$P_{ladrillo} = 88 \text{ kg/m2}$$

Figura 68Detalle de la losa aligerada en una dirección

APAENDICE B:

METRADO DE CARGAS

❖ Primer nivel, segundo nivel, y tercer nivel

✓ Carga Muerta (WD)

$$WD = P_{ladrillo} + P_{terminado} + P_{tabiquer\'ia}$$

Donde:

$$P_{ladrillo} = 88 \text{ kg/cm} 2$$

$$WD = 88 \text{ kg/cm}^2 + 100 \text{ kg/cm}^2 + 100 \text{ kg/cm}^2$$

$$WD = 288 \text{ kg/cm}2$$

✓ Carga Muerta (WL)

De acuerdo con la Norma E.020, la sobrecarga de entrepiso para una vivienda es el siguiente:

$$WL = 200 \text{ kg/cm}2$$

***** Azotea

✓ Carga Muerta (WD)

$$WD = P_{ladrillo} + P_{terminado}$$

$$WD = 88 \text{ kg/cm2} + 100 \text{ kg/cm2}$$

$$WD = 188 \text{ kg/cm2}$$

✓ Carga Muerta (WL)

De acuerdo con la Norma E.020, la carga viva en la azotea para una vivienda es el siguiente:

$$WD = 100 \text{ kg/cm}2$$

Cálculo de la carga distribuida

❖ Primer nivel

✓ *Eje* "X"

Donde:

Peso del ladrillo: 1800 kg/cm3

Espesor de ladrillo: 0.15 m

Altura de entrepiso: 3.20 m

Peralte de la viga: 0.35 m

Altura efectiva: 2.85 m

Peso = (1800 kg/m3)(0.15 m)(2.85 m)

Peso = 769.50 kg/ml

✓ En el eje "Y"

Donde:

Peso del ladrillo: 1800 kg/cm3

Espesor de ladrillo: 0.15 m

Altura de entrepiso: 3.20 m

Peralte de la viga: 0.45 m

Altura efectiva: 2.75 m

Peso = (1800 kg/m3)(0.15 m)(2.35 m)

Peso = 742.50 kg/ml

Segundo nivel y tercer nivel

✓ *Eje* "X"

Donde:

Peso del ladrillo: 1800 kg/cm3

Espesor de ladrillo: 0.15 m

Altura de entrepiso: 2.70 m

Peralte de la viga: 0.35 m

Altura efectiva: 2.35 m

Peso = $(1800 \text{ kg/m}^3)(0.15 \text{ m})(2.35 \text{ m})$

Peso = 634.50 kg/ml

✓ Eje "Y"

Donde:

Peso del ladrillo: 1800 kg/cm3 Espesor de ladrillo: 0.15 m

Altura de entrepiso: 2.70 m

Peralte de la viga: 0.45 m

Altura efectiva: 2.25 m

Peso = $(1800 \text{kg/m}^3)(0.15 \text{ m})(2.25 \text{ m})$

Peso = 607.50 kg/ml

APAENDICE C:

CAPACIDAD ADMISIBLE DEL SUELO (q_{adm})

***** Zapatas rectangulares

✓ Capacidad admisible de la muestra de suelo de la calicata C-1

Descripción	Valor
Ø	12.91°
С	0.64 kg/cm2
В	1.50 m
L	2.00 m
Df	1.50 m
γsuelo	0.00196 kg/cm3
Fs	3
q	0.294 kg/cm2

Donde:

$$q = (Df * \gamma_{suelo})$$

Coeficiente de reducción

Descripción	Valor	
Ø'	8.69°	
C'	0.43 kg/cm2	

Donde:

$$\emptyset' = tan^{-1} \left(\frac{2}{3} * tan \emptyset \right)$$

$$C' = \frac{2}{3} * C$$

Cálculo del valor de "a"

a	a'
1.67	1.42

Cálculo de los factores de Capacidad de Carga

Tipos de falla			
General		Local	
Factores	Valor	Factores Valo	
Nq	3.60	Nq'	2.36
Nc	11.35	Nc'	8.93
Νγ	1.03	Nγ'	0.43

Factores de carga

Descripción	Valor
Sc	1
Sγ	1

Capacidad de carga ultima (qu)

General	Local
qu	qu'
8.46	4.56

Capacidad admisible (qadm)

General	Local
qadm	qadm'
2.82	1.52

✓ Capacidad admisible de la muestra de suelo de la calicata C-2

Descripción	Valor
Ø	11.25°
С	0.68 kg/cm2
В	1.50 m
L	2.00 m
Df	1.50 m
γsuelo	0.00189 kg/cm3
Fs	3
q	0.283 kg/cm2

Donde:

$$q = (Df * \gamma_{suelo})$$

Coeficiente de reducción

Descripción	Valor	
Ø'	7.55°	
C'	0.45 kg/cm2	

Donde:

$$\emptyset' = tan^{-1} \left(\frac{2}{3} * tan \emptyset \right)$$

$$C' = \frac{2}{3} * C$$

Cálculo del valor de "a"

a	a'
1.57	1.35

Cálculo de los factores de Capacidad de Carga

Tipos de falla			
General		Local	
Factores	Valor	Factores	Valor
Nq	3.05	Nq'	2.11
Nc	10.31	Nc'	8.40
Nγ	0.74	Nγ'	0.32

Factores de carga

Descripción	Valor
Sc	1
Sγ	1

Capacidad de carga ultima (qu)

General	Local
qu	qu'
7.97	4.45

Capacidad admisible (qadm)

General	Local
qadm	qadm'
2.66	1.48

✓ Capacidad admisible de la muestra de suelo de la calicata C-3

Descripción	Valor
Ø	14.16°
С	0.58 kg/cm2
В	1.50 m
L	2.00 m
Df	1.50 m
γsuelo	0.00191 kg/cm3
Fs	3
q	0.287 kg/cm2

Donde:

$$q = (Df * \gamma_{suelo})$$

Coeficiente de reducción

Descripción	Valor
Ø'	9.55°
C'	0.39 kg/cm2

Donde:

$$\emptyset' = tan^{-1} \left(\frac{2}{3} * tan \emptyset \right)$$

$$C' = \frac{2}{3} * C$$

Cálculo del valor de "a"

a	a'
1.76	1.47

Cálculo de los factores de Capacidad de Carga

Tipos de falla			
General		Local	
Factores	Valor	Factores	Valor
Nq	4.09	Nq'	2.58
Nc	12.23	Nc'	9.37
Νγ	1.30	Nγ'	0.52

Factores de carga

Descripción	Valor
Sc	1
Sγ	1

Capacidad de carga ultima (qu)

General	Local
qu	qu'
8.50	4.46

Capacidad admisible (qadm)

General	Local
qadm	qadm'
2.83	1.49

APAENDICE D:

1. CONTENIDO DE HUMEDAD, PESO ESPECÍFICO, GRANULOMETRÍA Y LÍMITE DE CONSISTENCIA

Tabla 53

Ensayo de contenido de humedad (C-1)

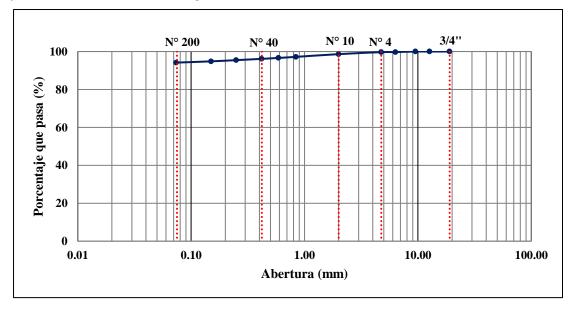
CONTENIDO DE HUMEDAD		
(ASTM D2216)		
CALICATA	C-1	
MUESTRA	M-1	
PROFUNDIDAD	2.00 m	

