# UNIVERSIDAD NACIONAL DE CAJAMARCA ESCUELA DE POSGRADO





## UNIDAD DE POSGRADO DE LA FACULTAD DE INGENIERÍA PROGRAMA DE MAESTRÍA EN CIENCIAS

#### **TESIS:**

CAPACIDAD Y NIVEL DE SERVICIO DE LA AVENIDA EL MAESTRO
ENTRE LA AVENIDA LOS HÉROES Y JIRÓN EL INCA DE LA CIUDAD
DE CAJAMARCA, POR EL USO DE CARRILES COMO
ESTACIONAMIENTO – 2023

Para optar el Grado Académico de

**MAESTRO EN CIENCIAS** 

**MENCIÓN: INGENIERÍA CIVIL** 

Presentada por:

NOBEL DERECK ESTELA VELÁSQUEZ

Asesor:

M.Cs. MARÍA SALOMÉ DE LA TORRE RAMÍREZ

Cajamarca, Perú

2024





#### **CONSTANCIA DE INFORME DE ORIGINALIDAD**

|          | CONSTANCIA DE INFORME DE ORIGINALIDAD                                                                                                                                                                   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.       | Investigador:<br>Nobel Dereck Estela Velásquez<br>DNI: 70196037<br>Escuela Profesional/Unidad de Posgrado de la Facultad de Ingeniería. Programa de<br>Maestría en Ciencias. Mención: Ingeniería Civil. |
| 2.       | Asesora: M. Cs. María Salomé De La Torre Ramírez                                                                                                                                                        |
| 3.       | Grado académico o título profesional  Bachiller Diftulo profesional Segunda especialidad  Maestro Doctor                                                                                                |
| 4.       | Tipo de Investigación:  X Tesis   Trabajo de investigación   Trabajo de suficiencia profesional   Trabajo académico                                                                                     |
| 5.       | Título de Trabajo de Investigación:                                                                                                                                                                     |
|          | Capacidad y Nivel de Servicio de la Avenida el Maestro entre la Avenida Los Héroes y Jirón El Inca de la Ciudad de Cajamarca, por el Uso de Carriles como Estacionamiento – 2023                        |
| 6.<br>7. | Fecha de evaluación: 07/01/2025  Software antiplagio: X TURNITIN □ URKUND (OURIGINAL) (*)                                                                                                               |
| 8.       | Porcentaje de Informe de Similitud: 18%                                                                                                                                                                 |
| 9.       | Código Documento: 3117:419535657                                                                                                                                                                        |
| 10.      | Resultado de la Evaluación de Similitud:                                                                                                                                                                |
|          | X APROBADO ☐ PARA LEVANTAMIENTO DE OBSERVACIONES O DESAPROBADO                                                                                                                                          |
|          | Fecha Emisión: 13/01/2025                                                                                                                                                                               |
|          | Firma y/o Sello Emisor Constancia  Salomo do la Torco Rumino INGENIARO CIVIL ELP 10 5 5 8  M.Cs. Maria Salomo De La Torre Ramírez                                                                       |
|          | DNV. 26724 F44                                                                                                                                                                                          |

<sup>\*</sup> En caso se realizó la evaluación hasta setiembre de 2023

COPYRIGTH © 2024 by NOBEL DERECK ESTELA VELÁSQUEZ

Todos los derechos reservados



## Universidad Nacional de Cajamarca

LICENCIADA CON RESOLUCIÓN DECONSEJO DIRECTIVO Nº 080-2018-SUNEDU/CD

## Escuela de Posgrado

CAJAMARCA - PERU



#### PROGRAMA DE MAESTRÍA EN CIENCIAS

#### ACTA DE SUSTENTACIÓN DE TESIS

M. Cs. María Salomé de la Torre Ramírez
Asesor

Dr. Mauro Augusto Centurión Vargas Jurado Evaluador

M. en I. José Benjamín Torres Tafur Jurado Evaluador M. Cs. Sergio Huaman Sangay Jurado Evaluador

#### **DEDICATORIA**

A:

Mi familia, por ser mi sustento y guía en toda mi formación como ser humano.

#### **AGRADECIMIENTO**

En primer lugar, quiero agradecer a Dios, mi familia y compañeros por apoyarme y darme ánimos para realizar esta investigación. En especial, quiero hacer mención a Dios y mis padres, que siempre estuvieron ahí para darme palabras de apoyo.

También quiero agradecer a mi asesora la M. Cs. María Salomé De La Torre Ramírez, quien con sus conocimientos y apoyo me guiaron en la elaboración y presentación de esta investigación.

Por último, quiero agradecer a la Escuela de Posgrado de la Universidad Nacional de Cajamarca mención en Ingeniería Civil por dar los conocimientos científicos para llevar a cabo el proceso de investigación.

Muchas gracias a todos.

## **EPÍGRAFE**

Una carretera es simplemente un plano inclinado, uno de los inventos más elementales del hombre; sin embargo, su aplicación a la superficie irregular de la tierra es un arte ampliamente desarrollado.

José Céspedes Abanto

## ÍNDICE GENERAL

| DEDICATORIA                                               | v    |
|-----------------------------------------------------------|------|
| AGRADECIMIENTO                                            | vi   |
| EPÍGRAFE                                                  | vii  |
| ÍNDICE GENERAL                                            | viii |
| ÍNDICE DE TABLAS                                          | x    |
| ÍNDICE DE CUADROS                                         | xvi  |
| ÍNDICE DE FIGURAS                                         | xvii |
| LISTA DE ABREVIATURAS Y SIGLAS USADAS                     | xix  |
| GLOSARIO                                                  | xxii |
| RESUMEN                                                   | xxv  |
| ABSTRACT                                                  | xxvi |
| CAPÍTULO I                                                | 1    |
| 1. INTRODUCCIÓN                                           | 1    |
| 1.1. Planteamiento del problema                           | 1    |
| 1.1.1. Contextualización.                                 | 1    |
| 1.1.2. Descripción del problema.                          | 3    |
| 1.1.3. Formulación del problema                           | 6    |
| 1.2. Justificación                                        | 6    |
| 1.3. Delimitación de la investigación.                    | 7    |
| 1.4. Limitaciones.                                        | 7    |
| 1.5. Objetivos.                                           | 8    |
| 1.5.1. Objetivo general.                                  | 8    |
| 1.5.2. Objetivos específicos.                             | 8    |
| CAPÍTULO II                                               | 9    |
| 2. MARCO TEÓRICO                                          | 9    |
| 2.1. Antecedentes de la investigación o marco referencial | 9    |
| 2.2. Bases teóricas.                                      | 12   |
| 2.3. Marco conceptual                                     | 34   |
| 2.4. Definición de términos básicos.                      | 35   |
| CAPÍTULO III                                              | 38   |
| 3. PLANTEAMIENTO DE LA(S) HIPÓTESIS Y VARIABLES           | 38   |
| 3.1. Hipótesis.                                           | 38   |
| 3.2. Variables/categorías                                 | 38   |

| 3.3.        | Operacionalización/ categorización de los componentes de la hipótesis. | 39 |
|-------------|------------------------------------------------------------------------|----|
| CAP         | ÝTULO IV                                                               | 40 |
| <b>4.</b> 1 | MARCO METODOLÓGICO                                                     | 40 |
| 4.1.        | Diseño de investigación.                                               | 42 |
| 4.2.        | Método de investigación.                                               | 43 |
| 4.3.        | Población, muestra, unidad de análisis y unidad de observación         | 43 |
| 4.4.        | Técnicas e instrumentos de recopilación de información                 | 43 |
| 4.5.        | Técnicas para el procesamiento y análisis de la información            | 44 |
| 4.6.        | Equipos, materiales, insumos, etc.                                     | 44 |
| 4.7.        | Matriz de consistencia metodológica.                                   | 46 |
| CAP         | ÝTULO V                                                                | 47 |
| <b>5.</b> ] | RESULTADOS Y DISCUSIÓN                                                 | 47 |
| 5.1.        | Presentación de resultados.                                            | 47 |
| 5.2.        | Análisis, interpretación y discusión de resultados                     | 79 |
| 5.3.        | Contrastación de hipótesis.                                            | 80 |
| CON         | NCLUSIONES                                                             | 81 |
| REC         | COMENDACIONES Y/O SUGERENCIAS                                          | 82 |
| REF         | ERENCIAS BIBLIOGRÁFICAS                                                | 83 |
| ANE         | XOS                                                                    | 87 |

## ÍNDICE DE TABLAS

| Tabla 1. Nivel de servicio en modo automóvil para segmentos de calles urbanos | 16 |
|-------------------------------------------------------------------------------|----|
| Tabla 2. Retraso debido al giro de vehículos hacia la derecha e izquierda     | 21 |
| Tabla 3. Relación de Pelotón                                                  | 29 |
| Tabla 4. Unidades Vehiculares Equivalentes                                    | 33 |
| Tabla 5. Longitud del subsegmento                                             | 47 |
| Tabla 6. Ancho de intersección aguas arriba                                   | 48 |
| Tabla 7. Longitud ajustada del subsegmento                                    | 48 |
| Tabla 8. Longitud de mediana restrictiva                                      | 48 |
| Tabla 9. Proporción del subsegmento con mediana restrictiva                   | 48 |
| Tabla 10. Longitud de bordillo a la derecha del subsegmento                   | 49 |
| Tabla 11. Proporción del subsegmento con bordillo a la derecha                | 49 |
| Tabla 12. Número de puntos de acceso lado derecho                             | 49 |
| Tabla 13. Aforo semanal de bicicletas                                         | 52 |
| Tabla 14. Aforo semanal de motos lineales                                     | 52 |
| Tabla 15. Aforo semanal de mototaxis                                          | 52 |
| Tabla 16. Aforo semanal de automóviles                                        | 53 |
| Tabla 17. Aforo semanal de camionetas                                         | 53 |
| Tabla 18. Aforo semanal de combis                                             | 53 |
| Tabla 19. Aforo semanal de microbuses                                         | 54 |
| Tabla 20. Aforo semanal de camiones                                           | 54 |
| Tabla 21. Volumen vehicular semanal por tipo de vehículo                      | 54 |
| Tabla 22. Conversión a vehículo patrón                                        | 55 |
| Tabla 23. Hora de máxima demanda por subsegmento                              | 57 |
| Tabla 24. Número de Carriles de cada subsegmento                              | 58 |

| Tabla 25. Retraso total por puntos de acceso por subsegmentos                         | 58      |
|---------------------------------------------------------------------------------------|---------|
| Tabla 26. Velocidad límite por subsegmento                                            | 58      |
| Tabla 27. Velocidad constante por subsegmento                                         | 59      |
| Tabla 28. Densidad de puntos de acceso por subsegmento                                | 59      |
| Tabla 29. Factor de ajuste para la sección transversal por subsegmento                | 60      |
| Tabla 30. Factor de ajuste por puntos de acceso por subsegmento                       | 60      |
| Tabla 31. Longitud del subsegmento que se utiliza como estacionamiento                | 60      |
| Tabla 32. Proporción del segmento con estacionamiento en la vía por subsegmento       | 61      |
| Tabla 33. Factor de ajuste por estacionamiento por subsegmento                        | 61      |
| Tabla 34. Velocidad base de flujo libre                                               | 61      |
| Tabla 35. Factor de ajuste de longitud por subsegmento                                | 62      |
| Tabla 36. Velocidad de flujo libre por subsegmento                                    | 62      |
| Tabla 37. Factor de ajuste de proximidad por subsegmento                              | 62      |
| Tabla 38. Retraso debido a otras fuentes por subsegmento                              | 63      |
| Tabla 39. Tiempo de ejecución por subsegmento                                         | 63      |
| Tabla 40. Ciclo semafórico por subsegmento                                            | 63      |
| Tabla 41. Relación verde/ciclo/longitud efectiva por subsegmento                      | 64      |
| Tabla 42. Pelotón de Llegada en la Intersección Av. Los Héroes                        | 64      |
| Tabla 43. Pelotón de Llegada en la Intersección Jr. El Inca                           | 64      |
| Tabla 44. Ratio pelotón por subsegmento                                               | 65      |
| Tabla 45. Proporción de llegada durante el tiempo de verde por subsegmento            | 65      |
| Tabla 46. Velocidad de flujo de saturación de carriles por subsegmento                | 65      |
| Tabla 47. Capacidad por subsegmento                                                   | 65      |
| Tabla 48. Relación volumen – capacidad por subsegmento                                | 66      |
| Tabla 49. Factor de ajuste suplementario para pelotones durante el verde por subsegme | ento 66 |

| Tabla 50. Factor de ajuste de progresión por subsegmento                         | 66 |
|----------------------------------------------------------------------------------|----|
| Tabla 51. Demora uniforme por subsegmento                                        | 67 |
| Tabla 52. Grado de Saturación Ponderado Aguas Arriba                             | 67 |
| Tabla 53. Factor de ajuste de filtrado aguas arriba por subsegmento              | 67 |
| Tabla 54. Demora incremental por subsegmento                                     | 68 |
| Tabla 55. Demora por control por subsegmento                                     | 68 |
| Tabla 56. Tiempo de viaje por subsegmento                                        | 68 |
| Tabla 57. Velocidad de viaje por subsegmento                                     | 69 |
| Tabla 58. Nivel de servicio para el subsegmento 1                                | 69 |
| Tabla 59. Nivel de servicio para el subsegmento 2                                | 70 |
| Tabla 60. Nivel de servicio para el subsegmento 3                                | 70 |
| Tabla 61. Nivel de servicio para el subsegmento 4                                | 70 |
| Tabla 62. Nivel de servicio por subsegmento                                      | 70 |
| Tabla 63. Número de Carriles de cada subsegmento en régimen libre                | 71 |
| Tabla 64. Factor de ajuste por puntos de acceso por subsegmento en régimen libre | 72 |
| Tabla 65. Longitud del segmento que se utiliza como estacionamiento              | 72 |
| Tabla 66. Proporción del segmento con estacionamiento en la vía por subsegmento  | 72 |
| Tabla 67. Velocidad de ajuste para estacionamiento por subsegmento               | 72 |
| Tabla 68. Velocidad base de flujo libre en régimen libre                         | 73 |
| Tabla 69. Factor de ajuste de longitud por subsegmento en régimen libre          | 73 |
| Tabla 70. Velocidad de flujo libre por subsegmento en régimen libre              | 73 |
| Tabla 71. Factor de ajuste de proximidad por subsegmento en régimen libre        | 74 |
| Tabla 72. Retraso debido a otras fuentes por subsegmento en régimen libre        | 74 |
| Tabla 73. Tiempo de ejecución por subsegmento en régimen libre                   | 74 |
| Tabla 74 Capacidad por subsegmento en régimen libre                              | 75 |

| Tabla 75. Relación volumen – capacidad por subsegmento en régimen libre             | 75 |
|-------------------------------------------------------------------------------------|----|
| Tabla 76. Demora uniforme por subsegmento en régimen libre                          | 76 |
| Tabla 77. Demora incremental por subsegmento en régimen libre                       | 76 |
| Tabla 78. Demora por control por subsegmento en régimen libre                       | 77 |
| Tabla 79. Tiempo de viaje por subsegmento en régimen libre                          | 77 |
| Tabla 80. Velocidad de viaje por subsegmento en régimen libre                       | 77 |
| Tabla 81. Nivel de servicio para el subsegmento 1 en régimen libre                  | 78 |
| Tabla 82. Nivel de servicio para el subsegmento 2 en régimen libre                  | 78 |
| Tabla 83. Nivel de servicio para el subsegmento 3 en régimen libre                  | 78 |
| Tabla 84. Nivel de servicio para el subsegmento 4 en régimen libre                  | 79 |
| Tabla 85. Nivel de servicio por subsegmento en régimen libre                        | 79 |
| Tabla 86. Reducción de la capacidad por subsegmento                                 | 79 |
| Tabla 87. Disminución del nivel de servicio por subsegmento                         | 80 |
| Tabla 88. Aforo Vehicular y Grado de Saturación Sábado 25/11/2023 Subsegmento 1     | 89 |
| Tabla 89. Aforo Vehicular y Grado de Saturación Domingo 26/11/2023 Subsegmento 19   | 90 |
| Tabla 90. Aforo Vehicular y Grado de Saturación Lunes 27/11/2023 Subsegmento 1      | 92 |
| Tabla 91. Aforo Vehicular y Grado de Saturación Martes 28/11/2023 Subsegmento 1     | 93 |
| Tabla 92. Aforo Vehicular y Grado de Saturación Miércoles 29/11/2023 Subsegmento 19 | 94 |
| Tabla 93. Aforo Vehicular y Grado de Saturación Jueves 30/11/2023 Subsegmento 1     | 96 |
| Tabla 94. Aforo Vehicular y Grado de Saturación Viernes 01/12/2023 Subsegmento 19   | 97 |
| Tabla 95. Grado de Saturación Ponderado Aguas Arriba Subsegmento 1                  | 99 |
| Tabla 96. Aforo Vehicular y Grado de Saturación Sábado 25/11/2023 Subsegmento 2     | 99 |
| Tabla 97. Aforo Vehicular y Grado de Saturación Domingo 26/11/2023 Subsegmento 210  | 00 |
| Tabla 98. Aforo Vehicular y Grado de Saturación Lunes 27/11/2023 Subsegmento 2 10   | 02 |
| Tabla 99 Aforo Vehicular y Grado de Saturación Martes 28/11/2023 Subsegmento 2      | ი3 |

| Tabla 100. Aforo Vehicular y Grado de Saturación Miércoles 29/11/2023 Subsegmento 2105 |
|----------------------------------------------------------------------------------------|
| Tabla 101. Aforo Vehicular y Grado de Saturación Jueves 30/11/2023 Subsegmento 2 106   |
| Tabla 102. Aforo Vehicular y Grado de Saturación Viernes 01/12/2023 Subsegmento 2108   |
| Tabla 103. Grado de Saturación Ponderado Aguas Arriba Subsegmento 2                    |
| Tabla 104. Aforo Vehicular y Grado de Saturación Sábado 25/11/2023 Subsegmento 3109    |
| Tabla 105. Aforo Vehicular y Grado de Saturación Domingo 26/11/2023 Subsegmento 3 111  |
| Tabla 106. Aforo Vehicular y Grado de Saturación Lunes 27/11/2023 Subsegmento 3 112    |
| Tabla 107. Aforo Vehicular y Grado de Saturación Martes 28/11/2023 Subsegmento 3114    |
| Tabla 108. Aforo Vehicular y Grado de Saturación Miércoles 29/11/2023 Subsegmento 3115 |
| Tabla 109. Aforo Vehicular y Grado de Saturación Jueves 30/11/2023 Subsegmento 3 116   |
| Tabla 110. Aforo Vehicular y Grado de Saturación Viernes 01/12/2023 Subsegmento 3 118  |
| Tabla 111. Grado de Saturación Ponderado Aguas Arriba Subsegmento 3                    |
| Tabla 112. Aforo Vehicular y Grado de Saturación Sábado 25/11/2023 Subsegmento 4120    |
| Tabla 113. Aforo Vehicular y Grado de Saturación Domingo 26/11/2023 Subsegmento 4 121  |
| Tabla 114. Aforo Vehicular y Grado de Saturación Lunes 27/11/2023 Subsegmento 4 122    |
| Tabla 115. Aforo Vehicular y Grado de Saturación Martes 28/11/2023 Subsegmento 4 124   |
| Tabla 116. Aforo Vehicular y Grado de Saturación Miércoles 29/11/2023 Subsegmento 4125 |
| Tabla 117. Aforo Vehicular y Grado de Saturación Jueves 30/11/2023 Subsegmento 4127    |
| Tabla 118. Aforo Vehicular y Grado de Saturación Viernes 01/12/2023 Subsegmento 4 128  |
| Tabla 119. Grado de Saturación Ponderado Aguas Arriba Subsegmento 4                    |
| Tabla 120. Medida de Sección Transversal que se Toma como Estacionamiento              |
| Tabla 121. Retraso por otros motivos del subsegmento 1                                 |
| Tabla 122. Retraso por otros motivos del subsegmento 2                                 |
| Tabla 123. Retraso por otros motivos del subsegmento 3                                 |
| Tabla 124. Retraso por otros motivos del subsegmento 4                                 |

| Tabla 125. Resumen de medidas geométricas de un auto                                  | . 140 |
|---------------------------------------------------------------------------------------|-------|
| Tabla 126. Medidas geométricas de una bicicleta                                       | . 140 |
| Tabla 127. Medidas geométricas de un mototaxi                                         | . 141 |
| Tabla 128. Porcentaje de Pelotón que Llegan Durante el Verde en la Intersección Aguas |       |
| Arriba en el Subsegmento 1 y 3                                                        | . 141 |
| Tabla 129. Porcentaje de Pelotón que Llegan Durante el Verde en la Intersección Aguas |       |
| Arriba en el Subsegmento 2 y 4                                                        | . 141 |

## ÍNDICE DE CUADROS

| Cuadro 1. Entradas para segmentos de calles urbanas               | 17 |
|-------------------------------------------------------------------|----|
| Cuadro 2. Operacionalización de las variables                     | 39 |
| Cuadro 3. Población, Muestra, Unidad de Análisis y de Observación | 43 |
| Cuadro 4 Matriz de consistencia                                   | 46 |

## ÍNDICE DE FIGURAS

| Figura 1. Uso de carril izquierdo como estacionamiento en Av. El Maestro entre la A    | v. Los   |
|----------------------------------------------------------------------------------------|----------|
| Héroes y Jr. Amazonas                                                                  | 4        |
| Figura 2. Estacionamiento de motocicletas y autos en Av. El Maestro entre la Av. Los   | Héroes   |
| y Jr. Amazonas                                                                         | 4        |
| Figura 3. Cambio de las características geométricas en la intersección Jr. Amazonas –  | Av. El   |
| Maestro                                                                                | 5        |
| Figura 4. Uso de una parte del carril como estacionamiento en Av. El Maestro entr      | e el Jr. |
| Amazonas y Jr. El Inca                                                                 | 5        |
| Figura 5. Parte del ancho de carril se usa como estacionamiento en la Av. El Maestro e | entre el |
| Jr. Amazonas y Jr. El Inca                                                             | 6        |
| Figura 6. Elementos de segmento de calle urbana                                        | 17       |
| Figura 7. Ubicación de la vía en estudio en la ciudad de Cajamarca                     | 41       |
| Figura 8. Flujograma de proceso                                                        | 42       |
| Figura 9. Uso de estación total en la vía de estudio                                   | 44       |
| Figura 10. Georreferenciación usando GPS                                               | 45       |
| Figura 11. Realización de las medidas geométricas de la vía de estudio                 | 45       |
| Figura 12. Sentidos de flujo vehicular intersección semaforizada Av. Los Héroes        | 50       |
| Figura 13. Sentidos de flujo vehicular intersección no semaforizada Jr. Amazonas       | 50       |
| Figura 14. Sentidos de flujo vehicular intersección no semaforizada Jr. Progreso       | 50       |
| Figura 15. Sentidos de flujo vehicular intersección semaforizada Jr. El Inca           | 51       |
| Figura 16. Volumen horario de máxima demanda del subsegmento 1                         | 55       |
| Figura 17. Volumen horario de máxima demanda del subsegmento 2                         | 56       |
| Figura 18. Volumen horario de máxima demanda del subsegmento 3                         | 56       |
| Figura 19 Volumen horario de máxima demanda del subsegmento 4                          | 56       |

| Figura | 20. Sección transversal de la Av. Los Héroes – Jr. Amazonas                  | 57             |
|--------|------------------------------------------------------------------------------|----------------|
| Figura | 21. Sección transversal del Jr. Amazonas – Jr. El Inca                       | 57             |
| Figura | 22. Tiempo de retraso por otros factores para el subsegmento 1               | 34             |
| Figura | 23. Tiempo de retraso por otros factores para el subsegmento 1               | 35             |
| Figura | 24. Tiempo de retraso por otros factores para el subsegmento 2               | 36             |
| Figura | 25. Tiempo de retraso por otros factores para el subsegmento 3               | 37             |
| Figura | 26. Tiempo de retraso por otros factores para el subsegmento 3               | 38             |
| Figura | 27. Tiempo de retraso por otros factores para el subsegmento 4               | 39             |
| Figura | 28. Aforo vehicular manual intersección Av. Los Héroes – Av. El Maestro 14   | 44             |
| Figura | 29. Aforo vehicular manual intersección Jr. Amazonas – Av. El Maestro        | 44             |
| Figura | 30. Aforo vehicular manual intersección Jr. El Progresos – Av. El Maestro 14 | 45             |
| Figura | 31. Aforo vehicular manual intersección Jr. El Progresos – Av. El Maestro 14 | 45             |
| Figura | 32. Uso de un carril como estacionamiento subsegmento 1                      | 46             |
| Figura | 33. Uso de un carril como estacionamiento subsegmento 2                      | 46             |
| Figura | 34. Medición de Sección de Vía que se Toma como Estacionamiento Subsegmento  | 3              |
|        |                                                                              | <del>1</del> 7 |
| Figura | 35. Medición de Sección de Vía que se Toma como Estacionamiento Subsegmento  | 3              |
|        |                                                                              | 48             |
| Figura | 36. Pase de pregón en Av. El Maestro                                         | 48             |

#### LISTA DE ABREVIATURAS Y SIGLAS USADAS

 $%R_c$ :

Reducción de la capacidad.

Demora total por puntos de acceso.  $\Sigma D_a$ : Capacidad. c: d: Demora por control.  $d_1$ : Demora uniforme.  $d_2$ : Demora incremental.  $D_a$ : Densidad de puntos de acceso.  $d_{other}$ : Demora por otros factores. Factor de ajuste por densidad de puntos.  $f_A$ :  $f_{cs}$ : Factor de ajuste para sección transversal.  $f_{cs}$ : Factor de ajuste por sección transversal.  $f_L$ : Factor de ajuste de longitud de segmento. Factor de ajuste suplementario por grupos vehiculares que llegan en verde.  $f_{PA}$ :  $f_v$ : Factor de ajuste por proximidad. Relación verde/ciclo/efectivo. *g/C:* HCM: Highway Capacity Manual 2016. *I*: Factor de ajuste de filtrado aguas arriba. L: Longitud de segmento.

 $l_1$ : Pérdida de tiempo en la partida.

 $L_{adj}$ : Longitud ajustada del segmento.

 $L_{curb}$ : Longitud de bordillo al lado derecho.

 $L_{rm}$ : Longitud del segmento con mediana restrictiva.

NS: Nivel de servicio.

 $N_{th}$ : Número de Carriles.

*P*: Proporción de llegada durante el verde.

 $p_{curb}$ : Proporción de bordillo al lado derecho.

*PF:* Factor de ajuste por coordinación.

 $p_{rm}$ : Proporción del segmento con mediana restrictiva.

RL: Régimen libre.

 $R_P$ : Relación del grupo de llegada.

s: Flujo de saturación.

 $S_f$ : Velocidad en régimen libre.

 $S_{fo}$ : Velocidad base de flujo libre.

 $S_o$ : Velocidad constante.

 $S_{pl}$ : Velocidad límite.

SS<sub>i</sub>: Subsegmento i (1-4).

 $S_{T;seg}$ : Velocidad de viaje.

T: Duración del periodo de análisis.

 $t_R$ : Tiempo de viaje o ejecución.

 $T_T$ : Tiempo de viaje.

VHMD: Volumen horario de máxima demanda.

 $W_i$ : Ancho de intersección aguas arriba.

*X:* Grado de saturación.

 $X_u$ : Grado de saturación ponderado aguas arriba.

**GLOSARIO** 

A

Acceso: Punto, en una determinada vía, donde ingresan vehículos motorizados.

**Aforo vehicular:** Proceso de recopilación de la cantidad de vehículos motorizados que transitan por la vía de estudio.

Automóvil: Vehículo motorizado por el cual se movilizan o transportan las personas.

Avenida: Camino importante de una ciudad.

C

Calzada: Forma parte de una calle, se puede entender como la distancia entre dos aceras.

Capacidad vial: Máxima cantidad de vehículos motorizados que pueden transitar por una determinada sección transversal de una calzada.

Carril: Espacio de calzado en la transitan vehículos semaforizados con un determinado sentido.

Cómputo: Procesamiento de datos mediante operaciones matemáticas y estadísticas.

D

Distancia: Longitud entre dos puntos utilizando una determinada unidad de medida.

 $\mathbf{E}$ 

**Estacionamiento:** Lugar destinado al reposo de vehículos motorizados.

 $\mathbf{F}$ 

Flujo vehicular: Cantidad de vehículos que transitan en un determinado sentido.

Ι

Ingeniería civil: Conjunto de conocimiento en matemática, física entre otros que permite la

construcción de infraestructura que puede utilizar la población para su beneficio.

Intersección semaforizada: Puntos estratégicos del sistema vial urbano que regula y controla

el flujo de vehículos motorizados creando orden y seguridad vial.

J

Jirón: Vía vehicular local de uno o dos sentidos.

 $\mathbf{M}$ 

Manual: Guía para el procesamiento de datos y obtención de resultados.

Mediana restrictiva: Parte de una vía urbana localizada en la mitad de la sección transversal

que separa sentidos de flujo vehicular.

P

**Proceso:** Conjunto de pasos para elaborar información con el fin de obtener los resultados

deseados.

R

Reducción: Cambio a un valor menor que el original.

Régimen libre: Condiciones ideales en que se puede transitar sin ningún obstáculo, retraso o

impedimento.

Retraso: Disminución del tiempo de viaje debido a factores externos.

 $\mathbf{S}$ 

Segmento: Unidad de estudio de una vía urbana.

xxiii

**Semáforo:** Dispositivo importante en el control del flujo vehicular mediante tres colores: verde, ámbar y rojo.

Sentido: Dirección del flujo vehicular en un tramo de vía determinado.

**Señalización:** Implementación de señales de tránsito a lo largo de un tramo de vía en estudio.

 $\mathbf{T}$ 

**Tráfico:** Actividad de vehículos motorizados a pasar por vías urbanas.

 $\mathbf{V}$ 

Vehículo motorizado: Unidad de observación y usuario de la vía urbana.

Vía: Infraestructura urbana al que hace uso los vehículos motorizados.

**RESUMEN** 

El congestionamiento vehicular es un problema recurrente en Cajamarca, especialmente

durante las horas punta, afectando la capacidad vial y el nivel de servicio de las vías. Entre las

principales causas se encuentran: paradas imprevistas de transporte público, cruce peatonal

imprudente, marchas o pasacalles, y el uso de carriles como estacionamientos improvisados.

Esta investigación abordó el impacto de los estacionamientos improvisados en la capacidad

vial y nivel de servicio de la Av. El Maestro, entre las intersecciones semaforizadas de la Av.

Los Héroes y Jr. El Inca. Para ello, se aplicó la metodología HCM 2016 (6ta y 7ma edición).

En primer lugar, se dividió el tramo de estudio en cuatro subsegmentos según sus características

geométricas. En segundo lugar, se recolectó los datos geométricos y el aforo vehicular semanal

(25/11/2023–01/12/2023) en horarios de 6:30 a.m. a 8:30 p.m., de lo cual los flujos vehiculares

que se obtuvieron fueron: 693 veh/h, 965 veh/h, 619 veh/h y 1247 veh/h para los subsegmentos

1, 2, 3 y 4, respectivamente. Por último, se aplicó la metodología HCM 2016 donde se obtuvo

que la capacidad vial fue de 1140.89 veh/h, 869.08 veh/h, 574.25 veh/h y 776.38 veh/h para

los subsegmentos 1, 2, 3 y 4 respectivamente en condiciones normales; además, nivel de

servicio obtenido fue "F" para todos los subsegmentos. Los hallazgos que se obtuvieron

confirman que el uso de carriles como estacionamiento improvisado disminuye

significativamente la capacidad vial y el nivel de servicio, intensificando el congestionamiento

vehicular en horas punta.

Palabras clave: Capacidad vial y nivel de servicio.

XXV

**ABSTRACT** 

Vehicle congestion is a recurring problem in Cajamarca, especially during peak hours,

affecting road capacity and the level of service on the roads. Among the main causes are:

unexpected stops of public transport, jaywalking, marches or parades, and the use of lanes as

improvised parking lots. This research addressed the impact of improvised parking on the road

capacity and level of service on Av. El Maestro, between the traffic light intersections of Av.

Los Héroes and Jr. El Inca. For this, the HCM 2016 methodology (6th and 7th edition) was

applied. First, the study section was divided into four subsegments according to their geometric

characteristics. Secondly, the geometric data and the weekly vehicle capacity were collected

(11/25/2023–12/01/2023) at times from 6:30 a.m. to 6:30 p.m. to 8:30 p.m., from which the

vehicle flows obtained were: 693 veh/h, 965 veh/h, 619 veh/h and 1247 veh/h for subsegments

1, 2, 3 and 4, respectively. Finally, the HCM 2016 methodology was applied where it was

obtained that the road capacity was 1140.89 veh/h, 869.08 veh/h, 574.25 veh/h and 776.38

veh/h for subsegments 1, 2, 3 and 4 respectively under normal conditions.; In addition, the

service level obtained was "F" for all subsegments. The findings obtained confirm that the use

of lanes as improvised parking significantly reduces road capacity and the level of service,

intensifying traffic congestion during peak hours.

**Keywords:** Road capacity, level of service.

xxvi

#### CAPÍTULO I

#### 1. INTRODUCCIÓN

#### 1.1. Planteamiento del problema.

#### 1.1.1. Contextualización.

El congestionamiento vehicular en las principales avenidas y calles de las ciudades es un problema a nivel mundial debido al desarrollo económico y social de estas áreas. Este fenómeno puede originarse por diferentes factores como el desplazamiento de la población rural a zonas urbanas; la sobrepoblación y el aumento de la esperanza de vida, entre otros factores. La presente investigación se enfocó específicamente en el impacto del uso de carriles de circulación como estacionamientos improvisados, una práctica que contribuye significativamente al congestionamiento. Diversos estudios han destacado la gravedad de esta problemática y su influencia en la eficiencia del tránsito urbano.

En la investigación Afectación de la Capacidad Vial por Estacionamiento en Vía. Caso de Estudio: Avenida Carrera 7ma con Avenida Calle 72, Bogotá D.C. se hizo hincapié que:

Gaona et al. (2021) destaca que Bogotá enfrenta congestionamiento vehicular debido al mal uso de la malla vial, siendo el estacionamiento en zonas no permitidas un factor clave de esta problemática. (p.2).

Esta problemática también se encontró en el Perú. La investigación *La Congestión Vehicular en Lima Metropolitana entre los Años 2012 y 2016 Afecta Económicamente a las Empresas Aseguradoras de Vida y A sus Trabajadores* manifestó que:

Reghellin (2018) uno de los causantes de esta problemática son los estacionamientos ya que ocupan mucho espacio físico de la sección transversal de las vías, para lo cual ha recomendado que los usuarios puedan utilizar el trasporte público urbano. Además, también manifestó que la infraestructura vial es una problemática ya que en general sus calles son muy angostas y presentaron baches y huecos (p. 50).

También el diario electrónico Correo (2022) en su publicación del tráfico en las calles de Huánuco, sostuvo que "los estacionamientos improvisados, así como el comercio ambulatorio y calles angostas son un problema para la capacidad vial a la que han sido diseñadas las calles provocando congestionamiento vehicular".

Al igual que en otras ciudades del Perú se repite la misma problemática en la ciudad de Cajamarca. En la investigación Análisis de la Capacidad y Niveles de Servicio de la Avenida Mario Urteaga, Tramo: Jr. Dos de Mayo hasta El Óvalo El Inca; según la Metodología HCM, 7ma edición, Cajamarca 2018, se mencionó que el congestionamiento vehicular presente es debido fundamentalmente a la sobre oferta de vehículos de trasporte público y privado, carente de adecuada infraestructura, también mencionó la falta de control de estacionamientos como algo que contribuye a la congestión. (Rojas, 2019, p. 13-14).

Además, en la tesis Nivel de Congestionamiento en la Vía de Evitamiento Sur en la Ciudad de Cajamarca en Función al Tránsito Vehicular, Cajamarca 2020, Condori (2023) afirmó que el uso de un carril como estacionamiento en calles de dos

carriles y el incremento del parque automotor de la ciudad ha superado la capacidad vial de las calles, los cuales, han sido factores que han ocasionado el congestionamiento vehicular (p. 21-22).

El parque automotor de Cajamarca ha sufrido incrementos a lo largo del tiempo, Goicochea (2019) sostuvo que la población de Cajamarca según los datos estadísticos del INEI ha aumentado en un 3% respecto a la población del 2010, lo que hace un crecimiento directamente proporcional a la cantidad de vehículos que transitas en las calles por lo que hace imperativo realizar medidas que puedan mejorar el flujo de vehículos de la ciudad (p. 1).

#### 1.1.2. Descripción del problema.

En la ciudad de Cajamarca, la Avenida El Maestro es una de las principales arterias viales donde se ha observado el uso de un carril como espacio de estacionamiento vehicular. Esta avenida es fundamental en la red de transporte de la ciudad, ya que conecta diversas rutas de transporte público tanto urbano como interurbano, facilitando el acceso a sectores como Los Baños del Inca, Agocucho, el aeropuerto Armando Revoredo y el barrio Mollepampa, entre otros. Sin embargo, el uso de carriles para estacionamiento reduce significativamente la capacidad vial de la avenida, generando congestionamiento vehicular, especialmente en las horas punta. Esta práctica impide el aprovechamiento total de su capacidad de circulación, afectando el flujo de vehículos y generando retrasos en una vía esencial para la conectividad urbana y la movilidad en Cajamarca. En este contexto, la presente investigación analizó el impacto del uso de carriles como estacionamiento en la capacidad vial y el nivel de servicio de la Avenida El Maestro, específicamente en el tramo comprendido entre la Avenida Los Héroes y el Jirón El Inca.

Figura 1. Uso de carril izquierdo como estacionamiento en Av. El Maestro entre la Av. Los Héroes y Jr. Amazonas



Figura 2. Estacionamiento de motocicletas y autos en Av. El Maestro entre la Av. Los Héroes y Jr. Amazonas



Un dato importante para tener en cuenta es que en la intersección no semaforizada de la Av. El Maestro y Jr. Amazonas ocurre un cambio de características geométricas en la sección transversal de la avenida pasando de cuatro carriles a dos carriles.

Figura 3. Cambio de las características geométricas en la intersección Jr. Amazonas

– Av. El Maestro



Figura 4. Uso de una parte del carril como estacionamiento en Av. El Maestro entre el Jr. Amazonas y Jr. El Inca



Figura 5. Parte del ancho de carril se usa como estacionamiento en la Av. El Maestro entre el Jr. Amazonas y Jr. El Inca



#### 1.1.3. Formulación del problema.

¿Cuál es la capacidad y nivel de servicio de la Avenida El Maestro entre la Avenida Los Héroes y Jirón El Inca de la ciudad de Cajamarca, por el uso de carriles como estacionamiento?

#### 1.2. Justificación

La Avenida El Maestro, en el tramo comprendido entre las intersecciones semaforizadas de la Avenida Los Héroes y el Jirón El Inca en la ciudad de Cajamarca,

experimenta un constante congestionamiento vehicular. Este problema podría estar relacionado con el uso inadecuado de la sección transversal de la vía, donde los carriles se emplean como estacionamiento, lo que reduce su capacidad y afecta negativamente el nivel de servicio. La presente investigación examina el impacto de este uso de carriles en la capacidad vial y el nivel de servicio de este tramo específico de la avenida.

La metodología HCM 2016, junto con versiones anteriores, se ha empleado en numerosos estudios para evaluar el nivel de servicio en vías urbanas y carreteras. Aplicando esta metodología, se pretende identificar las causas del congestionamiento vehicular en términos de capacidad vial y nivel de servicio. Los resultados obtenidos pueden servir de base para una gestión de infraestructura vial urbana que permita aumentar la capacidad y mejorar la transitabilidad, beneficiando así a la población usuaria de Cajamarca.

#### 1.3. Delimitación de la investigación.

La investigación se centra en el análisis de la capacidad vial y el nivel de servicio de la Avenida El Maestro, específicamente en el tramo comprendido entre las intersecciones semaforizadas de la Avenida Los Héroes y el Jirón El Inca, en la ciudad de Cajamarca. Este estudio considera el impacto del uso de los carriles como estacionamiento en el flujo vehicular y la eficiencia de la vía.

#### 1.4. Limitaciones.

No se encontró limitaciones para realizar la presente investigación.

#### 1.5. Objetivos.

#### 1.5.1. Objetivo general.

Determinar la capacidad y nivel de servicio de la Av. El Maestro entre La Av. Los Héroes y Jr. El Inca de la ciudad de Cajamarca, por el uso de carriles como estacionamiento.

#### 1.5.2. Objetivos específicos.

- Determinar la capacidad vial y nivel de servicio del flujo vehicular en régimen libre.
- Determinar la reducción de la capacidad vial y nivel de servicio de la vía en estudio debido al uso de carriles como estacionamiento.
- Determinar el volumen horario de máxima demanda.
- Determinar la hora de máxima demanda.
- Determinar el grado de saturación de la vía en estudio.
- Identificar los principales problemas de congestión vehicular causados por el uso de carriles como estacionamiento.

#### CAPÍTULO II

#### 2. MARCO TEÓRICO

#### 2.1. Antecedentes de la investigación o marco referencial.

#### **Antecedentes internacionales**

Sabando (2017) aplicó la metodología HCM 2010 en su investigación Determinación del Nivel de Servicio en Calles Urbanas, en la que analizó el nivel de servicio de tres segmentos en el eje vial Fermín Vivaceta de Santiago de Chile. El segmento 1 presentó un nivel de servicio B, lo que permite un tránsito casi sin obstáculos; el segmento 2 mostró un nivel de servicio C, con restricciones para maniobrar y presencia de colas; y el segmento 3 obtuvo un nivel de servicio F, indicando baja velocidad de viaje, colas y demoras.

Mora (2019), en su investigación *Determinación del Flujo de Saturación Base* (So) para Ciudades Pequeñas: Caso Tunja, Colombia, utilizó la metodología HCM 2010 para analizar la variación del flujo de saturación en comparación con el valor estándar de 1750 automóviles/carril/hora. Los resultados mostraron que el flujo de saturación base en Tunja es de 1740 vehículos/carril/hora, un valor muy cercano al establecido por la metodología.

Granda y Martínez (2017), en su investigación Análisis de Tráfico en las Principales Intersecciones del Área de Influencia de la Universidad del Azuay, utilizaron la metodología HCM 2010 y los parámetros necesarios en el programa AIMSUM 8.1.0 para realizar una microsimulación del tráfico vehicular. El objetivo fue

rediseñar el flujo vehicular y mejorar la capacidad vial y el nivel de servicio en las intersecciones semaforizadas de Av. Francisco Moscoso - Av. 27 de Febrero y Av. 24 de Mayo con la Subida a Turi. Propusieron eliminar el redondel, añadir un tercer carril y semaforizar las intersecciones con un tiempo de ciclo de 125 segundos, dividido en 4 fases.

#### 2.1.1. Antecedentes nacionales

Panduro (2022) en su investigación Evaluación de la Congestión Vehicular en un Tramo del Jr. Ancash entre la Av. Plácido Jiménez, aplicando la Metodología HCM 2010 buscó determinar la capacidad vial y el nivel de servicio de intersecciones semaforizadas en donde se encontró que la vía presentó congestión vehicular desfavorable ya que la capacidad de cada carril fue superada por el flujo vehicular en la máxima demanda y también presentó un nivel de servicio F, lo cual implica demoras y congestionamiento vehicular en la vía.

Ángeles (2020) en su tesis *Análisis de la Aplicabilidad de la Metodología HCM* 2010 en una Rotonda en la Ciudad de Lima comparó las longitudes de cola reales con las longitudes de cola estimadas mediante la metodología respecto al grado de saturación correspondiente a cada periodo; esta comparación demostró que las longitudes de cola medidas y las calculadas no son similares; por lo tanto, se pudo concluir que la metodología HCM 2010 no resultó aplicable para el cálculo del carril derecho e izquierdo de una entrada de la rotonda "Los Delfines".

Cabrera y Maquera (2019) en su Evaluación del Nivel de Servicio de Flujo Vehiculares, en Dos Intersecciones Semaforizadas Caso: Alto Alianza – Tacna utilizó la metodología del HCM 2010 para analizar el problema de congestionamiento vehicular actual compuesto por vehículos públicos y privados. Utilizando esta

metodología y el programa Synchro v8.0 se arrojó como resultado un nivel de servicio F para lo cual se propuso algunas alternativas de solución para mejorar el nivel de servicio.

#### 2.1.2. Antecedentes Locales

Huamán (2019) en su investigación Análisis de la Capacidad y Niveles de Servicio de La Avenida Mario Arteaga, Tramo: Jr. Dos de Mayo hasta el Óvalo el Inca; Según la Metodología HCM 2010, Cajamarca 2018 estudió la capacidad y nivel de servicio tanto en segmentos como en intersecciones semaforizadas donde obtuvo una capacidad de 1532 veh/h y un nivel de servicio E corroborando su hipótesis de que la capacidad vial y nivel de servicio corresponden a condiciones de circulación inferiores desde el punto de vista del usuario (D, E o F).

Asimismo, Condori (2020) en su investigación *Nivel de Congestionamiento en la Vía de Evitamiento Sur en la Ciudad de Cajamarca en función al Tránsito Vehicular, Cajamarca 2020* utilizó la metodología del HCM 2010 para estudiar el nivel de congestionamiento en lo cual obtuvo un congestionamiento de nivel D, cuyo resultado indica congestionamiento de densidad elevada, restricciones en la capacidad de maniobrar libremente y formaciones de colas durante las horas punta.

Velásquez (2021) en su investigación Análisis del *Nivel de Servicio y* Capacidad Vehicular de Dos Intersecciones con Mayor Demanda del Centro Histórico de la Ciudad de Cajamarca Utilizando Cámaras de Videovigilancia y La Metodología HCM, en el año 2018 determinó un nivel de servicio F en las intersecciones del Jr. Tarapacá con Jr. Del Comercio y Jr. Del Batán con Jr. Amalia Puga.

#### 2.2. Bases teóricas.

#### 2.2.1. Ingeniería de Tránsito

Cal y Mayor y Cárdenas (2018) nos dice que la ingeniería de tránsito es aquella fase de la ingeniería de transporte que tiene que ver con la planeación segura y eficiente, el proyecto geométrico y la operación del tránsito por las calles y carreteras, sus redes, terminales, tierras adyacentes y su relación con otros modos de transporte motorizado y no motorizado. (p. 33)

#### 2.2.2. Modos de Transporte por Carretera.

#### A. Modo Automóvil o vehículo motorizado.

En modo automóvil engloba a todos los vehículos a motor que componen el tráfico de una carretera a excepción de transporte público urbano. En consecuencia, los camiones, vehículos de recreo, motocicletas y autobuses turísticos o interurbanos se consideran dentro del modo automóvil. (Romana et al, 2017, p. 76)

#### B. Modo Peatón.

El modo peatón incluye a las personas que se desplazan a pie total o parcialmente por carreteras o infraestructuras diseñadas para peatones, como aceras o áreas reservadas. La velocidad a la que caminan varía según su edad, estado físico o condiciones ambientales, como el clima o la temperatura. El HCM considera estas variables en sus procedimientos. Aunque aceras y caminos también son utilizados por otros usuarios, como patinadores o personas en sillas de ruedas, los niveles de servicio del HCM están enfocados en las necesidades de los peatones que caminan a pie. (Romana et al, 2017, p. 76)

#### C. Modo Ciclista.

El modo ciclista se refiere a las personas que se desplazan en bicicletas no motorizadas por carreteras, carriles para bicicletas y similares. Los niveles de servicio para este modo están diseñados desde la perspectiva de los ciclistas. Sin embargo, vehículos como ciclomotores y scooters no se incluyen como bicicletas en los análisis del HCM. (Romana et al, 2017, p. 76)

#### D. Modo Transporte Público Urbano.

Romana et al (2017) "Las vías urbanas son a menudo compartidas con autobuses destinados al transporte público urbano, y ocasionalmente con otros medios de transporte sobre vías con el mismo fin como tranvías y trenes ligeros". (p. 77).

#### 2.2.3. Condiciones de Circulación.

#### A. Circulación ininterrumpida.

Las autopistas y autovías, junto con sus componentes, funcionan bajo un flujo de circulación continuo. Aunque hay interrupciones fijas en el tráfico, las vías de varios carriles y las carreteras de dos carriles también pueden operar sin interrupciones en tramos largos, siempre que no haya elementos puntuales que causen una detención, como un semáforo. (Romana et al, 2017, p. 78)

# B. Circulación interrumpida o discontinua

Las infraestructuras viales de circulación interrumpida, como las urbanas, causan demoras debido a elementos fijos como semáforos o señales de stop. Las vías exclusivas para peatones o ciclistas también se consideran interrumpidas cuando se cruzan con otras vías donde no tienen prioridad de paso. (Romana et al, 2017, p. 79)

#### 2.2.4. Capacidad.

La capacidad se refiere teóricamente a la máxima cantidad de flujo que una carretera o calle puede manejar. Representa la tasa máxima a la que vehículos o personas pueden pasar razonablemente por un punto de una vía, en un tiempo específico, bajo las condiciones actuales de la infraestructura, el entorno, el tráfico y los controles de tránsito. (Cal y Mayor y Cárdenas, 2018, p. 397)

La capacidad se define como el flujo máximo que una vía puede soportar. Es la tasa más alta a la que vehículos o peatones pueden transitar por un punto determinado de la carretera, en un tiempo específico, considerando las condiciones de la infraestructura, el tráfico, el entorno y los controles de tránsito. (Romana et al, 2017, p. 182)

$$c = N_{th} \cdot s \cdot \frac{g}{c}$$
 (Ecuación 1)

donde:

- c: Capacidad para circulación interrumpida (veh/h).
- Nth: Número de carriles en el segmento.
- s: Flujo de saturación por carril (veh/h/ln).
- g/C: Proporción efectiva verde-longitud de ciclo.