Contenido de Humedad (W%)	
Wt (gr.)	28.80
Wh + t (gr.)	194.90
Ws + t (gr.)	170.90
Wh (gr.)	166.10
Ws (gr.)	142.10
Ww (gr.)	24.00
W (%)	16.89

Tabla 54 *Ensayo de peso específico (C-1)*

PESO ESPECÍFICO (ASTM D854)		
CALICATA	C-1	
MUESTRA	M-1	
PROFUNDIDAD	2.00 m	

Muestra	M1	M2
Wt (gr.)	28.30	28.10
Wms + t (gr.)	120.00	119.00
Wms (gr.)	91.70	90.90
Wfw (gr.)	663.50	663.50
Wfms (gr.)	705.00	711.00
γs (gr/cm3)	1.83	2.09
γs promedio (gr/cm3)	1.90	6


Tabla 55 *Ensayo de análisis granulométrico mediante tamizado por lavado (C-1)*

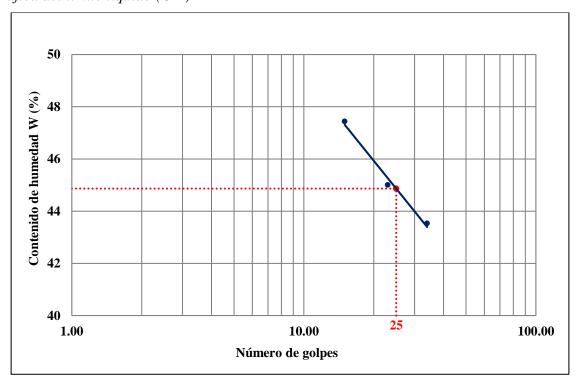
ANÁLISIS GRANULOMÉTRICO MEDIANTE TAMIZADO POR LAVADO (ASTM D421)		
CALICATA	C-1	
MUESTRA	M-1	
PROFUNDIDAD	2.00 m	

Ws: 500 gr.

Tamiz		D D D (cm)	0/ D D	0/ D A	0/ DACA	
N°	Abert. (mm)	R.P.R (gr.)	% R.P.	% R.A.	% PASA	
3/4"	19.050	0.00	0.00	0.00	100.00	
1/2"	12.700	0.00	0.00	0.00	100.00	
3/8"	9.530	0.00	0.00	0.00	100.00	
1/4"	6.350	1.40	0.28	0.28	99.72	
N° 4	4.760	0.20	0.04	0.32	99.68	
N° 10	2.000	5.30	1.06	1.38	98.62	
N° 20	0.840	7.20	1.44	2.82	97.18	
N° 30	0.590	2.80	0.56	3.38	96.62	
N° 40	0.420	2.40	0.48	3.86	96.14	
N° 60	0.250	3.40	0.68	4.54	95.46	
N° 100	0.150	3.20	0.64	5.18	94.82	
N° 200	0.074	3.30	0.66	5.84	94.16	
< 200		470.80	94.16	100	0.00	

Figura 69Gráfica de la curva del análisis granulométrico (C-1)

Gravas (%)	Arenas (%)	Finos (%)
0.32	5.52	94.16


Tabla 56Ensayo de límite de consistencia (C-1)

LÍMITE DE CONSISTENCIA (ASTM D4318)		
CALICATA	C-1	
MUESTRA	M-1	
PROFUNDIDAD	2.00 m	

Tara -	Límite Líquido (LL)			Límite Plástico (LP)	
	LL1	LL2	LL3	LP1	LP2
Wt (gr.)	27.80	28.20	27.80	28.3	28.4
Wmh + t (gr.)	39.30	39.80	40.00	32.5	33.8
Wms + t (gr.)	35.60	36.20	36.30	31.7	32.7
Ww (gr.)	3.70	3.60	3.70	0.80	1.10
Wms (gr.)	7.80	8.00	8.50	3.40	4.30
W (%)	47.44	45.00	43.53	23.53	25.58
N° golpes	15.00	23.00	34.00	25	
LL		45			

Figura 70

Grafica del límite líquido (C-1)

Límite Líquido	Límite Plástico	Índice de Plasticidad
45	25	20

Tabla 57 *Ensayo de contenido de humedad (C-2)*

CONTENIDO DE HUMEDAD (ASTM D2216)		
CALICATA	C-2	
MUESTRA	M-2	
PROFUNDIDAD	2.00 m	

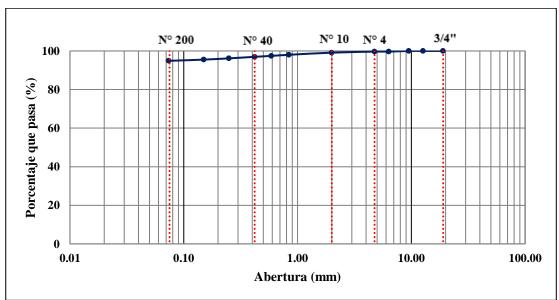
Contenido de Humedad (W%)		
Wt (gr.)	28.10	
Wh + t (gr.)	257.10	
Ws + t (gr.)	223.40	
Wh (gr.)	229.00	
Ws (gr.)	195.30	
Ww (gr.)	33.70	
W (%)	17.26	

Tabla 58 *Ensayo de peso específico (C-2)*

PESO ESPECÍFICO		
(ASTM D854)		
CALICATA	C-2	
MUESTRA	M-1	
PROFUNDIDAD	2.00 m	

Muestra	M1	M2
Wt (gr.)	27.90	26.90
Wms + t (gr.)	122.00	105.00
Wms (gr.)	94.10	78.10
Wfw (gr.)	663.50	663.50
Wfms (gr.)	706.00	701.50
γs (gr/cm3)	1.82	1.95
γs promedio (gr/cm3)	1.89)

Tabla 59 *Ensayo de análisis granulométrico mediante tamizado por lavado (C-2)*


ANÁLISIS GRANULOMÉTRICO MEDIANTE TAMIZADO POR LAVADO (ASTM D421)				
CALICATA	C-2			
MUESTRA M-2				
PROFUNDIDAD	2.00 m			

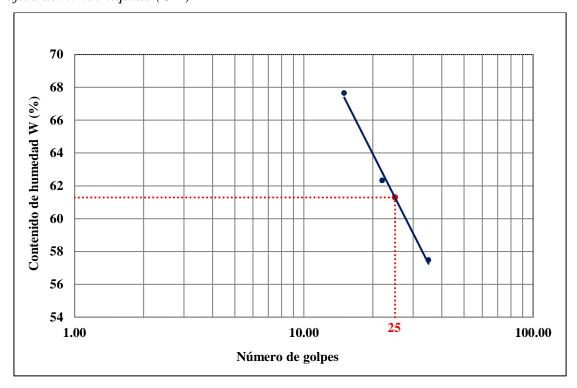
Ws: 500 gr.

Tamiz		D D D (cm)	% R.P.	% R.A.	% PASA
N°	Abert. (mm)	R.P.R (gr.)	70 K.F.	% K.A.	% PASA
3/4"	19.050	0.00	0.00	0.00	100.00
1/2"	12.700	0.00	0.00	0.00	100.00
3/8"	9.530	0.00	0.00	0.00	100.00
1/4"	6.350	1.60	0.32	0.32	99.68
N° 4	4.760	0.10	0.02	0.34	99.66
N° 10	2.000	2.70	0.54	0.88	99.12
N° 20	0.840	5.50	1.10	1.98	98.02
N° 30	0.590	2.80	0.56	2.54	97.46
N° 40	0.420	2.50	0.50	3.04	96.96
N° 60	0.250	3.90	0.78	3.82	96.18
N° 100	0.150	3.30	0.66	4.48	95.52
N° 200	0.074	3.10	0.62	5.10	94.90
	< 200	474.50	94.90	100.00	0.00

Figura 71

Gráfica de la curva del análisis granulométrico (C-2)

Gravas (%)	Arenas (%)	Finos (%)	
0.34	4.76	94.90	


Tabla 60Ensayo de límite de consistencia (C-2)

LÍMITE DE CONSISTENCIA (ASTM D4318)				
CALICATA	C-2			
MUESTRA	M-2			
PROFUNDIDAD	2.00 m			

Tara	Límite Líquido (LL)		Límite Plástico (LP)		
	LL1	LL2	LL3	LP1	LP2
Wt (gr.)	28.20	27.90	26.90	28.3	28.4
Wmh + t (gr.)	39.60	39.10	40.60	32.5	33.8
Wms + t (gr.)	35.00	34.80	35.60	31.7	32.7
Ww (gr.)	4.60	4.30	5.00	0.80	1.10
Wms (gr.)	6.80	6.90	8.70	3.40	4.30
W (%)	67.65	62.32	57.47	23.53	25.58
N° golpes	15.00	22.00	35.00	25	
LL		61	•		

Figura 72

Grafica del límite líquido (C-2)

Límite Líquido	Límite Plástico	Índice de Plasticidad
61	25	37

Tabla 61Ensayo de contenido de humedad (C-3)

CONTENIDO DE HUMEDAD (ASTM D2216)			
CALICATA	C-3		
MUESTRA	M-3		
PROFUNDIDAD	2.00 m		

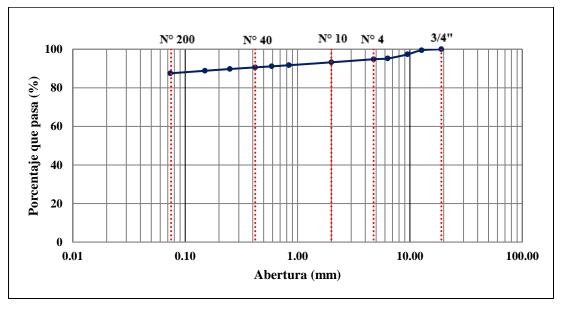
Contenido de Humedad (W%)			
Wt (gr.)	28.30		
Wh + t (gr.)	232.30		
Ws + t (gr.)	203.80		
Wh (gr.)	204.00		
Ws (gr.)	175.50		
Ww (gr.)	28.50		
W (%)	16.24		

Tabla 62 *Ensayo de peso específico (C-3)*

PESO ESPECÍFICO				
(ASTM D854)				
CALICATA	C-3			
MUESTRA	M-1			
PROFUNDIDAD	2.00 m			

Muestra	M1	M2
Wt (gr.)	28.20	28.70
Wms + t (gr.)	125.00	123.00
Wms (gr.)	96.80	94.30
Wfw (gr.)	663.50	663.50
Wfms (gr.)	714.00	703.50
γs (gr/cm3)	2.09	1.74
γs promedio (gr/cm3)	1.91	

Tabla 63Ensayo de análisis granulométrico mediante tamizado por lavado (C-3)


ANÁLISIS GRANULOMÉTRICO MEDIANTE TAMIZADO POR LAVADO				
(ASTM D421)				
CALICATA	C-3			
MUESTRA M-3				
PROFUNDIDAD	2.00 m			

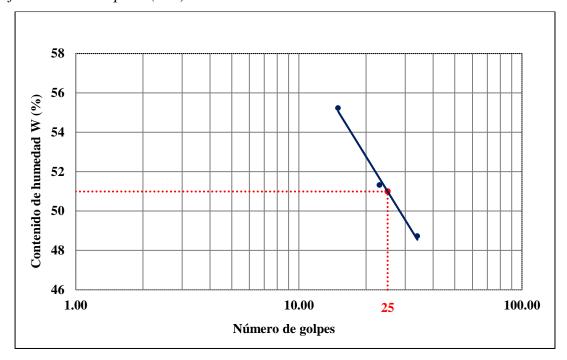
Ws: 500 gr.

Tamiz		R.P.R (gr.) % R.P.	0/ D A	% PASA	
N°	Abert. (mm)	R.P.R (gr.)	% K.F.	% R.A.	% PASA
3/4"	19.050	0.00	0.00	0.00	100.00
1/2"	12.700	2.80	0.56	0.56	99.44
3/8"	9.530	10.60	2.12	2.68	97.32
1/4"	6.350	10.60	2.12	4.80	95.20
N° 4	4.760	2.00	0.40	5.20	94.80
N° 10	2.000	8.00	1.60	6.80	93.20
N° 20	0.840	7.50	1.50	8.30	91.70
N° 30	0.590	2.90	0.58	8.88	91.12
N° 40	0.420	2.70	0.54	9.42	90.58
N° 60	0.250	4.30	0.86	10.28	89.72
N° 100	0.150	4.50	0.90	11.18	88.82
N° 200	0.074	6.60	1.32	12.50	87.50
	< 200	437.50	87.50	100.00	0.00

Figura 73

Gráfica de la curva del análisis granulométrico (C-3)

Gravas (%)	Arenas (%)	Finos (%)
5.20	7.30	87.50


Tabla 64 *Ensayo de límite de consistencia (C-3)*

LÍMITE DE CONSISTENCIA (ASTM D4318)		
CALICATA	C-3	
MUESTRA	M-3	
PROFUNDIDAD	2.00 m	

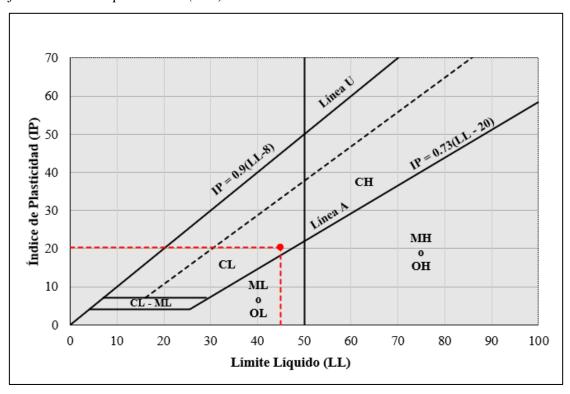
Tara	Límite Líquido (LL)		Límite Plástico (LP)		
Tara	LL1	LL2	LL3	LP1	LP2
Wt (gr.)	28.10	28.00	27.20	26.6	27.7
Wmh + t (gr.)	38.50	39.50	38.80	31.9	32.1
Wms + t (gr.)	34.80	35.60	35.00	30.8	31.2
Ww (gr.)	3.70	3.90	3.80	1.10	0.90
Wms (gr.)	6.70	7.60	7.80	4.20	3.50
W (%)	55.22	51.32	48.72	26.19	25.71
N° golpes	15.00	23.00	34.00	2	6
LL		51	•	_	U

Figura 74

Grafica del límite líquido (C-3)

Límite Líquido	Límite Plástico	Índice de Plasticidad
51	26	25

2. CLASIFICACIÓN MEDIANTE EL SISTEMA UNIFICADO DE CLASIFICACIÓN DE SUELOS (SUCS)


Tabla 65Clasificación de suelo (C-1)

CLASIFICACIÓN SUCS (ASTM D4318)		
CALICATA	C-1	
MUESTRA	M-1	
PROFUNDIDAD	2.00 m	

Límite Líquido	Límite Plástico	Índice de Plasticidad
45	25	20

Figura 75

Grafica de carta de plasticidad (C-1)