Sabando (2017), p. 54. "Se puede utilizar un valor "s" por defecto de 1800 vehículos por hora por pista para el flujo de saturación de calles urbanas".

#### 2.2.5. Nivel de servicio

El nivel de servicio mide la calidad del flujo vehicular según la percepción de los conductores y pasajeros, considerando factores como velocidad, tiempo de viaje, maniobras y seguridad. (Cal y Mayor y Cárdenas, 2018, p. 397)

Para caracterizar el nivel de servicio vehicular en un segmento de calle urbana, se utilizan dos medidas de desempeño. La primera es la velocidad de desplazamiento de los vehículos, que refleja los factores que afectan el tiempo de viaje y el retraso en las intersecciones. La segunda medida es la relación volumen-capacidad en la intersección aguas abajo, que indica el grado de movilidad del segmento. (HCM 2016, p. 18-6)

El HCM establece 6 niveles de servicio desde la A hasta la F. Los siguientes conceptos son extraídos del HCM 2016 capítulo 18 Segmentos de Calles Urbanas. Así se tiene los siguientes conceptos:

Nivel de servicio (LOS A): La operación de flujo libre se caracteriza por la ausencia de obstáculos que dificulten la maniobra de los vehículos dentro del tráfico. El retraso en las intersecciones es mínimo, la velocidad de los vehículos supera el 80% de la velocidad base y la relación volumen-capacidad no excede 1. (HCM 2016, p. 18-6)

Nivel de servicio (LOS B): Se describe una operación con pocos obstáculos, donde la maniobrabilidad dentro del flujo de tráfico está solo levemente limitada y el retraso en las intersecciones es mínimo. La velocidad de desplazamiento se encuentra entre el 67% y el 80% de la velocidad base de flujo libre, y la relación volumencapacidad no supera 1. (HCM 2016, p. 18-6)

Nivel de servicio (LOS C): El funcionamiento estable presenta maniobrabilidad limitada, colas largas en intersecciones y velocidades entre el 50% y el 67% de la base, con una relación volumen-capacidad de 1 o menos. El funcionamiento estable tiene maniobrabilidad limitada, colas largas y velocidades reducidas. (HCM 2016, p. 18-6)

Nivel de servicio (LOS D): Indica una condición menos estable en la que pequeños aumentos en el flujo pueden causar aumentos sustanciales en el retraso y disminuciones en la velocidad de viaje. Esta operación puede deberse a una progresión adversa de la señal, un volumen alto o una sincronización inapropiada de la señal en la intersección de límites. La velocidad de desplazamiento está entre el 40% y el 50% de la velocidad base de flujo libre y la relación volumen-capacidad no es mayor que 1. (HCM 2016, p. 18-6)

Nivel de servicio (LOS E): El funcionamiento inestable se caracteriza por retrasos significativos, bajas velocidades (30-40% de la base) y una relación volumencapacidad de 1 o menos. El funcionamiento inestable implica grandes retrasos, velocidades bajas y relación volumen-capacidad de 1 o menos. (HCM 2016, p. 18-6)

Nivel de servicio (LOS F): Se caracteriza por un flujo muy bajo, con congestión en la intersección, altos retrasos y largas colas. La velocidad es del 30% o menos de la velocidad base, y la relación volumen-capacidad supera 1. El flujo extremadamente bajo muestra congestión, bajos niveles de velocidad y una relación volumen-capacidad mayor a 1. (HCM 2016, p. 18-6)

Tabla 1. Nivel de servicio en modo automóvil para segmentos de calles urbanos.

| LOS     | Umbral de velocidad de desplazamiento por velocidad de flujo libre base (mi/h) |           |     |     |     |     |     | Ratio<br>Volumen- |
|---------|--------------------------------------------------------------------------------|-----------|-----|-----|-----|-----|-----|-------------------|
|         | 55                                                                             | 50        | 45  | 40  | 35  | 30  | 25  | Capacidad         |
| A       | >44                                                                            | >40       | >36 | >32 | >28 | >24 | >20 | ≤1.0              |
| В       | >37                                                                            | >34       | >30 | >27 | >23 | >20 | >17 |                   |
| C       | >28                                                                            | >25       | >23 | >20 | >18 | >15 | >13 |                   |
| D       | >22                                                                            | >20       | >18 | >16 | >14 | >12 | >10 |                   |
| ${f E}$ | >17                                                                            | >15       | >14 | >12 | >11 | >9  | >8  |                   |
| F       | ≤17                                                                            | ≤15       | ≤14 | ≤12 | ≤11 | ≤9  | ≤8  |                   |
| F       |                                                                                | Cualquier |     |     |     |     |     |                   |

Nota. Extraído del Manual de Capacidad de Carreteras (HCM 2016).

### 2.2.6. Longitud de segmento

El HCM (2016) define la longitud del segmento es la distancia entre las intersecciones de límites que definen el segmento. (p. 18-18).

En Romana, et al. (2018) dice que "los tramos urbanos se caracterizan por la presencia de elementos que interrumpen el tráfico de forma periódica (semáforos y señales de STOP y CEDA el PASO), con una separación entre estos inferior a 2 millas". (p.499)

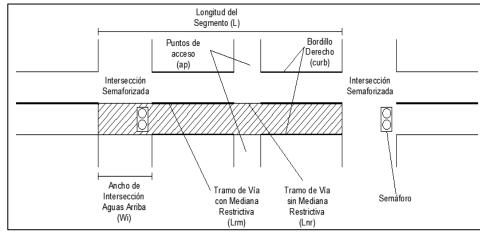



Figura 6. Elementos de segmento de calle urbana

Se tienen las siguientes entradas para los segmentos de calle urbana.

Cuadro 1. Entradas para segmentos de calles urbanas

| Categoría de datos          | Ubicación | Elementos de entrada                                 |  |  |  |
|-----------------------------|-----------|------------------------------------------------------|--|--|--|
| Canantaníationa de          |           | Proporción de pelotón                                |  |  |  |
| Características de tránsito | Segmento  | Flujo medio del segmento                             |  |  |  |
| transito                    |           | Retraso medio del segmento                           |  |  |  |
|                             |           | Número de carriles                                   |  |  |  |
|                             |           | Longitud de segmento                                 |  |  |  |
|                             | Segmento  | Longitud de mediana restrictiva                      |  |  |  |
| Diseño geométrico           |           | Longitud de mediana no restrictiva                   |  |  |  |
|                             |           | Proporción de segmentos con bordillo al lado derecho |  |  |  |
|                             |           | Número de puntos de acceso                           |  |  |  |
|                             |           | Proporción del segmento con estacionamiento en vía   |  |  |  |
| Otros                       | Sagmento  | Duración del periodo de análisis                     |  |  |  |
| On 08                       | Segmento  | Velocidad límite                                     |  |  |  |

*Nota.* Capítulo 30 HCM 2016 tomado para segmentos de calles urbanas.

#### 2.2.7. Longitud ajustada del segmento (Ladj).

Corresponde la longitud del segmento en pies de intersección a intersección descontando el ancho de intersección aguas arriba. Se calcula con la siguiente fórmula.

$$L_{adi} = L - W_i$$
 (Ecuación 2)

Donde:

- Ladj: Longitud ajustada del segmento (pies).
- L: Longitud del segmento de intersección a intersección semaforizada (pies).
- W<sub>i</sub>: Ancho de intersección aguas arriba (pies).

#### **2.2.8.** Volumen.

#### A. Volumen medio del segmento (v<sub>m</sub>).

Es el número de vehículos que transitan por un punto del segmento en un determinado tiempo específico. Se expresa en vehículos por hora (veh/h).

#### B. Volumen horario de máxima demanda (VHMD).

Cal y Mayor y Cárdenas (2018) dice que "Es el máximo número de vehículos que pasan por un punto en 60 minutos consecutivos, representando los períodos de máxima demanda diaria.". (p. 185).

#### 2.2.9. Velocidad.

# A. Velocidad límite (S<sub>pl</sub>).

Es una variable de entrada, que indica la velocidad máxima en la que un elemento motorizado puede recorrer un segmento. De acuerdo con el Reglamento Nacional de Tránsito, en el artículo 162, el límite de velocidad para calles con zona escolar es 30 km/h (SUTRAN-MTC, 2014, p 32.)

Según HCM (2016) "la velocidad límite debe ajustarse a la velocidad límite de calles cercanas al segmento en cuestión y consistente con la política de la agencia con respecto a la especificación de los límites de la velocidad". (p. 18-20).

#### B. Velocidad constante (So).

Para Cal y Mayor y Cárdenas (2018) "es la relación entre el espacio recorrido y el tiempo que se tarda en recorrerlo. Es decir, para un vehículo representa su relación de movimiento, usualmente expresada en km/h." (p. 257)

$$S_o = 25.6 + 0.47 S_{pl}$$
 (Ecuación 3)

Donde:

- S<sub>o</sub>: Velocidad constante (mi/h).
- S<sub>pl</sub>: Velocidad límite (mi/h).

#### C. Velocidad base de flujo libre $(S_{fo})$ .

Sabando (2017) define como "la velocidad de flujo libre en segmentos largos. Influye la velocidad límite, densidad de puntos de acceso, mediana, solera". (p. 30)

$$S_{fo} = S_{calib} + S_o + f_{cs} + f_A + f_{pk}$$
 (Ecuación 4)

Donde:

- S<sub>fo</sub>: Velocidad base de flujo libre (mi/h).
- S<sub>calib</sub>: Factor de calibración de la velocidad base de flujo libre (mi/h) es 0.00
   mi/h según HCM 2016.
- S<sub>o</sub>: Velocidad constante (mi/h).
- f<sub>cs</sub>: Factor de ajuste por la sección transversal (mi/h).
- f<sub>A</sub>: Factor de ajuste por densidad de puntos (mi/h).
- f<sub>pk</sub>: Factor de ajuste por estacionamiento en vía (mi/h).

### D. Velocidad de flujo libre $(S_f)$ .

Romana et al (2017) dice que un flujo de tráfico tiene un régimen de circulación libre – durante el período de análisis – cuando se dan las siguientes condiciones: a) el flujo de entrada en todos los accesos al elemento o tramo es inferior a la capacidad de cada uno; b) no quedan colas residuales procedentes de retenciones anteriores producidas en la infraestructura, y c) cuando el flujo de tráfico no vea afectado por las condiciones existentes corrientes abajo. (p.80)

$$S_f = S_{fo} \cdot f_L \ge S_{pl}$$
 (Ecuación 5)

Donde:

- S<sub>f</sub>: Velocidad de flujo libre (mi/h).

- S<sub>fo</sub>: Velocidad base de flujo libre (mi/h).

- f<sub>L</sub>: Factor de ajuste de longitud del segmento.

- S<sub>pl</sub>: Velocidad límite (mi/h).

# E. Tiempo de viaje $(T_T)$

Es el tiempo que tarda un vehículo en trascurrir el segmento de estudio en la cual se incluye demoras. Se expresa mediante la siguiente fórmula:

$$T_T = t_R + d$$
 (Ecuación 6)

Donde:

- T<sub>T</sub>: Tiempo de viaje (s)

t<sub>R</sub>: Tiempo de ejecución (s).

d: Demora por control (s).

### F. Velocidad de viaje $(S_{T, seg})$ .

Es la velocidad que tiene el vehículo durante su transcurrir por el segmento, los cual incluye demoras, detenciones y variaciones de la velocidad. Se expresa según la fórmula.

$$S_{T,seg} = \frac{3600L}{5280(T_T)}$$
 (Ecuación 7)

Donde:

- S<sub>T, seg</sub>: Velocidad de viaje (mi/h).
- L: Longitud del segmento (pies).
- T<sub>T</sub>: Tiempo de viaje (s).

## 2.2.10. Retraso total por giros en puntos de acceso. ( $\Sigma d_{ap}$ ).

Sabando (2017) describe que "es la demora, expresado en segundos, que un vehículo experimenta al realizar los giros hacia la derecha o izquierda en los puntos de acceso al segmento". (p. 46).

Tabla 2. Retraso debido al giro de vehículos hacia la derecha e izquierda

| Volumen en el segmento (veh/h/ln) | Retraso de vehículos por número<br>de carriles directos (s/veh/pt) |            |            |  |
|-----------------------------------|--------------------------------------------------------------------|------------|------------|--|
| (veh/h/ln)                        | 1 carril                                                           | 2 carriles | 3 carriles |  |
| 200                               | 0.04                                                               | 0.04       | 0.05       |  |
| 300                               | 0.08                                                               | 0.08       | 0.09       |  |
| 400                               | 0.12                                                               | 0.15       | 0.15       |  |
| 500                               | 0.18                                                               | 0.25       | 0.15       |  |
| 600                               | 0.27                                                               | 0.41       | 0.15       |  |
| 700                               | 0.39                                                               | 0.72       | 0.15       |  |

Nota. Extraído del Manual de Capacidad de Carreteras (HCM 2016).

#### 2.2.11. Demora por otros factores ( $d_{other}$ ).

Otros factores pueden causar que un conductor reduzca la velocidad o incurra en retraso mientras viaja a lo largo de un segmento. Por ejemplo, un vehículo que está completando una maniobra de estacionamiento en paralelo puede causar cierto retraso, también vehículos que ceden el paso a peatones, ciclistas, entre otros. (Sabando, 2017, p. 47)

# 2.2.12. Proporción de bordillo al lado derecho (pcurb).

Corresponde a la longitud de bordillo al lado derecho de esquina a esquina a lo largo del eje con respecto a la longitud ajustada del segmento. Se tiene la siguiente fórmula.

$$p_{curb} = \frac{L_{curb}}{L_{adj}}$$
 (Ecuación 8)

Donde:

p<sub>curb</sub>: Proporción de bordillo al lado derecho.

L<sub>curb</sub>: Longitud de bordillo al lado derecho en el segmento (pies).

- Ladj: Longitud ajustada del segmento (pies).

# 2.2.13. Proporción del segmento con mediana restrictiva (p<sub>rm</sub>).

Corresponde la longitud de la mediana de la calle medida de esquina a esquina a lo largo del eje con respecto a la longitud ajustada del segmento. Se tiene la siguiente fórmula.

$$p_{rm} = \frac{L_{rm}}{L_{adj}}$$
 (Ecuación 9)

Donde:

- p<sub>rm</sub>: Proporción del segmento con mediana restrictiva.
- L<sub>rm</sub>: Longitud del segmento con mediana restrictiva (pies).
- Ladj: Longitud ajustada del segmento (pies).

# 2.2.14. Factor de ajuste para la sección transversal (fcs).

Factor que se utiliza para calcular la velocidad base de flujo libre, para esto considera la proporción de bordillo al lado derecho y proporción de segmento con mediana restrictiva. Se utiliza la siguiente fórmula.

$$f_{cs} = 1.5p_{rm} - 0.47p_{curb} - 3.7p_{rm}p_{curb}$$
 (Ecuación 10)

Donde:

- f<sub>cs</sub>: Factor de ajuste para la sección transversal (mi/h).
- p<sub>rm</sub>: Proporción del segmento con mediana restrictiva.
- p<sub>curb</sub>: Proporción del segmento con bordillo al lado derecho.

# 2.2.15. Densidad de puntos de acceso (Da).

Representa al número de puntos de acceso que se encuentran en una milla de longitud de segmento. Se representa mediante la siguiente fórmula.

$$D_a = 5,280 \frac{N_{ap,s}}{L_{adj}}$$
 (Ecuación 11)

Donde:

- Da: Densidad de puntos de acceso (pts/mi).
- Nap,s: Número de puntos de acceso en el segmento.
- L<sub>adj</sub>: Longitud ajustada del segmento (pies).

### 2.2.16. Factor de ajuste por puntos de acceso (f<sub>A</sub>).

Corresponde a la densidad de los puntos de acceso con respecto al número de carriles con el propósito de incluir la influencia de los puntos de acceso en la velocidad base de flujo libre. Se calcula por la fórmula.

$$f_A = -0.078 \frac{D_a}{N_{th}}$$
 (Ecuación 12)

Donde:

- f<sub>A</sub>: Factor de ajuste por puntos de acceso.

- Da: Densidad de puntos de acceso (pts/mi).

N<sub>th</sub>: Número de carriles.

### 2.2.17. Proporción de segmento con estacionamiento en la vía (ppk).

La proporción del segmento con estacionamiento en la calle es la proporción de la longitud del enlace con puestos de estacionamiento (ya sea marcados o no) disponibles a lo largo del lado derecho del segmento. Esta proporción se calcula como la longitud de la calle con puestos de estacionamiento dividida por la longitud del enlace. Se incluye el estacionamiento descrito con un diseño paralelo o angular. Esta proporción se calcula por separado para cada dirección de viaje a lo largo del segmento. (HCM 2016, p. 18-20).

$$p_{pk} = \frac{L_{pk}}{L_{adj}}$$
 (Ecuación 13)

Donde:

p<sub>pk</sub>: Proporción de segmento con estacionamiento en la vía.

Lpk: Longitud del segmento que se usa como estacionamiento (ft).

Ladj: Longitud ajustada del segmento (pies).

## 2.2.18. Factor de ajuste para estacionamiento en la vía $(f_{pk})$ :

Es la proporción de longitud del enlace con estacionamiento en la vía disponible en el lado derecho (decimal). (HCM 2016, p. 18-28). Se calcula mediante la fórmula:

$$f_{pk} = -3p_{pk}$$
 (Ecuación 14)

Donde:

- f<sub>pk</sub>: Factor de ajuste para estacionamiento en la vía.
- p<sub>pk</sub>: Proporción de segmento con estacionamiento en la vía.

### 2.2.19. Factor para el ajuste de la longitud del segmento (f<sub>L</sub>).

De Huamán (2019) se infiere que "un segmento de corta longitud tiende a influir en la elección de la velocidad de flujo libre por el conductor. Se ha encontrado que la velocidad de flujo libre tiende a bajar en segmentos más cortos" (p. 40).

Según HCM (2016) La evidencia empírica sugiere que una longitud de segmento más corta (cuando se define mediante intersecciones de límites señalizados) tiende a influir en la elección de la velocidad de flujo libre por parte del conductor, es decir, la velocidad de flujo libre más lenta. (p. 18-29).

Se puede representar mediante la siguiente ecuación:

$$f_L = 1.02 - \frac{4.7(S_{fo} - 19.5)}{max(L,400)} \le 1.0$$
 (Ecuación 15)

Donde:

- f<sub>L</sub>: Factor para el ajuste de la longitud del segmento (fL).
- S<sub>fo</sub>: Velocidad base del flujo libre (mi/h).
- L: Longitud del segmento (pies).

#### 2.2.20. Factor de ajuste por proximidad del vehículo (f<sub>v</sub>).

Este factor tiene en consideración el efecto de la densidad de tráfico en el tiempo de viaje vehicular dando como resultado un aumento de este y una reducción de la velocidad. La reducción de la velocidad es el resultado de intervalos más cortos entre vehículos debido al mayor volumen vehicular y ocasiona que los conductores sean más cautelosos en sus maniobras. (HCM 2016, p. 18-29).

Huamán (2019) dice que "hace corresponder al factor que ajusta el tiempo en movimiento en flujo libre para tener en cuenta el efecto de la densidad del tránsito" (p. 41). Los tramos cortos hacen un efecto de disminución de velocidad. Se tiene la siguiente fórmula:

$$f_v = \frac{2}{1 + \left(1 - \frac{v_m}{52.8 \cdot N_{th} \cdot S_f}\right)^{0.21}}$$
 (Ecuación 16)

Donde:

f<sub>v</sub>: Factor de ajuste por proximidad.

v<sub>m</sub>: Volumen medio del segmento (veh/h).

N<sub>th</sub>: Número de carriles del segmento.

S<sub>f</sub>: Velocidad en régimen libre (mi/h).

#### 2.2.21. Tiempo de viaje o ejecución $(t_R)$ .

La siguiente ecuación es usada para calcular el tiempo en movimiento en el segmento, la cual considera el control de movimiento en las intersecciones límites, la velocidad de flujo libre, proximidad entre vehículos, y variadas fuentes de demora en el segmento.

$$t_R = \frac{6 - l_1}{0.0025L} f_x + \frac{3600L}{5280S_f} f_v + \sum d_{ap} + d_{other}$$
 (Ecuación 17)

- f<sub>x</sub>: Factor de ajuste del tipo de control

 $f_x = 1.0$  Para movimientos controlados por señalización.

 $f_x = 0.0$  Para movimientos no controlados.

 $f_x = \{\min \frac{v_{th}}{c_{th}}, 1.0\}$  Movimientos controlados por rendimiento.

- t<sub>R</sub>: Tiempo de ejecución en el segmento. (s)
- l<sub>1</sub>: Pérdida de tiempo en la partida = 2.0 si es semaforizada y 2.5 si es pare o ceda el paso (s).
- L: Longitud del segmento (ft)
- f<sub>v</sub>: Factor de ajuste por proximidad entre vehículos
- S<sub>f</sub>: Velocidad de flujo libre (mi/h)
- Σd<sub>ap</sub>: Retraso total por puntos de acceso (s/veh)
- $\Sigma d_{other}$ : Demora debido a otras fuentes a lo largo del segmento, (s/veh)
- c<sub>th</sub>: Capacidad de movimiento (veh/h).

Para este estudio  $f_x = 1.00$  ya que los movimientos se encuentran controlados por semáforos en las intersecciones aguas arriba.

#### 2.2.22. Proporción de llegada durante el verde (P).

Corresponde a la proporción vehículos que llegan al segmento, en la intersección aguas arriba, durante el tiempo de verde del semáforo. Esta proporción se calcula mediante la fórmula:

$$P = R_P \cdot \left(\frac{g}{c}\right)$$
 (Ecuación 18)

- P: Proporción de llegada durante el verde.
- g: Tiempo de verde efectivo (s).
- C: Longitud de ciclo semafórico (s).
- R<sub>P</sub>: Relación del grupo de llegada.

### 2.2.23. Relación de grupo de llegada o proporción de pelotón (R<sub>P</sub>):

"La relación de pelotón se utiliza para describir la calidad de progresión del flujo vehicular que llega durante el tiempo de verde del semáforo". (HCM 2016, p. 19-26). Para la relación del grupo de llegada se tiene las siguientes definiciones:

El **tipo de llegada 1** se caracteriza por un pelotón denso que supera el 80% del volumen del grupo de movimiento al inicio del intervalo rojo. Este tipo de llegada suele ocurrir en segmentos cortos con mala progresión en la dirección de viaje, pero buena en la dirección contraria. (HCM, 2016, p. 19-28)

El **tipo de llegada 2** se caracteriza por un pelotón moderadamente denso que llega a la mitad del intervalo rojo, o un pelotón disperso con el 40% al 80% del volumen del grupo de movimiento durante todo el intervalo rojo. Este tipo de llegada suele ocurrir en tramos de longitud media con mala progresión en la dirección de viaje. (HCM, 2016, p. 19-28)

El **tipo de llegada 3** se da si las señales están coordinadas, se caracteriza por un pelotón que contiene menos del 40% del volumen del grupo de movimiento, llegando parcialmente durante el intervalo rojo y verde. Si no están coordinadas, los trenes llegan de manera aleatoria en diferentes puntos durante el período de análisis. (HCM, 2016, p. 19-28)

El **tipo de llegada 4** se caracteriza por un pelotón moderadamente denso que llega a la mitad del intervalo verde, o un pelotón disperso que contiene entre el 40% y el 80% del volumen del grupo de movimiento durante el intervalo verde. Este tipo de llegada suele ocurrir en segmentos de longitud media con buena progresión en la dirección de viaje. (HCM, 2016, p. 19-28)

El **tipo de llegada 5** este tipo de llegada involucra un pelotón denso que supera el 80% del volumen del grupo de movimiento, llegando al inicio del intervalo verde. Se asocia con tramos cortos y buena progresión en la dirección de viaje. Además, suele haber un número bajo a moderado de calles laterales. (HCM, 2016, p. 19-29)

El **tipo de llegada 6** este tipo de llegada implica un pelotón denso que supera el 80% del volumen del grupo de movimiento al inicio del intervalo verde. Ocurre en segmentos muy cortos con excelente progresión y pocas entradas de calles laterales. Es típico de rutas con redes de señales densas y posibles calles de un solo sentido. (HCM, 2016, p. 19-29).

Tabla 3. Relación de Pelotón.

| Tipo de Valor por<br>Llegada Defecto |      | Calidad de Progresión      |  |  |  |
|--------------------------------------|------|----------------------------|--|--|--|
| 1                                    | 0.33 | Muy Pobre                  |  |  |  |
| 2                                    | 0.67 | Desfavorable               |  |  |  |
| 3                                    | 1.00 | Llegadas Aleatorias        |  |  |  |
| 4                                    | 1.33 | Favorable                  |  |  |  |
| 5                                    | 1.67 | Muy Favorable              |  |  |  |
| 6                                    | 2.00 | Excepcionalmente Favorable |  |  |  |

Nota. Manual de Capacidad de Carreteras (HCM 2016).

#### 2.2.24. Factor de ajuste de filtrado aguas arriba (I).

"Este factor refleja la forma en que una señal aguas arriba cambia la varianza en el número de llegadas por ciclo". (HCM, 2016, p. 19-29)

"Un valor de 1.0 es usado para intersecciones aisladas, por ejemplo, de 1.6 km de distancia a más. Este valor se basa en una cantidad de vehículos aleatorios llegando por ciclo". (Sabando, 2017, p. 55-56)

"El factor de ajuste I, tiene en cuenta el efecto de las intersecciones corriente arriba, en la llegada de vehículos a un acceso de la intersección en estudio. Para su cálculo en intersecciones no aisladas, se utiliza la siguiente ecuación" (Cal y Mayor y Cárdenas, 2018, p. 471):

$$I = 1.0 - 0.91 X_u^{2.68} \ge 0.090$$
 (Ecuación 19)

Donde:

- I: Factor de ajuste de filtrado aguas arriba.
- X<sub>u</sub>: Relación volumen capacidad aguas arriba.

En el capítulo 30 del HCM (2016) describe que "se calcula como la relación ponderada entre volumen y capacidad de todos los movimientos aguas arriba que contribuyen al volumen en el grupo de movimientos en cuestión." (p. 19-29)

Cal y Mayor y Cárdenas (2018) dice que "Xu es la media ponderada de la relación volumen a capacidad de todos los movimientos de la intersección corriente arriba que contribuyen con el volumen del acceso de estudio". (p. 472)

### 2.2.25. Factor de ajuste por progresión (PF\*).

Una buena coordinación de semáforos dará como resultado una proporción alta de grupos vehiculares que llegan en el verde. La coordinación afecta principalmente a la demora uniforme, por lo que se realiza el ajuste solo a d<sub>1</sub>, mediante la siguiente expresión. (Cal y Mayor, 2018, p. 470-471)

$$PF^* = f_{PA} \frac{1-P}{1-\frac{g}{C}}$$
 (Ecuación 20)

 f<sub>PA</sub>: Factor de ajuste suplementario por grupos vehiculares que llegan durante el verde.

Para el HCM 2010, se tiene:

Si 
$$0.50 < Rp \le 0.85$$
,  $f_{PA} = 0.93$ .

Si 
$$1.15 \le Rp \le 1.50$$
,  $f_{PA} = 1.15$ .

Para los demás valores de Rp,  $f_{PA} = 1.0$ .

Para Cal y Mayor, se tiene:

Para el tipo de llegada 1, 3, 5 y 6,  $f_{PA} = 1.0$ .

Para el tipo de llegada 2,  $f_{PA} = 0.93$ .

Para el tipo de llegada 4,  $f_{PA} = 1.15$ .

P: Proporción de llegada durante el verde.

g/C: Relación verde/ciclo efectivo.

#### 2.2.26. Demora uniforme $(d_1)$ .

Cal y Mayor y Cárdenas (2018) nos dice que "es la que ocurriría si los vehículos llegarán uniformemente distribuidos, tal que no exista saturación durante ningún ciclo. Se determina mediante la siguiente ecuación" (p. 471).

$$d_1 = (PF^*) \frac{0.5c(1-\frac{g}{C})^2}{1-[min (1,X)\frac{g}{C}]}$$
 (Ecuación 21)

Donde:

- C: Longitud de ciclo semafórico (s).
- g/C: Relación verde/ciclo efectivo.
- X: Relación volumen capacidad o grado de saturación.

$$X = \frac{v_{th}}{c}$$
 (Ecuación 22)

- v<sub>th</sub>: Tasa de flujo de demanda actual o proyectada del grupo de carril
   (veh/h).
- c: Capacidad para circulación interrumpida (veh/h).

#### 2.2.27. Demora incremental (d<sub>2</sub>).

Cal y Mayor y Cárdenas (2018) nos dice que "es la demora incremental toma en consideración las llegadas aleatorias, que ocasiona que algunos ciclos se sobresaturen". (p. 471).

$$d_2 = 900T \left[ (X - 1) + \sqrt{(X - 1)^2 + \frac{4IX}{cT}} \right]$$
 (Ecuación 23)

Donde:

- T: Duración del periodo de análisis (0.25 h − 1.00 h).
- I: Factor de ajuste de filtrado aguas arriba (I=1.00 para intersecciones aisladas).
- c: Capacidad para circulación interrumpida (veh/h).
- X: Relación volumen capacidad o grado de saturación.

#### 2.2.28. Demora por control (d).

Cal y Mayor y Cárdenas (2018) dice que "la demora por control incluye los movimientos a velocidades bajas y las detenciones en los accesos a la intersección, cuando los vehículos disminuyen la velocidad corriente arriba o cambian de posición en la cola". (p. 470).

$$d = d_1 + d_2$$
 (Ecuación 24)

- d: Demora por control (s/veh).

- d<sub>1</sub>: Demora uniforme (s/veh).

- d<sub>2</sub>: Demora incremental (s/veh).

#### 2.2.29. Reducción de capacidad.

Se define como el porcentaje en el que la capacidad vial se reduce por diferentes factores. Se expresa mediante la siguiente fórmula.

$$%R_c = 1 - \frac{c_A}{c_B}$$
 (Ecuación 25)

Donde:

- %Rc: Reducción de la capacidad (%).

 - c<sub>A</sub>: Capacidad vial en condición de uso de carriles como estacionamiento (veh/h).

c<sub>B</sub>: Capacidad vial en condiciones libres (veh/h)

#### 2.2.30. Vehículo patrón:

Para el uso de la metodología HCM 2016 se convirtió los vehículos aforados al vehículo patrón, para ello se tiene los siguientes factores (Ver anexo 05):

Tabla 4. Unidades Vehiculares Equivalentes

| VEHÍCULO    | UVE  |
|-------------|------|
| Bicicleta   | 0.30 |
| Moto lineal | 0.50 |
| Mototaxi    | 0.68 |
| Auto        | 1.00 |
| Camioneta   | 1.30 |
| Combi       | 1.25 |
| Microbuses  | 2.00 |
| Camión      | 3.00 |

Nota. Extraído de Navín 2005, Noriega 2014, Interreg North-West Europe CHIPS, 2024/ Palmetto Cycling Coalition, 2024, Zongshen Motocicletas Originales, 2024.

#### 2.3. Marco conceptual.

El congestionamiento vehicular es una problemática que aqueja a las metrópolis de todo el mundo. Esta problemática puede observarse desde la ciudad de Cajamarca en donde las características geométricas de las calles y avenidas no dan abasto para la gran cantidad de vehículos que transitan, así como el desorden y caos del trasporte público urbano. También esta problemática se puede observar en la ciudad de Lima, capital del Perú, una mega metrópoli en donde viven aproximadamente 11 millones de personas y diariamente existe un congestionamiento vehicular a la cual tratan de brindar diferentes soluciones para mitigar esta problemática. También, grandes ciudades en el mundo tienen problemas de congestionamiento vehicular, como la ciudad de Nueva York, debido a la gran concentración de millones de personas que demandan un sistema de transporte urbano adecuado.

Las personas buscan vivir en las ciudades donde se ofrecen mejor calidad de vida y mayores oportunidades de progreso, realizar un planeamiento vial es crucial para el crecimiento urbano adecuado de estas ciudades. Cada vía debe estar diseñada con las proyecciones de población futura que permitan sostener la demanda vehicular a largo plazo y que no exista un congestionamiento vehicular.

El congestionamiento vehicular se puede dar por diferentes factores, para este estudio se toma el uso de carriles como estacionamiento, este hecho hace que las vías no reciban la cantidad de flujo vehicular con las que fueron diseñadas reduciendo su capacidad y nivel de servicio, lo que se traduce en insatisfacción en el uso de estas vías por los conductores y peatones. Es importante el estudio de los valores de capacidad, nivel de servicio y carriles que se usan como estacionamiento para el congestionamiento vehicular.

#### 2.4. Definición de términos básicos.

Romana et al. brinda las siguientes definiciones en el Manual de Capacidad de Carreteras en su traducción al español:

- Acceso: Cualquier ramal de entrada, acceso directo a una propiedad colindante, garaje o vivienda, etc., situado en cualquier de los márgenes de una carretera o de una vía urbana. (Romana et al, 2017, p. 455)
- Ancho de carril: Ancho existente entre las marcas longitudinales que definen un carril dado. (Romana et al, 2017, p. 455)
- Calidad de servicio: Descripción de como de bien (o de mal) funciona una infraestructura de transporte o un servicio, desde el punto de vista del usuario de dicha infraestructura. (Romana et al, 2017, p. 485)
- Calzada: Parte de una carretera diseñada o empleada normalmente para la circulación o estacionamiento de vehículos de motor, excluyendo las acras laterales, bermas y arcenes (aun cuando estos sean utilizados por bicicletas o cualquier otro vehículo cuya fuerza motora sea humana). (Romana et al, 2017, p. 487)
- Capacidad en vehículos: Número máximo de vehículos capaces de atravesar un punto o sección durante un período de tiempo dado bajo condiciones reales de pavimento, tráfico y regulación. (Romana et al, 2017, p. 499)
- Ciclo: Secuencia completa de fases de un semáforo (Romana et al, 2017, p. 464).
- Cola: Hilera de vehículos, ciclistas o peatones que deben esperar para ser atendidos debido al tipo de regulación, a un cuello de botella en la circulación, o a otras causas. (Romana et al, 2017, p. 485)

- Colapso: Condiciones extremas de régimen saturado en las cuales cesa todo movimiento. (Romana et al, 2017, p. 459)
- Demanda: Número de vehículos u otros usuarios de una vía que desean utilizar un elemento viario durante un periodo de tiempo específico, normalmente una hora o quince minutos. (Romana et al, 2017, p. 464)
- Demora: Tiempo de recorrido adicional experimentando por un conductor, usuario de un transporte, ciclista o peatón más allá del requerido desplazándose a la velocidad deseada. (Romana et al, 2017, p. 464)
- Flujo libre: Flujo de tráfico que no se ve afectado por las condiciones existentes
   corriente arriba o abajo. (Romana et al, 2017, p. 469)
- Grupo de movimientos: Procedimiento empleado para facilitar la introducción de datos consistente en organizar en grupos los movimientos existentes en intersecciones con semáforos. (Romana et al, 2017, p. 478)
- Hora punta: Hora del día en el que se produce la mayor intensidad. (Romana et al, 2017, p. 481)
- Mediana: Espacio localizado en mitad de una vía cuya función será de separar dos corrientes de tráfico opuestas o dos calzadas destinadas a tráficos opuestos.
   (Romana et al, 2017, p. 477)
- Parada (de autobús): Espacio situado en vía urbana habilitado para que uno o más autobuses puedan detenerse simultáneamente y realizar transbordo de pasajeros.
   Pueden clasificarse en dos tipos: paradas en el propio carril, y apartaderos.
   (Romana et al, 2017, p. 460)
- Período de análisis: Periodo de tiempo más adecuado (normalmente 15 minutos)
   tomado como referencia para evaluar las condiciones de circulación de una
   infraestructura (capacidad y nivel de servicio). (Romana et al, 2017, p. 456)

- Régimen libre: Condiciones de tráfico en las que a) la intensidad de llegada sea inferior a la capacidad de una sección o tramo; b) no existan colas residuales, y c) no se vea afectado por las condiciones existentes corriente abajo. (Romana et al, 2017, p. 498)
- Régimen saturado: Flujo de tráfico producido cuando: a) la intensidad de llegada excede la capacidad de un elemento o un tramo viario; b) la cola formada a partir de unas condiciones de circulación saturada; c) una corriente de tráfico afectada por las condiciones existentes corrientes abajo. (Romana et al, 2017, p. 480)
- Saturación: Flujo lento o circulación densa originada cuando la demanda alcanza o sobrepasa la capacidad de un elemento viario (condiciones de circulación en régimen saturado). (Romana et al, 2017, p. 462)
- Tiempo de recorrido: Tiempo empleado por un vehículo en recorrer una determinada longitud de carretera excluyendo cualquier demora provocada por algún dispositivo de regulación. (Romana et al, 2017, p. 488)
- Tramos urbanos: Tramos de vías urbanos con una densidad relativamente alta de accesos para vehículos a viviendas, etc. Se caracterizan por la presencia de elementos que interrumpen el tráfico de forma periódica, con una separación inferior a dos millas entre estos. (Romana et al, 2017, p. 499)
- Vía urbana: Calzada urbana con una relativamente alta densidad de accesos para vehículos a viviendas o garajes, localizadas en áreas urbanas, y en las que el distanciamiento de semáforos o señales de stop o ceda el paso es inferior a dos millas. (Romana et al, 2017, p. 499)

# CAPÍTULO III

# 3. PLANTEAMIENTO DE LA(S) HIPÓTESIS Y VARIABLES

# 3.1. Hipótesis.

La Av. El Maestro, entre la Av. Los Héroes y Jr. El Inca de la ciudad de Cajamarca, presenta una capacidad vial menor a 1800 veh/h y un nivel de servicio "F", por el uso de carriles como estacionamiento, según la metodología del HCM 2016.

# 3.2. Variables/categorías.

- Capacidad vial.
- Nivel de servicio.

#### 3.3. Operacionalización/ categorización de los componentes de la hipótesis.

# Cuadro 2. Operacionalización de las variables CAPACIDAD Y NIVEL DE SERVICIO DE LA AVENIDA EL MAESTRO ENTRE LA AVENIDA LOS HÉROES Y JIRÓN EL INCA DE LA CIUDAD DE CAJAMARCA, POR EL USO DE CARRILES COMO ESTACIONAMIENTO - 2019

|                                                                                                                                                            | ,                                                                                                                                                                   | DEFINICIÓN DE LAS VARIABLES/CATEGORÍAS |                                                                         |                                                                       |                                                          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|--|--|
| HIPÓTESIS                                                                                                                                                  | DEFINICIÓN CONCEPTUAL DE LAS<br>VARIABLES/CATEGORÍAS                                                                                                                | VARIABLES/                             | DIMENSIONES/                                                            | INDICADORES/                                                          | FUENTE O INSTRUMENTO<br>DE RECOLECCIÓN DE<br>DATOS       |  |  |
|                                                                                                                                                            |                                                                                                                                                                     | CATEGÓRICAS                            | <b>FACTORES</b>                                                         | CUALIDADES                                                            |                                                          |  |  |
|                                                                                                                                                            |                                                                                                                                                                     |                                        | Velocidad de Viaje.                                                     | Km/hora de la velocidad de viaje.                                     | Metodología HCM 2016.                                    |  |  |
| <b>Hipótesis General:</b> La Av. El Maestro entre la Av. Los                                                                                               | Es una medida de la calidad del flujo. Es una medida cualitativa que describe las condiciones de operación de un flujo de tránsito. (Cal y Mayor y Cárdenas, 2018). | Nivel de Servicio.                     | Velocidad Base de<br>Flujo Libre.                                       | Km/hora de la velocidad base de flujo Metodología HCM 2016. libre.    |                                                          |  |  |
| Héroes y Jr. El Inca de<br>la ciudad de Cajamarca                                                                                                          |                                                                                                                                                                     |                                        | Grado de saturación.                                                    | Porcentaje de grado de saturación.                                    | Metodología HCM 2016.                                    |  |  |
| presenta una capacidad vial menor a 1800 veh/h y un nivel de servicio "F", por el uso de carriles como estacionamiento, según la metodología del HCM 2016. | Es la cantidad de vehículos que transitan, en                                                                                                                       |                                        | Cantidad de carriles<br>disponibles para el uso<br>del flujo vehicular. | Número de carriles<br>disponibles para el uso<br>del flujo vehicular. | Medición de la sección transversal de la vía en estudio. |  |  |
|                                                                                                                                                            | un tiempo determinado, por una sección transversal de la vía en estudio. (Romana et al, 2017).                                                                      | Capacidad vial.                        | Flujo de saturación.                                                    | Veh/h/ln del flujo de<br>saturación ("ln"<br>significa "por carril")  | Constante según bibliografía.                            |  |  |
|                                                                                                                                                            |                                                                                                                                                                     |                                        | Proporción efectiva<br>verde-longitud del ciclo.                        | Relación del tiempo de<br>verde y ciclo<br>semafórico.                | Medición del ciclo semafórico.                           |  |  |

# **CAPÍTULO IV**

# 4. MARCO METODOLÓGICO

Vía de Estudio: Av. El Maestro entre la Av. Los Héroes y Jr. El Inca.

# Ubicación geográfica:

**DATUM** : WGS84

Coordenadas de inicio: Av. Los Héroes.

a. Coordenadas UTM:

Este : 774656.829 m
 Norte : 9207731.632 m
 Altitud : 2722.58 m.s.n.m.

b. Coordenadas geográficas:

Latitud (S)
 Longitud (W)
 Altitud
 :7° 9' 28.6"
 :78°30'47.6"
 :2722.58 m.s.n.m.

Coordenadas de término: Jr. El Inca.

a. Coordenada UTM:

Este : 774912.220 m
 Norte : 9207968.631 m
 Altitud : 2707.01 m.s.n.m.

b. Coordenadas geográficas:

Latitud (S)
 Longitud (W)
 Altitud
 7° 9' 20.8"
 78°30'39.4"
 2707.01 m.s.n.m.

VÍA DE ESTUDIO **PUNTO DE INCIO:** Leyenda Av. El Maestro E: 774912.220 m N:9207968.631 m Jr. El Inca **PUNTO DE INCIO:** E: 774656.829 m N: 9207731.632 m

Figura 7. Ubicación de la vía en estudio Av. El Maestro entre la Av. Los Héroes y Jr. El Inca de la ciudad de Cajamarca

Nota. Google Earth, ciudad de Cajamarca, 2024

# 4.1. Diseño de investigación.

Se utilizó un diseño de investigación descriptivo-transversal para describir la situación actual de la capacidad y nivel de servicio de la vía de estudio.

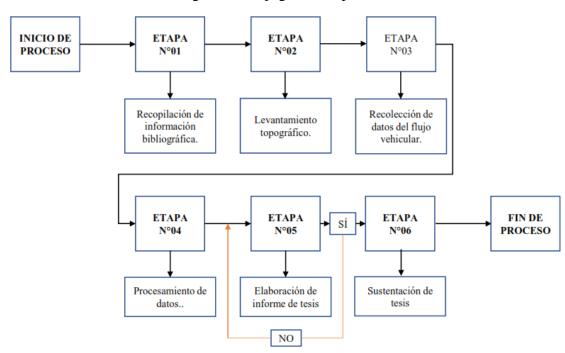



Figura 8. Flujograma de proceso

**Etapa 01:** de recolección de información: Se procederá a la etapa de recopilar y recoger información para dar respuesta al problema de investigación. Para ello se estudiará el manual de Capacidad de Carreteras *HCM* 2016 6ta y 7ma edición y bibliografía complementaria.

**Etapa 02:** de recolección de datos: Se procederá a realizar el aforo manual vehicular para obtener la cantidad de vehículos que transitan por la vía en estudio a lo largo de 7 días desde las 6:30 a.m. hasta las 8:30 p.m. (14 horas) desde el 25/11/2023 al 01/12/2023. Además, se procederá a realizar las medidas de las secciones transversales. (Ver anexo N°1 y N°2)

**Etapa 03:** levantamiento topográfico: Levantamiento topográfico de la vía en estudio.

**Etapa 04:** de procesamiento de datos: En gabinete se procesará la información recopilada para obtener los datos necesarios para dar respuesta al problema de investigación. Para esto se aplicará las metodologías y teorías recopiladas en la etapa 1.

**Etapa 05:** elaboración del informe de investigación: Al terminar el procesamiento de datos se plasma en un informe de investigación describiendo las conclusiones a las que llega el tema de investigación, además se incluirá fotografías y planos.

### 4.2. Método de investigación.

El tipo de investigación realizado es cuantitativo, ya que se utilizó un enfoque matemático utilizando los datos de aforo vehicular y características geométricas de la vía de estudio Av. El Maestro entre las intersecciones semaforizadas de la Av. Los Héroes y Jr. El Inca y transformarlos en los resultados que se quiere obtener.

# 4.3. Población, muestra, unidad de análisis y unidad de observación.

Cuadro 3. Población, Muestra, Unidad de Análisis y de Observación

| Población, Muestra, Unidad de Análisis y de Observación |                                                                                          |  |  |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|
| Población Las avenidas de la ciudad de Cajamarca.       |                                                                                          |  |  |  |
| Muestra                                                 | Av. El Maestro entre la Av. Los Héroes y Jr. El Inca.                                    |  |  |  |
| Muestreo                                                | Tránsito de vehículos aleatorios.                                                        |  |  |  |
| Unidad de análisis                                      | Capacidad vial y nivel de servicio.                                                      |  |  |  |
| Unidad de observación                                   | Congestión vehicular ocasionado por el uso de carriles como estacionamiento improvisado. |  |  |  |

# 4.4. Técnicas e instrumentos de recopilación de información.

- Formato Anexo N°01 para recopilación de datos del aforo vehicular durante una semana.
- Levantamiento topográfico para recopilación de datos de las características geométricas del tramo de vía en estudio.

# 4.5. Técnicas para el procesamiento y análisis de la información.

- Identificación de los sentidos de flujo vehicular en las intersecciones semaforizadas: Av. Los Héroes y Jr. El Inca y las intersecciones no semaforizadas: Jr. Amazonas y Jr. Progreso.
- Realización de los planos para la obtención de los datos de las características geométricas del tramo de vía en estudio.
- Utilización de la metodología HCM 2016, 6ta y 7ma edición, para obtener la capacidad vial y nivel de servicio del tramo de vía en estudio.

# 4.6. Equipos, materiales, insumos, etc.

Se utilizó:

- Estación total, trípode, prisma, GPS y wincha.
- Laptop, plotter, impresora y materiales de escritorio.

Figura 9. Uso de estación total en la vía de estudio



Figura 10. Georreferenciación usando GPS



Figura 11. Realización de las medidas geométricas de la vía de estudio



# 4.7. Matriz de consistencia metodológica.

Cuadro 4. Matriz de consistencia

# CAPACIDAD Y NIVEL DE SERVICIO DE LA AVENIDA EL MAESTRO ENTRE LA AVENIDA LOS HÉROES Y JIRÓN EL INCA DE LA CIUDAD DE CAJAMARCA, POR EL USO DE CARRILES COMO ESTACIONAMIENTO – 2023

| FORMULACIÓN<br>DEL<br>PROBLEMA                                                                                                                                                                            | OBJETIVO                                                                                                                                                                                          | HIPÓTESIS                                                                                                                                                                                                                                                       | DEFINICIÓN CONCEPTUAL DE<br>LAS VARIABLES/CATEGORÍAS                                                                                                                            | VARIABLES/<br>CATEGORÍAS | DIMENSIONES/<br>FACTORES                                                      | INDICADORES/<br>CUALIDADES                                                  | FUENTE O<br>INSTRUMENTO DE<br>RECOLECCIÓN DE<br>DATOS          | METODOLOGÍA                                                                                                | POBLACIÓN<br>Y MUESTRA                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| ¿Cuál es la<br>capacidad y nivel<br>de servicio de la<br>Avenida El<br>Maestro<br>comprendida<br>entre la Avenida<br>Los Héroes y<br>Jirón El Inca, por<br>el uso de carriles<br>como<br>estacionamiento? |                                                                                                                                                                                                   | Hipótesis General: La Av. El Maestro entre la Av. Los Héroes y Jr. El Inca de la ciudad de Cajamarca presenta una capacidad vial menor a 1800 veh/h y un nivel de servicio "F", por el uso de carriles como estacionamiento, según la metodología del HCM 2016. | Es una medida de la calidad del<br>flujo. Es una medida cualitativa<br>que describe las condiciones de<br>operación de un flujo de tránsito.<br>(Cal y Mayor y Cárdenas, 2018). | Nivel de<br>Servicio.    | Velocidad de<br>Viaje.                                                        | Milla/hora de la<br>velocidad de<br>viaje.                                  | Metodología HCM<br>2016.                                       | Se aplicará el  — método de  cuantitativo. El  diseño de la  investigación es  descriptivo- — transversal. | Población: Las avenidas de la ciudad de Cajamarca.  Muestra: Av. El Maestro entre la Av. Los Héroes y Jr. El Inca. |
|                                                                                                                                                                                                           | Objetivo General:  Determinar la capacidad y nivel de servicio de la Av. El Maestro entre La Av. Los Héroes y Jr. El Inca de la ciudad de Cajamarca, por el uso de carriles como estacionamiento. |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                 |                          | Velocidad Base<br>de Flujo Libre.                                             | Milla/hora de la<br>velocidad base<br>de flujo libre.                       | Metodología HCM<br>2016.                                       |                                                                                                            |                                                                                                                    |
|                                                                                                                                                                                                           |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                 |                          | Grado de saturación.                                                          | Porcentaje de grado de saturación.                                          | Metodología HCM<br>2016.                                       |                                                                                                            |                                                                                                                    |
|                                                                                                                                                                                                           |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 | Es la cantidad de vehículos que transitan, en un tiempo determinado, por una sección transversal de la vía en estudio. (Romana et at, 2017).                                    | Capacidad vial.          | Cantidad de<br>carriles<br>disponibles para<br>el uso del flujo<br>vehicular. | Número de<br>carriles<br>disponibles para<br>el uso del flujo<br>vehicular. | Medición de la<br>sección transversal<br>de la vía en estudio. |                                                                                                            |                                                                                                                    |
|                                                                                                                                                                                                           |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                 |                          | Flujo de<br>saturación.                                                       | Veh/h/ln del flujo<br>de saturación<br>("ln" significa<br>"por carril")     | Constante según<br>bibliografía                                |                                                                                                            |                                                                                                                    |
|                                                                                                                                                                                                           |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                 |                          | Proporción<br>efectiva verde-<br>longitud del ciclo.                          | Relación del<br>tiempo de verde y<br>ciclo semafórico.                      | Medición del ciclo<br>semafórico                               |                                                                                                            |                                                                                                                    |

## CAPÍTULO V

#### 5. RESULTADOS Y DISCUSIÓN

#### 5.1. Presentación de resultados.

El tramo de estudio se dividió en subsegmentos debido a que las características geométricas del tramo Av. Los Héroes-Jr. Amazonas es diferentes al tramo Jr. Amazonas-Jr. El Inca. Así se tiene los siguientes subsegmentos:

- SS1: Av. Los Héroes Jr. Amazonas (Sentido de ida →).
- SS2: Jr. Amazonas Av. Los Héroes (Sentido de vuelta ←).
- SS3: Jr. Amazonas Jr. El Inca (Sentido de ida  $\rightarrow$ ).
- SS4: Jr. El Inca Jr. Amazonas (Sentido de vuelta ←).