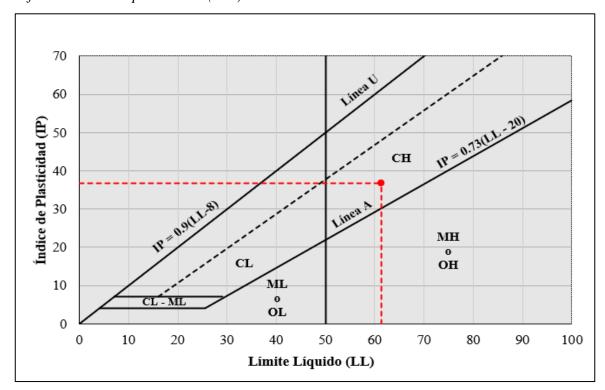

Clasificación		
SUCS	CL	

Tabla 66Clasificación de suelo (C-2)

CLASIFICACIÓN SUCS (ASTM D4318)		
CALICATA	C-2	
MUESTRA	M-2	
PROFUNDIDAD	2.00 m	

Límite Líquido	Límite Plástico	Índice de Plasticidad
61	25	37

Figura 76Grafica de carta de plasticidad (C-2)

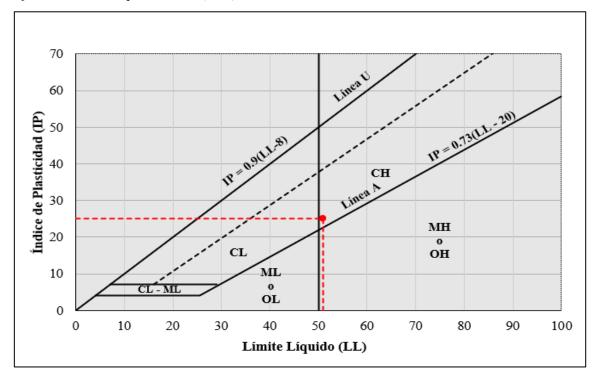

Clasificación		
SUCS	СН	

Tabla 67Clasificación de suelo (C-3)

CLASIFICACIÓN SUCS (ASTM D4318)		
CALICATA	C-3	
MUESTRA	M-3	
PROFUNDIDAD	2.00 m	

Límite Líquido	Límite Plástico	Índice de Plasticidad
51	26	25

Figura 77Grafica de carta de plasticidad (C-3)

Clasificación			
SUCS	СН		

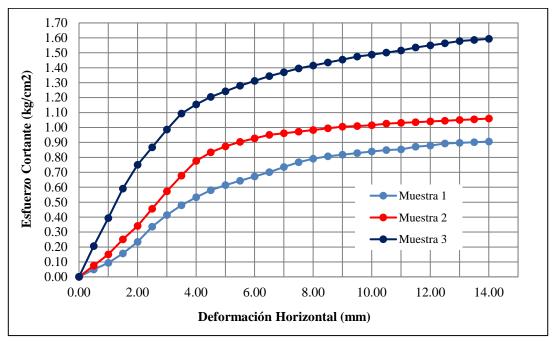
3. CORTE DIRECTO

Tabla 68

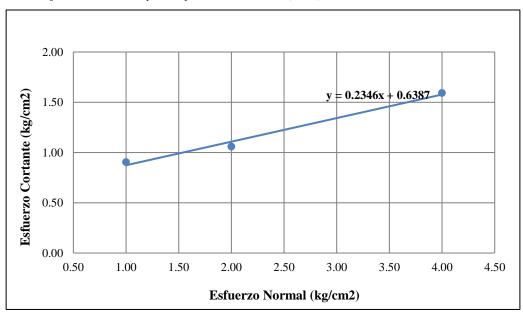
Ensayo de corte directo de la muestra (C-1)

CORTE DIRECTO (ASTM D3080)			
CALICATA	C-1		
MUESTRA	M-1		
PROFUNDIDAD	2.00 m		

Tipo	Lado (cm)	Altura (cm)	Área (cm2)	Vol. (cm3)
Inalterada	6.00	1.80	36.00	64.80


Densidad y Contenido de Humedad					
	1	2	3		
Wmolde (gr.)	138.80	153.40	138.80		
Wmh + molde (gr.)	278.40	296.10	284.00		
Wmh (gr.)	139.60	142.70	145.20		
Dhum (gr/cm3)	2.15	2.20	2.24		
Dseca (gr/cm3)	1.81	1.88	1.88		
Wt (gr.)	28.60	27.90	27.20		
Wmh + t (gr.)	165.90	168.70	171.60		
Wms + t (gr.)	146.10	149.80	149.20		
Wms (gr.)	117.50	121.90	122.00		
Ww (gr.)	19.80	18.90	22.40		
W (%)	16.85	15.50	18.36		

Corres	Muestras				
Cargas	1	2	3		
Pa (marco y placa) (kg)	0.608	0.608	0.608		
Pb (percha carga) (kg)	1.00	2.00	4.00		
PV (kg)	10.418	20.228	39.848		
Esf. Normal (σ) (kg/cm2)	0.289	0.562	1.107		


Datos de prueba			
Vel. Carga (mm/min)	0.50		
Const. Anillo carga (kg/N° div.)	0.446		

Tiempo	Desplaz.	A.	Def.	Fza.	Esf. Cort.	Def.	Fza.	Esf.	Def.	Fza.	Esf.
(min)	Hor (cm)	Correg.	Carga (N°	Corte	(kg/cm2)	Carga (N°	Corte (kg)	Cort.	Carga	Corte	Cort.
(11111)	1101 (0111)	(cm2)	Div.)	(kg)	(11g/ 01112)	Div.)	, 0,	(kg/cm2)	(N° Div.)	(kg)	(kg/cm2)
				1.00			2.00			4.00	
0.000	0.000	36.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.500	0.025	35.850	4.000	1.786	0.050	6.000	2.678	0.075	16.500	7.365	0.205
1.000	0.050	35.700	7.500	3.348	0.094	12.000	5.357	0.150	31.500	14.061	0.394
1.500	0.075	35.550	12.500	5.580	0.157	20.000	8.928	0.251	47.000	20.980	0.590
2.000	0.100	35.400	18.500	8.258	0.233	27.000	12.052	0.340	59.500	26.560	0.750
2.500	0.125	35.250	26.500	11.829	0.336	36.000	16.070	0.456	68.500	30.577	0.867
3.000	0.150	35.100	32.500	14.507	0.413	45.000	20.087	0.572	77.500	34.594	0.986
3.500	0.175	34.950	37.500	16.739	0.479	53.000	23.658	0.677	85.600	38.210	1.093
4.000	0.200	34.800	41.500	18.525	0.532	60.500	27.006	0.776	90.000	40.174	1.154
4.500	0.225	34.650	45.000	20.087	0.580	64.700	28.881	0.833	93.500	41.736	1.205
5.000	0.250	34.500	47.500	21.203	0.615	67.500	30.131	0.873	96.000	42.852	1.242
5.500	0.275	34.350	49.500	22.096	0.643	69.500	31.023	0.903	98.500	43.968	1.280
6.000	0.300	34.200	51.500	22.989	0.672	71.000	31.693	0.927	100.500	44.861	1.312
6.500	0.325	34.050	53.500	23.881	0.701	72.500	32.362	0.950	102.500	45.754	1.344
7.000	0.350	33.900	55.800	24.908	0.735	73.000	32.586	0.961	104.000	46.423	1.369
7.500	0.375	33.750	58.000	25.890	0.767	73.500	32.809	0.972	105.500	47.093	1.395
8.000	0.400	33.600	59.500	26.560	0.790	74.000	33.032	0.983	106.500	47.539	1.415
8.500	0.425	33.450	60.500	27.006	0.807	74.500	33.255	0.994	107.500	47.986	1.435
9.000	0.450	33.300	61.000	27.229	0.818	75.000	33.478	1.005	108.500	48.432	1.454
9.500	0.475	33.150	61.500	27.452	0.828	75.000	33.478	1.010	109.500	48.879	1.474
10.000	0.500	33.000	62.000	27.675	0.839	75.000	33.478	1.014	110.000	49.102	1.488
10.500	0.525	32.850	62.500	27.899	0.849	75.500	33.702	1.026	110.500	49.325	1.502
11.000	0.550	32.700	62.500	27.899	0.853	75.500	33.702	1.031	111.000	49.548	1.515
11.500	0.575	32.550	63.500	28.345	0.871	75.500	33.702	1.035	112.000	49.994	1.536
12.000	0.600	32.400	63.800	28.479	0.879	75.500	33.702	1.040	112.500	50.218	1.550
12.500	0.625	32.250	64.500	28.791	0.893	75.500	33.702	1.045	113.000	50.441	1.564
13.000	0.650	32.100	64.500	28.791	0.897	75.500	33.702	1.050	113.500	50.664	1.578
13.500	0.675	31.950	64.500	28.791	0.901	75.500	33.702	1.055	113.500	50.664	1.586
14.000	0.700	31.800	64.500	28.791	0.905	75.500	33.702	1.060	113.500	50.664	1.593