#### A. Nivel de servicio en condiciones normales.

Para la comprensión de la obtención de los resultados, se procedió a detallar el cálculo dando como ejemplo el primer subsegmento, y luego, como el procedimiento es repetitivo, para los siguientes subsegmentos se colocó directamente el resultado en las tablas.

## 5.1.1. Medidas geométricas.

Tabla 5. Longitud del subsegmento

| L(m)   | L(pies)                    |
|--------|----------------------------|
| 185.78 | 609.51                     |
| 146.48 | 480.58                     |
| 193.03 | 633.30                     |
| 209.99 | 688.94                     |
|        | 185.78<br>146.48<br>193.03 |

Tabla 6. Ancho de intersección aguas arriba

| Subsegmento | Wi(m) | Wi(pies) |
|-------------|-------|----------|
| SS1         | 10.86 | 35.63    |
| SS2         | 0.00  | 0.00     |
| SS3         | 0.00  | 0.00     |
| SS4         | 10.49 | 34.42    |

Usando la ecuación 2 se tiene:

$$L_{adj} = 609.51 \text{ pies} - 35.63 \text{ pies} = 573.88 \text{ pies}$$

$$L_{adj} = 573.88 \ pies \cdot 0.3048 \ m/pie = 174.92 \ m$$

Tabla 7. Longitud ajustada del subsegmento

| Subsegmento | Ladj(pies) | Ladj(m) |
|-------------|------------|---------|
| SS1         | 573.88     | 174.92  |
| SS2         | 480.58     | 146.48  |
| SS3         | 633.30     | 193.03  |
| SS4         | 654.53     | 199.50  |

Tabla 8. Longitud de mediana restrictiva

| Subsegmento | L <sub>rm</sub> (m) | L <sub>rm</sub> (pies) |
|-------------|---------------------|------------------------|
| SS1         | 156.70              | 514.11                 |
| SS2         | 134.62              | 441.67                 |
| SS3         | 0.00                | 0.00                   |
| SS4         | 0.00                | 0.00                   |

Usando la ecuación 9 se obtuvo prm:

$$p_{\rm rm,SS1} = \frac{514.11 \text{ pies}}{573.88 \text{ pies}} = 0.90$$

Tabla 9. Proporción del subsegmento con mediana restrictiva

| Subsegmento | p <sub>rm</sub> |
|-------------|-----------------|
| SS1         | 0.90            |
| SS2         | 0.92            |
| SS3         | 0.00            |
| SS4         | 0.00            |

Tabla 10. Longitud de bordillo a la derecha del subsegmento

| Subsegmento | L <sub>curb</sub> (m) | L <sub>curb</sub> (pies) |
|-------------|-----------------------|--------------------------|
| SS1         | 132.68                | 435.30                   |
| SS2         | 133.83                | 439.07                   |
| SS3         | 134.48                | 441.21                   |
| SS4         | 124.69                | 409.09                   |

Usando la ecuación 8 se tuvo:

$$p_{curb} = \frac{435.30 \text{ pies}}{573.88 \text{ pies}} = 0.76$$

Tabla 11. Proporción del subsegmento con bordillo a la derecha

| Subsegmento | p <sub>curb</sub> |
|-------------|-------------------|
| SS1         | 0.76              |
| SS2         | 0.91              |
| SS3         | 0.70              |
| SS4         | 0.63              |

Tabla 12. Número de puntos de acceso lado derecho

| Subsegmento | Nap  |
|-------------|------|
| SS1         | 0.00 |
| SS2         | 0.00 |
| SS3         | 1.00 |
| SS4         | 0.00 |

## 5.1.2. Aforo vehicular

Se realizó el aforo vehicular por sentido de flujo vehiculares en cada intersección semaforizada y no semaforizada.

- Subsegmento 1: S1

- Subsegmento 2: S4+S5

Subsegmento 3: S2+S7+S8

Subsegmento 4: S9+S10+S11

S17 S15

Figura 12. Sentidos de flujo vehicular intersección semaforizada Av. Los Héroes

Nota. "S" es el sentido de flujo vehicular.

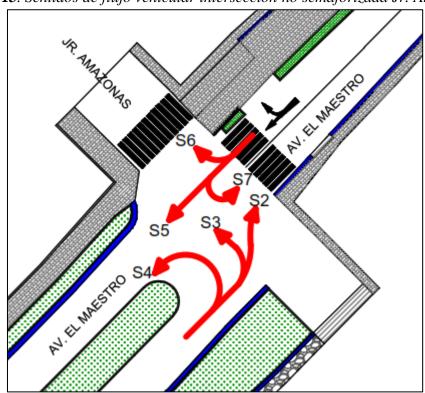



Figura 13. Sentidos de flujo vehicular intersección no semaforizada Jr. Amazonas

Nota. "S" es el sentido de flujo vehicular.

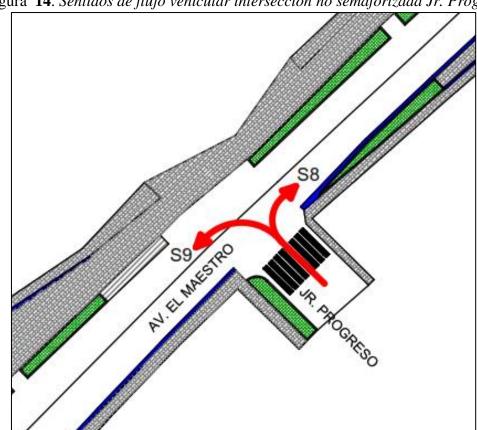



Figura 14. Sentidos de flujo vehicular intersección no semaforizada Jr. Progreso

Nota. "S" es el sentido de flujo vehicular.

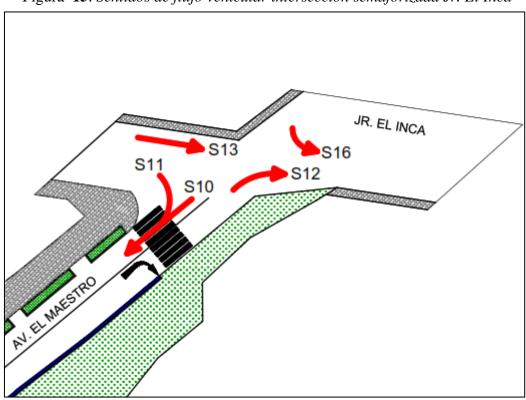



Figura 15. Sentidos de flujo vehicular intersección semaforizada Jr. El Inca

Nota. "S" es el sentido de flujo vehicular.

## 1. Aforo vehicular semanal.

# 1.1. Aforo vehicular semanal sin conversión al vehículo patrón.

## a. Aforo de bicicletas.

Tabla 13. Aforo semanal de bicicletas

| Día       | S1  | S2 | S4 | S5 | S7 | S8 | S9  | S10 | S11 | Sub Total |
|-----------|-----|----|----|----|----|----|-----|-----|-----|-----------|
| Sábado    | 51  | 21 | 15 | 47 | 6  | 62 | 123 | 25  | 98  | 448       |
| Domingo   | 30  | 11 | 10 | 73 | 9  | 42 | 42  | 12  | 84  | 313       |
| Lunes     | 125 | 57 | 22 | 24 | 13 | 21 | 24  | 24  | 15  | 325       |
| Martes    | 54  | 27 | 0  | 55 | 21 | 46 | 65  | 42  | 67  | 377       |
| Miércoles | 96  | 48 | 0  | 40 | 35 | 35 | 42  | 27  | 40  | 363       |
| Jueves    | 77  | 26 | 25 | 44 | 36 | 42 | 90  | 33  | 59  | 432       |
| Viernes   | 82  | 41 | 0  | 47 | 29 | 30 | 44  | 68  | 29  | 370       |
| Total     |     |    |    |    |    |    |     |     |     |           |

## b. Aforo de motos lineales

Tabla 14. Aforo semanal de motos lineales

| Día       | S1   | <b>S2</b> | <b>S4</b> | <b>S5</b> | <b>S7</b> | <b>S8</b> | <b>S9</b> | S10  | S11 | Sub Total |
|-----------|------|-----------|-----------|-----------|-----------|-----------|-----------|------|-----|-----------|
| Sábado    | 1014 | 309       | 59        | 105       | 22        | 149       | 456       | 372  | 59  | 2545      |
| Domingo   | 246  | 61        | 49        | 91        | 10        | 25        | 287       | 328  | 60  | 1157      |
| Lunes     | 866  | 535       | 49        | 530       | 32        | 565       | 2523      | 780  | 443 | 6323      |
| Martes    | 1273 | 416       | 70        | 967       | 34        | 362       | 1896      | 1015 | 508 | 6541      |
| Miércoles | 1399 | 519       | 77        | 991       | 32        | 346       | 1938      | 1042 | 430 | 6774      |
| Jueves    | 1505 | 473       | 178       | 1121      | 14        | 411       | 2591      | 1270 | 485 | 8048      |
| Viernes   | 1448 | 532       | 100       | 655       | 34        | 325       | 2494      | 789  | 505 | 6882      |
| Total     |      |           |           |           |           |           |           |      |     |           |

## c. Aforo de mototaxis

Tabla 15. Aforo semanal de mototaxis

| Día       | S1   | <b>S2</b> | <b>S4</b> | <b>S5</b> | <b>S7</b> | <b>S8</b> | <b>S9</b> | S10  | S11 | Sub Total |
|-----------|------|-----------|-----------|-----------|-----------|-----------|-----------|------|-----|-----------|
| Sábado    | 1647 | 457       | 102       | 4546      | 11        | 210       | 1588      | 1984 | 96  | 10641     |
| Domingo   | 1198 | 395       | 89        | 3615      | 4         | 186       | 241       | 789  | 180 | 6697      |
| Lunes     | 4244 | 2499      | 166       | 4000      | 41        | 249       | 812       | 2900 | 677 | 15588     |
| Martes    | 3096 | 1146      | 162       | 2778      | 18        | 220       | 882       | 2425 | 577 | 11304     |
| Miércoles | 3065 | 968       | 159       | 3696      | 34        | 305       | 645       | 2630 | 614 | 12116     |
| Jueves    | 3402 | 1255      | 202       | 3331      | 38        | 374       | 823       | 2642 | 494 | 12561     |
| Viernes   | 3322 | 1221      | 196       | 1660      | 44        | 194       | 517       | 1141 | 523 | 8818      |
| Total     |      |           |           |           |           |           |           |      |     |           |

## d. Aforo de autos

Tabla 16. Aforo semanal de automóviles

| Día       | S1   | S2  | <b>S4</b> | S5   | <b>S7</b> | <b>S8</b> | <b>S9</b> | S10  | S11 | Sub Total |
|-----------|------|-----|-----------|------|-----------|-----------|-----------|------|-----|-----------|
| Sábado    | 1618 | 371 | 62        | 3994 | 2         | 240       | 1769      | 991  | 871 | 9918      |
| Domingo   | 884  | 155 | 55        | 1975 | 0         | 547       | 2033      | 740  | 357 | 6746      |
| Lunes     | 1529 | 839 | 36        | 3787 | 10        | 529       | 1373      | 2389 | 760 | 11252     |
| Martes    | 1542 | 478 | 79        | 4422 | 20        | 234       | 1722      | 1174 | 573 | 10244     |
| Miércoles | 1679 | 452 | 86        | 3706 | 15        | 337       | 1778      | 2012 | 627 | 10692     |
| Jueves    | 1259 | 302 | 60        | 2199 | 11        | 291       | 1552      | 1194 | 502 | 7370      |
| Viernes   | 1969 | 585 | 65        | 1652 | 12        | 199       | 1184      | 647  | 537 | 6850      |
| Total     |      |     |           |      |           |           |           |      |     |           |

## e. Aforo de camionetas

Tabla 17. Aforo semanal de camionetas

| Día       | S1  | S2  | <b>S4</b> | S5   | <b>S7</b> | <b>S8</b> | S9  | S10   | S11 | Sub Total |
|-----------|-----|-----|-----------|------|-----------|-----------|-----|-------|-----|-----------|
| Sábado    | 157 | 52  | 45        | 55   | 0         | 60        | 153 | 175   | 44  | 741       |
| Domingo   | 180 | 66  | 37        | 54   | 0         | 74        | 124 | 189   | 40  | 764       |
| Lunes     | 252 | 146 | 2         | 861  | 0         | 121       | 588 | 494   | 55  | 2519      |
| Martes    | 425 | 167 | 15        | 1317 | 0         | 59        | 255 | 249   | 66  | 2553      |
| Miércoles | 303 | 108 | 5         | 1295 | 0         | 103       | 530 | 443   | 57  | 2844      |
| Jueves    | 473 | 202 | 51        | 1291 | 0         | 92        | 254 | 199   | 59  | 2621      |
| Viernes   | 426 | 152 | 52        | 724  | 0         | 74        | 380 | 271   | 58  | 2137      |
| Total     |     |     |           |      |           |           |     | 14179 |     |           |

## f. Aforo de combis

Tabla 18. Aforo semanal de combis

| Día       | S1  | <b>S2</b> | <b>S4</b> | S5   | <b>S7</b> | <b>S8</b> | <b>S9</b> | S10   | S11 | Sub Total |
|-----------|-----|-----------|-----------|------|-----------|-----------|-----------|-------|-----|-----------|
| Sábado    | 98  | 36        | 26        | 253  | 0         | 1278      | 213       | 1791  | 33  | 3728      |
| Domingo   | 29  | 13        | 0         | 135  | 0         | 629       | 60        | 756   | 48  | 1670      |
| Lunes     | 995 | 594       | 0         | 1671 | 0         | 762       | 113       | 1502  | 76  | 5713      |
| Martes    | 200 | 101       | 0         | 1568 | 0         | 2291      | 149       | 1489  | 79  | 5877      |
| Miércoles | 144 | 46        | 0         | 2053 | 0         | 2216      | 152       | 1978  | 80  | 6669      |
| Jueves    | 125 | 45        | 40        | 1796 | 0         | 1983      | 112       | 1740  | 80  | 5921      |
| Viernes   | 134 | 49        | 36        | 2293 | 0         | 1445      | 100       | 1312  | 72  | 5441      |
| Total     |     |           |           |      |           |           |           | 35019 |     |           |

# g. Aforo de Microbuses

Tabla 19. Aforo semanal de microbuses

| Día       | S1 | S2 | S4 | <b>S5</b> | <b>S7</b> | <b>S8</b> | S9 | S10 | S11 | Sub Total |
|-----------|----|----|----|-----------|-----------|-----------|----|-----|-----|-----------|
| Sábado    | 16 | 5  | 5  | 28        | 0         | 19        | 0  | 12  | 40  | 125       |
| Domingo   | 12 | 6  | 0  | 45        | 0         | 18        | 0  | 10  | 45  | 136       |
| Lunes     | 90 | 49 | 0  | 85        | 0         | 16        | 0  | 26  | 61  | 327       |
| Martes    | 74 | 37 | 0  | 85        | 0         | 74        | 0  | 26  | 60  | 356       |
| Miércoles | 62 | 31 | 0  | 128       | 0         | 0         | 0  | 49  | 79  | 349       |
| Jueves    | 91 | 33 | 29 | 98        | 0         | 37        | 37 | 24  | 77  | 426       |
| Viernes   | 62 | 32 | 0  | 119       | 0         | 66        | 0  | 49  | 70  | 398       |
|           |    | •  |    | Total     |           | •         |    | •   |     | 2117      |

## h. Aforo de camiones

Tabla 20. Aforo semanal de camiones

| Día       | S1  | S2 | <b>S4</b> | <b>S5</b> | <b>S7</b> | <b>S8</b> | <b>S9</b> | S10 | S11 | Sub Total |
|-----------|-----|----|-----------|-----------|-----------|-----------|-----------|-----|-----|-----------|
| Sábado    | 20  | 6  | 6         | 22        | 0         | 24        | 37        | 22  | 15  | 152       |
| Domingo   | 10  | 4  | 0         | 30        | 0         | 7         | 0         | 19  | 49  | 119       |
| Lunes     | 80  | 37 | 0         | 53        | 0         | 42        | 42        | 28  | 62  | 344       |
| Martes    | 40  | 17 | 0         | 48        | 0         | 41        | 41        | 26  | 46  | 259       |
| Miércoles | 101 | 39 | 0         | 91        | 0         | 42        | 58        | 65  | 56  | 452       |
| Jueves    | 87  | 28 | 29        | 61        | 0         | 37        | 62        | 23  | 53  | 380       |
| Viernes   | 67  | 28 | 0         | 106       | 0         | 46        | 68        | 93  | 50  | 458       |
| Total     |     |    |           |           |           |           | 2164      |     |     |           |

Se procedió a obtener el resumen vehicular semanal en el cual se observó que el porcentaje de camiones es muy bajo y los mototaxis tienen la mayor cantidad.

Tabla 21. Volumen vehicular semanal por tipo de vehículo

| Vehículo    | Volumen | Porcentaje % |
|-------------|---------|--------------|
| Bicicleta   | 2628    | 1.12%        |
| Moto lineal | 38270   | 16.27%       |
| Mototaxi    | 77725   | 33.05%       |
| Automóvil   | 63072   | 26.82%       |
| Camioneta   | 14179   | 6.03%        |
| Combi       | 35019   | 14.89%       |
| Microbús    | 2117    | 0.90%        |
| Camión      | 2164    | 0.92%        |
| Total       | 235174  | 100.00%      |

#### 1.2. Conversión al vehículo patrón del aforo vehicular semanal

Se utilizó los factores de la tabla N°04 para convertir los datos del flujo vehicular al vehículo patrón (automóvil). Se utilizó como ejemplo los siguientes valores para comprender el procedimiento.

$$Veh\'{i}culo\ Patr\'{o}n_{Bicicleta} = 51 \cdot 0.30 = 15$$

$$Vehículo\ Patr\'on_{Bicicleta,total} = 2628 \cdot 0.30 = 788$$

Volumen Volumen Vehicular según Vehículo **UVE** Vehicular Vehículo Patrón Bicicleta 788 2628 0.30 38270 0.50 19135 Moto lineal 77725 0.68 52853 Mototaxi Automóvil 63072 1.00 63072 1.30 18433 14179 Camioneta Combi 35019 1.25 43774 2117 2.00 4234 Microbús Camión 3.00 6492 2164 **Total** 235174 208781

Tabla 22. Conversión a vehículo patrón

#### a. Aforo vehicular semanal según vehículo patrón

En el anexo N°02 se obtuvo la hora de máxima demanda, así como el grado de saturación aguas arriba considerando el aforo vehicular convertido a vehículo patrón.

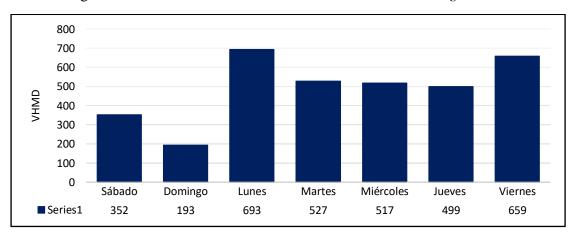



Figura 16. Volumen horario de máxima demanda del subsegmento 1

Figura 17. Volumen horario de máxima demanda del subsegmento 2

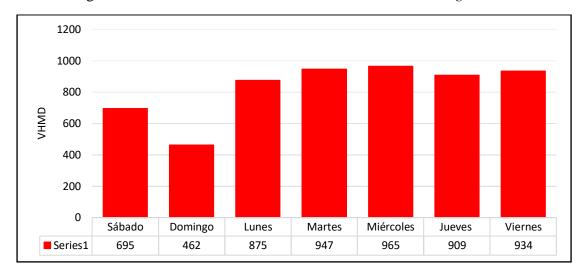



Figura 18. Volumen horario de máxima demanda del subsegmento 3

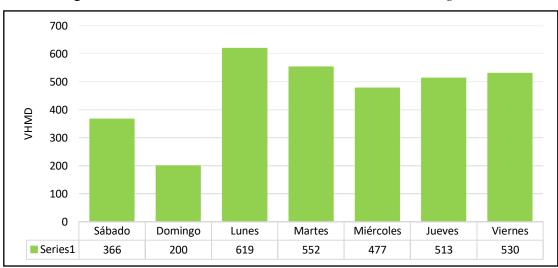
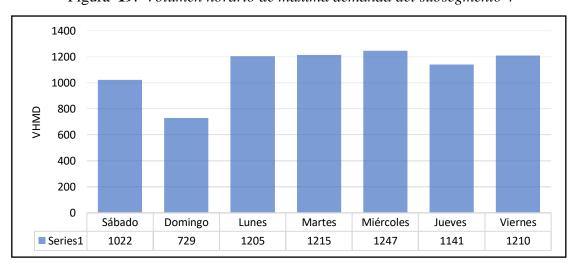




Figura 19. Volumen horario de máxima demanda del subsegmento 4



# 1.3. Horario de máxima demanda de acuerdo con el flujo vehicular convertido a vehículo patrón

Ver anexo  $N^{\circ}02$  en el cual se muestra el aforo vehicular convertido a vehículo patrón y en el cual se puede encontrar la hora de máxima demanda por subsegmento.

| Subsegmento | Día       | VHMD       | Hora de Máxima Demanda |
|-------------|-----------|------------|------------------------|
| SS1         | Lunes     | 693 veh/h  | 12:30 pm − 1:30 pm     |
| SS2         | Miércoles | 965 veh/h  | 8:45 am – 9:45 am      |
| SS3         | Lunes     | 619 veh/h  | 7:15 am - 8:15 am      |
| SS4         | Miércoles | 1247 veh/h | 6:30  pm - 7:30  pm    |

Tabla 23. Hora de máxima demanda por subsegmento

# 5.1.3. Número de carriles por segmento

Figura 20. Sección transversal de la Av. Los Héroes – Jr. Amazonas

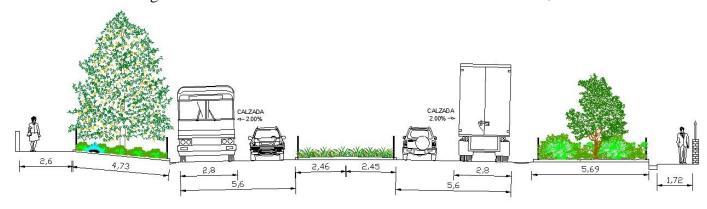
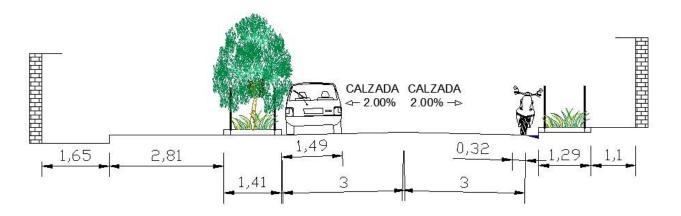




Figura 21. Sección transversal del Jr. Amazonas – Jr. El Inca



No se utilizó el ancho total de los carriles, por lo que se obtuvo los siguientes resultados (Ver anexo  $N^{\circ}3$ ):

$$N_{th} = 1 - \frac{1.49 \text{ m}}{3.00 \text{ m}} = 0.50$$

Tabla 24. Número de Carriles de cada subsegmento

| Subsegmento | N <sub>th</sub> en CN |
|-------------|-----------------------|
| SS1         | 1.00                  |
| SS2         | 1.00                  |
| SS3         | 0.50                  |
| SS4         | 0.89                  |

## 5.1.4. Retraso total por puntos de acceso ( $\Sigma_{dap}$ )

Se utilizó la tabla 2 para interpolar y se tuvo el siguiente resultado.

$$\sum d_{ap,SS1} = \left(\frac{693 \text{ veh/h} - 600 \text{ veh/h}}{700 \text{ veh/h} - 600 \text{ veh/h}}\right) (0.72 \text{ s/veh} - 0.41 \text{ s/veh}) + 0.41 \text{ s/veh}$$

$$\sum d_{ap,SS1} = 0.70 \text{ s/veh}$$

Tabla 25. Retraso total por puntos de acceso por subsegmentos

| Subsegmento | $\Sigma d_{ap}$ (s/veh) |
|-------------|-------------------------|
| SS1         | 0.70                    |
| SS2         | 1.54                    |
| SS3         | 0.29                    |
| SS4         | 1.05                    |

#### 5.1.5. Velocidad

## a. Velocidad límite $(S_{pl})$

 $S_{plSS1}$ =30 km/h \* 0.621371 mi/h/ km/h = 18.64 mi/h

Tabla **26**. *Velocidad límite por subsegmento* 

| Subsegmento | $\mathrm{S}_{pl}$ (km/h) | S <sub>pl</sub> (mi/h) |
|-------------|--------------------------|------------------------|
| SS1         | 30                       | 18.64                  |
| SS2         | 30                       | 18.64                  |
| SS3         | 30                       | 18.64                  |
| SS4         | 30                       | 18.64                  |

## b. Velocidad constante $(S_0)$

Se utilizó la ecuación 3 para obtener:

$$S_{0.SS1} = 25.6 + 0.47 * 18.64 \text{mi/h} = 34.36 \text{ mi/h}$$

$$S_{o,SS1} = 34.36 \text{ mi/h} \cdot 1.60934 \text{ km/mi} = 55.30 \text{ km/h}$$

Tabla 27. Velocidad constante por subsegmento

| Subsegmento | S <sub>o</sub> (mi/h) | S <sub>o</sub> (km/h) |
|-------------|-----------------------|-----------------------|
| SS1         | 34.36                 | 55.30                 |
| SS2         | 34.36                 | 55.30                 |
| SS3         | 34.36                 | 55.30                 |
| SS4         | 34.36                 | 55.30                 |

## 5.1.6. Densidad de puntos de acceso (Da)

Se utilizó la ecuación 11 para obtener Da:

$$D_a = 5,280 \frac{(0.00)}{573.88 \text{ pies}} = 0.00 \text{ puntos de acceso por milla}$$

$$D_a = 0.00 \ pto/mi \cdot \frac{1 \ mi}{1.60934 \ km} = 5.18 \ pto/km$$

Tabla 28. Densidad de puntos de acceso por subsegmento

| Subsegmento | D <sub>a</sub> (pto/mi) | D <sub>a</sub> (pto/km) |
|-------------|-------------------------|-------------------------|
| SS1         | 0.00                    | 0.00                    |
| SS2         | 0.00                    | 0.00                    |
| SS3         | 8.34                    | 5.18                    |
| SS4         | 0.00                    | 0.00                    |

## 5.1.7. Factor de ajuste para la sección transversal (fcs)

Se utilizó la ecuación 10 para obtener f<sub>cs</sub>:

$$f_{cs,SS1} = 1.5 * 0.90 - 0.47 * 0.76 - 3.7 * 0.90 * 0.76 = -1.53 \text{ mi/h}$$

$$f_{cs,SS1} = -1.53 \; mi/h \cdot 1.60934 \; km/mi \; = -2.46 \; km/h$$

Tabla 29. Factor de ajuste para la sección transversal por subsegmento

| Subsegmento | f <sub>cs</sub> (mi/h) | f <sub>cs</sub> (km/h) |
|-------------|------------------------|------------------------|
| SS1         | -1.53                  | -2.46                  |
| SS2         | -2.16                  | -3.47                  |
| SS3         | -0.33                  | -0.53                  |
| SS4         | -0.29                  | -0.47                  |

## 5.1.8. Factor de ajuste por puntos de acceso

Se utilizó la ecuación 12 para obtener f<sub>A</sub>:

$$f_{A,SS1} = -0.078*\frac{0.00 \text{ puntos de acceso/mi}}{1.00} = 0.00 \text{ mi/h}$$

$$f_{A,SS1} = 0.00 \text{ mi/h} \cdot \frac{1.60934 \text{ km}}{1 \text{ mi}} = 0.00 \text{ km/h}$$

Tabla 30. Factor de ajuste por puntos de acceso por subsegmento

| Subsegmento | f <sub>A</sub> (mi/h) | f <sub>A</sub> (km/h) |
|-------------|-----------------------|-----------------------|
| SS1         | 0.00                  | 0.00                  |
| SS2         | 0.00                  | 0.00                  |
| SS3         | -1.29                 | -2.08                 |
| SS4         | 0.00                  | 0.00                  |

## 5.1.9. Velocidad base de flujo libre $(S_{fo})$ .

$$L_{pk} = \frac{161.83 \ m}{0.3048 \ m/pies} = 530.94 \ pies$$

Tabla 31. Longitud del subsegmento que se utiliza como estacionamiento

| Subsegmento | L <sub>pk</sub> (m) | $L_{pk}\left(ft\right)$ |
|-------------|---------------------|-------------------------|
| SS1         | 161.83              | 530.94                  |
| SS2         | 142.66              | 468.04                  |
| SS3         | 151.10              | 495.73                  |
| SS4         | 98.90               | 324.48                  |

Se utilizó la ecuación 13 para obtener la proporción del segmento con estacionamiento en vía  $(P_{pk})$ :

$$P_{pk} = \frac{530.94 \, pies}{573.88 \, pies} = 0.93$$

Tabla 32. Proporción del segmento con estacionamiento en la vía por subsegmento

| Subsegmento | $\mathbf{P}_{pk}$ |
|-------------|-------------------|
| SS1         | 0.93              |
| SS2         | 0.97              |
| SS3         | 0.78              |
| SS4         | 0.50              |

Se calculó el factor de ajuste por estacionamiento f<sub>pk</sub>=-3 P<sub>pk</sub> usando la ecuación

$$fpk = -3 * 0.93 = -2.78 \text{ mi/h}$$

14:

$$fpk = -2.78 \text{ mi/h} \cdot 1.60934 \text{ km/h} = -4.47 \text{ km/h}$$

Tabla 33. Factor de ajuste por estacionamiento por subsegmento

| $f_{pk}$ (mi/h) | $f_{pk}$ (km/h)         |
|-----------------|-------------------------|
| -2.78           | -4.47                   |
| -2.92           | -4.70                   |
| -2.35           | -3.78                   |
| -1.49           | -2.39                   |
|                 | -2.78<br>-2.92<br>-2.35 |

Se utilizó la ecuación 4 para obtener el siguiente resultado.

$$S_{fo,SS1} = 0.00 \text{ mi/h} + 34.36 \text{ mi/h} - 1.53 \text{ mi/h} + 0.00 \text{ mi/h} - 2.78 \text{ mi/h}$$
 
$$= 30.06 \text{ mi/h}$$

$$S_{\text{fo,SS1}} = 30.06 \text{ mi/h} \cdot 1.60934 \text{ km/mi} = 48.37 \text{ km/h}$$

Tabla 34. Velocidad base de flujo libre

| Subsegmento | Sfo (mi/h) | Sfo (km/h) |
|-------------|------------|------------|
| SS1         | 30.06      | 48.37      |
| SS2         | 29.28      | 47.12      |
| SS3         | 30.39      | 48.91      |
| SS4         | 32.58      | 52.43      |

## 5.1.10. Factor de ajuste de longitud del subsegmento (f<sub>L</sub>).

Se utilizó la ecuación 15 para obtener f<sub>L</sub>:

$$f_L = 1.02 - \frac{4.7(30.06 \text{ mi/h} - 19.5)}{\text{max}(609.51 \text{ pies}, 400)} = 0.94 \le 1.0$$

Tabla 35. Factor de ajuste de longitud por subsegmento

| Subsegmento | fL   |
|-------------|------|
| SS1         | 0.94 |
| SS2         | 0.92 |
| SS3         | 0.94 |
| SS4         | 0.93 |

# 5.1.11. Velocidad de flujo libre $(S_f)$ .

Se utilizó la ecuación 5 para obtener S<sub>f</sub>:

$$S_f = 30.06 \text{ mi/h} \cdot 0.94 = 28.21 \text{ mi/h} \ge 18.64 \text{ mi/h}$$

$$S_f = 28.21 \text{ mi/h} \cdot 1.60934 \text{ km/mi} = 45.40 \text{ km/h}$$

Tabla 36. Velocidad de flujo libre por subsegmento

| Subsegmento | S <sub>f</sub> (mi/h) | S <sub>f</sub> (km/h) |   | S <sub>pl</sub> (mi/h) | S <sub>pl</sub> (km/h) |
|-------------|-----------------------|-----------------------|---|------------------------|------------------------|
| SS1         | 28.21                 | 45.40                 | ≥ | 18.64                  | 30.00                  |
| SS2         | 27.07                 | 43.56                 | ≥ | 18.64                  | 30.00                  |
| SS3         | 28.54                 | 45.94                 | ≥ | 18.64                  | 30.00                  |
| SS4         | 30.32                 | 48.80                 | ≥ | 18.64                  | 30.00                  |

## 5.1.12. Factor de ajuste de proximidad (f<sub>v</sub>).

Se utilizó la ecuación 16 para obtner f<sub>v</sub>:

$$f_{v} = \frac{2}{1 + \left(1 - \frac{693 \text{ vh/h}}{52.8 \cdot 1 \cdot 28.21 \text{ mi/h}}\right)^{0.21}} = 1.07$$

Tabla 37. Factor de ajuste de proximidad por subsegmento

| Subsegmento | f <sub>v</sub> |
|-------------|----------------|
| SS1         | 1.07           |
| SS2         | 1.12           |
| SS3         | 1.18           |
| SS4         | 1.21           |

## 5.1.13. Retraso debido a otras fuentes $(d_{other})$

El detalle del retraso se puede ver en el Anexo N°4

Tabla 38. Retraso debido a otras fuentes por subsegmento

| Subsegmento | d <sub>other</sub> (s/veh) |
|-------------|----------------------------|
| SS1         | 204.89                     |
| SS2         | 145.85                     |
| SS3         | 73.81                      |
| SS4         | 22.17                      |

## 5.1.14. Tiempo de ejecución (t<sub>R</sub>)

Se utilizó la ecuación 17 para obtener t<sub>R</sub>:

$$t_{R,SS1} = \frac{6.00 - 2.00 \text{ s}}{0.0025*609.51 \text{ pies}} * 1.00 + \frac{3600*609.51 \text{ pies}}{5280*28.21 \frac{\text{mi}}{\text{h}}} * 1.07 + 1.27 \text{ s/veh}$$
 
$$+ 204.89 \text{s/veh} = 223.91 \text{ s}$$

Tabla 39. Tiempo de ejecución por subsegmento

| Subsegmento | t <sub>R</sub> (s) |
|-------------|--------------------|
| SS1         | 223.91             |
| SS2         | 164.25             |
| SS3         | 94.42              |
| SS4         | 44.32              |

# 5.1.15. Ciclo semafórico (C)

Tabla 40. Ciclo semafórico por subsegmento

| Subsegmento Tiempo de señal semafórica |           |              | C (s)    |       |
|----------------------------------------|-----------|--------------|----------|-------|
|                                        | Verde (s) | Amarillo (s) | Rojo (s) |       |
| SS1                                    | 57.00     | 3.00         | 29.93    | 89.93 |
| SS2                                    | 42.16     | 3.00         | 42.16    | 87.32 |
| SS3                                    | 57.00     | 3.00         | 29.93    | 89.93 |
| SS4                                    | 42.16     | 3.00         | 42.16    | 87.32 |

# 5.1.16. Relación verde/ciclo/longitud efectiva (g/C)

$$g/C_{SS1} = \frac{57.00 \text{ s}}{89.93 \text{ s}} = 0.63$$

Tabla **41**. *Relación verde/ciclo/longitud efectiva por subsegmento* 

| Subsegmento | g/C  |
|-------------|------|
| SS1         | 0.63 |
| SS2         | 0.48 |
| SS3         | 0.63 |
| SS4         | 0.48 |

## 5.1.17. Ratio de pelotón (R<sub>P</sub>)

Para obtener el pelotón de llegada en las intersecciones semaforizadas se consideró el aforo de los sentidos "1" y "14" para Av. Los Héroes y el aforo de los sentidos "10", "11", "13" y "16" para el Jr. El Inca.

Se utilizó la tabla 3 para obtener las siguientes tablas. (Ver anexo N°06).

Tabla 42. Pelotón de Llegada en la Intersección Av. Los Héroes

| Día       | Pelotón de Llegada Intersección Av. Los Héroes | Tipo de Llegada |
|-----------|------------------------------------------------|-----------------|
| Sábado    | 41.14%                                         | 2               |
| Domingo   | 26.17%                                         | 3               |
| Lunes     | 43.09%                                         | 2               |
| Martes    | 33.34%                                         | 3               |
| Miércoles | 35.58%                                         | 3               |
| Jueves    | 32.77%                                         | 3               |
| Viernes   | 39.00%                                         | 3               |

Tabla 43. Pelotón de Llegada en la Intersección Jr. El Inca

| Día       | Pelotón de Llegada Intersección Jr. El Inca | Tipo de Llegada |
|-----------|---------------------------------------------|-----------------|
| Sábado    | 37.19%                                      | 3               |
| Domingo   | 23.46%                                      | 3               |
| Lunes     | 39.65%                                      | 3               |
| Martes    | 40.32%                                      | 2               |
| Miércoles | 34.54%                                      | 3               |
| Jueves    | 35.78%                                      | 3               |
| Viernes   | 33.26%                                      | 3               |

Debido a que el subsegmento 1 y 3 recibió un volumen vehicular de la Av. Los Héroes se tomó este pelotón de llegada para ambos subsegmentos, así también para el subsegmento 2 y 4 que recibieron volumen vehicular del Jr. El Inca.

Tabla 44. Ratio pelotón por subsegmento

| Subsegmento | Tipo de<br>llegada | Rp   |
|-------------|--------------------|------|
| SS1         | 3                  | 1.00 |
| SS2         | 3                  | 1.00 |
| SS3         | 3                  | 1.00 |
| SS4         | 3                  | 1.00 |

## 5.1.18. Proporción de llegada durante el tiempo de verde (P).

Se utilizó la ecuación 18 para obtener la siguiente tabla.

$$P_{SS1} = 1.00 * 0.63 = 0.63$$

Tabla 45. Proporción de llegada durante el tiempo de verde por subsegmento

| Subsegmento | P    |
|-------------|------|
| SS1         | 0.63 |
| SS2         | 0.48 |
| SS3         | 0.63 |
| SS4         | 0.48 |

## 5.1.19. Velocidad de flujo de saturación de carriles (s).

Tabla 46. Velocidad de flujo de saturación de carriles por subsegmento

| Subsegmento | s (veh/h/ln) |
|-------------|--------------|
| SS1         | 1800.00      |
| SS2         | 1800.00      |
| SS3         | 1800.00      |
| SS4         | 1800.00      |

Fuente: Sabando, 2017.

## **5.1.20.** Capacidad (c).

Se utilizó la ecuación 1 para obtener:

$$c_{SS1} = 1.00 * 1800 \text{ veh/h/ln} * 0.63 = 1140.89 \text{ veh/h}$$

Tabla 47. Capacidad por subsegmento

| Subsegmento | c (veh/h) |
|-------------|-----------|
| SS1         | 1140.89   |
| SS2         | 869.08    |
| SS3         | 574.25    |
| SS4         | 776.38    |

## 5.1.21. Relación volumen – capacidad (X).

Se utilizó la ecuación 22 para obtener:

$$X_{SS1} = \frac{693 \text{ ve/h}}{1140.89 \text{ veh/h}} = 0.61$$

Tabla 48. Relación volumen – capacidad por subsegmento

| Subsegmento |      | X       |
|-------------|------|---------|
| SS1         | 0.61 | 60.74%  |
| SS2         | 1.11 | 111.04% |
| SS3         | 1.08 | 107.79% |
| SS4         | 1.61 | 160.62% |

## 5.1.22. Factor de ajuste suplementario para pelotones durante el verde (f<sub>PA</sub>).

Se utilizó la leyenda de la ecuación 20 para obtener:

Tabla **49**. Factor de ajuste suplementario para pelotones durante el verde por subsegmento

| Subsegmento | $\mathbf{f}_{\mathbf{PA}}$ |
|-------------|----------------------------|
| SS1         | 1.00                       |
| SS2         | 1.00                       |
| SS3         | 1.00                       |
| SS4         | 1.00                       |

## 5.1.23. Factor de ajuste de progresión (PF\*).

Se utilizó la ecuación 20 para obtener PF\*:

$$PF^*_{SS1} = 1.00 * \frac{(1 - 0.63)}{(1 - 0.63)} = 1.00$$

Tabla 50. Factor de ajuste de progresión por subsegmento

| Subsegmento | PF*  |
|-------------|------|
| SS1         | 1.00 |
| SS2         | 1.00 |
| SS3         | 1.00 |
| SS4         | 1.00 |

## 5.1.24. Demora uniforme $(d_1)$

Se utilizó la ecuación 21 para obtener:

$$d_{1,SS1} = 1 * \frac{0.5 * 89.93 s * (1 - 0.63)^{2}}{1 - (\min(1, 0.61) * 0.63)} = 9.80 \text{ s/veh}$$

Tabla 51. Demora uniforme por subsegmento

| Subsegmento | d1 (s/veh) |
|-------------|------------|
| SS1         | 9.80       |
| SS2         | 22.58      |
| SS3         | 16.47      |
| SS4         | 22.58      |

## **5.1.25.** Demora incremental (d<sub>2</sub>)

Se obtuvo el grado de saturación ponderado de todos los movimientos aguas arriba (Anexo  $N^{\circ}02$ ):

Tabla 52. Grado de Saturación Ponderado Aguas Arriba

| Subsegmento | $\mathbf{X}_{\mathbf{u}}$ |
|-------------|---------------------------|
| SS1         | 0.32                      |
| SS2         | 0.76                      |
| SS3         | 0.60                      |
| SS4         | 1.03                      |

Se utilizó la ecuación 19 para obtener:

$$I = 1.0 - 0.91 * 0.32^{2.68} = 0.96 \ge 0.090$$

Tabla 53. Factor de ajuste de filtrado aguas arriba por subsegmento

| Subsegmento | I    |
|-------------|------|
| SS1         | 0.96 |
| SS2         | 0.56 |
| SS3         | 0.77 |
| SS4         | 0.09 |

Se utilizó la ecuación 23 para obtener:

$$d_{2,SS1} = 900 * 0.25 \text{ h} * \left[ (0.61 - 1) + \sqrt{(0.61 - 1)^2 + \frac{4 * 0.32 * 0.61}{1140.89 veh/h * 0.25 \text{ h}}} \right]$$
$$= 2.31 \text{ s/veh}$$

Tabla **54**. *Demora incremental por subsegmento* 

| Subsegmento | d2 (s/veh) |
|-------------|------------|
| SS1         | 2.31       |
| SS2         | 59.48      |
| SS3         | 55.95      |
| SS4         | 273.33     |

## **5.1.26.** Demoras por control (d)

Se utilizó la ecuación 24 para obtener:

$$d_{SS1} = 9.80 \text{ s/veh} + 2.31 \text{ s/veh} = 12.11 \text{ s/veh}$$

Tabla 55. Demora por control por subsegmento

| Subsegmento | d (s/veh) |
|-------------|-----------|
| SS1         | 12.11     |
| SS2         | 82.06     |
| SS3         | 72.42     |
| SS4         | 295.91    |

## 5.1.27. Tiempo de viaje $(T_T)$

Se utilizó la ecuación 6 para obtener:

$$T_T = 223.91 \text{ s/veh} + 12.11 \text{ s/veh} = 236.02 \text{ s/veh}$$
 
$$T_T = \frac{236.02 \text{ s/veh}}{60 \text{ s/min}} = 3.93 \text{ min/veh}$$

Tabla **56**. *Tiempo de viaje por subsegmento* 

| Subsegmento | T⊤ (s/veh) | T⊤ (min/veh) |
|-------------|------------|--------------|
| SS1         | 236.02     | 3.93         |
| SS2         | 246.31     | 4.11         |
| SS3         | 166.84     | 2.78         |
| SS4         | 340.23     | 5.67         |

## 5.1.28. Velocidad de viaje ( $S_{T,seg}$ ).

Se utilizó la ecuación 7 para obtener:

$$S_{T,seg,SS1} = \frac{3600 * 609.51 \text{ pies}}{5280 * 236.02 \text{ s/veh}} = 1.76 \text{ mi/veh}$$

$$S_{T,seg,SS1} = 1.76 \text{ mi/veh} \cdot 1.60934 \text{ km/mi} = 2.83 \text{ km/veh}$$

Tabla 57. Velocidad de viaje por subsegmento

| Subsegmento | S <sub>T,seg</sub><br>(mi/veh) | S <sub>T,seg</sub><br>(km/veh) |
|-------------|--------------------------------|--------------------------------|
| SS1         | 1.76                           | 2.83                           |
| SS2         | 1.33                           | 2.14                           |
| SS3         | 2.59                           | 4.17                           |
| SS4         | 1.38                           | 2.22                           |

## 5.1.29. Nivel de servicio

Se interpolaron los datos de la Tabla N°1, a través de este proceso se pudo obtener el nivel de servicio para cada subsegmento:

$$\frac{30.06 - 30}{35 - 30} = \frac{S_{Tseg,SS1,LoS,a} - 24}{28 - 24}$$

$$S_{T,seg,SSI,LOS,a} = 24.05$$

Tabla 58. Nivel de servicio para el subsegmento 1

| LOS     | S <sub>T,seg,SS1</sub> (mi/h) | S <sub>T,seg,SS1,LOS,a</sub> (mi/h) | ST,seg,SS1,LOS<br>(mi/h) |
|---------|-------------------------------|-------------------------------------|--------------------------|
| A       |                               | >24.05                              | >24                      |
| В       |                               | >20.04                              | >20                      |
| C       |                               | >15.04                              | >15                      |
| D       |                               | >12.02                              | >12                      |
| ${f E}$ |                               | >9.02                               | >9                       |
| F       | 1.76                          |                                     | <b>≤</b> 9               |

Tabla **59**. Nivel de servicio para el subsegmento 2

| LOS          | $S_{T,seg,SS2}$ (mi/h) | S <sub>T,seg,SS2,LOS,a</sub> (mi/h) | S <sub>T,seg,SS2,LOS</sub> (mi/h) |
|--------------|------------------------|-------------------------------------|-----------------------------------|
| $\mathbf{A}$ |                        | >27.42                              | >20                               |
| В            |                        | >22.57                              | >17                               |
| C            |                        | >16.71                              | >13                               |
| D            |                        | >13.71                              | >10                               |
| ${f E}$      |                        | >9.86                               | >8                                |
| F            | 1.33                   |                                     | ≤8                                |

Tabla 60. Nivel de servicio para el subsegmento 3

| LOS          | S <sub>T,seg,SS3</sub> (mi/h) | S <sub>T,seg,SS3,LOS,a</sub> (mi/h) | S <sub>T,seg,SS3,LOS</sub> (mi/h) |
|--------------|-------------------------------|-------------------------------------|-----------------------------------|
| $\mathbf{A}$ |                               | >24.31                              | >24                               |
| В            |                               | >20.23                              | >20                               |
| $\mathbf{C}$ |                               | >15.23                              | >15                               |
| D            |                               | >12.16                              | >12                               |
| ${f E}$      |                               | >9.16                               | >9                                |
| F            | 2.59                          |                                     | ≤9                                |

Tabla 61. Nivel de servicio para el subsegmento 4

| LOS          | S <sub>T,seg,SS4</sub> (mi/h) | S <sub>T,seg,SS4,LOS,a</sub> (mi/h) | S <sub>T,seg,SS4,LOS</sub> (mi/h) |
|--------------|-------------------------------|-------------------------------------|-----------------------------------|
| $\mathbf{A}$ |                               | >26.06                              | >24                               |
| В            |                               | >21.55                              | >20                               |
| C            |                               | >16.55                              | >15                               |
| D            |                               | >13.03                              | >12                               |
| ${f E}$      |                               | >10.03                              | >9                                |
| F            | 1.38                          |                                     | ≤9                                |

Tabla 62. Nivel de servicio por subsegmento

| Subsegmento | LOS |
|-------------|-----|
| SS1         | F   |
| SS2         | F   |
| SS3         | F   |
| SS4         | F   |

#### B. Nivel de servicio en régimen libre (RL)

Para considerar en régimen libre se utilizó algunos criterios:

- Para el estudio se utilizó todo el ancho de carril disponible (N<sub>th</sub>).
- No ha existido retraso por otros factores ( $\Sigma d_{ap}$ ).
- No hay longitudes a lo largo del tramo vía que se hayan usado como estacionamiento ( $L_{pk}$ ).