Tabla 69Grafica del esfuerzo cortante (C-1)

Tabla 70Grafica del esfuerzo normal y el esfuerzo cortante (C-1)

Espécimen	Esfuerzo Normal	Esfuerzo Cortante
1	1.00	0.905
2	2.00	1.060
3	4.00	1.593

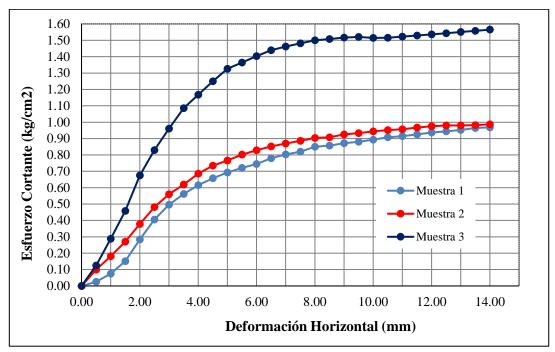
Ángulo de fricción (Ø)	12.91°
Cohesión (C)	0.64 kg/cm2

Tabla 71Ensayo de corte directo de la muestra (C-2)

CORTE DIRECTO (ASTM D3080)			
CALICATA	C-1		
MUESTRA	M-1		
PROFUNDIDAD	2.00 m		

Tipo	Lado (cm)	Altura (cm)	Área (cm2)	Vol. (cm3)
Inalterada	6.00	1.80	36.00	64.80

Densidad y Contenido de Humedad					
	1	2	3		
Wmolde (gr.)	138.80	153.40	138.80		
Wmh + molde (gr.)	283.60	297.90	285.50		
Wmh (gr.)	144.80	144.50	146.70		
Dhum (gr/cm3)	2.23	2.23	2.26		
Dseca (gr/cm3)	1.87	1.83	1.91		
Wt (gr.)	27.70	27.30	27.20		
Wmh + t (gr.)	171.20	170.80	173.50		
Wms + t (gr.)	148.70	146.20	151.20		
Wms (gr.)	121.00	118.90	124.00		
Ww (gr.)	22.50	24.60	22.30		
W (%)	18.60	20.69	17.98		


Common	Muestras					
Cargas	1	2	3			
Pa (marco y placa) (kg)	0.608	0.608	0.608			
Pb (percha carga) (kg)	1.00	2.00	4.00			
PV (kg)	10.418	20.228	39.848			
Esf. Normal (σ) (kg/cm2)	0.289	0.562	1.107			

Datos de prueba	
Vel. Carga (mm/min)	0.50
Const. Anillo carga (kg/N° div.)	0.446

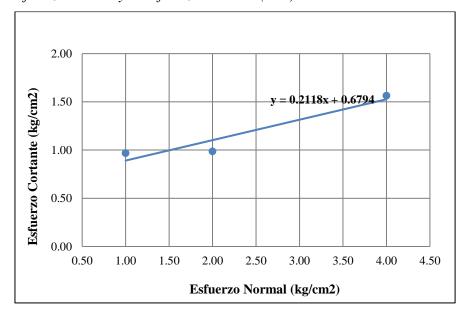

Tiempo (min)	Desplaz. Hor (cm)	A. Correg. (cm2)	Def. Carga (N° Div.)	Fza. Corte (kg)	Esf. Cort. (kg/cm2)	Def. Carga (N° Div.)	Fza. Corte (kg)	Esf. Cort. (kg/cm2)	Def. Carga (N° Div.)	Fza. Corte (kg)	Esf. Cort. (kg/cm2)
				1.00		2.00				4.00	
0.000	0.000	36.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.500	0.025	35.850	2.000	0.893	0.025	8.000	3.571	0.100	10.000	4.464	0.125
1.000	0.050	35.700	6.000	2.678	0.075	14.500	6.472	0.181	23.000	10.267	0.288
1.500	0.075	35.550	12.000	5.357	0.151	21.500	9.597	0.270	36.500	16.293	0.458
2.000	0.100	35.400	22.500	10.044	0.284	30.000	13.391	0.378	53.500	23.881	0.675
2.500	0.125	35.250	32.000	14.284	0.405	38.000	16.962	0.481	65.500	29.238	0.829
3.000	0.150	35.100	39.000	17.409	0.496	44.000	19.641	0.560	75.500	33.702	0.960
3.500	0.175	34.950	44.000	19.641	0.562	48.500	21.649	0.619	85.000	37.942	1.086
4.000	0.200	34.800	48.000	21.426	0.616	53.500	23.881	0.686	91.000	40.620	1.167
4.500	0.225	34.650	51.000	22.765	0.657	57.000	25.444	0.734	97.000	43.299	1.250
5.000	0.250	34.500	53.500	23.881	0.692	59.200	26.426	0.766	102.500	45.754	1.326
5.500	0.275	34.350	55.500	24.774	0.721	61.700	27.542	0.802	105.000	46.870	1.364
6.000	0.300	34.200	57.000	25.444	0.744	63.500	28.345	0.829	107.500	47.986	1.403
6.500	0.325	34.050	59.500	26.560	0.780	65.000	29.015	0.852	109.800	49.012	1.439
7.000	0.350	33.900	61.000	27.229	0.803	66.000	29.461	0.869	111.000	49.548	1.462
7.500	0.375	33.750	62.000	27.675	0.820	67.000	29.907	0.886	112.000	49.994	1.481
8.000	0.400	33.600	64.000	28.568	0.850	68.000	30.354	0.903	112.900	50.396	1.500
8.500	0.425	33.450	64.200	28.658	0.857	68.000	30.354	0.907	113.000	50.441	1.508
9.000	0.450	33.300	65.000	29.015	0.871	69.000	30.800	0.925	113.100	50.485	1.516
9.500	0.475	33.150	65.400	29.193	0.881	69.300	30.934	0.933	112.900	50.396	1.520
10.000	0.500	33.000	66.000	29.461	0.893	69.800	31.157	0.944	112.000	49.994	1.515
10.500	0.525	32.850	66.800	29.818	0.908	70.000	31.247	0.951	111.500	49.771	1.515
11.000	0.550	32.700	67.000	29.907	0.915	70.100	31.291	0.957	111.500	49.771	1.522
11.500	0.575	32.550	67.500	30.131	0.926	70.500	31.470	0.967	111.500	49.771	1.529
12.000	0.600	32.400	68.000	30.354	0.937	70.800	31.604	0.975	111.500	49.771	1.536
12.500	0.625	32.250	68.200	30.443	0.944	70.800	31.604	0.980	111.500	49.771	1.543
13.000	0.650	32.100	68.500	30.577	0.953	70.500	31.470	0.980	111.500	49.771	1.551
13.500	0.675	31.950	69.000	30.800	0.964	70.300	31.380	0.982	111.500	49.771	1.558
14.000	0.700	31.800	69.000	30.800	0.969	70.300	31.380	0.987	111.500	49.771	1.565

Figura 78

Grafica del esfuerzo cortante (C-2)

Figura 79Grafica del esfuerzo normal y el esfuerzo cortante (C-2)

Espécimen	Esfuerzo Normal	Esfuerzo Cortante
1	1.00	0.969
2	2.00	0.987
3	4.00	1.565

Ángulo de fricción (Ø)	11.25°
Cohesión (C)	0.68 kg/cm2

Tabla 72 *Ensayo de corte directo de la muestra (C-3)*

CORTE DIRECTO (ASTM D3080)				
CALICATA	C-1			
MUESTRA	M-1			
PROFUNDIDAD	2.00 m			

Tipo	Lado (cm)	Altura (cm)	Área (cm2)	Vol. (cm3)
Inalterada	6.00	1.80	36.00	64.80

Densidad y Contenido de Humedad							
	1	2	3				
Wmolde (gr.)	138.80	153.40	138.80				
Wmh + molde (gr.)	281.10	298.40	276.80				
Wmh (gr.)	142.30	145.00	138.00				
Dhum (gr/cm3)	2.20	2.24	2.13				
Dseca (gr/cm3)	1.80	1.87	1.75				
Wt (gr.)	27.40	26.70	26.60				
Wmh + t (gr.)	167.60	169.60	163.30				
Vms + t (gr.)	144.20	147.80	139.70				
Wms (gr.)	116.80	121.10	113.10				
Ww (gr.)	23.40	21.80	23.60				
W (%)	20.03	18.00	20.87				

Comman	Muestras				
Cargas	1	2	3		
Pa (marco y placa) (kg)	0.608	0.608	0.608		
Pb (percha carga) (kg)	1.00	2.00	4.00		
PV (kg)	10.418	20.228	39.848		
Esf. Normal (σ) (kg/cm2)	0.289	0.562	1.107		

Datos de prueba					
Vel. Carga (mm/min)	0.50				
Const. Anillo carga (kg/N° div.)	0.446				

Tiempo (min)	Desplaz. Hor (cm)	A. Correg. (cm2)	Def. Carga (N° Div.)	Fza. Corte (kg)	Esf. Cort. (kg/cm2)	Def. Carga (N° Div.)	Fza. Corte (kg)	Esf. Cort. (kg/cm2)	Def. Carga (N° Div.)	Fza. Corte (kg)	Esf. Cort. (kg/cm2)
		(-)		1.00			2.00	(8: /	4.00		\ B · /
0.000	0.000	36.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.500	0.025	35.850	5.800	2.589	0.072	8.000	3.571	0.100	10.000	4.464	0.125
1.000	0.050	35.700	12.500	5.580	0.156	14.500	6.472	0.181	24.000	10.713	0.300
1.500	0.075	35.550	18.500	8.258	0.232	20.000	8.928	0.251	41.500	18.525	0.521
2.000	0.100	35.400	24.500	10.936	0.309	28.000	12.499	0.353	56.000	24.997	0.706
2.500	0.125	35.250	32.000	14.284	0.405	35.400	15.802	0.448	65.000	29.015	0.823
3.000	0.150	35.100	37.000	16.516	0.471	42.000	18.748	0.534	71.000	31.693	0.903
3.500	0.175	34.950	40.300	17.989	0.515	49.000	21.873	0.626	76.000	33.925	0.971
4.000	0.200	34.800	43.000	19.194	0.552	53.000	23.658	0.680	79.000	35.264	1.013
4.500	0.225	34.650	45.500	20.310	0.586	56.000	24.997	0.721	82.000	36.603	1.056
5.000	0.250	34.500	47.000	20.980	0.608	59.500	26.560	0.770	83.500	37.273	1.080
5.500	0.275	34.350	48.500	21.649	0.630	62.000	27.675	0.806	86.500	38.612	1.124
6.000	0.300	34.200	50.000	22.319	0.653	64.500	28.791	0.842	88.500	39.505	1.155
6.500	0.325	34.050	51.000	22.765	0.669	66.500	29.684	0.872	90.000	40.174	1.180
7.000	0.350	33.900	51.500	22.989	0.678	69.000	30.800	0.909	91.800	40.978	1.209
7.500	0.375	33.750	52.000	23.212	0.688	70.000	31.247	0.926	93.000	41.513	1.230
8.000	0.400	33.600	53.500	23.881	0.711	71.000	31.693	0.943	93.800	41.870	1.246
8.500	0.425	33.450	53.600	23.926	0.715	72.000	32.139	0.961	94.500	42.183	1.261
9.000	0.450	33.300	54.000	24.104	0.724	73.500	32.809	0.985	95.000	42.406	1.273
9.500	0.475	33.150	53.800	24.015	0.724	74.000	33.032	0.996	95.800	42.763	1.290
10.000	0.500	33.000	53.000	23.658	0.717	75.000	33.478	1.014	96.000	42.852	1.299
10.500	0.525	32.850	53.000	23.658	0.720	76.000	33.925	1.033	96.500	43.076	1.311
11.000	0.550	32.700	53.000	23.658	0.723	76.000	33.925	1.037	97.000	43.299	1.324
11.500	0.575	32.550	53.000	23.658	0.727	77.000	34.371	1.056	97.600	43.567	1.338
12.000	0.600	32.400	53.000	23.658	0.730	77.400	34.550	1.066	98.500	43.968	1.357
12.500	0.625	32.250	53.000	23.658	0.734	78.000	34.818	1.080	99.300	44.325	1.374
13.000	0.650	32.100	53.000	23.658	0.737	78.200	34.907	1.087	100.500	44.861	1.398
13.500	0.675	31.950	53.000	23.658	0.740	78.900	35.219	1.102	101.500	45.307	1.418
14.000	0.700	31.800	53.000	23.658	0.744	79.000	35.264	1.109	102.400	45.709	1.437
14.500	0.725	31.650	53.000	23.658	0.747	79.000	35.264	1.114	103.000	45.977	1.453
15.000	0.750	31.500	53.000	23.658	0.751	79.000	35.264	1.119	103.500	46.200	1.467
15.500	0.775	31.350	53.000	23.658	0.755	79.000	35.264	1.125	104.000	46.423	1.481
16.000	0.800	31.200	53.000	23.658	0.758	79.000	35.264	1.130	104.200	46.513	1.491
16.500	0.825	31.050	53.000	23.658	0.762	79.000	35.264	1.136	104.800	46.781	1.507

Figura 80

Grafica del esfuerzo cortante (C-3)

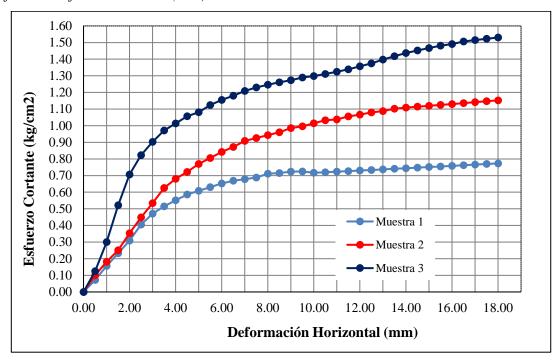
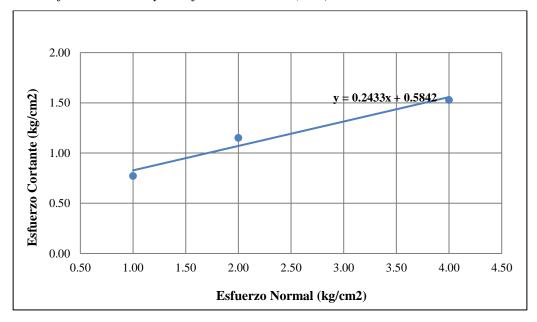



Figura 81

Grafica del esfuerzo normal y el esfuerzo cortante (C-3)