Tabla 63. Número de Carriles de cada subsegmento en régimen libre

| Subsegmento | N <sub>th</sub> en CN |
|-------------|-----------------------|
| SS1         | 2.00                  |
| SS2         | 2.00                  |
| SS3         | 1.00                  |
| SS4         | 1.00                  |

Nota: "CN" Condiciones Normales

El retraso total por puntos de acceso, la velocidad límite, velocidad constante, densidad por puntos de acceso y factor de ajuste para la sección transversal son las mismas que en condiciones normales.

## 5.1.30. Factor de ajuste por puntos de acceso (f<sub>A</sub>)

Se utilizó la ecuación 12 para obtener f<sub>A</sub>:

$$f_{A,SS1} = -0.078*\frac{0.00 \text{ puntos de acceso/mi}}{1.00} = 0.00 \text{ mi/h}$$

$$f_{A,SS1} = 0.00 \text{ mi/h} \cdot 1.60934 \text{ km/mi} = 0.00 \text{ km/h}$$

Tabla 64. Factor de ajuste por puntos de acceso por subsegmento en régimen libre

| Subsegmento | f <sub>A</sub> (mi/h) | f <sub>A</sub> (km/h) |
|-------------|-----------------------|-----------------------|
| SS1         | 0.00                  | 0.00                  |
| SS2         | 0.00                  | 0.00                  |
| SS3         | -0.65                 | -1.05                 |
| SS4         | 0.00                  | 0.00                  |

## 5.1.31. Velocidad base de flujo libre (Sfo)

Tabla 65. Longitud del segmento que se utiliza como estacionamiento

| Subsegmento | L <sub>pk</sub> (m) | L <sub>pk</sub> (ft) |
|-------------|---------------------|----------------------|
| SS1         | 0.00                | 0.00                 |
| SS2         | 0.00                | 0.00                 |
| SS3         | 0.00                | 0.00                 |
| SS4         | 0.00                | 0.00                 |

$$p_{pk,SS1} = \frac{0.00 \ pies}{573.88 \ pies} = 0.00$$

Tabla 66. Proporción del segmento con estacionamiento en la vía por subsegmento

| Subsegmento | $\mathbf{P}_{\mathbf{pk}}$ |
|-------------|----------------------------|
| SS1         | 0.00                       |
| SS2         | 0.00                       |
| SS3         | 0.00                       |
| SS4         | 0.00                       |

Se utilizó la ecuación 14 para obtener:

$$f_{pk,SS1} = -3 * 0.00 = 0.00 \, mi/h$$

Tabla 67. Velocidad de ajuste para estacionamiento por subsegmento

| Subsegmento | f <sub>pk</sub> (mi/h) | f <sub>pk</sub> (km/h) |
|-------------|------------------------|------------------------|
| SS1         | 0.00                   | 0.00                   |
| SS2         | 0.00                   | 0.00                   |
| SS3         | 0.00                   | 0.00                   |
| SS4         | 0.00                   | 0.00                   |

Se utilizó la ecuación 4 para obtener el siguiente resultado.

$$S_{fo,SS1} = 0.00 \text{ mi/h} + 34.36 \text{ mi/h} - 1.53 \text{ mi/h} + 0.00 \text{ mi/h} + 0.00 \text{ mi/h}$$
 
$$= 32.83 \text{ mi/h}$$

$$S_{fo,SS1} = 32.83 \text{ mi/h} \cdot 1.60934 \text{ km/mi} = 52.84 \text{ km/h}$$

Tabla 68. Velocidad base de flujo libre en régimen libre

| Subsegmento | Sfo (mi/h) | Sfo (km/h) |
|-------------|------------|------------|
| SS1         | 32.83      | 52.84      |
| SS2         | 32.20      | 51.83      |
| SS3         | 33.38      | 53.73      |
| SS4         | 34.07      | 54.83      |

## 5.1.32. Factor de ajuste de longitud del subsegmento (f<sub>L</sub>).

Se utilizó la ecuación 15 para obtener f<sub>L</sub>:

$$f_L = 1.02 - \frac{4.7 * (32.83 - 19.5)}{\max(609.51 \text{ pies, } 400)} = 0.92 \le 1.0$$

Tabla 69. Factor de ajuste de longitud por subsegmento en régimen libre

| Subsegmento | fL   |
|-------------|------|
| SS1         | 0.92 |
| SS2         | 0.90 |
| SS3         | 0.92 |
| SS4         | 0.92 |

## 5.1.33. Velocidad de flujo libre $(S_f)$ .

Se utilizó la ecuación 5 para obtener S<sub>f</sub>:

$$S_f = 32.83 \text{ mi/h} \cdot 0.92 = 30.11 \text{ mi/h} \ge 18.64 \text{ mi/h}$$

$$S_f = 30.11 \text{ mi/h} \cdot 1.60934 \text{ km/mi} = 48.47 \text{ km/h}$$

Tabla 70. Velocidad de flujo libre por subsegmento en régimen libre

| Subsegmento | S <sub>f</sub> (mi/h) | S <sub>f</sub> (km/h) |   | S <sub>pl</sub> (mi/h) | S <sub>pl</sub> (km/h) |
|-------------|-----------------------|-----------------------|---|------------------------|------------------------|
| SS1         | 30.11                 | 48.47                 | ≥ | 18.64                  | 30.00                  |
| SS2         | 28.85                 | 46.42                 | ≥ | 18.64                  | 30.00                  |
| SS3         | 30.61                 | 49.26                 | ≥ | 18.64                  | 30.00                  |
| SS4         | 31.36                 | 50.47                 | ≥ | 18.64                  | 30.00                  |

#### 5.1.34. Factor de ajuste de proximidad (f<sub>V</sub>).

Se utilizó la ecuación 16 para obtener f<sub>v</sub>:

$$f_{v} = \frac{2}{1 + \left(1 - \frac{693 \text{ vh/h}}{52.8 \cdot 2 \cdot 30.11 \text{ mi/h}}\right)^{0.21}} = 1.03$$

Tabla 71. Factor de ajuste de proximidad por subsegmento en régimen libre

| Subsegmento | f <sub>v</sub> |
|-------------|----------------|
| SS1         | 1.03           |
| SS2         | 1.04           |
| SS3         | 1.05           |
| SS4         | 1.15           |

## 5.1.35. Retraso debido a otras fuentes (dother)

Tabla 72. Retraso debido a otras fuentes por subsegmento en régimen libre

| Subsegmento | dother (s/veh) |
|-------------|----------------|
| SS1         | 0.00           |
| SS2         | 0.00           |
| SS3         | 0.00           |
| SS4         | 0.00           |

#### 5.1.36. Tiempo de ejecución $(t_R)$

Se utilizó la ecuación 17 para obtener t<sub>R</sub>:

$$t_{R,SS1} = \frac{6.00 - 2.00 \text{ s}}{0.0025*609.51 \text{ pies}} * 1 + \frac{3600*609.51 \text{ pies}}{5280*30.11 \frac{\text{mi}}{\text{h}}} * 1.03 + 1.27 \text{ s/veh}$$
 
$$+ 0.00 \text{s/veh} = 17.48 \text{ s}$$

Tabla 73. Tiempo de ejecución por subsegmento en régimen libre

| Subsegmento | t <sub>R</sub> (s) |
|-------------|--------------------|
| SS1         | 17.48              |
| SS2         | 16.68              |
| SS3         | 17.64              |
| SS4         | 20.53              |

El ciclo semafórico, relación verde/ciclo/longitud efectiva, ratio de pelotón, proporción de llegada durante el tiempo de verde y la velocidad de flujo de saturación de carriles son las mismas que en condiciones normales.

## **5.1.37.** Capacidad (c).

Se utilizó la ecuación 1 para obtener:

$$c_{SS1} = 2.00 * 1800 \text{ veh/h/ln} * 0.63 = 2281.77 \text{ veh/h}$$

Tabla 74. Capacidad por subsegmento en régimen libre

| Subsegmento | c (veh/h) |
|-------------|-----------|
| SS1         | 2281.77   |
| SS2         | 1738.16   |
| SS3         | 1140.89   |
| SS4         | 869.08    |

## 5.1.38. Relación volumen – capacidad (X).

Se utilizó la ecuación 22 para obtener:

$$X_{SS1} = \frac{396 \text{ ve/h}}{2281.77 \text{ veh/h}} = 0.30$$

Tabla 75. Relación volumen – capacidad por subsegmento en régimen libre

| Subsegmento |      | Х       |
|-------------|------|---------|
| SS1         | 0.30 | 30.37%  |
| SS2         | 0.56 | 55.52%  |
| SS3         | 0.54 | 54.26%  |
| SS4         | 1.43 | 143.49% |

El factor de ajuste suplementario para pelotones durante el verde y factor de progresión son las mismas que en condiciones normales.

## 5.1.39. Demora uniforme $(d_1)$

Se utilizó la ecuación 21 para obtener:

$$d_{1,SS1} = 1.00 * \frac{0.5 * 89.93 s * (1 - 0.63)^{2}}{1 - (\min(1, 0.30) * 0.63)} = 7.47 \text{ s/veh}$$

Tabla 76. Demora uniforme por subsegmento en régimen libre

| Subsegmento | d <sub>1</sub> (s/veh) |
|-------------|------------------------|
| SS1         | 7.47                   |
| SS2         | 15.95                  |
| SS3         | 9.19                   |
| SS4         | 22.58                  |

El grado de saturación ponderado aguas arriba y factor "I" mantienen su mismo valor que en condiciones normales.

## **5.1.40.** Demora incremental (d<sub>2</sub>)

Se utilizó la ecuación 23 para obtener:

$$d_{2,SS1} = 900 * 0.25 \text{ h} * \left[ (0.30 - 1) + \sqrt{(0.30 - 1)^2 + \frac{4 * 0.96 * 0.30}{2281.77 \text{veh/h} * 0.25 \text{ h}}} \right]$$
$$= 0.33 \text{ s/veh}$$

Tabla 77. Demora incremental por subsegmento en régimen libre

| Subsegmento | d <sub>2</sub> (s/veh) |
|-------------|------------------------|
| SS1         | 0.33                   |
| SS2         | 0.73                   |
| SS3         | 1.43                   |
| SS4         | 196.30                 |

## 5.1.41. Demoras por control (d)

Se utilizó la ecuación 24 para obtener:

$$d_{SS1} = 7.47 \text{ s/veh} + 0.33 \text{ s/veh} = 7.80 \text{ s/veh}$$

Tabla 78. Demora por control por subsegmento en régimen libre

| Subsegmento | d (s/veh) |
|-------------|-----------|
| SS1         | 7.80      |
| SS2         | 16.68     |
| SS3         | 10.62     |
| SS4         | 218.88    |

## 5.1.42. Tiempo de viaje $(T_T)$

Se utilizó la ecuación 6 para obtener:

$$T_T = 17.48 \text{ s/veh} + 7.80 \text{ s/veh} = 25.27 \text{ s/veh}$$

$$T_{\rm T} = \frac{25.27 \text{ s/veh}}{60 \text{ s/min}} = 0.42 \text{ min/veh}$$

Tabla 79. Tiempo de viaje por subsegmento en régimen libre

| Subsegmento | T <sub>T</sub> (s/veh) | T <sub>T</sub> (min/veh) |
|-------------|------------------------|--------------------------|
| SS1         | 25.27                  | 0.42                     |
| SS2         | 33.36                  | 0.56                     |
| SS3         | 28.26                  | 0.47                     |
| SS4         | 239.41                 | 3.99                     |

## 5.1.43. Velocidad de viaje.

Se utilizó la ecuación 7 para obtener:

$$S_{T,seg,SS1} = \frac{3600 * 609.51 \text{ pies}}{5280 * 25.28 \text{ s/veh}} = 16.44 \text{ mi/veh}$$

$$S_{T,seg,SS1} = 16.44 \text{ mi/veh} \cdot 1.60934 \text{ km/mi} = 26.46 \text{ km/veh}$$

Tabla 80. Velocidad de viaje por subsegmento en régimen libre

| Subsegmento | S <sub>T,seg</sub> (mi/veh) | S <sub>T,seg</sub> (km/veh) |
|-------------|-----------------------------|-----------------------------|
| SS1         | 16.44                       | 26.46                       |
| SS2         | 9.82                        | 15.80                       |
| SS3         | 15.26                       | 24.59                       |
| SS4         | 1.96                        | 3.16                        |

## 5.1.44. Nivel de servicio

Se interpolaron los datos de la Tabla N°1, a través de este procedimiento se obtuvo el nivel de servicio para cada subsegmento:

$$\frac{32.83 - 30}{35 - 30} = \frac{S_{Tseg,SS1,LOS,a,RL} - 24}{28 - 24}$$

$$S_{T,seg,SSI,LOS,a,RL} = 25.66 \, mi/h$$

Tabla 81. Nivel de servicio para el subsegmento 1 en régimen libre

| LOS          | S <sub>T,seg,SS1</sub> (mi/h) | S <sub>T,seg,SS1,LOS,a,RL</sub> (mi/h) | S <sub>T,seg,SS1,LOS</sub> (mi/h) |
|--------------|-------------------------------|----------------------------------------|-----------------------------------|
| $\mathbf{A}$ |                               | >25.66                                 | >24                               |
| В            |                               | >21.25                                 | >20                               |
| C            | 16.44                         | >16.25                                 | >15                               |
| D            |                               | >12.83                                 | >12                               |
| ${f E}$      |                               | >9.83                                  | >9                                |
| <b>F</b>     |                               |                                        | ≤9                                |

Tabla 82. Nivel de servicio para el subsegmento 2 en régimen libre

| LOS          | S <sub>T,seg,SS2</sub> (mi/h) | S <sub>T,seg,SS2,LOS,a,RL</sub> (mi/h) | S <sub>T,seg,SS2,LOS</sub> (mi/h) |
|--------------|-------------------------------|----------------------------------------|-----------------------------------|
| $\mathbf{A}$ |                               | >25.76                                 | >24                               |
| В            |                               | >21.32                                 | >20                               |
| C            |                               | >16.32                                 | >15                               |
| D            |                               | >12.88                                 | >12                               |
| E            | 9.82                          | >9.88                                  | >9                                |
| F            |                               |                                        | ≤9                                |

Tabla 83. Nivel de servicio para el subsegmento 3 en régimen libre

| LOS     | S <sub>T,seg,SS3</sub> (mi/h) | S <sub>T,seg,SS3,LOS,a,RL</sub> (mi/h) | S <sub>T,seg,SS3,LOS</sub> (mi/h) |
|---------|-------------------------------|----------------------------------------|-----------------------------------|
| A       |                               | >26.7                                  | >24                               |
| В       |                               | >22.03                                 | >20                               |
| C       | 15.28                         | >17.03                                 | >15                               |
| D       |                               | >13.36                                 | >12                               |
| ${f E}$ |                               | >10.35                                 | >9                                |
| ${f F}$ |                               |                                        | ≤9                                |

Tabla 84. Nivel de servicio para el subsegmento 4 en régimen libre

| LOS     | S <sub>T,seg,SS4</sub> (mi/h) | S <sub>T,seg,SS4,LOS,a,RL</sub> (mi/h) | S <sub>T,seg,SS4,LOS</sub> (mi/h) |
|---------|-------------------------------|----------------------------------------|-----------------------------------|
| A       |                               | >27.26                                 | >24                               |
| В       |                               | >22.44                                 | >20                               |
| C       |                               | >17.44                                 | >15                               |
| D       |                               | >13.63                                 | >12                               |
| ${f E}$ |                               | >10.63                                 | >9                                |
| F       | 1.96                          |                                        | ≤9                                |

Tabla 85. Nivel de servicio por subsegmento en régimen libre

| Subsegmento | LOS |
|-------------|-----|
| SS1         | C   |
| SS2         | E   |
| SS3         | C   |
| SS4         | F   |

# 5.2. Análisis, interpretación y discusión de resultados.

#### 5.2.1. Reducción de la capacidad

Se utilizó la ecuación 25 para obtener %Rc.

$$%R_{c,SS1} = 1 - \frac{1140.89 \text{ veh/h}}{2281.77 \text{ veh/h}} = 0.50 = 50.00\%$$

Tabla 86. Reducción de la capacidad vial por subsegmento

| Cubaamanta    | c (veh/h) |         | 0/ Da  |
|---------------|-----------|---------|--------|
| Subsegmento - | R.L.      | C.N.    | %Rc    |
| SS1           | 2281.77   | 1140.89 | 50.00% |
| SS2           | 1738.16   | 869.08  | 50.00% |
| SS3           | 1140.89   | 574.25  | 49.67% |
| SS4           | 869.08    | 776.38  | 10.67% |

La capacidad vial se redujo en un 50% para el subsegmento 1, en 50% para el subsegmento 2, en 49.67% para el subsegmento 3 y en 10.67% para el subsegmento 4 debido al uso de carriles como estacionamiento.

## 5.2.2. Reducción de nivel de servicio en CN y RL

Tabla 87. Disminución del nivel de servicio por subsegmento

|             | Nivel de Serv               | icio (LOS)       |
|-------------|-----------------------------|------------------|
| Subsegmento | <b>Condiciones Normales</b> | En Régimen Libre |
| SS1         | С                           | F                |
| SS2         | E                           | F                |
| SS3         | C                           | F                |
| SS4         | F                           | F                |

El nivel de servicio disminuyó de "C", "E", "C" y "F" para los subsegmentos 1, 2, 3 y 4 respectivamente a "F" para todos los subsegmentos debido al uso de carriles como estacionamiento además de incluir otros factores.

## 5.3. Contrastación de hipótesis.

La capacidad vial de los subsegmentos 1, 2, 3 y 4 es de 1140.89 veh/h, 869.08 veh/h, 574.25 veh/h y 776.38 veh/h respectivamente, estos valores son menores a 1800 veh/h por lo que se acepta la hipótesis. El nivel de servicio que presentan todos los subsegmentos analizados es "F", por lo que se acepta la hipótesis.

#### **CONCLUSIONES**

- La capacidad vial de la Av. El Maestro entre la Av. Los Héroes y Jr. El Inca de la ciudad de Cajamarca es 1140.89 veh/h, 869.08 veh/h, 574.25 veh/h y 776.38 veh/h para los subsegmentos 1, 2, 3 y 4 respectivamente y el nivel de servicio es "F" a lo largo del segmento de vía urbana.
- La capacidad de la Av. El Maestro entre la Av. Los Héroes y Jr. El Inca de la ciudad de Cajamarca en régimen libre es de 2281.77 veh/h, 1738.16 veh/h, 1140.89 veh/h y 869.08 veh/h para los subsegmentos 1, 2, 3 y 4 respectivamente y el nivel de servicio es "C", "E", "C" y "F" para los subsegmentos 1, 2, 3 y 4 respectivamente.
- La reducción de la capacidad vial es 50%, 50%, 49.67%, 10.67% para el subsegmento 1, 2, 3 y 4 respectivamente debido al uso de carriles como estacionamiento vehicular y otros factores. Además, el nivel de servicio es "F", el nivel más bajo, para todos los subsegmentos.
- El volumen horario de máxima demanda es 693 veh/h, 965 veh/h, 619 veh/h y 1247 veh/h para los subsegmentos 1, 2, 3 y 4 respectivamente.
- La hora de máxima demanda es 12:30 pm 1:30 pm para el subsegmento 1, 8:45 am 9:45 am para el subsegmento 2, 7:15 am 8:15 am para el subsegmento 3 y 6:30 pm 7:30 pm para el subsegmento 4.
- El grado de saturación es 60.74%, 111.04%, 107.79% y 160.62% para los subsegmentos 1, 2, 3 y 4 respectivamente en condiciones normales.
- Al realizar la recopilación y procesamiento de datos se pudo observar que el uso de los carriles como estacionamiento reduce la capacidad vial y el nivel de servicio, pero también existen otros factores que disminuyen la velocidad de viaje y aumentan el tiempo de recorrido que se traducen en congestionamiento

vehicular por la vía como lo fueron el recojo de pasajeros por el transporte público que se estacionan brevemente al lado derecho de la calzada, además se suman el cruce imprudente de peatones y paso de marchas o pregones.

#### RECOMENDACIONES Y/O SUGERENCIAS

- Se recomienda realizar un estudio de las unidades vehiculares equivalentes, para el vehículo patrón automóvil, de la ciudad de Cajamarca, con la finalidad de aplicar el modo automóvil según la metodología HCM 2016.
- Se recomienda, como medida técnica, redirigir el flujo vehicular que ingresa a la intersección semaforizada desde el Jr. El Inca hacia el Jr. Amazonas hacia calles cercanas, ofreciendo alternativas para mitigar la alta afluencia de vehículos en el subsegmento. Esta estrategia busca incrementar la capacidad y mejorar el nivel de servicio en el subsegmento 4.
- Se recomienda la apertura de la Av. El Maestro entre el Jr. Amazonas y Jr. El Inca con la finalidad de que dicho tramo sea de doble vía o asemeje las características geométricas del tramo entre la Av. Los Héroes y Jr. Amazonas.
- Se recomienda realizar un nuevo aforo vehicular para la realización de nuevas investigaciones.

## REFERENCIAS BIBLIOGRÁFICAS

- Ángeles, R. (2020). Análisis de la Aplicabilidad de la Metodología HCM 2010 en una Rotonda en la Ciudad de Lima. Tesis para Obtener el Título Profesional de Ingeniero Civil. Pontificia Universidad Católica del Perú.
- Cal y Mayor, R, Cárdenes, J. (2018) *Ingeniería de Tránsito*. 9ª edición. México: Alfaomega.
- Condori, J. (2020). Nivel de Congestionamiento en la vía de Evitamiento Sur en la Ciudad de Cajamarca en función al Tránsito Vehicular, Cajamarca 2020. Tesis para Optar el Título Profesional de Ingeniero Civil. Cajamarca-Perú. Universidad Privada del Norte.
- Diario Correo. (2022, 10 de octubre). Caos en calles de Huánuco por Congestión

  Vehicular. Recuperado el 14 de octubre del 2023 de:

  diariocorreo.pe/edición/huanuco/caos-en-de-huanuco-po-congestion
  vehicular-noticia/
- DS. N°016-2009-MTC.2014. Texto único Ordenado del Reglamento Nacional de Tránsito -Código de Tránsito. Lima-Perú. Superintendencia de Transporte Terrestre de Personas, Carga y Mercancearías, 24 de abril de 2014.
- Gaona, C, Parra, C, Sánchez, J. (2021). Afección de la Capacidad vial por Estacionamiento en Vía. Caso de Estudio. Avenida Carrera 7ma con Avenida Calle 72, Bogotá D.C. Trabajo de Investigación para Optar al Título de Ingeniero Civil. Bogotá D.C. Universidad Piloto de Colombia Facultad de Ingeniería.
- Goicoche, E. (2019). Análisis del Nivel de Servicio y Capacidad Vehicular en la intersección Semaforizada de la Avenida Vía de Evitamiento Norte y el Jirón

- Manuel Saoane, Aplicando la Metodología del HCM 2010-Cajamarca. Tesis para Optar el Título Profesional de ingeniería Civil. Cajamarca-Perú. Universidad Nacional de Cajamarca.
- Granda C., & Martinez I., *Análisis de Tráfico en las Principales Intersecciones del Área de Influencia de la Universidad del Azuay*. Trabajo de graduación previo a la obtención del título de Ingeniero Civil y Gerencia de Construcciones.

  Universidad del Azuay.
- Highway Capacity Manual (2016). A Guide For Multimodal Mobility Analysis Urban Street Segments: Volume 3 Interrrupted Flow. (6th ed.) Washington D.C.
- Highway Capacity Manual (2024). A Guide For Multimodal Mobility Analysis Urban Street Segments: Supplemental Chapter 30. (7th ed.) Washington D.C.
- Interreg North-West Europe CHIPS. (19 de septiembre de 2024). *Diseño y*\*\*Construcción.\*\*

  https://cyclehighways.eu/design-and-build/designprinciples/width.html
- Marino M. (2019). Planeamiento y desarrollo vial entre las avenidas Metropolitana I y II de la ciudad. [Tesis para optar el grado de maestro en transportes y conservación vial]. Universidad Privada Antenor Orrego Escuela de Posgrado.
- Maquero, P, Cabrera, L. (2019). Evaluación del Nivel de Servicio de Flujos Vehiculares, en Dos Intersecciones Semaforizadas Caso: Alto Alianza – Tacna. Veritas Et Scientia, 8(2), 1221-1234.
- Mora, J. (2019). Determinación del Flujo de Saturación Base (So) para Ciudades Pequeñas, Caso Tunja. Trabajo de grado en la Modalidad de investigación para

- Obtener el Título de Ingeniero en Transporte y Vías. Universidad Pedagógica y Tecnológica de Colombia.
- Motor Blogs Mapfre. (19 de septiembre de 2024). *Guías de Medidas de Coches por Segmento*. <a href="https://www.motor.mapfre.es/coches/noticias-coches/guia-medidas-coches-segmento/#Medidas de coches urbanos">https://www.motor.mapfre.es/coches/noticias-coches/guia-medidas-coches-segmento/#Medidas de coches urbanos</a>
- Navín. (2005). Apuntes para el Programa Master en Ingeniería Civil con Mención en Ingeniería Vial de la Universidad de Piura. Universidad de Piura.
- Palmetto Cycling Coalition. (19 de septiembre de 2024). *Información Sobre*Aparcamiento de Bicicletas. <a href="https://pccsc.net/bicycle-parking-info/">https://pccsc.net/bicycle-parking-info/</a>
- Panduro, C. (2022). Evaluación de la Congestión Vehicular en un Tramo del Jr. Ancash entre la Av. Plácido Jiménez y el Óvalo La Paz, Aplicando la Metodología HCM 2010. Lima-Perú. Universidad Tecnológica del Perú.
- Reghellin, A. (2018). La Congestión Vehicular en Lima Metropolitana entre los años 2012 y 2016. Afecta Económicamente a las empresas Aseguradoras de Vida y a sus Trabajadores. Trabajo de Investigación para Optar la Licenciatura en Administración. Universidad de Lima.
- Rojas, E. (2019). Análisis de la Capacidad y Niveles de Servicio de la Avenida Mario Urteaga, Tramo Jr. Dos de Mayo hasta el Óvalo El Inca; Según Metodología HCM 2010, Cajamarca 2018. Tesis para optar el Título profesional de Ingeniero Civil. Cajamarca-Perú. Universidad Privada del Norte.
- Romana, M. et al. (2018). *Manual de Capacidad de Carretera HCM 2010*. 1er ed. España: FC Editorial.

- Sabando, I. (2017). Determinación del Nivel de Servicio de Calles Urbanas. Memoria de Titulación como Requisito para Optar al Título de Ingeniero Civil.

  Universidad Técnica Federico Santa María Departamento de Obras Civiles.

  Valparaíso-Chile.
- Velásquez, J. (2021). Análisis del Nivel de Servicio y Capacidad Vehicular de Dos Intersecciones con Mayor Demanda del Centro Histórico de la Ciudad de Cajamarca Utilizando Cámaras de Videovigilancia y la Metodología HCM 2010, en el Año 2018. Tesis para optar el Título Profesional de Ingeniero Civil. Universidad Privada del Norte.
- Zongshen Motocicletas Originales. (19 de septiembre de 2024). ¿Por qué elegir una ZS 150-SA GLE? <a href="https://zongshenperu.com/moto/motocicleta-trimovil-zs-150-s-gle/#:~:text=LARGO%20x%20ANCHO%20x%20ALTO,2960%2F1350%2F1770%20m.m">https://zongshenperu.com/moto/motocicleta-trimovil-zs-150-s-gle/#:~:text=LARGO%20x%20ANCHO%20x%20ALTO,2960%2F1350%2F1770%20m.m</a>.

## **ANEXOS**

## Anexo 1. Formato de Aforo Semanal

| FIRE              |                | UNIVERSIDAD NACIONAL DE CAJAMARCA                                                                                                                                        |                    |        |           |          |     |        |  |  |
|-------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|-----------|----------|-----|--------|--|--|
|                   |                |                                                                                                                                                                          |                    |        |           |          |     |        |  |  |
| Pougrado          |                | MAESTRÍA EN CIENCIAS CON MENCIÓN EN INGENIERÍA CIVIL                                                                                                                     |                    |        |           |          |     |        |  |  |
| Tesis:            |                | pacidad y Nivel de Servicio de la Avenida El Maestro entre la Av. Los Héroes y Jr. El Inca de la Ciudad de<br>amarca, por el Uso de Carriles como Estacionamiento - 2023 |                    |        |           |          |     |        |  |  |
| Ficha N°01:       | Aforo Vehicul  | ar                                                                                                                                                                       |                    |        |           |          |     |        |  |  |
| Tesista:          | Nobel Dereck I | Estela Velásquez                                                                                                                                                         |                    |        |           | Croquis: |     |        |  |  |
| Ciudad:           | Cajamarca      |                                                                                                                                                                          |                    |        |           |          |     |        |  |  |
| Ubicación:        | Jr. Amazonas   | entre la Av. El Ma                                                                                                                                                       | aestro y Jr. El Ir | nca    |           |          |     |        |  |  |
| Sentido:          |                |                                                                                                                                                                          |                    |        |           |          |     |        |  |  |
| Día:              |                |                                                                                                                                                                          |                    | Fecha: |           |          | 1   |        |  |  |
| Hora de Inicio:   |                |                                                                                                                                                                          |                    |        |           |          | -   |        |  |  |
| Hora de Fin:      |                |                                                                                                                                                                          |                    |        |           |          | -   |        |  |  |
|                   | Bicicleta      | Moto lineal                                                                                                                                                              | Mototaxi           | Auto   | Camioneta | Combi    | Bus | Camión |  |  |
| Hora de Control   | <b>⊕</b> €     | 6                                                                                                                                                                        |                    |        |           |          |     |        |  |  |
| 6:30 am - 6:45 am |                |                                                                                                                                                                          |                    |        |           |          |     |        |  |  |
| 6:45 am - 7:00 am |                |                                                                                                                                                                          |                    |        |           |          |     |        |  |  |
| 7:00 am - 7:15 am |                |                                                                                                                                                                          |                    |        |           |          |     |        |  |  |
| 7:15 am - 7:30 am |                |                                                                                                                                                                          |                    |        |           |          |     |        |  |  |
|                   |                |                                                                                                                                                                          |                    |        |           |          |     |        |  |  |
| 7:45 pm - 8:00 pm |                |                                                                                                                                                                          |                    |        |           |          |     |        |  |  |
| 8:00 pm - 8:15 pm |                |                                                                                                                                                                          |                    |        |           |          |     |        |  |  |
| 8:15 pm - 8:30 pm |                |                                                                                                                                                                          |                    |        |           |          |     |        |  |  |

## Anexo 2. Aforo Semanal y Grado de Saturación Aguas Arriba según Vehículo Patrón

 $\label{eq:subsegmento:} Usando \ la \ ecuación \ 22 \ se \ puede \ obtener \ X_u \ de \ acuerdo \ con \ la \ capacidad \ de \ cada \\ subsegmento:$ 

$$X_{U,SS1,1} = \frac{168 \text{ veh/h}}{1140.89 \text{ veh/h}} = 0.15$$

Tabla 88. Aforo Vehicular y Grado de Saturación Sábado 25/11/2023 Subsegmento 1

| 01 | <b>T7/1</b> F • )                                                                                                                                                    | <b>V</b> (1h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Xu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S1 | V(15min)                                                                                                                                                             | V (111)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                      | 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 87 | 87                                                                                                                                                                   | 293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 76 | 76                                                                                                                                                                   | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 82 | 82                                                                                                                                                                   | 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 85 | 85                                                                                                                                                                   | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 90 | 90                                                                                                                                                                   | 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 95 | 95                                                                                                                                                                   | 352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 72 | 72                                                                                                                                                                   | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 89 | 89                                                                                                                                                                   | 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 89 | 89                                                                                                                                                                   | 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 67 | 67                                                                                                                                                                   | 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 61 | 61                                                                                                                                                                   | 306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 90 | 90                                                                                                                                                                   | 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 72 | 72                                                                                                                                                                   | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 73 | 73                                                                                                                                                                   | 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 77 | 77                                                                                                                                                                   | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58 | 58                                                                                                                                                                   | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 49 | 49                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 37 |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 21<br>38<br>50<br>59<br>51<br>67<br>65<br>68<br>58<br>65<br>83<br>87<br>76<br>82<br>85<br>90<br>95<br>72<br>89<br>89<br>67<br>61<br>90<br>72<br>73<br>77<br>58<br>49 | 21       21         38       38         50       50         59       59         51       51         67       67         65       65         68       68         58       58         65       65         83       83         87       76         76       76         82       82         85       85         90       90         95       95         72       72         89       89         89       89         89       89         67       67         61       61         90       90         72       72         73       73         77       77         58       58         49       49         37       37         34       34         88       88 | 21       21         38       38         50       50         59       59       168         51       51       198         67       67       227         65       65       242         68       68       251         58       58       258         65       65       256         83       83       274         87       293         76       76       311         82       82       328         85       330         90       90       333         95       95       352         72       72       342         89       89       345         67       67       317         61       61       306         90       90       307         72       72       290         73       73       296         77       77       312         58       58       280         49       49       257         37       37       221         34       34 |

La tabla 88 continua aquí.

| Hora de Control   | S1 | V(15min) | V(1h)       | Xu   |
|-------------------|----|----------|-------------|------|
| 2:30 pm - 2:45 pm | 51 | 51       | 243         | 0.21 |
| 2:45 pm - 3:00 pm | 68 | 68       | 277         | 0.24 |
| 3:00 pm - 3:15 pm | 61 | 61       | 250         | 0.22 |
| 3:15 pm - 3:30 pm | 62 | 62       | 242         | 0.21 |
| 3:30 pm - 3:45 pm | 63 | 63       | 254         | 0.22 |
| 3:45 pm - 4:00 pm | 69 | 69       | 255         | 0.22 |
| 4:00 pm - 4:15 pm | 66 | 66       | 260         | 0.23 |
| 4:15 pm - 4:30 pm | 74 | 74       | 272         | 0.24 |
| 4:30 pm - 4:45 pm | 70 | 70       | 279         | 0.24 |
| 4:45 pm - 5:00 pm | 65 | 65       | 275         | 0.24 |
| 5:00 pm - 5:15 pm | 68 | 68       | 277         | 0.24 |
| 5:15 pm - 5:30 pm | 62 | 62       | 265         | 0.23 |
| 5:30 pm - 5:45 pm | 67 | 67       | 262         | 0.23 |
| 5:45 pm - 6:00 pm | 67 | 67       | 264         | 0.23 |
| 6:00 pm - 6:15 pm | 73 | 73       | 269         | 0.24 |
| 6:15 pm - 6:30 pm | 55 | 55       | 262         | 0.23 |
| 6:30 pm - 6:45 pm | 59 | 59       | 254         | 0.22 |
| 6:45 pm - 7:00 pm | 59 | 59       | 246         | 0.22 |
| 7:00 pm - 7:15 pm | 46 | 46       | 219         | 0.19 |
| 7:15 pm - 7:30 pm | 56 | 56       | 220         | 0.19 |
| 7:30 pm - 7:45 pm | 77 | 77       | 238         | 0.21 |
| 7:45 pm - 8:00 pm | 74 | 74       | 253         | 0.22 |
| 8:00 pm - 8:15 pm | 71 | 71       | 278         | 0.24 |
| 8:15 pm - 8:30 pm | 31 | 31       | 253         | 0.22 |
|                   |    |          | Xu promedio | 0.24 |

Tabla 89. Aforo Vehicular y Grado de Saturación Domingo 26/11/2023 Subsegmento

| Hora de Control    | S1 | V(15min) | V(1h) | Xu   |
|--------------------|----|----------|-------|------|
| 6:30 am - 6:45 am  | 22 | 22       |       |      |
| 6:45 am - 7:00 am  | 43 | 43       |       |      |
| 7:00 am - 7:15 am  | 36 | 36       |       |      |
| 7:15 am - 7:30 am  | 36 | 36       | 137   | 0.12 |
| 7:30 am - 7:45 am  | 40 | 40       | 155   | 0.14 |
| 7:45 am - 8:00 am  | 30 | 30       | 142   | 0.12 |
| 8:00 am - 8:15 am  | 34 | 34       | 140   | 0.12 |
| 8:15 am - 8:30 am  | 30 | 30       | 134   | 0.12 |
| 8:30 am - 8:45 am  | 38 | 38       | 132   | 0.12 |
| 8:45 am - 9:00 am  | 30 | 30       | 132   | 0.12 |
| 9:00 am - 9:15 am  | 32 | 32       | 130   | 0.11 |
| 9:15 am - 9:30 am  | 36 | 36       | 136   | 0.12 |
| 9:30 am - 9:45 am  | 35 | 35       | 133   | 0.12 |
| 9:45 am - 10:00 am | 38 | 38       | 141   | 0.12 |

La tabla 89 continua aquí.

| Hora de Control     | S1 | V(15min) | V(1h)       | Xu   |
|---------------------|----|----------|-------------|------|
| 10:00 am - 10:15 am | 27 | 27       | 136         | 0.12 |
| 10:15 am - 10:30 am | 24 | 24       | 124         | 0.11 |
| 10:30 am - 10:45 am | 31 | 31       | 120         | 0.11 |
| 10:45 am - 11:00 am | 27 | 27       | 109         | 0.10 |
| 11:00 am - 11:15 am | 40 | 40       | 122         | 0.11 |
| 11:15 am - 11:30 am | 56 | 56       | 154         | 0.13 |
| 11:30 am - 11:45 am | 43 | 43       | 166         | 0.15 |
| 11:45 am - 12:00 pm | 54 | 54       | 193         | 0.17 |
| 12:00 pm - 12:15 pm | 38 | 38       | 191         | 0.17 |
| 12:15 pm - 12:30 pm | 43 | 43       | 178         | 0.16 |
| 12:30 pm - 12:45 pm | 39 | 39       | 174         | 0.15 |
| 12:45 pm - 1:00 pm  | 43 | 43       | 163         | 0.14 |
| 1:00 pm - 1:15 pm   | 48 | 48       | 173         | 0.15 |
| 1:15 pm - 1:30 pm   | 33 | 33       | 163         | 0.14 |
| 1:30 pm - 1:45 pm   | 49 | 49       | 173         | 0.15 |
| 1:45 pm - 2:00 pm   | 42 | 42       | 172         | 0.15 |
| 2:00 pm - 2:15 pm   | 50 | 50       | 174         | 0.15 |
| 2:15 pm - 2:30 pm   | 49 | 49       | 190         | 0.17 |
| 2:30 pm - 2:45 pm   | 31 | 31       | 172         | 0.15 |
| 2:45 pm - 3:00 pm   | 38 | 38       | 168         | 0.15 |
| 3:00 pm - 3:15 pm   | 36 | 36       | 154         | 0.13 |
| 3:15 pm - 3:30 pm   | 39 | 39       | 144         | 0.13 |
| 3:30 pm - 3:45 pm   | 44 | 44       | 157         | 0.14 |
| 3:45 pm - 4:00 pm   | 34 | 34       | 153         | 0.13 |
| 4:00 pm - 4:15 pm   | 51 | 51       | 168         | 0.15 |
| 4:15 pm - 4:30 pm   | 64 | 64       | 193         | 0.17 |
| 4:30 pm - 4:45 pm   | 33 | 33       | 182         | 0.16 |
| 4:45 pm - 5:00 pm   | 42 | 42       | 190         | 0.17 |
| 5:00 pm - 5:15 pm   | 40 | 40       | 179         | 0.16 |
| 5:15 pm - 5:30 pm   | 33 | 33       | 148         | 0.13 |
| 5:30 pm - 5:45 pm   | 48 | 48       | 163         | 0.14 |
| 5:45 pm - 6:00 pm   | 36 | 36       | 157         | 0.14 |
| 6:00 pm - 6:15 pm   | 49 | 49       | 166         | 0.15 |
| 6:15 pm - 6:30 pm   | 41 | 41       | 174         | 0.15 |
| 6:30 pm - 6:45 pm   | 46 | 46       | 172         | 0.15 |
| 6:45 pm - 7:00 pm   | 52 | 52       | 188         | 0.16 |
| 7:00 pm - 7:15 pm   | 27 | 27       | 166         | 0.15 |
| 7:15 pm - 7:30 pm   | 32 | 32       | 157         | 0.14 |
| 7:30 pm - 7:45 pm   | 36 | 36       | 147         | 0.13 |
| 7:45 pm - 8:00 pm   | 42 | 42       | 137         | 0.12 |
| 8:00 pm - 8:15 pm   | 34 | 34       | 144         | 0.13 |
| 8:15 pm - 8:30 pm   | 14 | 14       | 126         | 0.11 |
|                     |    |          | Xu promedio | 0.14 |

Tabla 90. Aforo Vehicular y Grado de Saturación Lunes 27/11/2023 Subsegmento 1

| Hora de Control     | S1  | V(15min) | V(1h)      | Xu   |
|---------------------|-----|----------|------------|------|
| 6:30 am - 6:45 am   | 142 | 142      |            |      |
| 6:45 am - 7:00 am   | 181 | 181      |            |      |
| 7:00 am - 7:15 am   | 180 | 180      |            |      |
| 7:15 am - 7:30 am   | 189 | 189      | 692        | 0.61 |
| 7:30 am - 7:45 am   | 127 | 127      | 677        | 0.59 |
| 7:45 am - 8:00 am   | 127 | 127      | 623        | 0.55 |
| 8:00 am - 8:15 am   | 162 | 162      | 605        | 0.53 |
| 8:15 am - 8:30 am   | 135 | 135      | 551        | 0.48 |
| 8:30 am - 8:45 am   | 150 | 150      | 574        | 0.50 |
| 8:45 am - 9:00 am   | 168 | 168      | 615        | 0.54 |
| 9:00 am - 9:15 am   | 95  | 95       | 548        | 0.48 |
| 9:15 am - 9:30 am   | 85  | 85       | 498        | 0.44 |
| 9:30 am - 9:45 am   | 94  | 94       | 442        | 0.39 |
| 9:45 am - 10:00 am  | 67  | 67       | 341        | 0.30 |
| 10:00 am - 10:15 am | 97  | 97       | 343        | 0.30 |
| 10:15 am - 10:30 am | 83  | 83       | 341        | 0.30 |
| 10:30 am - 10:45 am | 77  | 77       | 324        | 0.28 |
| 10:45 am - 11:00 am | 117 | 117      | 374        | 0.33 |
| 11:00 am - 11:15 am | 73  | 73       | 350        | 0.31 |
| 11:15 am - 11:30 am | 93  | 93       | 360        | 0.32 |
| 11:30 am - 11:45 am | 111 | 111      | 394        | 0.35 |
| 11:45 am - 12:00 pm | 95  | 95       | 372        | 0.33 |
| 12:00 pm - 12:15 pm | 139 | 139      | 438        | 0.38 |
| 12:15 pm - 12:30 pm | 155 | 155      | 500        | 0.44 |
| 12:30 pm - 12:45 pm | 162 | 162      | 551        | 0.48 |
| 12:45 pm - 1:00 pm  | 220 | 220      | 676        | 0.59 |
| 1:00 pm - 1:15 pm   | 147 | 147      | 684        | 0.60 |
| 1:15 pm - 1:30 pm   | 164 | 164      | 693        | 0.61 |
| 1:30 pm - 1:45 pm   | 158 | 158      | 689        | 0.60 |
| 1:45 pm - 2:00 pm   | 164 | 164      | 633        | 0.55 |
| 2:00 pm - 2:15 pm   | 86  | 86       | 572        | 0.50 |
| 2:15 pm - 2:30 pm   | 89  | 89       | 497        | 0.44 |
| 2:30 pm - 2:45 pm   | 117 | 117      | 456        | 0.40 |
| 2:45 pm - 3:00 pm   | 118 | 118      | 410        | 0.36 |
| 3:00 pm - 3:15 pm   | 114 | 114      | 438        | 0.38 |
| 3:15 pm - 3:30 pm   | 113 | 113      | 462        | 0.40 |
| 3:30 pm - 3:45 pm   | 111 | 111      | 456        | 0.40 |
| 3:45 pm - 4:00 pm   | 111 | 111      | 449        | 0.39 |
| 4:00 pm - 4:15 pm   | 141 | 141      | 476        | 0.42 |
| 4:15 pm - 4:30 pm   | 107 | 107      | 470        | 0.42 |
| 4:30 pm - 4:45 pm   | 83  | 83       | 442        | 0.41 |
| 4:45 pm - 5:00 pm   | 131 | 131      | 462        | 0.39 |
| 5:00 pm - 5:15 pm   | 131 | 131      | 462<br>459 | 0.40 |

La tabla 90 continua aquí

| Hora de Control   | S1  | V(15min) | V(1h)       | Xu   |
|-------------------|-----|----------|-------------|------|
| 5:15 pm - 5:30 pm | 124 | 124      | 476         | 0.42 |
| 5:30 pm - 5:45 pm | 131 | 131      | 524         | 0.46 |
| 5:45 pm - 6:00 pm | 116 | 116      | 509         | 0.45 |
| 6:00 pm - 6:15 pm | 64  | 64       | 435         | 0.38 |
| 6:15 pm - 6:30 pm | 104 | 104      | 415         | 0.36 |
| 6:30 pm - 6:45 pm | 92  | 92       | 376         | 0.33 |
| 6:45 pm - 7:00 pm | 84  | 84       | 344         | 0.30 |
| 7:00 pm - 7:15 pm | 113 | 113      | 393         | 0.34 |
| 7:15 pm - 7:30 pm | 107 | 107      | 396         | 0.35 |
| 7:30 pm - 7:45 pm | 102 | 102      | 406         | 0.36 |
| 7:45 pm - 8:00 pm | 137 | 137      | 459         | 0.40 |
| 8:00 pm - 8:15 pm | 157 | 157      | 503         | 0.44 |
| 8:15 pm - 8:30 pm | 132 | 132      | 528         | 0.46 |
|                   |     |          | Xu promedio | 0.43 |

Tabla 91. Aforo Vehicular y Grado de Saturación Martes 28/11/2023 Subsegmento 1

| Hora de Control     | <b>S</b> 1 | V(15min) | V(1h) | Xu   |
|---------------------|------------|----------|-------|------|
| 6:30 am - 6:45 am   | 66         | 66       |       |      |
| 6:45 am - 7:00 am   | 98         | 98       |       |      |
| 7:00 am - 7:15 am   | 135        | 135      |       |      |
| 7:15 am - 7:30 am   | 124        | 124      | 423   | 0.37 |
| 7:30 am - 7:45 am   | 92         | 92       | 449   | 0.39 |
| 7:45 am - 8:00 am   | 84         | 84       | 435   | 0.38 |
| 8:00 am - 8:15 am   | 83         | 83       | 383   | 0.34 |
| 8:15 am - 8:30 am   | 89         | 89       | 348   | 0.31 |
| 8:30 am - 8:45 am   | 87         | 87       | 343   | 0.30 |
| 8:45 am - 9:00 am   | 98         | 98       | 357   | 0.31 |
| 9:00 am - 9:15 am   | 71         | 71       | 345   | 0.30 |
| 9:15 am - 9:30 am   | 76         | 76       | 332   | 0.29 |
| 9:30 am - 9:45 am   | 68         | 68       | 313   | 0.27 |
| 9:45 am - 10:00 am  | 84         | 84       | 299   | 0.26 |
| 10:00 am - 10:15 am | 77         | 77       | 305   | 0.27 |
| 10:15 am - 10:30 am | 71         | 71       | 300   | 0.26 |
| 10:30 am - 10:45 am | 79         | 79       | 311   | 0.27 |
| 10:45 am - 11:00 am | 66         | 66       | 293   | 0.26 |
| 11:00 am - 11:15 am | 95         | 95       | 311   | 0.27 |
| 11:15 am - 11:30 am | 125        | 125      | 365   | 0.32 |
| 11:30 am - 11:45 am | 72         | 72       | 358   | 0.31 |
| 11:45 am - 12:00 pm | 78         | 78       | 370   | 0.32 |
| 12:00 pm - 12:15 pm | 89         | 89       | 364   | 0.32 |
| 12:15 pm - 12:30 pm | 100        | 100      | 339   | 0.30 |
| 12:30 pm - 12:45 pm | 128        | 128      | 395   | 0.35 |