Espécimen	Esfuerzo Normal	Esfuerzo Cortante
1	1.00	0.773
2	2.00	1.152
3	4.00	1.530

Ángulo de fricción (Ø)	14.16°
Cohesión (C)	0.58 kg/cm2

4. EXPANSIÓN LIBRE

Tabla 73 *Ensayo de expansión libre de la muestra (C-1)*

EXPANSIÓN LIBRE (ASTM D4546)			
CALICATA	C-1		
MUESTRA	M-1		
PROFUNDIDAD	2.00 m		

Muestra	Tipo	Diámetro (cm)	Altura (cm)	Área (cm2)	Vol. (cm3)
Muestra	Inalterada	6.19	2.00	30.09	60.19

Densidad y Contenido de Humedad			
Wanillo (gr.)	43.00		
Wmh + anillo (gr.)	181.80		
Wmh (gr.)	138.80		
Dhum (gr/cm3)	2.306		
Dseca (gr/cm3)	2.117		
Wt (gr.)	29.04		
Wmh + t (gr.)	165.54		
Wms + t (gr.)	156.46		
Wms (gr.)	127.42		
Ww (gr.)	9.08		
W (%)	7.13		

	Tiempo	T4	Al. ()	Expansión
Dia	Minutos	Lectura	Δh (cm)	(%)
1	0.1	1.2	0.003	0.15
1	0.25	2.0	0.005	0.25
1	0.75	2.8	0.007	0.36
1	1	2.8	0.007	0.36
1	2	6.2	0.016	0.79
1	4	10.3	0.026	1.31
1	8	18.8	0.048	2.39
1	15	33.4	0.085	4.24
1	30	48.2	0.122	6.12
1	60	60.8	0.154	7.72
1	120	68.3	0.173	8.67
1	240	71.9	0.183	9.13
1	480	74.2	0.188	9.42
1	1440	77.0	0.196	9.78

Figura 82

Grafica de máxima deformación (C-1)

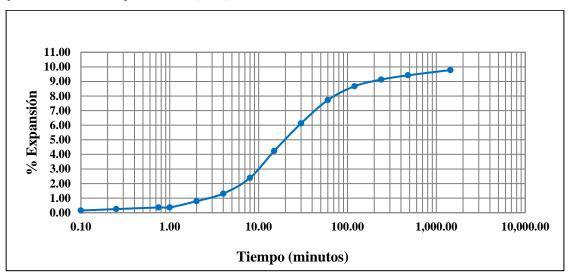
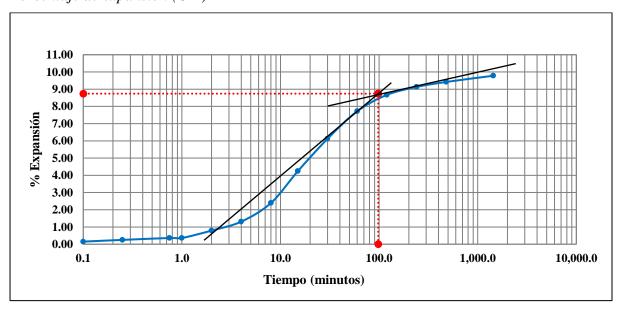



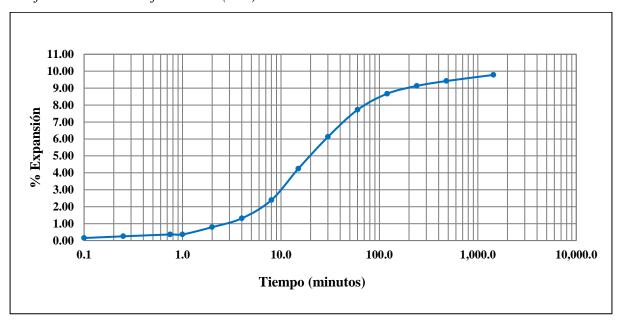
Figura 83

Porcentaje de expansión (C-1)

Porcentaje de expansión 8.74 %

Tabla 74 *Ensayo de expansión libre de la muestra (C-2)*

EXPANSIÓN LIBRE (ASTM D4546)		
CALICATA	C-2	
MUESTRA	M-1	
PROFUNDIDAD	2.00 m	


Muestra	Tipo	Diámetro (cm)	Altura (cm)	Área (cm2)	Vol. (cm3)
Muestra	Inalterada	6.19	2.00	30.09	60.19

Densidad y Contenido de Humedad			
Wanillo (gr.)	43.00		
Wmh + anillo (gr.)	182.10		
Wmh (gr.)	139.10		
Dhum (gr/cm3)	2.311		
Dseca (gr/cm3)	2.098		
Wt (gr.)	25.60		
Wmh + t (gr.)	163.40		
Wms + t (gr.)	151.87		
Wms (gr.)	126.27		
Ww (gr.)	11.53		
W (%)	9.13		

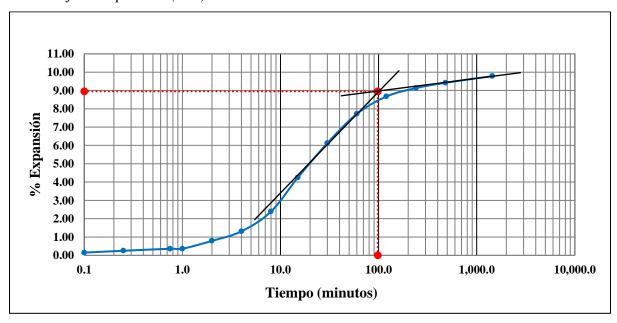

	Tiempo	T4	Al. ()	Expansión
Dia	Minutos	Lectura	Δh (cm)	(%)
1	0.1	2	0.005	0.25
1	0.25	2.4	0.006	0.30
1	0.75	3.5	0.009	0.44
1	1	4.3	0.011	0.55
1	2	6.1	0.015	0.77
1	4	11.3	0.029	1.44
1	8	19	0.048	2.41
1	15	31.5	0.08	4.00
1	30	47.9	0.122	6.08
1	60	61.9	0.157	7.86
1	120	69.7	0.177	8.85
1	240	73.6	0.187	9.35
1	480	76.2	0.194	9.68
1	1440	79.1	0.201	10.05

Figura 84

Grafica de máxima deformación (C-2)

Figura 85 *Porcentaje de expansión (C-2)*

Porcentaje de expansión 8.95 %

Tabla 75Ensayo de expansión libre de la muestra (C-3)

EXPANSIÓN LIBRE (ASTM D4546)			
CALICATA	C-3		
MUESTRA	M-1		
PROFUNDIDAD	2.00 m		

Muestra	Tipo	Diámetro (cm)	Altura (cm)	Área (cm2)	Vol. (cm3)
Muestra	Inalterada	6.19	2.00	30.09	60.19

Densidad y Contenido de Humedad			
Wanillo (gr.)	43.00		
Wmh + anillo (gr.)	178.80		
Wmh (gr.)	135.80		
Dhum (gr/cm3)	2.256		
Dseca (gr/cm3)	2.071		
Wt (gr.)	26.80		
Wmh + t (gr.)	160.50		
Wms + t (gr.)	151.45		
Wms (gr.)	124.65		
Ww (gr.)	9.05		
W (%)	7.26		

Tiempo		T4	A1. ()	Expansión
Dia	Minutos	Lectura	Δh (cm)	(%)
1	0.1	1.2	0.003	0.15
1	0.25	2.0	0.005	0.25
1	0.75	2.8	0.007	0.36
1	1	2.8	0.007	0.36
1	2	6.2	0.016	0.79
1	4	10.3	0.026	1.31
1	8	18.8	0.048	2.39
1	15	33.4	0.085	4.24
1	30	48.2	0.122	6.12
1	60	60.8	0.154	7.72
1	120	68.3	0.173	8.67
1	240	71.9	0.183	9.13
1	480	74.2	0.188	9.42
1	1440	77.0	0.196	9.78