La tabla 91 continua aquí

| Hora de Control    | S1  | V(15min) | V(1h)       | Xu   |
|--------------------|-----|----------|-------------|------|
| 12:45 pm - 1:00 pm | 77  | 77       | 394         | 0.35 |
| 1:00 pm - 1:15 pm  | 104 | 104      | 409         | 0.36 |
| 1:15 pm - 1:30 pm  | 79  | 79       | 388         | 0.34 |
| 1:30 pm - 1:45 pm  | 88  | 88       | 348         | 0.31 |
| 1:45 pm - 2:00 pm  | 95  | 95       | 366         | 0.32 |
| 2:00 pm - 2:15 pm  | 68  | 68       | 330         | 0.29 |
| 2:15 pm - 2:30 pm  | 92  | 92       | 343         | 0.30 |
| 2:30 pm - 2:45 pm  | 85  | 85       | 340         | 0.30 |
| 2:45 pm - 3:00 pm  | 97  | 97       | 342         | 0.30 |
| 3:00 pm - 3:15 pm  | 101 | 101      | 375         | 0.33 |
| 3:15 pm - 3:30 pm  | 97  | 97       | 380         | 0.33 |
| 3:30 pm - 3:45 pm  | 99  | 99       | 394         | 0.35 |
| 3:45 pm - 4:00 pm  | 117 | 117      | 414         | 0.36 |
| 4:00 pm - 4:15 pm  | 117 | 117      | 430         | 0.38 |
| 4:15 pm - 4:30 pm  | 78  | 78       | 411         | 0.36 |
| 4:30 pm - 4:45 pm  | 113 | 113      | 425         | 0.37 |
| 4:45 pm - 5:00 pm  | 112 | 112      | 420         | 0.37 |
| 5:00 pm - 5:15 pm  | 98  | 98       | 401         | 0.35 |
| 5:15 pm - 5:30 pm  | 110 | 110      | 433         | 0.38 |
| 5:30 pm - 5:45 pm  | 96  | 96       | 416         | 0.36 |
| 5:45 pm - 6:00 pm  | 114 | 114      | 418         | 0.37 |
| 6:00 pm - 6:15 pm  | 143 | 143      | 463         | 0.41 |
| 6:15 pm - 6:30 pm  | 150 | 150      | 503         | 0.44 |
| 6:30 pm - 6:45 pm  | 100 | 100      | 507         | 0.44 |
| 6:45 pm - 7:00 pm  | 134 | 134      | 527         | 0.46 |
| 7:00 pm - 7:15 pm  | 119 | 119      | 503         | 0.44 |
| 7:15 pm - 7:30 pm  | 102 | 102      | 455         | 0.40 |
| 7:30 pm - 7:45 pm  | 112 | 112      | 467         | 0.41 |
| 7:45 pm - 8:00 pm  | 106 | 106      | 439         | 0.38 |
| 8:00 pm - 8:15 pm  | 79  | 79       | 399         | 0.35 |
| 8:15 pm - 8:30 pm  | 55  | 55       | 352         | 0.31 |
|                    |     |          | Xu promedio | 0.34 |

Tabla 92. Aforo Vehicular y Grado de Saturación Miércoles 29/11/2023 Subsegmento 1

| Hora de Control   | S1  | V(15min) | V(1h) | Xu   |
|-------------------|-----|----------|-------|------|
| 6:30 am - 6:45 am | 67  | 67       |       |      |
| 6:45 am - 7:00 am | 98  | 98       |       |      |
| 7:00 am - 7:15 am | 153 | 153      |       |      |
| 7:15 am - 7:30 am | 101 | 101      | 419   | 0.37 |
| 7:30 am - 7:45 am | 98  | 98       | 450   | 0.39 |
| 7:45 am - 8:00 am | 60  | 60       | 412   | 0.36 |
| 8:00 am - 8:15 am | 77  | 77       | 336   | 0.29 |

La tabla 92 continua aquí

| Hora de Control     | S1  | V(15min) | V(1h) | Xu   |
|---------------------|-----|----------|-------|------|
| 8:30 am - 8:45 am   | 91  | 91       | 345   | 0.30 |
| 8:45 am - 9:00 am   | 80  | 80       | 365   | 0.32 |
| 9:00 am - 9:15 am   | 90  | 90       | 378   | 0.33 |
| 9:15 am - 9:30 am   | 100 | 100      | 361   | 0.32 |
| 9:30 am - 9:45 am   | 92  | 92       | 362   | 0.32 |
| 9:45 am - 10:00 am  | 84  | 84       | 366   | 0.32 |
| 10:00 am - 10:15 am | 82  | 82       | 358   | 0.31 |
| 10:15 am - 10:30 am | 96  | 96       | 354   | 0.31 |
| 10:30 am - 10:45 am | 108 | 108      | 370   | 0.32 |
| 10:45 am - 11:00 am | 111 | 111      | 397   | 0.35 |
| 11:00 am - 11:15 am | 62  | 62       | 377   | 0.33 |
| 11:15 am - 11:30 am | 77  | 77       | 358   | 0.31 |
| 11:30 am - 11:45 am | 77  | 77       | 327   | 0.29 |
| 11:45 am - 12:00 pm | 71  | 71       | 287   | 0.25 |
| 12:00 pm - 12:15 pm | 85  | 85       | 310   | 0.27 |
| 12:15 pm - 12:30 pm | 108 | 108      | 341   | 0.30 |
| 12:30 pm - 12:45 pm | 120 | 120      | 384   | 0.34 |
| 12:45 pm - 1:00 pm  | 122 | 122      | 435   | 0.38 |
| 1:00 pm - 1:15 pm   | 116 | 116      | 466   | 0.41 |
| 1:15 pm - 1:30 pm   | 98  | 98       | 456   | 0.40 |
| 1:30 pm - 1:45 pm   | 91  | 91       | 427   | 0.37 |
| 1:45 pm - 2:00 pm   | 89  | 89       | 394   | 0.35 |
| 2:00 pm - 2:15 pm   | 77  | 77       | 355   | 0.31 |
| 2:15 pm - 2:30 pm   | 95  | 95       | 352   | 0.31 |
| 2:30 pm - 2:45 pm   | 99  | 99       | 360   | 0.32 |
| 2:45 pm - 3:00 pm   | 122 | 122      | 393   | 0.34 |
| 3:00 pm - 3:15 pm   | 116 | 116      | 432   | 0.38 |
| 3:15 pm - 3:30 pm   | 91  | 91       | 428   | 0.38 |
| 3:30 pm - 3:45 pm   | 100 | 100      | 429   | 0.38 |
| 3:45 pm - 4:00 pm   | 116 | 116      | 423   | 0.37 |
| 4:00 pm - 4:15 pm   | 115 | 115      | 422   | 0.37 |
| 4:15 pm - 4:30 pm   | 99  | 99       | 430   | 0.38 |
| 4:30 pm - 4:45 pm   | 113 | 113      | 443   | 0.39 |
| 4:45 pm - 5:00 pm   | 106 | 106      | 433   | 0.38 |
| 5:00 pm - 5:15 pm   | 110 | 110      | 428   | 0.38 |
| 5:15 pm - 5:30 pm   | 124 | 124      | 453   | 0.40 |
| 5:30 pm - 5:45 pm   | 109 | 109      | 449   | 0.39 |
| 5:45 pm - 6:00 pm   | 139 | 139      | 482   | 0.42 |
| 6:00 pm - 6:15 pm   | 145 | 145      | 517   | 0.45 |
| 6:15 pm - 6:30 pm   | 87  | 87       | 480   | 0.42 |
| 6:30 pm - 6:45 pm   | 102 | 102      | 473   | 0.41 |
| 6:45 pm - 7:00 pm   | 97  | 97       | 431   | 0.38 |
| 7:00 pm - 7:15 pm   | 163 | 163      | 449   | 0.39 |

La tabla 92 continua aquí.

| Hora de Control   | <b>S1</b> | V(15min) | V(1h)       | Xu   |
|-------------------|-----------|----------|-------------|------|
| 7:15 pm - 7:30 pm | 103       | 103      | 429         | 0.38 |
| 7:30 pm - 7:45 pm | 124       | 124      | 458         | 0.40 |
| 7:45 pm - 8:00 pm | 96        | 96       | 455         | 0.40 |
| 8:00 pm - 8:15 pm | 66        | 66       | 389         | 0.34 |
| 8:15 pm - 8:30 pm | 48        | 48       | 334         | 0.29 |
|                   |           |          | Xu promedio | 0.35 |

Tabla 93. Aforo Vehicular y Grado de Saturación Jueves 30/11/2023 Subsegmento 1

| Hora de Control     | S1  | V(15min) | V(1h) | Xu   |
|---------------------|-----|----------|-------|------|
| 6:30 am - 6:45 am   | 78  | 78       |       |      |
| 6:45 am - 7:00 am   | 98  | 98       |       |      |
| 7:00 am - 7:15 am   | 144 | 144      |       |      |
| 7:15 am - 7:30 am   | 134 | 134      | 454   | 0.40 |
| 7:30 am - 7:45 am   | 81  | 81       | 457   | 0.40 |
| 7:45 am - 8:00 am   | 91  | 91       | 450   | 0.39 |
| 8:00 am - 8:15 am   | 57  | 57       | 363   | 0.32 |
| 8:15 am - 8:30 am   | 68  | 68       | 297   | 0.26 |
| 8:30 am - 8:45 am   | 63  | 63       | 279   | 0.24 |
| 8:45 am - 9:00 am   | 68  | 68       | 256   | 0.22 |
| 9:00 am - 9:15 am   | 87  | 87       | 286   | 0.25 |
| 9:15 am - 9:30 am   | 90  | 90       | 308   | 0.27 |
| 9:30 am - 9:45 am   | 98  | 98       | 343   | 0.30 |
| 9:45 am - 10:00 am  | 91  | 91       | 366   | 0.32 |
| 10:00 am - 10:15 am | 89  | 89       | 368   | 0.32 |
| 10:15 am - 10:30 am | 90  | 90       | 368   | 0.32 |
| 10:30 am - 10:45 am | 80  | 80       | 350   | 0.31 |
| 10:45 am - 11:00 am | 121 | 121      | 380   | 0.33 |
| 11:00 am - 11:15 am | 102 | 102      | 393   | 0.34 |
| 11:15 am - 11:30 am | 76  | 76       | 379   | 0.33 |
| 11:30 am - 11:45 am | 110 | 110      | 409   | 0.36 |
| 11:45 am - 12:00 pm | 96  | 96       | 384   | 0.34 |
| 12:00 pm - 12:15 pm | 105 | 105      | 387   | 0.34 |
| 12:15 pm - 12:30 pm | 111 | 111      | 422   | 0.37 |
| 12:30 pm - 12:45 pm | 115 | 115      | 427   | 0.37 |
| 12:45 pm - 1:00 pm  | 143 | 143      | 474   | 0.42 |
| 1:00 pm - 1:15 pm   | 126 | 126      | 495   | 0.43 |
| 1:15 pm - 1:30 pm   | 90  | 90       | 474   | 0.42 |
| 1:30 pm - 1:45 pm   | 93  | 93       | 452   | 0.40 |
| 1:45 pm - 2:00 pm   | 85  | 85       | 394   | 0.35 |
| 2:00 pm - 2:15 pm   | 72  | 72       | 340   | 0.30 |
| 2:15 pm - 2:30 pm   | 61  | 61       | 311   | 0.27 |

La tabla 93 continua aquí.

| Hora de Control   | S1  | V(15min) | V(1h)       | Xu   |
|-------------------|-----|----------|-------------|------|
| 2:30 pm - 2:45 pm | 78  | 78       | 296         | 0.26 |
| 2:45 pm - 3:00 pm | 95  | 95       | 306         | 0.27 |
| 3:00 pm - 3:15 pm | 141 | 141      | 375         | 0.33 |
| 3:15 pm - 3:30 pm | 114 | 114      | 428         | 0.38 |
| 3:30 pm - 3:45 pm | 123 | 123      | 473         | 0.41 |
| 3:45 pm - 4:00 pm | 121 | 121      | 499         | 0.44 |
| 4:00 pm - 4:15 pm | 111 | 111      | 469         | 0.41 |
| 4:15 pm - 4:30 pm | 102 | 102      | 457         | 0.40 |
| 4:30 pm - 4:45 pm | 102 | 102      | 436         | 0.38 |
| 4:45 pm - 5:00 pm | 124 | 124      | 439         | 0.38 |
| 5:00 pm - 5:15 pm | 101 | 101      | 429         | 0.38 |
| 5:15 pm - 5:30 pm | 97  | 97       | 424         | 0.37 |
| 5:30 pm - 5:45 pm | 101 | 101      | 423         | 0.37 |
| 5:45 pm - 6:00 pm | 122 | 122      | 421         | 0.37 |
| 6:00 pm - 6:15 pm | 142 | 142      | 462         | 0.40 |
| 6:15 pm - 6:30 pm | 112 | 112      | 477         | 0.42 |
| 6:30 pm - 6:45 pm | 95  | 95       | 471         | 0.41 |
| 6:45 pm - 7:00 pm | 99  | 99       | 448         | 0.39 |
| 7:00 pm - 7:15 pm | 132 | 132      | 438         | 0.38 |
| 7:15 pm - 7:30 pm | 103 | 103      | 429         | 0.38 |
| 7:30 pm - 7:45 pm | 124 | 124      | 458         | 0.40 |
| 7:45 pm - 8:00 pm | 96  | 96       | 455         | 0.40 |
| 8:00 pm - 8:15 pm | 66  | 66       | 389         | 0.34 |
| 8:15 pm - 8:30 pm | 48  | 48       | 334         | 0.29 |
|                   |     |          | Xu promedio | 0.35 |

Tabla **94**. Aforo Vehicular y Grado de Saturación Viernes 01/12/2023 Subsegmento 1

| Hora de Control    | S1  | V(15min) | V(1h) | Xu   |
|--------------------|-----|----------|-------|------|
| 6:30 am - 6:45 am  | 92  | 92       |       |      |
| 6:45 am - 7:00 am  | 156 | 156      |       |      |
| 7:00 am - 7:15 am  | 232 | 232      |       |      |
| 7:15 am - 7:30 am  | 162 | 162      | 642   | 0.56 |
| 7:30 am - 7:45 am  | 109 | 109      | 659   | 0.58 |
| 7:45 am - 8:00 am  | 111 | 111      | 614   | 0.54 |
| 8:00 am - 8:15 am  | 120 | 120      | 502   | 0.44 |
| 8:15 am - 8:30 am  | 118 | 118      | 458   | 0.40 |
| 8:30 am - 8:45 am  | 101 | 101      | 450   | 0.39 |
| 8:45 am - 9:00 am  | 102 | 102      | 441   | 0.39 |
| 9:00 am - 9:15 am  | 102 | 102      | 423   | 0.37 |
| 9:15 am - 9:30 am  | 89  | 89       | 394   | 0.35 |
| 9:30 am - 9:45 am  | 93  | 93       | 386   | 0.34 |
| 9:45 am - 10:00 am | 122 | 122      | 406   | 0.36 |

La tabla 94 continua aquí.

| Hora de Control     | S1  | V(15min) | V(1h)       | Xu   |
|---------------------|-----|----------|-------------|------|
| 10:00 am - 10:15 am | 105 | 105      | 409         | 0.36 |
| 10:15 am - 10:30 am | 117 | 117      | 437         | 0.38 |
| 10:30 am - 10:45 am | 80  | 80       | 424         | 0.37 |
| 10:45 am - 11:00 am | 96  | 96       | 398         | 0.35 |
| 11:00 am - 11:15 am | 69  | 69       | 362         | 0.32 |
| 11:15 am - 11:30 am | 89  | 89       | 334         | 0.29 |
| 11:30 am - 11:45 am | 81  | 81       | 335         | 0.29 |
| 11:45 am - 12:00 pm | 104 | 104      | 343         | 0.30 |
| 12:00 pm - 12:15 pm | 93  | 93       | 367         | 0.32 |
| 12:15 pm - 12:30 pm | 132 | 132      | 410         | 0.36 |
| 12:30 pm - 12:45 pm | 140 | 140      | 469         | 0.41 |
| 12:45 pm - 1:00 pm  | 115 | 115      | 480         | 0.42 |
| 1:00 pm - 1:15 pm   | 121 | 121      | 508         | 0.45 |
| 1:15 pm - 1:30 pm   | 100 | 100      | 476         | 0.42 |
| 1:30 pm - 1:45 pm   | 81  | 81       | 417         | 0.37 |
| 1:45 pm - 2:00 pm   | 75  | 75       | 377         | 0.33 |
| 2:00 pm - 2:15 pm   | 71  | 71       | 327         | 0.29 |
| 2:15 pm - 2:30 pm   | 84  | 84       | 311         | 0.27 |
| 2:30 pm - 2:45 pm   | 93  | 93       | 323         | 0.28 |
| 2:45 pm - 3:00 pm   | 93  | 93       | 341         | 0.30 |
| 3:00 pm - 3:15 pm   | 91  | 91       | 361         | 0.32 |
| 3:15 pm - 3:30 pm   | 104 | 104      | 381         | 0.33 |
| 3:30 pm - 3:45 pm   | 85  | 85       | 373         | 0.33 |
| 3:45 pm - 4:00 pm   | 95  | 95       | 375         | 0.33 |
| 4:00 pm - 4:15 pm   | 98  | 98       | 382         | 0.33 |
| 4:15 pm - 4:30 pm   | 100 | 100      | 378         | 0.33 |
| 4:30 pm - 4:45 pm   | 77  | 77       | 370         | 0.32 |
| 4:45 pm - 5:00 pm   | 88  | 88       | 363         | 0.32 |
| 5:00 pm - 5:15 pm   | 112 | 112      | 377         | 0.33 |
| 5:15 pm - 5:30 pm   | 69  | 69       | 346         | 0.30 |
| 5:30 pm - 5:45 pm   | 96  | 96       | 365         | 0.32 |
| 5:45 pm - 6:00 pm   | 89  | 89       | 366         | 0.32 |
| 6:00 pm - 6:15 pm   | 152 | 152      | 406         | 0.36 |
| 6:15 pm - 6:30 pm   | 154 | 154      | 491         | 0.43 |
| 6:30 pm - 6:45 pm   | 138 | 138      | 533         | 0.47 |
| 6:45 pm - 7:00 pm   | 139 | 139      | 583         | 0.51 |
| 7:00 pm - 7:15 pm   | 126 | 126      | 557         | 0.49 |
| 7:15 pm - 7:30 pm   | 85  | 85       | 488         | 0.43 |
| 7:30 pm - 7:45 pm   | 166 | 166      | 516         | 0.45 |
| 7:45 pm - 8:00 pm   | 132 | 132      | 509         | 0.45 |
| 8:00 pm - 8:15 pm   | 107 | 107      | 490         | 0.43 |
| 8:15 pm - 8:30 pm   | 72  | 72       | 477         | 0.42 |
|                     |     |          | Xu promedio | 0.38 |

Tabla 95. Grado de Saturación Ponderado Aguas Arriba Subsegmento 1

| Día                         | X <sub>u</sub> |
|-----------------------------|----------------|
| Sábado                      | 0.24           |
| Domingo                     | 0.14           |
| Lunes                       | 0.43           |
| Martes                      | 0.34           |
| Miércoles                   | 0.35           |
| Jueves                      | 0.35           |
| Viernes                     | 0.38           |
| Promedio X <sub>u,SS1</sub> | 0.32           |

 $\label{eq:Usando} Usando \ la \ ecuación \ 22 \ se \ puede \ obtener \ X_u \ de \ acuerdo \ con \ la \ capacidad \ de \ cada \\ subsegmento:$ 

$$X_{U,1,SS2} = \frac{499 \text{ veh/h}}{869.08 \text{ veh/h}} = 0.57$$

Tabla 96. Aforo Vehicular y Grado de Saturación Sábado 25/11/2023 Subsegmento 2

| Hora de Control     | S4 | S5  | V(15min) | V(1h) | Xu   |
|---------------------|----|-----|----------|-------|------|
| 6:30 am - 6:45 am   | 3  | 105 | 108      |       |      |
| 6:45 am - 7:00 am   | 6  | 116 | 122      |       |      |
| 7:00 am - 7:15 am   | 6  | 122 | 128      |       |      |
| 7:15 am - 7:30 am   | 7  | 134 | 141      | 499   | 0.57 |
| 7:30 am - 7:45 am   | 4  | 135 | 139      | 530   | 0.61 |
| 7:45 am - 8:00 am   | 4  | 119 | 123      | 531   | 0.61 |
| 8:00 am - 8:15 am   | 8  | 145 | 153      | 556   | 0.64 |
| 8:15 am - 8:30 am   | 7  | 141 | 148      | 563   | 0.65 |
| 8:30 am - 8:45 am   | 5  | 174 | 179      | 603   | 0.69 |
| 8:45 am - 9:00 am   | 5  | 139 | 144      | 624   | 0.72 |
| 9:00 am - 9:15 am   | 4  | 121 | 125      | 596   | 0.69 |
| 9:15 am - 9:30 am   | 5  | 148 | 153      | 601   | 0.69 |
| 9:30 am - 9:45 am   | 6  | 137 | 143      | 565   | 0.65 |
| 9:45 am - 10:00 am  | 5  | 149 | 154      | 575   | 0.66 |
| 10:00 am - 10:15 am | 9  | 145 | 154      | 604   | 0.69 |
| 10:15 am - 10:30 am | 6  | 131 | 137      | 588   | 0.68 |
| 10:30 am - 10:45 am | 7  | 130 | 137      | 582   | 0.67 |
| 10:45 am - 11:00 am | 6  | 154 | 160      | 588   | 0.68 |
| 11:00 am - 11:15 am | 7  | 122 | 129      | 563   | 0.65 |
| 11:15 am - 11:30 am | 7  | 148 | 155      | 581   | 0.67 |
| 11:30 am - 11:45 am | 3  | 140 | 143      | 587   | 0.68 |
| 11:45 am - 12:00 pm | 2  | 139 | 141      | 568   | 0.65 |
| 12:00 pm - 12:15 pm | 6  | 135 | 141      | 580   | 0.67 |

La tabla 96 continua aquí

| Hora de Control     | <b>S4</b> | <b>S5</b> | V(15min) | V(1h)       | Xu   |
|---------------------|-----------|-----------|----------|-------------|------|
| 12:15 pm - 12:30 pm | 5         | 143       | 148      | 573         | 0.66 |
| 12:30 pm - 12:45 pm | 5         | 153       | 158      | 588         | 0.68 |
| 12:45 pm - 1:00 pm  | 5         | 171       | 176      | 623         | 0.72 |
| 1:00 pm - 1:15 pm   | 4         | 169       | 173      | 655         | 0.75 |
| 1:15 pm - 1:30 pm   | 3         | 133       | 136      | 643         | 0.74 |
| 1:30 pm - 1:45 pm   | 2         | 143       | 145      | 630         | 0.72 |
| 1:45 pm - 2:00 pm   | 2         | 117       | 119      | 573         | 0.66 |
| 2:00 pm - 2:15 pm   | 5         | 106       | 111      | 511         | 0.59 |
| 2:15 pm - 2:30 pm   | 3         | 108       | 111      | 486         | 0.56 |
| 2:30 pm - 2:45 pm   | 4         | 97        | 101      | 442         | 0.51 |
| 2:45 pm - 3:00 pm   | 4         | 121       | 125      | 448         | 0.52 |
| 3:00 pm - 3:15 pm   | 3         | 139       | 142      | 479         | 0.55 |
| 3:15 pm - 3:30 pm   | 5         | 141       | 146      | 514         | 0.59 |
| 3:30 pm - 3:45 pm   | 3         | 125       | 128      | 541         | 0.62 |
| 3:45 pm - 4:00 pm   | 4         | 132       | 136      | 552         | 0.64 |
| 4:00 pm - 4:15 pm   | 5         | 137       | 142      | 552         | 0.64 |
| 4:15 pm - 4:30 pm   | 5         | 144       | 149      | 555         | 0.64 |
| 4:30 pm - 4:45 pm   | 5         | 125       | 130      | 557         | 0.64 |
| 4:45 pm - 5:00 pm   | 5         | 128       | 133      | 554         | 0.64 |
| 5:00 pm - 5:15 pm   | 5         | 136       | 141      | 553         | 0.64 |
| 5:15 pm - 5:30 pm   | 4         | 135       | 139      | 543         | 0.62 |
| 5:30 pm - 5:45 pm   | 5         | 144       | 149      | 562         | 0.65 |
| 5:45 pm - 6:00 pm   | 4         | 163       | 167      | 596         | 0.69 |
| 6:00 pm - 6:15 pm   | 8         | 172       | 180      | 635         | 0.73 |
| 6:15 pm - 6:30 pm   | 6         | 165       | 171      | 667         | 0.77 |
| 6:30 pm - 6:45 pm   | 4         | 173       | 177      | 695         | 0.80 |
| 6:45 pm - 7:00 pm   | 5         | 156       | 161      | 689         | 0.79 |
| 7:00 pm - 7:15 pm   | 4         | 153       | 157      | 666         | 0.77 |
| 7:15 pm - 7:30 pm   | 2         | 145       | 147      | 642         | 0.74 |
| 7:30 pm - 7:45 pm   | 6         | 123       | 129      | 594         | 0.68 |
| 7:45 pm - 8:00 pm   | 5         | 125       | 130      | 563         | 0.65 |
| 8:00 am - 8:15 am   | 9         | 122       | 131      | 537         | 0.62 |
| 8:15 am - 8:30 am   | 4         | 92        | 96       | 486         | 0.56 |
|                     |           |           |          | Xu promedio | 0.66 |

Tabla 97. Aforo Vehicular y Grado de Saturación Domingo 26/11/2023 Subsegmento 2

| Hora de Control   | S4 | S5  | V(15min) | V(1h) | Xu   |
|-------------------|----|-----|----------|-------|------|
| 6:30 am - 6:45 am | 3  | 113 | 116      |       |      |
| 6:45 am - 7:00 am | 4  | 154 | 158      |       |      |
| 7:00 am - 7:15 am | 3  | 93  | 96       |       |      |
| 7:15 am - 7:30 am | 4  | 88  | 92       | 462   | 0.53 |
| 7:30 am - 7:45 am | 3  | 98  | 101      | 447   | 0.51 |

La tabla 97 continúa aquí.

| Hora de Control     | S4 | <b>S5</b> | V(15min) | V(1h) | Xu   |
|---------------------|----|-----------|----------|-------|------|
| 7:45 am - 8:00 am   | 4  | 71        | 75       | 364   | 0.42 |
| 8:00 am - 8:15 am   | 3  | 79        | 82       | 350   | 0.40 |
| 8:15 am - 8:30 am   | 3  | 108       | 111      | 369   | 0.42 |
| 8:30 am - 8:45 am   | 4  | 114       | 118      | 386   | 0.44 |
| 8:45 am - 9:00 am   | 3  | 116       | 119      | 430   | 0.49 |
| 9:00 am - 9:15 am   | 3  | 103       | 106      | 454   | 0.52 |
| 9:15 am - 9:30 am   | 4  | 100       | 104      | 447   | 0.51 |
| 9:30 am - 9:45 am   | 2  | 98        | 100      | 429   | 0.49 |
| 9:45 am - 10:00 am  | 4  | 98        | 102      | 412   | 0.47 |
| 10:00 am - 10:15 am | 3  | 66        | 69       | 375   | 0.43 |
| 10:15 am - 10:30 am | 3  | 69        | 72       | 343   | 0.39 |
| 10:30 am - 10:45 am | 3  | 92        | 95       | 338   | 0.39 |
| 10:45 am - 11:00 am | 1  | 84        | 85       | 321   | 0.37 |
| 11:00 am - 11:15 am | 2  | 81        | 83       | 335   | 0.39 |
| 11:15 am - 11:30 am | 4  | 85        | 89       | 352   | 0.41 |
| 11:30 am - 11:45 am | 3  | 83        | 86       | 343   | 0.39 |
| 11:45 am - 12:00 pm | 4  | 76        | 80       | 338   | 0.39 |
| 12:00 pm - 12:15 pm | 3  | 64        | 67       | 322   | 0.37 |
| 12:15 pm - 12:30 pm | 4  | 65        | 69       | 302   | 0.35 |
| 12:30 pm - 12:45 pm | 3  | 93        | 96       | 312   | 0.36 |
| 12:45 pm - 1:00 pm  | 4  | 101       | 105      | 337   | 0.39 |
| 1:00 pm - 1:15 pm   | 3  | 94        | 97       | 367   | 0.42 |
| 1:15 pm - 1:30 pm   | 2  | 87        | 89       | 387   | 0.45 |
| 1:30 pm - 1:45 pm   | 3  | 76        | 79       | 370   | 0.43 |
| 1:45 pm - 2:00 pm   | 4  | 82        | 86       | 351   | 0.40 |
| 2:00 pm - 2:15 pm   | 4  | 99        | 103      | 357   | 0.41 |
| 2:15 pm - 2:30 pm   | 4  | 112       | 116      | 384   | 0.44 |
| 2:30 pm - 2:45 pm   | 3  | 98        | 101      | 406   | 0.47 |
| 2:45 pm - 3:00 pm   | 2  | 95        | 97       | 417   | 0.48 |
| 3:00 pm - 3:15 pm   | 4  | 85        | 89       | 403   | 0.46 |
| 3:15 pm - 3:30 pm   | 4  | 73        | 77       | 364   | 0.42 |
| 3:30 pm - 3:45 pm   | 4  | 86        | 90       | 353   | 0.41 |
| 3:45 pm - 4:00 pm   | 4  | 98        | 102      | 358   | 0.41 |
| 4:00 pm - 4:15 pm   | 4  | 94        | 98       | 367   | 0.42 |
| 4:15 pm - 4:30 pm   | 4  | 102       | 106      | 396   | 0.46 |
| 4:30 pm - 4:45 pm   | 2  | 89        | 91       | 397   | 0.46 |
| 4:45 pm - 5:00 pm   | 3  | 76        | 79       | 374   | 0.43 |
| 5:00 pm - 5:15 pm   | 4  | 69        | 73       | 349   | 0.40 |
| 5:15 pm - 5:30 pm   | 2  | 81        | 83       | 326   | 0.38 |
| 5:30 pm - 5:45 pm   | 4  | 85        | 89       | 324   | 0.37 |
| 5:45 pm - 6:00 pm   | 3  | 84        | 87       | 332   | 0.38 |
| 6:00 pm - 6:15 pm   | 5  | 78        | 83       | 342   | 0.39 |
| 6:15 pm - 6:30 pm   | 4  | 77        | 81       | 340   | 0.39 |

La tabla 97 continúa aquí.

| Hora de Control   | <b>S4</b> | <b>S5</b> | V(15min) | V(1h)       | Xu   |
|-------------------|-----------|-----------|----------|-------------|------|
| 6:30 pm - 6:45 pm | 5         | 88        | 93       | 344         | 0.40 |
| 6:45 pm - 7:00 pm | 4         | 79        | 83       | 340         | 0.39 |
| 7:00 pm - 7:15 pm | 2         | 82        | 84       | 341         | 0.39 |
| 7:15 pm - 7:30 pm | 3         | 71        | 74       | 334         | 0.38 |
| 7:30 pm - 7:45 pm | 2         | 67        | 69       | 310         | 0.36 |
| 7:45 pm - 8:00 pm | 4         | 58        | 62       | 289         | 0.33 |
| 8:00 am - 8:15 am | 3         | 96        | 99       | 304         | 0.35 |
| 8:15 am - 8:30 am | 2         | 69        | 71       | 301         | 0.35 |
|                   |           |           |          | Xu promedio | 0.42 |

Tabla 98. Aforo Vehicular y Grado de Saturación Lunes 27/11/2023 Subsegmento 2

| Hora de Control     | <b>S4</b> | <b>S5</b> | V(15min) | V(1h) | Xu   |
|---------------------|-----------|-----------|----------|-------|------|
| 6:30 am - 6:45 am   | 4         | 141       | 145      |       |      |
| 6:45 am - 7:00 am   | 6         | 186       | 192      |       |      |
| 7:00 am - 7:15 am   | 6         | 214       | 220      |       |      |
| 7:15 am - 7:30 am   | 6         | 212       | 218      | 775   | 0.89 |
| 7:30 am - 7:45 am   | 2         | 229       | 231      | 861   | 0.99 |
| 7:45 am - 8:00 am   | 4         | 166       | 170      | 839   | 0.97 |
| 8:00 am - 8:15 am   | 3         | 193       | 196      | 815   | 0.94 |
| 8:15 am - 8:30 am   | 2         | 219       | 221      | 818   | 0.94 |
| 8:30 am - 8:45 am   | 1         | 225       | 226      | 813   | 0.94 |
| 8:45 am - 9:00 am   | 2         | 211       | 213      | 856   | 0.98 |
| 9:00 am - 9:15 am   | 1         | 187       | 188      | 848   | 0.98 |
| 9:15 am - 9:30 am   | 2         | 195       | 197      | 824   | 0.95 |
| 9:30 am - 9:45 am   | 1         | 166       | 167      | 765   | 0.88 |
| 9:45 am - 10:00 am  | 2         | 223       | 225      | 777   | 0.89 |
| 10:00 am - 10:15 am | 3         | 216       | 219      | 808   | 0.93 |
| 10:15 am - 10:30 am | 4         | 197       | 201      | 812   | 0.93 |
| 10:30 am - 10:45 am | 2         | 206       | 208      | 853   | 0.98 |
| 10:45 am - 11:00 am | 3         | 220       | 223      | 851   | 0.98 |
| 11:00 am - 11:15 am | 3         | 193       | 196      | 828   | 0.95 |
| 11:15 am - 11:30 am | 2         | 175       | 177      | 804   | 0.93 |
| 11:30 am - 11:45 am | 2         | 163       | 165      | 761   | 0.88 |
| 11:45 am - 12:00 pm | 3         | 162       | 165      | 703   | 0.81 |
| 12:00 pm - 12:15 pm | 4         | 184       | 188      | 695   | 0.80 |
| 12:15 pm - 12:30 pm | 6         | 170       | 176      | 694   | 0.80 |
| 12:30 pm - 12:45 pm | 5         | 177       | 182      | 711   | 0.82 |
| 12:45 pm - 1:00 pm  | 6         | 191       | 197      | 743   | 0.85 |
| 1:00 pm - 1:15 pm   | 4         | 190       | 194      | 749   | 0.86 |
| 1:15 pm - 1:30 pm   | 5         | 193       | 198      | 771   | 0.89 |
| 1:30 pm - 1:45 pm   | 4         | 171       | 175      | 764   | 0.88 |
| 1:45 pm - 2:00 pm   | 4         | 181       | 185      | 752   | 0.87 |

La tabla 98 continua aquí

| Hora de Control   | S4 | <b>S5</b> | V(15min) | V(1h)       | Xu   |
|-------------------|----|-----------|----------|-------------|------|
| 2:00 pm - 2:15 pm | 2  | 119       | 121      | 679         | 0.78 |
| 2:15 pm - 2:30 pm | 2  | 156       | 158      | 639         | 0.74 |
| 2:30 pm - 2:45 pm | 3  | 141       | 144      | 608         | 0.70 |
| 2:45 pm - 3:00 pm | 3  | 148       | 151      | 574         | 0.66 |
| 3:00 pm - 3:15 pm | 3  | 203       | 206      | 659         | 0.76 |
| 3:15 pm - 3:30 pm | 3  | 178       | 181      | 682         | 0.78 |
| 3:30 pm - 3:45 pm | 3  | 175       | 178      | 716         | 0.82 |
| 3:45 pm - 4:00 pm | 4  | 202       | 206      | 771         | 0.89 |
| 4:00 pm - 4:15 pm | 4  | 187       | 191      | 756         | 0.87 |
| 4:15 pm - 4:30 pm | 2  | 166       | 168      | 743         | 0.85 |
| 4:30 pm - 4:45 pm | 2  | 169       | 171      | 736         | 0.85 |
| 4:45 pm - 5:00 pm | 4  | 175       | 179      | 709         | 0.82 |
| 5:00 pm - 5:15 pm | 4  | 190       | 194      | 712         | 0.82 |
| 5:15 pm - 5:30 pm | 5  | 182       | 187      | 731         | 0.84 |
| 5:30 pm - 5:45 pm | 4  | 178       | 182      | 742         | 0.85 |
| 5:45 pm - 6:00 pm | 4  | 185       | 189      | 752         | 0.87 |
| 6:00 pm - 6:15 pm | 1  | 221       | 222      | 780         | 0.90 |
| 6:15 pm - 6:30 pm | 3  | 210       | 213      | 806         | 0.93 |
| 6:30 pm - 6:45 pm | 3  | 225       | 228      | 852         | 0.98 |
| 6:45 pm - 7:00 pm | 3  | 209       | 212      | 875         | 1.01 |
| 7:00 pm - 7:15 pm | 4  | 205       | 209      | 862         | 0.99 |
| 7:15 pm - 7:30 pm | 3  | 164       | 167      | 816         | 0.94 |
| 7:30 pm - 7:45 pm | 2  | 163       | 165      | 753         | 0.87 |
| 7:45 pm - 8:00 pm | 4  | 156       | 160      | 701         | 0.81 |
| 8:00 am - 8:15 am | 6  | 146       | 152      | 644         | 0.74 |
| 8:15 am - 8:30 am | 4  | 109       | 113      | 590         | 0.68 |
|                   |    |           |          | Xu promedio | 0.87 |

Tabla 99. Aforo Vehicular y Grado de Saturación Martes 28/11/2023 Subsegmento 2

| Hora de Control   | <b>S4</b> | S5  | V(15min) | V(1h) | Xu   |
|-------------------|-----------|-----|----------|-------|------|
| 6:30 am - 6:45 am | 4         | 172 | 176      |       |      |
| 6:45 am - 7:00 am | 4         | 222 | 226      |       |      |
| 7:00 am - 7:15 am | 7         | 189 | 196      |       |      |
| 7:15 am - 7:30 am | 5         | 207 | 212      | 810   | 0.93 |
| 7:30 am - 7:45 am | 4         | 190 | 194      | 828   | 0.95 |
| 7:45 am - 8:00 am | 4         | 187 | 191      | 793   | 0.91 |
| 8:00 am - 8:15 am | 4         | 203 | 207      | 804   | 0.93 |
| 8:15 am - 8:30 am | 5         | 203 | 208      | 800   | 0.92 |
| 8:30 am - 8:45 am | 4         | 188 | 192      | 798   | 0.92 |
| 8:45 am - 9:00 am | 5         | 207 | 212      | 819   | 0.94 |
| 9:00 am - 9:15 am | 3         | 206 | 209      | 821   | 0.94 |
| 9:15 am - 9:30 am | 3         | 192 | 195      | 808   | 0.93 |

La tabla 99 continua aquí.

| Hora de Control     | S4 | <b>S5</b> | V(15min) | V(1h) | Xu   |
|---------------------|----|-----------|----------|-------|------|
| 9:30 am - 9:45 am   | 3  | 187       | 190      | 806   | 0.93 |
| 9:45 am - 10:00 am  | 4  | 202       | 206      | 800   | 0.92 |
| 10:00 am - 10:15 am | 3  | 229       | 232      | 823   | 0.95 |
| 10:15 am - 10:30 am | 3  | 217       | 220      | 848   | 0.98 |
| 10:30 am - 10:45 am | 3  | 208       | 211      | 869   | 1.00 |
| 10:45 am - 11:00 am | 3  | 207       | 210      | 873   | 1.00 |
| 11:00 am - 11:15 am | 5  | 204       | 209      | 850   | 0.98 |
| 11:15 am - 11:30 am | 6  | 170       | 176      | 806   | 0.93 |
| 11:30 am - 11:45 am | 3  | 165       | 168      | 763   | 0.88 |
| 11:45 am - 12:00 pm | 3  | 191       | 194      | 747   | 0.86 |
| 12:00 pm - 12:15 pm | 4  | 172       | 176      | 714   | 0.82 |
| 12:15 pm - 12:30 pm | 5  | 183       | 188      | 726   | 0.84 |
| 12:30 pm - 12:45 pm | 5  | 220       | 225      | 783   | 0.90 |
| 12:45 pm - 1:00 pm  | 3  | 229       | 232      | 821   | 0.94 |
| 1:00 pm - 1:15 pm   | 5  | 236       | 241      | 886   | 1.02 |
| 1:15 pm - 1:30 pm   | 4  | 236       | 240      | 938   | 1.08 |
| 1:30 pm - 1:45 pm   | 5  | 229       | 234      | 947   | 1.09 |
| 1:45 pm - 2:00 pm   | 5  | 180       | 185      | 900   | 1.04 |
| 2:00 pm - 2:15 pm   | 3  | 168       | 171      | 830   | 0.96 |
| 2:15 pm - 2:30 pm   | 5  | 169       | 174      | 764   | 0.88 |
| 2:30 pm - 2:45 pm   | 4  | 155       | 159      | 689   | 0.79 |
| 2:45 pm - 3:00 pm   | 4  | 175       | 179      | 683   | 0.79 |
| 3:00 pm - 3:15 pm   | 4  | 200       | 204      | 716   | 0.82 |
| 3:15 pm - 3:30 pm   | 4  | 184       | 188      | 730   | 0.84 |
| 3:30 pm - 3:45 pm   | 4  | 194       | 198      | 769   | 0.88 |
| 3:45 pm - 4:00 pm   | 6  | 207       | 213      | 803   | 0.92 |
| 4:00 pm - 4:15 pm   | 6  | 191       | 197      | 796   | 0.92 |
| 4:15 pm - 4:30 pm   | 3  | 182       | 185      | 793   | 0.91 |
| 4:30 pm - 4:45 pm   | 5  | 194       | 199      | 794   | 0.91 |
| 4:45 pm - 5:00 pm   | 5  | 207       | 212      | 793   | 0.91 |
| 5:00 pm - 5:15 pm   | 5  | 210       | 215      | 811   | 0.93 |
| 5:15 pm - 5:30 pm   | 6  | 192       | 198      | 824   | 0.95 |
| 5:30 pm - 5:45 pm   | 5  | 200       | 205      | 830   | 0.96 |
| 5:45 pm - 6:00 pm   | 5  | 198       | 203      | 821   | 0.94 |
| 6:00 pm - 6:15 pm   | 7  | 192       | 199      | 805   | 0.93 |
| 6:15 pm - 6:30 pm   | 8  | 181       | 189      | 796   | 0.92 |
| 6:30 pm - 6:45 pm   | 6  | 172       | 178      | 769   | 0.88 |
| 6:45 pm - 7:00 pm   | 7  | 192       | 199      | 765   | 0.88 |
| 7:00 pm - 7:15 pm   | 6  | 177       | 183      | 749   | 0.86 |
| 7:15 pm - 7:30 pm   | 4  | 181       | 185      | 745   | 0.86 |
| 7:30 pm - 7:45 pm   | 5  | 187       | 192      | 759   | 0.87 |
| 7:45 pm - 8:00 pm   | 5  | 171       | 176      | 736   | 0.85 |

La tabla 99 continua aquí.

| Hora de Control   | <b>S4</b> | <b>S5</b> | V(15min) | V(1h)       | Xu   |
|-------------------|-----------|-----------|----------|-------------|------|
| 8:00 am - 8:15 am | 4         | 169       | 173      | 726         | 0.84 |
| 8:15 am - 8:30 am | 2         | 120       | 122      | 663         | 0.76 |
|                   |           |           |          | Xu promedio | 0.91 |

Tabla 100. Aforo Vehicular y Grado de Saturación Miércoles 29/11/2023 Subsegmento 2

| Hora de Control     | S4 | S5  | V(15min) | V(1h) | Xu   |
|---------------------|----|-----|----------|-------|------|
| 6:30 am - 6:45 am   | 2  | 132 | 134      |       |      |
| 6:45 am - 7:00 am   | 5  | 194 | 199      |       |      |
| 7:00 am - 7:15 am   | 7  | 169 | 176      |       |      |
| 7:15 am - 7:30 am   | 5  | 198 | 203      | 712   | 0.82 |
| 7:30 am - 7:45 am   | 3  | 248 | 251      | 829   | 0.95 |
| 7:45 am - 8:00 am   | 3  | 253 | 256      | 886   | 1.02 |
| 8:00 am - 8:15 am   | 4  | 228 | 232      | 942   | 1.08 |
| 8:15 am - 8:30 am   | 4  | 205 | 209      | 948   | 1.09 |
| 8:30 am - 8:45 am   | 4  | 203 | 207      | 904   | 1.04 |
| 8:45 am - 9:00 am   | 3  | 232 | 235      | 883   | 1.02 |
| 9:00 am - 9:15 am   | 3  | 232 | 235      | 886   | 1.02 |
| 9:15 am - 9:30 am   | 4  | 240 | 244      | 921   | 1.06 |
| 9:30 am - 9:45 am   | 4  | 247 | 251      | 965   | 1.11 |
| 9:45 am - 10:00 am  | 4  | 223 | 227      | 957   | 1.10 |
| 10:00 am - 10:15 am | 3  | 206 | 209      | 931   | 1.07 |
| 10:15 am - 10:30 am | 4  | 213 | 217      | 904   | 1.04 |
| 10:30 am - 10:45 am | 5  | 233 | 238      | 891   | 1.03 |
| 10:45 am - 11:00 am | 4  | 212 | 216      | 880   | 1.01 |
| 11:00 am - 11:15 am | 2  | 207 | 209      | 880   | 1.01 |
| 11:15 am - 11:30 am | 3  | 200 | 203      | 866   | 1.00 |
| 11:30 am - 11:45 am | 3  | 215 | 218      | 846   | 0.97 |
| 11:45 am - 12:00 pm | 2  | 204 | 206      | 836   | 0.96 |
| 12:00 pm - 12:15 pm | 5  | 201 | 206      | 833   | 0.96 |
| 12:15 pm - 12:30 pm | 4  | 219 | 223      | 853   | 0.98 |
| 12:30 pm - 12:45 pm | 6  | 221 | 227      | 862   | 0.99 |
| 12:45 pm - 1:00 pm  | 5  | 192 | 197      | 853   | 0.98 |
| 1:00 pm - 1:15 pm   | 5  | 214 | 219      | 866   | 1.00 |
| 1:15 pm - 1:30 pm   | 6  | 225 | 231      | 874   | 1.01 |
| 1:30 pm - 1:45 pm   | 4  | 212 | 216      | 863   | 0.99 |
| 1:45 pm - 2:00 pm   | 4  | 199 | 203      | 869   | 1.00 |
| 2:00 pm - 2:15 pm   | 3  | 173 | 176      | 826   | 0.95 |
| 2:15 pm - 2:30 pm   | 4  | 182 | 186      | 781   | 0.90 |
| 2:30 pm - 2:45 pm   | 4  | 210 | 214      | 779   | 0.90 |
| 2:45 pm - 3:00 pm   | 5  | 235 | 240      | 816   | 0.94 |
| 3:00 pm - 3:15 pm   | 6  | 220 | 226      | 866   | 1.00 |
| 3:15 pm - 3:30 pm   | 4  | 212 | 216      | 896   | 1.03 |

La tabla 100 continua aquí

| Hora de Control   | <b>S4</b> | <b>S5</b> | V(15min) | V(1h)       | Xu   |
|-------------------|-----------|-----------|----------|-------------|------|
| 3:30 pm - 3:45 pm | 5         | 206       | 211      | 893         | 1.03 |
| 3:45 pm - 4:00 pm | 6         | 223       | 229      | 882         | 1.01 |
| 4:00 pm - 4:15 pm | 6         | 241       | 247      | 903         | 1.04 |
| 4:15 pm - 4:30 pm | 5         | 241       | 246      | 933         | 1.07 |
| 4:30 pm - 4:45 pm | 6         | 189       | 195      | 917         | 1.06 |
| 4:45 pm - 5:00 pm | 5         | 202       | 207      | 895         | 1.03 |
| 5:00 pm - 5:15 pm | 5         | 187       | 192      | 840         | 0.97 |
| 5:15 pm - 5:30 pm | 6         | 179       | 185      | 779         | 0.90 |
| 5:30 pm - 5:45 pm | 5         | 176       | 181      | 765         | 0.88 |
| 5:45 pm - 6:00 pm | 6         | 192       | 198      | 756         | 0.87 |
| 6:00 pm - 6:15 pm | 7         | 211       | 218      | 782         | 0.90 |
| 6:15 pm - 6:30 pm | 4         | 214       | 218      | 815         | 0.94 |
| 6:30 pm - 6:45 pm | 4         | 221       | 225      | 859         | 0.99 |
| 6:45 pm - 7:00 pm | 5         | 231       | 236      | 897         | 1.03 |
| 7:00 pm - 7:15 pm | 8         | 216       | 224      | 903         | 1.04 |
| 7:15 pm - 7:30 pm | 5         | 214       | 219      | 904         | 1.04 |
| 7:30 pm - 7:45 pm | 3         | 176       | 179      | 858         | 0.99 |
| 7:45 pm - 8:00 pm | 3         | 156       | 159      | 781         | 0.90 |
| 8:00 am - 8:15 am | 2         | 140       | 142      | 699         | 0.80 |
| 8:15 am - 8:30 am | 2         | 85        | 87       | 567         | 0.65 |
|                   |           |           |          | Xu promedio | 0.98 |