Figura 86

Grafica de máxima deformación (C-3)

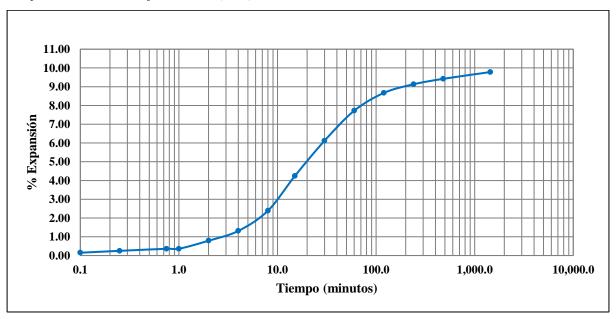
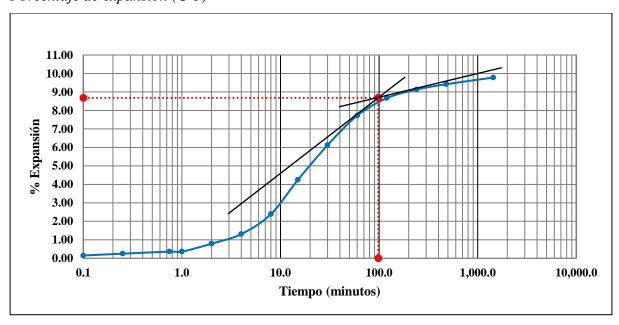



Figura 87

Porcentaje de expansión (C-3)

Porcentaje de expansión 8.68 %

APENDICE E: PANEL FOTOGRÁFICO

Figura 88

Excavación de la calicata (C-1)

Figura 89

Excavación de la calicata (C-2)

Figura 90

Excavación de la calicata (C-3)

Figura 91 *Muestras inalteradas de las 03 calicatas*

Figura 92 *Ensayo de contenido de humedad de las 3 muestras*

Figura 93Lavado de las muestras en el tamiz N° 200 de las 3 muestras

Figura 94Preparación de la muestra para el ensayo de límite líquido

Figura 95 *Ensayo de límite líquido de las 3 muestras*

Figura 96 *Equipo para el ensayo de corte directo*

Figura 97Preparación de las 3 muestras para el ensayo de corte directo

Figura 98

Toma de lecturas – ensayo corte directo

Figura 99Peso de las muestras después del ensayo de corte directo

Figura 100 *Equipo para el ensayo de expansión libre (consolidómetro)*

Figura 101 *Ensayo de expansión libre de las 3 muestras*

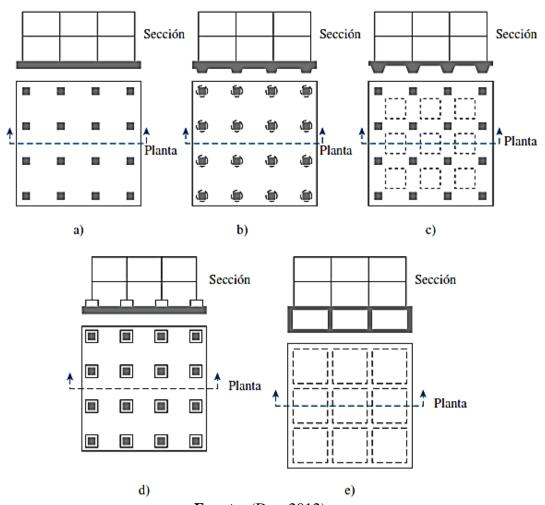
Figura 102Secado de las 3 muestras después del ensayo de expansión libre

ANEXOS

ANEXO A:

Tabla 76

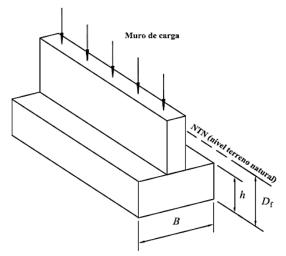
Clasificación del grado de expansibilidad


Índice de plasticidad	Grado de expansibilidad
0 – 15	Leve
10 – 35	Medio
20 – 55	Alto
> 55	Muy alto

Fuente: (Holtz y Gibbs, 1954)

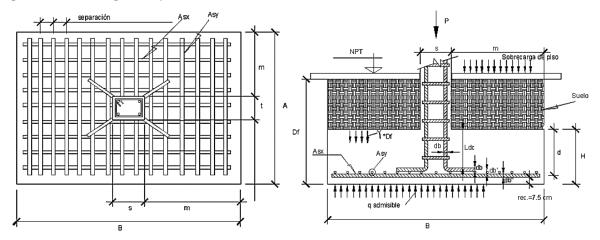
ANEXO B:

Figura 103


Ilustración de los tipos de plateas de cimentación

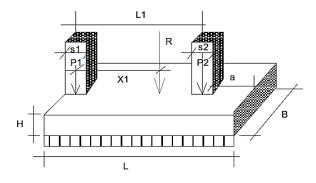
Fuente: (Das, 2012)

Figura 104

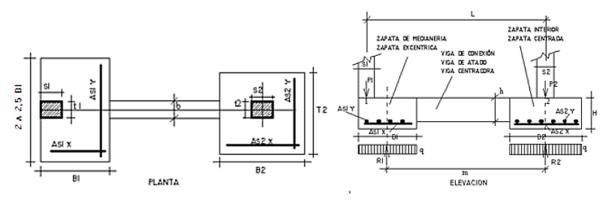

Zapata corrida o continua bajo muro

Fuente: (Norma E.050, 2018)

Figura 105


Zapata aislada en planta y elevación

Fuente: (Rodríguez, 2020)


Figura 106

Zapata combinada en elevación

Fuente: (Rodríguez, 2020)

Figura 107 *Zapata combinada en planta y elevación*

Fuente: (Rodríguez, 2020)

ANEXO C: CONSTANCIA DEL USO DEL LABORATORIO DE SUELOS

UNIVERSIDAD NACIONAL DE CAJAMARCA

Norte de la Universidad Peruana Fundada por Ley 14015 del 13 de febrero de 1962

FACULTAD DE INGENIERIA

Telefax Nº 0051-76-36-5976

Anexo Nº 129-130 / 147

LABORATORIO DE MECANICA DE SUELOS

Certif, N° 002 - 2024

EL QUE SUSCRIBE JEFE DEL LABORATORIO DE MECÁNICA DE SUELOS DE LA FACULTAD DE INGENIERÍA DE LA UNIVERSIDAD NACIONAL DE CAJAMARCA

CERTIFICA

Que el Bachiller en Ingeniería Civil CATALINO CARRASCO INFANTE, ex alumno de la Escuela Académico Profesional de Ingeniería Civil de la Facultad de Ingeniería de la Universidad Nacional de Cajamarca, según consta en el cuaderno de asistencia del Laboratorio de Mecánica de Suelos, ha registrado su asistencia a dicho Laboratorio para la elaboración de la tesis profesional: "PROPUESTA DE CIMENTACION EN SUELOS ARCILLOSOS EXPANSIVOS PARA VIVIENDAS UNIFAMILIARES EN LA EXPANSION URBANA LUCMACUCHO ALTO SECTOR LUCMACUCHO, REGION DE DEL ANEXO CAJAMARCA, ", en el siguiente periodo:

Del 15 al 19 de julio del 2024

El Laboratorio no se responsabiliza por la ejecución y los resultados de los ensayos

Se expide el presente a solicitud verbal del interesado para los fines que estime por conveniente, TH

FACULTADADE IN GALWIERIA

ING. MARCO W. HOYOS SAUCEDO

MERIA

Serar la vida a li dejens Cajamarca, 30 de setiembre del 2024

PLANOS