Tabla 101. Aforo Vehicular y Grado de Saturación Jueves 30/11/2023 Subsegmento 2

| Hora de Control     | S4 | S5  | V(15min) | V(1h) | Xu   |
|---------------------|----|-----|----------|-------|------|
| 6:30 am - 6:45 am   | 7  | 107 | 114      |       |      |
| 6:45 am - 7:00 am   | 8  | 154 | 162      |       |      |
| 7:00 am - 7:15 am   | 13 | 201 | 214      |       |      |
| 7:15 am - 7:30 am   | 14 | 227 | 241      | 731   | 0.84 |
| 7:30 am - 7:45 am   | 8  | 221 | 229      | 846   | 0.97 |
| 7:45 am - 8:00 am   | 9  | 216 | 225      | 909   | 1.05 |
| 8:00 am - 8:15 am   | 8  | 198 | 206      | 901   | 1.04 |
| 8:15 am - 8:30 am   | 5  | 197 | 202      | 862   | 0.99 |
| 8:30 am - 8:45 am   | 5  | 181 | 186      | 819   | 0.94 |
| 8:45 am - 9:00 am   | 7  | 156 | 163      | 757   | 0.87 |
| 9:00 am - 9:15 am   | 10 | 137 | 147      | 698   | 0.80 |
| 9:15 am - 9:30 am   | 10 | 125 | 135      | 631   | 0.73 |
| 9:30 am - 9:45 am   | 12 | 150 | 162      | 607   | 0.70 |
| 9:45 am - 10:00 am  | 12 | 168 | 180      | 624   | 0.72 |
| 10:00 am - 10:15 am | 9  | 161 | 170      | 647   | 0.74 |
| 10:15 am - 10:30 am | 12 | 178 | 190      | 702   | 0.81 |
| 10:30 am - 10:45 am | 8  | 189 | 197      | 737   | 0.85 |
| 10:45 am - 11:00 am | 14 | 168 | 182      | 739   | 0.85 |

La tabla 101 continua aquí.

| Hora de Control     | <b>S4</b> | S5  | V(15min) | V(1h)       | Xu   |
|---------------------|-----------|-----|----------|-------------|------|
| 11:00 am - 11:15 am | 12        | 147 | 159      | 728         | 0.84 |
| 11:15 am - 11:30 am | 7         | 159 | 166      | 704         | 0.81 |
| 11:30 am - 11:45 am | 11        | 128 | 139      | 646         | 0.74 |
| 11:45 am - 12:00 pm | 7         | 146 | 153      | 617         | 0.71 |
| 12:00 pm - 12:15 pm | 11        | 167 | 178      | 636         | 0.73 |
| 12:15 pm - 12:30 pm | 11        | 170 | 181      | 651         | 0.75 |
| 12:30 pm - 12:45 pm | 12        | 169 | 181      | 693         | 0.80 |
| 12:45 pm - 1:00 pm  | 16        | 155 | 171      | 711         | 0.82 |
| 1:00 pm - 1:15 pm   | 11        | 182 | 193      | 726         | 0.84 |
| 1:15 pm - 1:30 pm   | 7         | 180 | 187      | 732         | 0.84 |
| 1:30 pm - 1:45 pm   | 10        | 174 | 184      | 735         | 0.85 |
| 1:45 pm - 2:00 pm   | 8         | 168 | 176      | 740         | 0.85 |
| 2:00 pm - 2:15 pm   | 7         | 155 | 162      | 709         | 0.82 |
| 2:15 pm - 2:30 pm   | 5         | 183 | 188      | 710         | 0.82 |
| 2:30 pm - 2:45 pm   | 6         | 150 | 156      | 682         | 0.78 |
| 2:45 pm - 3:00 pm   | 8         | 182 | 190      | 696         | 0.80 |
| 3:00 pm - 3:15 pm   | 15        | 171 | 186      | 720         | 0.83 |
| 3:15 pm - 3:30 pm   | 7         | 201 | 208      | 740         | 0.85 |
| 3:30 pm - 3:45 pm   | 13        | 206 | 219      | 803         | 0.92 |
| 3:45 pm - 4:00 pm   | 13        | 195 | 208      | 821         | 0.94 |
| 4:00 pm - 4:15 pm   | 13        | 194 | 207      | 842         | 0.97 |
| 4:15 pm - 4:30 pm   | 11        | 174 | 185      | 819         | 0.94 |
| 4:30 pm - 4:45 pm   | 7         | 165 | 172      | 772         | 0.89 |
| 4:45 pm - 5:00 pm   | 14        | 184 | 198      | 762         | 0.88 |
| 5:00 pm - 5:15 pm   | 12        | 180 | 192      | 747         | 0.86 |
| 5:15 pm - 5:30 pm   | 11        | 177 | 188      | 750         | 0.86 |
| 5:30 pm - 5:45 pm   | 11        | 170 | 181      | 759         | 0.87 |
| 5:45 pm - 6:00 pm   | 10        | 174 | 184      | 745         | 0.86 |
| 6:00 pm - 6:15 pm   | 11        | 148 | 159      | 712         | 0.82 |
| 6:15 pm - 6:30 pm   | 12        | 129 | 141      | 665         | 0.77 |
| 6:30 pm - 6:45 pm   | 7         | 128 | 135      | 619         | 0.71 |
| 6:45 pm - 7:00 pm   | 10        | 128 | 138      | 573         | 0.66 |
| 7:00 pm - 7:15 pm   | 13        | 179 | 192      | 606         | 0.70 |
| 7:15 pm - 7:30 pm   | 10        | 186 | 196      | 661         | 0.76 |
| 7:30 pm - 7:45 pm   | 13        | 158 | 171      | 697         | 0.80 |
| 7:45 pm - 8:00 pm   | 11        | 141 | 152      | 711         | 0.82 |
| 8:00 am - 8:15 am   | 5         | 122 | 127      | 646         | 0.74 |
| 8:15 am - 8:30 am   | 5         | 82  | 87       | 537         | 0.62 |
|                     |           |     |          | Xu promedio | 0.83 |

Tabla 102. Aforo Vehicular y Grado de Saturación Viernes 01/12/2023 Subsegmento 2

| Hora de Control     | S4     | <b>S5</b> | V(15min)   | V(1h)      | Xu           |
|---------------------|--------|-----------|------------|------------|--------------|
| 6:30 am - 6:45 am   | 6      | 82        | 88         |            |              |
| 6:45 am - 7:00 am   | 9      | 99        | 108        |            |              |
| 7:00 am - 7:15 am   | 11     | 125       | 136        |            |              |
| 7:15 am - 7:30 am   | 10     | 139       | 149        | 481        | 0.55         |
| 7:30 am - 7:45 am   | 7      | 125       | 132        | 525        | 0.60         |
| 7:45 am - 8:00 am   | 7      | 151       | 158        | 575        | 0.66         |
| 8:00 am - 8:15 am   | 7      | 147       | 154        | 593        | 0.68         |
| 8:15 am - 8:30 am   | 6      | 137       | 143        | 587        | 0.68         |
| 8:30 am - 8:45 am   | 7      | 132       | 139        | 594        | 0.68         |
| 8:45 am - 9:00 am   | 5      | 146       | 151        | 587        | 0.68         |
| 9:00 am - 9:15 am   | 6      | 147       | 153        | 586        | 0.67         |
| 9:15 am - 9:30 am   | 5      | 165       | 170        | 613        | 0.71         |
| 9:30 am - 9:45 am   | 5      | 156       | 161        | 635        | 0.73         |
| 9:45 am - 10:00 am  | 6      | 157       | 163        | 647        | 0.74         |
| 10:00 am - 10:15 am | 7      | 155       | 162        | 656        | 0.75         |
| 10:15 am - 10:30 am | 7      | 123       | 130        | 616        | 0.71         |
| 10:30 am - 10:45 am | 6      | 110       | 116        | 571        | 0.66         |
| 10:45 am - 11:00 am | 7      | 137       | 144        | 552        | 0.64         |
| 11:00 am - 11:15 am | 5      | 114       | 119        | 509        | 0.59         |
| 11:15 am - 11:30 am | 6      | 121       | 127        | 506        | 0.58         |
| 11:30 am - 11:45 am | 5      | 112       | 117        | 507        | 0.58         |
| 11:45 am - 12:00 pm | 7      | 125       | 132        | 495        | 0.57         |
| 12:00 pm - 12:15 pm | 5      | 136       | 141        | 517        | 0.59         |
| 12:15 pm - 12:30 pm | 8      | 160       | 168        | 558        | 0.64         |
| 12:30 pm - 12:45 pm | 8      | 145       | 153        | 594        | 0.68         |
| 12:45 pm - 1:00 pm  | 8      | 130       | 138        | 600        | 0.69         |
| 1:00 pm - 1:15 pm   | 7      | 134       | 141        | 600        | 0.69         |
| 1:15 pm - 1:30 pm   | 7      | 114       | 121        | 553        | 0.64         |
| 1:30 pm - 1:45 pm   | 5      | 128       | 133        | 533        | 0.61         |
| 1:45 pm - 2:00 pm   | 5      | 127       | 132        | 527        | 0.61         |
| 2:00 pm - 2:15 pm   | 5      | 110       | 115        | 501        | 0.58         |
| 2:15 pm - 2:30 pm   | 5      | 91        | 96         | 476        | 0.55         |
| 2:30 pm - 2:45 pm   | 6      | 98        | 104        | 447        | 0.55         |
| 2:45 pm - 3:00 pm   | 6      | 93        | 99         | 414        | 0.48         |
| 3:00 pm - 3:15 pm   |        | 93<br>109 |            |            |              |
| 3:15 pm - 3:30 pm   | 6<br>5 | 109       | 115<br>133 | 414<br>451 | 0.48<br>0.52 |
| 3:30 pm - 3:45 pm   | 5      | 116       | 133        | 451        | 0.54         |
| 3:45 pm - 4:00 pm   |        | 116       | 121        |            |              |
| 4:00 pm - 4:15 pm   | 6<br>5 |           |            | 497<br>487 | 0.57         |
| 4:15 pm - 4:30 pm   |        | 100       | 105        | 487<br>459 | 0.56         |
|                     | 6<br>5 | 98<br>126 | 104        | 458        | 0.53         |
| 4:30 pm - 4:45 pm   | 5      | 126       | 131        | 468        | 0.54         |
| 4:45 pm - 5:00 pm   | 4      | 99        | 103        | 443        | 0.51         |
| 5:00 pm - 5:15 pm   | 7      | 146       | 153        | 491        | 0.56         |

La tabla 102 continua aquí.

| Hora de Control   | S4 | <b>S5</b> | V(15min) | V(1h)       | Xu   |
|-------------------|----|-----------|----------|-------------|------|
| 5:15 pm - 5:30 pm | 5  | 126       | 131      | 518         | 0.60 |
| 5:30 pm - 5:45 pm | 6  | 130       | 136      | 523         | 0.60 |
| 5:45 pm - 6:00 pm | 5  | 166       | 171      | 591         | 0.68 |
| 6:00 pm - 6:15 pm | 8  | 209       | 217      | 655         | 0.75 |
| 6:15 pm - 6:30 pm | 8  | 237       | 245      | 769         | 0.88 |
| 6:30 pm - 6:45 pm | 8  | 228       | 236      | 869         | 1.00 |
| 6:45 pm - 7:00 pm | 8  | 228       | 236      | 934         | 1.07 |
| 7:00 pm - 7:15 pm | 7  | 147       | 154      | 871         | 1.00 |
| 7:15 pm - 7:30 pm | 4  | 119       | 123      | 749         | 0.86 |
| 7:30 pm - 7:45 pm | 8  | 137       | 145      | 658         | 0.76 |
| 7:45 pm - 8:00 pm | 8  | 137       | 145      | 567         | 0.65 |
| 8:00 am - 8:15 am | 6  | 123       | 129      | 542         | 0.62 |
| 8:15 am - 8:30 am | 5  | 84        | 89       | 508         | 0.58 |
|                   |    |           |          | Xu promedio | 0.65 |

Tabla 103. Grado de Saturación Ponderado Aguas Arriba Subsegmento 2

| Día                         | $X_u$ |
|-----------------------------|-------|
| Sábado                      | 0.66  |
| Domingo                     | 0.42  |
| Lunes                       | 0.87  |
| Martes                      | 0.91  |
| Miércoles                   | 0.98  |
| Jueves                      | 0.83  |
| Viernes                     | 0.65  |
| Promedio X <sub>u,SS2</sub> | 0.76  |

 $\label{eq:subsequence} Usando \ la \ ecuación \ 22 \ se \ puede \ obtener \ X_u \ de \ acuerdo \ con \ la \ capacidad \ de \ cada \\ subsegmento:$ 

$$X_{U,SS3} = \frac{194 \text{ veh/h}}{574.25 \text{ veh/h}} = 0.34$$

Tabla 104. Aforo Vehicular y Grado de Saturación Sábado 25/11/2023 Subsegmento 3

| Hora de Control   | <b>S2</b> | S7 | <b>S8</b> | V(15min) | V(1h) | Xu   |
|-------------------|-----------|----|-----------|----------|-------|------|
| 6:30 am - 6:45 am | 6         | 0  | 19        | 25       |       |      |
| 6:45 am - 7:00 am | 10        | 0  | 37        | 47       |       |      |
| 7:00 am - 7:15 am | 13        | 0  | 33        | 46       |       |      |
| 7:15 am - 7:30 am | 13        | 0  | 63        | 76       | 194   | 0.34 |
| 7:30 am - 7:45 am | 16        | 1  | 26        | 43       | 212   | 0.37 |

| La tabl | a 104 | continua | aquí |
|---------|-------|----------|------|
|---------|-------|----------|------|

| La tabla 104 continua aquí |    |    |    |          |       |      |
|----------------------------|----|----|----|----------|-------|------|
| Hora de Control            | S2 | S7 | S8 | V(15min) | V(1h) | Xu   |
| 7:45 am - 8:00 am          | 18 | 1  | 48 | 67       | 232   | 0.40 |
| 8:00 am - 8:15 am          | 18 | 1  | 74 | 93       | 279   | 0.49 |
| 8:15 am - 8:30 am          | 17 | 1  | 57 | 75       | 278   | 0.48 |
| 8:30 am - 8:45 am          | 16 | 0  | 79 | 95       | 330   | 0.57 |
| 8:45 am - 9:00 am          | 16 | 0  | 66 | 82       | 345   | 0.60 |
| 9:00 am - 9:15 am          | 23 | 0  | 63 | 86       | 338   | 0.59 |
| 9:15 am - 9:30 am          | 28 | 2  | 71 | 101      | 364   | 0.63 |
| 9:30 am - 9:45 am          | 24 | 0  | 53 | 77       | 346   | 0.60 |
| 9:45 am - 10:00 am         | 23 | 1  | 78 | 102      | 366   | 0.64 |
| 10:00 am - 10:15 am        | 30 | 0  | 50 | 80       | 360   | 0.63 |
| 10:15 am - 10:30 am        | 23 | 2  | 46 | 71       | 330   | 0.57 |
| 10:30 am - 10:45 am        | 27 | 1  | 48 | 76       | 329   | 0.57 |
| 10:45 am - 11:00 am        | 18 | 0  | 43 | 61       | 288   | 0.50 |
| 11:00 am - 11:15 am        | 25 | 2  | 40 | 67       | 275   | 0.48 |
| 11:15 am - 11:30 am        | 27 | 1  | 51 | 79       | 283   | 0.49 |
| 11:30 am - 11:45 am        | 18 | 1  | 41 | 60       | 267   | 0.46 |
| 11:45 am - 12:00 pm        | 15 | 0  | 62 | 77       | 283   | 0.49 |
| 12:00 pm - 12:15 pm        | 25 | 0  | 44 | 69       | 285   | 0.50 |
| 12:15 pm - 12:30 pm        | 18 | 1  | 50 | 69       | 275   | 0.48 |
| 12:30 pm - 12:45 pm        | 18 | 0  | 56 | 74       | 289   | 0.50 |
| 12:45 pm - 1:00 pm         | 21 | 0  | 44 | 65       | 277   | 0.48 |
| 1:00 pm - 1:15 pm          | 11 | 1  | 60 | 72       | 280   | 0.49 |
| 1:15 pm - 1:30 pm          | 12 | 0  | 48 | 60       | 271   | 0.47 |
| 1:30 pm - 1:45 pm          | 8  | 0  | 46 | 54       | 251   | 0.44 |
| 1:45 pm - 2:00 pm          | 8  | 0  | 30 | 38       | 224   | 0.39 |
| 2:00 pm - 2:15 pm          | 22 | 1  | 35 | 58       | 210   | 0.37 |
| 2:15 pm - 2:30 pm          | 17 | 2  | 34 | 53       | 203   | 0.35 |
| 2:30 pm - 2:45 pm          | 12 | 0  | 35 | 47       | 196   | 0.34 |
| 2:45 pm - 3:00 pm          | 20 | 1  | 28 | 49       | 207   | 0.36 |
| 3:00 pm - 3:15 pm          | 15 | 1  | 25 | 41       | 190   | 0.33 |
| 3:15 pm - 3:30 pm          | 18 | 1  | 17 | 36       | 173   | 0.30 |
| 3:30 pm - 3:45 pm          | 16 | 0  | 32 | 48       | 174   | 0.30 |
| 3:45 pm - 4:00 pm          | 19 | 0  | 28 | 47       | 172   | 0.30 |
| 4:00 pm - 4:15 pm          | 17 | 0  | 23 | 40       | 171   | 0.30 |
| 4:15 pm - 4:30 pm          | 19 | 0  | 29 | 48       | 183   | 0.32 |
| 4:30 pm - 4:45 pm          | 18 | 1  | 12 | 31       | 166   | 0.29 |
| 4:45 pm - 5:00 pm          | 21 | 0  | 14 | 35       | 154   | 0.27 |
| 5:00 pm - 5:15 pm          | 19 | 1  | 30 | 50       | 164   | 0.29 |
| 5:15 pm - 5:30 pm          | 15 | 0  | 38 | 53       | 169   | 0.29 |
| 5:30 pm - 5:45 pm          | 19 | 0  | 29 | 48       | 186   | 0.32 |
| 5:45 pm - 6:00 pm          | 17 | 1  | 45 | 63       | 214   | 0.37 |
| 6:00 pm - 6:15 pm          | 24 | 0  | 26 | 50       | 214   | 0.37 |
| 6:15 pm - 6:30 pm          | 14 | 1  | 24 | 39       | 200   | 0.35 |
| 6:30 pm - 6:45 pm          | 15 | 1  | 18 | 34       | 186   | 0.32 |
| 6:45 pm - 7:00 pm          | 15 | 1  | 32 | 48       | 171   | 0.30 |

La tabla 104 continua aquí.

| Hora de Control   | S2 | S7 | <b>S8</b> | V(15min) | V(1h)       | Xu   |
|-------------------|----|----|-----------|----------|-------------|------|
| 7:00 pm - 7:15 pm | 12 | 0  | 30        | 42       | 163         | 0.28 |
| 7:15 pm - 7:30 pm | 14 | 0  | 25        | 39       | 163         | 0.28 |
| 7:30 pm - 7:45 pm | 19 | 0  | 35        | 54       | 183         | 0.32 |
| 7:45 pm - 8:00 pm | 16 | 0  | 40        | 56       | 191         | 0.33 |
| 8:00 pm - 8:15 pm | 19 | 0  | 33        | 52       | 201         | 0.35 |
| 8:15 pm - 8:30 pm | 9  | 0  | 19        | 28       | 190         | 0.33 |
| _                 |    |    |           |          | Xu promedio | 0.42 |

Tabla 105. Aforo Vehicular y Grado de Saturación Domingo 26/11/2023 Subsegmento 3

| Hora de Control     | <b>S2</b> | S7 | <b>S8</b> | V(15min) | V(1h) | Xu   |
|---------------------|-----------|----|-----------|----------|-------|------|
| 6:30 am - 6:45 am   | 5         | 0  | 24        | 29       |       |      |
| 6:45 am - 7:00 am   | 15        | 0  | 25        | 40       |       |      |
| 7:00 am - 7:15 am   | 10        | 0  | 25        | 35       |       |      |
| 7:15 am - 7:30 am   | 10        | 0  | 25        | 35       | 139   | 0.24 |
| 7:30 am - 7:45 am   | 12        | 0  | 32        | 44       | 154   | 0.27 |
| 7:45 am - 8:00 am   | 8         | 2  | 26        | 36       | 150   | 0.26 |
| 8:00 am - 8:15 am   | 10        | 0  | 28        | 38       | 153   | 0.27 |
| 8:15 am - 8:30 am   | 8         | 1  | 28        | 37       | 155   | 0.27 |
| 8:30 am - 8:45 am   | 10        | 0  | 25        | 35       | 146   | 0.25 |
| 8:45 am - 9:00 am   | 7         | 0  | 23        | 30       | 140   | 0.24 |
| 9:00 am - 9:15 am   | 10        | 0  | 24        | 34       | 136   | 0.24 |
| 9:15 am - 9:30 am   | 10        | 0  | 35        | 45       | 144   | 0.25 |
| 9:30 am - 9:45 am   | 9         | 0  | 29        | 38       | 147   | 0.26 |
| 9:45 am - 10:00 am  | 12        | 1  | 29        | 42       | 159   | 0.28 |
| 10:00 am - 10:15 am | 9         | 0  | 32        | 41       | 166   | 0.29 |
| 10:15 am - 10:30 am | 8         | 1  | 29        | 38       | 159   | 0.28 |
| 10:30 am - 10:45 am | 8         | 1  | 46        | 55       | 176   | 0.31 |
| 10:45 am - 11:00 am | 8         | 0  | 33        | 41       | 175   | 0.30 |
| 11:00 am - 11:15 am | 10        | 0  | 39        | 49       | 183   | 0.32 |
| 11:15 am - 11:30 am | 20        | 0  | 35        | 55       | 200   | 0.35 |
| 11:30 am - 11:45 am | 10        | 1  | 30        | 41       | 186   | 0.32 |
| 11:45 am - 12:00 pm | 15        | 0  | 32        | 47       | 192   | 0.33 |
| 12:00 pm - 12:15 pm | 9         | 0  | 34        | 43       | 186   | 0.32 |
| 12:15 pm - 12:30 pm | 11        | 0  | 39        | 50       | 181   | 0.32 |
| 12:30 pm - 12:45 pm | 9         | 1  | 33        | 43       | 183   | 0.32 |
| 12:45 pm - 1:00 pm  | 10        | 0  | 38        | 48       | 184   | 0.32 |
| 1:00 pm - 1:15 pm   | 12        | 0  | 37        | 49       | 190   | 0.33 |
| 1:15 pm - 1:30 pm   | 8         | 0  | 34        | 42       | 182   | 0.32 |
| 1:30 pm - 1:45 pm   | 13        | 1  | 26        | 40       | 179   | 0.31 |
| 1:45 pm - 2:00 pm   | 10        | 0  | 21        | 31       | 162   | 0.28 |
| 2:00 pm - 2:15 pm   | 14        | 0  | 29        | 43       | 156   | 0.27 |
| 2:15 pm - 2:30 pm   | 14        | 1  | 30        | 45       | 159   | 0.28 |

La tabla 105 continua aquí.

| Hora de Control   | S2 | S7 | S8 | V(15min) | V(1h)       | Xu   |
|-------------------|----|----|----|----------|-------------|------|
| 2:30 pm - 2:45 pm | 7  | 0  | 34 | 41       | 160         | 0.28 |
| 2:45 pm - 3:00 pm | 8  | 1  | 24 | 33       | 162         | 0.28 |
| 3:00 pm - 3:15 pm | 10 | 0  | 28 | 38       | 157         | 0.27 |
| 3:15 pm - 3:30 pm | 11 | 0  | 24 | 35       | 147         | 0.26 |
| 3:30 pm - 3:45 pm | 12 | 0  | 25 | 37       | 143         | 0.25 |
| 3:45 pm - 4:00 pm | 9  | 0  | 28 | 37       | 147         | 0.26 |
| 4:00 pm - 4:15 pm | 14 | 0  | 37 | 51       | 160         | 0.28 |
| 4:15 pm - 4:30 pm | 16 | 0  | 33 | 49       | 174         | 0.30 |
| 4:30 pm - 4:45 pm | 8  | 0  | 40 | 48       | 185         | 0.32 |
| 4:45 pm - 5:00 pm | 9  | 0  | 30 | 39       | 187         | 0.33 |
| 5:00 pm - 5:15 pm | 11 | 0  | 28 | 39       | 175         | 0.30 |
| 5:15 pm - 5:30 pm | 8  | 1  | 35 | 44       | 170         | 0.30 |
| 5:30 pm - 5:45 pm | 14 | 1  | 24 | 39       | 161         | 0.28 |
| 5:45 pm - 6:00 pm | 8  | 0  | 29 | 37       | 159         | 0.28 |
| 6:00 pm - 6:15 pm | 13 | 0  | 33 | 46       | 166         | 0.29 |
| 6:15 pm - 6:30 pm | 10 | 0  | 31 | 41       | 163         | 0.28 |
| 6:30 pm - 6:45 pm | 14 | 0  | 33 | 47       | 171         | 0.30 |
| 6:45 pm - 7:00 pm | 15 | 0  | 28 | 43       | 177         | 0.31 |
| 7:00 pm - 7:15 pm | 7  | 0  | 26 | 33       | 164         | 0.29 |
| 7:15 pm - 7:30 pm | 10 | 0  | 25 | 35       | 158         | 0.28 |
| 7:30 pm - 7:45 pm | 9  | 0  | 22 | 31       | 142         | 0.25 |
| 7:45 pm - 8:00 pm | 11 | 0  | 24 | 35       | 134         | 0.23 |
| 8:00 pm - 8:15 pm | 12 | 0  | 15 | 27       | 128         | 0.22 |
| 8:15 pm - 8:30 pm | 3  | 0  | 8  | 11       | 104         | 0.18 |
|                   |    |    |    |          | Xu promedio | 0.28 |

Tabla 106. Aforo Vehicular y Grado de Saturación Lunes 27/11/2023 Subsegmento 3

| Hora de Control    | <b>S2</b> | S7 | S8 | V(15min) | V(1h) | Xu   |
|--------------------|-----------|----|----|----------|-------|------|
| 6:30 am - 6:45 am  | 59        | 0  | 16 | 75       |       |      |
| 6:45 am - 7:00 am  | 72        | 1  | 22 | 95       |       |      |
| 7:00 am - 7:15 am  | 106       | 1  | 43 | 150      |       |      |
| 7:15 am - 7:30 am  | 106       | 0  | 60 | 166      | 486   | 0.85 |
| 7:30 am - 7:45 am  | 84        | 1  | 63 | 148      | 559   | 0.97 |
| 7:45 am - 8:00 am  | 72        | 2  | 67 | 141      | 605   | 1.05 |
| 8:00 am - 8:15 am  | 96        | 0  | 68 | 164      | 619   | 1.08 |
| 8:15 am - 8:30 am  | 78        | 2  | 44 | 124      | 577   | 1.00 |
| 8:30 am - 8:45 am  | 89        | 1  | 62 | 152      | 581   | 1.01 |
| 8:45 am - 9:00 am  | 100       | 0  | 53 | 153      | 593   | 1.03 |
| 9:00 am - 9:15 am  | 52        | 2  | 39 | 93       | 522   | 0.91 |
| 9:15 am - 9:30 am  | 50        | 1  | 53 | 104      | 502   | 0.87 |
| 9:30 am - 9:45 am  | 54        | 0  | 46 | 100      | 450   | 0.78 |
| 9:45 am - 10:00 am | 39        | 1  | 53 | 93       | 390   | 0.68 |

La tabla 106 continua aquí.

| Hora de Control     | S2  | <b>S7</b> | <b>S8</b> | V(15min) | V(1h)       | Xu   |
|---------------------|-----|-----------|-----------|----------|-------------|------|
| 10:00 am - 10:15 am | 57  | 1         | 46        | 104      | 401         | 0.70 |
| 10:15 am - 10:30 am | 47  | 2         | 42        | 91       | 388         | 0.68 |
| 10:30 am - 10:45 am | 53  | 1         | 47        | 101      | 389         | 0.68 |
| 10:45 am - 11:00 am | 67  | 1         | 52        | 120      | 416         | 0.72 |
| 11:00 am - 11:15 am | 41  | 1         | 38        | 80       | 392         | 0.68 |
| 11:15 am - 11:30 am | 55  | 2         | 41        | 98       | 399         | 0.69 |
| 11:30 am - 11:45 am | 66  | 0         | 28        | 94       | 392         | 0.68 |
| 11:45 am - 12:00 pm | 54  | 1         | 41        | 96       | 368         | 0.64 |
| 12:00 pm - 12:15 pm | 81  | 1         | 40        | 122      | 410         | 0.71 |
| 12:15 pm - 12:30 pm | 92  | 1         | 37        | 130      | 442         | 0.77 |
| 12:30 pm - 12:45 pm | 95  | 1         | 36        | 132      | 480         | 0.84 |
| 12:45 pm - 1:00 pm  | 131 | 2         | 39        | 172      | 556         | 0.97 |
| 1:00 pm - 1:15 pm   | 87  | 2         | 40        | 129      | 563         | 0.98 |
| 1:15 pm - 1:30 pm   | 96  | 1         | 46        | 143      | 576         | 1.00 |
| 1:30 pm - 1:45 pm   | 92  | 3         | 46        | 141      | 585         | 1.02 |
| 1:45 pm - 2:00 pm   | 96  | 2         | 40        | 138      | 551         | 0.96 |
| 2:00 pm - 2:15 pm   | 51  | 2         | 32        | 85       | 507         | 0.88 |
| 2:15 pm - 2:30 pm   | 53  | 2         | 39        | 94       | 458         | 0.80 |
| 2:30 pm - 2:45 pm   | 69  | 2         | 37        | 108      | 425         | 0.74 |
| 2:45 pm - 3:00 pm   | 71  | 1         | 43        | 115      | 402         | 0.70 |
| 3:00 pm - 3:15 pm   | 67  | 1         | 39        | 107      | 424         | 0.74 |
| 3:15 pm - 3:30 pm   | 67  | 1         | 41        | 109      | 439         | 0.76 |
| 3:30 pm - 3:45 pm   | 64  | 2         | 35        | 101      | 432         | 0.75 |
| 3:45 pm - 4:00 pm   | 60  | 2         | 50        | 112      | 429         | 0.75 |
| 4:00 pm - 4:15 pm   | 83  | 0         | 33        | 116      | 438         | 0.76 |
| 4:15 pm - 4:30 pm   | 62  | 1         | 30        | 93       | 422         | 0.73 |
| 4:30 pm - 4:45 pm   | 49  | 1         | 29        | 79       | 400         | 0.70 |
| 4:45 pm - 5:00 pm   | 77  | 1         | 19        | 97       | 385         | 0.67 |
| 5:00 pm - 5:15 pm   | 81  | 1         | 20        | 102      | 371         | 0.65 |
| 5:15 pm - 5:30 pm   | 66  | 1         | 21        | 88       | 366         | 0.64 |
| 5:30 pm - 5:45 pm   | 69  | 0         | 23        | 92       | 379         | 0.66 |
| 5:45 pm - 6:00 pm   | 67  | 1         | 21        | 89       | 371         | 0.65 |
| 6:00 pm - 6:15 pm   | 44  | 2         | 29        | 75       | 344         | 0.60 |
| 6:15 pm - 6:30 pm   | 60  | 0         | 44        | 104      | 360         | 0.63 |
| 6:30 pm - 6:45 pm   | 52  | 1         | 57        | 110      | 378         | 0.66 |
| 6:45 pm - 7:00 pm   | 57  | 2         | 54        | 113      | 402         | 0.70 |
| 7:00 pm - 7:15 pm   | 65  | 3         | 45        | 113      | 440         | 0.77 |
| 7:15 pm - 7:30 pm   | 63  | 1         | 38        | 102      | 438         | 0.76 |
| 7:30 pm - 7:45 pm   | 59  | 0         | 41        | 100      | 428         | 0.75 |
| 7:45 pm - 8:00 pm   | 80  | 0         | 39        | 119      | 434         | 0.76 |
| 8:00 pm - 8:15 pm   | 91  | 0         | 28        | 119      | 440         | 0.77 |
| 8:15 pm - 8:30 pm   | 76  | 0         | 21        | 97       | 435         | 0.76 |
|                     |     |           |           |          | Xu promedio | 0.79 |

Tabla 107. Aforo Vehicular y Grado de Saturación Martes 28/11/2023 Subsegmento 3

| Hora de Control     | S2 | S7 | <b>S8</b> | V(15min) | V(1h) | Xu   |
|---------------------|----|----|-----------|----------|-------|------|
| 6:30 am - 6:45 am   | 23 | 0  | 42        | 65       |       |      |
| 6:45 am - 7:00 am   | 38 | 0  | 46        | 84       |       |      |
| 7:00 am - 7:15 am   | 49 | 0  | 68        | 117      |       |      |
| 7:15 am - 7:30 am   | 45 | 1  | 104       | 150      | 416   | 0.72 |
| 7:30 am - 7:45 am   | 32 | 1  | 73        | 106      | 457   | 0.80 |
| 7:45 am - 8:00 am   | 29 | 3  | 52        | 84       | 457   | 0.80 |
| 8:00 am - 8:15 am   | 30 | 0  | 72        | 102      | 442   | 0.77 |
| 8:15 am - 8:30 am   | 33 | 1  | 71        | 105      | 397   | 0.69 |
| 8:30 am - 8:45 am   | 33 | 2  | 70        | 105      | 396   | 0.69 |
| 8:45 am - 9:00 am   | 37 | 1  | 72        | 110      | 422   | 0.73 |
| 9:00 am - 9:15 am   | 23 | 2  | 80        | 105      | 425   | 0.74 |
| 9:15 am - 9:30 am   | 28 | 2  | 69        | 99       | 419   | 0.73 |
| 9:30 am - 9:45 am   | 25 | 2  | 59        | 86       | 400   | 0.70 |
| 9:45 am - 10:00 am  | 29 | 0  | 80        | 109      | 399   | 0.69 |
| 10:00 am - 10:15 am | 29 | 1  | 81        | 111      | 405   | 0.71 |
| 10:15 am - 10:30 am | 26 | 2  | 96        | 124      | 430   | 0.75 |
| 10:30 am - 10:45 am | 29 | 1  | 76        | 106      | 450   | 0.78 |
| 10:45 am - 11:00 am | 25 | 0  | 74        | 99       | 440   | 0.77 |
| 11:00 am - 11:15 am | 34 | 2  | 83        | 119      | 448   | 0.78 |
| 11:15 am - 11:30 am | 44 | 2  | 49        | 95       | 419   | 0.73 |
| 11:30 am - 11:45 am | 27 | 1  | 48        | 76       | 389   | 0.68 |
| 11:45 am - 12:00 pm | 29 | 1  | 74        | 104      | 394   | 0.69 |
| 12:00 pm - 12:15 pm | 33 | 1  | 58        | 92       | 367   | 0.64 |
| 12:15 pm - 12:30 pm | 37 | 4  | 56        | 97       | 369   | 0.64 |
| 12:30 pm - 12:45 pm | 48 | 2  | 100       | 150      | 443   | 0.77 |
| 12:45 pm - 1:00 pm  | 30 | 3  | 88        | 121      | 460   | 0.80 |
| 1:00 pm - 1:15 pm   | 38 | 2  | 108       | 148      | 516   | 0.90 |
| 1:15 pm - 1:30 pm   | 28 | 1  | 104       | 133      | 552   | 0.96 |
| 1:30 pm - 1:45 pm   | 31 | 2  | 91        | 124      | 526   | 0.92 |
| 1:45 pm - 2:00 pm   | 33 | 1  | 53        | 87       | 492   | 0.86 |
| 2:00 pm - 2:15 pm   | 26 | 0  | 54        | 80       | 424   | 0.74 |
| 2:15 pm - 2:30 pm   | 32 | 3  | 58        | 93       | 384   | 0.67 |
| 2:30 pm - 2:45 pm   | 31 | 0  | 48        | 79       | 339   | 0.59 |
| 2:45 pm - 3:00 pm   | 35 | 0  | 67        | 102      | 354   | 0.62 |
| 3:00 pm - 3:15 pm   | 39 | 1  | 76        | 116      | 390   | 0.68 |
| 3:15 pm - 3:30 pm   | 34 | 1  | 52        | 87       | 384   | 0.67 |
| 3:30 pm - 3:45 pm   | 39 | 1  | 81        | 121      | 426   | 0.74 |
| 3:45 pm - 4:00 pm   | 39 | 0  | 74        | 113      | 437   | 0.76 |
| 4:00 pm - 4:15 pm   | 36 | 1  | 79        | 116      | 437   | 0.76 |
| 4:15 pm - 4:30 pm   | 30 | 2  | 77        | 109      | 459   | 0.80 |
| 4:30 pm - 4:45 pm   | 40 | 1  | 55        | 96       | 434   | 0.76 |
| 4:45 pm - 5:00 pm   | 40 | 0  | 79        | 119      | 440   | 0.77 |
| 5:00 pm - 5:15 pm   | 36 | 0  | 80        | 116      | 440   | 0.77 |

La tabla 107 continua aquí.

| Hora de Control   | <b>S2</b> | S7 | <b>S8</b> | V(15min) | V(1h)       | Xu   |
|-------------------|-----------|----|-----------|----------|-------------|------|
| 5:15 pm - 5:30 pm | 40        | 1  | 74        | 115      | 446         | 0.78 |
| 5:30 pm - 5:45 pm | 30        | 0  | 77        | 107      | 457         | 0.80 |
| 5:45 pm - 6:00 pm | 41        | 1  | 73        | 115      | 453         | 0.79 |
| 6:00 pm - 6:15 pm | 51        | 1  | 54        | 106      | 443         | 0.77 |
| 6:15 pm - 6:30 pm | 53        | 1  | 54        | 108      | 436         | 0.76 |
| 6:30 pm - 6:45 pm | 37        | 1  | 42        | 80       | 409         | 0.71 |
| 6:45 pm - 7:00 pm | 48        | 1  | 77        | 126      | 420         | 0.73 |
| 7:00 pm - 7:15 pm | 43        | 0  | 53        | 96       | 410         | 0.71 |
| 7:15 pm - 7:30 pm | 38        | 1  | 60        | 99       | 401         | 0.70 |
| 7:30 pm - 7:45 pm | 40        | 0  | 54        | 94       | 415         | 0.72 |
| 7:45 pm - 8:00 pm | 40        | 0  | 34        | 74       | 363         | 0.63 |
| 8:00 pm - 8:15 pm | 28        | 0  | 37        | 65       | 332         | 0.58 |
| 8:15 pm - 8:30 pm | 20        | 0  | 25        | 45       | 278         | 0.48 |
|                   |           |    |           |          | Xu promedio | 0.73 |

Tabla 108. Aforo Vehicular y Grado de Saturación Miércoles 29/11/2023 Subsegmento 3

| Hora de Control      | <b>S2</b> | S7 | S8 | V(15min) | V(1h) | Xu   |
|----------------------|-----------|----|----|----------|-------|------|
| 6:30 am - 6:45 am    | 23        | 0  | 28 | 51       |       |      |
| 6:45 am - 7:00 am    | 31        | 0  | 50 | 81       |       |      |
| 7:00 am - 7:15 am    | 41        | 0  | 60 | 101      |       |      |
| 7:15 am - 7:30 am    | 32        | 2  | 96 | 130      | 363   | 0.63 |
| 7:30 am - 7:45 am    | 32        | 0  | 95 | 127      | 439   | 0.76 |
| 7:45 am - 8:00 am    | 20        | 1  | 97 | 118      | 476   | 0.83 |
| 8:00 am - 8:15 am    | 25        | 1  | 76 | 102      | 477   | 0.83 |
| 8:15 am - 8:30 am    | 37        | 3  | 68 | 108      | 455   | 0.79 |
| 8:30 am - 8:45 am    | 28        | 0  | 53 | 81       | 409   | 0.71 |
| 8:45 am - 9:00 am    | 26        | 0  | 53 | 79       | 370   | 0.64 |
| 9:00 am - 9:15 am    | 30        | 2  | 77 | 109      | 377   | 0.66 |
| 9:15 am - 9:30 am    | 32        | 1  | 77 | 110      | 379   | 0.66 |
| 9:30 am - 9:45 am    | 29        | 1  | 86 | 116      | 414   | 0.72 |
| 9:45 am - 10:00 am   | 26        | 1  | 89 | 116      | 451   | 0.79 |
| 10:00 am - 10:15 am  | 27        | 1  | 59 | 87       | 429   | 0.75 |
| 10:15 am - 10:30 am  | 30        | 2  | 54 | 86       | 405   | 0.71 |
| 10:30 am - 10:45 am  | 34        | 1  | 64 | 99       | 388   | 0.68 |
| 10:45 am - 11:00 am  | 35        | 1  | 71 | 107      | 379   | 0.66 |
| 11:00 am - 11:15 am  | 21        | 3  | 51 | 75       | 367   | 0.64 |
| 11:15 am - 11:30 am  | 25        | 1  | 67 | 93       | 374   | 0.65 |
| 11:30 am - 11:45 am  | 26        | 0  | 60 | 86       | 361   | 0.63 |
| 11:45 am - 12:00 pm  | 23        | 1  | 54 | 78       | 332   | 0.58 |
| 12:00 pm - 12:15 pm  | 26        | 2  | 70 | 98       | 355   | 0.62 |
| 12:15 pm - 12:30 pm  | 34        | 5  | 71 | 110      | 372   | 0.65 |
| 12:30 pm – 12 :45 pm | 39        | 1  | 71 | 111      | 397   | 0.69 |

La tabla 108 continua aquí.

| Hora de Control    | <b>S2</b> | S7 | S8 | V(15min) | V(1h)       | Xu   |
|--------------------|-----------|----|----|----------|-------------|------|
| 12:45 pm - 1:00 pm | 39        | 2  | 70 | 111      | 430         | 0.75 |
| 1:00 pm - 1:15 pm  | 35        | 1  | 90 | 126      | 458         | 0.80 |
| 1:15 pm - 1:30 pm  | 32        | 2  | 89 | 123      | 471         | 0.82 |
| 1:30 pm - 1:45 pm  | 30        | 0  | 70 | 100      | 460         | 0.80 |
| 1:45 pm - 2:00 pm  | 29        | 1  | 67 | 97       | 446         | 0.78 |
| 2:00 pm - 2:15 pm  | 25        | 2  | 55 | 82       | 402         | 0.70 |
| 2:15 pm - 2:30 pm  | 31        | 2  | 67 | 100      | 379         | 0.66 |
| 2:30 pm - 2:45 pm  | 33        | 1  | 66 | 100      | 379         | 0.66 |
| 2:45 pm - 3:00 pm  | 40        | 3  | 87 | 130      | 412         | 0.72 |
| 3:00 pm - 3:15 pm  | 38        | 2  | 83 | 123      | 453         | 0.79 |
| 3:15 pm - 3:30 pm  | 30        | 2  | 77 | 109      | 462         | 0.80 |
| 3:30 pm - 3:45 pm  | 32        | 1  | 77 | 110      | 472         | 0.82 |
| 3:45 pm - 4:00 pm  | 38        | 1  | 77 | 116      | 458         | 0.80 |
| 4:00 pm - 4:15 pm  | 37        | 1  | 85 | 123      | 458         | 0.80 |
| 4:15 pm - 4:30 pm  | 31        | 1  | 89 | 121      | 470         | 0.82 |
| 4:30 pm - 4:45 pm  | 37        | 0  | 70 | 107      | 467         | 0.81 |
| 4:45 pm - 5:00 pm  | 35        | 2  | 55 | 92       | 443         | 0.77 |
| 5:00 pm - 5:15 pm  | 36        | 2  | 71 | 109      | 429         | 0.75 |
| 5:15 pm - 5:30 pm  | 39        | 1  | 53 | 93       | 401         | 0.70 |
| 5:30 pm - 5:45 pm  | 34        | 1  | 50 | 85       | 379         | 0.66 |
| 5:45 pm - 6:00 pm  | 45        | 1  | 72 | 118      | 405         | 0.71 |
| 6:00 pm - 6:15 pm  | 49        | 1  | 78 | 128      | 424         | 0.74 |
| 6:15 pm - 6:30 pm  | 28        | 0  | 56 | 84       | 415         | 0.72 |
| 6:30 pm - 6:45 pm  | 33        | 1  | 65 | 99       | 429         | 0.75 |
| 6:45 pm - 7:00 pm  | 30        | 2  | 75 | 107      | 418         | 0.73 |
| 7:00 pm - 7:15 pm  | 51        | 2  | 62 | 115      | 405         | 0.71 |
| 7:15 pm - 7:30 pm  | 32        | 0  | 58 | 90       | 411         | 0.72 |
| 7:30 pm - 7:45 pm  | 32        | 0  | 47 | 79       | 391         | 0.68 |
| 7:45 pm - 8:00 pm  | 20        | 1  | 41 | 62       | 346         | 0.60 |
| 8:00 pm - 8:15 pm  | 16        | 0  | 33 | 49       | 280         | 0.49 |
| 8:15 pm - 8:30 pm  | 13        | 0  | 27 | 40       | 230         | 0.40 |
|                    |           |    |    |          | Xu promedio | 0.71 |

Tabla 109. Aforo Vehicular y Grado de Saturación Jueves 30/11/2023 Subsegmento 3

| Hora de Control   | S2 | S7 | S8 | V(15min) | V(1h) | Xu   |
|-------------------|----|----|----|----------|-------|------|
| 6:30 am - 6:45 am | 26 | 0  | 46 | 72       |       |      |
| 6:45 am - 7:00 am | 35 | 0  | 68 | 103      |       |      |
| 7:00 am - 7:15 am | 50 | 0  | 61 | 111      |       |      |
| 7:15 am - 7:30 am | 54 | 0  | 74 | 128      | 414   | 0.72 |
| 7:30 am - 7:45 am | 35 | 1  | 66 | 102      | 444   | 0.77 |
| 7:45 am - 8:00 am | 30 | 2  | 64 | 96       | 437   | 0.76 |
| 8:00 am - 8:15 am | 19 | 3  | 60 | 82       | 408   | 0.71 |

La tabla 109 continua aquí.

| Hora de Control     | S2 | S7 | <b>S8</b> | V(15min) | V(1h) | Xu   |
|---------------------|----|----|-----------|----------|-------|------|
| 8:15 am - 8:30 am   | 23 | 2  | 74        | 99       | 379   | 0.66 |
| 8:30 am - 8:45 am   | 20 | 1  | 76        | 97       | 374   | 0.65 |
| 8:45 am - 9:00 am   | 23 | 1  | 71        | 95       | 373   | 0.65 |
| 9:00 am - 9:15 am   | 30 | 3  | 65        | 98       | 389   | 0.68 |
| 9:15 am - 9:30 am   | 28 | 1  | 67        | 96       | 386   | 0.67 |
| 9:30 am - 9:45 am   | 33 | 1  | 64        | 98       | 387   | 0.67 |
| 9:45 am - 10:00 am  | 31 | 3  | 71        | 105      | 397   | 0.69 |
| 10:00 am - 10:15 am | 30 | 1  | 64        | 95       | 394   | 0.69 |
| 10:15 am - 10:30 am | 31 | 2  | 50        | 83       | 381   | 0.66 |
| 10:30 am - 10:45 am | 27 | 2  | 52        | 81       | 364   | 0.63 |
| 10:45 am - 11:00 am | 40 | 0  | 49        | 89       | 348   | 0.61 |
| 11:00 am - 11:15 am | 34 | 2  | 46        | 82       | 335   | 0.58 |
| 11:15 am - 11:30 am | 26 | 1  | 49        | 76       | 328   | 0.57 |
| 11:30 am - 11:45 am | 36 | 0  | 45        | 81       | 328   | 0.57 |
| 11:45 am - 12:00 pm | 32 | 0  | 48        | 80       | 319   | 0.56 |
| 12:00 pm - 12:15 pm | 36 | 2  | 49        | 87       | 324   | 0.56 |
| 12:15 pm - 12:30 pm | 38 | 1  | 54        | 93       | 341   | 0.59 |
| 12:30 pm - 12:45 pm | 39 | 0  | 50        | 89       | 349   | 0.61 |
| 12:45 pm - 1:00 pm  | 49 | 2  | 67        | 118      | 387   | 0.67 |
| 1:00 pm - 1:15 pm   | 42 | 0  | 98        | 140      | 440   | 0.77 |
| 1:15 pm - 1:30 pm   | 30 | 1  | 98        | 129      | 476   | 0.83 |
| 1:30 pm - 1:45 pm   | 32 | 1  | 93        | 126      | 513   | 0.89 |
| 1:45 pm - 2:00 pm   | 27 | 1  | 77        | 105      | 500   | 0.87 |
| 2:00 pm - 2:15 pm   | 25 | 3  | 66        | 94       | 454   | 0.79 |
| 2:15 pm - 2:30 pm   | 20 | 0  | 76        | 96       | 421   | 0.73 |
| 2:30 pm - 2:45 pm   | 24 | 1  | 66        | 91       | 386   | 0.67 |
| 2:45 pm - 3:00 pm   | 35 | 0  | 66        | 101      | 382   | 0.67 |
| 3:00 pm - 3:15 pm   | 47 | 2  | 66        | 115      | 403   | 0.70 |
| 3:15 pm - 3:30 pm   | 39 | 0  | 65        | 104      | 411   | 0.72 |
| 3:30 pm - 3:45 pm   | 42 | 1  | 66        | 109      | 429   | 0.75 |
| 3:45 pm - 4:00 pm   | 41 | 0  | 66        | 107      | 435   | 0.76 |
| 4:00 pm - 4:15 pm   | 38 | 3  | 66        | 107      | 427   | 0.74 |
| 4:15 pm - 4:30 pm   | 34 | 1  | 63        | 98       | 421   | 0.73 |
| 4:30 pm - 4:45 pm   | 35 | 1  | 61        | 97       | 409   | 0.71 |
| 4:45 pm - 5:00 pm   | 40 | 0  | 69        | 109      | 411   | 0.72 |
| 5:00 pm - 5:15 pm   | 33 | 1  | 79        | 113      | 417   | 0.73 |
| 5:15 pm - 5:30 pm   | 35 | 2  | 62        | 99       | 418   | 0.73 |
| 5:30 pm - 5:45 pm   | 34 | 1  | 60        | 95       | 416   | 0.72 |
| 5:45 pm - 6:00 pm   | 41 | 0  | 60        | 101      | 408   | 0.71 |
| 6:00 pm - 6:15 pm   | 40 | 1  | 66        | 107      | 402   | 0.70 |
| 6:15 pm - 6:30 pm   | 37 | 1  | 65        | 103      | 406   | 0.71 |
| 6:30 pm - 6:45 pm   | 32 | 0  | 60        | 92       | 403   | 0.70 |
| 6:45 pm - 7:00 pm   | 32 | 1  | 58        | 91       | 393   | 0.68 |

La tabla 109 continua aquí.

| Hora de Control   | S2 | S7 | S8 | V(15min) | V(1h)       | Xu   |
|-------------------|----|----|----|----------|-------------|------|
| 7:00 pm - 7:15 pm | 41 | 2  | 62 | 105      | 391         | 0.68 |
| 7:15 pm - 7:30 pm | 36 | 1  | 70 | 107      | 395         | 0.69 |
| 7:30 pm - 7:45 pm | 35 | 1  | 68 | 104      | 407         | 0.71 |
| 7:45 pm - 8:00 pm | 30 | 0  | 43 | 73       | 389         | 0.68 |
| 8:00 pm - 8:15 pm | 21 | 0  | 46 | 67       | 351         | 0.61 |
| 8:15 pm - 8:30 pm | 16 | 0  | 38 | 54       | 298         | 0.52 |
|                   |    |    |    |          | Xu promedio | 0.69 |

Tabla 110. Aforo Vehicular y Grado de Saturación Viernes 01/12/2023 Subsegmento 3

| Hora de Control     | S2 | S7 | S8 | V(15min) | V(1h) | Xu   |
|---------------------|----|----|----|----------|-------|------|
| 6:30 am - 6:45 am   | 32 | 0  | 27 | 59       |       |      |
| 6:45 am - 7:00 am   | 56 | 0  | 56 | 112      |       |      |
| 7:00 am - 7:15 am   | 83 | 0  | 78 | 161      |       |      |
| 7:15 am - 7:30 am   | 58 | 1  | 57 | 116      | 448   | 0.78 |
| 7:30 am - 7:45 am   | 36 | 0  | 41 | 77       | 466   | 0.81 |
| 7:45 am - 8:00 am   | 38 | 4  | 53 | 95       | 449   | 0.78 |
| 8:00 am - 8:15 am   | 41 | 2  | 45 | 88       | 376   | 0.65 |
| 8:15 am - 8:30 am   | 38 | 2  | 39 | 79       | 339   | 0.59 |
| 8:30 am - 8:45 am   | 36 | 2  | 33 | 71       | 333   | 0.58 |
| 8:45 am - 9:00 am   | 32 | 2  | 42 | 76       | 314   | 0.55 |
| 9:00 am - 9:15 am   | 35 | 0  | 41 | 76       | 302   | 0.53 |
| 9:15 am - 9:30 am   | 32 | 2  | 38 | 72       | 295   | 0.51 |
| 9:30 am - 9:45 am   | 32 | 0  | 38 | 70       | 294   | 0.51 |
| 9:45 am - 10:00 am  | 43 | 1  | 39 | 83       | 301   | 0.52 |
| 10:00 am - 10:15 am | 38 | 2  | 36 | 76       | 301   | 0.52 |
| 10:15 am - 10:30 am | 41 | 2  | 36 | 79       | 308   | 0.54 |
| 10:30 am - 10:45 am | 27 | 1  | 36 | 64       | 302   | 0.53 |
| 10:45 am - 11:00 am | 35 | 1  | 42 | 78       | 297   | 0.52 |
| 11:00 am - 11:15 am | 24 | 1  | 35 | 60       | 281   | 0.49 |
| 11:15 am - 11:30 am | 30 | 0  | 42 | 72       | 274   | 0.48 |
| 11:30 am - 11:45 am | 29 | 3  | 49 | 81       | 291   | 0.51 |
| 11:45 am - 12:00 pm | 36 | 1  | 47 | 84       | 297   | 0.52 |
| 12:00 pm - 12:15 pm | 33 | 2  | 50 | 85       | 322   | 0.56 |
| 12:15 pm - 12:30 pm | 48 | 0  | 54 | 102      | 352   | 0.61 |
| 12:30 pm - 12:45 pm | 50 | 2  | 53 | 105      | 376   | 0.65 |
| 12:45 pm - 1:00 pm  | 41 | 1  | 56 | 98       | 390   | 0.68 |
| 1:00 pm - 1:15 pm   | 44 | 1  | 52 | 97       | 402   | 0.70 |
| 1:15 pm - 1:30 pm   | 35 | 2  | 37 | 74       | 374   | 0.65 |
| 1:30 pm - 1:45 pm   | 28 | 1  | 46 | 75       | 344   | 0.60 |
| 1:45 pm - 2:00 pm   | 27 | 2  | 55 | 84       | 330   | 0.57 |
| 2:00 pm - 2:15 pm   | 25 | 4  | 55 | 84       | 317   | 0.55 |
| 2:15 pm - 2:30 pm   | 29 | 2  | 48 | 79       | 322   | 0.56 |

La tabla 110 continua aquí.

| Hora de Control   | <b>S2</b> | <b>S7</b> | <b>S8</b> | V(15min) | V(1h)       | Xu   |
|-------------------|-----------|-----------|-----------|----------|-------------|------|
| 2:30 pm - 2:45 pm | 32        | 1         | 48        | 81       | 328         | 0.57 |
| 2:45 pm - 3:00 pm | 34        | 1         | 48        | 83       | 327         | 0.57 |
| 3:00 pm - 3:15 pm | 29        | 1         | 41        | 71       | 314         | 0.55 |
| 3:15 pm - 3:30 pm | 35        | 2         | 49        | 86       | 321         | 0.56 |
| 3:30 pm - 3:45 pm | 32        | 2         | 46        | 80       | 320         | 0.56 |
| 3:45 pm - 4:00 pm | 34        | 3         | 38        | 75       | 312         | 0.54 |
| 4:00 pm - 4:15 pm | 34        | 1         | 34        | 69       | 310         | 0.54 |
| 4:15 pm - 4:30 pm | 37        | 1         | 37        | 75       | 299         | 0.52 |
| 4:30 pm - 4:45 pm | 29        | 0         | 42        | 71       | 290         | 0.51 |
| 4:45 pm - 5:00 pm | 32        | 1         | 35        | 68       | 283         | 0.49 |
| 5:00 pm - 5:15 pm | 39        | 2         | 43        | 84       | 298         | 0.52 |
| 5:15 pm - 5:30 pm | 24        | 1         | 49        | 74       | 297         | 0.52 |
| 5:30 pm - 5:45 pm | 32        | 1         | 56        | 89       | 315         | 0.55 |
| 5:45 pm - 6:00 pm | 32        | 2         | 59        | 93       | 340         | 0.59 |
| 6:00 pm - 6:15 pm | 51        | 2         | 69        | 122      | 378         | 0.66 |
| 6:15 pm - 6:30 pm | 51        | 3         | 85        | 139      | 443         | 0.77 |
| 6:30 pm - 6:45 pm | 47        | 2         | 84        | 133      | 487         | 0.85 |
| 6:45 pm - 7:00 pm | 47        | 1         | 87        | 135      | 529         | 0.92 |
| 7:00 pm - 7:15 pm | 45        | 0         | 78        | 123      | 530         | 0.92 |
| 7:15 pm - 7:30 pm | 31        | 1         | 50        | 82       | 473         | 0.82 |
| 7:30 pm - 7:45 pm | 56        | 0         | 45        | 101      | 441         | 0.77 |
| 7:45 pm - 8:00 pm | 46        | 1         | 46        | 93       | 399         | 0.69 |
| 8:00 pm - 8:15 pm | 36        | 0         | 33        | 69       | 345         | 0.60 |
| 8:15 pm - 8:30 pm | 22        | 0         | 19        | 41       | 304         | 0.53 |
| •                 |           |           |           |          | Xu promedio | 0.61 |

Tabla 111. Grado de Saturación Ponderado Aguas Arriba Subsegmento 3

| Día                         | Xu   |
|-----------------------------|------|
| Sábado                      | 0.42 |
| Domingo                     | 0.28 |
| Lunes                       | 0.79 |
| Martes                      | 0.73 |
| Miércoles                   | 0.71 |
| Jueves                      | 0.69 |
| Viernes                     | 0.61 |
| Promedio X <sub>U,SS3</sub> | 0.60 |

 $\label{eq:separation} Usando \ la \ ecuación \ 22 \ se \ puede \ obtener \ X_u \ de \ acuerdo \ con \ la \ capacidad \ de \ cada \\ subsegmento:$ 

$$X_{U,SS4} = \frac{575 \text{ veh/h}}{776.38 \text{ veh/h}} = 0.74$$

Tabla 112. Aforo Vehicular y Grado de Saturación Sábado 25/11/2023 Subsegmento 4

| Hora de Control     | S9 | S10 | S11 | V(15min) | V(1h) | Xu   |
|---------------------|----|-----|-----|----------|-------|------|
| 6:30 am - 6:45 am   | 32 | 46  | 9   | 87       |       |      |
| 6:45 am - 7:00 am   | 55 | 74  | 19  | 148      |       |      |
| 7:00 am - 7:15 am   | 59 | 89  | 13  | 161      |       |      |
| 7:15 am - 7:30 am   | 65 | 99  | 15  | 179      | 575   | 0.74 |
| 7:30 am - 7:45 am   | 55 | 69  | 12  | 136      | 624   | 0.80 |
| 7:45 am - 8:00 am   | 70 | 99  | 12  | 181      | 657   | 0.85 |
| 8:00 am - 8:15 am   | 83 | 95  | 23  | 201      | 697   | 0.90 |
| 8:15 am - 8:30 am   | 73 | 112 | 29  | 214      | 732   | 0.94 |
| 8:30 am - 8:45 am   | 78 | 96  | 27  | 201      | 797   | 1.03 |
| 8:45 am - 9:00 am   | 78 | 127 | 29  | 234      | 850   | 1.09 |
| 9:00 am - 9:15 am   | 73 | 115 | 37  | 225      | 874   | 1.13 |
| 9:15 am - 9:30 am   | 74 | 120 | 44  | 238      | 898   | 1.16 |
| 9:30 am - 9:45 am   | 73 | 135 | 24  | 232      | 929   | 1.20 |
| 9:45 am - 10:00 am  | 97 | 148 | 42  | 287      | 982   | 1.26 |
| 10:00 am - 10:15 am | 65 | 129 | 20  | 214      | 971   | 1.25 |
| 10:15 am - 10:30 am | 73 | 123 | 16  | 212      | 945   | 1.22 |
| 10:30 am - 10:45 am | 75 | 137 | 25  | 237      | 950   | 1.22 |
| 10:45 am - 11:00 am | 76 | 117 | 18  | 211      | 874   | 1.13 |
| 11:00 am - 11:15 am | 73 | 131 | 35  | 239      | 899   | 1.16 |
| 11:15 am - 11:30 am | 68 | 123 | 41  | 232      | 919   | 1.18 |
| 11:30 am - 11:45 am | 77 | 132 | 37  | 246      | 928   | 1.20 |
| 11:45 am - 12:00 pm | 89 | 116 | 47  | 252      | 969   | 1.25 |
| 12:00 pm - 12:15 pm | 76 | 129 | 47  | 252      | 982   | 1.26 |
| 12:15 pm - 12:30 pm | 76 | 152 | 44  | 272      | 1022  | 1.32 |
| 12:30 pm - 12:45 pm | 72 | 123 | 44  | 239      | 1015  | 1.31 |
| 12:45 pm - 1:00 pm  | 76 | 114 | 23  | 213      | 976   | 1.26 |
| 1:00 pm - 1:15 pm   | 92 | 147 | 41  | 280      | 1004  | 1.29 |
| 1:15 pm - 1:30 pm   | 74 | 124 | 34  | 232      | 964   | 1.24 |
| 1:30 pm - 1:45 pm   | 80 | 124 | 52  | 256      | 981   | 1.26 |
| 1:45 pm - 2:00 pm   | 74 | 95  | 25  | 194      | 962   | 1.24 |
| 2:00 pm - 2:15 pm   | 75 | 80  | 17  | 172      | 854   | 1.10 |
| 2:15 pm - 2:30 pm   | 64 | 71  | 13  | 148      | 770   | 0.99 |
| 2:30 pm - 2:45 pm   | 65 | 87  | 11  | 163      | 677   | 0.87 |
| 2:45 pm - 3:00 pm   | 77 | 76  | 18  | 171      | 654   | 0.84 |
| 3:00 pm - 3:15 pm   | 60 | 59  | 10  | 129      | 611   | 0.79 |
| 3:15 pm - 3:30 pm   | 58 | 53  | 12  | 123      | 586   | 0.75 |
| 3:30 pm - 3:45 pm   | 68 | 76  | 17  | 161      | 584   | 0.75 |
| 3:45 pm - 4:00 pm   | 68 | 47  | 11  | 126      | 539   | 0.69 |
| 4:00 pm - 4:15 pm   | 57 | 44  | 16  | 117      | 527   | 0.68 |

La tabla 112 continua aquí.

| Hora de Control   | S9 | S10 | S11 | V(15min) | V(1h)       | Xu   |
|-------------------|----|-----|-----|----------|-------------|------|
| 4:15 pm - 4:30 pm | 59 | 67  | 21  | 147      | 551         | 0.71 |
| 4:30 pm - 4:45 pm | 38 | 49  | 6   | 93       | 483         | 0.62 |
| 4:45 pm - 5:00 pm | 45 | 58  | 7   | 110      | 467         | 0.60 |
| 5:00 pm - 5:15 pm | 54 | 67  | 7   | 128      | 478         | 0.62 |
| 5:15 pm - 5:30 pm | 63 | 69  | 13  | 145      | 476         | 0.61 |
| 5:30 pm - 5:45 pm | 54 | 83  | 17  | 154      | 537         | 0.69 |
| 5:45 pm - 6:00 pm | 68 | 83  | 18  | 169      | 596         | 0.77 |
| 6:00 pm - 6:15 pm | 63 | 64  | 11  | 138      | 606         | 0.78 |
| 6:15 pm - 6:30 pm | 64 | 65  | 12  | 141      | 602         | 0.78 |
| 6:30 pm - 6:45 pm | 50 | 63  | 17  | 130      | 578         | 0.74 |
| 6:45 pm - 7:00 pm | 57 | 79  | 10  | 146      | 555         | 0.71 |
| 7:00 pm - 7:15 pm | 61 | 67  | 19  | 147      | 564         | 0.73 |
| 7:15 pm - 7:30 pm | 69 | 77  | 14  | 160      | 583         | 0.75 |
| 7:30 pm - 7:45 pm | 61 | 58  | 17  | 136      | 589         | 0.76 |
| 7:45 pm - 8:00 pm | 59 | 53  | 12  | 124      | 567         | 0.73 |
| 8:00 pm - 8:15 pm | 31 | 33  | 9   | 73       | 493         | 0.64 |
| 8:15 pm - 8:30 pm | 20 | 22  | 2   | 44       | 377         | 0.49 |
|                   |    |     |     |          | Xu promedio | 0.94 |

Tabla 113. Aforo Vehicular y Grado de Saturación Domingo 26/11/2023 Subsegmento 4

| Hora de Control     | <b>S9</b> | S10 | S11 | V(15min) | V(1h) | Xu   |
|---------------------|-----------|-----|-----|----------|-------|------|
| 6:30 am - 6:45 am   | 12        | 13  | 1   | 26       |       |      |
| 6:45 am - 7:00 am   | 16        | 29  | 8   | 53       |       |      |
| 7:00 am - 7:15 am   | 21        | 25  | 10  | 56       |       |      |
| 7:15 am - 7:30 am   | 18        | 26  | 11  | 55       | 190   | 0.24 |
| 7:30 am - 7:45 am   | 26        | 35  | 17  | 78       | 242   | 0.31 |
| 7:45 am - 8:00 am   | 18        | 32  | 9   | 59       | 248   | 0.32 |
| 8:00 am - 8:15 am   | 43        | 36  | 29  | 108      | 300   | 0.39 |
| 8:15 am - 8:30 am   | 39        | 37  | 24  | 100      | 345   | 0.44 |
| 8:30 am - 8:45 am   | 40        | 41  | 20  | 101      | 368   | 0.47 |
| 8:45 am - 9:00 am   | 40        | 44  | 24  | 108      | 417   | 0.54 |
| 9:00 am - 9:15 am   | 48        | 37  | 24  | 109      | 418   | 0.54 |
| 9:15 am - 9:30 am   | 65        | 48  | 35  | 148      | 466   | 0.60 |
| 9:30 am - 9:45 am   | 47        | 47  | 24  | 118      | 483   | 0.62 |
| 9:45 am - 10:00 am  | 58        | 43  | 34  | 135      | 510   | 0.66 |
| 10:00 am - 10:15 am | 73        | 41  | 15  | 129      | 530   | 0.68 |
| 10:15 am - 10:30 am | 47        | 45  | 15  | 107      | 489   | 0.63 |
| 10:30 am - 10:45 am | 78        | 55  | 25  | 158      | 529   | 0.68 |
| 10:45 am - 11:00 am | 61        | 52  | 12  | 125      | 519   | 0.67 |
| 11:00 am - 11:15 am | 48        | 56  | 19  | 123      | 513   | 0.66 |
| 11:15 am - 11:30 am | 47        | 72  | 30  | 149      | 555   | 0.71 |
| 11:30 am - 11:45 am | 57        | 77  | 18  | 152      | 549   | 0.71 |

La tabla 113 continua aquí.

| Hora de Control     | S9 | S10 | S11 | V(15min) | V(1h)       | Xu   |
|---------------------|----|-----|-----|----------|-------------|------|
| 11:45 am - 12:00 pm | 55 | 82  | 30  | 167      | 591         | 0.76 |
| 12:00 pm - 12:15 pm | 76 | 96  | 30  | 202      | 670         | 0.86 |
| 12:15 pm - 12:30 pm | 68 | 100 | 22  | 190      | 711         | 0.92 |
| 12:30 pm - 12:45 pm | 64 | 67  | 39  | 170      | 729         | 0.94 |
| 12:45 pm - 1:00 pm  | 52 | 61  | 32  | 145      | 707         | 0.91 |
| 1:00 pm - 1:15 pm   | 45 | 51  | 33  | 129      | 634         | 0.82 |
| 1:15 pm - 1:30 pm   | 34 | 56  | 16  | 106      | 550         | 0.71 |
| 1:30 pm - 1:45 pm   | 48 | 53  | 11  | 112      | 492         | 0.63 |
| 1:45 pm - 2:00 pm   | 29 | 48  | 11  | 88       | 435         | 0.56 |
| 2:00 pm - 2:15 pm   | 34 | 45  | 9   | 88       | 394         | 0.51 |
| 2:15 pm - 2:30 pm   | 33 | 59  | 15  | 107      | 395         | 0.51 |
| 2:30 pm - 2:45 pm   | 36 | 51  | 6   | 93       | 376         | 0.48 |
| 2:45 pm - 3:00 pm   | 33 | 56  | 9   | 98       | 386         | 0.50 |
| 3:00 pm - 3:15 pm   | 22 | 44  | 9   | 75       | 373         | 0.48 |
| 3:15 pm - 3:30 pm   | 14 | 38  | 8   | 60       | 326         | 0.42 |
| 3:30 pm - 3:45 pm   | 30 | 51  | 4   | 85       | 318         | 0.41 |
| 3:45 pm - 4:00 pm   | 37 | 52  | 10  | 99       | 319         | 0.41 |
| 4:00 pm - 4:15 pm   | 74 | 59  | 9   | 142      | 386         | 0.50 |
| 4:15 pm - 4:30 pm   | 71 | 65  | 10  | 146      | 472         | 0.61 |
| 4:30 pm - 4:45 pm   | 79 | 53  | 12  | 144      | 531         | 0.68 |
| 4:45 pm - 5:00 pm   | 55 | 46  | 16  | 117      | 549         | 0.71 |
| 5:00 pm - 5:15 pm   | 41 | 52  | 5   | 98       | 505         | 0.65 |
| 5:15 pm - 5:30 pm   | 65 | 41  | 13  | 119      | 478         | 0.62 |
| 5:30 pm - 5:45 pm   | 26 | 56  | 8   | 90       | 424         | 0.55 |
| 5:45 pm - 6:00 pm   | 50 | 55  | 22  | 127      | 434         | 0.56 |
| 6:00 pm - 6:15 pm   | 70 | 49  | 11  | 130      | 466         | 0.60 |
| 6:15 pm - 6:30 pm   | 58 | 51  | 7   | 116      | 463         | 0.60 |
| 6:30 pm - 6:45 pm   | 61 | 54  | 16  | 131      | 504         | 0.65 |
| 6:45 pm - 7:00 pm   | 65 | 50  | 7   | 122      | 499         | 0.64 |
| 7:00 pm - 7:15 pm   | 53 | 39  | 20  | 112      | 481         | 0.62 |
| 7:15 pm - 7:30 pm   | 59 | 36  | 10  | 105      | 470         | 0.61 |
| 7:30 pm - 7:45 pm   | 34 | 25  | 8   | 67       | 406         | 0.52 |
| 7:45 pm - 8:00 pm   | 56 | 35  | 5   | 96       | 380         | 0.49 |
| 8:00 pm - 8:15 pm   | 33 | 34  | 4   | 71       | 339         | 0.44 |
| 8:15 pm - 8:30 pm   | 24 | 13  | 3   | 40       | 274         | 0.35 |
|                     |    |     |     |          | Xu promedio | 0.59 |

Tabla 114. Aforo Vehicular y Grado de Saturación Lunes 27/11/2023 Subsegmento 4

| Hora de Control   | <b>S9</b> | S10 | S11 | V(15min) | V(1h) | Xu |
|-------------------|-----------|-----|-----|----------|-------|----|
| 6:30 am - 6:45 am | 30        | 89  | 8   | 127      |       |    |
| 6:45 am - 7:00 am | 36        | 101 | 21  | 158      |       |    |
| 7:00 am - 7:15 am | 60        | 157 | 29  | 246      |       |    |

La tabla 114 continua aquí.

| Hora de Control     | S9  | S10 | S11 | V(15min) | V(1h) | Xu   |
|---------------------|-----|-----|-----|----------|-------|------|
| 7:15 am - 7:30 am   | 82  | 151 | 34  | 267      | 798   | 1.03 |
| 7:30 am - 7:45 am   | 116 | 183 | 49  | 348      | 1019  | 1.31 |
| 7:45 am - 8:00 am   | 116 | 116 | 25  | 257      | 1118  | 1.44 |
| 8:00 am - 8:15 am   | 112 | 126 | 32  | 270      | 1142  | 1.47 |
| 8:15 am - 8:30 am   | 118 | 159 | 33  | 310      | 1185  | 1.53 |
| 8:30 am - 8:45 am   | 90  | 147 | 54  | 291      | 1128  | 1.45 |
| 8:45 am - 9:00 am   | 88  | 148 | 29  | 265      | 1136  | 1.46 |
| 9:00 am - 9:15 am   | 86  | 132 | 43  | 261      | 1127  | 1.45 |
| 9:15 am - 9:30 am   | 90  | 149 | 48  | 287      | 1104  | 1.42 |
| 9:30 am - 9:45 am   | 90  | 125 | 38  | 253      | 1066  | 1.37 |
| 9:45 am - 10:00 am  | 125 | 137 | 62  | 324      | 1125  | 1.45 |
| 10:00 am - 10:15 am | 116 | 135 | 48  | 299      | 1163  | 1.50 |
| 10:15 am - 10:30 am | 105 | 135 | 49  | 289      | 1165  | 1.50 |
| 10:30 am - 10:45 am | 90  | 135 | 40  | 265      | 1177  | 1.52 |
| 10:45 am - 11:00 am | 75  | 134 | 51  | 260      | 1113  | 1.43 |
| 11:00 am - 11:15 am | 64  | 150 | 38  | 252      | 1066  | 1.37 |
| 11:15 am - 11:30 am | 52  | 130 | 36  | 218      | 995   | 1.28 |
| 11:30 am - 11:45 am | 55  | 105 | 27  | 187      | 917   | 1.18 |
| 11:45 am - 12:00 pm | 50  | 109 | 38  | 197      | 854   | 1.10 |
| 12:00 pm - 12:15 pm | 82  | 157 | 36  | 275      | 877   | 1.13 |
| 12:15 pm - 12:30 pm | 70  | 135 | 33  | 238      | 897   | 1.16 |
| 12:30 pm - 12:45 pm | 62  | 144 | 35  | 241      | 951   | 1.22 |
| 12:45 pm - 1:00 pm  | 73  | 143 | 45  | 261      | 1015  | 1.31 |
| 1:00 pm - 1:15 pm   | 79  | 138 | 60  | 277      | 1017  | 1.31 |
| 1:15 pm - 1:30 pm   | 104 | 145 | 61  | 310      | 1089  | 1.40 |
| 1:30 pm - 1:45 pm   | 99  | 154 | 39  | 292      | 1140  | 1.47 |
| 1:45 pm - 2:00 pm   | 65  | 148 | 29  | 242      | 1121  | 1.44 |
| 2:00 pm - 2:15 pm   | 40  | 93  | 26  | 159      | 1003  | 1.29 |
| 2:15 pm - 2:30 pm   | 88  | 149 | 33  | 270      | 963   | 1.24 |
| 2:30 pm - 2:45 pm   | 60  | 130 | 20  | 210      | 881   | 1.13 |
| 2:45 pm - 3:00 pm   | 67  | 133 | 26  | 226      | 865   | 1.11 |
| 3:00 pm - 3:15 pm   | 56  | 150 | 37  | 243      | 949   | 1.22 |
| 3:15 pm - 3:30 pm   | 68  | 140 | 40  | 248      | 927   | 1.19 |
| 3:30 pm - 3:45 pm   | 64  | 128 | 34  | 226      | 943   | 1.21 |
| 3:45 pm - 4:00 pm   | 35  | 144 | 33  | 212      | 929   | 1.20 |
| 4:00 pm - 4:15 pm   | 63  | 128 | 48  | 239      | 925   | 1.19 |
| 4:15 pm - 4:30 pm   | 57  | 98  | 30  | 185      | 862   | 1.11 |
| 4:30 pm - 4:45 pm   | 54  | 129 | 32  | 215      | 851   | 1.10 |
| 4:45 pm - 5:00 pm   | 68  | 121 | 28  | 217      | 856   | 1.10 |
| 5:00 pm - 5:15 pm   | 51  | 140 | 29  | 220      | 837   | 1.08 |
| 5:15 pm - 5:30 pm   | 68  | 109 | 35  | 212      | 864   | 1.11 |
| 5:30 pm - 5:45 pm   | 46  | 137 | 37  | 220      | 869   | 1.12 |
| 5:45 pm - 6:00 pm   | 58  | 100 | 21  | 179      | 831   | 1.07 |

La tabla 114 continua aquí.

| Hora de Control   | <b>S9</b> | S10 | <b>S11</b> | V(15min) | <b>V</b> (1h) | Xu   |
|-------------------|-----------|-----|------------|----------|---------------|------|
| 6:00 pm - 6:15 pm | 67        | 144 | 19         | 230      | 841           | 1.08 |
| 6:15 pm - 6:30 pm | 109       | 155 | 50         | 314      | 943           | 1.21 |
| 6:30 pm - 6:45 pm | 102       | 147 | 41         | 290      | 1013          | 1.30 |
| 6:45 pm - 7:00 pm | 121       | 144 | 51         | 316      | 1150          | 1.48 |
| 7:00 pm - 7:15 pm | 110       | 155 | 20         | 285      | 1205          | 1.55 |
| 7:15 pm - 7:30 pm | 85        | 122 | 11         | 218      | 1109          | 1.43 |
| 7:30 pm - 7:45 pm | 85        | 140 | 19         | 244      | 1063          | 1.37 |
| 7:45 pm - 8:00 pm | 58        | 116 | 13         | 187      | 934           | 1.20 |
| 8:00 pm - 8:15 pm | 39        | 86  | 14         | 139      | 788           | 1.01 |
| 8:15 pm - 8:30 pm | 27        | 59  | 2          | 88       | 658           | 0.85 |
|                   |           |     |            |          | Xu promedio   | 1.28 |

Tabla 115. Aforo Vehicular y Grado de Saturación Martes 28/11/2023 Subsegmento 4

| Hora de Control     | S9  | S10 | S11 | V(15min) | V(1h) | Xu   |
|---------------------|-----|-----|-----|----------|-------|------|
| 6:30 am - 6:45 am   | 18  | 38  | 0   | 56       |       | _    |
| 6:45 am - 7:00 am   | 29  | 65  | 8   | 102      |       |      |
| 7:00 am - 7:15 am   | 46  | 89  | 13  | 148      |       |      |
| 7:15 am - 7:30 am   | 46  | 122 | 20  | 188      | 494   | 0.64 |
| 7:30 am - 7:45 am   | 62  | 120 | 29  | 211      | 649   | 0.84 |
| 7:45 am - 8:00 am   | 56  | 117 | 34  | 207      | 754   | 0.97 |
| 8:00 am - 8:15 am   | 62  | 109 | 31  | 202      | 808   | 1.04 |
| 8:15 am - 8:30 am   | 45  | 99  | 26  | 170      | 790   | 1.02 |
| 8:30 am - 8:45 am   | 46  | 76  | 35  | 157      | 736   | 0.95 |
| 8:45 am - 9:00 am   | 50  | 98  | 27  | 175      | 704   | 0.91 |
| 9:00 am - 9:15 am   | 78  | 102 | 37  | 217      | 719   | 0.93 |
| 9:15 am - 9:30 am   | 62  | 97  | 31  | 190      | 739   | 0.95 |
| 9:30 am - 9:45 am   | 76  | 94  | 39  | 209      | 791   | 1.02 |
| 9:45 am - 10:00 am  | 80  | 112 | 35  | 227      | 843   | 1.09 |
| 10:00 am - 10:15 am | 113 | 127 | 64  | 304      | 930   | 1.20 |
| 10:15 am - 10:30 am | 103 | 129 | 40  | 272      | 1012  | 1.30 |
| 10:30 am - 10:45 am | 86  | 118 | 41  | 245      | 1048  | 1.35 |
| 10:45 am - 11:00 am | 85  | 117 | 39  | 241      | 1062  | 1.37 |
| 11:00 am - 11:15 am | 41  | 88  | 27  | 156      | 914   | 1.18 |
| 11:15 am - 11:30 am | 29  | 56  | 21  | 106      | 748   | 0.96 |
| 11:30 am - 11:45 am | 52  | 72  | 21  | 145      | 648   | 0.83 |
| 11:45 am - 12:00 pm | 77  | 104 | 30  | 211      | 618   | 0.80 |
| 12:00 pm - 12:15 pm | 93  | 85  | 33  | 211      | 673   | 0.87 |
| 12:15 pm - 12:30 pm | 89  | 99  | 31  | 219      | 786   | 1.01 |
| 12:30 pm - 12:45 pm | 109 | 125 | 38  | 272      | 913   | 1.18 |
| 12:45 pm - 1:00 pm  | 120 | 159 | 37  | 316      | 1018  | 1.31 |
| 1:00 pm - 1:15 pm   | 118 | 168 | 19  | 305      | 1112  | 1.43 |
| 1:15 pm - 1:30 pm   | 123 | 181 | 18  | 322      | 1215  | 1.56 |

La tabla 115 continua aquí.

| Hora de Control   | S9  | S10 | S11 | V(15min) | V(1h)       | Xu   |
|-------------------|-----|-----|-----|----------|-------------|------|
| 1:30 pm - 1:45 pm | 94  | 148 | 13  | 255      | 1198        | 1.54 |
| 1:45 pm - 2:00 pm | 64  | 99  | 18  | 181      | 1063        | 1.37 |
| 2:00 pm - 2:15 pm | 71  | 100 | 25  | 196      | 954         | 1.23 |
| 2:15 pm - 2:30 pm | 69  | 90  | 32  | 191      | 823         | 1.06 |
| 2:30 pm - 2:45 pm | 51  | 60  | 21  | 132      | 700         | 0.90 |
| 2:45 pm - 3:00 pm | 58  | 78  | 20  | 156      | 675         | 0.87 |
| 3:00 pm - 3:15 pm | 86  | 109 | 38  | 233      | 712         | 0.92 |
| 3:15 pm - 3:30 pm | 71  | 87  | 24  | 182      | 703         | 0.91 |
| 3:30 pm - 3:45 pm | 79  | 118 | 42  | 239      | 810         | 1.04 |
| 3:45 pm - 4:00 pm | 82  | 119 | 32  | 233      | 887         | 1.14 |
| 4:00 pm - 4:15 pm | 62  | 107 | 36  | 205      | 859         | 1.11 |
| 4:15 pm - 4:30 pm | 48  | 78  | 25  | 151      | 828         | 1.07 |
| 4:30 pm - 4:45 pm | 93  | 108 | 38  | 239      | 828         | 1.07 |
| 4:45 pm - 5:00 pm | 66  | 104 | 28  | 198      | 793         | 1.02 |
| 5:00 pm - 5:15 pm | 79  | 113 | 37  | 229      | 817         | 1.05 |
| 5:15 pm - 5:30 pm | 71  | 92  | 31  | 194      | 860         | 1.11 |
| 5:30 pm - 5:45 pm | 59  | 104 | 30  | 193      | 814         | 1.05 |
| 5:45 pm - 6:00 pm | 72  | 99  | 33  | 204      | 820         | 1.06 |
| 6:00 pm - 6:15 pm | 62  | 90  | 26  | 178      | 769         | 0.99 |
| 6:15 pm - 6:30 pm | 74  | 113 | 44  | 231      | 806         | 1.04 |
| 6:30 pm - 6:45 pm | 100 | 95  | 58  | 253      | 866         | 1.12 |
| 6:45 pm - 7:00 pm | 80  | 110 | 55  | 245      | 907         | 1.17 |
| 7:00 pm - 7:15 pm | 78  | 91  | 43  | 212      | 941         | 1.21 |
| 7:15 pm - 7:30 pm | 69  | 81  | 41  | 191      | 901         | 1.16 |
| 7:30 pm - 7:45 pm | 79  | 116 | 30  | 225      | 873         | 1.12 |
| 7:45 pm - 8:00 pm | 58  | 84  | 22  | 164      | 792         | 1.02 |
| 8:00 pm - 8:15 pm | 36  | 61  | 13  | 110      | 690         | 0.89 |
| 8:15 pm - 8:30 pm | 23  | 37  | 1   | 61       | 560         | 0.72 |
|                   |     |     |     |          | Xu promedio | 1.07 |

Tabla 116. Aforo Vehicular y Grado de Saturación Miércoles 29/11/2023 Subsegmento 4

| Hora de Control   | <b>S9</b> | S10 | S11 | V(15min) | V(1h) | Xu   |
|-------------------|-----------|-----|-----|----------|-------|------|
| 6:30 am - 6:45 am | 23        | 44  | 13  | 80       |       |      |
| 6:45 am - 7:00 am | 43        | 71  | 19  | 133      |       |      |
| 7:00 am - 7:15 am | 65        | 96  | 29  | 190      |       |      |
| 7:15 am - 7:30 am | 71        | 130 | 41  | 242      | 645   | 0.83 |
| 7:30 am - 7:45 am | 80        | 166 | 46  | 292      | 857   | 1.10 |
| 7:45 am - 8:00 am | 85        | 145 | 45  | 275      | 999   | 1.29 |
| 8:00 am - 8:15 am | 98        | 165 | 38  | 301      | 1110  | 1.43 |
| 8:15 am - 8:30 am | 72        | 136 | 25  | 233      | 1101  | 1.42 |
| 8:30 am - 8:45 am | 54        | 126 | 33  | 213      | 1022  | 1.32 |
| 8:45 am - 9:00 am | 83        | 161 | 32  | 276      | 1023  | 1.32 |

La tabla 116 continua aquí.

| Hora de Control     | S9  | S10 | S11 | V(15min) | V(1h) | Xu   |
|---------------------|-----|-----|-----|----------|-------|------|
| 9:00 am - 9:15 am   | 83  | 158 | 47  | 288      | 1010  | 1.30 |
| 9:15 am - 9:30 am   | 85  | 161 | 44  | 290      | 1067  | 1.37 |
| 9:30 am - 9:45 am   | 82  | 170 | 42  | 294      | 1148  | 1.48 |
| 9:45 am - 10:00 am  | 89  | 172 | 37  | 298      | 1170  | 1.51 |
| 10:00 am - 10:15 am | 111 | 163 | 37  | 311      | 1193  | 1.54 |
| 10:15 am - 10:30 am | 83  | 132 | 41  | 256      | 1159  | 1.49 |
| 10:30 am - 10:45 am | 64  | 128 | 48  | 240      | 1105  | 1.42 |
| 10:45 am - 11:00 am | 69  | 125 | 31  | 225      | 1032  | 1.33 |
| 11:00 am - 11:15 am | 35  | 116 | 15  | 166      | 887   | 1.14 |
| 11:15 am - 11:30 am | 83  | 115 | 27  | 225      | 856   | 1.10 |
| 11:30 am - 11:45 am | 85  | 154 | 36  | 275      | 891   | 1.15 |
| 11:45 am - 12:00 pm | 57  | 121 | 19  | 197      | 863   | 1.11 |
| 12:00 pm - 12:15 pm | 69  | 165 | 34  | 268      | 965   | 1.24 |
| 12:15 pm - 12:30 pm | 80  | 155 | 34  | 269      | 1009  | 1.30 |
| 12:30 pm - 12:45 pm | 84  | 163 | 35  | 282      | 1016  | 1.31 |
| 12:45 pm - 1:00 pm  | 78  | 140 | 26  | 244      | 1063  | 1.37 |
| 1:00 pm - 1:15 pm   | 86  | 162 | 28  | 276      | 1071  | 1.38 |
| 1:15 pm - 1:30 pm   | 88  | 169 | 38  | 295      | 1097  | 1.41 |
| 1:30 pm - 1:45 pm   | 70  | 139 | 29  | 238      | 1053  | 1.36 |
| 1:45 pm - 2:00 pm   | 73  | 137 | 30  | 240      | 1049  | 1.35 |
| 2:00 pm - 2:15 pm   | 80  | 114 | 24  | 218      | 991   | 1.28 |
| 2:15 pm - 2:30 pm   | 55  | 108 | 20  | 183      | 879   | 1.13 |
| 2:30 pm - 2:45 pm   | 68  | 109 | 21  | 198      | 839   | 1.08 |
| 2:45 pm - 3:00 pm   | 103 | 187 | 45  | 335      | 934   | 1.20 |
| 3:00 pm - 3:15 pm   | 59  | 120 | 26  | 205      | 921   | 1.19 |
| 3:15 pm - 3:30 pm   | 60  | 112 | 33  | 205      | 943   | 1.21 |
| 3:30 pm - 3:45 pm   | 108 | 152 | 37  | 297      | 1042  | 1.34 |
| 3:45 pm - 4:00 pm   | 79  | 161 | 40  | 280      | 987   | 1.27 |
| 4:00 pm - 4:15 pm   | 50  | 148 | 29  | 227      | 1009  | 1.30 |
| 4:15 pm - 4:30 pm   | 79  | 159 | 26  | 264      | 1068  | 1.38 |
| 4:30 pm - 4:45 pm   | 72  | 133 | 38  | 243      | 1014  | 1.31 |
| 4:45 pm - 5:00 pm   | 75  | 121 | 37  | 233      | 967   | 1.25 |
| 5:00 pm - 5:15 pm   | 78  | 135 | 22  | 235      | 975   | 1.26 |
| 5:15 pm - 5:30 pm   | 75  | 140 | 17  | 232      | 943   | 1.21 |
| 5:30 pm - 5:45 pm   | 66  | 121 | 20  | 207      | 907   | 1.17 |
| 5:45 pm - 6:00 pm   | 76  | 136 | 21  | 233      | 907   | 1.17 |
| 6:00 pm - 6:15 pm   | 75  | 165 | 36  | 276      | 948   | 1.22 |
| 6:15 pm - 6:30 pm   | 91  | 148 | 36  | 275      | 991   | 1.28 |
| 6:30 pm - 6:45 pm   | 96  | 190 | 50  | 336      | 1120  | 1.44 |
| 6:45 pm - 7:00 pm   | 111 | 145 | 40  | 296      | 1183  | 1.52 |
| 7:00 pm - 7:15 pm   | 113 | 159 | 37  | 309      | 1216  | 1.57 |
| 7:15 pm - 7:30 pm   | 112 | 153 | 41  | 306      | 1247  | 1.61 |
| 7:30 pm - 7:45 pm   | 87  | 103 | 19  | 209      | 1120  | 1.44 |

La tabla 116 continua aquí.

| Hora de Control   | <b>S9</b> | S10 | S11 | V(15min) | V(1h)       | Xu   |
|-------------------|-----------|-----|-----|----------|-------------|------|
| 7:45 pm - 8:00 pm | 69        | 123 | 27  | 219      | 1043        | 1.34 |
| 8:00 pm - 8:15 pm | 60        | 93  | 19  | 172      | 906         | 1.17 |
| 8:15 pm - 8:30 pm | 27        | 54  | 12  | 93       | 693         | 0.89 |
|                   |           |     |     |          | Xu promedio | 1.29 |

Tabla 117. Aforo Vehicular y Grado de Saturación Jueves 30/11/2023 Subsegmento 4

| Hora de Control     | S9  | S10 | S11 | V(15min) | V(1h) | Xu   |
|---------------------|-----|-----|-----|----------|-------|------|
| 6:30 am - 6:45 am   | 17  | 38  | 4   | 59       |       |      |
| 6:45 am - 7:00 am   | 37  | 75  | 16  | 128      |       |      |
| 7:00 am - 7:15 am   | 48  | 119 | 18  | 185      |       |      |
| 7:15 am - 7:30 am   | 50  | 102 | 19  | 171      | 543   | 0.70 |
| 7:30 am - 7:45 am   | 55  | 120 | 15  | 190      | 674   | 0.87 |
| 7:45 am - 8:00 am   | 51  | 111 | 11  | 173      | 719   | 0.93 |
| 8:00 am - 8:15 am   | 46  | 85  | 27  | 158      | 692   | 0.89 |
| 8:15 am - 8:30 am   | 89  | 131 | 36  | 256      | 777   | 1.00 |
| 8:30 am - 8:45 am   | 91  | 121 | 39  | 251      | 838   | 1.08 |
| 8:45 am - 9:00 am   | 76  | 93  | 35  | 204      | 869   | 1.12 |
| 9:00 am - 9:15 am   | 62  | 74  | 25  | 161      | 872   | 1.12 |
| 9:15 am - 9:30 am   | 36  | 53  | 20  | 109      | 725   | 0.93 |
| 9:30 am - 9:45 am   | 54  | 77  | 27  | 158      | 632   | 0.81 |
| 9:45 am - 10:00 am  | 78  | 105 | 35  | 218      | 646   | 0.83 |
| 10:00 am - 10:15 am | 73  | 91  | 53  | 217      | 702   | 0.90 |
| 10:15 am - 10:30 am | 80  | 128 | 29  | 237      | 830   | 1.07 |
| 10:30 am - 10:45 am | 100 | 122 | 55  | 277      | 949   | 1.22 |
| 10:45 am - 11:00 am | 94  | 112 | 42  | 248      | 979   | 1.26 |
| 11:00 am - 11:15 am | 57  | 84  | 30  | 171      | 933   | 1.20 |
| 11:15 am - 11:30 am | 70  | 81  | 39  | 190      | 886   | 1.14 |
| 11:30 am - 11:45 am | 50  | 68  | 12  | 130      | 739   | 0.95 |
| 11:45 am - 12:00 pm | 51  | 75  | 30  | 156      | 647   | 0.83 |
| 12:00 pm - 12:15 pm | 56  | 106 | 19  | 181      | 657   | 0.85 |
| 12:15 pm - 12:30 pm | 71  | 96  | 22  | 189      | 656   | 0.84 |
| 12:30 pm - 12:45 pm | 56  | 116 | 21  | 193      | 719   | 0.93 |
| 12:45 pm - 1:00 pm  | 51  | 107 | 13  | 171      | 734   | 0.95 |
| 1:00 pm - 1:15 pm   | 100 | 139 | 43  | 282      | 835   | 1.08 |
| 1:15 pm - 1:30 pm   | 105 | 159 | 36  | 300      | 946   | 1.22 |
| 1:30 pm - 1:45 pm   | 105 | 136 | 35  | 276      | 1029  | 1.33 |
| 1:45 pm - 2:00 pm   | 104 | 145 | 34  | 283      | 1141  | 1.47 |
| 2:00 pm - 2:15 pm   | 48  | 90  | 21  | 159      | 1018  | 1.31 |
| 2:15 pm - 2:30 pm   | 96  | 102 | 35  | 233      | 951   | 1.22 |
| 2:30 pm - 2:45 pm   | 52  | 110 | 19  | 181      | 856   | 1.10 |
| 2:45 pm - 3:00 pm   | 89  | 123 | 32  | 244      | 817   | 1.05 |
| 3:00 pm - 3:15 pm   | 51  | 123 | 20  | 194      | 852   | 1.10 |

La tabla 117 continua aquí.

| Hora de Control   | <b>S9</b> | S10 | S11 | V(15min) | V(1h)       | Xu   |
|-------------------|-----------|-----|-----|----------|-------------|------|
| 3:15 pm - 3:30 pm | 73        | 129 | 25  | 227      | 846         | 1.09 |
| 3:30 pm - 3:45 pm | 88        | 155 | 32  | 275      | 940         | 1.21 |
| 3:45 pm - 4:00 pm | 77        | 140 | 29  | 246      | 942         | 1.21 |
| 4:00 pm - 4:15 pm | 94        | 104 | 29  | 227      | 975         | 1.26 |
| 4:15 pm - 4:30 pm | 56        | 111 | 23  | 190      | 938         | 1.21 |
| 4:30 pm - 4:45 pm | 65        | 136 | 20  | 221      | 884         | 1.14 |
| 4:45 pm - 5:00 pm | 83        | 125 | 51  | 259      | 897         | 1.16 |
| 5:00 pm - 5:15 pm | 95        | 134 | 37  | 266      | 936         | 1.21 |
| 5:15 pm - 5:30 pm | 84        | 131 | 39  | 254      | 1000        | 1.29 |
| 5:30 pm - 5:45 pm | 99        | 167 | 49  | 315      | 1094        | 1.41 |
| 5:45 pm - 6:00 pm | 110       | 135 | 31  | 276      | 1111        | 1.43 |
| 6:00 pm - 6:15 pm | 131       | 125 | 17  | 273      | 1118        | 1.44 |
| 6:15 pm - 6:30 pm | 117       | 147 | 10  | 274      | 1138        | 1.47 |
| 6:30 pm - 6:45 pm | 99        | 143 | 19  | 261      | 1084        | 1.40 |
| 6:45 pm - 7:00 pm | 83        | 112 | 16  | 211      | 1019        | 1.31 |
| 7:00 pm - 7:15 pm | 100       | 119 | 41  | 260      | 1006        | 1.30 |
| 7:15 pm - 7:30 pm | 114       | 149 | 39  | 302      | 1034        | 1.33 |
| 7:30 pm - 7:45 pm | 88        | 117 | 30  | 235      | 1008        | 1.30 |
| 7:45 pm - 8:00 pm | 67        | 91  | 32  | 190      | 987         | 1.27 |
| 8:00 pm - 8:15 pm | 55        | 63  | 33  | 151      | 878         | 1.13 |
| 8:15 pm - 8:30 pm | 38        | 40  | 19  | 97       | 673         | 0.87 |
|                   |           |     |     |          | Xu promedio | 1.13 |

Tabla 118. Aforo Vehicular y Grado de Saturación Viernes 01/12/2023 Subsegmento 4

| Hora de Control     | S9  | S10 | S11 | V(15min) | V(1h) | Xu   |
|---------------------|-----|-----|-----|----------|-------|------|
| 6:30 am - 6:45 am   | 21  | 39  | 6   | 66       |       |      |
| 6:45 am - 7:00 am   | 46  | 73  | 16  | 135      |       |      |
| 7:00 am - 7:15 am   | 74  | 92  | 29  | 195      |       |      |
| 7:15 am - 7:30 am   | 85  | 83  | 60  | 228      | 624   | 0.80 |
| 7:30 am - 7:45 am   | 76  | 52  | 68  | 196      | 754   | 0.97 |
| 7:45 am - 8:00 am   | 65  | 78  | 48  | 191      | 810   | 1.04 |
| 8:00 am - 8:15 am   | 50  | 98  | 13  | 161      | 776   | 1.00 |
| 8:15 am - 8:30 am   | 56  | 86  | 23  | 165      | 713   | 0.92 |
| 8:30 am - 8:45 am   | 38  | 78  | 18  | 134      | 651   | 0.84 |
| 8:45 am - 9:00 am   | 62  | 90  | 21  | 173      | 633   | 0.82 |
| 9:00 am - 9:15 am   | 91  | 81  | 50  | 222      | 694   | 0.89 |
| 9:15 am - 9:30 am   | 100 | 106 | 46  | 252      | 781   | 1.01 |
| 9:30 am - 9:45 am   | 90  | 97  | 44  | 231      | 878   | 1.13 |
| 9:45 am - 10:00 am  | 87  | 99  | 45  | 231      | 936   | 1.21 |
| 10:00 am - 10:15 am | 87  | 110 | 56  | 253      | 967   | 1.25 |
| 10:15 am - 10:30 am | 44  | 66  | 19  | 129      | 844   | 1.09 |
| 10:30 am - 10:45 am | 59  | 69  | 32  | 160      | 773   | 1.00 |

La tabla 118 continua aquí.

| Hora de Control     | S9  | S10 | S11 | V(15min) | V(1h)       | Xu   |
|---------------------|-----|-----|-----|----------|-------------|------|
| 10:45 am - 11:00 am | 69  | 86  | 38  | 193      | 735         | 0.95 |
| 11:00 am - 11:15 am | 64  | 48  | 24  | 136      | 618         | 0.80 |
| 11:15 am - 11:30 am | 52  | 47  | 37  | 136      | 625         | 0.81 |
| 11:30 am - 11:45 am | 67  | 45  | 25  | 137      | 602         | 0.78 |
| 11:45 am - 12:00 pm | 56  | 63  | 22  | 141      | 550         | 0.71 |
| 12:00 pm - 12:15 pm | 75  | 75  | 34  | 184      | 598         | 0.77 |
| 12:15 pm - 12:30 pm | 86  | 101 | 35  | 222      | 684         | 0.88 |
| 12:30 pm - 12:45 pm | 77  | 88  | 27  | 192      | 739         | 0.95 |
| 12:45 pm - 1:00 pm  | 69  | 77  | 38  | 184      | 782         | 1.01 |
| 1:00 pm - 1:15 pm   | 90  | 77  | 40  | 207      | 805         | 1.04 |
| 1:15 pm - 1:30 pm   | 66  | 56  | 36  | 158      | 741         | 0.95 |
| 1:30 pm - 1:45 pm   | 95  | 68  | 43  | 206      | 755         | 0.97 |
| 1:45 pm - 2:00 pm   | 74  | 64  | 33  | 171      | 742         | 0.96 |
| 2:00 pm - 2:15 pm   | 50  | 57  | 21  | 128      | 663         | 0.85 |
| 2:15 pm - 2:30 pm   | 34  | 54  | 19  | 107      | 612         | 0.79 |
| 2:30 pm - 2:45 pm   | 33  | 53  | 15  | 101      | 507         | 0.65 |
| 2:45 pm - 3:00 pm   | 46  | 45  | 13  | 104      | 440         | 0.57 |
| 3:00 pm - 3:15 pm   | 35  | 40  | 18  | 93       | 405         | 0.52 |
| 3:15 pm - 3:30 pm   | 58  | 57  | 32  | 147      | 445         | 0.57 |
| 3:30 pm - 3:45 pm   | 35  | 36  | 27  | 98       | 442         | 0.57 |
| 3:45 pm - 4:00 pm   | 37  | 56  | 18  | 111      | 449         | 0.58 |
| 4:00 pm - 4:15 pm   | 29  | 39  | 16  | 84       | 440         | 0.57 |
| 4:15 pm - 4:30 pm   | 38  | 50  | 14  | 102      | 395         | 0.51 |
| 4:30 pm - 4:45 pm   | 71  | 66  | 23  | 160      | 457         | 0.59 |
| 4:45 pm - 5:00 pm   | 45  | 41  | 15  | 101      | 447         | 0.58 |
| 5:00 pm - 5:15 pm   | 45  | 83  | 18  | 146      | 509         | 0.66 |
| 5:15 pm - 5:30 pm   | 43  | 66  | 23  | 132      | 539         | 0.69 |
| 5:30 pm - 5:45 pm   | 58  | 70  | 16  | 144      | 523         | 0.67 |
| 5:45 pm - 6:00 pm   | 88  | 110 | 17  | 215      | 637         | 0.82 |
| 6:00 pm - 6:15 pm   | 107 | 144 | 42  | 293      | 784         | 1.01 |
| 6:15 pm - 6:30 pm   | 104 | 172 | 44  | 320      | 972         | 1.25 |
| 6:30 pm - 6:45 pm   | 110 | 169 | 33  | 312      | 1140        | 1.47 |
| 6:45 pm - 7:00 pm   | 102 | 146 | 37  | 285      | 1210        | 1.56 |
| 7:00 pm - 7:15 pm   | 88  | 83  | 32  | 203      | 1120        | 1.44 |
| 7:15 pm - 7:30 pm   | 71  | 57  | 28  | 156      | 956         | 1.23 |
| 7:30 pm - 7:45 pm   | 72  | 72  | 23  | 167      | 811         | 1.04 |
| 7:45 pm - 8:00 pm   | 77  | 79  | 24  | 180      | 706         | 0.91 |
| 8:00 pm - 8:15 pm   | 46  | 43  | 13  | 102      | 605         | 0.78 |
| 8:15 pm - 8:30 pm   | 26  | 28  | 2   | 56       | 505         | 0.65 |
|                     |     |     |     |          | Xu promedio | 0.89 |

Tabla 119. Grado de Saturación Ponderado Aguas Arriba Subsegmento 4

| Día                          | Xu   |
|------------------------------|------|
| Sábado                       | 0.94 |
| Domingo                      | 0.59 |
| Lunes                        | 1.28 |
| Martes                       | 1.07 |
| Miércoles                    | 1.29 |
| Jueves                       | 1.13 |
| Viernes                      | 0.89 |
| Promedio X <sub>U, SS4</sub> | 1.03 |

Anexo 3. Medida de Sección Transversal que se Usa como Estacionamiento

Tabla 120. Medida de Sección Transversal que se Toma como Estacionamiento

| Subsegmento | Me (m) |
|-------------|--------|
| SS1         | 2.80   |
| SS2         | 2.80   |
| SS3         | 1.49   |
| SS4         | 0.32   |

## **Anexo 4. Retraso por Otros Factores**

Tabla 121. Retraso por otros motivos del subsegmento 1

| Motivo                          | d <sub>ap</sub> (s) |
|---------------------------------|---------------------|
| Recojo de pasajeros de mototaxi | 6.41                |
| Recojo de pasajeros de microbús | 4.35                |
| Recojo de pasajeros de microbús | 4.52                |
| Recojo de pasajeros de mototaxi | 3.23                |
| Recojo de pasajeros de mototaxi | 3.59                |
| Recojo de pasajeros de taxi     | 4.31                |
| Recojo de pasajeros de mototaxi | 6.11                |
| Recojo de pasajeros de taxi     | 3.59                |
| Cruce de peatones               | 6.48                |
| Cruce de peatones               | 9.31                |
| Cruce de peatones               | 6.33                |
| Recojo de pasajeros de taxi     | 4.52                |
| Cruce de peatones               | 6.32                |
| Cruce de peatones               | 7.37                |
| Recojo de pasajeros de mototaxi | 6.42                |

La tabla 121 continua aquí.

| Motivo                          | d <sub>ap</sub> (s) |
|---------------------------------|---------------------|
| Recojo de pasajeros de mototaxi | 2.58                |
| Recojo de pasajeros de taxi     | 3.36                |
| Recojo de pasajeros de taxi     | 2.56                |
| Cruce de peatones               | 7.36                |
| Cruce de peatones               | 6.23                |
| Cruce de peatones               | 3.31                |
| Recojo de pasajeros de microbús | 3.41                |
| Recojo de pasajeros de microbús | 4.59                |
| Cruce de peatones               | 2.46                |
| Cruce de peatones               | 3.59                |
| Recojo de pasajeros de taxi     | 2.36                |
| Cruce de peatones               | 3.21                |
| Recojo de pasajeros de taxi     | 2.49                |
| Recojo de pasajeros de mototaxi | 5.32                |
| Cruce de peatones               | 4.01                |
| Recojo de pasajeros de taxi     | 3.45                |
| Recojo de pasajeros de taxi     | 2.45                |
| Cruce de peatones               | 4.57                |
| Cruce de peatones               | 7.38                |
| Cruce de peatones               | 8.05                |
| Recojo de pasajeros de mototaxi | 4.52                |
| Cruce de peatones               | 5.43                |
| Cruce de peatones               | 3.21                |
| Cruce de peatones               | 4.17                |
| Cruce de peatones               | 8.16                |
| Cruce de peatones               | 6.24                |
| Cruce de peatones               | 3.45                |
| Cruce de peatones               | 4.11                |
| $\Sigma_{ m dap,SS1}$           | 204.89              |

Tabla 122. Retraso por otros motivos del subsegmento 2

| Motivo                          | d <sub>ap</sub> (s) |
|---------------------------------|---------------------|
| Recojo de pasajeros de taxi     | 3.41                |
| Recojo de pasajeros de microbus | 3.20                |
| Recojo de pasajeros de microbus | 4.36                |
| Recojo de pasajeros de microbus | 5.42                |
| Recojo de pasajeros de microbus | 4.52                |
| Recojo de pasajeros de taxi     | 4.59                |
| Cruce de peatones               | 6.41                |

La tabla 122 continua aquí.

| Motivo                          | d <sub>ap</sub> (s) |
|---------------------------------|---------------------|
| Cruce de peatones               | 7.89                |
| Cruce de peatones               | 6.25                |
| Cruce de peatones               | 8.01                |
| Recojo de pasajeros de microbus | 3.60                |
| Recojo de pasajeros de microbus | 3.35                |
| Recojo de pasajeros de microbus | 3.17                |
| Recojo de pasajeros de microbus | 2.58                |
| Recojo de pasajeros de taxi     | 3.59                |
| Recojo de pasajeros de taxi     | 2.36                |
| Recojo de pasajeros de taxi     | 2.48                |
| Recojo de pasajeros de taxi     | 3.01                |
| Recojo de pasajeros de mototaxi | 4.21                |
| Recojo de pasajeros de mototaxi | 3.42                |
| Recojo de pasajeros de mototaxi | 2.58                |
| Recojo de pasajeros de taxi     | 4.53                |
| Recojo de pasajeros de taxi     | 4.44                |
| Recojo de pasajeros de mototaxi | 3.42                |
| Recojo de pasajeros de mototaxi | 2.36                |
| Recojo de pasajeros de mototaxi | 3.41                |
| Recojo de pasajeros de mototaxi | 2.60                |
| Recojo de pasajeros de mototaxi | 4.23                |
| Cruce de peatones               | 4.37                |
| Cruce de peatones               | 4.21                |
| Cruce de peatones               | 5.54                |
| Cruce de peatones               | 3.27                |
| Recojo de pasajeros de mototaxi | 3.52                |
| Recojo de pasajeros de mototaxi | 4.18                |
| Recojo de pasajeros de mototaxi | 3.19                |
| Recojo de pasajeros de mototaxi | 4.17                |
| $\Sigma  m d_{ap,SS2}$          | 145.85              |

Tabla 123. Retraso por otros motivos del subsegmento 3

| Motivo                          | d <sub>ap</sub> (s) |
|---------------------------------|---------------------|
| Recojo de pasajeros de microbus | 3.23                |
| Recojo de pasajeros de microbus | 4.51                |
| Recojo de pasajeros de mototaxi | 3.01                |
| Recojo de pasajeros de taxi     | 7.49                |
| Cruce de peatones               | 6.19                |
| Cruce de peatones               | 5.22                |
| Cruce de peatones               | 5.29                |
| Recojo de pasajeros de microbus | 4.55                |
| Cruce de peatones               | 6.41                |

La tabla 123 continua aquí.

| Motivo                          | d <sub>ap</sub> (s) |
|---------------------------------|---------------------|
| Cruce de peatones               | 5.52                |
| Cruce de peatones               | 6.35                |
| Cruce de peatones               | 7.38                |
| Recojo de pasajeros de mototaxi | 2.51                |
| Recojo de pasajeros de mototaxi | 3.12                |
| Recojo de pasajeros de mototaxi | 3.03                |
| $\Sigma d_{\mathrm{ap,SS3}}$    | 73.81               |

Tabla 124. Retraso por otros motivos del subsegmento 4

| Motivo                          | d <sub>ap</sub> (s) |
|---------------------------------|---------------------|
| Recojo de pasajeros de mototaxi | 3.36                |
| Recojo de pasajeros de microbus | 3.16                |
| Recojo de pasajeros de taxi     | 3.17                |
| Recojo de pasajeros de mototaxi | 2.03                |
| Recojo de pasajeros de taxi     | 2.06                |
| Cruce de peatones               | 4.16                |
| Cruce de peatones               | 4.23                |
| $\Sigma d_{ m ap,SS4}$          | 22.17               |

Figura 22. Tiempo de retraso por otros factores para el subsegmento 1

|                         | TRAVEL TIM                                       | E FIELD WO               | DRKSHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                       | Exhibit 30-15             |
|-------------------------|--------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|---------------------------|
| General Info<br>Analyst |                                                  | Site Info                | ormation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | en Grass  | BRASINA               | Travel Time Field Workshe |
| Agency or Con           | Nobel D. Estela V.                               |                          | Av.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | El Maes   | stro                  |                           |
| Date Performer          | 01/12                                            | Jurisdiction  Analysis 1 | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                       |                           |
| Analysis Period         | 1 hora                                           | Direction                | - No. of the Lot of th |           | Heroes a              | 1                         |
| Field Data              |                                                  | Travel                   | Jr. An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a sona    | s.                    |                           |
|                         | Run Number: Subsegmi                             | ento 1                   | Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n Numbe   |                       |                           |
| Location                | Delays du                                        | e to Slow                | Subs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | egmen     | to 1                  |                           |
| (typically a boundary   | Cumulative or S                                  | top                      | Cumulative<br>Travel Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Delays    | due to Slow<br>r Stop |                           |
| intersection)           | Location (s) Cause                               | Delay<br>Time (s)        | at Location<br>(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cause 4   | Delay<br>Time (s)     |                           |
|                         | Mototaxi                                         | 6.41                     | Star.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Taxi      | 3.36                  |                           |
|                         | Microbos                                         | 4.35                     | 081 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 1                     |                           |
|                         |                                                  |                          | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Taxi      | 2.56                  |                           |
|                         | Microbos                                         | 4.52                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Peatones  |                       |                           |
| -                       | Mototavi                                         | 3.23                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peatones  | 6.23                  |                           |
|                         | Mototaxi                                         | 3.59                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pealone   | 3.31                  |                           |
|                         | Taxi                                             | 4.31                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Microbos  | 2 41                  |                           |
|                         | Mototaxi                                         | 6.11                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                       |                           |
|                         | Taxi                                             | 3.59                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nicrobus  |                       |                           |
|                         |                                                  |                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pea hones | 2.46                  |                           |
|                         |                                                  | 6.48                     | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | atones    | 3.59                  |                           |
|                         | Peatones                                         | 9.31                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | axi       | 2.36                  |                           |
|                         | Peatones                                         | 6.33                     | Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | atones    | 3.21                  |                           |
|                         | Taxi                                             | 4.52                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ixi       | 2.49                  |                           |
|                         | Peatones 6                                       | 5,32                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                       |                           |
|                         |                                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tatari    | 5.32                  |                           |
|                         |                                                  | 1.37                     | Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tiones    | 4.01                  |                           |
|                         |                                                  | .42                      | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Xi        | 3.45                  |                           |
| of mon of data          | Mototaxi 2 Ts = signal; Lt = left turn; Pd = per | .58                      | To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | XI Q      | 2.45                  |                           |

Figura 23. Tiempo de retraso por otros factores para el subsegmento 1

|                                |                                | TRAVEL TE       | ME FIELD W            | ORKSHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |              | Exhibit 30-15              |
|--------------------------------|--------------------------------|-----------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|----------------------------|
| General Info                   |                                | VITA B          |                       | formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2000/511            |              | Travel Time Field Workshee |
| Analyst                        | NobelD                         | Estela V.       |                       | The state of the s | El Maest             | m            |                            |
| Agency or Cor<br>Date Performs |                                |                 | Jurisdict             | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |              |                            |
| Analysis Perior                | 21116                          |                 | Analysis<br>Direction |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                    |              | -                          |
| Field Data                     | Inora                          |                 | Travel                | Jr. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Av. Los H<br>mazonas | emera        |                            |
| ried Data                      | Run Number:                    | Shee            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                |                                |                 |                       | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m Number:            |              |                            |
| Location<br>(typically a       | Cumulative                     | Delays d        | lue to Slow<br>Stop   | Cumulative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | e to Slow    |                            |
| boundary<br>intersection)      | Travel Time at<br>Location (s) |                 | Delay                 | - Travel Time at Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ors                  | Delay        |                            |
|                                | cocadan (s)                    | Cause*          | Time (s)              | (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cause *              | Time (s)     |                            |
|                                |                                | Peatones        | 4.57                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                |                                | Peatones        | 7.38                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                |                                | Peatones        | 9.05                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                |                                | Modotaxi        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | -            |                            |
|                                |                                |                 | 4.52                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                | -                              | Peatones        | 5.43                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                |                                | Peatones        | 3.21                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                |                                | Peafones        | 4.17                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                |                                | eatones         | 8.16                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    | $-\parallel$ |                            |
|                                |                                |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    |              |                            |
|                                |                                | Peatones        | 6.24                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                | F                              | eatones         | 3.45                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 71           |                            |
|                                | Pe                             | catones         | 4.11                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                |                                |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                |                                | 1               | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    |              |                            |
|                                |                                | -               | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                |                                |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                |                                |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                |                                |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | -            |                            |
| "Cause of delay                | : Ts = signal; Lt = le         | ft turn; Pd = p | pedestrian; Pk :      | = parking; Ss = 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P sign: Ys = Ya      | ID sign      |                            |
|                                |                                |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                |                                |                 | *                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
|                                |                                |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |
| er 30/Urban Str                | eet Segments: Sup              | plemental       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Field Mo     | asurement Techniques       |
|                                |                                |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | - IOU PIE    | Page 30-41                 |
|                                |                                |                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                            |

Figura 24. Tiempo de retraso por otros factores para el subsegmento 2

|                           | TRAVEL TIME F      | TELD WORKS             | EET            |                       | Exhibit 30-15             |
|---------------------------|--------------------|------------------------|----------------|-----------------------|---------------------------|
| General Inform            |                    | Site Informati         | ion            |                       | Travel Time Field Workshe |
| Analyst<br>Agency or Comp |                    | Street<br>Jurisdiction | Av. El Mar     | sho                   |                           |
| Date Performed            | 30/11              | Analysis Year          | 20 23          |                       |                           |
| Analysis Period           | 1 hora             | Direction of<br>Travel | Desde dr. Am   | azonasa               | 1                         |
| Field Data                | Subsegment         | nh 2                   |                |                       |                           |
| Location                  | Delays due to      |                        | Subsegmen      |                       |                           |
| (typically a boundary     | Cumulative or Stop | P Cum<br>Trav          | el Time 0      | due to Slow<br>r Stop |                           |
| intersection)             |                    |                        | (s) Cause      | Delay<br>Time (s)     |                           |
| -                         |                    | 3.41                   | Toxi           | 2.48                  |                           |
| -                         |                    | 3.20                   | Taxi           | 3.01                  |                           |
|                           |                    | 36                     | Motolaxi       | 4.21                  |                           |
|                           | Microbus 5         | 42                     | Motobasi       | 3.42                  |                           |
|                           | Microbus 4         | 52                     | Mototaxi       | 2.58                  |                           |
|                           | Taxi 4.            | .59                    | Taxi           | 4.53                  |                           |
|                           | Peatones 6.        | 41                     | Taxi           | 4.44                  |                           |
|                           | Peatones 7.1       | 89                     | mofotaxi       | 3.42                  |                           |
|                           | Peadones 6.        | 25                     | Mototaxi       | 2-36                  |                           |
|                           | Peatones 8.        | .01                    | Motofoxi       | 3.41                  |                           |
|                           | Microbus 3.6       | 60                     | Mototaxi       | 2.60                  |                           |
|                           | Microbus 3.3       | 15                     | Motofaxi       |                       |                           |
|                           | Microbus 3.1       | 17                     | Peatones       |                       |                           |
|                           | Microbus 2.5       | 8                      | Peatones       |                       |                           |
|                           | Taxi 35            | 9                      |                | 5.54                  |                           |
|                           |                    |                        | 1 CAD IN INC.S |                       |                           |

Figura 25. Tiempo de retraso por otros factores para el subsegmento 3

|                                 |                 | TRAVEL TE | 徒 FIELD W             | ORICSHEET                         |           |                       | Exhibit 30-15             |
|---------------------------------|-----------------|-----------|-----------------------|-----------------------------------|-----------|-----------------------|---------------------------|
| General Info                    |                 |           |                       | formation                         |           |                       | Travel Time Field Workshe |
| Analyst<br>Annous - Co-         | Nobel 0         | Estela V. | Street                | Av. E                             | Maestro - | -Subsegment           |                           |
| Agency or Com<br>Date Performed |                 |           | Jurisdicti            | 00                                | 100       | Jineran               |                           |
| Analysis Period                 |                 |           | Analysis<br>Direction |                                   | 23        |                       | 11.                       |
| Field Data                      | . 1101          | ~         | Travel                |                                   | e Jr. A   | mazonas o             |                           |
|                                 | Run Number:     | Subspan   | onto 2                |                                   |           |                       |                           |
| 1                               |                 |           |                       | R                                 | m Numbe   | er.                   |                           |
| Location<br>(typically a        | Cumulative      | 07        | ue to Slow<br>Stop    | Cumulative                        | Delays    | due to Slow<br>r Stop |                           |
| boundary<br>intersection)       | Termed Visco of | -1        | Delay<br>Time (s)     | Travel Time<br>at Location<br>(s) |           | Delay                 |                           |
| T                               |                 | Mototaxi  |                       | (5)                               | Cause 4   | Time (s)              |                           |
|                                 |                 |           |                       |                                   |           | -                     | 1                         |
| -                               |                 | Mofolaxi  | 4.18                  |                                   |           |                       |                           |
|                                 |                 | Mototaxi  | 3.19                  |                                   |           |                       |                           |
|                                 |                 | Motofaxi  | 4.17                  |                                   |           |                       |                           |
|                                 |                 |           |                       |                                   |           |                       |                           |
|                                 |                 |           | -                     |                                   |           |                       |                           |
| -                               |                 |           | -                     |                                   |           |                       |                           |
|                                 |                 |           |                       |                                   |           |                       |                           |
|                                 |                 |           |                       |                                   |           |                       |                           |
|                                 |                 |           | 1                     |                                   |           |                       |                           |
|                                 |                 | -         | -                     | -                                 |           |                       |                           |
|                                 |                 | -         |                       |                                   |           |                       |                           |
|                                 |                 |           |                       |                                   | 1         |                       |                           |
|                                 |                 |           |                       |                                   | 1         |                       |                           |
|                                 |                 |           | 1                     | -                                 | -         |                       |                           |
|                                 |                 | -         | -                     | -                                 |           |                       |                           |
| _                               |                 |           |                       |                                   |           |                       |                           |
|                                 |                 |           |                       |                                   |           |                       |                           |
|                                 |                 |           |                       |                                   | +         |                       |                           |
|                                 |                 |           | adaption of           | perking; Ss = sto                 |           |                       |                           |

Figura 26. Tiempo de retraso por otros factores para el subsegmento 3

|                            | TRAVEL TIME                        | FIELD WO            | DRICSHEET                 |           |                   | Exhibit 30-15             |
|----------------------------|------------------------------------|---------------------|---------------------------|-----------|-------------------|---------------------------|
| General Inform             |                                    | Site Info           | rmation                   |           |                   | Travel Time Field Workshe |
| Analyst<br>Agency or Compa | Nobel D. Estela V.                 | Street              | Av. t                     | Maest     | no.               |                           |
| Date Performed             | 27/11                              | Analysis Y          |                           | 3         |                   |                           |
| Analysis Period            | 1 hora                             | Direction of Travel | of Desde 3                | r. Amazo  | nasa              | 1 2                       |
| Field Data                 | m Mumber: Subsegn                  | nento 3             |                           | n Humber: |                   |                           |
| Location                   | Delays due                         |                     | _                         |           |                   |                           |
| (typically a boundary Tr   | constative or St                   | Delay               | Cumulative<br>Travel Time | or s      | to Słow           |                           |
| intersection) L            |                                    | Time (s)            | at Location<br>(s)        | Cause a   | Delay<br>Time (s) |                           |
|                            | Microbas                           | 3.23                |                           |           |                   |                           |
|                            | Microbus                           | 4.51                |                           |           |                   |                           |
|                            | Mototaxi                           | 3.01                |                           |           |                   |                           |
|                            | Taxi                               | 7.49                |                           |           |                   |                           |
|                            | Reatones                           | 6.19                |                           |           |                   |                           |
|                            |                                    | 5.22                |                           | -         |                   |                           |
|                            | 0.1                                | 5. 29               |                           | -         |                   |                           |
|                            |                                    | 1.55                |                           | -         | $-\parallel$      |                           |
|                            | 0 1                                | .41                 | .                         | -         | $-\parallel$      |                           |
|                            |                                    | 5,52                | -                         | -         | $-\parallel$      |                           |
|                            |                                    | -                   | -                         | -         | $-\parallel$      |                           |
|                            |                                    | .35                 | -                         | -         |                   |                           |
|                            |                                    | . 38                | -                         | -         |                   |                           |
|                            |                                    | .51                 |                           |           |                   |                           |
|                            |                                    | .12                 |                           |           |                   |                           |
| -                          | Mototaxi 3.                        | 03                  |                           |           |                   |                           |
| ACres della                | = signal; Ct = felt turn; Pd = ped |                     |                           |           |                   |                           |

| Commany   Comm |                                         |                  | TRAVEL TIM     | E FIELD W         | ORKSHEET                  |              |                   | Exhibit 30-15                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|----------------|-------------------|---------------------------|--------------|-------------------|------------------------------------|
| Agency or Company Date Performed 28/11 Analysis Period 28/11 Analysis Period 1 hora Direction of Travel Travel Travel Time at Location (s) Intersection) Delays due to Slow or Stop Travel Time at Location (s) Morbolax 3 36  Microbus 3.16  Morbolax 3.17  Morbolax 3.17  Morbolax 3.17  Morbolax 3.17  Morbolax 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100000000000000000000000000000000000000 | rmation          |                | Site Inf          | ormation                  | 1000         | - CONTRACTOR      | Travel Time Field Workshee         |
| Date Performed 2E/11 Analysis Period 1 hota Direction of Travel 1 hota Designments Analysis Period 1 hota Direction of Travel 1 hota Designments Analysis Period 1 hota Analysis Period 2 Peske Jr. El linca a Jr. Amazonas.  Rum Number:  Cumulative Travel Time at Location (s)  Motolaxi 3 3 3 6  Microbus 3 .16  Tavi 2.06  Reafones 4.16  Peafones 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                       | Nobel 1          | ). Estelo V.   |                   |                           | Et Mass      | -                 |                                    |
| Analysis Period  1 hora    Description of Travel Time at Location (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                  |                |                   | on                        | LE MIGES     | ALD.              |                                    |
| Fleld Data    Run Number:   Subsequentha   Run Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | -5011            |                |                   |                           |              |                   |                                    |
| Run Number: Subsequented Run Number:  Location (typically a boundary boundary boundary a intersection)  Morbolaxi 3.36  Microbus 3.16  Taxi 2.06  Run Number: Subsequented Run Mumber:  Cumulative or Stop Travel Time at Location (s)  Morbolaxi 2.03  Taxi 2.06  Realones 4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | resolvais relicu                        | 1 hor            | a              |                   | of Desd                   | e Jr. El     | lnca a            |                                    |
| Location (typically a boundary Intersection)  Location (typically a boundary Intersection)  Morbolaxi  Tayi  Reafones  4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Field Data                              |                  |                | BS TO S           | OF.                       | Amazon       | as.               |                                    |
| typically a boundary intersection)    Cause   Cause  |                                         | Run Number:      | Subsegr        | mentoa            | Ri                        | m Number     |                   |                                    |
| typically a boundary intersection)    Cause   Cause  | Location                                |                  | Delays du      | is to Slow        | _                         |              |                   |                                    |
| intersection Travel Time at Location (s)  Mortolaxi 3.36  Microbus 3.16  Taxi 2.06  Reatones 4.16  Peakones 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (typically a                            | Cumulative       | ors            | top               | Cumulative<br>Travel Time | Delays d     | Stop              |                                    |
| Mototaxi 3.36  Microbus 3.16  tavi 3.17  Mototaxi 2.03  Taxi 2.06  Reatures 4.16  Peatures 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | intersection)                           | Location (s)     |                | Delay<br>Time (s) | at Location               | Cause *      | Delay<br>Time (e) |                                    |
| Microbus 3.16  taxi 3.17  Mototaxi 2.03  Taxi 2.06  Restones 4.16  Peatrones 4.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                  | Mototaxi       | 3.36              |                           |              | Time (s)          |                                    |
| Mototaxi 2.03  Taxi 2.06  Reatones 4.16  Peafones 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                  | Microbus       |                   |                           |              |                   |                                    |
| Taxi 2.06  Peatones 4.16  Peatones 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                  | taxi           | 3.17              |                           |              |                   |                                    |
| Rectones 4.16  Peatrones 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  | Mototaxi       | 2.03              |                           |              |                   |                                    |
| Pealipnes 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                  | Taxi           | 2.06              |                           |              |                   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                  | Reationes      | 4.16              |                           |              |                   |                                    |
| *Cause of delay: Ts = signul; Lt = left turn; Pd = pedestrian; Pk = parking; Ss = stor sign; Ys = YIELD sign.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  | Peatones       | 4.23              |                           |              |                   |                                    |
| *Cause of delay: Ts = signul; Lt = left turn; Pd = pedestrian; Pk = parking; Ss = stor sign; Ys = YIELD sign.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |                |                   |                           |              |                   |                                    |
| *Cause of delay: Ts = signul; Lt = left turn; Pd = pedestrian; Pk = parking; Ss = stor sign; Ys = YIELD sign.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |                |                   | *                         |              |                   |                                    |
| *Cause of delay: Ts = signul; Lt = left turn; Pd = pedestrian; Pk = parking; Ss = stor sign; Ys = YIELD sign.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |                |                   |                           |              |                   |                                    |
| *Cause of delay: Ts = signul; Lt = left turn; Pd = pedestrian; Pk = parking; Ss = stor sign; Ys = YIELD sign.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |                |                   |                           |              |                   |                                    |
| *Cause of delay: Ts = signul; Lt = left turn; Pd = pedestrian; Pk = parking; Ss = stor sign; Ys = YIELD sign.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |                |                   |                           |              |                   |                                    |
| *Cause of delay: Ts = signal; Lt = left turn; Pd = pedestrian; Pk = parking; Ss = stor sign; Ys = YIELD sign.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |                |                   |                           |              |                   |                                    |
| *Cause of delay: Ts = signal; Lt = left turn; Pd = pedestrian; Pk = parking; Ss = stor sign; Ys = YIELD sign.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                  |                |                   |                           |              |                   |                                    |
| : "Cause of delay: Ts = signal; Lt = left turn; Pd = pedestrian; Pk = parking; Ss = stor sign; Ys = YTELD sign.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                  |                |                   |                           |              |                   |                                    |
| - syrwar, Lt = rest turn; Pd = pedestrian; Pk = parking; Ss = stop sign; Ys = YIELD sign.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *Cause of deba-                         | To m clouds 41   |                |                   |                           |              |                   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a ucuy.                                 | agran; Lt = k    | actum; Pd = pe | odestrian; Pk =   | parking; Ss = Sto         | sign; Ys = Y | TELD sign.        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                  |                |                   |                           |              | - 1               |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                  |                |                   |                           |              |                   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er 30/Urban Stre                        | et Segments: Sup | plemental      |                   |                           |              | Eight as          | - Charles                          |
| er 30/Urban Street Segments: Supplemental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                  |                |                   |                           |              | rield Me          | asurement Techniques<br>Page 30-41 |
| Field Measurement Techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                  |                |                   |                           |              |                   |                                    |

# Anexo 5. Obtención de UVE para bicicleta y mototaxi

## Área de un auto:

Tabla 125. Resumen de medidas geométricas de un auto

| Modelo                | Longitud<br>(mm) | Anchura (mm) | Altura (mm) | Maletero<br>(litros) |
|-----------------------|------------------|--------------|-------------|----------------------|
| Abarth 500            | 3.666            | 1.627        | 1.48        | 185                  |
| Citroën C1            | 3.466            | 1.615        | 1.46        | 196                  |
| Fiat 500              | 3.571            | 1.627        | 1.488       | 185                  |
| Fiat Panda            | 3.653            | 1.643        | 1.551       | 225                  |
| Ford Ka+              | 3.941            | 1.704        | 1.524       | 270                  |
| Hyundai i10           | 3.665            | 1.66         | 1.5         | 252                  |
| Kia Picanto           | 3.595            | 1.595        | 1.485       | 255                  |
| Mitsubishi Space Star | 3.795            | 1.665        | 1.505       | 235                  |
| Opel Adam             | 3.698            | 1.72         | 1.484       | 170                  |
| Opel Karl             | 3.675            | 1.604        | 1.476       | 206                  |
| Peugeot 108           | 3.475            | 1.615        | 1.46        | 196                  |
| Renault Twingo        | 3.595            | 1.646        | 1.554       | 174                  |
| SEAT Mii              | 3.557            | 1.641        | 1.478       | 251                  |
| Skoda Citigo          | 3.597            | 1.645        | 1.478       | 251                  |
| Smart ForTwo          | 2.695            | 1.663        | 1.555       | 260                  |
| Smart Forfour         | 3.495            | 1.665        | 1.554       | 185                  |
| Suzuki Celerio        | 3.6              | 1.6          | 1.42        | 254                  |
| Toyota Aygo           | 3.465            | 1.615        | 1.46        | 138                  |
| Volkswagen Up!        | 3.6              | 1.645        | 1.492       | 251                  |
| Promedio:             | 3.57             | 1.64         | 1.49        | 217.84               |

Nota. Extraído de Motor Blogs Mapfre, 2024.

$$A_{Auto} = 3.57 \text{ m} \cdot 1.64 \text{ m} = 5.85 \text{ m}^2$$

#### **Bicicleta:**

Tabla 126. Medidas geométricas de una bicicleta

| VEHÍCULO  | LONGITUD (m) | ANCHURA (m) | ALTURA (m) |
|-----------|--------------|-------------|------------|
| Bicicleta | 1.73         | 1.00        | 0.79       |

$$UVE_{Bicicleta} = \frac{1.73 \text{ m} \cdot 1.00 \text{ m}}{5.85 \text{ m}^2} = \frac{1.73 \text{m}^2}{5.85 \text{m}^2} = 0.30$$

## **Mototaxi:**

Tabla 127. Medidas geométricas de un mototaxi

| VEHÍCULO | LONGITUD (m) | ANCHURA (m) | ALTURA (m) |
|----------|--------------|-------------|------------|
| Mototaxi | 2.96         | 1.35        | 1.77       |

$$UVE_{Mototaxi} = \frac{2.96m \cdot 1.35 \text{ m}}{5.85 \text{ m}^2} = \frac{4.00m^2}{5.85m^2} = 0.68$$

## Anexo 6. Porcentaje de Pelotón que Llegan Durante el Verde en la Intersección Aguas Arriba

Tabla **128**. Porcentaje de Pelotón que Llegan Durante el Verde en la Intersección Aguas Arriba en el Subsegmento 1 y 3

| Día       | S1 (veh/h) | S14<br>(veh/h) | S1+S14<br>(veh/h) | S1<br>(S1+S14) |
|-----------|------------|----------------|-------------------|----------------|
| Sábado    | 4621       | 5909           | 10530             | 43.88%         |
| Domingo   | 2589       | 6409           | 8998              | 28.77%         |
| Lunes     | 8181       | 10174          | 18355             | 44.57%         |
| Martes    | 6704       | 11742          | 18446             | 36.34%         |
| Miércoles | 6849       | 11338          | 18187             | 37.66%         |
| Jueves    | 7019       | 13473          | 20492             | 34.25%         |
| Viernes   | 7510       | 10950          | 18460             | 40.68%         |

Tabla **129**. Porcentaje de Pelotón que Llegan Durante el Verde en la Intersección Aguas Arriba en el Subsegmento 2 y 4

| Día       | S10     | S11     | S13     | S16     | S10+S11+S13+S16 | (S10+S11)         |
|-----------|---------|---------|---------|---------|-----------------|-------------------|
|           | (veh/h) | (veh/h) | (veh/h) | (veh/h) | (veh/h)         | (S10+S11+S13+S16) |
| Sábado    | 5372    | 1256    | 7387    | 4364    | 18379           | 36.06%            |
| Domingo   | 2843    | 863     | 7930    | 5594    | 17230           | 21.51%            |
| Lunes     | 8143    | 2149    | 8912    | 6740    | 25944           | 39.67%            |
| Martes    | 6446    | 1976    | 8067    | 4629    | 21118           | 39.88%            |
| Miércoles | 8246    | 1983    | 12538   | 7281    | 30048           | 34.04%            |
| Jueves    | 7125    | 1809    | 10854   | 5907    | 25695           | 34.77%            |
| Viernes   | 4370    | 1844    | 9038    | 3809    | 19061           | 32.60%            |



# GERENCIA DE SEGURIDAD CIUDADANA

### SUB-GERENCIA DE SERENAZGO CENTRAL DE VIDEOVIGILANCIA





## INFORME N°1422-2023- HDBCH -CVV-SGS-MPC.

: CRL(R) EP. JORGE LUIS SALAZAR PÉREZ

GERENTE DE SEGURIDAD CIUDADANA - MPC.

DE

: Ing. Henry David Briones Chávez.

RESPONSABLE DE LA CENTRAL DE VIDEOVIGILANCIA

**ASUNTO** 

: No existe información solicitada.

REFERENCIA

: INFORME N°162-2023-AIP-OGGYAC-MPC

**EXPEDIENTE 2023085772** 

**FECHA** 

: Cajamarca, 02 de Noviembre de 2023.

Mediante el presente, me dirijo a usted para saludarlo cordialmente y manifestarle que, en atención al documento de la referencia hago de su conocimiento que, la Av. Los Héroes con Jr. El Inca no se interceptan; Así mismo, se informa que la Central de Videovigilancia, sólo atiende solicitudes de grabación de videos relacionados con Seguridad Ciudadana; tal como lo establece en el REGLAMENTO DE LA LEY Nº 27933, LEY DEL SISTEMA NACIONAL DE SEGURIDAD CIUDADANA CAPÍTULO III, Artículo 61 y sección 61.4, lo siguiente:

Artículo 61.- Obligatoriedad de la instalación, operación e interconexión de los Centros de Video Vigilancia, Radiocomunicación y Telecomunicaciones

61.4 En atención a lo dispuesto por la Ley Nº 30120, Ley de Apoyo a la Seguridad Ciudadana con Cámaras de Video Vigilancia Públicas y Privadas, cuando se presuma la comisión de un delito o una falta, las personas naturales y jurídicas, públicas y privadas, deberán entregar gratuitamente copia de las imágenes y audios registrados a través de dichas cámaras a la Policía Nacional del Perú y al Ministerio Público, según corresponda. Se garantiza la confidencialidad de la identidad de los propietarios o poseedores de los inmuebles y de las personas que hacen entrega de esta información.

Es todo cuanto informo a usted para conocimiento y fines que estime por conveniente.

Atentamente,

Av. Alameda de los Incas Q Cajamarca - Perú

076 602660 - 076 602661 🕲

contactenos@municai.gob.pe

## **CRONOGRAMA DE TOMA DE DATOS**

Para: Dr. Mauro Augusto Centurión Varga

Director del Programa de Maestría de ingeniería Civil de la Universidad Nacional de Cajamarca

Estimado Director buenas tardes, soy el exalumno de la Maestría en Ciencias con Mención en Ingeniería Civil Nobel Dereck Estela Velásquez con DNI N°70196037. Me dirijo ante usted para saludarle y a la vez manifestarle, que, con el fin de realizar el levantamiento de observaciones de mi tesis "CAPACIDAD Y NIVEL DE SERVICIO DE LA AVENIDA EL MAESTRO ENTRE LA AVENIDA LOS HÉROES Y JIRÓN EL INCA DE LA CIUDAD DE CAJAMARCA, POR EL USO DE CARRILES COMO ESTACIONAMIENTO – 2019", procederé a realizar el aforo vehicular desde el 25/11/2023 a 01/12/2023 desde las 6:30 am – 8:30 pm en el tramo de via Av. El Maestro entre la Av. Los Héroes y Jr. El Inca de la ciudad de Cajamarca.

Es todo en cuanto tengo que dirigirme a su persona.

Atte,

Nobel Dereck Estela Velásquez

Ingeniero Civil

DNI°70196037

# Anexo 8. Panel Fotográfico

Figura 28. Aforo vehicular manual intersección Av. Los Héroes – Av. El Maestro



Figura 29. Aforo vehicular manual intersección Jr. Amazonas – Av. El Maestro



Figura  $30.\,A$ foro vehicular manual intersección  $Jr.\,El\,Progresos-Av.\,El\,Maestro$ 

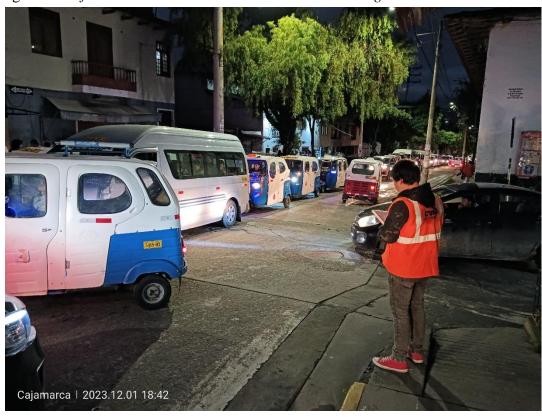



Figura 31. Aforo vehicular manual intersección Jr. El Progresos – Av. El Maestro



Figura 32. Uso de un carril como estacionamiento subsegmento 1

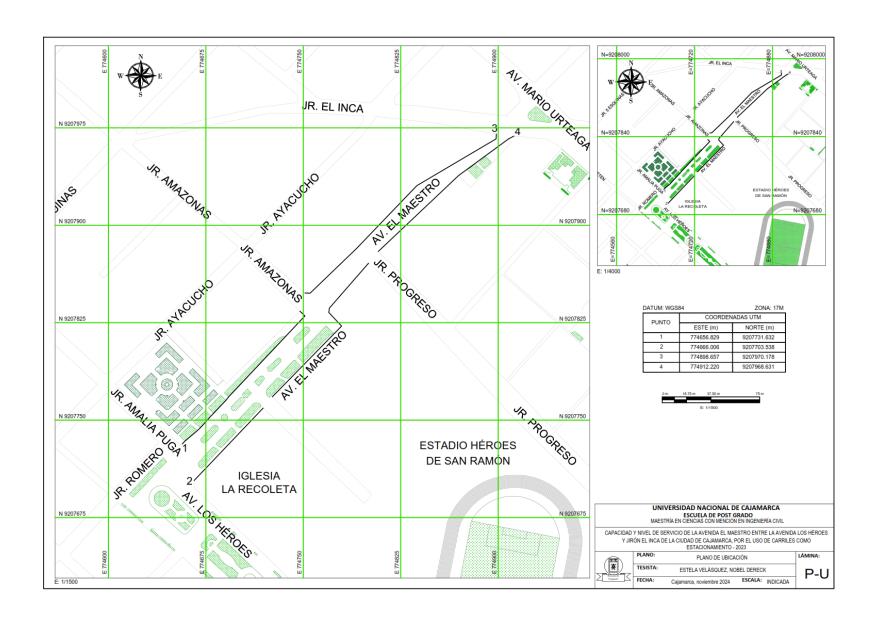


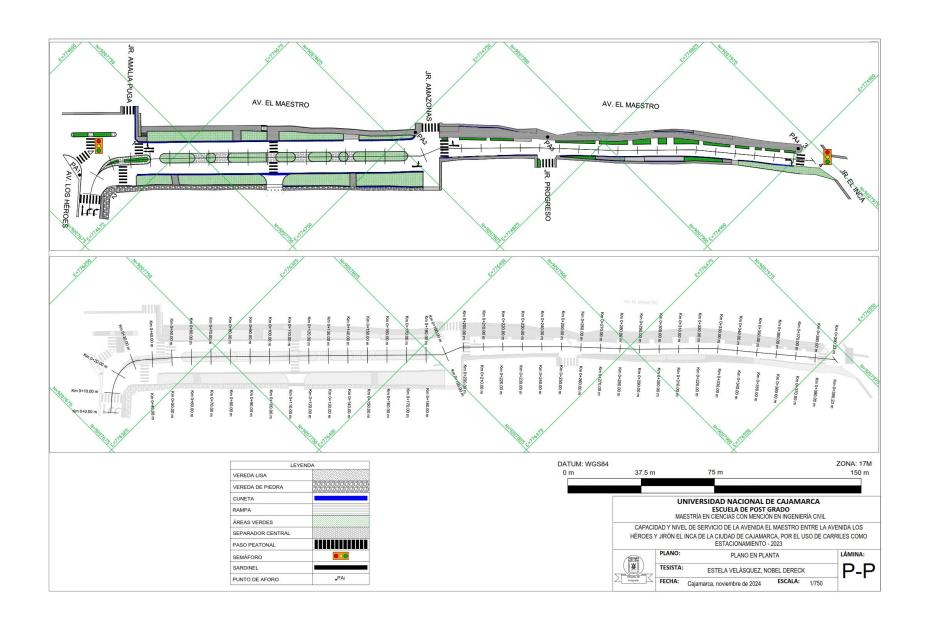
Figura 33. Uso de un carril como estacionamiento subsegmento 2

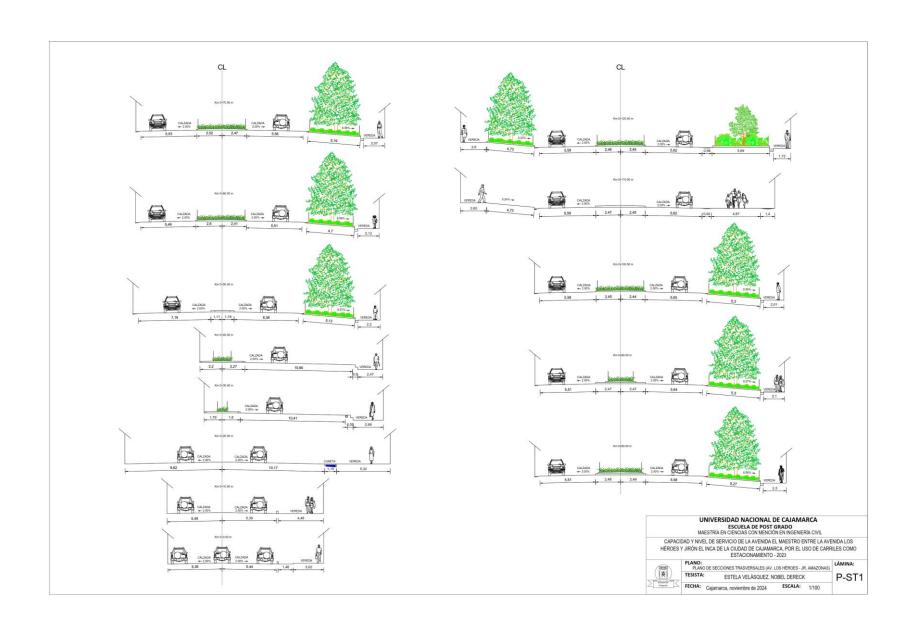


Figura **34**. Medición de Sección de Vía que se Toma como Estacionamiento Subsegmento 3

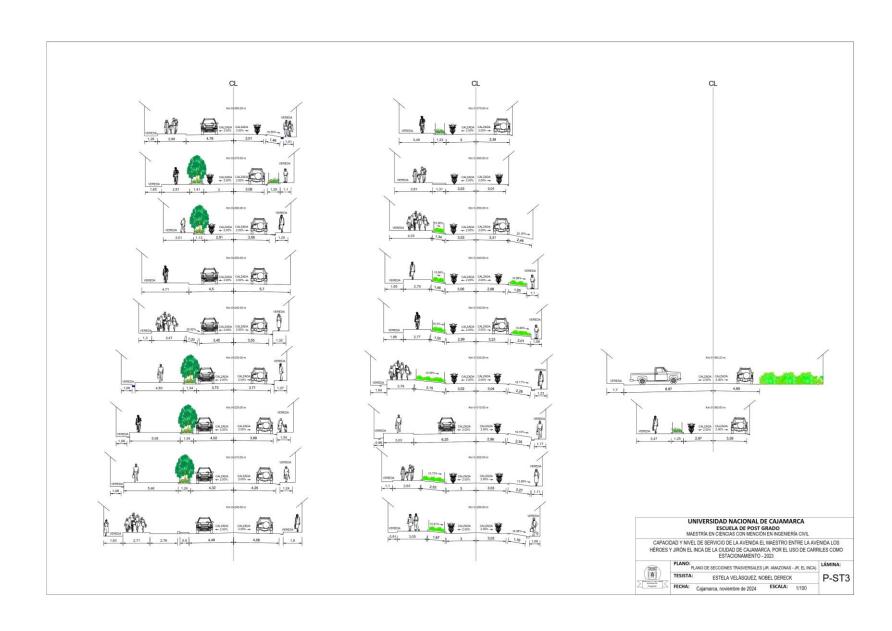



Figura **35**. Medición de Sección de Vía que se Toma como Estacionamiento Subsegmento 3





Figura 36. Pase de pregón en Av. El Maestro




Anexo 9. Planos

